JPWO2008050576A1 - Antiglare film, method for producing antiglare film, polarizing plate and display device - Google Patents

Antiglare film, method for producing antiglare film, polarizing plate and display device Download PDF

Info

Publication number
JPWO2008050576A1
JPWO2008050576A1 JP2008540926A JP2008540926A JPWO2008050576A1 JP WO2008050576 A1 JPWO2008050576 A1 JP WO2008050576A1 JP 2008540926 A JP2008540926 A JP 2008540926A JP 2008540926 A JP2008540926 A JP 2008540926A JP WO2008050576 A1 JPWO2008050576 A1 JP WO2008050576A1
Authority
JP
Japan
Prior art keywords
layer
film
convex structure
antiglare
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008540926A
Other languages
Japanese (ja)
Inventor
浩 居野家
浩 居野家
泰宏 渡辺
泰宏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of JPWO2008050576A1 publication Critical patent/JPWO2008050576A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers

Abstract

透明基材上に微細な凹凸構造を有する防眩性フィルムにおいて、防眩層が凸部の径15〜40μm、凸部の高さが2〜10μmの凸構造部と、更に該凸構造部を被覆するように透明樹脂層により形成されており、且つ該防眩層の表面粗さ(Rz)が0.8〜4μm、該防眩層の凸部または凹部の平均中心間距離(Sm)が25〜100μm、Rz/Smが0.01〜0.1であり、更に該凸部または凹部の表面形状部を0.01mm2あたり5〜25個有することを特徴とする防眩性フィルム。An anti-glare film having a fine uneven structure on a transparent substrate, wherein the anti-glare layer has a convex diameter of 15 to 40 μm, a convex height of 2 to 10 μm, and the convex structure The antiglare layer has a surface roughness (Rz) of 0.8 to 4 μm and an average center-to-center distance (Sm) of the protrusions or recesses of the antiglare layer. An antiglare film characterized by having 25 to 100 μm, Rz / Sm of 0.01 to 0.1, and further having 5 to 25 surface shape portions of the convex portions or concave portions per 0.01 mm 2.

Description

本発明は、防眩性フィルム、防眩性フィルムの製造方法、偏光板及び表示装置に関し、透過鮮明性と防眩性及び屈曲耐性に優れ、所望の微細凹凸構造を生産性よく形成した防眩性フィルム、防眩性フィルムの製造方法、該防眩性フィルムを用いた偏光板及び表示装置に関する。   The present invention relates to an antiglare film, a method for producing an antiglare film, a polarizing plate and a display device, and is excellent in transmission sharpness, antiglare property and bending resistance, and has an antiglare material having a desired fine concavo-convex structure formed with good productivity. The present invention relates to a production method for an anti-glare film, an anti-glare film, a polarizing plate and a display device using the anti-glare film.

近年、薄型軽量ノートパソコンの開発が進んでいる。それに伴って、液晶表示装置等の表示装置で用いられる偏光板の保護フィルムもますます薄膜化、高性能化への要求が強くなってきている。また、視認性向上のために反射防止層を設けたり、また、写り込みを防いだり、ギラツキの少ない表示性能を得るために表面を凹凸にして反射光を散乱させる防眩層を付与した、コンピュータやワープロ等の液晶画像表示装置(液晶ディスプレイともいう)が多く使用されるようになってきた。   In recent years, development of thin and light notebook computers has been progressing. Along with this, the demand for thinner and higher performance protective films for polarizing plates used in display devices such as liquid crystal display devices is also increasing. Also, a computer provided with an anti-glare layer for improving visibility, and also provided with an anti-glare layer that prevents reflections and scatters the reflected light with a rough surface to obtain display performance with less glare. A liquid crystal image display device (also referred to as a liquid crystal display) such as a word processor or the like has been widely used.

反射防止層や防眩層は用途に応じてさまざまな種類や性能の改良がなされ、これらの機能を有する種々の前面板を液晶ディスプレイの偏光子等に貼り合わせることで、ディスプレイに視認性向上のために反射防止機能または防眩機能等を付与する方法が用いられている。   Various types and performance improvements have been made to the antireflection layer and antiglare layer depending on the application, and various front plates with these functions are attached to the polarizer of a liquid crystal display, etc., to improve visibility on the display. Therefore, a method of providing an antireflection function or an antiglare function is used.

防眩層は、表面に反射した像の輪郭をぼかすことによって反射像の視認性を低下させて、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置などの使用時に反射像の写り込みが気にならないようにするものである。   The antiglare layer reduces the visibility of the reflected image by blurring the outline of the image reflected on the surface, and reflection of the reflected image is noticeable when using an image display device such as a liquid crystal display, an organic EL display, or a plasma display. It is to prevent it from becoming.

画像表示装置の前面板最表面に適切な微細凹凸構造を設けることによって、上記のような性質を持たせることができる。例えば、微粒子を用いる方法(例えば、特許文献1参照。)、表面にエンボス加工を施す方法(例えば、特許文献2参照。)等種々の方法がある。   By providing an appropriate fine concavo-convex structure on the outermost surface of the front plate of the image display device, the above properties can be provided. For example, there are various methods such as a method using fine particles (for example, refer to Patent Document 1) and a method for embossing the surface (for example, refer to Patent Document 2).

しかしながら、微粒子を用いる方法は、バインダー層中に微粒子を含有させることのみによって微細凹凸構造を形成する為、微粒子を適切に分散することが必要であり、所望の微細凹凸構造を効果的に安定に形成することがむずかしく、防眩性フィルムとしての十分なぎらつき防止効果を得ることに大きな障害を有していた。特に、微粒子を用いる方法は、微粒子の存在密度が制御できず、また微粒子が複数重なる部分で、凸部の高さが周囲より高くなるため、安定に均一な凹凸構造を作ることができない点やそれを補うために膜厚が厚くなる点が欠点であった。またエンボス加工により微細凹凸構造を形成する方法は、生産性に劣り、特に微細凹凸構造を安定に形成することは極めて困難である。   However, since the method using fine particles forms a fine concavo-convex structure only by including fine particles in the binder layer, it is necessary to disperse the fine particles appropriately, and the desired fine concavo-convex structure can be effectively and stably stabilized. It was difficult to form and had a great obstacle to obtaining a sufficient glare-preventing effect as an antiglare film. In particular, the method using fine particles cannot control the existence density of the fine particles, and the height of the convex portions is higher than the surroundings in a portion where the fine particles overlap, so that a uniform uneven structure cannot be formed stably. The drawback was that the film thickness increased to compensate for this. Moreover, the method of forming a fine concavo-convex structure by embossing is inferior in productivity, and in particular, it is extremely difficult to stably form a fine concavo-convex structure.

特許文献3にはスピノーダル分解を利用した樹脂の相分離を利用した微細凹凸形成方法の記載があるが、反応条件により相分離の状態が変わりやすく、防眩性フィルムを安定に作ることが難しい。特許文献4にはドット状に点在させた硬化樹脂上に、表面が平滑となるようハードコート層を設ける技術が公開されているが、該発明では防眩性は発現することはなく、本発明ではフィルム表面を平滑にすることを目指すものではない。   Patent Document 3 describes a method for forming fine irregularities using phase separation of a resin utilizing spinodal decomposition, but the state of phase separation tends to change depending on reaction conditions, and it is difficult to stably produce an antiglare film. Patent Document 4 discloses a technique in which a hard coat layer is provided on a cured resin interspersed in a dot shape so that the surface becomes smooth. The invention does not aim to smooth the film surface.

また、近年、画像の高画質化が進む中で、防眩性を有しつつ、かつコントラストの高い表示装置が求められている。例えば液晶表示装置の最表面は、微粒子法などの従来の防眩性フィルムではコントラストが不充分であり、またクリアハードコート反射防止フィルムでは外光の写り込みが問題となる。この欠点に対応するため、防眩性フィルム上に光干渉による反射防止層(低屈折率層)をコーティングした防眩性反射防止フィルムに関する技術が多数提案されている(例えば、特許文献5〜7参照。)。しかしながら、これらによってもより視認性の優れた表示装置を得る上で、充分な防眩性やコントラストを得るまでに至っていない。また、特許文献8には防眩性ハードコートフィルムにオーバーコート層を設ける記載があるが、防汚性、易洗浄性、光反射防止性等を目的としたものであり、本発明でいう凸構造部を被覆し、防眩性が発現することに関する記載は一切ない。   In recent years, as image quality has been improved, a display device having anti-glare properties and high contrast has been demanded. For example, the outermost surface of the liquid crystal display device has insufficient contrast with a conventional antiglare film such as a fine particle method, and reflection of external light becomes a problem with a clear hard coat antireflection film. In order to cope with this drawback, many techniques relating to an antiglare antireflection film obtained by coating an antiglare film with an antireflection layer (low refractive index layer) due to light interference have been proposed (for example, Patent Documents 5 to 7). reference.). However, these methods have not yet achieved sufficient anti-glare properties and contrast in obtaining a display device with higher visibility. Further, Patent Document 8 has a description of providing an overcoat layer on an antiglare hard coat film, but it is intended for antifouling properties, easy washing properties, antireflection properties, etc. There is no description about covering the structure and exhibiting antiglare properties.

特許文献9には、インクジェット方式によって微細な凹凸構造を形成する生産性の高い防眩層の記載があるが、更なる性能向上や安定性を高めることが求められている。
特開昭59−58036号公報 特開平6−234175号公報 特開2005−227407号公報 特開2000−84477号公報 特開2004−4404号公報 特開2004−125985号公報 特開2004−24967号公報 特開2003−26832号公報 特開2004−151642号公報
Patent Document 9 describes a high-productivity antiglare layer that forms a fine concavo-convex structure by an ink jet method, but further improvement in performance and stability are required.
JP 59-58036 A JP-A-6-234175 JP 2005-227407 A JP 2000-84477 A Japanese Patent Laid-Open No. 2004-4404 JP 2004-125985 A JP 2004-24967 A JP 2003-26832 A JP 2004-151642 A

従って本発明は上記課題に鑑みなされたものであり、その目的は画素サイズの小型化等による高精細な画像の鮮明性を低下させることなく、外光の写り込みや、コントラストの低下を有効に防止出来、所望の微細凹凸構造を生産性よく効果的・安定的に形成した防眩性フィルム、防眩性フィルムの製造方法を提供し、更にそれを用いた偏光板及び表示装置を提供することにある。   Therefore, the present invention has been made in view of the above problems, and its purpose is to effectively capture external light and reduce contrast without deteriorating the sharpness of a high-definition image due to a reduction in pixel size or the like. To provide an antiglare film capable of preventing and forming a desired fine concavo-convex structure effectively and stably with high productivity, a method for producing the antiglare film, and further providing a polarizing plate and a display device using the same. It is in.

本発明の上記課題は以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.透明基材上に微細な凹凸構造を有する防眩性フィルムにおいて、防眩層が凸部の径15〜40μm、凸部の高さが2〜10μmの凸構造部と、更に該凸構造部を被覆するように透明樹脂層により形成されており、且つ該防眩層の表面粗さ(Rz)が0.8〜4μm、該防眩層の凸部または凹部の平均中心間距離(Sm)が25〜100μm、Rz/Smが0.01〜0.1であり、更に該凸部または凹部の表面形状部を0.01mm2あたり5〜25個有することを特徴とする防眩性フィルム。1. An anti-glare film having a fine uneven structure on a transparent substrate, wherein the anti-glare layer has a convex diameter of 15 to 40 μm, a convex height of 2 to 10 μm, and the convex structure The antiglare layer has a surface roughness (Rz) of 0.8 to 4 μm and an average center-to-center distance (Sm) of the protrusions or recesses of the antiglare layer. An antiglare film characterized by having 25 to 100 μm, Rz / Sm of 0.01 to 0.1, and further having 5 to 25 surface shape portions of the convex portions or concave portions per 0.01 mm 2 .

2.前記凸構造部がインクジェット方式により形成されたことを特徴とする前記1に記載の防眩性フィルム。   2. 2. The antiglare film as described in 1 above, wherein the convex structure is formed by an ink jet method.

3.前記凸構造部と透明樹脂層で形成された防眩層の乾燥膜厚が3〜15μmであることを特徴とする前記1または2に記載の防眩性フィルム。   3. 3. The antiglare film as described in 1 or 2 above, wherein the dry film thickness of the antiglare layer formed of the convex structure portion and the transparent resin layer is 3 to 15 μm.

4.前記凸構造部が活性光線硬化型樹脂または熱硬化性樹脂からなり、且つ該樹脂を含有する凸構造部形成用インク液の粘度が5〜12mPa・sであることを特徴とする前記1〜3のいずれか1項に記載の防眩性フィルム。   4). The above-mentioned 1-3, wherein the convex structure part is made of an actinic ray curable resin or a thermosetting resin, and the viscosity of the convex structure-forming ink liquid containing the resin is 5-12 mPa · s. The antiglare film according to any one of the above.

5.前記凸構造部形成用インク液と透明基材との接触角(θ)が45〜70°であることを特徴とする前記4に記載の防眩性フィルム。   5. 5. The antiglare film as described in 4 above, wherein a contact angle (θ) between the ink liquid for forming the convex structure portion and the transparent substrate is 45 to 70 °.

6.前記凸構造部形成用インク液が、沸点が140〜250℃、粘度が1〜15mPa・sである少なくとも1種類の溶媒を60質量%以上含有することを特徴とする前記4または5に記載の防眩性フィルム。   6). 6. The above 4 or 5, wherein the convex structure forming ink liquid contains 60% by mass or more of at least one solvent having a boiling point of 140 to 250 ° C. and a viscosity of 1 to 15 mPa · s. Antiglare film.

7.前記溶媒が下記の一般式(1)で表される化合物であることを特徴とする前記6に記載の防眩性フィルム。   7). 7. The antiglare film as described in 6 above, wherein the solvent is a compound represented by the following general formula (1).

一般式(1) R1−O−(Cx2x−O)n−R2
式中R1、R2は水素原子、アリール基、炭素数1〜6のアルキル基、アルコキシアルキル基、アルキルカルボニル基。炭化水素鎖は直鎖でも分岐していてもよい。但し、R1、R2の少なくとも一方は水素原子以外の置換基である。
Formula (1) R 1 -O- (C x H 2x -O) n-R 2
In the formula, R 1 and R 2 are a hydrogen atom, an aryl group, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group, or an alkylcarbonyl group. The hydrocarbon chain may be linear or branched. However, at least one of R 1 and R 2 is a substituent other than a hydrogen atom.

n:1〜3の整数
x:2〜4の整数
8.前記防眩層の上に更に反射防止層または防汚層が形成されたことを特徴とする前記1〜7のいずれか1項に記載の防眩性フィルム。
n: an integer of 1 to 3 x: an integer of 2 to 4 8. The antiglare film according to any one of 1 to 7, wherein an antireflection layer or an antifouling layer is further formed on the antiglare layer.

9.透明基材が透明支持体とその上に少なくとも1層の硬化樹脂層または平滑型の光拡散層を有し、その表面にインクジェット方式により凸構造部を形成したのち、該凸構造部を被覆するように透明樹脂層が形成されており、且つ該透明支持体を除いた透明樹脂層までの乾燥膜厚が3〜15μmであることを特徴とする防眩性フィルムの製造方法。   9. The transparent substrate has a transparent support and at least one cured resin layer or smooth light diffusing layer thereon, and a convex structure is formed on the surface by an inkjet method, and then the convex structure is covered. Thus, the transparent resin layer is formed, and the dry film thickness to the transparent resin layer except this transparent support body is 3-15 micrometers, The manufacturing method of the anti-glare film characterized by the above-mentioned.

10.前記硬化樹脂層または光拡散層がハーフキュア状態で該層の表面にインクジェット方式により凸構造部を形成したのち、該凸構造部を被覆するように透明樹脂層が形成されることを特徴とする前記9に記載の防眩性フィルムの製造方法。   10. A convex resin is formed on the surface of the cured resin layer or light diffusing layer in a half-cured state by an inkjet method, and then a transparent resin layer is formed so as to cover the convex structure. 10. The method for producing an antiglare film as described in 9 above.

11.前記凸構造部を形成後、表面をプラズマ処理し該凸構造部を被覆するように透明樹脂層が形成されることを特徴とする前記9または10に記載の防眩性フィルムの製造方法。   11. 11. The method for producing an antiglare film as described in 9 or 10 above, wherein after forming the convex structure portion, a transparent resin layer is formed so as to cover the convex structure portion by subjecting the surface to plasma treatment.

12.前記1〜8のいずれか1項に記載の防眩性フィルムを用いることを特徴とする偏光板。   12 A polarizing plate using the antiglare film described in any one of 1 to 8 above.

13.前記1〜8のいずれか1項に記載の防眩性フィルム、または前記12に記載の偏光板を用いることを特徴とする表示装置。   13. 9. A display device using the antiglare film described in any one of 1 to 8 or the polarizing plate described in 12 above.

本発明により画素サイズの小型化等による高精細な画像の鮮明性を低下させることなく、外光の写り込みや、コントラストの低下を有効に防止出来、屈曲性が良好で所望の微細凹凸構造を生産性よく効果的・安定的に形成した防眩性フィルム、防眩性フィルムの製造方法を提供でき、更にそれを用いた偏光板、及び表示装置を提供することができた。   According to the present invention, it is possible to effectively prevent the reflection of external light and a decrease in contrast without deteriorating the sharpness of a high-definition image due to a reduction in pixel size, etc., and a desired fine uneven structure with good flexibility. An antiglare film formed effectively and stably with good productivity and a method for producing an antiglare film can be provided, and a polarizing plate and a display device using the film can be provided.

透明樹脂層の被覆による防眩性向上効果を示す図である。It is a figure which shows the glare-proof improvement effect by coating | cover of a transparent resin layer. 本発明に用いられるインクジェット方式に用いることのできるインクジェットヘッドの一例を示す断面図である。It is sectional drawing which shows an example of the inkjet head which can be used for the inkjet system used for this invention. 本発明で用いることのできるインクジェットヘッド部、ノズルプレートの一例を示す概略図である。It is the schematic which shows an example of the inkjet head part and nozzle plate which can be used by this invention. 本発明で好ましく用いることのできるインクジェット方式の一例を示す模式図である。It is a schematic diagram which shows an example of the inkjet system which can be preferably used by this invention. 凸構造部と凸構造部の無い部分の両者を透明樹脂層が覆うことで、なだらかな凹凸が形成される様子を示した模式図である。It is the schematic diagram which showed a mode that gentle unevenness | corrugation was formed by covering both the convex structure part and the part without a convex structure part with a transparent resin layer. 本発明に好ましい微細凹凸構造の模式図である。It is a schematic diagram of the fine concavo-convex structure preferable for the present invention. 接触角測定のフローである。It is a flow of contact angle measurement. 基材フィルム上にインクジェット方式で微細凹凸構造形成を行う方法の一例である。It is an example of a method for forming a fine concavo-convex structure on a base film by an inkjet method. 防眩性反射防止フィルムを液晶表示装置に適用した時の観察時の環境を模式的に示した図である。It is the figure which showed typically the environment at the time of observation when an anti-glare antireflection film is applied to a liquid crystal display device.

符号の説明Explanation of symbols

10 基材フィルム
11 基板
12 圧電素子
13 流路版
13a インク流路
13b 壁部
14 共通液室構成部材
15 インク供給パイプ
16 ノズルプレート
16a ノズル
17 駆動用回路プリント板
18 リード部
19 駆動電極
20 溝
21 保護板
22 流体抵抗
23、24 電極
25 上部隔壁
26 ヒータ
27 ヒータ電源
28 伝熱部材
29 活性光線照射部
30 インクジェットヘッド
31 液滴
32 ノズル
35 バックロール
101 積層ロール
103 第1コータ
104A〜D バックロール
105A〜D 乾燥ゾーン
107 プラズマ処理部
108 インク供給タンク
109 インクジェット出射部
110 加熱部
113 巻き取りロール
DESCRIPTION OF SYMBOLS 10 Base film 11 Board | substrate 12 Piezoelectric element 13 Flow path plate 13a Ink flow path 13b Wall part 14 Common liquid chamber structural member 15 Ink supply pipe 16 Nozzle plate 16a Nozzle 17 Drive circuit printed board 18 Lead part 19 Drive electrode 20 Groove 21 Protective plate 22 Fluid resistance 23, 24 Electrode 25 Upper partition wall 26 Heater 27 Heater power supply 28 Heat transfer member 29 Actinic ray irradiation unit 30 Inkjet head 31 Liquid droplet 32 Nozzle 35 Back roll 101 Laminated roll 103 First coater 104A-D Back roll 105A ~ D Drying zone 107 Plasma processing unit 108 Ink supply tank 109 Inkjet emitting unit 110 Heating unit 113 Winding roll

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明者らは、上記課題に対し鋭意検討した結果、特許文献8に記載されているようなドットとドットが離れていてドット間が平面状基材の場合、ドットのみでは該平面状基材部分によって満足な防眩性を示さないが、ドットをオーバーコートすることで、そのドット間の平面状基材部分が傾斜状態のオーバーコートで覆われることにより、著しく防眩性が向上することを見出したものである。以降、本願ではドットと凸構造部は同義として説明する。   As a result of intensive studies on the above problems, the present inventors have found that when the dots are separated from each other as described in Patent Document 8 and the space between the dots is a planar substrate, the planar substrate is not obtained by using only dots. It does not show satisfactory anti-glare properties depending on the part, but by overcoating the dots, the flat substrate part between the dots is covered with an overcoat in an inclined state, so that the anti-glare property is remarkably improved. It is what I found. Hereinafter, in this application, a dot and a convex structure part are demonstrated as synonymous.

図1は、透明樹脂層の被覆による防眩性向上効果を示す特性図である。   FIG. 1 is a characteristic diagram showing the effect of improving the antiglare property by covering the transparent resin layer.

(防眩性評価方法)
ドットのみの防眩性フィルムと、ドットを透明樹脂層で被覆した防眩性フィルムを試料として、オプテック社製 ゴニオフォトメーター GP−1−3Dを用いて反射角度分布を測定する。投光径φ=10mm、受光径φ=3mm。
(Anti-glare evaluation method)
The reflection angle distribution is measured using a goniophotometer GP-1-3D manufactured by Optec Co., Ltd., using as a sample an antiglare film containing only dots and an antiglare film obtained by coating the dots with a transparent resin layer. Light projection diameter φ = 10 mm, light reception diameter φ = 3 mm.

防眩性の数値化は、走査角度±1〜3.5°(正反射領域を除く)の散乱光強度の積分値の対数値で表す。   The numerical value of the anti-glare property is represented by a logarithmic value of an integral value of scattered light intensity at a scanning angle of ± 1 to 3.5 ° (excluding a regular reflection region).

図1の結果より以下の関係がある。   From the results shown in FIG.

散乱光強度積分値の対数 防眩性
ドットのみ −1.5 低
ドットを透明樹脂層で被覆 −0.48 高
従って、本発明の防眩性フィルムは、透明基材上に微細な凹凸構造を有する防眩層が、凸部の径が15〜40μm、凸部の高さが2〜10μmの凸構造部と、更に該凸構造部を被覆するように透明樹脂層により形成されており、且つ該防眩層の表面粗さ(Rz)が0.8〜4μm、該防眩層の凸部または凹部の平均中心間距離(Sm)が25〜100μm、Rz/Smが0.01〜0.1であり、更に該凸部または凹部の表面形状部を0.01mm2あたり5〜25個有することを特徴とする。
Logarithm of scattered light intensity integral value Antiglare dots only -1.5 Low Cover the dots with a transparent resin layer -0.48 High Therefore, the antiglare film of the present invention has a fine uneven structure on a transparent substrate. The antiglare layer has a convex structure portion having a convex portion diameter of 15 to 40 μm, a convex portion height of 2 to 10 μm, and a transparent resin layer so as to cover the convex structure portion; and The surface roughness (Rz) of the antiglare layer is 0.8 to 4 μm, the average center-to-center distance (Sm) of the protrusions or recesses of the antiglare layer is 25 to 100 μm, and Rz / Sm is 0.01 to 0. 1 and further having 5 to 25 surface shape portions of the convex portion or the concave portion per 0.01 mm 2 .

更に、該凸構造部の形成は特に限定されるものではないが、グラビア法、スクリーン印刷法、フレキソ印刷法、インクジェット方式等のパターン作製方法により形成されることが好ましく、中でもインクジェット方式で形成されることが好ましい。   Further, the formation of the convex structure is not particularly limited, but it is preferably formed by a pattern preparation method such as a gravure method, a screen printing method, a flexographic printing method, an ink jet method, etc. It is preferable.

次いで、前記防眩層は、該凸構造部を活性光線もしくは加熱により硬化した後、その上に、マイクログラビア法、押出し塗布法、ワイヤーバー法、スプレーコート法、フレキソ印刷法、インクジェット方式等の薄膜均一塗布法により、透明樹脂層を均一塗布することで作製される。   Next, the anti-glare layer is cured by actinic rays or heating after the convex structure portion, and then a microgravure method, an extrusion coating method, a wire bar method, a spray coating method, a flexographic printing method, an ink jet method, etc. It is produced by uniformly applying a transparent resin layer by a thin film uniform application method.

図2は、本発明に好適なインクジェット方式に用いられるインクジェットヘッドの一例を示す断面図である。   FIG. 2 is a cross-sectional view showing an example of an ink jet head used in an ink jet system suitable for the present invention.

図2(a)はインクジェットヘッドの断面図であり、図2(b)は図2(a)のA−A線矢視拡大図である。図中、11は基板、12は圧電素子、13は流路板、13aはインク流路、13bは壁部、14は共通液室構成部材、14aは共通液室、15はインク供給パイプ、16はノズルプレート、16aはノズル、17は駆動用回路プリント板(PCB)、18はリード部、19は駆動電極、20は溝、21は保護板、22は流体抵抗、23、24は電極、25は上部隔壁、26はヒータ、27はヒータ電源、28は伝熱部材、30はインクジェットヘッドである。   2A is a cross-sectional view of the inkjet head, and FIG. 2B is an enlarged view taken along the line AA in FIG. 2A. In the figure, 11 is a substrate, 12 is a piezoelectric element, 13 is a flow path plate, 13a is an ink flow path, 13b is a wall, 14 is a common liquid chamber constituent member, 14a is a common liquid chamber, 15 is an ink supply pipe, 16 Is a nozzle plate, 16a is a nozzle, 17 is a drive circuit printed board (PCB), 18 is a lead portion, 19 is a drive electrode, 20 is a groove, 21 is a protective plate, 22 is a fluid resistance, 23 and 24 are electrodes, 25 Is an upper partition, 26 is a heater, 27 is a heater power source, 28 is a heat transfer member, and 30 is an ink-jet head.

集積化されたインクジェットヘッド30において、電極23、24を有する積層された圧電素子12は、流路13aに対応して、該流路13a方向に溝加工が施され、溝20と駆動圧電素子12bと非駆動圧電素子12aに区分される。溝20には充填剤が封入されている。溝加工が施された圧電素子12には、上部隔壁25を介して流路板13が接合される。すなわち、前記上部隔壁25は、非駆動圧電素子12aと隣接する流路を隔てる壁部13bとで支持される。駆動圧電素子12bの幅は流路13aの幅よりも僅かに狭く、駆動用回路プリント板(PCB)上の駆動回路により選択された駆動圧電素子12bはパルス状信号電圧を印加すると、該駆動圧電素子12bは厚み方向に変化し、上部隔壁25を介して流路13aの容積が変化し、その結果ノズルプレート16のノズル16aよりインク液滴を吐出する。   In the integrated inkjet head 30, the laminated piezoelectric element 12 having the electrodes 23 and 24 is grooved in the direction of the flow path 13a corresponding to the flow path 13a, so that the groove 20 and the driving piezoelectric element 12b. And non-driving piezoelectric element 12a. The groove 20 is filled with a filler. The flow path plate 13 is joined to the piezoelectric element 12 subjected to the groove processing through the upper partition wall 25. That is, the upper partition 25 is supported by the non-driving piezoelectric element 12a and the wall 13b that separates the adjacent flow path. The width of the driving piezoelectric element 12b is slightly narrower than the width of the flow path 13a. When the driving piezoelectric element 12b selected by the driving circuit on the driving circuit printed board (PCB) is applied with a pulsed signal voltage, the driving piezoelectric element 12b. The element 12b changes in the thickness direction, the volume of the flow path 13a changes via the upper partition 25, and as a result, ink droplets are ejected from the nozzles 16a of the nozzle plate 16.

流路板13上には、伝熱部材28を介してヒータ26がそれぞれ接着されている。伝熱部材28はノズル面にまわり込んで設けられている。伝熱部材28は、ヒータ26からの熱を効率良く流路板13に伝え、かつ、ヒータ26からの熱をノズル面近傍に運びノズル面近傍の空気を温めることを目的としており、したがって、熱伝導率の良い材料が用いられる。例えば、アルミニウム、鉄、ニッケル、銅、ステンレス等の金属、あるいは、SiC、BeO、AlN等のセラミックス等が好ましい材料として挙げられる。   Heaters 26 are bonded to the flow path plate 13 via heat transfer members 28, respectively. The heat transfer member 28 is provided around the nozzle surface. The heat transfer member 28 is intended to efficiently transfer the heat from the heater 26 to the flow path plate 13, carry the heat from the heater 26 to the vicinity of the nozzle surface, and warm the air in the vicinity of the nozzle surface. A material with good conductivity is used. For example, metals such as aluminum, iron, nickel, copper, and stainless steel, or ceramics such as SiC, BeO, and AlN are preferable materials.

圧電素子を駆動すると、流路の長手方向に垂直な方向に変位し、流路の容積が変化し、その容積変化によりノズルからインク液滴となって噴射する。圧電素子には常時流路容積が縮小するように保持する信号を与え、選択された流路に対して流路容積を増大する向きに変位させた後、再び流路の容積が縮小する変位を与えるパルス信号を印加することにより、流路と対応するノズルよりインクがインク液滴となって噴射する。   When the piezoelectric element is driven, the piezoelectric element is displaced in a direction perpendicular to the longitudinal direction of the flow path, and the volume of the flow path is changed. By the change in volume, ink droplets are ejected from the nozzle. The piezoelectric element is given a signal that keeps the flow path volume constantly reduced, and after the displacement of the selected flow path in the direction of increasing the flow volume, the displacement that reduces the flow volume again is applied. By applying a pulse signal to be applied, ink is ejected as ink droplets from a nozzle corresponding to the flow path.

図3は、本発明で用いることのできるインクジェットヘッド部、ノズルプレートの一例を示す概略図である。   FIG. 3 is a schematic view showing an example of an inkjet head unit and a nozzle plate that can be used in the present invention.

