JP2004268270A - Method for manufacturing sheet having fine uneven shape - Google Patents

Method for manufacturing sheet having fine uneven shape Download PDF

Info

Publication number
JP2004268270A
JP2004268270A JP2003058115A JP2003058115A JP2004268270A JP 2004268270 A JP2004268270 A JP 2004268270A JP 2003058115 A JP2003058115 A JP 2003058115A JP 2003058115 A JP2003058115 A JP 2003058115A JP 2004268270 A JP2004268270 A JP 2004268270A
Authority
JP
Japan
Prior art keywords
roll
resin
ionizing radiation
shaped mold
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058115A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagata
佳秀 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003058115A priority Critical patent/JP2004268270A/en
Publication of JP2004268270A publication Critical patent/JP2004268270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sheet having a fine uneven shape constituted so as to solve a problem wherein an uncured resin low in viscosity leaks from a mold or the end part of a substrate by providing a process for supplying an uncured ionizing radiation curable resin to the gap between the mold and the substrate to bring about not only the lowering of production efficiency due to the turning of the resin to the back of the substrate or the adhesion of the resin to an apparatus but also the lowering of quality. <P>SOLUTION: A weir-shaped structure and/or a suction means for preventing the leak of the uncured ionizing radiation curable resin is provided to each of both end parts where the roll-shaped mold and an ionizing radiation transmissible base material are pressed to be brought to a joined state. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
本発明は、各種光学フィルム,レンズシートなど主として光学用途に用いられる表面に微細な凹凸形状を備えるシ−トの製造方法に関する。
【0002】
【従来の技術】
表面に微細な凹凸形状を有する各種光学フィルム,レンズシートの製造方法としては、成形を試みる所望の微細凹凸形状と逆型の成形型を作製し、前記成形型を用いて、プレス成形法(固体状態の樹脂板に加熱・加圧を施す成形)、キャスト成形法(溶融押し出し成形のように、軟化状態にある樹脂を金型に供給する加熱不要な成形)などの方法を用いて成形する方式が用いられている。
成形型は一般に小サイズで作製されることが多いが、大サイズでの需要が主となるレンズシート(例えばレンチキュラーシート等)用に、前記小サイズの成形型を縦,横方向に多面付けして一枚の大サイズ成形型を作製する方式もある。
前記プレス成形法,キャスト成形法は、成形型の形状を正確に転写することにおいては優れた手法であるが、共に成形時間が長い、生産性が低いなどの課題を抱える手法である。
【0003】
また、プレス成形法やキャスト成形法のように平板状の成形型を用いる成形手法は、成形できるサイズに限界があり、大サイズ(例えば対角100インチ以上)の光学フィルム、レンズシートを成形するのには不向きな手法でもある。
これらプレス成形法やキャスト成形法における課題は、2P成形法(基板の表面に、電離放射線硬化型樹脂の反応硬化物からなる微細形状のレンズ部を重合接着させる成形手法であり、微細形状を高精細に転写するのには好適)を用いることにより解決可能である。
2P成形法は成形型をロ−ル状にするなどの工夫次第では継ぎ目のない連続成形が可能であり、量産性に優れている点、また大サイズのシート作製が容易である点など長所の多い成形手法である。
【0004】
2P成形法によるレンズシートの製造方法,装置に関しては、
レンズを成形する為の型ロールと、
紫外線硬化樹脂を型ロールに供給する供給部と、
当該紫外線硬化樹脂を型ロールに基づいて所望のレンズの形に硬化させる紫外線照射装置と、を有するフィルムレンズの製造装置について、各種提案がなされている。(例えば、特許文献1参照)
【0005】
【特許文献1】
特開2000−289120号公報
【0006】
【発明が解決しようとする課題】
上記のように、2P成形法は長所の多い成形手法ではあるが、成形型と基板の間に未硬化状態の電離放射線硬化型樹脂を供給する工程を経るため、粘度の低い未硬化状態樹脂が成形型または基板端部から漏れる可能性があり、基板への裏回りや装置への樹脂付着などによる生産効率の低下、さらには品質低下を招く要因ともなり得る。
【0007】
本発明では上記課題の解決を図り、ロール状成形型を用いた2P成形法により表面に微細凹凸形状を有するシートを製造する際、未硬化状態の樹脂が成形型または基板から漏れるのを防ぐことにより効率良い生産を可能とする、また、樹脂漏れを防止することにより大きな樹脂溜まりの形成を可能とし、ロール状成形型表面の微細凹凸形状内からの脱泡作用を促進することをも可能とする微細凹凸形状を有するシートの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明による微細凹凸形状を有するシートの製造方法は、
電離放射線透過性を有する基材表面および/または所望の成形パターンと逆型の微細凹凸形状を表面に有するロール状成形型表面に電離放射線硬化型樹脂を供給する工程と、
前記基材を、前記所望の成形パターンと逆型の微細凹凸形状を表面に有するロール状成形型に押圧して、前記基材と前記ロール状成形型の間に介在する前記樹脂を展延する工程と、
展延された前記樹脂に電離放射線を照射して、表面形状が前記所望のパターン状となるように前記樹脂を硬化させる工程と、
前記樹脂の反応硬化物と重合接着された前記基材をロール状成形型から剥離する工程、とからなる一連の工程を具備する微細凹凸形状を有するシートの製造方法において、
前記ロール状成形型と前記基材とを押圧して接合する両端部に、堰状構造および/または吸引手段を設けることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
<実施形態1>
