JP2009223129A - Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device - Google Patents

Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
JP2009223129A
JP2009223129A JP2008069163A JP2008069163A JP2009223129A JP 2009223129 A JP2009223129 A JP 2009223129A JP 2008069163 A JP2008069163 A JP 2008069163A JP 2008069163 A JP2008069163 A JP 2008069163A JP 2009223129 A JP2009223129 A JP 2009223129A
Authority
JP
Japan
Prior art keywords
film
refractive index
optical film
layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008069163A
Other languages
Japanese (ja)
Inventor
Kazuyuki Shimizu
和之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008069163A priority Critical patent/JP2009223129A/en
Publication of JP2009223129A publication Critical patent/JP2009223129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical film causing no deformation such as black band and blocking irrespective of its large width and thin film and to provide the optical film manufactured by this manufacturing method, a polarizing plate using this optical film, and a liquid crystal display element using this polarizing plate. <P>SOLUTION: This method for manufacturing the optical film having deviation in local film thickness in the direction of width being 0.2-2.5 μm comprises an application process for applying a functional coating on the film being a continuously moving basic material, a knurling process for knurling the film being the basic material to have height of 14-30 μm before or after applying the functional coating, a drying process for drying the film being the basic material on which the functional coating is applied, and a winding process for winding the film being the basic material on which the functional coating is applied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、広幅、薄膜の光学フィルムであってもブラックバンドやブロッキングなどのフィルム変形のない塗布型の光学フィルムの製造方法、該製造方法により製造した光学フィルム、該光学フィルムを用いた偏光板および該偏光板を用いた液晶表示素子に関する。   The present invention relates to a method for producing a coating type optical film having no film deformation such as a black band or blocking even if it is a wide and thin optical film, an optical film produced by the production method, and a polarizing plate using the optical film And a liquid crystal display element using the polarizing plate.

近年、CRTの他、液晶テレビやプラズマディスプレイ(PDP)、有機ELディスプレイ等種々の表示装置が開発されてきており、それらの画面サイズが大型化してきている。大画面化及び高画質化に伴って、視認性を改善するため反射防止層等が形成された光学フィルムを表示装置前面に張り付けることが行われている。また、このような表示装置では、直接、手が触れたり、物が接触したりすることがあり傷を付け易い。そこで、通常は傷つき防止のためにハードコート層を基材フィルム上に形成したものや更にその上に反射防止層等が形成されたハードコート層付き光学フィルムが用いられてきている。   In recent years, various display devices such as a liquid crystal television, a plasma display (PDP), and an organic EL display have been developed in addition to a CRT, and their screen sizes are increasing. With an increase in screen size and image quality, an optical film on which an antireflection layer or the like is formed is attached to the front surface of a display device in order to improve visibility. Moreover, in such a display apparatus, a hand may touch directly or an object may contact, and it is easy to damage it. Therefore, in general, an optical film with a hard coat layer in which a hard coat layer is formed on a base film for preventing scratches and an antireflection layer or the like formed thereon is used.

このような表示装置用の光学フィルムとしては、特に最近、大画面化により1000mm以上、更に1400mm以上の幅広フィルムが必要となってきている。また、携帯電話やノートパソコン用として厚みが60μm程度の薄い基材フィルムが使用されるようになってきた。そのため、基材フィルムにはセルロースエステル等の樹脂フィルムが使用され、その上にハードコート層、反射防止層、防汚層または防眩層を形成することが行われている。   As such an optical film for a display device, a wide film having a size of 1000 mm or more, and further 1400 mm or more has recently been required due to the enlargement of the screen. In addition, a thin base film having a thickness of about 60 μm has been used for mobile phones and notebook computers. Therefore, a resin film such as cellulose ester is used as the base film, and a hard coat layer, an antireflection layer, an antifouling layer or an antiglare layer is formed thereon.

しかし、上記のように広幅化のため基材フィルムが幅広となった場合、または薄膜化のため基材フィルムの厚さを薄くした場合には、ハードコート層、反射防止層を形成した後、または仕上がった光学フィルムを巻き取る段階で、巻き形状の悪化が生じたり、円周上に黒い帯状に見える筋(以下ブラックバンドと称す)やブロッキングと呼ばれる膜同士の接着が発生しやすくなり、酷い場合には変形を生じ、収率の低下を招くことがある。光学フィルムは、変形がないことが必要であり、巻取り状態の安定化の為、光学フィルムにナーリングと呼ばれるエンボス加工を行う技術が知られており、ナーリングの厚み規定、ナーリング部のエンボス高さ規定、複数列のエンボス加工技術が開示されている(例えば、特許文献1〜3参照。)。しかしながら、最近の広幅、薄膜のフィルムの製造においては、より一層のブラックバンドやブロッキングの防止ができ、より生産効率の良い技術が要求されている。
特開2005−77795号公報 特開2005−99245号公報 特開2006−224607号公報
However, when the base film becomes wider for widening as described above, or when the thickness of the base film is reduced for thinning, after forming the hard coat layer and the antireflection layer, Or, at the stage of winding the finished optical film, the winding shape deteriorates, the stripes that appear as black bands on the circumference (hereinafter referred to as black bands) and the adhesion between films called blocking are likely to occur, which is severe In some cases, deformation may occur, leading to a decrease in yield. The optical film must be free of deformation, and for stabilization of the winding state, a technique for embossing called optical knurling on the optical film is known. The thickness regulation of the knurling and the embossing height of the knurling part are known. A standard, multi-row embossing technique is disclosed (see, for example, Patent Documents 1 to 3). However, in the recent production of wide and thin films, there is a demand for a technology that can prevent further black bands and blocking and has higher production efficiency.
JP-A-2005-77795 JP 2005-99245 A JP 2006-224607 A

従って、本発明の目的は、上記課題に鑑み、広幅、薄膜の光学フィルムであってもブラックバンドやブロッキングなどのフィルム変形のない光学フィルムの製造方法、該製造方法により製造した光学フィルム、該光学フィルムを用いた偏光板および該偏光板を用いた液晶表示素子を提供することにある。   Therefore, in view of the above problems, an object of the present invention is to provide a method for producing an optical film having no film deformation such as a black band or blocking even if it is a wide and thin optical film, an optical film produced by the production method, A polarizing plate using a film and a liquid crystal display element using the polarizing plate are provided.

本発明の上記目的は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.
連続的に移動するフィルムの表面に機能性膜を塗布する塗布工程と、前記フィルムにナーリング処理を行うナーリング工程と、前記機能性膜を塗布したフィルムを乾燥する乾燥工程と、該乾燥工程の後、前記フィルムを巻きとる巻きとり工程と、を有する光学フィルムの製造方法において、
前記乾燥工程後の前記フィルムの幅方向における局所膜厚偏差が、0.2〜2.5μmであり、
前記ナーリング処理は、前記フィルムの機能性膜を塗布する面側に処理され、ナーリング高さが、14〜30μmであることを特徴とする光学フィルムの製造方法。
1.
A coating step of applying a functional film on the surface of a continuously moving film, a knurling step of knurling the film, a drying step of drying the film coated with the functional film, and after the drying step In a method for producing an optical film, including a winding step of winding the film,
The local film thickness deviation in the width direction of the film after the drying step is 0.2 to 2.5 μm,
The said knurling process is processed to the surface side which apply | coats the functional film of the said film, and knurling height is 14-30 micrometers, The manufacturing method of the optical film characterized by the above-mentioned.

2.
前記塗布工程前のフィルムの膜厚が35〜100μmであることを特徴とする1に記載の光学フィルムの製造方法。
2.
2. The method for producing an optical film according to 1, wherein a film thickness of the film before the coating step is 35 to 100 μm.

3.
前記塗布工程前のフィルムの幅方向における局所膜厚偏差が0.1〜2.0μmであることを特徴とする1又は2に記載の光学フィルムの製造方法。
3.
3. The method for producing an optical film according to 1 or 2, wherein the film thickness deviation in the width direction of the film before the coating step is 0.1 to 2.0 [mu] m.