図3において、図3の(a)はヘッド部の断面図、図3の(b)はノズルプレートの平面図である。図中、10は基材フィルム、31はインク液滴、32はノズル、29は活性光線照射部である。ノズル32より噴射したインク液滴31は基材フィルム10方向に飛翔して付着する。基材フィルム10上に着弾したインク液滴は、その上流部に配置されている活性光線照射部より、活性光線を直ちに照射され、硬化する。なお、35は基材フィルム10を保持するバックロールである。   3, (a) of FIG. 3 is a sectional view of the head portion, and (b) of FIG. 3 is a plan view of the nozzle plate. In the figure, 10 is a substrate film, 31 is an ink droplet, 32 is a nozzle, and 29 is an actinic ray irradiation part. The ink droplet 31 ejected from the nozzle 32 flies in the direction of the base film 10 and adheres. The ink droplets that have landed on the substrate film 10 are immediately irradiated with actinic rays from the actinic ray irradiating unit disposed upstream thereof, and are cured. Reference numeral 35 denotes a back roll for holding the base film 10.

本発明においては、図3の(b)に記載のように、インクジェットヘッド部のノズルは、千鳥状に配置することが好ましく、また、基材フィルム10の搬送方向に並列に多段に設けることが好ましい。また、インク吐出の際にインクジェットヘッド部に微細な振動を与え、インク滴がランダムに透明基材上に着弾するようにすることが好ましい。これによって、干渉縞の発生を抑制することができる。微細な振動は、高周波電圧、音波、超音波などによって与えることができるが、特にこれらに限定されない。   In the present invention, as shown in FIG. 3B, the nozzles of the inkjet head unit are preferably arranged in a staggered manner, and provided in multiple stages in parallel in the transport direction of the base film 10. preferable. Further, it is preferable that fine vibrations are applied to the ink jet head portion during ink ejection so that ink droplets land randomly on the transparent substrate. Thereby, generation | occurrence | production of an interference fringe can be suppressed. The fine vibration can be given by a high frequency voltage, a sound wave, an ultrasonic wave or the like, but is not particularly limited thereto.

本発明に用いられる凸構造部の形成方法は、多ノズルからインク小液滴を吐出して形成するインクジェット方式を用いることが好ましい。図4に、本発明で好ましく用いることのできるインクジェット方式の一例を示す。   As the method for forming the convex structure portion used in the present invention, it is preferable to use an ink jet method in which small droplets of ink are formed from multiple nozzles. FIG. 4 shows an example of an ink jet system that can be preferably used in the present invention.

図4において、図4の(a)は、インクジェットヘッド30を透明基材フィルム10の幅手方向に配置し、透明基材フィルム10を搬送しながらその表面に凸構造部を形成する方法(ラインヘッド方式)であり、図4の(b)はインクジェットヘッド30が副走査方向に移動しながらその表面に凸構造部を形成する方法(フラットヘッド方式)であり、図8のc)はインクジェットヘッド30が、透明基材フィルム10上の幅手方向を走査しながらその表面に凸構造部を形成する方法(キャプスタン方式)であり、いずれの方式も用いることができるが、本発明においては、生産性の観点からラインヘッド方式が好ましい。なお、図4の(a)〜(c)に記載の29のように、インクとして後述の活性光線硬化型樹脂を用いる場合に使用する活性光線照射部を取り付けてもよい。   4, (a) of FIG. 4 is a method (line) in which the inkjet head 30 is arranged in the width direction of the transparent substrate film 10 and a convex structure portion is formed on the surface of the transparent substrate film 10 while being conveyed. 4B is a method (flat head method) in which the inkjet head 30 moves in the sub-scanning direction to form a convex structure portion on the surface thereof, and FIG. 8C) is an inkjet head. 30 is a method of forming a convex structure portion on the surface of the transparent substrate film 10 while scanning in the width direction (capstan method), and any method can be used. The line head method is preferable from the viewpoint of productivity. In addition, you may attach the actinic ray irradiation part used when the below-mentioned actinic ray curable resin is used as an ink like 29 of (a)-(c) of FIG.

また、本発明においては、図4の(a)、(b)、(c)の基材フィルムの搬送方向の下流側に、別の活性光線照射部を設けてもよい。   Moreover, in this invention, you may provide another actinic ray irradiation part in the downstream of the conveyance direction of the base film of (a) of FIG. 4, (b), (c).

本発明において、微細な凹凸構造を形成するため、インク液滴としては0.1〜20plが好ましく、0.5〜10plがより好ましく、0.5〜5plが特に好ましい。また、異なるインクジェットヘッド部からそれぞれ異なる液滴量のインクを吐出してもよく、同じインクジェットヘッド部から液滴量を変えてインクを吐出してもよく、この時の吐出間隔も一定間隔でもランダムであってもよい。   In the present invention, in order to form a fine uneven structure, the ink droplet is preferably 0.1 to 20 pl, more preferably 0.5 to 10 pl, and particularly preferably 0.5 to 5 pl. Also, different ink droplet amounts may be ejected from different ink jet head portions, and ink may be ejected from the same ink jet head portion while changing the amount of liquid droplets. It may be.

凸構造部は、凸部長径が15〜40μm、さらに好ましくは15〜30μmであり、凸部の高さが2〜10μm、さらに好ましくは、2〜8μmの一定のサイズと高さを有していることが好ましく、凸部の配置は、FMスクリーニング等の方法により、ランダム配置とされることが好ましい。ここで凸部径とは、凸部が円形の場合は直径を、三角形、四角形、多角形、不定形の場合は同一面積に換算した直径を表す。凸部の高さとは、基材フィルム面からドットの最も高い部分の高さの差をいう。   The convex structure portion has a convex major axis of 15 to 40 μm, more preferably 15 to 30 μm, and the convex portion has a constant size and height of 2 to 10 μm, more preferably 2 to 8 μm. It is preferable that the protrusions are arranged at random by a method such as FM screening. Here, the diameter of the convex portion represents the diameter when the convex portion is circular, and the diameter converted into the same area when the convex portion is triangular, quadrangular, polygonal, or indefinite. The height of a convex part means the difference of the height of the highest part of a dot from a base film surface.

FMスクリーニング法とはドットとドットの間隔すなわち周期性(frequency)を変調する(modulate)すること、基本ドットを打つ頻度(ドットの密度)で濃淡を表現する方法である。FMスクリーニング法は、ランダム・スクリーニング法またストカスティック・スクリニーング法と呼ばれることもある。FMスクリーニング法とは、ドットとドットの間隔すなわち周期性を変調する方法を指す。具体的には、クリスタル・ラスター・スクリーニング法(アグファ・ゲバルト社)、ダイヤモンド・スクリーン法(ライノタイプ・ヘル社)、クラス・スクリーニング法およびフルトーン・スクリーニング法(サイテックス社)、ベルベット・スクリーニング法(ウグラ・コーハン社)、アキュトーン・スクリーニング法(ダネリー社)、メガドット・スクリーニング法(アメリカン・カラー社)、クリア・スクリーニング法(シーカラー社)、モネット・スクリーニング法(バルコ社)等が知られている。これら方法はいずれもドット発生のアルゴリズムは異なっているが、ドット密度の変化により濃淡を表現する方法であり、FMスクリーニング法の種々の態様であるということができる。   The FM screening method is a method for expressing light and shade by modulating the interval between dots, that is, the frequency, and the frequency of hitting the basic dots (dot density). The FM screening method is sometimes called a random screening method or a stochastic screening method. The FM screening method refers to a method of modulating the interval between dots, that is, periodicity. Specifically, the crystal raster screening method (Agfa Gebalt), the diamond screen method (Rhinotype Hell), the class screening method and the full-tone screening method (Cytex), the velvet screening method ( Ugura Cohan), Accutone Screening (Dannery), Megadot Screening (American Color), Clear Screening (Seacolor), Monet Screening (Barco) Yes. Although all of these methods have different dot generation algorithms, it is a method of expressing shading by changing the dot density, and can be said to be various aspects of the FM screening method.

FMスクリーニングでは、インクが乗るドットのサイズは一定とし、画像の濃度に応じてドットの出現頻度が変化する。FMスクリーニングにおける各ドットのサイズはいわゆる網点に比べて小さいので、必要とするパターンを高分解能で再現することが可能である。FMスクリーニングにおけるドットは、いわゆる網点とは異なり、ドットの配列が周期的ではない。FMスクリーニングでは、ドットの配列が周期的でないので、モアレは生じないという特徴を持っている。   In FM screening, the size of dots on which ink is placed is constant, and the frequency of dot appearance changes according to the density of the image. Since the size of each dot in FM screening is smaller than a so-called halftone dot, a required pattern can be reproduced with high resolution. Unlike so-called halftone dots, dots in FM screening are not periodically arranged. The FM screening has a feature that moire does not occur because the dot arrangement is not periodic.

次いで、本発明に係わる凸構造部用インク液及び透明樹脂層の液組成物について説明する。   Next, the ink composition for the convex structure and the liquid composition for the transparent resin layer according to the present invention will be described.

本発明の該インク液、及び液組成物としては、活性光線硬化型樹脂、熱可塑性樹脂、熱硬化性樹脂あるいは金属アルコキシドまたはその加水分解物が好ましい。   The ink liquid and the liquid composition of the present invention are preferably an actinic ray curable resin, a thermoplastic resin, a thermosetting resin, a metal alkoxide, or a hydrolyzate thereof.

はじめに、本発明の凸構造部用インク液及び透明樹脂層の液組成物に好ましく用いられる活性光線硬化型樹脂について説明する。   First, the actinic ray curable resin that is preferably used in the ink composition for the convex structure portion and the liquid composition of the transparent resin layer of the present invention will be described.

活性光線硬化型樹脂とは、紫外線や電子線のような活性光線照射により架橋反応等を経て硬化する樹脂である。活性光線硬化型樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性光線照射によって硬化する樹脂でもよい。   The actinic ray curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays or electron beams. Typical examples of the actinic ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, but a resin that is cured by irradiation with actinic rays other than ultraviolet rays and electron beams may be used.

紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることができる。   Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.

紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号に記載の、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。   UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylates) in products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. It can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. .

紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステル末端の水酸基やカルボキシル基に2−ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなのモノマーを反応させることによって容易に得ることができる(例えば、特開昭59−151112号公報)。   An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, JP-A No. 59-151112).

紫外線硬化型エポキシアクリレート系樹脂は、エポキシ樹脂の末端の水酸基にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。   The ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.

紫外線硬化型ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。   Examples of the ultraviolet curable polyol acrylate resin include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta. Examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.

紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型エポキシ樹脂の例として、好ましく用いられるエポキシ系活性光線反応性化合物を示す。   As examples of the ultraviolet curable epoxy acrylate resin and the ultraviolet curable epoxy resin, preferred examples of the epoxy actinic ray reactive compound are shown.

(a)ビスフェノールAのグリシジルエーテル(この化合物はエピクロルヒドリンとビスフェノールAとの反応により、重合度の異なる混合物として得られる)
(b)ビスフェノールA等のフェノール性OHを2個有する化合物に、エピクロルヒドリン、エチレンオキサイド及び/またはプロピレンオキサイドを反応させ末端にグリシジルエーテル基を有する化合物
(c)4,4′−メチレンビスフェノールのグリシジルエーテル
(d)ノボラック樹脂またはレゾール樹脂のフェノールフォルムアルデヒド樹脂のエポキシ化合物
(e)脂環式エポキシドを有する化合物、例えば、ビス(3,4−エポキシシクロヘキシルメチル)オキザレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(3,4−エポキシ−6−シクロヘキシルメチル)アジペート、ビス(3,4−エポキシシクロヘキシルメチルピメレート)、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−1−メチルシクロヘキシルメチル−3′,4′−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−1−メチル−シクロヘキシルメチル−3′,4′−エポキシ−1′−メチルシクロヘキサンカルボキシレート、3,4−エポキシ−6−メチル−シクロヘキシルメチル−3′,4′−エポキシ−6′−メチル−1′−シクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5′,5′−スピロ−3″,4″−エポキシ)シクロヘキサン−メタ−ジオキサン
(f)2塩基酸のジグリシジルエーテル、例えば、ジグリシジルオキザレート、ジグリシジルアジペート、ジグリシジルテトラヒドロフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルフタレート
(g)グリコールのジグリシジルエーテル、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、コポリ(エチレングリコール−プロピレングリコール)ジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル
(h)ポリマー酸のグリシジルエステル、例えば、ポリアクリル酸ポリグリシジルエステル、ポリエステルジグリシジルエステル
(i)多価アルコールのグリシジルエーテル、例えば、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グルコーストリグリシジルエーテル
(j)2−フルオロアルキル−1,2−ジオールのジグリシジルエーテルとしては、前記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物に挙げた化合物例と同様のもの
(k)含フッ素アルカン末端ジオールグリシジルエーテルとしては、上記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物等を挙げることができる。
(A) Glycidyl ether of bisphenol A (this compound is obtained as a mixture having different degrees of polymerization by reaction of epichlorohydrin and bisphenol A)
(B) A compound having a glycidyl ether group by reacting epichlorohydrin, ethylene oxide and / or propylene oxide with a compound having two phenolic OHs such as bisphenol A. (c) Glycidyl ether of 4,4'-methylenebisphenol (D) Epoxy compound of phenol formaldehyde resin of novolak resin or resol resin (e) Compound having alicyclic epoxide, for example, bis (3,4-epoxycyclohexylmethyl) oxalate, bis (3,4-epoxycyclohexylmethyl) ) Adipate, bis (3,4-epoxy-6-cyclohexylmethyl) adipate, bis (3,4-epoxycyclohexylmethyl pimelate), 3,4-epoxycyclohexylmethyl-3,4-epoxy Rhohexanecarboxylate, 3,4-epoxy-1-methylcyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, 3,4-epoxy-1-methyl-cyclohexylmethyl-3', 4'-epoxy-1 '-Methylcyclohexanecarboxylate, 3,4-epoxy-6-methyl-cyclohexylmethyl-3', 4'-epoxy-6'-methyl-1'-cyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl- 5 ', 5'-spiro-3 ", 4" -epoxy) cyclohexane-meta-dioxane (f) diglycidyl ethers of dibasic acids such as diglycidyl oxalate, diglycidyl adipate, diglycidyl tetrahydrophthalate, di Glycidyl hexahydrophthalate, diglycidyl Phthalate (g) Diglycidyl ether of glycol, such as ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, copoly (ethylene glycol-propylene glycol) di Glycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether (h) Glycidyl ester of polymer acid, for example, polyglycidyl ester of polyacrylic acid, polyester diglycidyl ester (i) Polyhydric alcohol Glycidyl ethers such as glycerin triglycidyl ether, trimethylolpropane triglyceride Dil ether, pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, glucose triglycidyl ether (j) As diglycidyl ether of 2-fluoroalkyl-1,2-diol, the low refractive index substance (K) Examples of the fluorine-containing alkane-terminated diol glycidyl ether include fluorine-containing epoxy compounds of the fluorine-containing resin of the low refractive index material, and the like. it can.

上記エポキシ化合物の分子量は、平均分子量として2000以下で、好ましくは1000以下である。   The molecular weight of the said epoxy compound is 2000 or less as an average molecular weight, Preferably it is 1000 or less.

上記のエポキシ化合物を活性光線により硬化する場合、より硬度を上げるためには、(h)または(i)の多官能のエポキシ基を有する化合物を混合して用いると効果的である。   When the above epoxy compound is cured with actinic rays, it is effective to use a compound having a polyfunctional epoxy group (h) or (i) in order to increase the hardness.

エポキシ系活性光線反応性化合物をカチオン重合させる光重合開始剤または光増感剤は、活性光線照射によりカチオン重合開始物質を放出することが可能な化合物であり、特に好ましくは、照射によりカチオン重合開始能のあるルイス酸を放出するオニウム塩の一群の複塩である。   The photopolymerization initiator or photosensitizer for cationically polymerizing an epoxy actinic light-reactive compound is a compound capable of releasing a cationic polymerization initiating substance upon irradiation with actinic light, and particularly preferably, cationic polymerization is initiated by irradiation. A group of double salts of onium salts that release potent Lewis acids.

活性光線反応性化合物エポキシ樹脂は、ラジカル重合によるのではなく、カチオン重合により重合、架橋構造または網目構造を形成する。ラジカル重合と異なり反応系中の酸素に影響を受けないため好ましい活性光線反応性樹脂である。   The actinic ray-reactive compound epoxy resin forms a polymerized, crosslinked structure or network structure not by radical polymerization but by cationic polymerization. Unlike radical polymerization, it is a preferable actinic ray reactive resin because it is not affected by oxygen in the reaction system.

本発明に有用な活性光線反応性エポキシ樹脂は、活性光線照射によりカチオン重合を開始させる物質を放出する光重合開始剤または光増感剤により重合する。光重合開始剤としては、光照射によりカチオン重合を開始させるルイス酸を放出するオニウム塩の複塩の一群が特に好ましい。   The actinic ray-reactive epoxy resin useful in the present invention is polymerized by a photopolymerization initiator or a photosensitizer that releases a substance that initiates cationic polymerization upon irradiation with actinic rays. As the photopolymerization initiator, a group of double salts of onium salts that release a Lewis acid that initiates cationic polymerization by light irradiation is particularly preferable.

かかる代表的なものは下記一般式(a)で表される化合物である。   A typical example is a compound represented by the following general formula (a).

一般式(a)
〔(R1)a(R2)b(R3)c(R4)dZ〕w+〔MeXv〕w-
式中、カチオンはオニウムであり、ZはS、Se、Te、P、As、Sb、Bi、O、ハロゲン(例えば、I、Br、Cl)、またはN=N(ジアゾ)であり、R1、R2、R3、R4は同一であっても異なっていてもよい有機の基である。a、b、c、dはそれぞれ0〜3の整数であって、a+b+c+dはZの価数に等しい。Meはハロゲン化物錯体の中心原子である金属または半金属(metalloid)であり、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Xはハロゲンであり、wはハロゲン化錯体イオンの正味の電荷であり、vはハロゲン化錯体イオン中のハロゲン原子の数である。
Formula (a)
[(R1) a (R2) b (R3) c (R4) dZ] w + [MeXv] w
Wherein cation is onium, Z is S, Se, Te, P, As, Sb, Bi, O, halogen (eg, I, Br, Cl), or N = N (diazo), R1, R2, R3 and R4 are organic groups which may be the same or different. a, b, c, and d are each an integer of 0 to 3, and a + b + c + d is equal to the valence of Z. Me is a metal or metalloid which is a central atom of a halide complex, and B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc. X is halogen, w is the net charge of the halogenated complex ion, and v is the number of halogen atoms in the halogenated complex ion.

上記一般式(a)の陰イオン〔MeXv〕w−の具体例としては、テトラフルオロボレート(BF4 -)、テトラフルオロホスフェート(PF4 -)、テトラフルオロアンチモネート(SbF4 -)、テトラフルオロアルセネート(AsF4 -)、テトラクロロアンチモネート(SbCl4 -)等を挙げることができる。Specific examples of the anion [MeXv] w− of the general formula (a) include tetrafluoroborate (BF 4 ), tetrafluorophosphate (PF 4 ), tetrafluoroantimonate (SbF 4 ), tetrafluoro Examples include arsenate (AsF 4 ) and tetrachloroantimonate (SbCl 4 ).

また、その他の陰イオンとしては過塩素酸イオン(ClO4 -)、トリフルオロメチル亜硫酸イオン(CF3SO3 -)、フルオロスルホン酸イオン(FSO3 -)、トルエンスルホン酸イオン、トリニトロベンゼン酸陰イオン等を挙げることができる。Other anions include perchlorate ion (ClO 4 ), trifluoromethyl sulfite ion (CF 3 SO 3 ), fluorosulfonate ion (FSO 3 ), toluenesulfonate ion, and trinitrobenzene acid anion. An ion etc. can be mentioned.

この様なオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが有効であり、中でも特開昭50−151996号、同50−158680号等に記載の芳香族ハロニウム塩、特開昭50−151997号、同52−30899号、同59−55420号、同55−125105号等に記載のVIA族芳香族オニウム塩、特開昭56−8428号、同56−149402号、同57−192429号等に記載のオキソスルホキソニウム塩、特公昭49−17040号等に記載の芳香族ジアゾニウム塩、米国特許第4,139,655号等に記載のチオピリリュム塩等が好ましい。また、アルミニウム錯体や光分解性けい素化合物系重合開始剤等を挙げることができる。上記カチオン重合開始剤と、ベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン等の光増感剤を併用することができる。   Among such onium salts, it is particularly effective to use an aromatic onium salt as a cationic polymerization initiator. Among them, aromatic halonium salts described in JP-A-50-151996, 50-158680, etc. VIA group aromatic onium salts described in Kaisho 50-151997, 52-30899, 59-55420, 55-125105, JP-A-56-8428, 56-149402, Preference is given to oxosulfoxonium salts described in JP-A-57-192429, aromatic diazonium salts described in JP-B-49-17040, thiopyrilum salts described in US Pat. No. 4,139,655, and the like. Moreover, an aluminum complex, a photodegradable silicon compound type | system | group polymerization initiator, etc. can be mentioned. The cationic polymerization initiator can be used in combination with a photosensitizer such as benzophenone, benzoin isopropyl ether, or thioxanthone.

また、エポキシアクリレート基を有する活性光線反応性化合物の場合は、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の光増感剤を用いることができる。この活性光線反応性化合物に用いられる光増感剤や光開始剤は、紫外線反応性化合物100質量部に対して0.1質量部〜15質量部で光反応を開始するには十分であり、好ましくは1質量部〜10質量部である。この増感剤は近紫外線領域から可視光線領域に吸収極大のあるものが好ましい。   In the case of an actinic ray reactive compound having an epoxy acrylate group, a photosensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used. The photosensitizer and photoinitiator used for the actinic ray reactive compound are sufficient to initiate the photoreaction at 0.1 to 15 parts by mass with respect to 100 parts by mass of the ultraviolet reactive compound, Preferably they are 1 mass part-10 mass parts. The sensitizer preferably has an absorption maximum from the near ultraviolet region to the visible light region.

本発明に有用な活性光線硬化型樹脂を含むインク液、及び液組成物において、光重合開始剤は、一般的には、活性光線硬化性エポキシ樹脂(プレポリマー)100質量部に対して0.1質量部〜15質量部の使用が好ましく、更に好ましくは、1質量部〜10質量部の範囲の添加が好ましい。   In the ink liquid and the liquid composition containing the actinic ray curable resin useful in the present invention, the photopolymerization initiator is generally added in an amount of 0.1% by mass with respect to 100 parts by mass of the actinic ray curable epoxy resin (prepolymer). The use of 1 to 15 parts by mass is preferred, and the addition in the range of 1 to 10 parts by mass is more preferred.

また、エポキシ樹脂を上記ウレタンアクリレート型樹脂、ポリエーテルアクリレート型樹脂等と併用することも出来、この場合、活性光線ラジカル重合開始剤と活性光線カチオン重合開始剤を併用することが好ましい。   An epoxy resin can be used in combination with the urethane acrylate type resin, polyether acrylate type resin, or the like. In this case, it is preferable to use an actinic ray radical polymerization initiator and an actinic ray cationic polymerization initiator in combination.

また、本発明では、光重合開始剤としてオキセタン化合物を用いることもできる。用いられるオキセタン化合物は、酸素または硫黄を含む3員環のオキセタン環を有する化合物である。中でも酸素を含むオキセタン環を有する化合物が好ましい。オキセタン環は、ハロゲン原子、ハロアルキル基、アリールアルキル基、アルコキシル基、アリルオキシ基、アセトキシ基で置換されていてもよい。具体的には、3,3−ビス(クロルメチル)オキセタン、3,3−ビス(ヨードメチル)オキセタン、3,3−ビス(メトキシメチル)オキセタン、3,3−ビス(フェノキシメチル)オキセタン、3−メチル−3クロルメチルオキセタン、3,3−ビス(アセトキシメチル)オキセタン、3,3−ビス(フルオロメチル)オキセタン、3,3−ビス(ブロモメチル)オキセタン、3,3−ジメチルオキセタン等が挙げられる。尚、本発明ではモノマー、オリゴマー、ポリマーのいずれであってもよい。   Moreover, in this invention, an oxetane compound can also be used as a photoinitiator. The oxetane compound used is a compound having a three-membered oxetane ring containing oxygen or sulfur. Among them, a compound having an oxetane ring containing oxygen is preferable. The oxetane ring may be substituted with a halogen atom, a haloalkyl group, an arylalkyl group, an alkoxyl group, an allyloxy group, or an acetoxy group. Specifically, 3,3-bis (chloromethyl) oxetane, 3,3-bis (iodomethyl) oxetane, 3,3-bis (methoxymethyl) oxetane, 3,3-bis (phenoxymethyl) oxetane, 3-methyl -3 chloromethyloxetane, 3,3-bis (acetoxymethyl) oxetane, 3,3-bis (fluoromethyl) oxetane, 3,3-bis (bromomethyl) oxetane, 3,3-dimethyloxetane and the like. In the present invention, any of a monomer, an oligomer and a polymer may be used.

本発明で用いることのできる紫外線硬化性樹脂の具体例としては、例えば、アデカオプトマーKR、BYシリーズのKR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、旭電化工業(株)製)、コーエイハードのA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インク化学工業(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(以上、三洋化成工業(株)製)、SP−1509、SP−1507(以上、昭和高分子(株)製)、RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成(株)製)、またはその他の市販のものから適宜選択して利用することができる。   Specific examples of the ultraviolet curable resin that can be used in the present invention include, for example, Adekaoptomer KR, BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B. (Asahi Denka Kogyo Co., Ltd.), Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T -102, D-102, NS-101, FT-102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), Seika Beam PHC2210 (S), PHCX -9 (K-3), PHC2213, DP-10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, CR900 (above, manufactured by Dainichi Seika Kogyo Co., Ltd.), KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB), RC-5015, RC-5016, RC-5020, RC -5031, RC-5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (above, Dainippon Ink & Chemicals, Inc.), Aurex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (above, Sanyo Chemical Industries, Ltd.) , SP-1509, SP-1507 (above, manufactured by Showa Polymer Co., Ltd.), RCC-15C (produced by Grace Japan Co., Ltd.), Aronix M-6100, M-8030, M-8060 (above, Toagosei Co., Ltd.) (Made by Co., Ltd.), or other commercially available products.

インク液、及び液組成物中の活性光線硬化型樹脂の固形分濃度は10〜95質量%であることが好ましく、塗布方法等により最適な濃度が選ばれる。   The solid content concentration of the actinic ray curable resin in the ink liquid and the liquid composition is preferably 10 to 95% by mass, and the optimum concentration is selected depending on the coating method and the like.

また、活性光線硬化型樹脂として、紫外線硬化性樹脂を用いる場合、前記紫外線硬化性樹脂の光硬化を妨げない程度に、紫外線吸収剤を紫外線硬化性樹脂組成物に含ませてもよい。紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。   Further, when an ultraviolet curable resin is used as the actinic ray curable resin, an ultraviolet absorber may be included in the ultraviolet curable resin composition to the extent that does not hinder the photocuring of the ultraviolet curable resin. As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.

本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。   Specific examples of ultraviolet absorbers preferably used in the present invention include, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, and the like. However, it is not limited to these.

次いで、本発明の凸構造部用インク液もしくは透明樹脂層形成に用いられる液組成物に使用する熱硬化性樹脂について説明する。   Next, the thermosetting resin used for the liquid composition used for forming the ink liquid for convex structure or the transparent resin layer of the present invention will be described.

本発明で用いることのできる熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、熱硬化性ポリイミド樹脂、熱硬化性ポリアミドイミドなどを挙げることができる。   Examples of the thermosetting resin that can be used in the present invention include unsaturated polyester resins, epoxy resins, vinyl ester resins, phenol resins, thermosetting polyimide resins, thermosetting polyamide imides, and the like.

不飽和ポリエステル樹脂としては、例えば、オルソフタル酸系樹脂、イソフタル酸系樹脂、テレフタル酸系樹脂、ビスフェノール系樹脂、プロピレングリコール−マレイン酸系樹脂、ジシクロペンタジエンないしその誘導体を不飽和ポリエステル組成に導入して低分子量化した、或いは被膜形成性のワックスコンパウンドを添加した低スチレン揮発性樹脂、熱可塑性樹脂(ポリ酢酸ビニル樹脂、スチレン・ブタジエン共重合体、ポリスチレン、飽和ポリエステルなど)を添加した低収縮性樹脂、不飽和ポリエステルを直接Br2でブ
ロム化する、或いはヘット酸、ジブロムネオペンチルグリコールを共重合するなどした反応性タイプ、塩素化パラフィン、テトラブロムビスフェノール等のハロゲン化物と三酸化アンチモン、燐化合物の組み合わせや水酸化アルミニウムなどを添加剤として用いる添加タイプの難燃性樹脂、ポリウレタンやシリコーンとハイブリッド化、またはIPN化した強靭性(高強度、高弾性率、高伸び率)の強靭性樹脂等がある。
As the unsaturated polyester resin, for example, orthophthalic acid resin, isophthalic acid resin, terephthalic acid resin, bisphenol resin, propylene glycol-maleic acid resin, dicyclopentadiene or derivatives thereof are introduced into the unsaturated polyester composition. Low styrene volatile resin with low molecular weight or added film-forming wax compound, low shrinkage with thermoplastic resin (polyvinyl acetate resin, styrene / butadiene copolymer, polystyrene, saturated polyester, etc.) Resin, unsaturated polyester brominated directly with Br 2 , or reactive type such as copolymerization of het acid or dibromoneopentyl glycol, halides such as chlorinated paraffin, tetrabromobisphenol and antimony trioxide, phosphorus Compound combinations Additive-type flame retardant resin that uses sesame or aluminum hydroxide as an additive, toughness resin that is hybridized with polyurethane or silicone, or toughened with IPN (high strength, high elastic modulus, high elongation), etc. is there.

エポキシ樹脂としては、例えば、ビスフェノールA型、ノボラックフェノール型、ビスフェノールF型、臭素化ビスフェノールA型を含むグリシジルエーテル系エポキシ樹脂、グリシジルアミン系、グリシジルエステル系、環式脂肪系、複素環式エポキシ系を含む特殊エポキシ樹脂等を挙げることができる。   Examples of the epoxy resin include glycidyl ether type epoxy resins including bisphenol A type, novolak phenol type, bisphenol F type, brominated bisphenol A type, glycidyl amine type, glycidyl ester type, cyclic aliphatic type, and heterocyclic epoxy type. Special epoxy resins containing

ビニルエステル樹脂としては、例えば、普通エポキシ樹脂とメタクリル酸等の不飽和一塩基酸とを開環付加反応して得られるオリゴマーをスチレン等のモノマーに溶解した物である。また、分子末端や側鎖にビニル基を持ちビニルモノマーを含有する等の特殊タイプもある。グリシジルエーテル系エポキシ樹脂のビニルエステル樹脂としては、例えば、ビスフェノール系、ノボラック系、臭素化ビスフェノール系等があり、特殊ビニルエステル樹脂としてはビニルエステルウレタン系、イソシアヌル酸ビニル系、側鎖ビニルエステル系等がある。   As the vinyl ester resin, for example, an oligomer obtained by ring-opening addition reaction of an ordinary epoxy resin and an unsaturated monobasic acid such as methacrylic acid is dissolved in a monomer such as styrene. There are also special types such as vinyl monomers having vinyl groups at the molecular ends and side chains. Examples of vinyl ester resins of glycidyl ether type epoxy resins include bisphenol type, novolak type, brominated bisphenol type, etc., and special vinyl ester resins include vinyl ester urethane type, isocyanuric acid vinyl type, side chain vinyl ester type, etc. There is.