請求項1に係る本発明による微細凹凸形状を有するシートの製造方法の一例を図1に示す。
尚、以降の説明においては、電離放射線硬化型樹脂として代表的な「紫外線硬化型樹脂」を用いた製造について説明するため、電離放射線透過性を有する基材は「透光性樹脂基材」と表記することもある。
【0010】
図1に示すように、透光性樹脂基材(4)に塗工された電離放射線硬化型樹脂(1)はロール状成形型(3)と押圧され、ロール状成形型(3)と共に搬送される。未硬化状態の電離放射線硬化型樹脂の漏洩防止手段として、堰状構造(6)がロール状成形型(3)と透光性樹脂基材(4)との押圧部端部に設置されている。
【0011】
電離放射線照射部(5)にて透光性樹脂基材(4)の裏面から電離放射線を照射することにより、電離放射線硬化型樹脂は硬化され、ロール状成形型(3)表面の微細凹凸形状が転写されると共に透光性樹脂基材(4)と接着され一体となる。その後、電離放射線硬化型樹脂の反応硬化物と一体となった透光性樹脂基材(4)とロール状成形型(3)は剥離され、微細凹凸形状を有するシートが得られる。
【0012】
<実施形態2>
請求項2に係る本発明による微細凹凸形状を有するシートの製造方法の一例を図2に示す。
同図に示すように、透光性樹脂基材(4)に塗工された電離放射線硬化型樹脂(1)はロール状成形型(3)と押圧され、ロール状成形型(3)と共に搬送される。未硬化状態の電離放射線硬化型樹脂の漏洩防止手段として、吸引手段(7)がロール状成形型(3)と透光性樹脂基材(4)との押圧部端部に設置されている。
【0013】
電離放射線照射部(5)にて透光性樹脂基材(4)の裏面から電離放射線を照射することにより、電離放射線硬化型樹脂は硬化され、ロール状成形型(3)表面の微細凹凸形状が転写されると共に透光性樹脂基材(4)と接着され一体となる。その後、電離放射線硬化型樹脂の反応硬化物と一体となった透光性樹脂基材(4)とロール状成形型(3)は剥離され、微細凹凸形状を有するシートが得られる。
【0014】
<実施形態3>
実施形態1,2は、透光性樹脂基材(4)の表面にのみ電離放射線硬化型樹脂を供給する場合の説明であるが、透光性樹脂基材(4)の表面とロール状成形型(3)表面の双方に電離放射線硬化型樹脂を供給する場合の実施形態について、以下に説明する。
図3に示すように、透光性樹脂基材(4)に塗工された電離放射線硬化型樹脂(1)は、ロール状成形型(3)表面に塗工された電離放射線硬化型樹脂(2)と押圧・積層され、ロール状成形型(3)と共に搬送される。未硬化状態の電離放射線硬化型樹脂の漏洩防止手段として、堰状構造(6)がロール状成形型(3)と透光性樹脂基材(4)との押圧部端部に、また堰状構造(8)が電離放射線硬化型樹脂(2)のロール状成形型(3)への塗工部端部に設置されている。
【0015】
電離放射線照射部(5)にて透光性樹脂基材(4)の裏面から電離放射線を照射することにより、電離放射線硬化型樹脂は硬化され、ロ−ル状成形型(3)表面の微細凹凸形状が転写されると共に透光性樹脂基材(4)と接着され一体となる。その後、電離放射線硬化型樹脂の反応硬化物と一体となった透光性樹脂基材(4)とロ−ル状成形型(3)は剥離され、微細凹凸形状を有するシ−トが得られる。
【0016】
<実施形態4>
実施形態1〜3では、未硬化状態の電離放射線硬化型樹脂の漏洩防止手段として、堰状構造または吸引手段の何れか一方を、一箇所または複数箇所に配置する場合の説明であるが、堰状構造と吸引手段の双方を併用する場合について、以下に説明する。
図5に示すように、透光性樹脂基材(4)に塗工された電離放射線硬化型樹脂(1)は、ロール状成形型(3)表面に塗工された電離放射線硬化型樹脂(2)と押圧・積層され、ロール状成形型(3)と共に搬送される。未硬化状態の電離放射線硬化型樹脂の漏洩防止手段として、堰状構造(6)がロール状成形型(3)と透光性樹脂基材(4)との押圧部端部に、また吸引手段(9)が電離放射線硬化型樹脂(2)のロール状成形型(3)への塗工部端部に設置されている。
【0017】
電離放射線照射部(5)にて透光性樹脂基材(4)の裏面から電離放射線を照射することにより、電離放射線硬化型樹脂は硬化され、ロール状成形型(3)表面の微細凹凸形状が転写されると共に透光性樹脂基材(4)と接着され一体となる。その後、電離放射線硬化型樹脂の反応硬化物と一体となった透光性樹脂基材(4)とロール状成形型(3)は剥離され、微細凹凸形状を有するシートが得られる。
【0018】
本発明で用いる電離放射線硬化型樹脂1(1)としては、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、及び反応希釈剤、光重合開始剤、増感剤の成分を含む組成物が挙げられる。これらを反応硬化後に透光性樹脂基材(4)との密着性が良くなるような配合比で混合・調整することが好適である。電離放射線硬化型樹脂(1)は製造ラインに導入する前の段階で、十分に脱泡および濾過をしておくのが好ましく、粘度としては10〜100000cpsが好適である。
【0019】
また、電離放射線硬化型樹脂(1)を透光性樹脂基材(4)に塗工する際、薄延してよく馴染ませることにより、透光性樹脂基材(4)と電離放射線硬化型樹脂1(1)との密着性を向上させることが可能である。薄延手段としては樹脂塗工厚の調整可能なロール,ブレード,ドクター等を用いるのが好適である。
【0020】
ウレタン(メタ)アクリレートオリゴマーとしては、例えば、エチレングリコール、1,4ブタンジオール、ネオペンチグリコール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリカーボネイトジオール、ポリテトラメチレングリコール等のポリオール類とヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、キシレンイソシアネート等の有機ポリイソシアネート類とを反応させて得ることができる。しかし、特にこれらに限定されるものではない。
【0021】
エポキシ(メタ)アクリレートオリゴマーとしては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型プロピレンオキサイド付加物の末端グリシジルエーテル、フルオレンエポキシ樹脂等のエポキシ樹脂類と(メタ)アクリル酸とを反応させて得ることができる。しかし、特にこれらに限定されるものではない。
【0022】
本発明で用いるロール状成形型(3)の素材としては、アルミニウム,黄銅,銅等の金属や、シリコン樹脂,ウレタン樹脂,エポキシ樹脂,フッ素樹脂,ポリメチルペンタン樹脂,セラミックの合成樹脂から作製したものを用いることができる。しかし、特にこれらに限定されるものではない。
【0023】
本発明で用いる透光性樹脂基材(4)としては電離放射線透過性を有するものが好ましく、また微細凹凸形状が形成される面は電離放射線硬化型樹脂(1)との密着力向上のための表面処理(易接着処理)が施されていることが好ましい。
樹脂材料としてはポリエステル,ポリカーボネイト,ポリ塩化ビニル等が挙げられ、基材厚さ・透明性・強度の観点からは50〜250μmのポリエステルフィルム、0.1〜0.7mmのポリカーボネイトフィルムが好適である。しかし、特にこれらに限定されるものではない。
【0024】
本発明で用いる電離放射線硬化型樹脂(2)としては、電離放射線硬化型樹脂(1)と同様に、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、及び反応希釈剤、光重合開始剤、増感剤の成分を含む組成物が挙げられる。
【0025】
また、これらに反応硬化後のロール状成形型(3)との剥離性を良くするため、適宜離型剤を加えても良いが、この際、電離放射線硬化型樹脂(1)と同じ粘度に調整することが好適である。積層する2つの電離放射線硬化型樹脂を同じ粘度に調整することで樹脂同士の馴染・密着性を高めることができ、剥離時に起こる可能性のある樹脂層間での層間破壊を防止することが可能である。