4.
前記乾燥工程後の機能性膜の幅方向における局所膜厚偏差が0.1〜0.5μmであることを特徴とする1乃至3の何れか1項に記載の光学フィルムの製造方法。
4).
4. The method for producing an optical film according to claim 1, wherein a local film thickness deviation in the width direction of the functional film after the drying step is 0.1 to 0.5 μm.

5.
前記フィルムの前記機能性膜を塗布する面の反対側の面に、体積平均粒径が0.01〜1μmの粒子を0.02〜10.00質量%含有する塗布液を塗布することを特徴とする1乃至4の何れか1項に記載の光学フィルムの製造方法。
5.
A coating liquid containing 0.02 to 10.00 mass% of particles having a volume average particle size of 0.01 to 1 μm is applied to the surface of the film opposite to the surface to which the functional film is applied. 5. The method for producing an optical film according to any one of 1 to 4.

6.
前記ナーリング処理は、前記フィルムにおける前記機能性膜が塗布される領域の、幅方向外側に施すことを特徴とする1乃至5の何れか1項に記載の光学フィルムの製造方法。
6).
6. The method for producing an optical film according to any one of 1 to 5, wherein the knurling treatment is performed on an outer side in a width direction of a region of the film to which the functional film is applied.

7.
前記巻きとり工程における巻取り時の張力が30〜400N/mであることを特徴とする1乃至6の何れか1項に記載の光学フィルムの製造方法。
7).
The method for producing an optical film according to any one of 1 to 6, wherein a tension during winding in the winding step is 30 to 400 N / m.

8.
前記巻きとり工程における前記フィルムの巻取り長が500〜4000mであることを特徴とする1乃至7の何れか1項に記載の光学フィルムの製造方法。
8).
The method for producing an optical film according to any one of 1 to 7, wherein a winding length of the film in the winding step is 500 to 4000 m.

9.
前記フィルムの幅が1000〜4000mmであることを特徴とする1乃至8の何れか1項に記載の光学フィルムの製造方法。
9.
9. The method for producing an optical film according to any one of 1 to 8, wherein the film has a width of 1000 to 4000 mm.

10.
前記巻きとり工程後、巻きとった前記フィルムを50〜150℃の温度で3〜30日間保持することを特徴とする1乃至9の何れか1項に記載の光学フィルムの製造方法。
10.
10. The method for producing an optical film according to any one of 1 to 9, wherein the wound film is held at a temperature of 50 to 150 [deg.] C. for 3 to 30 days after the winding step.

11.
1乃至10の何れか1項の光学フィルムの製造方法で作成されたことを特徴とする光学フィルム。
11.
An optical film produced by the method for producing an optical film according to any one of 1 to 10.

12.
11の光学フィルムを用いたことを特徴とする偏光板。
12
A polarizing plate using the 11 optical film.

13.
12の偏光板を用いたことを特徴とする液晶表示装置。
13.
A liquid crystal display device using 12 polarizing plates.

本発明により広幅、薄膜の光学フィルムであってもブラックバンドやブロッキングなどのフィルム変形のない光学フィルムの製造方法、該製造方法により製造した光学フィルム、該光学フィルムを用いた偏光板および該偏光板を用いた液晶表示素子を提供することができる。   A method for producing an optical film having no film deformation such as a black band or blocking, even if it is a wide and thin optical film according to the present invention, an optical film produced by the production method, a polarizing plate using the optical film, and the polarizing plate A liquid crystal display element using can be provided.

以下、本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.

本発明における光学フィルムの製造方法は、連続的に移動するフィルムに機能性膜を塗布する塗布工程と、フィルムにナーリング処理を行うナーリング工程と、機能性膜を塗布したフィルムを乾燥する乾燥工程と、該乾燥工程の後、フィルムを巻きとる巻きとり工程と、を有しており、乾燥工程後のフィルムの幅方向における局所膜厚偏差が、0.2〜2.5μmであり、ナーリング処理をフィルムの機能性膜を塗布する面側に処理し、そのナーリング高さが、14〜30μmであることを特徴とするものである。   The method for producing an optical film in the present invention includes a coating process for applying a functional film to a continuously moving film, a knurling process for knurling the film, and a drying process for drying the film coated with the functional film. And a winding step of winding the film after the drying step, and the local film thickness deviation in the width direction of the film after the drying step is 0.2 to 2.5 μm, and the knurling treatment is performed. The film is processed on the side to which the functional film is applied, and the knurling height is 14 to 30 μm.

このように、乾燥工程後のフィルムの幅方向における局所膜厚偏差を0.2〜2.5μm、ナーリング工程におけるナーリング高さを14〜30μmとすることにより、作製したフィルムをロール状に巻きとっても、巻き形状の悪化が生じ、円周上に黒い帯状に見える筋(以下ブラックバンドと称す)やブロッキングと呼ばれる膜同士の接着が発生せずに、良好なフィルムを作製することが出来る。   Thus, even if it rolls the produced film in roll shape by making the local film thickness deviation in the width direction of the film after a drying process into 0.2-2.5 micrometers and the knurling height in a knurling process be 14-30 micrometers. Deterioration of the winding shape occurs, and a good film can be produced without causing adhesion of a film called a black band on the circumference (hereinafter referred to as a black band) or a film called blocking.

この光学フィルムの幅方向における局所膜厚偏差とは、基材フィルムに機能性膜を塗布し、乾燥した後の光学フィルムの膜厚を幅手方向に測定し、一つの山の底と頂上の膜厚差の最大値(μm)と定義する。   The local film thickness deviation in the width direction of this optical film means that the functional film is applied to the base film, and the thickness of the optical film after drying is measured in the width direction. It is defined as the maximum thickness difference (μm).

膜厚の測定装置としては、市販の透過型赤外線膜厚計、β線膜厚計等を用いることが出来る。透過型赤外線膜厚計の例としては、クラボウ・インダストリィーズ製RX−100型、RX−200型等が挙げられる。β線膜厚計の例としては、帝人エンジニアリング(株)製β線厚さ計が挙げられる。この測定方法は、下記に記す基材フィルムの局所膜厚偏差や、基材フィルム上に塗布した乾燥後の機能性膜の局所膜厚偏差の測定にも使用することが出来る。   As a film thickness measuring device, a commercially available transmission infrared film thickness meter, β-ray film thickness meter, or the like can be used. Examples of the transmission infrared film thickness meter include the RX-100 type and RX-200 type manufactured by Kurabo Industries. An example of a β-ray thickness gauge is a Teijin Engineering Co., Ltd. β-ray thickness gauge. This measurement method can also be used to measure the local film thickness deviation of the base film described below and the local film thickness deviation of the functional film after drying applied on the base film.

また、ナーリング高さについて図1を用いて、説明する。図1は、基材フィルムF上に機能性膜が2層(図中3、4)形成されており、その機能性膜のフィルム幅方向外側にナーリング処理が2回(図中1、2)施された状態を示している。ナーリング高さTとは、機能性膜の表面と、ナーリング部の高さとの差である。   The knurling height will be described with reference to FIG. In FIG. 1, two functional films (3 and 4 in the figure) are formed on the base film F, and the knurling process is performed twice on the outer side in the film width direction of the functional film (1, 2 in the figure). The applied state is shown. The knurling height T is a difference between the surface of the functional film and the height of the knurling portion.

光学フィルムの幅方向における局所膜厚偏差が2.5μmを越えると、膜厚のバラツキが大きなり、巻取り時にゆがみが生じブラックバンドが発生する。また、0.2μm未満の局所膜厚偏差は、製造するのが困難である。   When the local film thickness deviation in the width direction of the optical film exceeds 2.5 μm, the film thickness varies greatly, distortion occurs during winding, and a black band is generated. Also, local film thickness deviations of less than 0.2 μm are difficult to manufacture.

ナーリング高さTが、14μm未満であると、ブロッキングやブラックバンドの防止に必要な高さが不足しており、30μm以上であると巻き端部の厚みが増し(耳立ち故障)、フィルムの変形が発生する。   When the knurling height T is less than 14 μm, the height necessary for preventing blocking or black band is insufficient, and when it is 30 μm or more, the thickness of the winding end increases (ear-earing failure) and the film is deformed. appear.