フェノール樹脂は、フェノール類とフォルムアルデヒド類を原料として重縮合して得られ、レゾール型とノボラック型がある。   The phenol resin is obtained by polycondensation using phenols and formaldehyde as raw materials, and there are a resol type and a novolac type.

熱硬化性ポリイミド樹脂としては、例えば、マレイン酸系ポリイミド、例えばポリマレイミドアミン、ポリアミノビスマレイミド、ビスマレイミド・O,O′−ジアリルビスフェノール−A樹脂、ビスマレイミド・トリアジン樹脂等、またナジック酸変性ポリイミド、及びアセチレン末端ポリイミド等がある。   Examples of thermosetting polyimide resins include maleic acid-based polyimides such as polymaleimide amine, polyamino bismaleimide, bismaleimide / O, O'-diallyl bisphenol-A resin, bismaleimide / triazine resin, and nadic acid-modified polyimide. And acetylene-terminated polyimide.

また、上述した活性光線硬化型樹脂の一部も、熱硬化性樹脂として用いることができる。   A part of the actinic ray curable resin described above can also be used as the thermosetting resin.

尚、本発明に用いられる熱硬化性樹脂からなるインク液、及び液組成物には、活性光線硬化型樹脂を含むインク液、及び液組成物に記載した酸化防止剤や紫外線吸収剤を適宜用いてもよい。   In addition, for the ink liquid and liquid composition comprising the thermosetting resin used in the present invention, the antioxidant and the ultraviolet absorber described in the ink liquid containing the actinic ray curable resin and the liquid composition are appropriately used. May be.

透明樹脂層は、上記凸構造部の項で詳細に説明した活性光線硬化型樹脂、光重合開始剤、光反応開始剤、光増感剤、熱硬化性樹脂、熱可塑性樹脂、紫外線吸収剤、微粒子、溶媒等を適宜用いて液組成物を調製し、更に任意の塗布方法により凸構造部の上に塗布を行う。   The transparent resin layer is an actinic ray curable resin, a photopolymerization initiator, a photoinitiator, a photosensitizer, a thermosetting resin, a thermoplastic resin, an ultraviolet absorber, described in detail in the above-mentioned convex structure section. A liquid composition is prepared by appropriately using fine particles, a solvent and the like, and further coated on the convex structure portion by an arbitrary coating method.

透明樹脂層の塗布方法は特に限定されるものではないが、前記インク組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法、フレキソ印刷法等公知の方法で塗設することが好ましい。   The coating method of the transparent resin layer is not particularly limited, but the ink composition is coated by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, an ink jet method, a flexographic printing method. It is preferable to do.

図5は、本発明の凸構造部の形成と透明樹脂層による被覆を模式的に表した図である。   FIG. 5 is a diagram schematically showing the formation of the convex structure portion of the present invention and the covering with the transparent resin layer.

本発明の透明樹脂層表面の凹凸構造の表面粗さ(Rz)は、0.8〜4μmであることが好ましく、より好ましくは1〜3μmである。また、透明樹脂層表面の凹凸構造の平均中心間距離(Sm)は、25〜100μm、より好ましくは25〜75μmである。更に、Rz/Smが、0.01〜0.1であることが好ましく、より好ましくは、0.02〜0.05である。   The surface roughness (Rz) of the concavo-convex structure on the transparent resin layer surface of the present invention is preferably 0.8 to 4 μm, more preferably 1 to 3 μm. Moreover, the average center distance (Sm) of the uneven structure on the surface of the transparent resin layer is 25 to 100 μm, more preferably 25 to 75 μm. Furthermore, Rz / Sm is preferably 0.01 to 0.1, more preferably 0.02 to 0.05.

本発明で規定する表面粗さ(Rz)は、JIS表面粗さのJIS B 0601により十点平均高さとして定義されているもので、断面曲線から基準長さだけ抜き取った部分において、凸部の最高から5番目までの平均値と凹部の最低から5番目までの平均値の差の値をマイクロメートル単位(μm)で表したものをいう。   The surface roughness (Rz) defined in the present invention is defined as a ten-point average height according to JIS B 0601 of JIS surface roughness. The difference between the average value from the highest to the fifth and the average value from the lowest to the fifth of the recesses is expressed in units of micrometers (μm).

隣り合う凸部又は凹部間の平均中心間距離(Sm)は、JIS B 0601中で輪郭要素曲線の平均長さとして定義されるものと同一であり、凸部又は凹部の頂点を該凸部又は凹部の中心とし、隣り合う凸部又は凹部中心間の距離を平均したものである。凸部又は凹部間の平均距離は触針式表面粗さ測定機などにより測定出来、例えばダイヤモンドからなる先端部を頂角55度の円錐形とした直径1mmの測定針を介して微細凹凸構造面上を一定方向に走査し、その場合の測定針の上下方向の移動変化を測定してそれを記録した表面粗さ曲線として知見を得ることが出来、その結果より凸部又は凹部間の距離を測定し平均値を求めることができる。或いは前述のごとく光学干渉式表面粗さ測定機によっても測定することができる。   The average center-to-center distance (Sm) between adjacent convex portions or concave portions is the same as that defined as the average length of the contour element curve in JIS B 0601, and the vertex of the convex portion or concave portion is defined as the convex portion or the concave portion. This is the average of the distances between the centers of adjacent convex portions or concave portions as the center of the concave portion. The average distance between protrusions or recesses can be measured by a stylus type surface roughness measuring machine, for example, a fine uneven structure surface through a measuring needle having a diameter of 1 mm with a tip portion made of diamond having a conical shape with an apex angle of 55 degrees. By scanning the top in a certain direction and measuring the movement change in the vertical direction of the measuring needle in that case, it is possible to obtain knowledge as a surface roughness curve recorded, and from the result, the distance between the convex part or the concave part is obtained. The average value can be obtained by measurement. Alternatively, it can also be measured by an optical interference surface roughness measuring machine as described above.

表面粗さ(Rz)、平均中心間距離(Sm)の測定方法としては、25℃、65%RH環境下で測定試料同士が重なり合わない条件で24時間調湿したのち、上記環境下で測定して求めることが出来る。ここでいう重なり合わない条件とは、例えば、試料のエッジ部分を高くした状態で巻き取る方法や試料と試料の間に紙を挟んで重ねる方法、厚紙等で枠を作製しその四隅を固定する方法のいずれかである。用いることの出来る測定装置としては、例えば、WYKO社製 RSTPLUS非接触三次元微小表面形状測定システム(光学干渉式表面粗さ測定機の代表例)等を挙げることが出来る。   The surface roughness (Rz) and average center distance (Sm) are measured in the above environment after conditioning for 24 hours in a 25 ° C., 65% RH environment where the measurement samples do not overlap. Can be obtained. The non-overlapping conditions mentioned here are, for example, a method of winding with the edge portion of the sample raised, a method of stacking paper between the sample and the sample, a frame made of cardboard, etc., and fixing its four corners One of the methods. Examples of the measuring apparatus that can be used include a RSTPLUS non-contact three-dimensional micro surface shape measuring system (a typical example of an optical interference type surface roughness measuring machine) manufactured by WYKO.

図6は、本発明に好ましい微細凹凸構造の模式図である。   FIG. 6 is a schematic view of a fine concavo-convex structure preferable for the present invention.

(a)は透明基材フィルム上に形成された凸構造部を透明樹脂層により被覆した断面図であり、(b)は透明基材フィルム上に硬化樹脂層を設け、更に凸構造部、透明樹脂層を配した断面図である。   (A) is sectional drawing which coat | covered the convex structure part formed on the transparent base film with the transparent resin layer, (b) provided the cured resin layer on the transparent base film, and also a convex structure part, transparent It is sectional drawing which arranged the resin layer.

本発明の防眩層の乾燥膜厚は、透明基材から防眩層の最大高さの平均値を言うが、3〜15μmが好ましく、より好ましくは5〜10μmである。3μm未満では防眩性が不十分になったり、場合によっては満足な硬度が得られなかったりする。また、20μmを越えると膜物性のうち屈曲耐性が著しく劣化し、防眩層形成後の搬送や切断等の取り扱い時に微小な折れが発生し易くなり生産性が低下する。乾燥膜厚は常法により、マイクロメーターによる測定や、フィルム切片の顕微鏡観察分析等により測定することができる。   Although the dry film thickness of the anti-glare layer of this invention says the average value of the maximum height of an anti-glare layer from a transparent base material, 3-15 micrometers is preferable, More preferably, it is 5-10 micrometers. If it is less than 3 μm, the antiglare property is insufficient, or in some cases, satisfactory hardness cannot be obtained. On the other hand, if the thickness exceeds 20 μm, the bending resistance among the film properties is remarkably deteriorated, and minute breakage is likely to occur during handling such as transport and cutting after the formation of the antiglare layer, resulting in a reduction in productivity. The dry film thickness can be measured by a conventional method using a micrometer, a microscopic observation analysis of a film slice, or the like.

乾燥膜厚は、例えば、本発明の透明樹脂層が活性光硬化樹脂または熱硬化性樹脂からなる場合、樹脂の固形分量と樹脂の溶媒との比率を調整することで所望の乾燥膜厚を得ることができる。また、本発明では、透明支持体とその上に少なくとも1層の硬化樹脂層または平滑型の光拡散層を有し、その表面にインクジェット方式により凸部構造を形成したのち該凸構造部を被覆するように透明樹脂層が形成することが好ましいが、この時、硬化樹脂層または平滑型の光拡散層から透明樹脂層までを合わせた乾燥膜厚が3〜15μmが好ましく、より好ましくは5〜10μmである。   For example, when the transparent resin layer of the present invention is made of an active photocurable resin or a thermosetting resin, the dry film thickness is obtained by adjusting the ratio of the solid content of the resin and the solvent of the resin. be able to. Further, in the present invention, a transparent support and at least one cured resin layer or a smooth light diffusing layer are provided on the transparent support, and a convex structure is formed on the surface of the transparent support by an ink jet method, and then the convex structure is covered. The transparent resin layer is preferably formed as described above. At this time, the dry film thickness including the cured resin layer or the smooth light diffusion layer to the transparent resin layer is preferably 3 to 15 μm, more preferably 5 to 5 μm. 10 μm.

本発明の凸構造部を形成するインク液滴の粘度は、25℃において5〜12mP・sであることが好ましく、更に好ましくは5〜10mP・sである。粘度が2mP・s未満の場合は粘度が低過ぎて所望の形状のパターンが得られなくなり、15mP・sを超えるとインクの流動性が悪くインクの出射性も低下する為好ましくない。インクの粘度の測定は、JIS Z 8809に規定されている粘度計校正用標準液で検定されたものであれば特に制限はなく、回転式、振動式や細管式の粘度計を用いることが出来る。粘度計としては、Saybolt粘度計、Redwood粘度計等で測定出来、例えば、トキメック社製、円錐平板型E型粘度計、東機産業社製のE Type Viscometer(回転粘度計)、東京計器社製のB型粘度計BL、山一電機社製のFVM−80A、Nametore工業社製のViscoliner、山一電機社製のVISCO MATE MODEL VM−1G等を挙げることが出来る。   The viscosity of the ink droplet forming the convex structure portion of the present invention is preferably 5 to 12 mP · s at 25 ° C., more preferably 5 to 10 mP · s. When the viscosity is less than 2 mP · s, the viscosity is too low to obtain a pattern having a desired shape, and when it exceeds 15 mP · s, the fluidity of the ink is poor and the ink output property is also unfavorable. The viscosity of the ink is not particularly limited as long as it is tested with a standard solution for viscometer calibration specified in JIS Z 8809, and a rotary, vibration or capillary type viscometer can be used. . As a viscometer, it can be measured with a Saybolt viscometer, a Redwood viscometer, etc., for example, Tokimec Co., Ltd., conical plate type E viscometer, Toki Sangyo E Type Viscometer, manufactured by Tokyo Keiki No. B type viscometer BL, FVM-80A manufactured by Yamaichi Electronics Co., Ltd., Viscoliner manufactured by Nametore Industries Co., Ltd., VISCO MATE MODEL VM-1G manufactured by Yamaichi Electronics Co., Ltd., and the like.

(接触角)
本発明の凸構造部用インクと透明基材との接触角(θ)は、45〜70°であることが本発明の効果を得る上で好ましく、より好ましくは、50〜60°である。75°以上や40°以下では、インク液滴の形状が一定とならないことがある。凸構造部用インクの表面張力を調整するためには、シリコーンオイル、変性シリコーンオイル、シリコーン系界面活性剤、フッ素系界面活性剤、フッ素系樹脂、フッ素系オリゴマー、フッ素変性シリコーンオイル、フッ素系シランカップリング剤等の活性剤を0質量%以上5質量%以下とすることが好ましい。添加量が多すぎると、凸高さが低くなりすぎたり、撥水撥油効果により透明樹脂層が凸構造部の上に塗布できなくなったりして好ましくない。界面活性剤量は、インク組成、溶媒組成、下地基材の表面エネルギーにも依存するため、添加されることが必須ではない。以下に本発明に用いられる界面活性剤について説明する。
(Contact angle)
The contact angle (θ) between the convex structure ink of the present invention and the transparent substrate is preferably 45 to 70 ° for obtaining the effects of the present invention, and more preferably 50 to 60 °. If it is 75 ° or more and 40 ° or less, the shape of the ink droplet may not be constant. In order to adjust the surface tension of the convex structure ink, silicone oil, modified silicone oil, silicone surfactant, fluorine surfactant, fluorine resin, fluorine oligomer, fluorine modified silicone oil, fluorine silane It is preferable that the active agent such as a coupling agent is 0% by mass or more and 5% by mass or less. If the amount is too large, the convex height becomes too low, or the transparent resin layer cannot be applied on the convex structure due to the water / oil repellent effect. Since the amount of the surfactant depends on the ink composition, the solvent composition, and the surface energy of the base substrate, it is not essential to add the surfactant. The surfactant used in the present invention is described below.

本発明に用いられるシリコーンオイルは、ケイ素原子に結合した有機基の種類により、ストレートシリコーンオイルと変性シリコーンオイルに大別できる。ストレートシリコーンオイルとは、メチル基、フェニル基、水素原子を置換基として結合したものをいう。変性シリコーンオイルとは、ストレートシリコーンオイルから二次的に誘導された構成部分をもつものである。一方、シリコーンオイルの反応性からも分類することができる。これらをまとめると、以下のようになる。   Silicone oils used in the present invention can be broadly classified into straight silicone oils and modified silicone oils depending on the type of organic groups bonded to silicon atoms. Straight silicone oil refers to those bonded with a methyl group, a phenyl group, or a hydrogen atom as a substituent. A modified silicone oil is one having a component that is secondarily derived from a straight silicone oil. On the other hand, it can be classified from the reactivity of silicone oil. These are summarized as follows.

シリコーンオイル
1.ストレートシリコーンオイル
1−1.非反応性シリコーンオイル:ジメチル、メチルフェニル置換等
1−2.反応性シリコーンオイル:メチル水素置換等
2.変性シリコーンオイル
ジメチルシリコーンオイルに、さまざまな有機基を導入することで生まれたものが、変性シリコーンオイル
2−1.非反応性シリコーンオイル:アルキル、アルキル/アラルキル、アルキル/ポリエーテル、ポリエーテル、高級脂肪酸エステル置換等、
アルキル/アラルキル変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を長鎖アルキル基あるいはフェニルアルキル基に置換えたシリコーンオイル、
ポリエーテル変性シリコーンオイルは、親水性のポリオキシアルキレンを疎水性のジメチルシリコーンに導入したシリコーン系高分子界面活性剤、
高級脂肪酸変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を高級脂肪酸エステルに置換えたシリコーンオイル、
アミノ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつシリコーンオイル、
エポキシ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をエポキシ基含有アルキル基に置換えた構造をもつシリコーンオイル、
カルボキシル変性あるいはアルコール変性シリコーンオイルは、シリコーンオイルのメチル基の一部をカルボキシル基あるいは水酸基含有アルキル基に置換えた構造をもつシリコーンオイル
2−2.反応性シリコーンオイル:アミノ、エポキシ、カルボキシル、アルコール置換等
これらの内、ポリエーテル変性シリコーンオイルが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1000〜100000、好ましくは2000〜50000が適当であり、数平均分子量が1000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。
Silicone oil Straight silicone oil 1-1. Non-reactive silicone oil: dimethyl, methylphenyl substitution, etc. 1-2. Reactive silicone oil: methyl hydrogen substitution, etc. Modified silicone oil Modified silicone oil was born by introducing various organic groups into dimethyl silicone oil 2-1. Non-reactive silicone oil: alkyl, alkyl / aralkyl, alkyl / polyether, polyether, higher fatty acid ester substitution, etc.
Alkyl / aralkyl-modified silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil is replaced with a long-chain alkyl group or a phenylalkyl group,
Polyether-modified silicone oil is a silicone-based polymer surfactant in which hydrophilic polyoxyalkylene is introduced into hydrophobic dimethyl silicone,
Higher fatty acid-modified silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil is replaced with higher fatty acid ester,
Amino-modified silicone oil is a silicone oil having a structure in which a part of methyl group of silicone oil is substituted with aminoalkyl group,
The epoxy-modified silicone oil is a silicone oil having a structure in which a part of the methyl group of the silicone oil is replaced with an epoxy group-containing alkyl group,
The carboxyl-modified or alcohol-modified silicone oil is a silicone oil having a structure in which a part of the methyl group of the silicone oil is substituted with a carboxyl group or a hydroxyl group-containing alkyl group 2-2. Reactive silicone oil: amino, epoxy, carboxyl, alcohol substitution, etc. Of these, polyether-modified silicone oil is preferably added. The number average molecular weight of the polyether-modified silicone oil is, for example, 1,000 to 100,000, preferably 2000 to 50,000. If the number average molecular weight is less than 1,000, the drying property of the coating film decreases, and conversely, the number average molecular weight. When it exceeds 100,000, it tends to be difficult to bleed out to the coating surface.

具体的な商品としては、日本ユニカー(株)社のL−45、L−9300、FZ−3704、FZ−3703、FZ−3720、FZ−3786、FZ−3501、FZ−3504、FZ−3508、FZ−3705、FZ−3707、FZ−3710、FZ−3750、FZ−3760、FZ−3785、FZ−3785、Y−7499、信越化学社のKF96L、KF96、KF96H、KF99、KF54、KF965、KF968、KF56、KF995、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、FL100等がある。   As specific products, Nippon Unicar Co., Ltd. L-45, L-9300, FZ-3704, FZ-3703, FZ-3720, FZ-3786, FZ-3501, FZ-3504, FZ-3508, FZ-3705, FZ-3707, FZ-3710, FZ-3750, FZ-3760, FZ-3785, FZ-3785, Y-7499, Shin-Etsu Chemical KF96L, KF96, KF96H, KF99, KF54, KF965, KF968, KF56, KF995, KF351, KF352, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, FL100, and the like.

本発明に用いられるシリコーン界面活性剤は、シリコーンオイルのメチル基の一部を親水性基に置換したものを用いることができる。置換の位置は、シリコーンオイルの側鎖、両末端、片末端、両末端側鎖等がある。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。   As the silicone surfactant used in the present invention, one obtained by substituting a part of methyl group of silicone oil with a hydrophilic group can be used. The position of substitution includes a side chain of silicone oil, both ends, one end, both end side chains, and the like. Examples of the hydrophilic group include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt.

非イオン界面活性剤は、水溶液中でイオンに解離する基を有しない界面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類の水酸基、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性水酸基の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。本発明に用いられる非イオン界面活性剤は疎水基としてジメチルポリシロキサンを有することが好ましい。   A nonionic surfactant is a generic term for surfactants that do not have a group capable of dissociating into ions in an aqueous solution. In addition to a hydrophobic group, a hydrophilic group includes a hydroxyl group of a polyhydric alcohol, a polyoxyalkylene chain (poly Oxyethylene) or the like as a hydrophilic group. The hydrophilicity becomes stronger as the number of alcoholic hydroxyl groups increases and as the polyoxyalkylene chain (polyoxyethylene chain) becomes longer. The nonionic surfactant used in the present invention preferably has dimethylpolysiloxane as a hydrophobic group.

疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、後述する低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。他の界面活性剤を用いることでは得られない効果である。   When a nonionic surfactant composed of a dimethylpolysiloxane having a hydrophobic group and a polyoxyalkylene having a hydrophilic group is used, unevenness of the low refractive index layer, which will be described later, and antifouling properties of the film surface are improved. It is thought that the hydrophobic group made of polymethylsiloxane is oriented on the surface and forms a film surface that is not easily soiled. This effect cannot be obtained by using other surfactants.

これらの非イオン活性剤の具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 SILWET L−77、L−720、L−7001、L−7002、L−7604、Y−7006、FZ−2101、FZ−2104、FZ−2105、FZ−2110、FZ−2118、FZ−2120、FZ−2122、FZ−2123、FZ−2130、FZ−2154、FZ−2161、FZ−2162、FZ−2163、FZ−2164、FZ−2166、FZ−2191等が挙げられる。   Specific examples of these nonionic surfactants include, for example, Nippon Unicar Co., Ltd., silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L-7604, Y-7006, FZ-2101, FZ-2104, FZ-2105, FZ-2110, FZ-2118, FZ-2120, FZ-2122, FZ-2123, FZ-2130, FZ-2154, FZ-2161, FZ-2162, FZ- 2163, FZ-2164, FZ-2166, FZ-2191 and the like.

また、SUPERSILWET SS−2801、SS−2802、SS−2803、SS−2804、SS−2805等が挙げられる。   Moreover, SUPERSILWET SS-2801, SS-2802, SS-2803, SS-2804, SS-2805, etc. are mentioned.

また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン系の界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。主鎖骨格の鎖長が長く、直鎖状の構造であることから、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより、シリカ微粒子の表面を1つの活性剤分子が、複数の箇所で、これを覆うように吸着することができるためと考えられる。   In addition, as a preferable structure of the nonionic surfactant in which the hydrophobic group is composed of dimethylpolysiloxane and the hydrophilic group is composed of polyoxyalkylene, a dimethylpolysiloxane structure portion and a polyoxyalkylene chain are alternately and repeatedly bonded. It is preferably a linear block copolymer. Since the main chain skeleton has a long chain length and a linear structure, it is excellent. This is considered to be due to the fact that one activator molecule can be adsorbed on the surface of the silica fine particle at a plurality of locations so as to cover the surface of the silica fine particle by being a block copolymer in which hydrophilic groups and hydrophobic groups are alternately repeated.

これらの具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 ABN SILWET FZ−2203、FZ−2207、FZ−2208等が挙げられる。   Specific examples thereof include, for example, silicone surfactants ABN SILWET FZ-2203, FZ-2207, FZ-2208 and the like manufactured by Nippon Unicar Co., Ltd.

これらのシリコーンオイルまたはシリコーン界面活性剤の中では、ポリエーテル基を有するものが好ましい。   Among these silicone oils or silicone surfactants, those having a polyether group are preferred.

一方、透明基材表面は、公知の撥水加工やプラズマ処理によって改質することが好ましい。   On the other hand, the surface of the transparent substrate is preferably modified by a known water repellent process or plasma treatment.

本発明の接触角の測定方法を図7に示す。図示しない注射器状の液滴調整器に測定する水溶液試料を入れる。(a)に示すように、上下左右に位置を変更可能な図示しない試料台に表面を水平に調整した固体試料を載置し、光学鏡でこの固体試料表面を観察する。光学鏡には回転可能な回転クロスが組み込まれている。固体試料の直上に配置された液滴調整器の針先に液滴を作る。   The method for measuring the contact angle of the present invention is shown in FIG. An aqueous solution sample to be measured is placed in a syringe-like droplet regulator (not shown). As shown to (a), the solid sample which adjusted the surface horizontally is mounted on the sample stand which can change a position up and down, right and left, and this solid sample surface is observed with an optical mirror. The optical mirror incorporates a rotatable rotating cloth. Droplets are made at the tip of a drop adjuster placed just above the solid sample.

次に、(b)に示すように、固体試料の表面を上昇させ、液滴を固体試料表面に触れさせる。その後、(c)に示すように、元の位置まで固体試料を下降させ、針先より液滴を固定試料表面に移行させ、更に、液滴を回転クロスの中心に合わせる。   Next, as shown in (b), the surface of the solid sample is raised, and the droplet is brought into contact with the surface of the solid sample. Thereafter, as shown in (c), the solid sample is lowered to the original position, the droplet is transferred from the tip of the needle to the surface of the fixed sample, and the droplet is aligned with the center of the rotating cloth.

そして、(d)に示すように、回転クロスを回転させて液滴と固体試料表面の接線を作り、その角度θを読み取る。このθが接触角である。   Then, as shown in (d), the rotary cloth is rotated to create a tangent line between the droplet and the solid sample surface, and the angle θ is read. This θ is the contact angle.

この読み取り方法では個人誤差があるので、液滴が円の一部であるという仮定に基づき、(e)〜(g)に示す接触角の読み取り方法が行われる。   Since there is an individual error in this reading method, the contact angle reading method shown in (e) to (g) is performed based on the assumption that the droplet is a part of a circle.

まず、(e)に示すように、回転クロスを45°に合わせ、クロスが液滴の両側と左右対称に接するように試料台を調整する。次に、(f)に示すように、試料台を上昇させ、クロスの中心を液滴の頂点に合わせる。そして、(g)に示すように、液滴の頂点と固体試料と液滴の接点を結び、その延長上の角度を測定する。その角度が接触角θの半値θ/2となる。本発明の接触角は、DropMaster(協和界面科学(株)製)を用いて測定した。   First, as shown in (e), the rotation cross is set at 45 °, and the sample stage is adjusted so that the cross is in contact with both sides of the droplet symmetrically. Next, as shown in (f), the sample stage is raised and the center of the cloth is aligned with the top of the droplet. Then, as shown in (g), the apex of the droplet, the solid sample, and the contact point of the droplet are connected, and the extension angle is measured. The angle becomes the half value θ / 2 of the contact angle θ. The contact angle of the present invention was measured using DropMaster (manufactured by Kyowa Interface Science Co., Ltd.).

本発明に係るインク液、もしくは液組成物において用いることができる溶媒としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ジアセトンアルコール等のケトンアルコール類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセルソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;N−メチルピロリドン、ジメチルフォルムアミド、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸アミル等のエステル類;ジメチルエーテル、ジエチルエーテル等のエーテル類、水等が挙げられ、それらを単独または2種以上混合して使用することができる。   Examples of the solvent that can be used in the ink liquid or the liquid composition according to the present invention include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and butanol; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; Ketone alcohols such as diacetone alcohol; aromatic hydrocarbons such as benzene, toluene and xylene; glycols such as ethylene glycol, propylene glycol and hexylene glycol; ethyl cellosolve, butylcellosolve, ethylcarbitol, butylcarbi Glycol ethers such as Tol, Diethyl Cellosolve, Diethyl Carbitol, Propylene Glycol Monomethyl Ether; N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate Le, ethyl acetate, esters such as amyl acetate; dimethyl ether, and diethyl ether, water and the like, can be used as a mixture thereof alone or in combination.

本発明に係るインク組成物においては、上記溶媒の中でも沸点が140〜250℃、25℃での粘度が1〜15mPa・sの溶媒が少なくとも1種類以上、60質量%以上含まれることが好ましい。より好ましくは沸点が180〜230℃、25℃での粘度が1〜10mPa・sの溶媒が少なくとも1種類以上、70質量%以上含まれることが好ましい。この理由は、上記凸構造部、及び透明樹脂層形成用インク組成物に含まれる溶媒は、転移印刷、または着弾後に所望のパターン形状が維持される程度に速やかに揮発、乾燥されることが望ましいが、上記範囲を超えると、下地との密着性が劣り、更に形成された凸構造部パターン間で乾燥ムラが発生し、後続の透明樹脂層による被覆が均一に行われず、防眩性フィルムの物性の劣化、製造ロット間、製造ロット内の光学性能に対する不均一性等発生し易くなるためである。   In the ink composition according to the present invention, it is preferable that at least one kind of a solvent having a boiling point of 140 to 250 ° C. and a viscosity of 1 to 15 mPa · s at 25 ° C. is contained in an amount of 60% by mass or more. More preferably, at least one solvent having a boiling point of 180 to 230 ° C. and a viscosity of 1 to 10 mPa · s at 25 ° C. is contained in an amount of 70% by mass or more. The reason for this is that the solvent contained in the convex structure part and the ink composition for forming a transparent resin layer is preferably volatilized and dried as quickly as the desired pattern shape is maintained after transfer printing or landing. However, if it exceeds the above range, the adhesion with the base is inferior, further uneven drying occurs between the formed convex structure pattern, the subsequent transparent resin layer is not uniformly coated, the antiglare film This is because deterioration of physical properties, non-uniformity in optical performance between production lots, and in production lots is likely to occur.

本発明でいう沸点とは、1気圧、即ち1.013×105N/m2の圧力下での沸点である。沸点の測定は公知の技術を適用できる他、単体の場合には化学便覧等の文献中に記載の値も参照することができる。The boiling point in the present invention is a boiling point at 1 atm, that is, a pressure of 1.013 × 10 5 N / m 2 . For the measurement of the boiling point, a known technique can be applied, and in the case of a simple substance, values described in documents such as a chemical handbook can also be referred to.

上記の沸点、粘度を満たす溶媒の中でも、下記の一般式(1)で表される化合物がより好ましく用いられる。
一般式(1) R1−O−(Cx2x−O)n−R2
1、R2:水素原子、アリール基、炭素数1〜6のアルキル基、アルコキシアルキル基、アルキルカルボニル基。炭化水素鎖は直鎖でも分岐していてもよい。但し、R1、R2の少なくとも一方は水素原子以外の置換基である。
Among the solvents satisfying the above boiling point and viscosity, compounds represented by the following general formula (1) are more preferably used.
Formula (1) R 1 -O- (C x H 2x -O) n-R 2
R 1, R 2: a hydrogen atom, an aryl group, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group, an alkylcarbonyl group. The hydrocarbon chain may be linear or branched. However, at least one of R 1 and R 2 is a substituent other than a hydrogen atom.

n:1〜3の整数
x:2〜4の整数
更に好ましくは、x=2または3、R2がアセチル基である化合物である。
n: an integer of 1 to 3 x: an integer of 2 to 4 More preferably, x = 2 or 3, and R 2 is an acetyl group.