さらに、電離放射線硬化型樹脂(2)をロール状成形型(3)に塗工する際、薄延することにより、ロール状成形型(3)表面の微細凹凸形状内に、電離放射線硬化型樹脂(2)を気泡の混入無く充填することが可能である。薄延手段としては樹脂塗工厚の調整可能なロール,ブレード,ドクター等を用いるのが好適である。
【0026】
本発明で用いる堰状構造(6),(8)の素材としては、シリコン樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂、ポリメチルペンタン樹脂、セラミックの合成樹脂から作製したものを用いることができるが、特にこれらに限定されるものではない。
堰状構造(6),(8)の形状は、ロール状成形型(3)と接する部分の表面形状および塗工された電離放射線硬化型樹脂(1)をロール状成形型(3)に搬送し、ニップするロールなどの表面形状に併せて、適宜に設定するのが好適である。
堰状構造(6),(8)は、ロール状成形型(3)とは一体化されておらず、ロール状成形型(3)の回動とは同期せずに、図1,3,4に示すような静止状態を保つ構造であることが好ましい。
【0027】
上記のような堰状構造の設置によりロール状成形型(3)端部からの樹脂漏洩を防止可能となる。
さらに左右の堰状構造(6)間に大きな樹脂溜まりを形成することが可能となるので、ロール状成形型(3)表面の微細凹凸形状内からの脱泡作用を促進することが可能となる。また、吸引手段(7),(9)としては未硬化状態の電離放射線硬化型樹脂を、効率良く吸引できるものを適宜選択すれば良い。
【0028】
【実施例】
以下、実施例に基づいて、本発明を具体的に説明する。
<実施例>
図3に示す装置を用い、電離放射線硬化型樹脂(1)を透光性樹脂基材(4)(東洋紡績(株)製ポリエチレンテレフタレ−トフィルム、両面易接着処理、商標A4300を使用)に滴下した後、50μm厚に薄延・塗工した。
また、電離放射線硬化型樹脂(2)を所望の微細凹凸形状をパターニングしたロール状成形型(3)上に滴下した後、薄延塗工し、透光性樹脂基材(4)と押圧・積層した後、透光性樹脂基材(4)の裏面から電離放射線照射部(5)(紫外線照射装置使用)によって電離放射線を照射して硬化させ、ロ−ル状成形型(3)と透光性樹脂基材(4)を剥離した。
これら一連の工程は、ロール状成形型(3)と透光性樹脂基材(4)の押圧部端部、及びロール状成形型(3)への電離放射線硬化型樹脂(2)塗工部端部に、それぞれ堰状構造(6)及び(8)(共にテフロン(登録商標)製)を設けて行った。
【0029】
<比較例>
図3に示す装置を用い、電離放射線硬化型樹脂(1)を透光性樹脂基材(4)(東洋紡績(株)製ポリエチレンテレフタレ−トフィルム、両面易接着処理、商標A4300を使用)に滴下した後、50μm厚に薄延・塗工した。
また、電離放射線硬化型樹脂(2)を所望の微細凹凸形状をパターニングしたロール状成形型(3)上に滴下した後、薄延塗工し、透光性樹脂基材(4)と押圧・積層した後、透光性樹脂基材(4)の裏面から電離放射線照射部(5)(紫外線照射装置使用)によって電離放射線を照射して硬化させ、ロ−ル状成形型(3)と透光性樹脂基材(4)を剥離した。
これら一連の工程は、ロール状成形型(3)と透光性樹脂基材(4)の押圧部端部、及びロール状成形型(3)への電離放射線硬化型樹脂(2)塗工部端部に、それぞれ堰状構造(6)及び(8)(共にテフロン(登録商標)製)を設けずに行った。
【0030】
実施例と比較例に関わる評価結果を表1に示す。
同表から、樹脂漏れの防止及び、微小凹凸形状内への気泡混入の大幅低減(脱泡効果の促進)が可能であり、本発明の実施例による製造方法の優位性が示されている。
【0031】
【表1】

Figure 2004268270
【0032】
【発明の効果】
本発明の微細凹凸形状を有するシートの製造方法により、未硬化状態の電離放射線硬化型樹脂がロール状成形型端部より漏れるのを防ぐことが可能となる。
また、微小凹凸形状内への気泡混入を大幅に低減すること(脱泡効果の促進)が可能であり、効率良く微細凹凸形状を有するシ−トを得ることが可能となる。
【0033】
【図面の簡単な説明】
【図1】本発明による微細凹凸形状を有するシートの製造方法の一例を示す概略図。
【図2】本発明による微細凹凸形状を有するシートの製造方法の一例を示す概略図。
【図3】本発明による微細凹凸形状を有するシートの製造方法の一例を示す概略図。
【図4】本発明による微細凹凸形状を有するシートの製造方法の一例を示す概略図。
【符号の説明】
1,2…電離放射線硬化型樹脂
3…ロール状成形型
4…透光性樹脂基材(電離放射線透過性を有する基材)
5…電離放射線照射部
6,8…堰状構造
7,9…吸引手段[0001]
The present invention relates to a method for producing a sheet having fine irregularities on the surface mainly used for optical applications such as various optical films and lens sheets.
[0002]
[Prior art]
As a method for producing various optical films and lens sheets having fine irregularities on the surface, a mold having a shape opposite to the desired fine irregularities to be molded is prepared, and a press molding method (solid Molding using heat and pressure on the resin plate in the state), casting method (molding that does not require heating to supply the resin in the softened state to the mold as in melt extrusion molding) Is used.
In general, molding dies are often manufactured in a small size. However, for a lens sheet (for example, a lenticular sheet, etc.) for which a large-sized demand is mainly used, the small-sized molding dies are multi-faced in the vertical and horizontal directions. There is also a method in which a single large-sized mold is manufactured.
The press molding method and the cast molding method are excellent methods for accurately transferring the shape of a molding die, but both have problems such as a long molding time and low productivity.
[0003]
In addition, a molding method using a flat mold such as a press molding method or a cast molding method has a limit in the size that can be molded, and forms a large-sized (for example, a diagonal of 100 inches or more) optical film or lens sheet. It is also not a suitable technique.