機能性膜は、1層でもまた3層以上の構成でも良い。また、ナーリング処理は、1回でもまた3回以上の処理を行っても良く、最終的なナーリング部の高さが、所定の高さであればよい。また、ナーリングの処理は、機能性膜の塗布前に形成しても良く、塗布後に形成しても良い。更に、多層の機能性膜を形成する場合は、それぞれの塗布工程間にナーリング処理を行っても良い。また、塗布工程前と塗布工程後の両方に行っても良い。要するに、基材フィルムに機能性膜を形成し、ロール状に巻きとる前に所定のナーリング高さが形成されていればよい。ナーリングを付与する方法としては、フィルムに加熱されたエンボスロールを押し当てることにより形成することが出来る。加工は常温でも可能であるが、エンボスロールの表面温度をフィルムのTg+20℃以上、融点(Tm)+30℃以下で加工するのが好ましい。エンボスロールには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることが出来る。凹凸の形状については特に限定されず、種々なパターンのものが用いられる。エンボス加工の各条の突起として観察される部分のエンボス加工部全体に対する面積の割合が、15〜50%程度が好ましく、これらの各条に含まれる突起が不連続なものである場合にはその数は1cm2当たり10〜30個程度であるのが好ましい。ナーリング部の幅(H)は特に限定はないが、0.5cm〜3cm、好ましくは1〜2.5cm、特に好ましくは1.5〜2cmの幅である。 The functional film may be composed of one layer or three or more layers. Further, the knurling process may be performed once or three times or more, and the final knurling part has only to have a predetermined height. Further, the knurling treatment may be formed before or after the functional film is applied. Furthermore, when a multilayer functional film is formed, a knurling process may be performed between the respective coating steps. Moreover, you may perform both before an application | coating process and after an application | coating process. In short, it is sufficient that a functional film is formed on the base film and a predetermined knurling height is formed before winding in a roll shape. As a method for imparting knurling, it can be formed by pressing a heated embossing roll on the film. Processing can be performed at room temperature, but it is preferable to process the embossing roll at a surface temperature of Tg + 20 ° C. or higher and a melting point (Tm) + 30 ° C. or lower. Fine embossing is formed on the embossing roll. By pressing this embossing roll, unevenness can be formed on the film and the end can be made bulky. The shape of the unevenness is not particularly limited, and various patterns are used. The ratio of the area of the portion observed as the protrusion of each embossed line to the entire embossed part is preferably about 15 to 50%, and when the protrusions included in each of these lines are discontinuous, The number is preferably about 10 to 30 per cm 2 . The width (H) of the knurling part is not particularly limited, but is 0.5 cm to 3 cm, preferably 1 to 2.5 cm, particularly preferably 1.5 to 2 cm.

また、本発明における塗布工程前の基材となるフィルム(以降、基材フィルムという。)の膜厚は35μm〜100μmが好ましく、更に好ましくは40μm〜80μmである。   Moreover, the film thickness of a film (hereinafter referred to as a base film) before the coating step in the present invention is preferably 35 μm to 100 μm, and more preferably 40 μm to 80 μm.

また、本発明においては、基材フィルムの幅方向における局所膜厚偏差が0.1〜2.0μmであることが好ましい。2.0μmを越える場合は膜厚のバラツキが大きく、巻取り時にゆがみが生じブラックバンドやブロッキングが発生する可能性がある。また、0.1μm未満の局所膜厚偏差は、製造するのが困難である。   Moreover, in this invention, it is preferable that the local film thickness deviation in the width direction of a base film is 0.1-2.0 micrometers. When the thickness exceeds 2.0 μm, the variation in film thickness is large, and there is a possibility that distortion occurs during winding and a black band or blocking occurs. Also, local film thickness deviations less than 0.1 μm are difficult to manufacture.

また、本発明においては、乾燥工程後の機能性膜の局所膜厚偏差が0.1〜0.5μmの間にあることが好ましい。この値が0.5μmを越える場合は機能性膜の表面のばらつきが大きいため、局所的にフィルムの変形などが起きやすく、巻取り時にゆがみが生じブラックバンドやブロッキングが発生する可能性がある。また、0.1μm未満の局所膜厚偏差は、製造するのが困難である。   Moreover, in this invention, it is preferable that the local film thickness deviation of the functional film after a drying process exists between 0.1-0.5 micrometer. If this value exceeds 0.5 μm, the surface of the functional film has a large variation, so that the film is likely to be locally deformed, and distortion may occur during winding, resulting in the occurrence of black bands and blocking. Also, local film thickness deviations less than 0.1 μm are difficult to manufacture.

また、本発明においては、機能性膜を塗布したフィルムの反対側の面(裏面)に体積平均粒径が0.01〜1μmの粒子を0.02〜10.00質量%含有する塗布液を塗布することが好ましい。より好ましくは、含有量は0.05質量%〜5.00質量%であり、更に好ましくは0.08質量%〜2.00質量%である。このような塗布液を塗布することで、フィルムの裏面の動摩擦係数を小さくでき、ロール状に巻きとるときの機能性膜へのキズや異物の発生、埃等の吸着を抑えることが出来る。粒径が1μmを越えたり、含有量が5.00質量%を越えると、裏面の表面が荒れて、巻きとり時に機能性膜を傷つけたり、また、巻きとり状態の不良を起こす可能性があり、好ましくない。また、粒径が0.01μm未満であったり、含有量が0.05質量%未満では、動摩擦係数を小さくする効果が少なくなり、好ましくない。   In the present invention, a coating liquid containing 0.02 to 10.00 mass% of particles having a volume average particle diameter of 0.01 to 1 μm is provided on the opposite surface (back surface) of the film coated with the functional film. It is preferable to apply. More preferably, content is 0.05 mass%-5.00 mass%, More preferably, it is 0.08 mass%-2.00 mass%. By applying such a coating solution, the coefficient of dynamic friction on the back surface of the film can be reduced, and the generation of scratches and foreign matter on the functional film and the adsorption of dust and the like when wound in a roll shape can be suppressed. If the particle size exceeds 1 μm or the content exceeds 5.00% by mass, the back surface may become rough, and the functional film may be damaged during winding, or the winding state may be deteriorated. It is not preferable. On the other hand, when the particle size is less than 0.01 μm or the content is less than 0.05% by mass, the effect of reducing the dynamic friction coefficient decreases, which is not preferable.

また、ナーリング部の場所に関しては塗布幅の内外どちらでも良いが、図1のように基材フィルムにおける機能性膜が塗布される領域の、幅方向外側に施すことが好ましい。これは塗布箇所にナーリングすると、ナーリング処理時の高温や高圧力エネルギーにより機能性膜がダメージを受け破損されて異物原因になりやすい。また、ナーリング部に機能性膜を塗布するとエンボス高さが長手方向にばらつくため好ましくない。   Further, the location of the knurling portion may be either the inside or outside of the coating width, but it is preferably applied to the outside in the width direction of the region where the functional film is applied in the base film as shown in FIG. When this is knurled at the application site, the functional film is damaged and broken due to the high temperature and high pressure energy during the knurling process, which tends to cause foreign matter. Moreover, it is not preferable to apply a functional film to the knurling portion because the emboss height varies in the longitudinal direction.

また、本発明のフィルムの巻きとり工程においては、フィルムに張力をかけて巻きとるが、その張力は、30〜400N/mであることが好ましい。巻取り時の張力が30N/m未満であると、巻取りフィルムが経時で巻上部が陥没する現象、いわゆる馬の背現象が発生しやすくなる。この現象は、貼りつき故障の原因になる可能性があり好ましくない。   Further, in the film winding process of the present invention, the film is wound with tension, and the tension is preferably 30 to 400 N / m. If the tension at the time of winding is less than 30 N / m, a phenomenon in which the upper part of the winding film sinks over time, that is, a so-called horse spine phenomenon is likely to occur. This phenomenon may cause sticking failure and is not preferable.

その他にも、巻取り張力が弱すぎて、特に2000m以上の長尺巻取りの際、仕上がった製品ロール輸送時に巻きずれたり、再繰り出し時の繰り出し張力により巻きずれたりするため好ましくない。また巻取り時の張力が400N/mを超えると、巻締まりによるフィルム同士の貼付き故障が生じやすく、好ましくない。   In addition, since the winding tension is too weak, especially when winding a long length of 2000 m or more, it is unpreferable because it is unwound during transportation of the finished product roll or unwound due to the unwinding tension during re-feeding. On the other hand, if the tension at the time of winding exceeds 400 N / m, a film sticking failure due to tightening tends to occur, which is not preferable.