本発明のインクに好ましく用いられる溶媒について、具体的には下記の溶媒が挙げられるが、特にこれらに限定されるものではない。   Specific examples of the solvent preferably used in the ink of the present invention include the following solvents, but are not limited thereto.

更に、上記一般式(1)で表される化合物について、具体的には下記の溶媒が挙げられるが、特にこれらに限定されるものではない。   Furthermore, specific examples of the compound represented by the general formula (1) include the following solvents, but the present invention is not particularly limited thereto.

上記の他、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノ−t−ブチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノ−t−ブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ−t−ブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノイソプロピルエーテル、ジプロピレングリコールモノブチルエーテル、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノ−t−ブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ−t−ブチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノイソプロピルエーテル、エチレングリコールモノメトキシメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート(別名:酢酸2−(エトキシエトキシ)エチル)、トリエチレングリコールジメチルエーテル、ジエチレングリコールジアセテート、プロピレングリコールジアセテート(別名:1,2−ジアセトキシプロパン)、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート等も、好ましく用いられる。   In addition to the above, ethylene glycol monoisopropyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol monopropyl ether, diethylene glycol monoisopropyl ether, diethylene glycol mono-t-butyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol mono Isopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoisopropyl ether, dipropylene glycol monobutyl ether, ethylene glycol monoisopropyl ether Tate, ethylene glycol mono-t-butyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monoisopropyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monoisopropyl ether acetate, propylene Glycol monobutyl ether acetate, propylene glycol mono-t-butyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoisopropyl ether, ethylene glycol monomethoxymethyl ether, Ethylene glycol monoethyl ether acetate (alias: 2- (ethoxyethoxy) ethyl acetate), triethylene glycol dimethyl ether, diethylene glycol diacetate, propylene glycol diacetate (alias: 1,2-diacetoxypropane), dipropylene glycol dimethyl ether, di Propylene glycol monomethyl ether acetate and the like are also preferably used.

これらの溶媒の中から沸点、粘度の異なる溶媒を混合してその比率を適宜変更することで、凸構造部、パターン形状を制御することもできる。   A convex structure part and a pattern shape can also be controlled by mixing the solvent from which a boiling point and a viscosity differ among these solvents and changing the ratio suitably.

各溶媒の粘度は、ビスコメイトVM−1G(山一電機(株)製)を用いて測定できる。   The viscosity of each solvent can be measured using Viscomate VM-1G (manufactured by Yamaichi Electronics Co., Ltd.).

本発明の防眩性フィルムにおいては、透明基材上に直接インクジェット方式により凸構造部を形成することができるが、より好ましくは1層以上の硬化性樹脂層、あるいは塗布方式で形成した平滑型の光拡散層を形成した後、その硬化性樹脂層、または平滑型の光拡散層表面上に凸構造部を形成することが好ましい。これらの層の乾燥膜厚は、0.1〜10μmが好ましく、0.1〜5μmがより好ましい。   In the antiglare film of the present invention, a convex structure can be formed directly on a transparent substrate by an ink jet method, but more preferably, one or more curable resin layers or a smooth type formed by a coating method. After forming the light diffusion layer, it is preferable to form a convex structure portion on the surface of the curable resin layer or the smooth light diffusion layer. The dry film thickness of these layers is preferably from 0.1 to 10 μm, more preferably from 0.1 to 5 μm.

硬化性樹脂層あるいは平滑型の光拡散層には、凸構造部用インク組成物及び透明樹脂層で用いたのと同様の熱硬化性樹脂または活性線硬化型樹脂を好ましく用いることができるが、特に紫外線硬化樹脂が好ましい。また、硬化性樹脂層あるいは平滑型の光拡散層の形成に際しては、上記各樹脂の他に、インク組成物で記載したのと同様な光拡散剤、光反応開始剤、光増感剤、酸化防止剤、紫外線吸収剤、帯電防止剤、無機微粒子、有機微粒子等を適宜添加することができる。   For the curable resin layer or the smooth light diffusing layer, the same thermosetting resin or actinic radiation curable resin as that used in the convex structure ink composition and the transparent resin layer can be preferably used. In particular, an ultraviolet curable resin is preferable. Further, when forming a curable resin layer or a smooth light diffusing layer, in addition to each of the above resins, the same light diffusing agent, photoreaction initiator, photosensitizer, oxidation agent as described in the ink composition are used. An inhibitor, an ultraviolet absorber, an antistatic agent, inorganic fine particles, organic fine particles and the like can be appropriately added.

また、本発明においては、硬化性樹脂層あるいは平滑型の光拡散層は、複数層で構成されてもよいが、インク液滴を着弾させる硬化性樹脂層あるいは平滑型の光拡散層の最表層が、可塑剤を含有していることが好ましい。   In the present invention, the curable resin layer or the smooth light diffusing layer may be composed of a plurality of layers, but the outermost layer of the curable resin layer or the smooth light diffusing layer for landing ink droplets. However, it preferably contains a plasticizer.

可塑剤は、0.1〜10質量%を含有することが好ましい。例えば、前記硬化性樹脂層あるいは平滑型の光拡散層の塗布組成物にあらかじめ可塑剤を添加することが好ましく、あるいは硬化性樹脂層あるいは平滑型の光拡散層の塗設前に、あらかじめ基材表面に可塑剤を塗布もしくは付着させておくこともできる。これらによって、硬化後のインク滴の密着性が改善される。   It is preferable that a plasticizer contains 0.1-10 mass%. For example, it is preferable to add a plasticizer in advance to the coating composition for the curable resin layer or the smooth light diffusing layer. A plasticizer can be applied or adhered to the surface. These improve the adhesion of the ink droplets after curing.

硬化性樹脂層あるいは平滑型の光拡散層で用いることのできる可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることができる。   Examples of the plasticizer that can be used in the curable resin layer or the smooth light diffusing layer include a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic ester plasticizer, and a pyromellitic acid plasticizer. Agents, glycolate plasticizers, citrate ester plasticizers, polyester plasticizers, and the like can be preferably used.

リン酸エステル系可塑剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることができる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。また、トリメチロールプロパントリベンゾエート等も好ましく用いることができる。   Examples of phosphate ester plasticizers include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate. For trimellitic plasticizers such as phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, For pyromellitic acid ester plasticizers such as tate and triethyl trimellitate, tetrabutyl pyromellitate For glycolate plasticizers such as tetraphenylpyromellitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalylbutyl glycolate, etc. As the agent, triethyl citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters. Trimethylolpropane tribenzoate and the like can also be preferably used.

ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることができる。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることができる。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることができる。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。   As the polyester plasticizer, a copolymer of a dibasic acid and a glycol such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid, and the like can be used. As glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.

特に、特開2002−146044号公報記載のエポキシ系化合物、ロジン系化合物、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ケトン樹脂、トルエンスルホンアミド樹脂等の添加物を有するセルロースエステルも好ましく用いられる。   In particular, cellulose esters having additives such as epoxy compounds, rosin compounds, phenol novolac type epoxy resins, cresol novolac type epoxy resins, ketone resins, and toluenesulfonamide resins described in JP-A No. 2002-146044 are also preferably used. .

上記化合物としては、KE−604とKE−610は荒川化学工業(株)からそれぞれ酸価237と170で市販されている。同じく、荒川化学工業(株)からアビエチン酸、デヒドロアビエチン酸及びパラストリン酸3者の混合物のエステル化物として、KE−100及びKE−356が、それぞれの酸価は8と0で市販されている。また、アビエチン酸、デヒドロアビエチン酸及びパラストリン酸3者の混合物は、播磨化成(株)からそれぞれの酸価167、168のG−7及びハートールR−Xで市販されている。   As the above compounds, KE-604 and KE-610 are commercially available from Arakawa Chemical Industries, Ltd. with acid values of 237 and 170, respectively. Similarly, KE-100 and KE-356 are commercially available from Arakawa Chemical Industries, Ltd. as an esterified product of a mixture of abietic acid, dehydroabietic acid, and parastrinic acid, with acid values of 8 and 0, respectively. A mixture of abietic acid, dehydroabietic acid, and parastrinic acid is commercially available from Harima Kasei Co., Ltd. under G-7 and Hartle RX with acid values of 167 and 168, respectively.

また、エポキシ樹脂としては、アラルダイドEPN1179及びアラルダイドAER260は旭チバ(株)から市販されている。   Moreover, as an epoxy resin, Araldide EPN1179 and Araldide AER260 are commercially available from Asahi Ciba.

ケトン樹脂としては、ハイラック110及びハイラック110Hは日立化成(株)から市販されている。   As a ketone resin, Hilac 110 and Hilac 110H are commercially available from Hitachi Chemical Co., Ltd.

パラトルエンスルホンアミド樹脂としては、トップラーとして、フジアミドケミカル(株)から市販されている。   As para-toluenesulfonamide resin, as a topler, it is commercially available from Fujiamide Chemical Co., Ltd.

本発明に係る硬化性樹脂層あるいは平滑型の光拡散層を塗設する際の溶媒は、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、または混合して使用できる。好ましくは、プロピレングリコールモノ(炭素数1〜4)アルキルエーテルまたはプロピレングリコールモノ(炭素数1〜4)アルキルエーテルエステルを5質量%以上、さらに好ましくは5質量%〜80質量%以上含有する溶媒が用いられる。   The solvent for coating the curable resin layer or the smooth light diffusing layer according to the present invention is suitably selected from, for example, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents. Can be selected or mixed. Preferably, a solvent containing 5% by mass or more, more preferably 5% by mass to 80% by mass or more of propylene glycol mono (C 1-4) alkyl ether or propylene glycol mono (C 1-4) alkyl ether ester. Used.

上記説明した組成からなる硬化性樹脂層あるいは平滑型の光拡散層組成物塗布液を透明基材上に塗布する方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押出コーター、エアードクターコーター等公知の方法を用いることができる。塗布量はウェット膜厚で5μm〜30μmが適当で、好ましくは10μm〜20μmである。塗布速度は10m/分〜60m/分が好ましい。また、乾燥膜厚としては、0.1〜10μmが好ましい。   Gravure coater, spinner coater, wire bar coater, roll coater, reverse coater, extrusion can be applied as a method of applying a curable resin layer or a smooth light diffusing layer composition coating solution having the above-described composition onto a transparent substrate. A known method such as a coater or an air doctor coater can be used. The coating amount is suitably 5 μm to 30 μm, preferably 10 μm to 20 μm in terms of wet film thickness. The coating speed is preferably 10 m / min to 60 m / min. Moreover, as a dry film thickness, 0.1-10 micrometers is preferable.

硬化性樹脂層組成物、あるいは平滑型の光拡散層は塗布乾燥された後、インクの硬化と同様の方法で、紫外線や電子線等の活性光線を照射したり、あるいは加熱処理により硬化されることが好ましいが、前記活性光線の照射時間は0.1秒〜5分が好ましく、紫外線硬化性樹脂の硬化効率、作業効率等から更に好ましくは、0.1〜10秒である。   The curable resin layer composition or the smooth light diffusing layer is coated and dried, and then cured by irradiation with actinic rays such as ultraviolet rays and electron beams, or by heat treatment, in the same manner as ink curing. However, the irradiation time of the actinic ray is preferably from 0.1 second to 5 minutes, and more preferably from 0.1 to 10 seconds from the viewpoint of curing efficiency and work efficiency of the ultraviolet curable resin.

本発明においては、上記方法で透明基材上に塗布した硬化性樹脂層あるいは平滑型の光拡散層が未硬化の状態、あるいは完全に硬化が終了した後のいずれの時期で、インクジェット方式により、凸構造部を形成するインク液滴を着弾させ、引き続き透明樹脂層で被覆してもよいが、好ましくは硬化性樹脂層あるいは平滑型の光拡散層が硬化した後に、インクジェット方式によりインク液滴を着弾させて凸構造部を形成することが好ましい。硬化性樹脂層あるいは平滑型の光拡散層がハーフキュア(半硬化状態)のときにインク液滴を着弾させて凸構造部を形成させ、引き続き透明樹脂層で被覆することが、微細な凹凸が形成しやすく、かつ生産性にも優れるため好ましく、更に、凸構造部や透明樹脂層と硬化性樹脂層あるいは平滑型の光拡散層表面との密着性を向上することができる。   In the present invention, the curable resin layer or smooth light diffusing layer applied on the transparent substrate by the above method is in an uncured state, or at any time after complete curing, by an inkjet method, The ink droplets that form the convex structure may be landed and subsequently covered with a transparent resin layer. Preferably, however, after the curable resin layer or the smooth light diffusion layer is cured, the ink droplets are ejected by an inkjet method. It is preferable to form the convex structure by landing. When the curable resin layer or the smooth light diffusing layer is half-cured (semi-cured state), ink droplets are landed to form a convex structure and subsequently covered with a transparent resin layer. It is preferable because it is easy to form and is excellent in productivity. Further, the adhesion between the convex structure portion or the transparent resin layer and the curable resin layer or the surface of the smooth light diffusing layer can be improved.

本発明において、凸構造部を形成後、表面をプラズマ処理した後、該凸構造部を被覆するように透明樹脂層を形成することが好ましいが、プラズマ処理は、特に、大気プラズマ処理を施すことが好ましく、ヘリウム、アルゴン等の希ガスもしくは窒素、空気などの放電ガスと必要に応じて、酸素、水素、窒素、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素、水蒸気、メタン、4フッ化メタンなどを1種以上含有する反応ガスを用いることができる。特開2000−356714号公報には、具体的なプラズマ処理方法を参考にして、硬化樹脂層表面にプラズマ処理を施すことができる。   In the present invention, after forming the convex structure portion, it is preferable to form a transparent resin layer so as to cover the convex structure portion after the surface is subjected to plasma treatment. And a rare gas such as helium or argon or a discharge gas such as nitrogen or air and oxygen, hydrogen, nitrogen, carbon monoxide, carbon dioxide, nitrogen monoxide, nitrogen dioxide, water vapor, methane, 4 A reaction gas containing at least one kind of methane fluoride or the like can be used. In Japanese Patent Application Laid-Open No. 2000-356714, the surface of the cured resin layer can be subjected to plasma treatment with reference to a specific plasma treatment method.

本発明の透明樹脂層は、マイクログラビア法、押出し塗布法、ワイヤーバー法、フレキソ印刷法、インクジェット法等の一般的な薄膜均一塗布法により、塗布することで作製される。透明樹脂層は、前述の凸構造部の上に塗布され、凸構造部を被覆して、凸構造部のみで形成される凹凸をなだらかにして、好ましい表面形状を得ることで、防眩性を発現させることができる。透明樹脂層に含まれる樹脂の内、50%以上は、凸構造部に用いられる樹脂と同一であることが好ましく、このことにより、凸構造部と透明樹脂層の密着性を高めることができる。   The transparent resin layer of the present invention is produced by coating by a general thin film uniform coating method such as a micro gravure method, an extrusion coating method, a wire bar method, a flexographic printing method, or an ink jet method. The transparent resin layer is coated on the above-described convex structure portion, covers the convex structure portion, and smoothes the irregularities formed only by the convex structure portion, thereby obtaining a preferable surface shape, thereby providing an antiglare property. Can be expressed. 50% or more of the resin contained in the transparent resin layer is preferably the same as the resin used for the convex structure portion, and this can improve the adhesion between the convex structure portion and the transparent resin layer.

本発明の透明樹脂層で用いることができる溶媒としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ジアセトンアルコール等のケトンアルコール類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール類;エチレングリコール、プロピレングリコール、ブチレングリコール、トリエチレングリコール、1,2,6−ヘキサントリオール、チオジグリコール、ヘキシレングリコール、ジエチレングリコール等のアルキレン基が2〜6個の炭素原子を含むアルキレングリコール類;;エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセルソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸セルソルブ、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル類;乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸アミル等のエステル類;ジメチルエーテル、ジエチルエーテル等のエーテル類、水等を挙げられ、それらを単独または2種以上混合して使用することが出来る。また、分子内にエーテル結合をもつものが特に好ましく、グリコールエーテル類も好ましく用いられる。   Examples of the solvent that can be used in the transparent resin layer of the present invention include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and butanol; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; N-methylpyrrolidone, Amides such as dimethylformamide and dimethylacetamide; ketone alcohols such as diacetone alcohol; aromatic hydrocarbons such as benzene, toluene and xylene; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; ethylene glycol, propylene glycol, 2-6 alkylene groups such as butylene glycol, triethylene glycol, 1,2,6-hexanetriol, thiodiglycol, hexylene glycol, diethylene glycol Alkylene glycols containing elemental atoms; glycol ethers such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol monomethyl ether; cellosolve acetate, diethylene glycol monoethyl ether Examples include glycol esters such as acetate; esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, and amyl acetate; ethers such as dimethyl ether and diethyl ether, and water. These may be used alone or in combination of two or more. Can be used. Further, those having an ether bond in the molecule are particularly preferred, and glycol ethers are also preferably used.

グリコールエーテル類としては、具体的には下記の溶媒が挙げられるが、特にこれらに限定されない。プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルAc、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルAc、エチレングリコールジエチルエーテル等を挙げることが出来る、尚Acはアセテートを表す。   Specific examples of glycol ethers include, but are not limited to, the following solvents. Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether Ac, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether Ac, ethylene glycol Examples thereof include diethyl ether, and Ac represents acetate.

本発明の透明樹脂層は、前記凸構造部用インクで説明したと同じシリコーンオイル、変性シリコーンオイル、シリコーン系界面活性剤、フッ素系界面活性剤、フッ素系樹脂、フッ素系オリゴマー、フッ素変性シリコーンオイル、フッ素系シランカップリング剤等の活性剤を0.1質量%以上5質量%以下含有することが好ましい。添加量が多すぎると、撥水撥油効果により透明樹脂層が凸構造部の上に塗布できなくなり、好ましくない。また、界面活性剤量は、インク組成、溶媒組成、下地基材の表面エネルギーにも依存するため、添加されることが必須ではない。   The transparent resin layer of the present invention is the same silicone oil, modified silicone oil, silicone surfactant, fluorine surfactant, fluorine resin, fluorine oligomer, fluorine modified silicone oil as described for the convex structure ink. It is preferable to contain 0.1% by mass or more and 5% by mass or less of an activator such as a fluorine-based silane coupling agent. If the amount is too large, the transparent resin layer cannot be applied on the convex structure due to the water / oil repellent effect, which is not preferable. Further, since the amount of the surfactant depends on the ink composition, the solvent composition, and the surface energy of the base substrate, it is not essential to add the surfactant.

本発明では、凸構造部、透明樹脂層共にSnO2、ITO、ZnO等の導電性微粒子や架橋カチオンポリマー粒子等の帯電防止剤を含有させることも好ましい。本発明では、帯電防止剤を透明樹脂層に添加することが好ましい。In the present invention, convex portions, the transparent resin layer together SnO 2, ITO, it is also preferred to incorporate conductive particles and crosslinking antistatic agents such as cationic polymers particles such as ZnO. In the present invention, it is preferable to add an antistatic agent to the transparent resin layer.

本発明では、凸構造部、透明樹脂層共に上記微粒子を含有させることも好ましく、例えば、無機微粒子または有機微粒子を添加することができる。   In the present invention, it is also preferable to contain the fine particles in both the convex structure portion and the transparent resin layer. For example, inorganic fine particles or organic fine particles can be added.

無機微粒子としては、例えば、珪素を含む化合物、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等が好ましく、更に好ましくは、ケイ素を含む無機化合物や酸化ジルコニウムであるが、二酸化珪素が特に好ましく用いられる。これらは球状、平板状、無定形状等の形状の粒子が挙げられる。   Examples of inorganic fine particles include silicon-containing compounds, silicon dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and Calcium phosphate and the like are preferable, and an inorganic compound containing silicon and zirconium oxide are more preferable, and silicon dioxide is particularly preferably used. These include particles having a shape such as a spherical shape, a flat plate shape, and an amorphous shape.

二酸化珪素の微粒子としては、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)等の市販品が使用できる。   As the silicon dioxide fine particles, for example, commercially available products such as Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) can be used.

酸化ジルコニウムの微粒子としては、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)等の市販品が使用できる。   As the fine particles of zirconium oxide, for example, commercially available products such as Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.

また、有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂微粒子、アクリルスチレン系樹脂微粒子、ポリメチルメタクリレート樹脂微粒子、シリコン系樹脂微粒子、ポリスチレン系樹脂微粒子、ポリカーボネート樹脂微粒子、ベンゾグアナミン系樹脂微粒子、メラミン系樹脂微粒子、ポリオレフィン系樹脂微粒子、ポリエステル系樹脂微粒子、ポリアミド系樹脂微粒子、ポリイミド系樹脂微粒子、またはポリ弗化エチレン系樹脂微粒子等を挙げることができる。   The organic fine particles include polymethacrylate methyl acrylate resin fine particles, acrylic styrene resin fine particles, polymethyl methacrylate resin fine particles, silicon resin fine particles, polystyrene resin fine particles, polycarbonate resin fine particles, benzoguanamine resin fine particles, and melamine resin. Examples thereof include fine particles, polyolefin resin fine particles, polyester resin fine particles, polyamide resin fine particles, polyimide resin fine particles, and polyfluoroethylene resin fine particles.

上記微粒子を含有する場合、その平均粒径は、5〜300nmが好ましく、更に好ましくは20〜100nmである。粒径や屈折率の異なる2種以上の微粒子を含有させてもよい。また、含有量は凸構造部若しくは透明樹脂層に対し5〜50質量%であることが好ましい。   When the fine particles are contained, the average particle diameter is preferably 5 to 300 nm, more preferably 20 to 100 nm. You may contain 2 or more types of microparticles | fine-particles from which a particle size and refractive index differ. Moreover, it is preferable that content is 5-50 mass% with respect to a convex structure part or a transparent resin layer.

本発明において、凸構造部もしくは透明樹脂層が活性光線硬化型樹脂を含む場合、活性光線の照射方法としては、インクを透明基体上に着弾させ、溶媒等を蒸発させた後、活性光線を照射することが好ましい。照射のタイミングは形成するパターン形状を考慮して決定することが出来、例えば、インクが無溶媒の場合は、着弾後〜2min後に照射すること、またインクが溶媒を含む場合はインク中の溶媒が揮発し終った直後〜2min後に照射することが出来る。   In the present invention, when the convex structure portion or the transparent resin layer contains an actinic ray curable resin, the actinic ray irradiation method includes landing the ink on the transparent substrate, evaporating the solvent and the like, and then irradiating the actinic ray. It is preferable to do. The timing of irradiation can be determined in consideration of the pattern shape to be formed. For example, when the ink is solvent-free, irradiation is performed after 2 minutes after landing, and when the ink contains a solvent, the solvent in the ink Immediately after the volatilization is completed, irradiation can be performed after 2 minutes.

本発明でいうインクを透明基体上に着弾、もしくはインク中の溶媒が揮発し終った直後とは、具体的にはインクが着弾後から5秒までの間をさす。また、活性光線の照射は、インクの流動性を低下させ、所望のパターン形状が形成出来る程度に照射すればよく、ハーフキュア状態でもよい。この場合には、別途下流側に設置した活性光源を照射して、完全に硬化させることが出来る。本発明では凸構造部の形成及び透明樹脂層の形成に活性線硬化樹脂を使用することが好ましい。   The term “immediately after the ink is landed on the transparent substrate” or after the solvent in the ink has been volatilized, specifically refers to a period of 5 seconds after the ink has landed. Irradiation with actinic light may be performed to such an extent that the fluidity of the ink is lowered and a desired pattern shape can be formed, and may be in a half-cured state. In this case, it can be cured completely by irradiating an active light source separately installed on the downstream side. In the present invention, it is preferable to use an actinic radiation curable resin for forming the convex structure and forming the transparent resin layer.

本発明に使用することができる活性光線としては、紫外線、電子線、γ線等で、パターン状に形成された活性光線硬化型樹脂を活性化させる光源であれば制限なく使用できるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプまたはシンクロトロン放射光等も用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は1mJ/cm2以上が好ましく、更に好ましくは、20mJ/cm2〜10000mJ/cm2であり、特に好ましくは、50mJ/cm2〜2000mJ/cm2である。The actinic ray that can be used in the present invention can be used without limitation as long as it is a light source that activates the actinic ray curable resin formed in a pattern with ultraviolet rays, electron beams, γ rays, etc. Electron beams are preferable, and ultraviolet rays are particularly preferable in that they are easy to handle and high energy can be easily obtained. As the ultraviolet light source for photopolymerizing the ultraviolet reactive compound, any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably 1 mJ / cm 2 or more, more preferably 20 mJ / cm 2 to 10000 mJ / cm 2 , and particularly preferably 50 mJ / cm 2 to 2000 mJ / cm 2. It is.

また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000keV、好ましくは100〜300keVのエネルギーを有する電子線を挙げることができる。   Moreover, an electron beam can be used similarly. As an electron beam, 50 to 1000 keV, preferably 100 to 100, emitted from various electron beam accelerators such as a cockroft Walton type, a bandegraph type, a resonance transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. An electron beam having an energy of 300 keV can be given.

本発明においては、活性光線照射の時の雰囲気中の酸素濃度が10%以下、特に1%以下であることが好ましい。該雰囲気にするには窒素ガス等を導入することが有効である。   In the present invention, the oxygen concentration in the atmosphere upon irradiation with actinic rays is preferably 10% or less, particularly preferably 1% or less. In order to obtain this atmosphere, it is effective to introduce nitrogen gas or the like.

また、本発明においては、活性光線の硬化反応を効率的に進めるため、基材フィルム等を加熱することも出来る。加熱方法としては、特に制限はないが、ヒートプレート、ヒートロール、サーマルヘッド、或いは着弾したインク表面に熱風を吹き付ける等の方法を使用するのが好ましい。また、フレキソ印刷部の基材フィルムを挟んで反対側に用いられるバックロールを、ヒートロールとして、連続的に加熱を施してもよい。   Moreover, in this invention, in order to advance the hardening reaction of actinic light efficiently, a base film etc. can also be heated. The heating method is not particularly limited, but it is preferable to use a heat plate, a heat roll, a thermal head, or a method of spraying hot air on the landed ink surface. Moreover, you may heat continuously by using the back roll used on the opposite side across the base film of a flexographic printing part as a heat roll.

加熱温度としては、使用する活性光線硬化型樹脂の種類により一概には規定出来ないが、基材フィルムへの熱変形等の影響を与えない温度範囲であることが好ましく、30〜200℃が好ましく、更に50〜120℃が好ましく、特に好ましくは70〜100℃である。   The heating temperature cannot be generally specified depending on the type of actinic ray curable resin to be used, but is preferably in a temperature range that does not affect the base film such as thermal deformation, and is preferably 30 to 200 ° C. Furthermore, 50-120 degreeC is preferable, Most preferably, it is 70-100 degreeC.

次いで、本発明の防眩性フィルムの製造方法について説明する。   Subsequently, the manufacturing method of the anti-glare film of this invention is demonstrated.

図8は、透明基材上にインクジェット方式により凸構造部を形成したのち該凸構造部を被覆するように透明樹脂層で形成した防眩性フィルムを製造するフローの一例を示す模式図である。詳しくは、透明基材上に硬化性樹脂層あるいは平滑型の光拡散層を塗布方式で塗設した後、インクジェット方式で凸構造部を形成したのち該凸構造部を被覆するように透明樹脂層を形成した防眩層に、次いで複数の反射防止層を塗布方式で設けて防眩性フィルムを製造するフローの一例を示してある。   FIG. 8 is a schematic diagram showing an example of a flow for producing an antiglare film formed with a transparent resin layer so as to cover a convex structure portion after forming the convex structure portion on a transparent substrate by an ink jet method. . Specifically, after a curable resin layer or a smooth light diffusing layer is coated on a transparent substrate by a coating method, a transparent resin layer is formed so as to cover the convex structure portion after forming the convex structure portion by an inkjet method. An example of a flow for producing an antiglare film by providing a plurality of antireflection layers on the antiglare layer formed with a coating method is shown.

図8において、積層ロール101より繰り出された透明基材102は、搬送されて、第1コータステーションAで、押し出し方式の第1コータ103により硬化性樹脂層あるいは平滑型の光拡散層を塗設する。このとき、硬化性樹脂層あるいは平滑型の光拡散層は単層構成でも、それぞれを組み合わせた複数層から構成されている層でもよい。硬化性樹脂層あるいは平滑型の光拡散層を塗設した透明基材102は、次いで乾燥ゾーン105Aで乾燥が行われる。乾燥は、透明基材102の両面より、温湿度が制御された温風により乾燥が施される。乾燥後、硬化性樹脂層あるいは平滑型の光拡散層にバインダーとして活性光線硬化型樹脂を用いている場合には、活性光線照射部106Aで、活性光線、例えば紫外線等を照射して硬化させたり、照射量や照射条件を制御してハーフキュア状態とすることもでき、あるいは硬化せずに直接インクジェット出射部109へと搬送することもできる。   In FIG. 8, the transparent base material 102 fed out from the laminating roll 101 is conveyed, and a curable resin layer or a smooth light diffusion layer is applied by the first coater 103 of the extrusion method at the first coater station A. To do. At this time, the curable resin layer or the smooth light diffusing layer may be a single layer structure or a layer composed of a plurality of layers combined with each other. The transparent substrate 102 on which the curable resin layer or the smooth light diffusion layer is applied is then dried in the drying zone 105A. Drying is performed from both surfaces of the transparent substrate 102 by warm air with controlled temperature and humidity. After drying, when an actinic ray curable resin is used as a binder in the curable resin layer or the smooth light diffusing layer, the actinic ray irradiating unit 106A is irradiated with actinic rays such as ultraviolet rays to be cured. In addition, the amount of irradiation and irradiation conditions can be controlled to achieve a half-cure state, or it can be directly conveyed to the inkjet emitting unit 109 without being cured.