The problem with these press molding methods and cast molding methods is the 2P molding method (a molding method in which a finely shaped lens portion made of a reaction-cured product of an ionizing radiation-curable resin is polymerized and adhered to the surface of a substrate. (Preferably for fine transfer) can be solved.
The 2P molding method has advantages such as seamless continuous molding, excellent mass productivity, and easy production of large-sized sheets, depending on the contrivance such as forming the mold into a roll. There are many molding methods.
[0004]
Regarding the manufacturing method and apparatus of the lens sheet by the 2P molding method,
A mold roll for molding the lens,
A supply unit that supplies the ultraviolet curable resin to the mold roll,
Various proposals have been made for a film lens manufacturing apparatus having an ultraviolet irradiation device for curing the ultraviolet curable resin into a desired lens shape based on a mold roll. (For example, see Patent Document 1)
[0005]
[Patent Document 1]
JP 2000-289120 A
[Problems to be solved by the invention]
As described above, the 2P molding method is a molding method having many advantages, but since an uncured ionizing radiation-curable resin is supplied between the molding die and the substrate, an uncured resin having a low viscosity is used. There is a possibility of leakage from the end of the molding die or the substrate, which may cause a reduction in production efficiency due to the backing of the substrate or the adhesion of resin to the device, and may also cause a reduction in quality.
[0007]
The present invention is intended to solve the above-mentioned problems, and to prevent a resin in an uncured state from leaking from a molding die or a substrate when manufacturing a sheet having fine irregularities on a surface by a 2P molding method using a roll-shaped molding die. It also enables more efficient production, and also prevents the resin from leaking, enabling the formation of a large resin pool and promoting the defoaming action from the fine irregularities on the surface of the roll-shaped mold. It is an object of the present invention to provide a method for manufacturing a sheet having a fine uneven shape.
[0008]
[Means for Solving the Problems]
The method for producing a sheet having a fine uneven shape according to the present invention,
A step of supplying an ionizing radiation-curable resin to a substrate surface having ionizing radiation and / or a roll-shaped molding surface having a fine irregularity shape reverse to the desired molding pattern on the surface;
The substrate is pressed against a roll-shaped mold having a surface with fine irregularities opposite to the desired molding pattern to spread the resin interposed between the substrate and the roll-shaped mold. Process and
Irradiating the spread resin with ionizing radiation, and curing the resin so that the surface shape becomes the desired pattern shape,
A step of peeling the base material polymerized and adhered from the reaction-cured product of the resin from a roll-shaped mold, and a method for producing a sheet having a fine uneven shape comprising a series of steps consisting of:
A weir-like structure and / or suction means is provided at both ends where the roll-shaped mold and the base material are pressed and joined.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
<First embodiment>
FIG. 1 shows an example of a method for producing a sheet having fine irregularities according to the present invention according to claim 1.