また、本発明における光学フィルムの巻取り長(基材フィルムが塗布工程を経てナーリング処理をされた後にロール状に巻き取られた光学フィルムの長さをいう。)は、500〜4000mであるのが好ましい。光学フィルムの巻取り長が500m未満であれば、得られる光学フィルムの巻本数が多すぎて、包装の対応が困難であるので、好ましくない。   Moreover, the winding length of the optical film in the present invention (referring to the length of the optical film wound in a roll shape after the base film is subjected to the knurling treatment through the coating step) is 500 to 4000 m. Is preferred. If the winding length of the optical film is less than 500 m, it is not preferable because the number of windings of the obtained optical film is too large and it is difficult to cope with packaging.

また、光学フィルムの巻取り長が4000mを超えると、ブロッキング等の故障が発生しやすくなるので好ましくない。   Further, if the winding length of the optical film exceeds 4000 m, it is not preferable because failure such as blocking is likely to occur.

また、本発明における光学フィルムの幅は、1000〜4000mmであることが好ましい。   Moreover, it is preferable that the width | variety of the optical film in this invention is 1000-4000 mm.

光学フィルムをロール状に巻き取る際に用いる巻きコアとしては、円筒状のコアであれは、どのような材質のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料としては後述する加熱処理温度に耐える耐熱性プラスチックであればどのようなものであっても良く、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性樹脂が好ましい。   The winding core used when winding the optical film in a roll shape may be any material as long as it is a cylindrical core, but is preferably a hollow plastic core, and the plastic material will be described later. Any heat-resistant plastic that can withstand the heat treatment temperature is used, and examples thereof include phenol resins, xylene resins, melamine resins, polyester resins, and epoxy resins. A thermosetting resin reinforced with a filler such as glass fiber is preferable.

これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることが更に好ましく、巻き厚は5cm以上であることが好ましく、基材フィルムの幅は1.0m以上であることが好ましく、1.4m以上であることが特に好ましい。   The number of windings to these winding cores is preferably 100 windings or more, more preferably 500 windings or more, the winding thickness is preferably 5 cm or more, and the width of the base film is 1.0 m or more. It is preferable that it is 1.4 m or more.

また、本発明においては、光学フィルムをロール状に巻きとった後、ロール状の状態で加熱処理を行うのが好ましい。ロール状の状態で加熱処理を行わない場合、搬送しながら加熱処理を行うことになるが、その場合、加熱温度が高すぎて加熱ムラによる部分的な硬化不良や基材フィルムの熱変形などの問題が生じてしまう。また、加熱温度を上げずに加熱処理ゾーンの通過時間を延長すると、生産速度が遅くなり製造コストが上昇する。これに対して、ロール状態で、処理温度は50℃〜150℃の範囲で、期間は3日〜30日で加熱処理を行うようにすれば、部分的な硬化不良や基材フィルムの熱変形を招くことなく、生産速度を落とすことも無く、加熱処理ができるので好ましい。また、加熱処理時の昇温速度は、10℃〜30℃/日が好ましい。   Moreover, in this invention, after winding an optical film in roll shape, it is preferable to heat-process in a roll state. When heat treatment is not performed in a roll state, heat treatment is performed while being transported, but in that case, the heating temperature is too high, such as partial curing failure due to heating unevenness or thermal deformation of the base film. Problems arise. Further, if the passage time of the heat treatment zone is extended without increasing the heating temperature, the production rate is slowed and the manufacturing cost is increased. On the other hand, in a roll state, if the heat treatment is performed in a range of 50 ° C. to 150 ° C. and a period of 3 to 30 days, partial curing failure or thermal deformation of the base film This is preferable because the heat treatment can be performed without reducing the production speed. Moreover, as for the temperature increase rate at the time of heat processing, 10 to 30 degreeC / day is preferable.

加熱処理時の昇温速度が30℃/日を超えると、フィルムの急激な膨張が起こり巻き芯近くに皺等が入り易く好ましくない。また10℃/日未満であると生産性が著しく劣り現実的ではない。   When the heating rate during the heat treatment exceeds 30 ° C./day, the film is rapidly expanded and wrinkles or the like are likely to enter near the core, which is not preferable. Moreover, productivity is remarkably inferior when it is less than 10 ° C./day, which is not realistic.

昇温パターンに特に制限はなく、最適化するために直線的、曲線的、段階的なパターンを取ってもよい。また、昇温期間中に一時的な温度降下があってもよい。   There is no particular limitation on the temperature rising pattern, and a linear, curvilinear or stepwise pattern may be taken for optimization. Further, there may be a temporary temperature drop during the temperature rising period.

加熱処理後の降温には特に制限はないが、昇温と同様に10℃〜30℃/日の降温パターンで温度を下げることが、フィルムの収縮を均一にする上で好ましい。   Although there is no restriction | limiting in particular in the temperature fall after heat processing, In order to make shrinkage | contraction of a film uniform, it is preferable to reduce temperature by the temperature fall pattern of 10 to 30 degree-C / day similarly to temperature rise.

加熱処理を安定して行うためには、温湿度が調整可能な場所で行うことが好ましく、塵のないクリーンルーム等の加熱処理室で行うことが特に好ましい。   In order to stably perform the heat treatment, it is preferably performed in a place where the temperature and humidity can be adjusted, and particularly preferably performed in a heat treatment chamber such as a clean room without dust.

また、前記加熱処理を行う時、ロールを回転させることが好ましく、回転は、1分間に1回転以下の速度が好ましく、連続でも良く断続的な回転であっても良い。   Moreover, when performing the said heat processing, it is preferable to rotate a roll, and the rotation has a preferable speed | velocity of 1 rotation or less per minute, and may be continuous or intermittent rotation.

次に本発明の光学フィルムの製造方法に関する構成要素について、詳しく説明する。
(基材フィルム)
本発明で用いることの出来る基材フィルムについて説明する。
Next, components relating to the method for producing an optical film of the present invention will be described in detail.
(Base film)
The base film that can be used in the present invention will be described.

本発明に係る基材フィルムとしては、製造が容易であること、ハードコート層との接着性が良好であること、光学的に等方性であること、光学的に透明であること等が好ましい要件として挙げられる。   The substrate film according to the present invention is preferably easy to manufacture, good adhesion to the hard coat layer, optically isotropic, optically transparent, and the like. Listed as a requirement.

本発明でいう透明とは、可視光の透過率60%以上であることを指し、好ましくは80%以上であり、特に好ましくは90%以上である。   The term “transparent” as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.

本発明に係る基材フィルムは、セルロースエステル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリアクリレート樹脂、シクロオレフィン樹脂、アクリルスチレン樹脂、から選択される少なくとも1種の樹脂であることが好ましい。   The base film according to the present invention is preferably at least one resin selected from cellulose ester resin, polyester resin, polycarbonate resin, polyethersulfone resin, polyacrylate resin, cycloolefin resin, and acrylic styrene resin. .

例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテート、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオノア(以上日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることが出来る。中でも、セルローストリアセテートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)フィルムが好ましく、本発明においては、特にセルロースエステルフィルム(例えば、製品名KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、KC12UR(コニカミノルタオプト(株)製))が、製造上、コスト面、透明性、等方性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。   For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, cycloolefin polymer film (Arton (manufactured by JSR)) ZEONEX, ZEONOR (made by ZEON CORPORATION) ), Polymethyl pentene film, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, may be mentioned acrylic film or a glass plate or the like. Among them, cellulose triacetate film, polycarbonate film, and polysulfone (including polyethersulfone) film are preferable. In the present invention, cellulose ester film (for example, product names KC8UX2MW, KC4UX2MW, KC8UY, KC4UY, KC5UN, KC12UR (Konica Minolta Opt) From the viewpoint of production, cost, transparency, isotropy, adhesiveness, and the like. These films may be films produced by melt casting film formation or films produced by solution casting film formation.