次いで、インクジェット方式を用いて凸構造部を設ける第2コータステーションBに搬送されるが、硬化性樹脂層は、ハーフキュア状態であることが好ましい。あるいは、凸構造部を形成する前にプラズマ処理部107で表面処理を施してもよい。インクジェット出射部109には、インク供給タンク108が接続されており、そこからインク液が供給される。インクジェット出射部109は、図3の(b)で示すような複数のインクジェットノズルを透明基材の幅全域に千鳥状、好ましくは多段に配置し、インク液滴を硬化性樹脂層あるいは平滑型の光拡散層上に出射して、その表面に凸構造部を形成する。また、2種以上のインク液滴を出射する場合には、2列以上配置したインクジェットノズルより、各々のインク液滴を出射してもよいし、あるいはランダムに任意のインクジェットノズルよりインク液滴を出射してもよい。また、インクジェット出射部を複数配置し、各々のインク出射部より異なるインク液滴を出射してもよい。本発明においては、0.1〜100pl、場合によっては0.1〜10plという微細な液滴を出射するため、インク液滴の飛翔性に対し、外気の気流の影響を受けやすくなるため、第2コータステーションB全体を、隔壁等で覆って防風処理を施すことが好ましい。また、1pl以下の極めて微細な液滴を精度高く飛翔させるため、インクジェット出射部109と透明基材102あるいはバックロール104B間に電圧を印加し、インク液滴に電荷を与えて電気的にインク液滴の飛翔安定性を補助する方法も好ましい。また、着弾したインク液滴の変形を防止するため、透明基材を冷却して着弾後のインク液滴の流動を速やかに低下させる方法を用いることも好ましい。あるいは、インク液滴が出射後、着弾するまでの飛翔中に含有する溶媒を揮発させて、インク液滴中の含有溶媒量が減少した状態で着弾させることが、より微細な凸構造部を形成する上で好ましい。そのため、インク飛翔空間の温度を高くしたり、あるいは気圧を、1気圧以下、例えば20〜100kPaに制御したりする方法も好ましい。また、インク飛翔空間の雰囲気溶媒濃度を下げることも好ましく、飽和濃度の50%以下、より好ましくは1〜30%である。   Subsequently, although it conveys to the 2nd coater station B which provides a convex structure part using an inkjet system, it is preferable that a curable resin layer is a half-cure state. Alternatively, the surface treatment may be performed by the plasma processing unit 107 before forming the convex structure portion. An ink supply tank 108 is connected to the ink jet emitting portion 109, and ink liquid is supplied therefrom. The ink jet emitting unit 109 has a plurality of ink jet nozzles as shown in FIG. 3B arranged in a staggered manner, preferably in multiple stages, across the entire width of the transparent substrate, and the ink droplets are made of a curable resin layer or a smooth type. The light is emitted onto the light diffusion layer, and a convex structure is formed on the surface. In addition, when ejecting two or more types of ink droplets, each ink droplet may be ejected from two or more rows of inkjet nozzles, or randomly from any inkjet nozzle. It may be emitted. Further, a plurality of ink jet emitting portions may be arranged, and different ink droplets may be emitted from each ink emitting portion. In the present invention, since fine droplets of 0.1 to 100 pl and in some cases 0.1 to 10 pl are emitted, the flying property of the ink droplets is easily affected by the airflow of the outside air. It is preferable that the entire coater station B is covered with a partition wall or the like to perform windproof treatment. In addition, in order to fly extremely fine droplets of 1 pl or less with high accuracy, a voltage is applied between the ink jet emitting unit 109 and the transparent base material 102 or the back roll 104B to give an electric charge to the ink droplets to electrically inject the ink liquid. A method of assisting droplet flight stability is also preferred. In order to prevent deformation of the landed ink droplets, it is also preferable to use a method in which the transparent substrate is cooled to quickly reduce the flow of the ink droplets after landing. Or, after the ink droplets are ejected, the solvent contained during the flight until landing is volatilized, and landing with the amount of solvent contained in the ink droplets reduced makes it possible to form a finer convex structure. This is preferable. Therefore, a method of increasing the temperature of the ink flying space or controlling the atmospheric pressure to 1 atm or lower, for example, 20 to 100 kPa is also preferable. It is also preferable to lower the atmospheric solvent concentration in the ink flying space, and it is 50% or less, more preferably 1 to 30% of the saturation concentration.

硬化性樹脂層あるいは平滑型の光拡散層表面に着弾したインク液滴は、活性光線硬化型樹脂を用いている場合には、インクジェット出射部109の直後に配置されている活性光線照射部106Bで、活性光線、例えば、紫外線等を照射して硬化させる。また、インク液滴が熱硬化性樹脂を用いている場合には、加熱部110、例えば、ヒートプレートにより加熱、硬化される。また、バックロール104Bをヒートロールとして加熱する方法も好ましい。   Ink droplets that have landed on the surface of the curable resin layer or the smooth light diffusing layer, when an actinic ray curable resin is used, are generated by the actinic ray irradiation unit 106B disposed immediately after the inkjet emitting unit 109. Then, it is cured by irradiation with actinic rays such as ultraviolet rays. Further, when the ink droplet uses a thermosetting resin, the ink droplet is heated and cured by the heating unit 110, for example, a heat plate. A method of heating the back roll 104B as a heat roll is also preferable.

第2コータステーションBにおいて、活性光線照射部106Bの照射光が、インクジェット出射部109のインクジェットノズルに直接影響を与えないように、活性光線照射部106Bとインクジェット出射部109とを適度な間隔で配置する、あるいは活性光線照射部106Bとインクジェット出射部109とを間に、遮光壁等を設置することが好ましい。また、加熱部110の熱が、インクジェット出射部109のインクジェットノズルに直接影響を与えないように、インクジェット出射部109を保温カバーで被覆する、あるいは図7で示すように、加熱部110を透明基材102の裏面側に配置し、インクジェット出射部109に影響を及ぼさないようにすることが好ましい。   In the second coater station B, the actinic ray irradiation unit 106B and the inkjet emission unit 109 are arranged at an appropriate interval so that the irradiation light of the actinic ray irradiation unit 106B does not directly affect the inkjet nozzle of the inkjet emission unit 109. Alternatively, it is preferable to install a light shielding wall or the like between the actinic ray irradiation unit 106B and the inkjet emission unit 109. Further, in order to prevent the heat of the heating unit 110 from directly affecting the ink jet nozzles of the ink jet emitting unit 109, the ink jet emitting unit 109 is covered with a heat insulating cover, or as shown in FIG. It is preferable to arrange on the back side of the material 102 so as not to affect the ink jet emitting portion 109.

着弾したインク液滴により形成された凸構造部が維持できる程度に硬化処理を行った透明基材102は、乾燥ゾーン105Bで不要な有機溶媒等を蒸発させた後、更に、活性光線照射部106Cで、活性光線を照射して、硬化を完了しても、ハーフキュア状態であっても良いがハーフキュア状態である方が好ましい。   The transparent substrate 102 that has been cured to such an extent that the convex structure formed by the landed ink droplets can be maintained is evaporated after the unnecessary organic solvent or the like is evaporated in the drying zone 105B. Then, it may be irradiated with actinic rays to complete curing, or may be in a half-cured state, but is preferably in a half-cured state.

凸構造部を設けた透明基材102は、次いで凸構造部を被覆する透明樹脂層が塗設される第3コータステーションCに搬送されるが、凸構造部を透明樹脂層で被覆する前にプラズマ処理部107で表面処理を施すことが好ましい。   The transparent base material 102 provided with the convex structure portion is then transported to the third coater station C where the transparent resin layer covering the convex structure portion is coated, but before the convex structure portion is covered with the transparent resin layer. Surface treatment is preferably performed by the plasma processing unit 107.

透明樹脂層を塗設した透明基材102は、次いで乾燥ゾーン105Cで乾燥が行われる。乾燥は、透明基材102の両面より、温湿度が制御された温風により乾燥が施される。更に、活性光線照射部106Dで、活性光線を照射して、硬化を完了させる。   The transparent substrate 102 on which the transparent resin layer is applied is then dried in the drying zone 105C. Drying is performed from both surfaces of the transparent substrate 102 by warm air with controlled temperature and humidity. Further, the actinic ray irradiation unit 106D irradiates actinic rays to complete the curing.

凸構造部を有する防眩層を設けた透明基材102は、次いで第4コータステーションD、あるいは複数の反射防止層や防汚層を設ける場合には第5コータステーション、第6コータステーション(不図示)により、第1コータステーションAと同様にして、塗布、乾燥、硬化処理を行って防眩性フィルムが作製され、その後巻き取りロール113で巻き取られる。   The transparent base material 102 provided with the antiglare layer having the convex structure is then applied to the fourth coater station D, or the fifth coater station and the sixth coater station (non-coated layer) when a plurality of antireflection layers and antifouling layers are provided. In the same manner as in the first coater station A, the coating, drying and curing processes are performed to produce an antiglare film, which is then wound up by a winding roll 113.

尚、透明基材102は、各コータステーションで塗布、乾燥、硬化処理後、適宜に巻き取りロールで巻き取られてもよい。   The transparent substrate 102 may be appropriately wound up by a winding roll after coating, drying, and curing treatment at each coater station.

図8においては、反射防止層の形成方法としては塗布方式を例示したが、塗布方式に代えて、公知の大気圧プラズマ処理方法により反射防止層あるいは防汚層を形成してもよい。   In FIG. 8, the coating method is exemplified as the method for forming the antireflection layer, but the antireflection layer or the antifouling layer may be formed by a known atmospheric pressure plasma treatment method instead of the coating method.

《透明基材》
本発明に用いられる透明基材としては、製造が容易であること、活性光線硬化型樹脂層との密着性が良好である、光学的に等方性である、光学的に透明であること等が好ましく、透明フィルムであることが好ましい。
<Transparent substrate>
The transparent substrate used in the present invention is easy to manufacture, has good adhesion to the actinic ray curable resin layer, is optically isotropic, is optically transparent, etc. Is preferable, and a transparent film is preferable.

本発明でいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。   The term “transparent” as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.

上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム,ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。   Although it will not specifically limit if it has said property, For example, cellulose ester-type films, such as a cellulose diacetate film, a cellulose triacetate film, a cellulose acetate propionate film, a cellulose acetate butyrate film, a polyester-type film, a polycarbonate Film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate and polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol Film, syndiotactic polystyrene film, polycarbonate film, nor Runen resin film, a polymethylpentene film, a polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, acrylic film or a glass plate or the like. Among these, a polycarbonate film, a polyester film, a norbornene resin film, and a cellulose ester film are preferable.

また本発明で好ましく用いられるノルボルネン系樹脂フィルムとは、ノルボルネン構造を有する非晶性ポリオレフィンフィルムで、例えば三井石油化学(株)製のAPOや日本ゼオン(株)製のゼオネックス、JSR(株)製のARTON等がある。   The norbornene-based resin film preferably used in the present invention is an amorphous polyolefin film having a norbornene structure, such as APO manufactured by Mitsui Petrochemical Co., Ltd., ZEONEX manufactured by Nippon Zeon Co., Ltd., manufactured by JSR Co., Ltd. ARTON etc.

本発明においては、中でも特にセルロースエステル系フィルムを用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。市販のセルロースエステルフィルムとしては、例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC4FR(コニカミノルタオプト(株)製)等が、製造上、コスト面、透明性、密着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。   In the present invention, it is particularly preferable to use a cellulose ester film. As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used. Examples of commercially available cellulose ester films include Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4FR (manufactured by Konica Minolta Opto Co., Ltd. It is preferably used from the viewpoints of transparency and adhesion. These films may be films produced by melt casting film formation or films produced by solution casting film formation.

《防眩性反射防止フィルム》
本発明は前記凸構造部、及び透明樹脂層を有する防眩性フィルムの微細凹凸構造を有する面に、下記低屈折率層を設け防眩性反射防止フィルムとすることが好ましい。
《Anti-glare anti-reflection film》
In the present invention, it is preferable to provide an antiglare antireflection film by providing the following low refractive index layer on the surface having the fine concavo-convex structure of the antiglare film having the convex structure portion and the transparent resin layer.

特に、本発明においては、低屈折率層は、外殻層を有し内部が多孔質または空洞となっている中空シリカ系微粒子を含有する低屈折率層塗布液をコーティングすることが好ましい。   In particular, in the present invention, the low refractive index layer is preferably coated with a low refractive index layer coating solution containing hollow silica-based fine particles having an outer shell layer and porous or hollow inside.

〈低屈折率層〉
本発明に係る低屈折率層の屈折率は、支持体である基材フィルムの屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
<Low refractive index layer>
The refractive index of the low refractive index layer according to the present invention is preferably lower than the refractive index of the substrate film as the support, and is preferably in the range of 1.30 to 1.45 at 23 ° C. and a wavelength of 550 nm.

低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることがさらに好ましく、30nm〜0.2μmであることが最も好ましい。   The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.

本発明に用いられる低屈折率層形成用組成物は、(a)下記一般式(2)で表される有機珪素化合物もしくはその加水分解物或いはその重縮合物及び、(b)外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子が組成物を構成することが好ましい。   The composition for forming a low refractive index layer used in the present invention comprises (a) an organosilicon compound represented by the following general formula (2) or a hydrolyzate thereof or a polycondensate thereof, and (b) an outer shell layer. It is preferable that hollow silica-based fine particles having a porous or hollow interior constitute the composition.

一般式(2) Si(OR)4
(式中、Rはアルキル基であり、好ましくは炭素数1〜4のアルキル基である。)
他に溶剤、必要に応じて、シランカップリング剤、硬化剤等を添加してもよい。
General formula (2) Si (OR) 4
(In the formula, R is an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms.)
In addition, a silane coupling agent, a curing agent, and the like may be added as necessary.

〔中空シリカ系微粒子〕
まず、前記(b)で表される外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子について説明する。
[Hollow silica fine particles]
First, hollow silica-based fine particles having the outer shell layer represented by (b) and having a porous or hollow interior will be described.

中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。尚、低屈折率層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。   The hollow silica-based fine particles are (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having cavities inside, and the contents are solvent, gas or porous It is a hollow particle filled with a porous material. The low refractive index layer may contain either (I) composite particles or (II) hollow particles, or may contain both.

尚、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。   The hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls. The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The hollow fine particles to be used are appropriately selected according to the thickness of the transparent coating to be formed, and may be in the range of 2/3 to 1/10 of the thickness of the transparent coating such as the low refractive index layer to be formed. desirable. These hollow fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diacetone alcohol) are preferable.

複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することが出来ないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持出来ないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。   The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, when the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use silicate monomers and oligomers with a low polymerization degree, which are coating liquid components described later. In some cases, the inside of the composite particle enters the inside and the porosity of the inside is reduced, so that the effect of the low refractive index cannot be sufficiently obtained. When the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. is there.

複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いものを得ることが難しいことがある。The coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica. In addition, components other than silica may be contained. Specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 and the like. Examples of the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like. Among these, porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable. Examples of inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 and the like. 1 type or 2 types or more can be mentioned. In such porous particles, the molar ratio MOX / SiO 2 when the silica is represented by SiO 2 and the inorganic compound other than silica is represented by oxide (MOX) is 0.0001 to 1.0, preferably It is desirable to be in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MOX / SiO 2 of less than 0.0001. Even if it is obtained, particles having a small pore volume and a low refractive index cannot be obtained. Further, when the molar ratio MOX / SiO 2 of the porous particles exceeds 1.0, the ratio of silica decreases, so that the pore volume increases and it may be difficult to obtain a low refractive index. .

このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。   The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there.

尚、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例表した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。   Incidentally, the pore volume of such porous particles can be determined by a mercury intrusion method. Examples of the contents of the hollow particles include a solvent, a gas, and a porous substance used at the time of preparing the particles. The solvent may contain an unreacted particle precursor used when preparing the hollow particles, the catalyst used, and the like. Examples of the porous substance include those composed of the compounds exemplified for the porous particles. These contents may be composed of a single component or may be a mixture of a plurality of components.

このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。   As a method for producing such hollow fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is suitably employed.

〔有機珪素化合物〕
前記一般式(2)で表される有機珪素化合物は、式中、Rは炭素数1〜4のアルキル基を表す。
[Organic silicon compound]
In the organosilicon compound represented by the general formula (2), R represents an alkyl group having 1 to 4 carbon atoms.

具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。   Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.

低屈折率層への添加方法としては、これらのテトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As a method of adding to the low refractive index layer, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these tetraalkoxysilane, pure water, and alcohol is added to the dispersion of the hollow silica fine particles. The silicic acid polymer produced by hydrolyzing tetraalkoxysilane is deposited on the surface of the hollow silica fine particles. At this time, tetraalkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

また、本発明では低屈折率層に、下記一般式(3)で表されるフッ素置換アルキル基含有シラン化合物を含有させることもできる。   In the present invention, the low refractive index layer may contain a fluorine-substituted alkyl group-containing silane compound represented by the following general formula (3).

前記一般式(3)で表されるフッ素置換アルキル基含有シラン化合物について説明する。   The fluorine-substituted alkyl group-containing silane compound represented by the general formula (3) will be described.

式中、R1〜R6は炭素数1〜16、好ましくは1〜4のアルキル基、炭素数1〜6、好ましくは1〜4のハロゲン化アルキル基、炭素数6〜12、好ましくは6〜10のアリール基、炭素数7〜14、好ましくは7〜12のアルキルアリール基、アリールアルキル基、炭素数2〜8、好ましくは2〜6のアルケニル基、または炭素数1〜6、好ましくは1〜3のアルコキシ基、水素原子またはハロゲン原子を示す。In the formula, R 1 to R 6 are alkyl groups having 1 to 16 carbon atoms, preferably 1 to 4 carbon atoms, halogenated alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, 6 to 12 carbon atoms, preferably 6 carbon atoms. 10 to 10 aryl groups, 7 to 14 carbon atoms, preferably 7 to 12 alkylaryl groups, arylalkyl groups, 2 to 8 carbon atoms, preferably 2 to 6 alkenyl groups, or 1 to 6 carbon atoms, preferably 1 to 3 alkoxy groups, a hydrogen atom or a halogen atom.

Rfは−(CaHbFc)−を表し、aは1〜12の整数、b+cは2aであり、bは0〜24の整数、cは0〜24の整数を示す。このようなRfとしては、フルオロアルキレン基とアルキレン基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物としては、(MeO)3SiC242424Si(MeO)3、(MeO)3SiC244824Si(MeO)3、(MeO)3SiC2461224Si(MeO)3、(H52O)3SiC244824Si(OC253、(H52O)3SiC2461224Si(OC253で表されるメトキシジシラン化合物等が挙げられる。Rf represents-(CaHbFc)-, a is an integer of 1 to 12, b + c is 2a, b is an integer of 0 to 24, and c is an integer of 0 to 24. Such Rf is preferably a group having a fluoroalkylene group and an alkylene group. Specifically, as such a fluorine-containing silicone compound, (MeO) 3 SiC 2 H 4 C 2 F 4 C 2 H 4 Si (MeO) 3 , (MeO) 3 SiC 2 H 4 C 4 F 8 C 2 H 4 Si (MeO) 3 , (MeO) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (MeO) 3 , (H 5 C 2 O) 3 SiC 2 H 4 C 4 F 8 C 2 H Examples include methoxydisilane compounds represented by 4 Si (OC 2 H 5 ) 3 , (H 5 C 2 O) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (OC 2 H 5 ) 3 , and the like.

バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、形成される透明被膜自体が疎水性を有しているので、透明被膜が充分緻密化しておらず、多孔質であったり、またクラックやボイドを有している場合であっても、水分や酸・アルカリ等の薬品による透明被膜への進入が抑制される。さらには、基板表面や下層である導電層中に含まれる金属等の微粒子と水分や酸・アルカリ等の薬品とが反応することもない。このた
め、このような透明被膜は、優れた耐薬品性を有している。
If the fluorine-containing alkyl group-containing silane compound is included as a binder, the transparent film itself is hydrophobic, so the transparent film is not sufficiently densified and is porous or cracked. Even if it has a void or a void, entry into the transparent film by chemicals such as moisture, acid and alkali is suppressed. Furthermore, fine particles such as metals contained in the conductive layer which is the substrate surface or the lower layer do not react with chemicals such as moisture, acid and alkali. For this reason, such a transparent film has excellent chemical resistance.

また、バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強度に優れた透明被膜を得ることができる。さらに、バインダーが、このような構成単位を有するフッ素置換アルキル基含有シラン化合物を含んでいると、下層に導電層が形成されている場合には、バインダーの収縮率が、導電層と同等か近いものであるため導電層と密着性に優れた透明被膜を形成することができる。さらに、透明被膜を加熱処理する際に、収縮率の違いから、導電層が剥離して、透明導電性層に電気的接触のない部分が生じることもない。このため、膜全体として充分な導電性を維持できる。   In addition, when a fluorine-substituted alkyl group-containing silane compound is included as a binder, not only the hydrophobic property but also the slipperiness (low contact resistance) is obtained, and thus a transparent film having excellent scratch strength can be obtained. Can do. Furthermore, when the binder contains a fluorine-substituted alkyl group-containing silane compound having such a structural unit, when the conductive layer is formed in the lower layer, the shrinkage of the binder is equal to or close to that of the conductive layer. Since it is a thing, the transparent film excellent in adhesiveness with the conductive layer can be formed. Furthermore, when the transparent film is heat-treated, the conductive layer is not peeled off due to the difference in shrinkage rate, and a portion having no electrical contact is not generated in the transparent conductive layer. For this reason, sufficient electroconductivity can be maintained as a whole film.

フッ素置換アルキル基含有シラン化合物と、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、消しゴム強度または爪強度で評価される膜強度が高く、鉛筆硬度も高く、強度の上で優れた透明被膜を形成することができる。   A transparent film containing a fluorine-substituted alkyl group-containing silane compound and hollow silica-based fine particles having the outer shell layer and being porous or hollow inside has high scratch strength and is evaluated by eraser strength or nail strength. The film strength is high, the pencil hardness is high, and a transparent film excellent in strength can be formed.

本発明に係る低屈折率層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。   The low refractive index layer according to the present invention may contain a silane coupling agent. Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane. Ethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltri Acetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropyltri Ethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ- Acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N- Examples include β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。   Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate.

低屈折率層のその他のバインダーとして用いられるポリマーとしては、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂が挙げられる。   Examples of the polymer used as the other binder of the low refractive index layer include polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, and alkyd resin.

低屈折率層は、全体で5〜80質量%のバインダーを含むことが好ましい。バインダーは、中空シリカ微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。   The low refractive index layer preferably contains 5 to 80% by mass of binder as a whole. The binder has a function of adhering the hollow silica fine particles and maintaining the structure of the low refractive index layer including voids. The usage-amount of a binder is adjusted so that the intensity | strength of a low refractive index layer can be maintained, without filling a space | gap.

(溶媒)
本発明に係る低屈折率層は有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
(solvent)
The low refractive index layer according to the present invention preferably contains an organic solvent. Specific examples of organic solvents include alcohols (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), esters (eg, methyl acetate, ethyl acetate). , Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Group hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

有機溶媒の含有量は、低屈折率層塗布組成物中の固形分濃度の1〜4質量%であることが好ましい。有機溶媒は塗布ムラを防止して均一膜厚とするために1質量%以上が好ましく、4質量%を超えると乾燥負荷が大きくなり、乾燥装置の大型化、長時間化となり好ましくない。   The content of the organic solvent is preferably 1 to 4% by mass of the solid content concentration in the low refractive index layer coating composition. The organic solvent is preferably 1% by mass or more in order to prevent coating unevenness and achieve a uniform film thickness, and if it exceeds 4% by mass, the drying load increases, which is not preferable because the size of the drying apparatus is increased and the time is increased.

〈高屈折率層〉
本発明では、反射防止性を更に高める為に、前記低屈折率層の下層に下記高屈折率層を複数層設けることができる。
<High refractive index layer>
In the present invention, in order to further improve the antireflection property, a plurality of the following high refractive index layers can be provided below the low refractive index layer.

本発明に好ましい高屈折率層は、(c)平均粒子径が10〜200nmである金属酸化物微粒子、(d)金属化合物、(e)活性光線硬化型樹脂を含有することが好ましい。   The high refractive index layer preferable for the present invention preferably contains (c) metal oxide fine particles having an average particle diameter of 10 to 200 nm, (d) a metal compound, and (e) an actinic ray curable resin.

(金属酸化物微粒子)
本発明の高屈折率層には金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることが出来、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが好ましく、特に好ましくは酸化インジウム−スズ(ITO)である。
(Metal oxide fine particles)
The high refractive index layer of the present invention preferably contains metal oxide fine particles. The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the above can be used, and these metal oxide fine particles are doped with a trace amount of atoms such as Al, In, Sn, Sb, Nb, a halogen element, and Ta. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is preferably used as a main component, and particularly preferably indium tin oxide (ITO).

これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測してもよいし、動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。   The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles may be measured from an electron micrograph by a scanning electron microscope (SEM) or the like, or measured by a particle size distribution meter using a dynamic light scattering method or a static light scattering method. May be. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

高屈折率層の屈折率は、具体的には、支持体である基材フィルムの屈折率より高く、23℃、波長550nm測定で、1.50〜1.90の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。   Specifically, the refractive index of the high refractive index layer is higher than the refractive index of the base film as a support, and is preferably in the range of 1.50 to 1.90 when measured at 23 ° C. and a wavelength of 550 nm. The means for adjusting the refractive index of the high refractive index layer is that the kind and addition amount of the metal oxide fine particles are dominant, so that the refractive index of the metal oxide fine particles is preferably 1.80 to 2.60, More preferably, it is 1.85 to 2.50.

金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑える事もできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。   The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . For this reason, the surface modification amount with a preferable organic compound is 0.1 mass%-5 mass% with respect to metal oxide particle, More preferably, it is 0.5 mass%-3 mass%. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Among these, the silane coupling agent mentioned later is preferable. Two or more kinds of surface treatments may be combined.

前記金属酸化物微粒子を含有する高屈折率層の厚さは5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。   The thickness of the high refractive index layer containing the metal oxide fine particles is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm.

使用する金属酸化物微粒子と後述する活性光線硬化型樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。   The ratio of the metal oxide fine particles to be used and a binder such as actinic ray curable resin, which will be described later, varies depending on the kind of metal oxide fine particles, the particle size, etc. The latter one is preferable.

本発明において用いられる金属酸化物微粒子の使用量は高屈折率層中に5質量%〜85質量%が好ましく、10質量%〜80質量%であることがより好ましく、20〜75質量%が最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多過ぎると膜強度の劣化などが発生する。   The amount of the metal oxide fine particles used in the present invention is preferably 5% by mass to 85% by mass in the high refractive index layer, more preferably 10% by mass to 80% by mass, and most preferably 20% to 75% by mass. preferable. If the amount used is small, the desired refractive index and the effect of the present invention cannot be obtained, and if it is too large, the film strength deteriorates.

上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。   The metal oxide fine particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol (eg, diacetone alcohol). , Esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, diethyl ether, dioxane, Tiger hydrofuran), ether alcohols (e.g., 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

また金属酸化物微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。   The metal oxide fine particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.

本発明では、更にコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性を更に向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。   In the present invention, metal oxide fine particles having a core / shell structure may be further contained. One layer of the shell may be formed around the core, or a plurality of layers may be formed in order to further improve the light resistance. The core is preferably completely covered by the shell.

コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることができるが、ルチル型の酸化チタンを主成分としてもよい。   For the core, titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconium oxide, zinc oxide, cerium oxide, indium oxide doped with tin, tin oxide doped with antimony, etc. can be used. Titanium may be the main component.

シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。   The shell is preferably formed of a metal oxide or sulfide containing an inorganic compound other than titanium oxide as a main component. For example, an inorganic compound mainly composed of silicon dioxide (silica), aluminum oxide (alumina) zirconium oxide, zinc oxide, tin oxide, antimony oxide, indium oxide, iron oxide, zinc sulfide, or the like is used. Of these, alumina, silica, and zirconia (zirconium oxide) are preferable. A mixture of these may also be used.

コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、更に好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の金属酸化物微粒子を併用してもよい。   The coating amount of the shell with respect to the core is 2 to 50% by mass as an average coating amount. Preferably it is 3-40 mass%, More preferably, it is 4-25 mass%. When the coating amount of the shell is large, the refractive index of the fine particles is lowered, and when the coating amount is too small, the light resistance is deteriorated. Two or more kinds of metal oxide fine particles may be used in combination.

コアとなる酸化チタンは、液相法または気相法で作製されたものを使用できる。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることができる。   The titanium oxide used as a core can use what was produced by the liquid phase method or the gaseous-phase method. As a method for forming the shell around the core, for example, U.S. Pat. No. 3,410,708, JP-B-58-47061, U.S. Pat. No. 2,885,366, and U.S. Pat. No. 1, British Patent No. 1,134,249, US Pat. No. 3,383,231, British Patent No. 2,629,953, No. 1,365,999, etc. Can do.

〔金属化合物〕
本発明に用いられる金属化合物は下記一般式(4)で表される化合物またはそのキレート化合物を用いることができる。
[Metal compounds]
As the metal compound used in the present invention, a compound represented by the following general formula (4) or a chelate compound thereof can be used.

一般式(4) AnMBx−n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
General formula (4) AnMBx-n
In the formula, M represents a metal atom, A represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group, and B represents an atomic group covalently or ionically bonded to the metal atom M. x represents the valence of the metal atom M, and n represents an integer of 2 or more and x or less.

加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記式(4)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。   Examples of the hydrolyzable functional group A include halogens such as alkoxyl groups and chloro atoms, ester groups and amide groups. The metal compound belonging to the above formula (4) includes an alkoxide having two or more alkoxyl groups bonded directly to a metal atom, or a chelate compound thereof. Preferable metal compounds include titanium alkoxide, zirconium alkoxide, or chelate compounds thereof. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in a large amount. Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating. Moreover, since titanium alkoxide has the effect of promoting the reaction between the ultraviolet curable resin and the metal alkoxide, the physical properties of the coating film can be improved even by adding a small amount.

チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。   Examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium, and the like. Is mentioned.

ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。   Examples of the zirconium alkoxide include tetramethoxy zirconium, tetraethoxy zirconium, tetra-iso-propoxy zirconium, tetra-n-propoxy zirconium, tetra-n-butoxy zirconium, tetra-sec-butoxy zirconium, tetra-tert-butoxy zirconium and the like. Is mentioned.

遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。   Preferred chelating agents for forming a chelate compound by coordination with a free metal compound include alkanolamines such as diethanolamine and triethanolamine, glycols such as ethylene glycol, diethylene glycol and propylene glycol, acetylacetone and acetoacetic acid. Examples thereof include ethyl and the like having a molecular weight of 10,000 or less. By using these chelating agents, it is possible to form a chelate compound that is stable against water mixing and is excellent in the effect of reinforcing the coating film.

金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。   The addition amount of the metal compound is preferably adjusted so that the content of the metal oxide derived from the metal compound contained in the high refractive index layer is 0.3 to 5% by mass. If it is less than 0.3% by mass, the scratch resistance is insufficient, and if it exceeds 5% by mass, the light resistance tends to deteriorate.