In the following description, in order to describe the production using a typical "ultraviolet curable resin" as the ionizing radiation curable resin, the substrate having ionizing radiation transparency is referred to as "translucent resin substrate". It is sometimes described.
[0010]
As shown in FIG. 1, the ionizing radiation-curable resin (1) applied to the translucent resin substrate (4) is pressed against the roll-shaped mold (3) and transported together with the roll-shaped mold (3). Is done. As means for preventing leakage of the uncured ionizing radiation-curable resin, a weir-like structure (6) is provided at the end of the pressing portion between the roll-shaped molding die (3) and the translucent resin base material (4). .
[0011]
By irradiating ionizing radiation from the back surface of the translucent resin substrate (4) in the ionizing radiation irradiating section (5), the ionizing radiation-curable resin is cured, and the fine irregularities on the surface of the roll-shaped mold (3) are formed. Is transferred and adhered to the translucent resin base material (4) to be integrated. Thereafter, the translucent resin substrate (4) and the roll-shaped mold (3) integrated with the reaction-cured product of the ionizing radiation-curable resin are peeled off, and a sheet having fine irregularities is obtained.
[0012]
<Embodiment 2>
FIG. 2 shows an example of a method for producing a sheet having fine irregularities according to the present invention.
As shown in the figure, the ionizing radiation-curable resin (1) applied to the translucent resin substrate (4) is pressed against the roll-shaped mold (3) and transported together with the roll-shaped mold (3). Is done. As means for preventing leakage of the uncured ionizing radiation-curable resin, a suction means (7) is provided at the end of the pressing portion between the roll-shaped mold (3) and the translucent resin substrate (4).
[0013]
By irradiating ionizing radiation from the back surface of the translucent resin substrate (4) in the ionizing radiation irradiating section (5), the ionizing radiation-curable resin is cured, and the fine irregularities on the surface of the roll-shaped mold (3) are formed. Is transferred and adhered to the translucent resin base material (4) to be integrated. Thereafter, the translucent resin substrate (4) and the roll-shaped mold (3) integrated with the reaction-cured product of the ionizing radiation-curable resin are peeled off, and a sheet having fine irregularities is obtained.
[0014]
<Embodiment 3>
In the first and second embodiments, the case where the ionizing radiation-curable resin is supplied only to the surface of the translucent resin substrate (4) is described. An embodiment in which an ionizing radiation-curable resin is supplied to both surfaces of the mold (3) will be described below.
As shown in FIG. 3, the ionizing radiation-curable resin (1) applied to the translucent resin substrate (4) is the ionizing radiation-curable resin (1) applied to the surface of the roll-shaped mold (3). It is pressed and laminated with 2) and transported together with the roll-shaped forming die (3). As means for preventing leakage of the uncured ionizing radiation-curable resin, a weir-like structure (6) is provided at the end of the pressing portion between the roll-shaped mold (3) and the translucent resin base material (4), and at the weir-like shape. The structure (8) is provided at the end of the portion where the ionizing radiation-curable resin (2) is applied to the roll-shaped mold (3).
[0015]
By irradiating the back surface of the translucent resin substrate (4) with ionizing radiation in the ionizing radiation irradiating section (5), the ionizing radiation-curable resin is cured, and the fine surface of the roll-shaped mold (3) is finely divided. The concavo-convex shape is transferred and adhered to the translucent resin substrate (4) to be integrated. Thereafter, the light-transmissive resin substrate (4) and the roll-shaped mold (3) integrated with the reaction-cured product of the ionizing radiation-curable resin are peeled off to obtain a sheet having fine irregularities. .
[0016]
<Embodiment 4>
In the first to third embodiments, as a means for preventing leakage of the uncured ionizing radiation-curable resin, one of the weir-shaped structure and the suction means is described in one or more places. The case where both of the suction structure and the suction means are used together will be described below.
As shown in FIG. 5, the ionizing radiation-curable resin (1) applied to the translucent resin substrate (4) is the ionizing radiation-curable resin (1) applied to the surface of the roll-shaped mold (3). It is pressed and laminated with 2) and transported together with the roll-shaped forming die (3). As means for preventing leakage of the uncured ionizing radiation-curable resin, a weir-like structure (6) is provided at the end of the pressing portion between the roll-shaped mold (3) and the translucent resin base material (4), and the suction means. (9) is installed at the end of the portion where the ionizing radiation-curable resin (2) is applied to the roll-shaped mold (3).
[0017]
By irradiating ionizing radiation from the back surface of the translucent resin substrate (4) in the ionizing radiation irradiating section (5), the ionizing radiation-curable resin is cured, and the fine irregularities on the surface of the roll-shaped mold (3) are formed. Is transferred and adhered to the translucent resin base material (4) to be integrated. Thereafter, the translucent resin substrate (4) and the roll-shaped mold (3) integrated with the reaction-cured product of the ionizing radiation-curable resin are peeled off, and a sheet having fine irregularities is obtained.
[0018]
Examples of the ionizing radiation-curable resin 1 (1) used in the present invention include a composition containing a urethane (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, and a reaction diluent, a photopolymerization initiator, and a sensitizer. No. It is preferable to mix and adjust these at a mixing ratio such that the adhesion to the translucent resin substrate (4) is improved after the reaction and curing. It is preferable that the ionizing radiation-curable resin (1) is sufficiently defoamed and filtered before being introduced into the production line, and the viscosity is preferably from 10 to 100,000 cps.