本発明に係る基材フィルムは、その厚さが35μm〜100μmのものが好ましく、更に好ましくは40μm〜80μmである。基材フィルムの膜厚は、フィルム製造時の成膜条件を調整することで、所望の膜厚にすることができる。   The base film according to the present invention preferably has a thickness of 35 μm to 100 μm, more preferably 40 μm to 80 μm. The film thickness of a base film can be made into a desired film thickness by adjusting the film-forming conditions at the time of film manufacture.

透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m2・24時間以下であることが好ましく、更に好ましくは、10〜180g/m2・24時間以下であり、特に好ましくは、160g/m2・24時間以下である。特には、膜厚40μm〜80μmで透湿性が上記範囲内であることが好ましい。 The moisture permeability is preferably 200 g / m 2 · 24 hours or less as a value measured according to JIS Z 0208 (25 ° C., 90% RH), more preferably 10 to 180 g / m 2 · 24 hours. Or less, particularly preferably 160 g / m 2 · 24 hours or less. In particular, it is preferable that the film thickness is 40 μm to 80 μm and the moisture permeability is within the above range.

また、基材フィルムの幅は1.0m〜4.0mであることが好ましい。また、生産効率及び機能性膜を表示装置に適用する場合の利用効率の面で、特に好ましくは1.4m〜3.0mである。この様な広幅の基材フィルムを用いる場合には、ナーリング部は、基材フィルムの幅方向端部だけではなく、その内側にも設けることもできる。即ち、基材フィルムに複数列のナーリング部を設けることもできる。例えば、基材フィルムの中央にナーリング部を設けると、広幅の基材フィルム中央に発生し易いブロッキングを効果的に防止することが出来る。   Moreover, it is preferable that the width | variety of a base film is 1.0m-4.0m. Further, in terms of production efficiency and utilization efficiency when the functional film is applied to a display device, it is particularly preferably 1.4 m to 3.0 m. When such a wide substrate film is used, the knurling portion can be provided not only in the width direction end portion of the substrate film but also inside thereof. That is, a plurality of rows of knurling portions can be provided on the base film. For example, if a knurling part is provided at the center of the base film, blocking that tends to occur at the center of the wide base film can be effectively prevented.

ロール状フィルムの基材フィルムとしての光学特性としては膜厚方向のリターデーションRtが0nm〜300nm、面内方向のリターデーションRoが0nm〜1000nmのものが好ましく用いられる。   As the optical properties of the roll film as a base film, those having a retardation Rt in the film thickness direction of 0 nm to 300 nm and an in-plane retardation Ro of 0 nm to 1000 nm are preferably used.

本発明においては、当該基材フィルムとしてはセルロースエステルフィルムを用いることが最も好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。   In the present invention, it is most preferable to use a cellulose ester film as the substrate film. As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.

特にアセチル基の置換度をX、炭素原子数2〜22のアシル基置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有する基材フィルム上にハードコート層と反射防止層を設けた光学フィルムが好ましく用いられる。炭素原子数2〜22のアシル基としては、プロピオニル基またはブチリル基が含まれていることが好ましい。   In particular, when the substitution degree of the acetyl group is X and the substitution degree of the acyl group having 2 to 22 carbon atoms is Y, the hard coat layer is formed on the base film having a mixed fatty acid ester of cellulose in which X and Y are in the following ranges. And an optical film provided with an antireflection layer is preferably used. The acyl group having 2 to 22 carbon atoms preferably includes a propionyl group or a butyryl group.

2.3≦X+Y≦3.0
0.1≦Y≦1.2
特に、2.5≦X+Y≦2.85、0.3≦Y≦1.2であることが好ましい。
2.3 ≦ X + Y ≦ 3.0
0.1 ≦ Y ≦ 1.2
In particular, it is preferable that 2.5 ≦ X + Y ≦ 2.85 and 0.3 ≦ Y ≦ 1.2.

本発明に係る基材フィルムとして、セルロースエステルを用いる場合、セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることが出来る。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることが出来る。   When cellulose ester is used as the base film according to the present invention, the cellulose used as a raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like. . Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose esters use an organic solvent such as acetic acid or an organic solvent such as methylene chloride, and It can be obtained by reacting with a cellulose raw material using a protic catalyst.

アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することが出来る。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。 When the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl), the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804. In addition, the cellulose ester used in the present invention is obtained by mixing and reacting the amount of the acylating agent in accordance with the degree of substitution. In the cellulose ester, these acylating agents react with hydroxyl groups of cellulose molecules. Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution (mol%). For example, cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).

アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。   The measuring method of the substitution degree of an acyl group can be measured according to the provisions of ASTM-D817-96.

セルロースエステルの数平均分子量は、70000〜250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80000〜150000である。   The number average molecular weight of the cellulose ester is preferably 70000 to 250,000, since it has a high mechanical strength when molded and an appropriate dope viscosity, and more preferably 80000 to 150,000.

これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。   These cellulose esters are pressurized by applying a cellulose ester solution (dope) generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).

これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解出来、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、蟻酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。   The organic solvent used for the preparation of these dopes is preferably capable of dissolving the cellulose ester and having an appropriate boiling point, for example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, methyl acetoacetate, acetone, tetrahydrofuran 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2 -Propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3 , 3,3-pentafluoro-1-propanol, nitroethane, 1,3-dimethyl-2-imidazolidinone, etc. It is possible, organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone, methyl acetoacetate, and the like are preferable organic solvents (i.e., good solvent), and as.

また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。   Moreover, as shown in the following film forming process, it is used from the viewpoint of preventing foaming in the web when the solvent is dried from the web (dope film) formed on the casting support in the solvent evaporation process. The boiling point of the organic solvent is preferably 30 to 80 ° C. For example, the good solvent described above has a boiling point of methylene chloride (boiling point 40.4 ° C), methyl acetate (boiling point 56.32 ° C), acetone (boiling point 56.56 ° C). 3 ° C.), ethyl acetate (boiling point 76.82 ° C.) and the like.

上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。   Among the good solvents described above, methylene chloride or methyl acetate, which is excellent in solubility, is preferably used.

上記有機溶媒の他に、0.1質量%〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。   It is preferable to contain 0.1 mass%-40 mass% of C1-C4 alcohol other than the said organic solvent. It is particularly preferable that the alcohol is contained at 5 to 30% by mass. After casting the dope described above onto a casting support, the solvent starts to evaporate and the alcohol ratio increases and the web (dope film) gels, making the web strong and peeling from the casting support. It is also used as a gelling solvent for facilitating the dissolution, and when these ratios are small, it also has a role of promoting dissolution of the cellulose ester of the non-chlorine organic solvent.

炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることが出来る。   Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.

これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70質量%〜95質量%に対してエタノール5質量%〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることも出来る。このとき、冷却溶解法によりドープを調製してもよい。   Of these solvents, ethanol is preferred because it has good dope stability, relatively low boiling point, good drying properties, and no toxicity. It is preferable to use a solvent containing 5% by mass to 30% by mass of ethanol with respect to 70% by mass to 95% by mass of methylene chloride. Methyl acetate can be used in place of methylene chloride. At this time, the dope may be prepared by a cooling dissolution method.

本発明で用いられる基材フィルムはナーリング工程の前に、少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で残留溶媒量が3質量%〜40質量%である時に幅手方向に1.01倍〜1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、残留溶媒量が3質量%〜40質量%である時に幅手方向及び長手方向に、各々1.01倍〜1.5倍に延伸されることが望ましい。   The base film used in the present invention is preferably stretched at least in the width direction before the knurling step, and particularly in the width direction when the residual solvent amount is 3% by mass to 40% by mass in the solution casting step. The film is preferably stretched 1.01 to 1.5 times. More preferably, biaxial stretching is performed in the width direction and the longitudinal direction. When the residual solvent amount is 3% by mass to 40% by mass, 1.01 to 1.5 times in the width direction and the longitudinal direction, respectively. It is desirable to be stretched.

尚、残留溶媒量は下記の式により表される。   The residual solvent amount is represented by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブ(溶媒を含有したセルロースエステルフィルム)の任意時点における質量、NはMのウェブを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the web (cellulose ester film containing the solvent) at an arbitrary point in time, and N is the mass when the web of M is dried at 110 ° C. for 3 hours.