(活性光線硬化型樹脂)
活性光線硬化型樹脂は金属酸化物微粒子のバインダーとして塗膜の成膜性や物理的特性の向上のために添加される。活性光線硬化型樹脂としては、紫外線や電子線のような活性光線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができる。官能基としては(メタ)アクリロイルオキシ基等のような不飽和二重結合を有する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を2個以上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることができる。必要に応じて光重合開始剤を組み合わせてもよい。このような活性光線硬化型樹脂としては、例えば多官能アクリレート化合物等が挙げられ、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる化合物であることが好ましい。ここで、多官能アクリレート化合物とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
(Actinic ray curable resin)
The actinic ray curable resin is added as a binder for the metal oxide fine particles in order to improve the film formability and physical properties of the coating film. As the actinic ray curable resin, a monomer or oligomer having two or more functional groups that undergo a polymerization reaction directly by irradiation with actinic rays such as ultraviolet rays or electron beams or indirectly by the action of a photopolymerization initiator. Can be used. Examples of the functional group include a group having an unsaturated double bond such as a (meth) acryloyloxy group, an epoxy group, and a silanol group. Among these, radically polymerizable monomers and oligomers having two or more unsaturated double bonds can be preferably used. You may combine a photoinitiator as needed. Examples of such actinic ray curable resins include polyfunctional acrylate compounds and the like, and the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. It is preferable that it is a compound chosen from these. Here, the polyfunctional acrylate compound is a compound having two or more acryloyloxy groups and / or methacryloyloxy groups in the molecule.

多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。   Examples of the monomer of the polyfunctional acrylate compound include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethanetriacrylate. Acrylate, tetramethylol methane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, Dipen Erythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetra Methylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol te La methacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate preferred. These compounds are used alone or in admixture of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.

活性光線硬化型樹脂の添加量は、高屈折率組成物では固形分中の50質量%未満であることが好ましい。   The addition amount of the actinic ray curable resin is preferably less than 50% by mass in the solid content in the high refractive index composition.

本発明に係る活性光線硬化型樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを質量比で3:7〜1:9含有することが好ましい。   In order to accelerate the curing of the actinic radiation curable resin according to the present invention, the photopolymerization initiator and the acrylic compound having two or more polymerizable unsaturated bonds in the molecule are in a mass ratio of 3: 7 to 1: 9. It is preferable to contain.

光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。   Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof.

(溶媒)
本発明の高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
(solvent)
Examples of the organic solvent used for coating the high refractive index layer of the present invention include alcohols (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol). , Cyclohexanol, benzyl alcohol, etc.), polyhydric alcohols (for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexane Triol, thiodiglycol, etc.), polyhydric alcohol ethers (for example, ethylene glycol monomethyl ether) Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol Monoethyl ether, ethylene glycol monophenyl ether, propylene glycol monophenyl ether, etc.), amines (for example, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine) , Ethylenediamine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide) Etc.), heterocyclic rings (for example, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.), sulfoxides (for example, dimethyl sulfoxide, etc.) ), Sulfones (for example, sulfolane, etc.), urea, acetonitrile, acetone and the like, and alcohols, polyhydric alcohols, and polyhydric alcohol ethers are particularly preferable.

(防汚層)
本発明の防眩性フィルムもしくは防眩性反射防止フィルムは、最表層に防汚層が設けられていることが好ましい。
(Anti-fouling layer)
The antiglare film or antiglare antireflection film of the present invention preferably has an antifouling layer on the outermost layer.

本発明に好ましい防汚層は、フッ素含有シラン化合物を防汚層形成用組成物に含有することが好ましく、フルオロアルキル基またはフルオロアルキルエーテル基を有するシラン化合物溶液をコーティングして作製する。特に、フッ素含有シラン化合物がシラザンもしくはアルコキシシランであることが好ましい。   The antifouling layer preferable for the present invention preferably contains a fluorine-containing silane compound in the antifouling layer forming composition, and is prepared by coating a silane compound solution having a fluoroalkyl group or a fluoroalkyl ether group. In particular, the fluorine-containing silane compound is preferably silazane or alkoxysilane.

また、前記フルオロアルキル基またはフルオロアルキルエーテル基を有するシラン化合物のなかでも、シラン化合物中のフルオロアルキル基が、Si原子1つに対し、1つ以下の割合でSi原子と結合されており、残りは加水分解性基もしくはシロキサン結合基であるシラン化合物が好ましい。   In addition, among the silane compounds having the fluoroalkyl group or the fluoroalkyl ether group, the fluoroalkyl group in the silane compound is bonded to Si atoms at a ratio of 1 or less to one Si atom, and the remaining Is preferably a silane compound which is a hydrolyzable group or a siloxane bond group.

ここでいう加水分解性の基としては、例えばアルコキシ基等の基であり、加水分解によりヒドロキシル基となり、それにより前記シラン化合物は重縮合物を形成する。   The hydrolyzable group here is, for example, a group such as an alkoxy group, and becomes a hydroxyl group by hydrolysis, whereby the silane compound forms a polycondensate.

例えば、上記シラン化合物は水と(必要なら酸触媒の存在下)、副生するアルコールを留去しながら、通常、室温〜100℃の範囲で反応させる。これによりアルコキシシランは(部分的に)加水分解し、一部縮合反応が起こり、ヒドロキシル基を有する加水分解物として得ることができる。加水分解、縮合の程度は、反応させる水の量により適宜調節することができるが、本発明においては、防汚処理に用いるシラン化合物溶液に積極的には水を添加せず、調製後、主として乾燥時に、空気中の水分等により加水分解反応を起こさせるため溶液の固形分濃度を薄く希釈して用いることが好ましい。   For example, the silane compound is usually reacted with water (in the presence of an acid catalyst if necessary) in the range of room temperature to 100 ° C. while distilling off by-produced alcohol. As a result, the alkoxysilane is (partially) hydrolyzed to cause a partial condensation reaction, and can be obtained as a hydrolyzate having a hydroxyl group. The degree of hydrolysis and condensation can be adjusted as appropriate depending on the amount of water to be reacted. However, in the present invention, water is not positively added to the silane compound solution used for the antifouling treatment. It is preferable to dilute and use the solid content concentration of the solution in order to cause a hydrolysis reaction with moisture in the air during drying.

好ましくは、防汚層形成用組成物において、前記フルオロアルキル基を有するシラン化合物は下記一般式(5)で表され、かつ該シラン化合物の濃度を0.01〜5質量%に希釈した溶液として用いて、防汚処理することである。   Preferably, in the composition for forming an antifouling layer, the silane compound having a fluoroalkyl group is represented by the following general formula (5), and the concentration of the silane compound is diluted to 0.01 to 5% by mass. Use antifouling treatment.

一般式(5) CF3(CF2)m(CH2)n−Si−(ORa)3
ここにおいて、mは1〜10の整数。nは0〜10の整数。Raは同一もしくは異なるアルキル基を表す。
Formula (5) CF 3 (CF 2 ) m (CH 2) n-Si- (ORa) 3
Here, m is an integer of 1-10. n is an integer of 0-10. Ra represents the same or different alkyl group.

前記一般式(5)で表される化合物中、Raは炭素原子数3つ以下であり炭素と水素のみからなるアルキル基、例えば、メチル、エチル、イソプロピル等の基が好ましい。   In the compound represented by the general formula (5), Ra has 3 or less carbon atoms and is preferably an alkyl group consisting of only carbon and hydrogen, for example, a group such as methyl, ethyl, isopropyl and the like.

これら本発明において好ましく用いられるフルオロアルキル基またはフルオロアルキルエーテル基を有するシラン化合物としては、CF3(CH22Si(OCH33、CF3(CH22Si(OC253、CF3(CH22Si(OC373、CF3(CH22Si(OC493、CF3(CF25(CH22Si(OCH33、CF3(CF25(CH22Si(OC253、CF3(CF25(CH22Si(OC373、CF3(CF27(CH22Si(OCH33、CF3(CF27(CH22Si(OC253、CF3(CF27(CH22Si(OC373、CF3(CF27(CH22Si(OCH3)(OC372、CF3(CF27(CH22Si(OCH32OC37、CF3(CF27(CH22SiCH3(OCH32、CF3(CF27(CH22SiCH3(OC252、CF3(CF27(CH22SiCH3(OC372、(CF32CF(CF28(CH22Si(OCH33、C715CONH(CH23Si(OC253、C817SO2NH(CH23Si(OC253、C817(CH22OCONH(CH23Si(OCH33、CF3(CF27(CH22Si(CH3)(OCH32、CF3(CF27(CH22Si(CH3)(OC252、CF3(CF27(CH22Si(CH3)(OC372、CF3(CF27(CH22Si(C25)(OCH32、CF3(CF27(CH22Si(C25)(OC372、CF3(CH22Si(CH3)(OCH32、CF3(CH22Si(CH3)(OC252、CF3(CH22Si(CH3)(OC372、CF3(CF25(CH22Si(CH3)(OCH32、CF3(CF25(CH22Si(CH3)(OC372、CF3(CF22O(CF23(CH22Si(OC37)、C715CH2O(CH23Si(OC253、C817SO2O(CH23Si(OC253、C817(CH22OCHO(CH23Si(OCH33などが挙げられるが、この限りでない。Examples of the silane compound having a fluoroalkyl group or fluoroalkyl ether group preferably used in the present invention include CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CH 2 ) 2 Si (OC 2 H 5 ). 3 , CF 3 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CH 2 ) 2 Si (OC 4 H 9 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 3 H 7) 3, CF 3 (CF 2) 7 (CH 2) 2 Si (OCH 3) (OC 3 H 7) 2, CF 3 (CF 2) 7 CH 2) 2 Si (OCH 3 ) 2 OC 3 H 7, CF 3 (CF 2) 7 (CH 2) 2 SiCH 3 (OCH 3) 2, CF 3 (CF 2) 7 (CH 2) 2 SiCH 3 ( OC 2 H 5 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCH 3 (OC 3 H 7 ) 2 , (CF 3 ) 2 CF (CF 2 ) 8 (CH 2 ) 2 Si (OCH 3 ) 3 , C 7 F 15 CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , C 8 F 17 SO 2 NH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , C 8 F 17 (CH 2 ) 2 OCONH (CH 2 ) 3 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) (OCH 3 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) (OC 2 H 5 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) (OC 3 H 7 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (C 2 H 5 ) (OCH 3 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (C 2 H 5 ) (OC 3 H 7 ) 2 , CF 3 (CH 2 ) 2 Si (CH 3 ) (OCH 3 ) 2 , CF 3 (CH 2 ) 2 Si (CH 3 ) (OC 2 H 5 ) 2 , CF 3 (CH 2 ) 2 Si (CH 3 ) (OC 3 H 7 ) 2 , CF 3 (CF 2 ) 5 ( CH 2) 2 Si (CH 3 ) (OCH 3) 2, CF 3 (CF 2) 5 (CH 2) 2 Si (CH 3) (OC 3 H 7) 2, CF 3 (CF 2) 2 O (CF 2) 3 (CH 2) 2 Si (OC 3 H 7), C 7 F 15 CH 2 O (CH 2) 3 Si (OC 2 H 5) 3, C 8 F 17 SO 2 O (CH 2) 3 Si Examples include (OC 2 H 5 ) 3 , C 8 F 17 (CH 2 ) 2 OCHO (CH 2 ) 3 Si (OCH 3 ) 3 , but not limited thereto.

上記フッ素系シラン化合物としては、例えば信越化学工業株式会社製KP801M、X−24−9146、ジーイー東芝シリコーン株式会社XC98−A5382、XC98−B2472、ダイキン工業(株)オプツールDSX、株式会社フロロテクノロジー製FG5010などが挙げられ、表面処理のための化合物としては、パーフルオロアルキルシラザン、パーフルオロアルキルシラン、もしくはパーフルオロポリエーテル基含有シラン化合物、特にパーフルオロアルキルトリアルコキシシラン、パーフルオロポリエーテルトリアルコキシシラン、パーフルオロポリエーテルジトリアルコキシシランが挙げられる。   Examples of the fluorine-based silane compound include KP801M and X-24-9146 manufactured by Shin-Etsu Chemical Co., Ltd., GE Toshiba Silicones Co., Ltd. XC98-A5382, XC98-B2472, Daikin Industries Co., Ltd. As the compound for surface treatment, perfluoroalkylsilazane, perfluoroalkylsilane, or perfluoropolyether group-containing silane compound, particularly perfluoroalkyltrialkoxysilane, perfluoropolyethertrialkoxysilane, Examples include perfluoropolyether ditrialkoxysilane.

これらのシラン化合物を用いる際には、フッ素を含まない有機溶媒で0.01〜10質量%、好ましくは0.03〜5質量%、更に好ましくは0.05〜2質量%に希釈された状態で用いることが好ましい。   When these silane compounds are used, they are diluted to 0.01 to 10% by mass, preferably 0.03 to 5% by mass, more preferably 0.05 to 2% by mass with an organic solvent not containing fluorine. It is preferable to use in.

本発明において、前記シラン化合物溶液を調製するためにフッ素を含まない有機溶媒が好ましく用いられるが、以下のものが挙げられる。   In the present invention, an organic solvent containing no fluorine is preferably used to prepare the silane compound solution, and the following may be mentioned.

本発明に用いられる防汚層用の塗布組成物の溶媒としては、プロピレングリコールモノ(C1〜C4)アルキルエーテル及び/またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステル、プロピレングリコールモノ(C1〜C4)アルキルエーテルとしては具体的にはプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテルなど。又、プロピレングリコールモノ(C1〜C4)アルキルエーテルエステルとしては特にプロピレングリコールモノアルキルエーテルアセテート、具体的にはプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどが挙げられる。プロピレングリコールモノ(C1〜C4)アルキルエーテル及び/またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステルなど、メタノール、エタノール、プロパノール、n−ブタノール、2−ブタノール、t−ブタノール、シクロヘキサノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、アセトンなどのケトン類、酢酸エチル、酢酸メチル、乳酸エチル、酢酸イソプロピル、酢酸アミル、酪酸エチルなどのエステル類、ベンゼン、トルエン、キシレン等の炭化水素類、ジオキサン、N,N−ジメチルホルムアミドその他の溶媒などが挙げられる。或いは、これらの溶媒が、適宜混合されて用いられる。混合される溶媒としては、特にこれらに限定されるものではない。   As a solvent of the coating composition for the antifouling layer used in the present invention, propylene glycol mono (C1-C4) alkyl ether and / or propylene glycol mono (C1-C4) alkyl ether ester, propylene glycol mono (C1-C4). Specific examples of the alkyl ether include propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether and the like. The propylene glycol mono (C1 to C4) alkyl ether ester includes propylene glycol monoalkyl ether acetate, specifically, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and the like. Propylene glycol mono (C1-C4) alkyl ether and / or propylene glycol mono (C1-C4) alkyl ether ester, etc., alcohols such as methanol, ethanol, propanol, n-butanol, 2-butanol, t-butanol, cyclohexanol , Ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone, esters such as ethyl acetate, methyl acetate, ethyl lactate, isopropyl acetate, amyl acetate and ethyl butyrate, hydrocarbons such as benzene, toluene and xylene, dioxane, N, N-dimethylformamide and other solvents. Alternatively, these solvents are used by being appropriately mixed. The solvent to be mixed is not particularly limited to these.

特に好ましい溶媒としては、エタノール、イソプロピルアルコール、プロピレングリコール、プロピレングリコールモノメチルエーテルから選ばれる1種類以上の有機溶媒である。   Particularly preferred solvents are one or more organic solvents selected from ethanol, isopropyl alcohol, propylene glycol, and propylene glycol monomethyl ether.

これらの溶媒中には、メタノール、エタノール、イソプロピルアルコールのような常圧における沸点が100℃未満のもの(低沸点溶媒)と、プロピレングリコールモノメチルエーテル、n−ブチルアルコールのような沸点が100℃以上のもの(高沸点溶媒)を併用することが好ましく、特に沸点が60〜98℃のものと、100〜160℃のものを併用することが好ましい。併用する場合の低沸点溶媒と高沸点溶媒の比率は、低沸点溶媒は組成物中、98.0質量%以上であり、高沸点溶媒が0.5〜2質量%であることが好ましい。   Among these solvents, those having a boiling point of less than 100 ° C. (low boiling solvent) such as methanol, ethanol and isopropyl alcohol, and boiling points of 100 ° C. or more such as propylene glycol monomethyl ether and n-butyl alcohol. (Boiling point solvent) is preferably used in combination, and in particular, those having a boiling point of 60 to 98 ° C. and those having a boiling point of 100 to 160 ° C. are preferably used in combination. The ratio of the low boiling point solvent and the high boiling point solvent when used in combination is preferably 98.0% by mass or more and the high boiling point solvent is 0.5 to 2% by mass in the composition.

本発明に用いられる防汚層形成用組成物においては、酸を添加してpHを5.0以下に調整し用いることが好ましい。酸は前記シラン化合物の加水分解を促し、重縮合反応の触媒として作用するので、基材表面にシラン化合物の重縮合膜の形成を容易にし、防汚性を高めることができる。pHは1.5〜5.0の範囲が良く、1.5以下では溶液の酸性が強過ぎて、容器や配管をいためる恐れがあり、5以上では反応が進行しにくい。好ましくはpH2.0〜4.0の範囲である。   In the antifouling layer forming composition used in the present invention, it is preferable to add an acid to adjust the pH to 5.0 or less. Since the acid promotes hydrolysis of the silane compound and acts as a catalyst for the polycondensation reaction, the polycondensation film of the silane compound can be easily formed on the surface of the substrate, and the antifouling property can be enhanced. The pH is preferably in the range of 1.5 to 5.0. If the pH is 1.5 or less, the acidity of the solution is too strong, and the container or the piping may be damaged. If the pH is 5 or more, the reaction does not proceed easily. Preferably it is the range of pH2.0-4.0.

本発明においては、防汚処理に用いるシラン化合物溶液に積極的には水を添加せず、調製後、主として乾燥時に、空気中の水分等により加水分解反応を起こさせることが好ましい。その為に溶液の固形分濃度を希釈したところで用いる。処理液に水を添加し過ぎると、その分ポットライフが短くなる。   In the present invention, it is preferable not to positively add water to the silane compound solution used for the antifouling treatment, but to cause a hydrolysis reaction with moisture in the air mainly after drying after preparation. Therefore, it is used when the solid content concentration of the solution is diluted. If too much water is added to the treatment liquid, the pot life is shortened accordingly.

本発明においては硫酸、塩酸、硝酸、次亜塩素酸、ホウ酸、フッ酸、好ましくは塩酸、硝酸等の無機酸のほか、スルホ基(スルホン酸基ともいう)またはカルボキシル基を有する有機酸、例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メチルスルホン酸等が用いられる。有機酸は1分子内に水酸基とカルボキシル基を有する化合物であればいっそう好ましく、例えば、クエン酸または酒石酸等のヒドロキシジカルボン酸が用いられる。また、有機酸は水溶性の酸であることが更に好ましく、例えば上記クエン酸や酒石酸の他に、レブリン酸、ギ酸、プロピオン酸、リンゴ酸、コハク酸、メチルコハク酸、フマル酸、オキサロ酢酸、ピルビン酸、2−オキソグルタル酸、グリコール酸、D−グリセリン酸、D−グルコン酸、マロン酸、マレイン酸、シュウ酸、イソクエン酸、乳酸等が好ましく用いられる。また、安息香酸、ヒドロキシ安息香酸、アトロバ酸等も適宜用いることができる。   In the present invention, sulfuric acid, hydrochloric acid, nitric acid, hypochlorous acid, boric acid, hydrofluoric acid, preferably an inorganic acid such as hydrochloric acid and nitric acid, an organic acid having a sulfo group (also referred to as a sulfonic acid group) or a carboxyl group, For example, acetic acid, polyacrylic acid, benzenesulfonic acid, p-toluenesulfonic acid, methylsulfonic acid and the like are used. The organic acid is more preferably a compound having a hydroxyl group and a carboxyl group in one molecule. For example, a hydroxydicarboxylic acid such as citric acid or tartaric acid is used. The organic acid is more preferably a water-soluble acid. For example, in addition to the citric acid and tartaric acid, levulinic acid, formic acid, propionic acid, malic acid, succinic acid, methyl succinic acid, fumaric acid, oxaloacetic acid, pyruvin. Acid, 2-oxoglutaric acid, glycolic acid, D-glyceric acid, D-gluconic acid, malonic acid, maleic acid, oxalic acid, isocitric acid, lactic acid and the like are preferably used. Also, benzoic acid, hydroxybenzoic acid, atorvaic acid and the like can be used as appropriate.

添加量は、前記シラン化合物の部分加水分解物100質量部に対して0.1質量部〜10質量部、好ましくは0.2質量部〜5質量部がよい。また、水の添加量については部分加水分解物が理論上100%加水分解し得る量以上であればよく、100%〜300%相当量、好ましくは100%〜200%相当量を添加するのがよい。   The addition amount is 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the partial hydrolyzate of the silane compound. Further, the amount of water added is not limited as long as the partial hydrolyzate can theoretically be hydrolyzed by 100%, and an amount equivalent to 100% to 300%, preferably an amount equivalent to 100% to 200% is added. Good.

フッ素含有のシラン化合物を用いることによって、防汚層の低屈折率化及び撥水・撥油性付与の点で好ましいのみでなく、耐傷性が高く、またフィルム同士のブロッキングに特に優れるという効果がある。   By using a fluorine-containing silane compound, it is not only preferable in terms of lowering the refractive index of the antifouling layer and imparting water and oil repellency, but also has an effect of being highly scratch resistant and particularly excellent in blocking between films. .

〔反射防止層の形成〕
本発明では反射防止層を設ける方法は特に限定されないが、塗布により形成することが好ましい。
(Formation of antireflection layer)
In the present invention, the method for providing the antireflection layer is not particularly limited, but it is preferably formed by coating.

本発明において、基材フィルム上に凸構造部及び透明樹脂層により凹凸構造を形成し、上記の高屈折率層組成物、低屈折率層組成物を用いて順次コーティングする工程により反射防止層を製造することが好ましい。また、前記防汚層をコーティングすることも好ましい。   In the present invention, an antireflection layer is formed by a step of forming a concavo-convex structure with a convex structure portion and a transparent resin layer on a base film and sequentially coating with the above high refractive index layer composition and low refractive index layer composition. It is preferable to manufacture. It is also preferable to coat the antifouling layer.

好ましい防眩性反射防止フィルムの構成を下記に示すが、これらに限定されるものではない。ここで本発明の防眩層とは、本発明に係る凸構造部及び透明樹脂層からなる層を意味する。   Although the structure of a preferable anti-glare antireflection film is shown below, it is not limited to these. Here, the antiglare layer of the present invention means a layer comprising the convex structure portion and the transparent resin layer according to the present invention.

基材フィルム/本発明の防眩層/低屈折率層
基材フィルム/本発明の防眩層/高屈折率層/低屈折率層
基材フィルム/帯電防止層/本発明の防眩層/低屈折率層
基材フィルム/帯電防止層/本発明の防眩層/高屈折率層/低屈折率層
基材フィルム/本発明の防眩層/低屈折率層/防汚層
基材フィルム/本発明の防眩層/高屈折率層/低屈折率層/防汚層
基材フィルム/帯電防止層/本発明の防眩層/低屈折率層/防汚層
基材フィルム/帯電防止層/本発明の防眩層/高屈折率層/低屈折率層/防汚層
本発明では、上記本発明の防眩層を形成した後本発明の防眩層の表面に表面処理行い、該表面処理を行った本発明の防眩層表面に本発明に係る低屈折率層(及び高屈折率層)を形成することが好ましい。また、防汚層を設ける前に該低屈折率層に表面処理を行うことも好ましい。
Base film / Anti-glare layer of the present invention / Low refractive index layer Base film / Anti-glare layer of the present invention / High refractive index layer / Low refractive index layer Base film / Antistatic layer / Anti-glare layer of the present invention / Low refractive index layer Base film / Antistatic layer / Anti-glare layer of the present invention / High refractive index layer / Low refractive index layer Base film / Anti-glare layer of the present invention / Low refractive index layer / Anti-fouling layer Base film / Anti-glare layer of the present invention / High refractive index layer / Low refractive index layer / Anti-fouling layer Substrate film / Antistatic layer / Anti-glare layer / Low refractive index layer / Anti-fouling layer Substrate film / Antistatic Layer / antiglare layer of the present invention / high refractive index layer / low refractive index layer / antifouling layer In the present invention, after the antiglare layer of the present invention is formed, the surface of the antiglare layer of the present invention is subjected to surface treatment, It is preferable to form the low refractive index layer (and high refractive index layer) according to the present invention on the surface of the antiglare layer of the present invention that has been subjected to the surface treatment. It is also preferable to subject the low refractive index layer to a surface treatment before providing the antifouling layer.

表面処理は、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられ、好ましくはアルカリ処理法、コロナ処理法であり、特に好ましくはアルカリ処理法を用いることができる。コロナ処理とは、大気圧下、電極間に1kV以上の高電圧を印加し、放電することで行う処理のことであり、春日電機(株)や(株)トーヨー電機などで市販されている装置を用いて行うことができる。コロナ放電処理の強度は、電極間距離、単位面積当たりの出力、ジェネレーターの周波数に依存する。コロナ処理装置の一方の電極(A電極)は、市販のものを用いることができるが、材質はアルミニウム、ステンレスなどから選択ができる。もう一方はプラスチックフィルムを抱かせるための電極(B電極)であり、コロナ処理が、安定かつ均一に実施されるように、前記A電極に対して一定の距離に設置されるロール電極である。これも通常市販されているものを用いることが出来、材質は、アルミニウム、ステンレス、及びそれらの金属で出来たロールに、セラミックス、シリコン、EPTゴム、ハイパロンゴムなどがライニングされているロールが好ましく用いられる。本発明に用いられるコロナ処理に用いる周波数は、20kHz以上100kHz以下の周波数であり、30kHz〜60kHzの周波数が好ましい。周波数が低下するとコロナ処理の均一性が劣化し、コロナ処理のムラが発生する。また、周波数が大きくなると、高出力のコロナ処理を行う場合には、特に問題ないが、低出力のコロナ処理を実施する場合には、安定した処理を行うことが難しくなり、結果として、処理ムラが発生する。コロナ処理の出力は、1〜5w・min./m2であるが、2〜4w・min./m2の出力が好ましい。電極とフィルムとの距離は、5mm以上50mm以下であるが、好ましくは、10mm以上35mm以下である。間隙が開いてくると、一定の出力を維持するためにより高電圧が必要になり、ムラが発生し易くなる。また、間隙が狭くなり過ぎると、印加する電圧が低くなり過ぎ、ムラが発生し易くなる。更にまた、フィルムを搬送して連続処理する際に電極にフィルムが接触し傷が発生する。Examples of the surface treatment include cleaning methods, alkali treatment methods, flame plasma treatment methods, high frequency discharge plasma methods, electron beam methods, ion beam methods, sputtering methods, acid treatments, corona treatment methods, atmospheric pressure glow discharge plasma methods, and the like. An alkali treatment method and a corona treatment method are preferable, and an alkali treatment method can be used particularly preferably. The corona treatment is a treatment performed by applying a high voltage of 1 kV or more between the electrodes under atmospheric pressure and discharging it. An apparatus commercially available from Kasuga Electric Co., Ltd. or Toyo Electric Co., Ltd. Can be used. The intensity of the corona discharge treatment depends on the distance between the electrodes, the output per unit area, and the generator frequency. As one electrode (A electrode) of the corona treatment apparatus, a commercially available one can be used, but the material can be selected from aluminum, stainless steel and the like. The other is an electrode (B electrode) for holding a plastic film, and is a roll electrode installed at a certain distance from the A electrode so that the corona treatment is carried out stably and uniformly. A commercially available one can also be used, and the material is preferably a roll made of aluminum, stainless steel, or a metal thereof, and a roll lined with ceramics, silicon, EPT rubber, hyperon rubber, or the like. It is done. The frequency used for the corona treatment used in the present invention is a frequency of 20 kHz to 100 kHz, and a frequency of 30 kHz to 60 kHz is preferable. When the frequency is lowered, the uniformity of the corona treatment is deteriorated and unevenness of the corona treatment occurs. In addition, when the frequency is increased, there is no particular problem when performing high-output corona treatment, but when performing low-output corona treatment, it is difficult to perform stable processing, resulting in uneven processing. Occurs. The output of the corona treatment is 1 to 5 w · min. / M 2 but 2 to 4 w · min. An output of / m 2 is preferred. The distance between the electrode and the film is 5 mm or more and 50 mm or less, preferably 10 mm or more and 35 mm or less. When the gap is opened, a higher voltage is required to maintain a constant output, and unevenness is likely to occur. If the gap is too narrow, the applied voltage becomes too low and unevenness is likely to occur. Furthermore, when the film is transported and continuously processed, the film comes into contact with the electrodes and scratches are generated.

アルカリ処理方法としては、ハードコート層を塗設したフィルムをアルカリ水溶液に浸す方法であれば特に限定されない。   The alkali treatment method is not particularly limited as long as it is a method in which a film coated with a hard coat layer is immersed in an alkaline aqueous solution.

アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液等が使用可能であり、中でも水酸化ナトリウム水溶液が好ましい。   As the aqueous alkali solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous ammonia solution or the like can be used, and an aqueous sodium hydroxide solution is particularly preferable.

アルカリ水溶液のアルカリ濃度、例えば水酸化ナトリウム濃度は0.1〜25質量%が好ましく、0.5〜15質量%がより好ましい。   The alkali concentration of the aqueous alkali solution, for example, sodium hydroxide concentration is preferably 0.1 to 25% by mass, and more preferably 0.5 to 15% by mass.

アルカリ処理温度は通常10〜80℃、好ましく20〜60℃である。   The alkali treatment temperature is usually 10 to 80 ° C, preferably 20 to 60 ° C.

アルカリ処理時間は5秒〜5分、好ましくは30秒〜3分である。アルカリ処理後のフィルムは酸性水で中和した後、十分に水洗いを行うことが好ましい。   The alkali treatment time is 5 seconds to 5 minutes, preferably 30 seconds to 3 minutes. The film after the alkali treatment is preferably neutralized with acidic water and then thoroughly washed with water.

反射防止層の各層は、凸構造部及び透明樹脂層上に、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法を用いて、塗布により形成することができる。塗布に際しては、基材フィルムが、幅が1.4〜4mでロール状に巻き取られた状態から繰り出して、上記塗布を行い、乾燥・硬化処理した後、ロール状に巻き取られることが好ましい。   Each layer of the antireflection layer is formed on the convex structure and the transparent resin layer by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, micro gravure coating, and extrusion. It can be formed by coating using a coating method. At the time of application, the base film is preferably wound up in a roll shape after being unwound from a state wound in a roll shape with a width of 1.4 to 4 m, performing the above-described application, drying and curing treatment. .

更に、本発明の防眩性フィルムを用いた防眩性反射防止フィルムは、基材フィルム上に前記反射防止層を積層した後、ロール状に巻き取った状態で50〜150℃、1〜30日の範囲で加熱処理を行う製造方法によって製造することができる。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば、50℃であれば、好ましくは3日間以上30日未満の期間、150℃であれば1〜3日の範囲が好ましい。通常は、巻外部、巻中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に設定することが好ましく、50〜80℃付近で3〜7日間程度行うことが好ましい。   Furthermore, the anti-glare antireflection film using the anti-glare film of the present invention is laminated at 50 to 150 ° C. and 1 to 30 in a rolled state after the antireflection layer is laminated on the base film. It can manufacture by the manufacturing method which heat-processes in the range of a day. The period of the heat treatment may be appropriately determined depending on the set temperature. For example, if it is 50 ° C, it is preferably a period of 3 days or more and less than 30 days, and if it is 150 ° C, a range of 1 to 3 days is preferable. Usually, it is preferable to set it at a relatively low temperature so that the heat treatment effect on the outside of the winding, the center of the winding, and the core is not biased, and it is preferable to carry out at around 50 to 80 ° C. for about 3 to 7 days.