[0019]
Further, when the ionizing radiation-curable resin (1) is applied to the light-transmitting resin substrate (4), the resin is thinned and well adapted, so that the light-transmitting resin substrate (4) and the ionizing radiation-curable resin can be used. It is possible to improve the adhesion to the resin 1 (1). As the thinning means, it is preferable to use a roll, a blade, a doctor or the like whose resin coating thickness can be adjusted.
[0020]
Examples of urethane (meth) acrylate oligomers include polyols such as ethylene glycol, 1,4 butanediol, neopentyglycol, polycaprolactone polyol, polyester polyol, polycarbonate diol, and polytetramethylene glycol, and hexamethylene diisocyanate, isophorone diisocyanate, and the like. It can be obtained by reacting with an organic polyisocyanate such as tolylene diisocyanate or xylene isocyanate. However, it is not particularly limited to these.
[0021]
Examples of the epoxy (meth) acrylate oligomer include epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, terminal glycidyl ether of bisphenol A type propylene oxide adduct, and fluorene epoxy resin. It can be obtained by reacting with (meth) acrylic acid. However, it is not particularly limited to these.
[0022]
The roll-shaped mold (3) used in the present invention was made of a metal such as aluminum, brass or copper, or a synthetic resin of silicon resin, urethane resin, epoxy resin, fluororesin, polymethylpentane resin, or ceramic. Can be used. However, it is not particularly limited to these.
[0023]
The translucent resin substrate (4) used in the present invention is preferably one having ionizing radiation transparency, and the surface on which the fine irregularities are formed is for improving the adhesion to the ionizing radiation-curable resin (1). It is preferable that the surface treatment (easy adhesion treatment) is performed.
Examples of the resin material include polyester, polycarbonate, and polyvinyl chloride. From the viewpoint of the thickness, transparency, and strength of the base material, a polyester film having a thickness of 50 to 250 μm and a polycarbonate film having a thickness of 0.1 to 0.7 mm are suitable. . However, it is not particularly limited to these.
[0024]
As the ionizing radiation-curable resin (2) used in the present invention, similar to the ionizing radiation-curable resin (1), urethane (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, reaction diluent, photopolymerization initiator And a composition containing a sensitizer component.
[0025]
In order to improve the releasability from the roll-shaped molding die (3) after the reaction and curing, a release agent may be appropriately added thereto. In this case, the viscosity is the same as that of the ionizing radiation-curable resin (1). Adjustment is preferred. By adjusting the two ionic radiation-curable resins to be laminated to the same viscosity, the compatibility and adhesion between the resins can be increased, and interlayer destruction between the resin layers which may occur at the time of peeling can be prevented. is there.
Further, when the ionizing radiation-curable resin (2) is applied to the roll-shaped molding die (3), it is thinned, so that the ionizing radiation-curable resin is formed in the fine irregularities on the surface of the roll-shaped molding die (3). (2) can be filled without air bubbles. As the thinning means, it is preferable to use a roll, a blade, a doctor or the like whose resin coating thickness can be adjusted.
[0026]
As the material of the weir-like structures (6) and (8) used in the present invention, those made of a silicone resin, a urethane resin, an epoxy resin, a fluororesin, a polymethylpentane resin, or a ceramic synthetic resin can be used. However, the present invention is not particularly limited to these.
The shape of the weir-like structures (6) and (8) is such that the surface shape of the portion in contact with the roll-shaped mold (3) and the applied ionizing radiation-curable resin (1) are transported to the roll-shaped mold (3). Then, it is preferable to set appropriately according to the surface shape of the roll to be nipped.
The weir-like structures (6) and (8) are not integrated with the roll-shaped mold (3), and are not synchronized with the rotation of the roll-shaped mold (3). It is preferable to adopt a structure for maintaining a stationary state as shown in FIG.
[0027]
By installing the weir-like structure as described above, it is possible to prevent resin leakage from the end of the roll-shaped mold (3).
Further, since a large resin pool can be formed between the left and right weir-like structures (6), it is possible to promote the defoaming action from the fine irregularities on the surface of the roll-shaped mold (3). . What is necessary is just to select suitably the suction means (7) and (9) which can efficiently suck the uncured ionizing radiation-curable resin.
[0028]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
<Example>
Using the apparatus shown in FIG. 3, the ionizing radiation-curable resin (1) is converted into a translucent resin base material (4) (polyethylene terephthalate film manufactured by Toyobo Co., Ltd., using a double-sided easy-adhesion treatment, trademark A4300). After the dropping, it was thinly coated and coated to a thickness of 50 μm.
Further, the ionizing radiation-curable resin (2) is dropped on a roll-shaped mold (3) in which desired fine irregularities are patterned, and then thin-coated, and is pressed with a light-transmissive resin substrate (4). After lamination, ionizing radiation is irradiated from the back surface of the translucent resin base material (4) by an ionizing radiation irradiator (5) (using an ultraviolet irradiation device) to be cured, and the resin is passed through the roll-shaped mold (3). The optical resin substrate (4) was peeled off.
These series of steps are performed by pressing an end portion of the pressing portion of the roll-shaped mold (3) and the translucent resin substrate (4), and applying the ionizing radiation-curable resin (2) to the roll-shaped mold (3). At the ends, weir-shaped structures (6) and (8) (both made of Teflon (registered trademark)) were provided.