更に、2軸延伸したのち、前述のナーリング加工をすることによって、ロール状光学フィルムのロール状での保管中の巻き形状の劣化を著しく改善することが出来る。   Furthermore, by performing the above-mentioned knurling after biaxial stretching, it is possible to remarkably improve the roll shape deterioration during storage of the roll-shaped optical film.

本発明においては、二軸延伸されたセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上であることが好ましい。   In the present invention, the biaxially stretched cellulose ester film preferably has a light transmittance of 90% or more, more preferably 93% or more.

本発明の光学フィルムにセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、多価アルコールエステル系可塑剤等を好ましく用いることが出来る。   When using a cellulose ester film for the optical film of the present invention, it is preferable to contain the following plasticizer. Examples of plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, citrate ester plasticizers, and polyesters. A plasticizer, a polyhydric alcohol ester plasticizer, and the like can be preferably used.

リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。   For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy For trimellitic acid plasticizers such as ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, tributyl trimellitate, triphenyl trimellitate, triethyl For pyromellitic acid ester plasticizers such as trimellitate, tetrabutylpyromellitate, In the case of glycolate plasticizers such as lupyromelitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalylbutyl glycolate, etc. Citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.

ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることが出来る。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることが出来る。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることが出来る。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。   As the polyester plasticizer, a copolymer of a dibasic acid such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid and a glycol can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used. As the glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.

多価アルコールエステル系可塑剤としては、特開2003−12823記載の可塑剤が好ましく用いられる。   As the polyhydric alcohol ester plasticizer, a plasticizer described in JP-A-2003-12823 is preferably used.

これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%〜20質量%が好ましく、特に好ましくは、3質量%〜13質量%である。   The amount of these plasticizers used is preferably 1% by mass to 20% by mass and particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.

また本発明の光学フィルムには、紫外線吸収剤が好ましく用いられる。   In the optical film of the present invention, an ultraviolet absorber is preferably used.

紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。   As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having a small absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.

本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。   Specific examples of ultraviolet absorbers preferably used in the present invention include, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, and the like. However, it is not limited to these.

ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。   Specific examples of the benzotriazole-based ultraviolet absorbers include the following ultraviolet absorbers, but the present invention is not limited thereto.

UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6 (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- Mixture of 4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN 109, manufactured by Ciba)
Moreover, although the following specific example is shown as a benzophenone series ultraviolet absorber, this invention is not limited to these.
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
As the ultraviolet absorber preferably used in the present invention, a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less. A benzotriazole-based ultraviolet absorber is particularly preferably used.

また、特開2001−187825に記載されている分配係数が9.2以上の紫外線吸収剤は、基材フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。   Moreover, the ultraviolet absorber whose distribution coefficient described in Unexamined-Japanese-Patent No. 2001-187825 is 9.2 or more improves the surface quality of a base film, and is excellent also in applicability | paintability. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.

また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。   Further, the polymer ultraviolet absorbers described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6), and (7) of Japanese Patent Application No. 2000-156039 ( Alternatively, an ultraviolet absorbing polymer) is also preferably used. As a polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) and the like are commercially available.

本発明に用いられるセルロースエステルフィルムに添加される微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5〜16nmであり、特に好ましくは、5〜12nmである。これらの微粒子は0.1〜5μmの粒径の2次粒子を形成してセルロースエステルフィルムに含まれることが好ましく、好ましい平均粒径は0.1〜2μmであり、更に好ましくは0.2〜0.6μmである。これによってフィルム表面に適切な滑り性を与えることが出来る。   The primary average particle diameter of the fine particles added to the cellulose ester film used in the present invention is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm. These fine particles preferably form secondary particles having a particle diameter of 0.1 to 5 μm and are contained in the cellulose ester film, and the preferable average particle diameter is 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. Thereby, appropriate slipperiness can be given to the film surface.

本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とした。   The primary average particle diameter of the fine particles used in the present invention is measured by observing particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, and using the average value, the primary value is measured. The average particle size was taken.

微粒子の見掛比重としては、70g/リットル以上が好ましく、更に好ましくは、90〜200g/リットルであり、特に好ましくは、100〜200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。   The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention. Are particularly preferably used.

1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることが出来る。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することが出来る。   Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed by the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.

上記記載の見掛比重は二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。   The apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the weight at this time.

見掛比重(g/リットル)=二酸化珪素質量(g)/二酸化珪素の容積(リットル)
本発明に用いられる微粒子の分散液を調製する方法としては、例えば以下に示すような3種類が挙げられる。
《調製方法A》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて攪拌する。
《調製方法B》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに前記微粒子分散液を加えて攪拌する。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
《調製方法C》
溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
Apparent specific gravity (g / liter) = silicon dioxide mass (g) / volume of silicon dioxide (liter)
Examples of the method for preparing the fine particle dispersion used in the present invention include the following three types.
<< Preparation Method A >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the dope solution and stirred.
<< Preparation Method B >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. Separately, a small amount of cellulose triacetate is added to the solvent and dissolved by stirring. The fine particle dispersion is added to this and stirred. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.
<< Preparation Method C >>
Add a small amount of cellulose triacetate to the solvent and dissolve with stirring. Fine particles are added to this and dispersed by a disperser. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

調製方法Aは二酸化珪素微粒子の分散性に優れ、調製方法Cは二酸化珪素微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法Bは二酸化珪素微粒子の分散性と、二酸化珪素微粒子が再凝集しにくい等、両方に優れている好ましい調製方法である。
《分散方法》
二酸化珪素微粒子を溶剤などと混合して分散する時の二酸化珪素の濃度は5質量%〜30質量%が好ましく、10質量%〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度は高い方が添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
Preparation method A is excellent in dispersibility of silicon dioxide fine particles, and preparation method C is excellent in that silicon dioxide fine particles are difficult to re-aggregate. Among them, the preparation method B described above is a preferable preparation method that is excellent in both dispersibility of the silicon dioxide fine particles and difficulty in reaggregation of the silicon dioxide fine particles.
《Distribution method》
The concentration of silicon dioxide when the silicon dioxide fine particles are mixed with a solvent and dispersed is preferably 5% by mass to 30% by mass, more preferably 10% by mass to 25% by mass, and most preferably 15% by mass to 20% by mass. A higher dispersion concentration is preferred because the turbidity with respect to the amount added tends to be low, and haze and aggregates are improved.

使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。   The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.

セルロースエステルに対する二酸化珪素微粒子の添加量はセルロースエステル100質量部に対して、二酸化珪素微粒子は0.01質量部〜5.0質量部が好ましく、0.05質量部〜1.0質量部が更に好ましく、0.1質量部〜0.5質量部が最も好ましい。添加量は多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。   The addition amount of silicon dioxide fine particles relative to cellulose ester is preferably 0.01 parts by mass to 5.0 parts by mass, and more preferably 0.05 parts by mass to 1.0 part by mass with respect to 100 parts by mass of cellulose ester. Preferably, 0.1 mass part-0.5 mass part is the most preferable. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the less aggregates.

分散機は通常の分散機が使用出来る。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。二酸化珪素微粒子の分散にはメディアレス分散機がヘイズが低く好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては超音波型、遠心型、高圧型などがあるが、本発明においては高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理する場合、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.807MPa以上であることが好ましい。更に好ましくは19.613MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。   As the disperser, a normal disperser can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. For dispersing silicon dioxide fine particles, a medialess disperser is preferred because of its low haze. Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type. In the present invention, a high pressure disperser is preferable. The high pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. When processing with a high-pressure dispersion apparatus, for example, the maximum pressure condition inside the apparatus is preferably 9.807 MPa or more in a thin tube having a tube diameter of 1 to 2000 μm. More preferably, it is 19.613 MPa or more. Further, at that time, those having a maximum reaching speed of 100 m / second or more and those having a heat transfer speed of 420 kJ / hour or more are preferable.

上記のような高圧分散装置には、Microfluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)或いはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えば、イズミフードマシナリ製ホモジナイザ、三和機械(株)社製UHN−01等が挙げられる。   Examples of the high-pressure dispersing apparatus include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing apparatuses such as homogenizer manufactured by Izumi Food Machinery. And UHN-01 manufactured by Sanwa Machinery Co., Ltd.