加熱処理を安定して行うためには、温湿度が調整可能な場所で行うことが必要であり、塵のないクリーンルーム等の加熱処理室で行うことが好ましい。   In order to stably perform the heat treatment, it is necessary to perform in a place where the temperature and humidity can be adjusted, and it is preferable to perform in a heat treatment chamber such as a clean room without dust.

上記反射防止層や防汚層等の機能性薄膜がコーティングされた防眩性フィルムをロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、どのような材質のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックであればどのようなものであっても良く、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性樹脂が好ましい。   When winding an antiglare film coated with a functional thin film such as the antireflection layer or antifouling layer into a roll, the wound core may be of any material, whether it is a cylindrical core. However, it is preferably a hollow plastic core, and the plastic material may be any heat-resistant plastic that can withstand the heat treatment temperature. For example, phenol resin, xylene resin, melamine resin, polyester Resins such as resins and epoxy resins are listed. A thermosetting resin reinforced with a filler such as glass fiber is preferable.

これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることが更に好ましく、巻き厚は5cm以上であることが好ましい。   The number of windings on these winding cores is preferably 100 windings or more, more preferably 500 windings or more, and the winding thickness is preferably 5 cm or more.

このようにして長巻の基材フィルム上に機能性薄膜がコーティングされ、プラスチックコアに巻き取られたロールを、巻き取った状態で前記加熱処理を行うとき、該ロールを回転させることが好ましく、回転は、1分間に1回転以下の速度が好まく、連続でも良く断続的な回転であっても良い。又、加熱期間中に該ロールの巻き替えを1回以上行うことが好ましい。   In this way, when the heat treatment is performed in a state where the functional thin film is coated on the long base film and the roll wound around the plastic core is wound, it is preferable to rotate the roll, The rotation is preferably performed at a speed of 1 rotation or less per minute, and may be continuous or intermittent. Moreover, it is preferable to perform rewinding of the roll once or more during the heating period.

コアに巻き取られた長巻の防眩性フィルムロールを加熱処理中に回転させる為加熱処理室に専用の回転台を設けることが好ましい。   In order to rotate the long antiglare film roll wound around the core during the heat treatment, it is preferable to provide a dedicated turntable in the heat treatment chamber.

回転は、断続の場合は停止している時間を10時間以内とすることが好ましく、停止位置は、円周方向に均一となる様にすることが好ましく、停止時間は10分以内とすることがより好ましい。最も好ましくは、連続回転である。   In the case of intermittent rotation, the stop time is preferably within 10 hours, the stop position is preferably made uniform in the circumferential direction, and the stop time is within 10 minutes. More preferred. Most preferred is continuous rotation.

連続回転での回転速度は、1回転に要する時間は好ましくは10時間以下とすることであり、早いと装置的に負担となるため実質的には、15分から2時間の範囲が好ましい。   As for the rotation speed in continuous rotation, the time required for one rotation is preferably 10 hours or less, and if it is early, it becomes a burden on the apparatus, so the range of 15 minutes to 2 hours is substantially preferable.

尚、回転機能を有する専用の台車の場合には、移動や保管中にも光学フィルムロールを回転させることが出来て好ましく、この場合、保管期間が長い場合に生じるブラックバンド対策として回転が有効に機能する。   In the case of a dedicated carriage having a rotation function, it is preferable that the optical film roll can be rotated during movement and storage. In this case, rotation is effective as a countermeasure against black bands that occur when the storage period is long. Function.

(偏光板)
偏光板は一般的な方法で作製することができる。本発明の防眩性フィルム、防眩性反射防止フィルムの裏面側をアルカリ鹸化処理し、沃素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面には該フィルムを用いても、別の偏光板保護フィルムを用いてもよい。市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC4FR、以上コニカミノルタオプト(株)製)も好ましく用いられる。本発明の防眩性フィルム、防眩性反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、30〜300nm、Rtが70〜400nmの位相差を有していることが好ましい。これらは例えば、特開2002−71957、特願2002−155395記載の方法で作製することができる。或いは更にディスコチック液晶などの液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348記載の方法で光学異方性層を形成することができる。本発明の防眩性フィルム、防眩性反射防止フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
(Polarizer)
The polarizing plate can be produced by a general method. Using a fully saponified polyvinyl alcohol aqueous solution on at least one surface of a polarizing film prepared by subjecting the back side of the antiglare film and the antiglare antireflection film of the present invention to alkali saponification treatment and immersion drawing in an iodine solution It is preferable to stick them together. The film may be used on the other surface, or another polarizing plate protective film may be used. Commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4FR, and the above manufactured by Konica Minolta Opto Co., Ltd. are also preferably used). In contrast to the antiglare film and the antiglare antireflection film of the present invention, the polarizing plate protective film used on the other surface has an in-plane retardation Ro of 590 nm, 30 to 300 nm, and Rt of 70 to 400 nm. It is preferable to have a phase difference. These can be produced, for example, by the methods described in JP-A-2002-71957 and Japanese Patent Application No. 2002-155395. Alternatively, it is preferable to use a polarizing plate protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP-A-2003-98348. By using in combination with the antiglare film and the antiglare antireflection film of the present invention, a polarizing plate having excellent flatness and a stable viewing angle widening effect can be obtained.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の防眩性フィルム、防眩性反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。   A polarizing film, which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction. A typical polarizing film currently known is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. On the surface of the polarizing film, one side of the antiglare film and the antiglare antireflection film of the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.

(表示装置)
本発明の偏光板を表示装置に組み込むことによって、種々の視認性に優れた本発明の表示装置を作製することができる。本発明の防眩性フィルム、防眩性反射防止フィルムは反射型、透過型、半透過型LCD或いはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の防眩性フィルム、防眩性反射防止フィルムは平面性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面が30型以上、特に30型〜54型の大画面の表示装置では、画面周辺部での白抜けなどもなく、その効果が長期間維持され、MVA型液晶表示装置、IPS型液晶表示装置では顕著な効果が認められる。特に、本発明の目的である色むら、ぎらつきや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
[実施例]
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(Display device)
By incorporating the polarizing plate of the present invention into a display device, the display device of the present invention having various visibility can be manufactured. The antiglare film and antiglare antireflection film of the present invention are reflective, transmissive, transflective LCD or TN, STN, OCB, HAN, VA (PVA, MVA), IPS. It is preferably used in LCDs of various drive systems such as. Further, the antiglare film and the antiglare antireflection film of the present invention are excellent in flatness and are preferably used for various display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper. In particular, in a large-screen display device having a screen of 30 or more types, particularly 30 to 54 types, there is no white spot at the periphery of the screen, and the effect is maintained for a long period of time. MVA liquid crystal display device, IPS liquid crystal display A noticeable effect is observed in the device. In particular, there was little color unevenness, glare and wavy unevenness, which is the object of the present invention.
[Example]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
〔セルロースエステルフィルム1の作製〕
〈ポリマーXの合成〉
攪拌機、2個の滴下ロート、ガス導入管及び温度計の付いたガラスフラスコに、表3記載の種類及び比率(モル組成比)のモノマーXa、Xb混合液40g、連鎖移動剤のメルカプトプロピオン酸2g及びトルエン30gを仕込み、90℃に昇温した。その後、一方の滴下ロートから、表3記載の種類及び比率(モル組成比)のモノマーXa、Xb混合液60gを3時間かけて滴下すると共に、同時にもう一方のロートからトルエン14gに溶解したアゾビスイソブチロニトリル0.4gを3時間かけて滴下した。その後更に、トルエン56gに溶解したアゾビスイソブチロニトリル0.6gを2時間かけて滴下した後、更に2時間反応を継続させ、ポリマーXを得た。得られたポリマーXは常温で固体であった。ポリマーXの重量平均分子量は下記測定法により表3に示した。
Example 1
[Production of Cellulose Ester Film 1]
<Synthesis of Polymer X>
In a glass flask equipped with a stirrer, two dropping funnels, a gas introduction tube and a thermometer, 40 g of a monomer Xa and Xb mixed solution of the types and ratios (molar composition ratio) described in Table 3, and 2 g of mercaptopropionic acid as a chain transfer agent And 30 g of toluene were charged, and the temperature was raised to 90 ° C. Thereafter, 60 g of a mixture of monomers Xa and Xb having the types and ratios (molar composition ratios) shown in Table 3 was dropped from one dropping funnel over 3 hours, and at the same time, azobis dissolved in 14 g of toluene from the other funnel. 0.4 g of isobutyronitrile was added dropwise over 3 hours. Thereafter, 0.6 g of azobisisobutyronitrile dissolved in 56 g of toluene was added dropwise over 2 hours, and the reaction was further continued for 2 hours to obtain polymer X. The obtained polymer X was solid at room temperature. The weight average molecular weight of the polymer X is shown in Table 3 by the following measurement method.

尚、表3記載の、MMA、HEAはそれぞれ以下の化合物の略称である。   In Table 3, MMA and HEA are abbreviations for the following compounds, respectively.

MMA:メタクリル酸メチル
HEA:2−ヒドロキシエチルアクリレート
(重量平均分子量測定)
重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィーを用いて測定した。
MMA: methyl methacrylate HEA: 2-hydroxyethyl acrylate (weight average molecular weight measurement)
The weight average molecular weight was measured using gel permeation chromatography.

測定条件は以下の通りである。   The measurement conditions are as follows.

溶媒: メチレンクロライド
カラム: Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 100000-500 calibration curves with 13 samples were used. Thirteen samples are used at approximately equal intervals.

〈ポリマーYの合成〉
特開2000−128911号公報に記載の重合方法により塊状重合を行った。即ち、攪拌機、窒素ガス導入管、温度計、投入口及び環流冷却管を備えたフラスコにモノマーYaとして、下記メチルアクリレート(MA)を投入し、窒素ガスを導入してフラスコ内を窒素ガスで置換した下記チオグリセロールを攪拌下添加した。チオグリセロール添加後、内容物の温度を適宜変化させ4時間重合を行い、内容物を室温に戻し、それにベンゾキノン5質量%テトラヒドロフラン溶液を20質量部添加し、重合を停止させた。内容物をエバポレーターに移し、80℃で減圧下、テトラヒドロフラン、残存モノマー及び残存チオグリセロールを除去し、表3に記載のポリマーYを得た。得られたポリマーYは常温で液体であった。該ポリマーYの重量平均分子量は上記測定法により表3に示した。
<Synthesis of polymer Y>
Bulk polymerization was performed by the polymerization method described in JP-A No. 2000-128911. That is, the following methyl acrylate (MA) as monomer Ya was introduced into a flask equipped with a stirrer, nitrogen gas inlet tube, thermometer, inlet, and reflux condenser, and nitrogen gas was introduced to replace the inside of the flask with nitrogen gas. The following thioglycerol was added with stirring. After the addition of thioglycerol, the temperature of the contents was appropriately changed and polymerization was performed for 4 hours. The contents were returned to room temperature, and 20 parts by mass of a 5% by weight benzoquinone tetrahydrofuran solution was added thereto to stop the polymerization. The contents were transferred to an evaporator, and tetrahydrofuran, residual monomer and residual thioglycerol were removed under reduced pressure at 80 ° C. to obtain polymer Y shown in Table 3. The obtained polymer Y was liquid at room temperature. The weight average molecular weight of the polymer Y is shown in Table 3 by the above measurement method.

メチルアクリレート 100質量部
チオグリセロール 5質量部
Methyl acrylate 100 parts by weight Thioglycerol 5 parts by weight

〈ドープの組成〉
(二酸化珪素分散液)
アエロジル972V(日本アエロジル(株)製) 12質量部
(1次粒子の平均径16nm、見掛け比重90g/リットル)
エタノール 88質量部
以上をディゾルバーで30分間攪拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は200ppmであった。二酸化珪素分散液に88質量部のメチレンクロライドを攪拌しながら投入し、ディゾルバーで30分間攪拌混合し、二酸化珪素分散希釈液を作製した。
<Dope composition>
(Silicon dioxide dispersion)
Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd.) 12 parts by mass (average diameter of primary particles 16 nm, apparent specific gravity 90 g / liter)
88 parts by mass of ethanol or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. The liquid turbidity after dispersion was 200 ppm. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to prepare a silicon dioxide dispersion dilution.

(ドープ添加液)
メチレンクロライド 50質量部
ポリマーX 12質量部
ポリマーY 7質量部
二酸化珪素分散希釈液 10質量部
チヌビン109(チバスペシャルティーケミカルズ(株)製) 1.2質量部
チヌビン171(チバスペシャルティーケミカルズ(株)製) 0.8質量部
以上について、メチレンクロライドとポリマーXとポリマーYを攪拌しながら完全溶解させた後、二酸化珪素分散液を添加させて攪拌混合させてドープ添加液を調製した。
(Dope additive)
Methylene chloride 50 parts by weight Polymer X 12 parts by weight Polymer Y 7 parts by weight Silicon dioxide dispersion diluent 10 parts by weight Tinuvin 109 (manufactured by Ciba Specialty Chemicals) 1.2 parts by weight Tinuvin 171 (Ciba Specialty Chemicals) Manufactured) 0.8 parts by mass The methylene chloride, the polymer X, and the polymer Y were completely dissolved while stirring, and then a silicon dioxide dispersion was added and mixed by stirring to prepare a dope additive solution.

(主ドープ液の調製)
セルロースエステル(リンター綿から合成されたセルローストリアセテート、アセチル基置換度2.92) 100質量部
メチレンクロライド 380質量部
エタノール 30質量部
ドープ添加液 前記作製質量部
以上を密閉容器に投入し、加熱し、攪拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、主ドープ液を調製した。
(Preparation of main dope solution)
Cellulose ester (cellulose triacetate synthesized from linter cotton, acetyl group substitution degree 2.92) 100 parts by weight Methylene chloride 380 parts by weight Ethanol 30 parts by weight Dope additive liquid The above preparation parts by weight are charged into a sealed container, and heated. While stirring, it completely dissolved, and Azumi Filter Paper No. 24 was used to prepare a main dope solution.

日本精線(株)製のファインメットNFで上記主ドープ液を濾過し、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が105%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は10%であった。テンターで延伸後130℃で幅手張力を緩和して幅保持を開放した後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ7μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、セルロースエステルフィルム1を得た。ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.1倍であった。セルロースエステルフィルム1の残留溶剤量は各々0.1%未満であり、膜厚は40μmであった。   The main dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd., and uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount became 105%, and the film was peeled from the stainless steel band support with a peeling tension of 162 N / m. The peeled cellulose ester web was evaporated at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while stretching 1.1 times in the width direction with a tenter. At this time, the residual solvent amount when starting stretching with a tenter was 10%. After stretching with a tenter and releasing the width retention by releasing the width tension at 130 ° C., the drying is finished while conveying the drying zone of 120 ° C. and 130 ° C. with a number of rolls, and slitting to a width of 1.5 m, Both ends of the film were subjected to a knurling process having a width of 10 mm and a height of 7 μm, and wound on a core having an inner diameter of 6 inches with an initial tension of 220 N / m and a final tension of 110 N / m, whereby a cellulose ester film 1 was obtained. The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times. The residual solvent amount of the cellulose ester film 1 was less than 0.1%, respectively, and the film thickness was 40 μm.

〔微粒子添加による防眩性フィルム1の作製〕
上記セルロースエステルフィルム1の表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記のハードコート層用塗布液1を孔径20μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が0.1W/cm2で、照射量を0.1J/cm2として塗布層を硬化させ、厚さ5μmの防眩性ハードコート層を形成し防眩性フィルム1を作製した。形成した凹凸についてWYKO社製光学干渉式表面粗さ測定機を用いて平均表面粗さ(Rz)の測定を行った結果、1.1μmであった。また、凸部の平均中心間距離は77μmであった。
[Preparation of antiglare film 1 by adding fine particles]
On the surface of the cellulose ester film 1 (B surface side; surface in contact with a support mirror surface such as a stainless steel band used in the casting film forming method; support side), the following coating solution 1 for hard coat layer has a pore diameter of 20 μm. A hard coat layer coating solution is prepared by filtration through a polypropylene filter, and this is applied using a micro gravure coater, dried at 90 ° C., and then irradiated with an ultraviolet lamp with an illuminance of 0.1 W / cm 2. Thus, the coating layer was cured with an irradiation dose of 0.1 J / cm 2 to form an anti-glare hard coat layer having a thickness of 5 μm, thereby producing an anti-glare film 1. It was 1.1 micrometers as a result of measuring the average surface roughness (Rz) about the formed unevenness | corrugation using the optical interference type surface roughness measuring machine by WYKO. Further, the average center distance of the convex portions was 77 μm.

(ハードコート層塗布液1)
下記材料を攪拌、混合し、ハードコート層塗布液1とした。
(Hard coat layer coating solution 1)
The following materials were stirred and mixed to obtain hard coat layer coating solution 1.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 200質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
25質量部
プロピレングリコールモノメチルエーテル 110質量部
酢酸エチル 110質量部
合成シリカ微粒子 平均粒子径 1.8μm 40質量部
界面活性剤(シリコーン系界面活性剤;FZ2207(日本ユニカー製)10質量%プロピレングリコールモノメチルエーテル溶液) 固形分で0.6質量部
〔エンボス加工による防眩フィルム2の作製〕
上記セルロースエステルフィルム1の作製において、テンターによる延伸処理後、鋳型を設けたロール(凹凸形成後、凸部高さ1μm、凸部大きさ(長辺)10μm、凸部間距離50μmになるような微細凹凸構造を刻印したもの)とバックロールから構成される凹凸形成部で溶媒を含むフィルムを挟んでフィルムのB面(ステンレスバンド支持体に接していた側をB面とし、その反対側をA面とする。)側に鋳型を設けた熱ロールを押し当てて、A面側にはバックロールを配置し、両ロール間を通すことによってB面側に凹凸を形成した以外は同様にして、エンボス加工したセルロースエステルフィルム2を作製した。尚、凹凸形成部近傍には、除電ワイヤーを設置してフィルムの帯電を抑制した。
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 200 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
25 parts by weight Propylene glycol monomethyl ether 110 parts by weight Ethyl acetate 110 parts by weight Synthetic silica fine particles Average particle size 1.8 μm 40 parts by weight Surfactant (silicone surfactant; FZ2207 (manufactured by Nippon Unicar)) 10% by weight propylene glycol monomethyl ether Solution) 0.6 parts by mass in solid content [Preparation of antiglare film 2 by embossing]
In the production of the cellulose ester film 1, a roll provided with a mold after the stretching treatment by a tenter (after forming the unevenness, the height of the convex part is 1 μm, the convex part size (long side) is 10 μm, and the distance between the convex parts is 50 μm. A B-side of the film (the side in contact with the stainless steel band support is the B-side, with the film containing the solvent sandwiched between the concavo-convex forming part consisting of a fine roll and the back roll, and the opposite side is the A side. In the same manner, except that a hot roll provided with a mold on the side is pressed, a back roll is placed on the A side, and irregularities are formed on the B side by passing between both rolls. An embossed cellulose ester film 2 was produced. In addition, the static elimination wire was installed in the uneven | corrugated formation vicinity vicinity, and charging of the film was suppressed.

上記エンボス加工したセルロースエステルフィルム2の表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記のハードコート層用塗布液2を孔径20μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が0.1W/cm2で、照射量を0.1J/cm2として塗布層を硬化させ、厚さ5μmの防眩性ハードコート層を形成し防眩性フィルム2を作製した。On the surface of the embossed cellulose ester film 2 (B side; surface in contact with a mirror surface of a support such as a stainless steel band used in the casting film forming method; support side), the following coating liquid 2 for hard coat layer Is filtered through a polypropylene filter having a pore size of 20 μm to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, dried at 90 ° C., and then irradiated with an ultraviolet lamp with an illuminance of 0.1 W. / in cm 2, thereby curing the coated layer to irradiation dose as 0.1 J / cm 2, to prepare an antiglare film 2 to form an antiglare hard coat layer having a thickness of 5 [mu] m.

形成された凹凸についてWYKO社製光学干渉式表面粗さ測定機を用いて平均表面粗さ(Rz)の測定を行った結果、1.2μmであった。また、凸部の平均中心間距離は65μmであった。   It was 1.2 micrometers as a result of measuring the average surface roughness (Rz) about the formed unevenness | corrugation using the optical interference type surface roughness measuring machine by WYKO. The average center distance of the convex portions was 65 μm.

(ハードコート層塗布液2)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 60質量部
トリメチロールプロパントリアクリレート 40質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
酢酸エチル 50質量部
プロピレングリコールモノメチルエーテル 50質量部
シリコン化合物 0.5質量部
(BYK−307(ビックケミージャパン社製))
〔防眩性フィルム3〜31の作製〕
(第1層の作製)
セルロースエステルフィルム1の表面に(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)、下記の硬化樹脂層塗布組成物1をスリットダイで塗布し、熱風の温度、風速を徐々に強め最終的に85℃で乾燥し、続いて活性光線照射部より115mJ/cm2の照射強度で紫外線照射して硬化樹脂層とし、表4、5記載の試料3及び7〜31の第1層を作製した。下記の組成物による乾燥膜厚は、5μmであった。
(Hard coat layer coating solution 2)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 60 parts by mass Trimethylolpropane triacrylate 40 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass Ethyl acetate 50 parts by mass Propylene glycol monomethyl ether 50 parts by mass Silicon compound 0.5 parts by mass (BYK-307 (manufactured by Big Chemie Japan))
[Preparation of antiglare films 3 to 31]
(Preparation of the first layer)
The following cured resin layer coating composition 1 is applied to the surface of the cellulose ester film 1 (B surface side; surface in contact with a mirror surface of a support such as a stainless steel band used in the casting film forming method) with a slit die. Then, the temperature and speed of the hot air are gradually increased and finally dried at 85 ° C., followed by ultraviolet irradiation with an irradiation intensity of 115 mJ / cm 2 from the actinic ray irradiation part to form a cured resin layer. First layers of Samples 3 and 7 to 31 were prepared. The dry film thickness by the following composition was 5 micrometers.

本発明において乾燥膜厚は、固形分量と溶媒量を調整し変化させた。また、No.18はハーフキュア状態に形成したが、No.16に対して活性光線照射量を80mJ/cm2として作製した。In the present invention, the dry film thickness was varied by adjusting the solid content and the solvent amount. No. No. 18 was formed in a half cure state. 16 was prepared with an actinic ray irradiation dose of 80 mJ / cm 2 .

(固形分)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 70質量部
トリメチロールプロパントリアクリレート 30質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
(溶媒)
プロピレングリコールモノメチルエーテル 75質量部
メチルエチルケトン 25質量部
(インクジェット法による凸構造部を有する防眩性フィルムの作製)
セルロースエステルフィルム1の表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)及び前記第1層の上に、下記凸構造部塗布液1〜5をインクジェット方式によりインク液滴として2〜16plで出射し、乾燥後0.2秒後に活性光線照射部より紫外線の照度が0.1W/cm2で、照射量が100mJ/cm2で硬化させ、表4、5記載の凸構造部を形成した。凸構造部個数はインク液出射の際の間引き率で調整した。また、No.18はハーフキュア状態に形成したが、No.16に対して照射量を80mJ/cm2に変更して作製した。
(Solid content)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 70 parts by mass Trimethylolpropane triacrylate 30 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass (solvent)
Propylene glycol monomethyl ether 75 parts by weight Methyl ethyl ketone 25 parts by weight (Preparation of antiglare film having convex structure part by ink jet method)
On the surface of the cellulose ester film 1 (B surface side; surface in contact with a support mirror surface such as a stainless steel band used in the casting film forming method; support side) and the first layer, the following convex structure coating solution 1 ~ 5 is ejected as ink droplets by ink jet method at 2-16 pl, 0.2 seconds after drying, cured with actinic ray irradiation part with UV illuminance of 0.1 W / cm 2 and irradiation dose of 100 mJ / cm 2 The convex structure portions described in Tables 4 and 5 were formed. The number of convex structures was adjusted by the thinning rate when ejecting ink liquid. No. No. 18 was formed in a half cure state. 16 was prepared by changing the irradiation amount to 80 mJ / cm 2 .

インクジェット出射装置は、ラインヘッド方式(図4の(a))を使用し、ノズル径が3.5μmのノズルを256個有するインクジェットヘッドを10基を準備した。インクジェットヘッドは図3に記載の構成のものを使用した。インク供給系は、インク供給タンク、フィルター、ピエゾ型のインクジェットヘッド及び配管から構成されており、インク供給タンクからインクジェットヘッド部までは、断熱及び加温(40℃)し、出射温度は40℃、駆動周波数は20kHzで行った。   As the inkjet emitting device, a line head method (FIG. 4A) was used, and 10 inkjet heads having 256 nozzles having a nozzle diameter of 3.5 μm were prepared. An ink jet head having the structure shown in FIG. 3 was used. The ink supply system is composed of an ink supply tank, a filter, a piezo-type ink jet head, and piping. The ink supply tank to the ink jet head section is insulated and heated (40 ° C.), and the emission temperature is 40 ° C. The driving frequency was 20 kHz.

また、インク液(下記凸構造部塗布液)の粘度は、5mPa・s未満では吐出の追随性低下が発生し、12mPa・sを超えると吐出安定性が不良となった為、表4、5記載の粘度に調整した。調整は固形分量、溶媒量、溶媒種類を適宜変更することにより行った。   Further, when the viscosity of the ink liquid (the following convex structure portion coating liquid) is less than 5 mPa · s, the followability of the discharge is reduced, and when it exceeds 12 mPa · s, the discharge stability becomes poor. The viscosity was adjusted to the stated value. Adjustment was performed by appropriately changing the solid content, the solvent amount, and the solvent type.

こうして作製された凸構造部に、下記透明樹脂層用塗布液6を減圧押出し法によって膜厚を変化させて塗布し、表4、5記載の防眩性フィルム3〜31を作製した。No.21は、No.16と同様に凸構造部形成後フィルム表面に、1%酸素を含有する窒素雰囲気の大気圧下で、100KHzの高周波電圧でプラズマ放電により表面処理した後、下記透明樹脂層用塗布液6を塗布した。   The transparent resin layer coating liquid 6 described below was applied to the convex structure thus prepared by changing the film thickness by a reduced pressure extrusion method, and antiglare films 3 to 31 shown in Tables 4 and 5 were produced. No. 21 is No. 21. After the convex structure was formed, the surface of the film was treated with plasma discharge at a high frequency voltage of 100 KHz under atmospheric pressure in a nitrogen atmosphere containing 1% oxygen, and the following coating solution 6 for transparent resin layer was applied. did.

(凸構造部塗布液1)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 70質量部
トリメチロールプロパントリアクリレート 30質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
プロピレングリコールモノエチルエーテル 70質量部
ジエチレングリコールモノブチルエーテルアセテート 30質量部
上記組成物を混合撹拌し、凸構造部塗布液1を調製した。
(Convex structure coating solution 1)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 70 parts by mass Trimethylolpropane triacrylate 30 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass Propylene glycol monoethyl ether 70 parts by mass Diethylene glycol monobutyl ether acetate 30 parts by mass The above composition was mixed and stirred to prepare a convex structure part coating liquid 1.

(凸構造部塗布液2)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 70質量部
トリメチロールプロパントリアクリレート 30質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
シリコン化合物(BYK−307(ビックケミージャパン社製)) 0.1質量部
プロピレングリコールモノメチルエーテル 20質量部
ジエチレングリコールモノブチルエーテルアセテート 80質量部
上記組成物を混合撹拌し、凸構造部塗布液2を調製した。
(Convex structure coating solution 2)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 70 parts by mass Trimethylolpropane triacrylate 30 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass Silicon compound (BYK-307 (by Big Chemie Japan)) 0.1 part by mass Propylene glycol monomethyl ether 20 parts by mass Diethylene glycol monobutyl ether acetate 80 parts by mass The above composition is mixed and stirred, and convex structure part coating liquid 2 Was prepared.

(凸構造部塗布液3)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 70質量部
トリメチロールプロパントリアクリレート 30質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
プロピレングリコールモノメチルエーテル 20質量部
ジエチレングリコールモノブチルエーテルアセテート 80質量部
上記組成物を混合撹拌し、凸構造部塗布液3を調製した。
(Convex structure coating solution 3)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 70 parts by mass Trimethylolpropane triacrylate 30 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass Propylene glycol monomethyl ether 20 parts by mass Diethylene glycol monobutyl ether acetate 80 parts by mass The above composition was mixed and stirred to prepare a convex structure part coating liquid 3.

(凸構造部塗布液4)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 70質量部
トリメチロールプロパントリアクリレート 30質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
プロピレングリコールモノメチルエーテル 40質量部
ジエチレングリコールモノブチルエーテルアセテート 60質量部
上記組成物を混合撹拌し、凸構造部塗布液4を調製した。
(Convex structure coating solution 4)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 70 parts by mass Trimethylolpropane triacrylate 30 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass Propylene glycol monomethyl ether 40 parts by mass Diethylene glycol monobutyl ether acetate 60 parts by mass The above composition was mixed and stirred to prepare convex structure part coating liquid 4.

(凸構造部塗布液5)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 70質量部
トリメチロールプロパントリアクリレート 30質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
4質量部
プロピレングリコールモノメチルエーテル 20質量部
ジプロピレングリコールモノメチルエーテル 80質量部
上記組成物を混合撹拌し、凸構造部塗布液5を調製した。
(Convex structure coating solution 5)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 70 parts by mass Trimethylolpropane triacrylate 30 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
4 parts by mass Propylene glycol monomethyl ether 20 parts by mass Dipropylene glycol monomethyl ether 80 parts by mass The above composition was mixed and stirred to prepare a convex structure part coating solution 5.

(透明樹脂層塗布液6)
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 100質量部
トリメチロールプロパントリアクリレート 40質量部
光重合開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
6質量部
プロピレングリコールモノメチルエーテル 50質量部
メチルエチルケトン 50質量部
上記組成物を混合撹拌し、透明樹脂層塗布液6を調整した。
(Transparent resin layer coating solution 6)
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.) 100 parts by mass Trimethylolpropane triacrylate 40 parts by mass Photopolymerization initiator (Irgacure 184 (manufactured by Ciba Specialty Chemicals))
6 parts by mass Propylene glycol monomethyl ether 50 parts by mass Methyl ethyl ketone 50 parts by mass The above composition was mixed and stirred to prepare transparent resin layer coating solution 6.

乾燥膜厚は、固形分量と溶媒量のみを変更し調整した。   The dry film thickness was adjusted by changing only the solid content and the solvent amount.