[0029]
<Comparative example>
Using the apparatus shown in FIG. 3, the ionizing radiation-curable resin (1) is converted into a translucent resin base material (4) (polyethylene terephthalate film manufactured by Toyobo Co., Ltd., using a double-sided easy-adhesion treatment, trademark A4300). After the dropping, it was thinly coated and coated to a thickness of 50 μm.
Further, the ionizing radiation-curable resin (2) is dropped on a roll-shaped mold (3) in which desired fine irregularities are patterned, and then thin-coated, and is pressed with a light-transmissive resin substrate (4). After lamination, ionizing radiation is irradiated from the back surface of the translucent resin base material (4) by an ionizing radiation irradiator (5) (using an ultraviolet irradiation device) to be cured, and the resin is passed through the roll-shaped mold (3). The optical resin substrate (4) was peeled off.
These series of steps are performed by pressing an end portion of the pressing portion of the roll-shaped mold (3) and the translucent resin substrate (4), and applying the ionizing radiation-curable resin (2) to the roll-shaped mold (3). The test was performed without providing the weir-like structures (6) and (8) (both made of Teflon (registered trademark)) at the ends.
[0030]
Table 1 shows the evaluation results of the examples and the comparative examples.
From the table, it is possible to prevent resin leakage and to significantly reduce the incorporation of bubbles into the minute unevenness (promoting the defoaming effect), indicating the superiority of the manufacturing method according to the embodiment of the present invention.
[0031]
[Table 1]
Figure 2004268270
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION By the manufacturing method of the sheet | seat which has a fine uneven | corrugated shape of this invention, it becomes possible to prevent the ionization radiation hardening type resin of an unhardened state leaking from a roll-shaped die end.
In addition, it is possible to greatly reduce the incorporation of bubbles into the minute irregularities (promote the defoaming effect), and it is possible to efficiently obtain a sheet having the minute irregularities.
[0033]
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a method for producing a sheet having fine irregularities according to the present invention.
FIG. 2 is a schematic view showing an example of a method for manufacturing a sheet having fine irregularities according to the present invention.
FIG. 3 is a schematic view showing an example of a method for producing a sheet having fine irregularities according to the present invention.
FIG. 4 is a schematic view showing an example of a method for producing a sheet having fine irregularities according to the present invention.
[Explanation of symbols]
1,2 ... Ionizing radiation-curable resin 3 ... Roll-shaped mold 4 ... Translucent resin substrate (substrate having ionizing radiation transparency)
5 ... Ionizing radiation irradiation part 6,8 ... Weir-like structure 7,9 ... Suction means

Claims (7)

電離放射線透過性を有する基材表面および/または所望の成形パターンと逆型の微細凹凸形状を表面に有するロール状成形型表面に電離放射線硬化型樹脂を供給する工程と、
前記基材を、前記所望の成形パターンと逆型の微細凹凸形状を表面に有するロール状成形型に押圧して、前記基材と前記ロール状成形型の間に介在する前記樹脂を展延する工程と、
展延された前記樹脂に電離放射線を照射して、表面形状が前記所望のパターン状となるように前記樹脂を硬化させる工程と、
前記樹脂の反応硬化物と重合接着された前記基材をロール状成形型から剥離する工程、とからなる一連の工程を具備する微細凹凸形状を有するシートの製造方法において、
前記ロール状成形型と前記基材とを押圧して接合する両端部に堰状構造を設けることを特徴とする微細凹凸形状を有するシートの製造方法。
A step of supplying an ionizing radiation-curable resin to a substrate surface having ionizing radiation and / or a roll-shaped molding surface having a fine irregularity shape reverse to the desired molding pattern on the surface;
The substrate is pressed against a roll-shaped mold having a surface with fine irregularities opposite to the desired molding pattern to spread the resin interposed between the substrate and the roll-shaped mold. Process and
Irradiating the spread resin with ionizing radiation, and curing the resin so that the surface shape becomes the desired pattern shape,
A step of peeling the base material polymerized and adhered from the reaction-cured product of the resin from a roll-shaped mold, and a method for producing a sheet having a fine uneven shape comprising a series of steps consisting of:
A method for producing a sheet having fine irregularities, wherein weir-like structures are provided at both ends of the roll-shaped mold and the base material that are pressed and joined.
電離放射線透過性を有する基材表面および/または所望の成形パターンと逆型の微細凹凸形状を表面に有するロール状成形型表面に電離放射線硬化型樹脂を供給する工程と、
前記基材を、前記所望の成形パターンと逆型の微細凹凸形状を表面に有するロール状成形型に押圧して、前記基材と前記ロール状成形型の間に介在する前記樹脂を展延する工程と、
展延された前記樹脂に電離放射線を照射して、表面形状が前記所望のパターン状となるように前記樹脂を硬化させる工程と、
前記樹脂の反応硬化物と重合接着された前記基材をロール状成形型から剥離する工程、とからなる一連の工程を具備する微細凹凸形状を有するシートの製造方法において、
前記ロール状成形型と前記基材とを押圧して接合する両端部に吸引手段を設けることを特徴とする微細凹凸形状を有するシートの製造方法。
A step of supplying an ionizing radiation-curable resin to a substrate surface having ionizing radiation and / or a roll-shaped molding surface having a fine irregularity shape reverse to the desired molding pattern on the surface;
The substrate is pressed against a roll-shaped mold having a surface with fine irregularities opposite to the desired molding pattern to spread the resin interposed between the substrate and the roll-shaped mold. Process and
Irradiating the spread resin with ionizing radiation, and curing the resin so that the surface shape becomes the desired pattern shape,
A step of peeling the base material polymerized and adhered from the reaction-cured product of the resin from a roll-shaped mold, and a method for producing a sheet having a fine uneven shape comprising a series of steps consisting of:
A method for producing a sheet having fine irregularities, wherein suction means are provided at both ends of the roll-shaped mold and the base material that are pressed and joined.