また、微粒子を含むドープを流延支持体に直接接するように流延することが、滑り性が高く、ヘイズが低いフィルムが得られるので好ましい。   In addition, casting a dope containing fine particles so as to be in direct contact with the casting support is preferable because a film having high slip properties and low haze can be obtained.

また、流延後に剥離して乾燥されロール状に巻き取られた後、本発明に係る光学薄膜層が設けられる。加工若しくは出荷されるまでの間、汚れや静電気によるゴミ付着等から製品を保護するために通常、包装加工がなされる。この包装材料については、上記目的が果たせれば特に限定されないが、フィルムからの残留溶媒の揮発を妨げないものが好ましい。具体的には、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、ポリスチレン、紙、各種不織布等が挙げられる。繊維がメッシュクロス状になったものは、より好ましく用いられる。   Moreover, after peeling and drying after casting and winding up into a roll, the optical thin film layer according to the present invention is provided. Until processing or shipment, packaging is usually performed in order to protect the product from dirt, static electricity, and the like. The packaging material is not particularly limited as long as the above purpose can be achieved, but a material that does not hinder volatilization of the residual solvent from the film is preferable. Specific examples include polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. A fiber having a mesh cloth shape is more preferably used.

本発明に用いられるセルロースエステルフィルムは、複数のドープを用いた共流延法等による多層構成を有するものであってもよい。   The cellulose ester film used in the present invention may have a multilayer structure by a co-casting method using a plurality of dopes.

共流延とは、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。   Co-casting is a sequential multilayer casting method in which two or three layers are configured through different dies, and a simultaneous multilayer casting method in which two or three slits are combined in a die having two or three slits. Any of the multilayer casting methods combining sequential multilayer casting and simultaneous multilayer casting may be used.

また、本発明に用いられるセルロースエステルは、フィルムにした時の輝点異物が少ないものが好ましく用いられる。本発明において、輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光がもれて見える点のことである。   In addition, as the cellulose ester used in the present invention, those having a small amount of bright spot foreign matter when formed into a film are preferably used. In the present invention, the bright spot foreign material is a structure in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, and light from a light source is applied from one side to the other side. When the cellulose ester film is observed, the light from the light source appears to leak.

このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物の発生は、セルロースエステルに含まれる未酢化のセルロースがその原因の1つと考えられ、対策としては、未酢化のセルロース量の少ないセルロースエステルを用いることや、また、セルロースエステルを溶解したドープ液の濾過等により、除去、低減が可能である。また、フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向がある。   At this time, the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and a polarizing plate using a glass plate for protecting the polarizer is preferably used. The occurrence of bright spot foreign matter is considered to be one of the causes of unacetylated cellulose contained in the cellulose ester. As countermeasures, the use of cellulose ester with a small amount of unacetylated cellulose, It can be removed and reduced by filtering the dissolved dope solution. Further, the thinner the film thickness, the smaller the number of bright spot foreign matter per unit area, and the lower the content of cellulose ester contained in the film, the fewer bright spot foreign matter.

輝点異物は、輝点の直径0.01mm以上のものが200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましくは、0であることである。 The bright spot foreign matter having a bright spot diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm. 2 or less, preferably 10 pieces / cm 2 or less, but it is particularly preferred that a 0.

また、0.005mm〜0.01mmの輝点についても200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましいのは、輝点が0の場合である。0.005mm以下の輝点についても少ないものが好ましい。 Moreover, it is preferable that it is 200 pieces / cm < 2 > or less also about 0.005 mm-0.01 mm bright spot, More preferably, it is 100 pieces / cm < 2 > or less, 50 pieces / cm < 2 > or less, 30 pieces / cm < 2 > or less. The number is preferably 10 / cm 2 or less, but particularly preferred is the case where the bright spot is zero. A thing with few also about a bright spot of 0.005 mm or less is preferable.

輝点異物を濾過によって除去する場合、セルロースエステルを単独で溶解させたものを濾過するよりも、可塑剤を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知のものが好ましく用いられるが、セラミックス、金属等も好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく、更に好ましくは、30μm以下、10μm以下であるが、特に好ましくは、5μm以下のものである。   When removing the bright spot foreign matter by filtration, it is preferable to filter the composition to which the plasticizer is added and mixed, rather than filtering the cellulose ester dissolved alone, because the bright spot foreign matter removal efficiency is high. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluororesins such as tetrafluoroethylene resin are preferably used, but ceramics, metals and the like are also preferably used. The absolute filtration accuracy is preferably 50 μm or less, more preferably 30 μm or less, and 10 μm or less, and particularly preferably 5 μm or less.

これらは、適宜組み合わせて使用することも出来る。濾材はサーフェースタイプでもデプスタイプでも用いることが出来るが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。
(機能性膜)
次に本発明に係る機能成膜について説明する。
These can also be used in combination as appropriate. The filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.
(Functional membrane)
Next, functional film formation according to the present invention will be described.

本発明において、基材フィルムに塗布する機能性膜としては、下引き層、ハードコート層、光拡散層、防眩層、接着層、帯電防止層、防汚層等を挙げることが出来、ハードコート層、防眩層、帯電防止層が好ましく塗布され、特に、光学フィルムの場合には、ハードコート層を光学フィルムの表面硬度を高めるために設けることが好ましい。   In the present invention, examples of the functional film applied to the base film include an undercoat layer, a hard coat layer, a light diffusion layer, an antiglare layer, an adhesive layer, an antistatic layer, and an antifouling layer. A coat layer, an antiglare layer, and an antistatic layer are preferably applied. In particular, in the case of an optical film, a hard coat layer is preferably provided to increase the surface hardness of the optical film.

ここで、光学フィルムなどに用いられるハードコート層について述べる。   Here, a hard coat layer used for an optical film or the like will be described.

ハードコート層は、紫外線などの活性線により硬化する活性線硬化化合物(樹脂)を用いて形成された層であることが好ましく、耐擦り傷性に優れた光学フィルムを得ることが出来る。あるいは熱硬化性樹脂であってもよい。   The hard coat layer is preferably a layer formed using an actinic ray curable compound (resin) that is cured by actinic rays such as ultraviolet rays, and an optical film having excellent scratch resistance can be obtained. Alternatively, a thermosetting resin may be used.

ハードコート層は、エチレン性不飽和モノマーを含む成分を重合させて形成した樹脂層であることが好ましい。ここで、活性線硬化樹脂層は、紫外線の外に電子線のような活性線照射により架橋反応などを経て硬化する樹脂を主たる成分とする層をいう。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることが出来る。   The hard coat layer is preferably a resin layer formed by polymerizing a component containing an ethylenically unsaturated monomer. Here, the actinic radiation curable resin layer refers to a layer mainly composed of a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as an electron beam in addition to ultraviolet rays. Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with an actinic ray other than ultraviolet rays or an electron beam may be used. Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. I can do it.

紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、若しくはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151110号等を参照)。   In general, UV-curable acrylic urethane-based resins are obtained by further reacting 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate) with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (for example, see JP-A-59-151110).

紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151112号を参照)。   The UV curable polyester acrylate resin can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomer (see, for example, JP-A-59-151112). .

紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることが出来る(例えば、特開平1−105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種若しくは2種以上を選択して使用することが出来る。   Specific examples of the ultraviolet curable epoxy acrylate resin include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoinitiator added thereto (for example, JP-A-1- No. 105738). As this photoreaction initiator, one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.

また、紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。   Specific examples of ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate. Etc. can be mentioned.

これらの樹脂は通常公知の光増感剤と共に使用される。また上記光反応開始剤も光増感剤としても使用出来る。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。また、エポキシアクリレート系の光反応剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることが出来る。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は該組成物の通常1〜10質量%添加することが出来、2.5〜6質量%であることが好ましい。   These resins are usually used together with known photosensitizers. Moreover, the said photoinitiator can also be used as a photosensitizer. Specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Further, when using an epoxy acrylate photoreactant, a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.

樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることが出来る。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。   Examples of the resin monomer include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond. In addition, monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.