《測定・評価》
(凸構造部径、凸構造部高さ、凸構造部個数、Rz、Smの測定)
凸構造部径、凸構造部高さ、凸構造部個数(0.01mm2当たり)は、透明樹脂層を塗布する前のフイルム試料を用いて、WYKO社製光学干渉式表面粗さ測定機(Veeco Metrology Group製 Wyko NT3300)を用いて、約4000μm2の範囲(55μm×75μm)について2次元的に測定し、凸部を底部側より等高線のごとく色分けして表示し、フィルム面を基準とした凸部高さ及び凸構造部の長径である凸部径を測定した。また、凸構造部個数は得られた凸構造部の個数を0.01mm2あたりに換算して求めた。これらの測定は、基材フィルムの該当箇所の任意の10点を測定してその平均値として求めた。
<Measurement / Evaluation>
(Measurement of convex structure part diameter, convex structure part height, number of convex structure parts, Rz, Sm)
The convex structure part diameter, the convex structure part height, and the number of convex structure parts (per 0.01 mm 2 ) were measured using an optical interference type surface roughness measuring machine (manufactured by WYKO) using a film sample before applying the transparent resin layer ( Using a Veeco Metrology Group Wyko NT3300), the range of about 4000 μm 2 (55 μm × 75 μm) is measured two-dimensionally, and the convex part is color-coded as a contour line from the bottom side, and the film surface is used as a reference. The height of the convex part and the convex part diameter, which is the major axis of the convex structure part, were measured. The number of convex structure portions was determined by converting the number of obtained convex structure portions per 0.01 mm 2 . These measurements were obtained as an average value by measuring arbitrary 10 points of the corresponding part of the base film.

表面粗さ(Rz)、平均中心間距離(Sm)は、透明樹脂層を形成した後の試料を用いて、WYKO社製光学干渉式表面粗さ測定機を用いて、JIS B 0601の測定方法により測定した。   The surface roughness (Rz) and the average center-to-center distance (Sm) are measured according to JIS B 0601 using an optical interference type surface roughness measuring machine manufactured by WYKO, using the sample after forming the transparent resin layer. It was measured by.

(防眩効果)
窓のあるオフィスにて、各フィルムを机の上に広げ、天井の蛍光灯照明及び外光のフィルムへの写り込みを下記のように評価した。
(Anti-glare effect)
In an office with a window, each film was spread on a desk, and fluorescent lighting on the ceiling and reflection of external light on the film were evaluated as follows.

5:蛍光灯の輪郭、及び外光がぼけて写り込みが全く気にならない
4:5と3の中間
3:蛍光灯の輪郭、及び外光の写り込みが僅かに認められる
2:3と1の中間
1:蛍光灯の輪郭、及び外光が分かり写り込みが気になる
(ぎらつき)
作製したフィルムについて、目視にてぎらつきを判定した。
5: The outline of the fluorescent lamp and the external light are blurred and I don't care about the reflection at all 4: Between 5 and 3 3: The outline of the fluorescent lamp and the reflection of the external light are slightly recognized 2: 3: 1 Middle of 1: The outline of the fluorescent lamp and the external light are understood and the reflection is worrisome (glare)
About the produced film, the glare was determined visually.

5:ぎらつきが全く分からない
4:ぎらつきが極僅かに分かる
3:ややぎらつきが分かる
2:3と1の中間
1:ぎらつきがかなり気になる
(鮮明性)
JIS K 7105 6.6に記載されている像線明度の測定手法に基づき、光学くし(0.125mm、0.5mm、1.0mm、2.0mm)で測定した数値の合計を鮮明性として評価した。
5: I don't know the glare at all. 4: I can understand the glare very slightly. 3: I can understand the slight glare. 2: Between 3 and 1. 1: I'm worried about the glare.
Based on the image line brightness measurement method described in JIS K 7105 6.6, the total of values measured with an optical comb (0.125 mm, 0.5 mm, 1.0 mm, 2.0 mm) is evaluated as sharpness. did.

測定機は、IMAGE CLARITY METER ICM−1T スガ試験機(株)製を用いた。   The measuring machine used was an IMAGE CLARITY METER ICM-1T Suga Test Instruments Co., Ltd. product.

5:301以上
4:251〜300
3:201〜250
2:151〜200
1:150以下
(屈曲耐性の評価)
各防眩性フィルムを、屈曲試験機(心棒3mm使用)にて、防眩層側が外向きになるように180度曲げた後、その表面を目視観察し、下記の基準に則り屈曲耐性の評価を行った。
5: 301 or more 4: 251-300
3: 201-250
2: 151-200
1: 150 or less (evaluation of bending resistance)
Each anti-glare film was bent 180 degrees with a bending tester (using a mandrel 3 mm) so that the anti-glare layer side would face outward, then the surface was visually observed, and bending resistance was evaluated according to the following criteria. Went.

○:防眩層塗設面側表面に変化なし
△:防眩層塗設面側表面に細かい割れが認められる
×:防眩層塗設面側表面に多数の割れが認められる
△以下は実用不可である。
○: No change on the antiglare layer coating surface side △: Fine cracks are observed on the antiglare layer coating surface surface ×: Many cracks are observed on the antiglare layer coating surface surface It is impossible.

以上の評価結果を表6に示す。   The above evaluation results are shown in Table 6.

微粒子添加による微細凹凸構造を付与した防眩性フィルム1は、微粒子の分散性のばらつきの為か、ぎらつきや鮮明性が劣る。エンボス加工により微細凹凸構造を付与した防眩性フィルム2は鮮明性が劣る。また、防眩性フィルム2の先頭と後尾で微細凹凸構造の高さ、大きさが異なっており、鋳型を観察すると鋳型の一部に溶けたフィルムによる目詰まりを起こしていた。   The antiglare film 1 imparted with a fine concavo-convex structure by addition of fine particles is inferior in glare and sharpness because of dispersion in fine particle dispersibility. The antiglare film 2 imparted with a fine concavo-convex structure by embossing is inferior in sharpness. Further, the height and size of the fine concavo-convex structure differed between the head and the tail of the antiglare film 2, and when the mold was observed, clogging was caused by the film dissolved in a part of the mold.

本発明の防眩性フィルム4〜13、16〜21、24、25、27は比較に対し、防眩効果、ぎらつき、鮮明性に加え屈曲耐性にも優れることが分かる。   It can be seen that the antiglare films 4 to 13, 16 to 21, 24, 25, and 27 of the present invention are excellent in bending resistance in addition to the antiglare effect, glare, and sharpness.

また、接触角は、30°以下ではドットが広がりすぎ、80°以上では基材に付きにくくドット同士が結合し、いずれも安定した凸部が形成できなかった。   Further, when the contact angle was 30 ° or less, the dots spread too much, and when the contact angle was 80 ° or more, the dots were difficult to adhere to the substrate, and the dots were bonded to each other, and neither of them could form a stable convex portion.

実施例2
実施例1の防眩性フィルム試料を選択し密着性を比較した。
Example 2
The antiglare film sample of Example 1 was selected and the adhesion was compared.

(密着性の評価)
JIS K 5400に準拠した碁盤目試験を行った。具体的には、得られた防眩性フィルムの防眩層を形成した段階の試料を用いて、1mm間隔で縦、横に11本の切れ目を入れ、1mm角の碁盤目を100個作り、この上にセロハン粘着テープを貼り付け、90°で素早く剥がし、剥がれずに残った碁盤目の数をカウントし、下記に示すようなランク評価を行った。
(Evaluation of adhesion)
A cross-cut test based on JIS K 5400 was performed. Specifically, using the sample at the stage where the antiglare layer of the obtained antiglare film was formed, 11 cuts were made vertically and horizontally at intervals of 1 mm, and 100 1 mm square grids were made, A cellophane adhesive tape was affixed on this, peeled off quickly at 90 °, the number of grids remaining without peeling was counted, and rank evaluation as shown below was performed.

◎:100
○:95〜99
△:90〜94
×:70以下
×は実用不可である。
A: 100
○: 95-99
Δ: 90-94
X: 70 or less x is impractical.

結果を表7に示す。   The results are shown in Table 7.

いずれも本発明の防眩性フィルムは密着性に優れることが分かる。中でも第1層、凸構造部を形成をハーフキュア状態にしたNo.18、及び大気圧下プラズマ放電による表面処理したNo.21は密着性により効果があることが分かった。   It can be seen that the antiglare film of the present invention is excellent in adhesion. Among them, No. 1 in which the first layer and the convex structure were formed in a half-cured state. No. 18 and No. 18 subjected to surface treatment by plasma discharge under atmospheric pressure. No. 21 was found to be more effective due to adhesion.

実施例3
実施例1で作製した防眩性フィルム1〜31の透明樹脂層上に下記低屈折率層を塗設した。
Example 3
The following low refractive index layers were coated on the transparent resin layers of the antiglare films 1 to 31 produced in Example 1.

〔反射防止層の作製:低屈折率層〕
下記の低屈折率層塗布組成物1を押出しコーターで塗布し、100℃で1分間乾燥させた後、紫外線を0.1J/cm2照射して硬化させ、更に120℃で5分間熱硬化させ、厚さ95nmとなるように低屈折率層を設け、防眩性反射防止フィルム1〜31を作製した。尚、この低屈折率層の屈折率は1.37であった。
[Preparation of antireflection layer: low refractive index layer]
The following low refractive index layer coating composition 1 is applied by an extrusion coater, dried at 100 ° C. for 1 minute, cured by irradiation with ultraviolet rays of 0.1 J / cm 2 , and further thermally cured at 120 ° C. for 5 minutes. A low refractive index layer was provided so as to have a thickness of 95 nm, and antiglare antireflection films 1 to 31 were produced. The refractive index of this low refractive index layer was 1.37.

また作製した防眩性反射防止フィルムについて、分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。反射防止性能は広い波長領域において反射率が小さいほど良好であるため、測定結果から450〜650nmにおける最低反射率を求めた。測定は、観察側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行い、フィルム裏面での光の反射を防止して、反射率の測定を行った。測定の結果、上記防眩性反射防止フィルムはいずれも反射率で0.7〜1.2の間に反射率を有し良好な結果を示した。   Moreover, about the produced anti-glare antireflection film, a spectral reflectance at an incident angle of 5 ° was measured in a wavelength region of 380 to 780 nm using a spectrophotometer (manufactured by JASCO Corporation). Since the antireflection performance is better as the reflectance is smaller in a wide wavelength region, the minimum reflectance at 450 to 650 nm is obtained from the measurement result. In the measurement, the back surface on the observation side was roughened, and then light absorption processing was performed using a black spray to prevent reflection of light on the back surface of the film, and the reflectance was measured. As a result of the measurement, all of the antiglare antireflection films had a reflectance of 0.7 to 1.2 and showed good results.

(低屈折率層塗布組成物1の調製)
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン289gとエタノール553gを混和し、これに0.15%酢酸水溶液157gを添加し、25℃のウォーターバス中で30時間攪拌することで加水分解物Aを調製した。
(Preparation of low refractive index layer coating composition 1)
<Preparation of tetraethoxysilane hydrolyzate A>
Hydrolyzate A was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of 0.15% aqueous acetic acid solution thereto, and stirring in a water bath at 25 ° C. for 30 hours.

テトラエトキシシラン加水分解物A 110質量部
中空シリカ系微粒子(下記P−2)分散液 30質量部
KBM503(シランカップリング剤、信越化学(株)製) 4質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 400質量部
イソプロピルアルコール 400質量部
〈中空シリカ系微粒子P−2分散液の調製〉
平均粒径5nm、SiO2濃度20質量%のシリカゾル100gと純水1900gの混
合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2とし
て0.98質量%のケイ酸ナトリウム水溶液9000gとAl23として1.02質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al23核粒子分散液を調製した。(工程(a))
この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2濃度3.5質量%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。(工程(b))
次いで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO2・Al23多孔質粒子の分散液を調製した(工程(c))。上記多孔質粒子分散液1500gと、純水500g、エタノール1,750g及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO228質量%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。次いで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ系微粒子(P−2)分散液を調製した。
Tetraethoxysilane hydrolyzate A 110 parts by mass Hollow silica-based fine particle (P-2 below) dispersion 30 parts by mass KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by mass Linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Unicar Co., Ltd.) 10% propylene glycol monomethyl ether solution 3 parts by mass Propylene glycol monomethyl ether 400 parts by mass Isopropyl alcohol 400 parts by mass <Preparation of hollow silica-based fine particle P-2 dispersion>
A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 9000 g of 0.98 mass% sodium silicate aqueous solution as SiO 2 and 9000 g of 1.02 mass% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. did. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 core particle dispersion having a solid content concentration of 20% by mass. (Process (a))
1700 g of pure water is added to 500 g of this core particle dispersion and heated to 98 ° C., and while maintaining this temperature, a silicic acid solution (SiO 2) obtained by dealkalizing a sodium silicate aqueous solution with a cation exchange resin. A dispersion of core particles in which 3000 g (concentration of 3.5% by mass) was added to form a first silica coating layer was obtained. (Process (b))
Next, 1125 g of pure water is added to 500 g of the core particle dispersion liquid that has been washed with an ultrafiltration membrane to form a first silica coating layer having a solid concentration of 13% by mass, and concentrated hydrochloric acid (35.5%) is further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and SiO 2 · Al from which some of the constituent components of the core particles forming the first silica coating layer were removed. A dispersion of 2 O 3 porous particles was prepared (step (c)). A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1,750 g of ethanol, and 626 g of 28% ammonia water is heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 mass%) is added. The surface of the porous particles on which the first silica coating layer was formed was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer. Next, a hollow silica-based fine particle (P-2) dispersion having a solid content concentration of 20% by mass, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.

この中空シリカ系微粒子の第1シリカ被覆層の厚さは3nm、平均粒径は47nm、MOx/SiO2(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径は動的光散乱法により測定した。The thickness of the first silica coating layer of the hollow silica-based fine particles was 3 nm, the average particle size was 47 nm, MOx / SiO 2 (molar ratio) was 0.0017, and the refractive index was 1.28. Here, the average particle diameter was measured by a dynamic light scattering method.

次いで、各防眩性反射防止フィルム1〜31を用いて偏光板を作製した。   Subsequently, a polarizing plate was prepared using each of the antiglare antireflection films 1 to 31.

a)偏光膜の作製
厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光膜を得た。
a) Production of Polarizing Film A polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed for 60 seconds in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. This was washed with water and dried to obtain a polarizing film.

b)偏光板の作製
下記工程1〜5に従って偏光膜と前記防眩性反射防止フィルム1〜31、裏面側のセルロースエステルフィルムKC8UCR−5(コニカミノルタオプト(株)製)を貼り合わせて偏光板を作製した。裏面側の偏光板保護フィルムは位相差を有するセルロースエステルフィルムであり、リターデーション値はRo=43nm、Rt=132nmであった。
b) Preparation of Polarizing Plate A polarizing plate is bonded to the antiglare antireflection films 1 to 31 and a cellulose ester film KC8UCR-5 (manufactured by Konica Minolta Opto) on the back side in accordance with the following steps 1 to 5. Was made. The polarizing plate protective film on the back side was a cellulose ester film having a retardation, and retardation values were Ro = 43 nm and Rt = 132 nm.

工程1:50℃の1モル/Lの水酸化ナトリウム溶液に60秒間浸漬し、次いで水洗し乾燥して、偏光膜と貼合する側を鹸化した防眩性反射防止フィルム、セルロースエステルフィルムを得た。   Process 1: Immerse in a 1 mol / L sodium hydroxide solution at 50 ° C. for 60 seconds, then wash with water and dry to obtain an antiglare antireflection film and a cellulose ester film in which the side to be bonded to the polarizing film is saponified. It was.

工程2:前記偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒浸漬した。   Step 2: The polarizing film was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.

工程3:工程2で偏光膜に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した防眩性反射防止フィルム、セルロースエステルフィルムの上にのせて、更に反射防止層が外側になるように積層し、配置した。   Step 3: Gently wipe off the excess adhesive adhering to the polarizing film in Step 2, and place it on the antiglare antireflection film and cellulose ester film treated in Step 1, and further the antireflection layer on the outside Laminated and arranged as follows.

工程4:工程3で積層した防眩性反射防止フィルムと偏光膜とセルロースエステルフィルム試料を圧力20〜30N/cm2、搬送スピードは約2m/分で貼合した。Step 4: The antiglare antireflection film, the polarizing film, and the cellulose ester film sample laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.

工程5:80℃の乾燥機中に工程4で作製した偏光膜とセルロースエステルフィルムと防眩性反射防止フィルム1〜31とを貼り合わせた試料を2分間乾燥し、偏光板1〜31を作製した。   Step 5: A sample obtained by bonding the polarizing film, the cellulose ester film, and the antiglare antireflection films 1 to 31 prepared in Step 4 in a dryer at 80 ° C. is dried for 2 minutes to produce polarizing plates 1 to 31. did.

《液晶表示装置の作製》
液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
<Production of liquid crystal display device>
A liquid crystal panel was produced as follows, and the characteristics as a liquid crystal display device were evaluated.

市販の32型液晶テレビ(MVA型セル)の予め貼合されていた表面の偏光板を剥がして、上記作製した偏光板1〜31をそれぞれ液晶セルのガラス面に貼合した。   The polarizing plate on the surface of the commercially available 32-inch liquid crystal television (MVA type cell) previously bonded was peeled off, and the prepared polarizing plates 1 to 31 were bonded to the glass surface of the liquid crystal cell, respectively.

その際、その偏光板の貼合の向きは、位相差を有するセルロースエステルフィルムの面が、液晶セル側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置1〜31を各々作製した。   At that time, the direction of bonding of the polarizing plate is such that the surface of the cellulose ester film having a retardation is on the liquid crystal cell side, and the absorption axis is in the same direction as the polarizing plate previously bonded. The liquid crystal display devices 1 to 31 were produced respectively.

《評価》
得られた液晶表示装置1〜31を用いて、図9で示した様な環境で観察し、前記防眩効果、ぎらつき、及び下記視認性及び動画を表示したときの黒のしまりを各々下記の基準に従い目視にて評価した。尚、照明は40W蛍光灯(松下電器製FLR40S−EX−D/M)10本を天井に設置した。また窓から外光が差し込む状態で評価した。
<Evaluation>
The obtained liquid crystal display devices 1 to 31 are used in the environment as shown in FIG. 9 to observe the anti-glare effect, glare, and the blackness when the following visibility and moving images are displayed. Visual evaluation was made according to the criteria. In addition, 10 40W fluorescent lamps (FLR40S-EX-D / M manufactured by Matsushita Electric) were installed on the ceiling. Moreover, it evaluated in the state which external light inserts from a window.

(視認性及び動画を表示したときの黒のしまり)
前述の様に天井からは蛍光灯による人工照明と窓からの外光が差し込んでいる環境下でTV番組の動画像を同ディスプレイに表示し、比較実験を行った。ディスプレイ正面から1m離れた位置で動画像を観察し官能評価を行った。
(Visibility and black spots when displaying video)
As described above, a moving image of a TV program was displayed on the same display in an environment where artificial lighting by a fluorescent lamp and external light from a window were inserted from the ceiling, and a comparative experiment was performed. A moving image was observed at a position 1 m away from the front of the display, and sensory evaluation was performed.

5:画面上部の蛍光灯の写り込みが気にならず、画面中央部は外光があっても黒がしまって見え、観察中、観察直後においても疲れず違和感がない
4:5と3の中間
3:画面上部の蛍光灯の写り込みが僅かに認められ、画面中央部は外光があると黒がややしまりに欠け、観察後やや疲れる
2:3と1の中間
1:画面上部の蛍光灯の写り込みが認められ、画面中央部は外光の影響で黒のしまりに欠け、見ていると目が疲れる
防眩性反射防止フィルム/液晶表示装置の構成及び上記評価結果を下記表8に示す。
5: I don't mind the reflection of the fluorescent lamp at the top of the screen, and the center of the screen looks black even when there is external light. Middle 3: Slight reflection of fluorescent light at the top of the screen is observed, and the center of the screen is slightly tired after observation if there is external light 2: Intermediate between 1: 3 and 1: 1: Fluorescence at the top of the screen The reflection of the light is observed, the center of the screen lacks black spots due to the influence of external light, and eyes are tired when viewed. The composition of the antiglare antireflection film / liquid crystal display device and the evaluation results are shown in Table 8 below. Shown in

上表より、本発明の防眩性反射防止フィルム、それを用いた偏光板/液晶表示装置4〜13、16〜21、24、25、27は、実施例1と同様に防眩効果、ぎらつき、更には人工照明と窓からの外光が差し込んでいる環境下でも、黒のしまりに優れることが分かる。   From the above table, the antiglare antireflection film of the present invention and the polarizing plates / liquid crystal display devices 4 to 13, 16 to 21, 24, 25, and 27 using the antiglare effect and glare are the same as in Example 1. In addition, even in an environment where artificial light and external light from the window are inserted, it is understood that black is excellent.

Claims (13)

透明基材上に微細な凹凸構造を有する防眩性フィルムにおいて、防眩層が凸部の径15〜40μm、凸部の高さが2〜10μmの凸構造部と、更に該凸構造部を被覆するように透明樹脂層により形成されており、且つ該防眩層の表面粗さ(Rz)が0.8〜4μm、該防眩層の凸部または凹部の平均中心間距離(Sm)が25〜100μm、Rz/Smが0.01〜0.1であり、更に該凸部または凹部の表面形状部を0.01mm2あたり5〜
25個有することを特徴とする防眩性フィルム。
An anti-glare film having a fine uneven structure on a transparent substrate, wherein the anti-glare layer has a convex diameter of 15 to 40 μm, a convex height of 2 to 10 μm, and the convex structure The antiglare layer has a surface roughness (Rz) of 0.8 to 4 μm and an average center-to-center distance (Sm) of the protrusions or recesses of the antiglare layer. 25 to 100 μm, Rz / Sm is 0.01 to 0.1, and further the surface shape portion of the convex portion or concave portion is 5 to 0.01 mm 2.
An antiglare film characterized by having 25 pieces.
前記凸構造部がインクジェット方式により形成されたことを特徴とする請求の範囲第1項に記載の防眩性フィルム。 2. The antiglare film according to claim 1, wherein the convex structure is formed by an ink jet method. 前記凸構造部と透明樹脂層で形成された防眩層の乾燥膜厚が3〜15μmであることを特徴とする請求の範囲第1項または第2項に記載の防眩性フィルム。 The antiglare film according to claim 1 or 2, wherein a dry film thickness of the antiglare layer formed of the convex structure portion and the transparent resin layer is 3 to 15 µm. 前記凸構造部が活性光線硬化型樹脂または熱硬化性樹脂からなり、且つ該樹脂を含有する凸構造部形成用インク液の粘度が5〜12mPa・sであることを特徴とする請求の範囲第1項〜第3項のいずれか1項に記載の防眩性フィルム。 The convex structure is made of an actinic ray curable resin or a thermosetting resin, and the viscosity of the convex structure forming ink containing the resin is 5 to 12 mPa · s. Item 4. The antiglare film according to any one of Items 1 to 3. 前記凸構造部形成用インク液と透明基材との接触角(θ)が45〜70°であることを特徴とする請求の範囲第4項に記載の防眩性フィルム。 The antiglare film according to claim 4, wherein a contact angle (θ) between the ink liquid for forming the convex structure portion and the transparent substrate is 45 to 70 °. 前記凸構造部形成用インク液が、沸点が140〜250℃、粘度が1〜15mPa・sである少なくとも1種類の溶媒を60質量%以上含有することを特徴とする請求の範囲第4項または第5項に記載の防眩性フィルム。 5. The method according to claim 4, wherein the convex structure forming ink liquid contains 60% by mass or more of at least one solvent having a boiling point of 140 to 250 ° C. and a viscosity of 1 to 15 mPa · s. 6. An antiglare film according to item 5. 前記溶媒が下記の一般式(1)で表される化合物であることを特徴とする請求の範囲第6項に記載の防眩性フィルム。
一般式(1) R1−O−(Cx2x−O)n−R2
式中R1、R2は水素原子、アリール基、炭素数1〜6のアルキル基、アルコキシアルキル基、アルキルカルボニル基。炭化水素鎖は直鎖でも分岐していてもよい。但し、R1、R2の少なくとも一方は水素原子以外の置換基である。
n:1〜3の整数
x:2〜4の整数
The antiglare film according to claim 6, wherein the solvent is a compound represented by the following general formula (1).
Formula (1) R 1 -O- (C x H 2x -O) n-R 2
In the formula, R 1 and R 2 are a hydrogen atom, an aryl group, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group, or an alkylcarbonyl group. The hydrocarbon chain may be linear or branched. However, at least one of R 1 and R 2 is a substituent other than a hydrogen atom.
n: an integer from 1 to 3 x: an integer from 2 to 4
前記防眩層の上に更に反射防止層または防汚層が形成されたことを特徴とする請求の範囲第1項〜第7項のいずれか1項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 7, further comprising an antireflection layer or an antifouling layer formed on the antiglare layer. 透明基材が透明支持体とその上に少なくとも1層の硬化樹脂層または平滑型の光拡散層を有し、その表面にインクジェット方式により凸構造部を形成したのち、該凸構造部を被覆するように透明樹脂層が形成されており、且つ該透明支持体を除いた透明樹脂層までの乾燥膜厚が3〜15μmであることを特徴とする防眩性フィルムの製造方法。 The transparent substrate has a transparent support and at least one cured resin layer or smooth light diffusing layer thereon, and a convex structure is formed on the surface by an inkjet method, and then the convex structure is covered. Thus, the transparent resin layer is formed, and the dry film thickness to the transparent resin layer except this transparent support body is 3-15 micrometers, The manufacturing method of the anti-glare film characterized by the above-mentioned. 前記硬化樹脂層または光拡散層がハーフキュア状態で該層の表面にインクジェット方式により凸構造部を形成したのち、該凸構造部を被覆するように透明樹脂層が形成されることを特徴とする請求の範囲第9項に記載の防眩性フィルムの製造方法。 A convex resin is formed on the surface of the cured resin layer or light diffusing layer in a half-cured state by an inkjet method, and then a transparent resin layer is formed so as to cover the convex structure. A method for producing an antiglare film according to claim 9. 前記凸構造部を形成後、表面をプラズマ処理し該凸構造部を被覆するように透明樹脂層が形成されることを特徴とする請求の範囲第9項または第10項に記載の防眩性フィルムの製造方法。 The antiglare property according to claim 9 or 10, wherein after forming the convex structure portion, a transparent resin layer is formed so as to cover a surface of the convex structure portion by plasma treatment. A method for producing a film. 請求の範囲第1項〜第8項のいずれか1項に記載の防眩性フィルムを用いることを特徴とする偏光板。 A polarizing plate using the antiglare film according to any one of claims 1 to 8. 請求の範囲第1項〜第8項のいずれか1項に記載の防眩性フィルム、または請求の範囲第12項に記載の偏光板を用いることを特徴とする表示装置。 A display device comprising the antiglare film according to any one of claims 1 to 8 or the polarizing plate according to claim 12.
JP2008540926A 2006-10-23 2007-09-27 Antiglare film, method for producing antiglare film, polarizing plate and display device Pending JPWO2008050576A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006287314 2006-10-23
JP2006287314 2006-10-23
PCT/JP2007/068794 WO2008050576A1 (en) 2006-10-23 2007-09-27 Antiglare film, process for producing antiglare film, polarizer, and display

Publications (1)

Publication Number Publication Date
JPWO2008050576A1 true JPWO2008050576A1 (en) 2010-02-25

Family

ID=39324382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008540926A Pending JPWO2008050576A1 (en) 2006-10-23 2007-09-27 Antiglare film, method for producing antiglare film, polarizing plate and display device

Country Status (2)

Country Link
JP (1) JPWO2008050576A1 (en)
WO (1) WO2008050576A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221197A (en) * 2010-04-08 2011-11-04 Suntechopt Co Ltd Anti-glare diffusion film
JP5238013B2 (en) * 2010-12-09 2013-07-17 住友化学株式会社 Method for manufacturing light guide plate
JP6387319B2 (en) * 2015-03-30 2018-09-05 富士フイルム株式会社 Optical film, film roll, transparent conductive film, and touch panel
JP2017072692A (en) * 2015-10-06 2017-04-13 アルプス電気株式会社 Method for forming antiglare layer, antiglare layer, display panel, and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267817A (en) * 2001-03-08 2002-09-18 Fuji Photo Film Co Ltd Antiglare film and polarizing plate
JP2004004644A (en) * 2002-04-25 2004-01-08 Nitto Denko Corp Light diffusing sheet, optical device and picture display device
JP2005300576A (en) * 2004-04-06 2005-10-27 Konica Minolta Opto Inc Glare-proof antireflection film, polarizing plate and display device
EP1870743A1 (en) * 2005-04-12 2007-12-26 Teijin Chemicals, Ltd. Resin sheet, direct backlight unit, and direct backlight type liquid crystal display

Also Published As

Publication number Publication date
WO2008050576A1 (en) 2008-05-02

Similar Documents

Publication Publication Date Title
JP5298857B2 (en) Method for producing antireflection film
US7771781B2 (en) Anti-glare film, manufacturing method of anti-glare film, anti glaring anti-reflection film, polarizing plate, and display
JP4888392B2 (en) Method for forming antiglare antireflection film and antiglare antireflection film
JP5109783B2 (en) Polarizing plate and liquid crystal display device
JP2007025040A (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP2008224718A (en) Antiglare antireflection film and display device
JP4765670B2 (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
WO2010016369A1 (en) Optical film, method for production of the optical film, polarizing plate, and liquid crystal display device
JP4622472B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate and display device
JP2005208290A (en) Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP2006293201A (en) Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP2004279491A (en) Method for forming antiglare antireflection layer, antiglare antireflection film and its manufacturing method, display device using the film, and antiglare antireflection processing device
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP2006146027A (en) Antiglare antireflection film, polarizing plate and display
JPWO2008050576A1 (en) Antiglare film, method for producing antiglare film, polarizing plate and display device
JPWO2007046275A1 (en) Anti-glare film, polarizing plate and display device
JP5017775B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate and display device using the same
JP2007114563A (en) Antiglare film, polarizing plate and display device
WO2007040023A1 (en) Process for producing film with rugged pattern and production apparatus therefor
JP2007121605A (en) Antiglare film, manufacturing method of antiglare film, antiglare antireflection film, polarizing plate, and display apparatus
JP2009204927A (en) Method for manufacturing antiglare optical film, antiglare optical film, polarizing plate, and image display device
JP2008250276A (en) Anti-glare film, manufacturing method thereof, and polarizing plate and display device using the same
JP2008185792A (en) Method of manufacturing anti-glare film, anti-glare film, polarizing plate using the same and display device
JP2008158156A (en) Anti-glare anti-reflection film, method for manufacturing the same, and display device
JP2008286845A (en) Antiglare optical film, method of manufacturing same, polarizer, and display device