前記基材表面に供給する電離放射線硬化型樹脂(1)と、前記ロール状成形型表面に供給する電離放射線硬化型樹脂(2)とが等しい粘度であることを特徴とする請求項1または2に記載の微細凹凸形状を有するシートの製造方法。The ionizing radiation-curable resin (1) supplied to the surface of the base material and the ionizing radiation-curable resin (2) supplied to the roll-shaped molding surface have the same viscosity. 3. A method for producing a sheet having fine irregularities according to item 1. 前記ロール状成形型表面に電離放射線硬化型樹脂を供給する際に、前記ロール状成形型表面における両端部に堰状構造を設けることを特徴とする請求項1〜3の何れかに記載の微細凹凸形状を有するシートの製造方法。The microstructure according to any one of claims 1 to 3, wherein when supplying the ionizing radiation-curable resin to the roll-shaped mold surface, weir-shaped structures are provided at both ends of the roll-shaped mold surface. A method for producing a sheet having an uneven shape. 前記ロール状成形型表面に電離放射線硬化型樹脂を供給する際に、前記ロール状成形型表面における両端部に吸引手段を設けることを特徴とする請求項1〜3の何れかに記載の微細凹凸形状を有するシートの製造方法。The fine irregularities according to any one of claims 1 to 3, wherein when supplying the ionizing radiation-curable resin to the surface of the roll-shaped mold, suction means are provided at both ends of the surface of the roll-shaped mold. A method for producing a sheet having a shape. 堰状構造は、前記ロール状成形型とは一体化されておらず、前記ロール状成形型の回動とは同期せずに静止状態を保つ構造であることを特徴とする請求項1または4に記載の微細凹凸形状を有するシートの製造方法。5. The weir-like structure is not integrated with the roll-shaped mold, and is a structure that maintains a stationary state without synchronizing with the rotation of the roll-shaped mold. 3. A method for producing a sheet having fine irregularities according to item 1. 前記基材は、ロールから連続的に供給されるウェブ状の樹脂製基材であることを特徴とする請求項1〜6の何れかに記載の微細凹凸形状を有するシートの製造方法。The method according to any one of claims 1 to 6, wherein the substrate is a web-shaped resin substrate continuously supplied from a roll.
JP2003058115A 2003-03-05 2003-03-05 Method for manufacturing sheet having fine uneven shape Pending JP2004268270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058115A JP2004268270A (en) 2003-03-05 2003-03-05 Method for manufacturing sheet having fine uneven shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058115A JP2004268270A (en) 2003-03-05 2003-03-05 Method for manufacturing sheet having fine uneven shape

Publications (1)

Publication Number Publication Date
JP2004268270A true JP2004268270A (en) 2004-09-30

Family

ID=33121306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058115A Pending JP2004268270A (en) 2003-03-05 2003-03-05 Method for manufacturing sheet having fine uneven shape

Country Status (1)

Country Link
JP (1) JP2004268270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040023A1 (en) * 2005-10-03 2007-04-12 Konica Minolta Opto, Inc. Process for producing film with rugged pattern and production apparatus therefor
JP2013014055A (en) * 2011-07-04 2013-01-24 Mitsubishi Rayon Co Ltd Method for manufacturing film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040023A1 (en) * 2005-10-03 2007-04-12 Konica Minolta Opto, Inc. Process for producing film with rugged pattern and production apparatus therefor
JP2013014055A (en) * 2011-07-04 2013-01-24 Mitsubishi Rayon Co Ltd Method for manufacturing film

Similar Documents

Publication Publication Date Title
TWI543871B (en) And a method for producing a light-transmitting hard substrate laminate
TW440747B (en) Vacuum lamination device and vacuum lamination method
JP2012111150A (en) Release material for resin base board, and manufacturing method of the same
JP6322871B2 (en) Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element
JP5427225B2 (en) Manufacturing method of printing resin original plate
JPH11507472A (en) Method for producing embossed conductive membrane composite
EP1955111B1 (en) Photopolymer printing form with reduced processing time
JP2014133335A (en) Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel
JPH0732476A (en) Manufacturing device for recessed and projected film
JP2004268270A (en) Method for manufacturing sheet having fine uneven shape
JP2010225785A (en) Method of manufacturing transfer film for imprinting, and transfer film for imprinting
JP2008074015A (en) Manufacturing method for lens sheet, and its manufacturing apparatus
JP4341257B2 (en) Manufacturing method of sheet having fine uneven shape
JP2003305736A (en) Manufacturing method for optical article and microlens array sheet
WO1998023978A1 (en) Method of producing lens sheet and projection screen
JP2002268146A (en) Method of manufacturing optical article and projection screen and projection television using these optical articles
JP2002160232A (en) Molding mold and production method for lens sheet
TWI717518B (en) Method for manufacturing resin precursor for printing, method for manufacturing flexographic printing plate, and method for manufacturing liquid crystal display element
JP2013226667A (en) Method of manufacturing sheet-shaped member including fine irregular pattern and sheet-shaped member
JP2005055599A (en) Sheet having minute unevenness formed part
JPH09311204A (en) Lenticular lens sheet and its production
JP2008279710A (en) Sheet and its manufacturing method
JP2000280257A (en) Production of flesnel lens sheet
JPH08230047A (en) Formation of three-dimensional shape
JP4305090B2 (en) Lens sheet and manufacturing method thereof