例えば、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、旭電化工業株式会社製)、或いはコーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業株式会社製)、或いはセイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、或いはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、或いはRC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インキ化学工業株式会社製)、或いはオーレックスNo.340クリヤ(中国塗料株式会社製)、或いはサンラッドH−601(三洋化成工業株式会社製)、或いはSP−1509、SP−1507(昭和高分子株式会社製)、或いはRCC−15C(グレース・ジャパン株式会社製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成株式会社製)或いはこの他の市販のものから適宜選択して利用出来る。   For example, as an ultraviolet curable resin, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by Asahi Denka Kogyo Co., Ltd.) Or KOHEI HARD A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP- 10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, large Manufactured by Seika Kogyo Co., Ltd.), or KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB Corporation), or RC-5015, RC-5016, RC-5020, RC-5031, RC- 5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.) or Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601 (manufactured by Sanyo Chemical Industries, Ltd.), SP-1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.), or RCC-15C (Grace Japan Co., Ltd.) (Manufactured by company), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.) or other commercially available ones can be used.

紫外線硬化樹脂層は公知の方法で塗設することが出来る。   The ultraviolet curable resin layer can be applied by a known method.

紫外線硬化樹脂層を塗設する際の溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。好ましくは、プロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテル出来はプロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテルエステルを5質量%以上、更に好ましくは5〜80質量%以上含有する溶媒が用いられる。   As a solvent for coating the ultraviolet curable resin layer, for example, it can be appropriately selected from hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or a mixture thereof can be used. . Preferably, propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether is prepared, and propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass. The solvent contained above is used.

紫外線硬化性樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10000mJ/cm2程度あればよく、好ましくは、50〜2000mJ/cm2である。近紫外線領域〜可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用出来る。 As the light source for forming the cured film layer by photocuring reaction of the ultraviolet curable resin, any light source that generates ultraviolet rays can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual lamps, but the amount of light irradiated may be any degree 20~10000mJ / cm 2, preferably from 50~2000mJ / cm 2. It can be used by using a sensitizer having an absorption maximum in the near ultraviolet region to the visible light region.

紫外線硬化性樹脂組成物は塗布乾燥された後、紫外線を光源より照射するが、照射時間は0.5秒〜5分がよく、紫外線硬化性樹脂の硬化効率、作業効率などから3秒〜2分がより好ましい。   The UV curable resin composition is applied and dried and then irradiated with UV light from a light source. The irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 in view of curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.

こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機或いは有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることが出来、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコーン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等を挙げることが出来、紫外線硬化性樹脂組成物に加えることが出来る。これらの微粒子粉末の平均粒径としては、0.005μm〜1μmが好ましく0.01〜0.1μmであることが特に好ましい。   It is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent blocking and to improve scratch resistance. Examples of inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of organic fine particles include polymethacrylic acid. Methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicone resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder Polyamide-based resin powder, polyimide-based resin powder, polyfluorinated ethylene-based resin powder, and the like can be mentioned and added to the ultraviolet curable resin composition. The average particle diameter of these fine particle powders is preferably 0.005 μm to 1 μm, and particularly preferably 0.01 to 0.1 μm.

紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜30質量部、好ましくは0.1〜10質量部となるように配合することが望ましい。   The proportion of the ultraviolet curable resin composition and the fine particle powder is desirably 0.1 to 30 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.

この様にして形成された紫外線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのハードコート層であっても、Raが0.1〜1μm程度の防眩層であってもよい。   The layer obtained by curing the ultraviolet curable resin thus formed is a hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JIS B 0601. An antiglare layer of a degree may be used.

ハードコート層を基材フィルムに塗布する方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押し出しコーター、エアードクターコーター等公知の方法を用いることが出来る。塗布の際の液膜厚(ウェット膜厚ともいう)で1〜100μm程度で、0.1〜30μmが好ましく、より好ましくは、0.5〜15μmである。ハードコート層の乾燥膜厚は、1〜20μmが好ましい。
(反射防止層)
一般に光学フィルムの反射防止層は、基材フィルム上に屈折率が基材フィルムよりも高い高屈折率層と、屈折率が基材フィルムよりも低い低屈折率層を積層して形成され、高屈折率層/低屈折率層の順に積層されているものが、反射率を減少させる点から好ましく用いられる。
As a method of applying the hard coat layer to the substrate film, a known method such as a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater or an air doctor coater can be used. The liquid film thickness (also referred to as wet film thickness) at the time of application is about 1 to 100 μm, preferably 0.1 to 30 μm, and more preferably 0.5 to 15 μm. The dry film thickness of the hard coat layer is preferably 1 to 20 μm.
(Antireflection layer)
In general, an antireflection layer of an optical film is formed by laminating a high refractive index layer having a refractive index higher than that of the base film and a low refractive index layer having a refractive index lower than that of the base film on the base film. Those laminated in the order of refractive index layer / low refractive index layer are preferably used from the viewpoint of reducing the reflectance.

なお、この順による積層のみに本発明が限定されるものではなく、逆でも良いし、またはこの間に基材フィルムよりも屈折率が高く、高屈折率層よりも屈折率が低い中屈折率層を挟んだ3層以上の構成でも本発明を達成することができる。   Note that the present invention is not limited only to lamination in this order, and may be reversed, or a medium refractive index layer having a refractive index higher than that of the base film and lower than that of the high refractive index layer during this period. The present invention can also be achieved with a configuration of three or more layers sandwiching.

本発明の光学フィルムにおいては、金属酸化物層、金属酸窒化物、金属窒化物、有機ポリマー、液晶化合物の少なくとも1種を前述の基材フィルム上に形成させて、反射防止層とすることが好ましい。反射防止層は基材フィルム上に直接形成してもよいが、前記ハードコート層や他の被覆層を少なくとも1層設け、凹凸面を有する基材フィルム上に形成させてもよい。光学フィルムの取り扱い性や光学フィルムを後述する偏光板にする際の工程で、傷が付きにくくなることから好ましい方法である。他の被覆層としては、JIS B 0601で規定される中心線平均表面粗さ(Ra)が0.01〜1μmの前述の硬化樹脂層が好ましい。これらは紫外線等の活性線により硬化する活性線硬化樹脂層である。この様な紫外線で硬化された樹脂層の上に本発明に係る金属酸化物層を形成させることによって耐擦り傷性に優れた光学フィルムを得ることが出来る。   In the optical film of the present invention, at least one of a metal oxide layer, a metal oxynitride, a metal nitride, an organic polymer, and a liquid crystal compound may be formed on the above-described base film to form an antireflection layer. preferable. The antireflection layer may be formed directly on the base film, but at least one hard coat layer or other coating layer may be provided and formed on the base film having an uneven surface. This is a preferred method because it is less likely to be scratched in the process of handling the optical film and the step of making the optical film into a polarizing plate to be described later. As the other coating layer, the above-mentioned cured resin layer having a centerline average surface roughness (Ra) defined by JIS B 0601 of 0.01 to 1 μm is preferable. These are actinic radiation curable resin layers that are cured by actinic radiation such as ultraviolet rays. An optical film excellent in scratch resistance can be obtained by forming the metal oxide layer according to the present invention on the resin layer cured by such ultraviolet rays.

本発明の反射防止層の一例として、特に好ましく用いられる金属酸化物層について説明する。   As an example of the antireflection layer of the present invention, a metal oxide layer that is particularly preferably used will be described.

金属酸化物層は高屈折率層、低屈折率層の少なくともいずれかの1層に用いられることが好ましい。   The metal oxide layer is preferably used as at least one of a high refractive index layer and a low refractive index layer.

金属酸化物層を設ける方法には、塗布、大気圧プラズマCVD法、スパッタ、蒸着等の方法があるが、本発明において、反射防止層は塗布によって形成することが好ましい。   As a method for providing the metal oxide layer, there are methods such as coating, atmospheric pressure plasma CVD, sputtering, and vapor deposition. In the present invention, the antireflection layer is preferably formed by coating.

金属酸化物層を塗布によって形成する方法について説明する。   A method for forming the metal oxide layer by coating will be described.

本発明の光学フィルムの基本的な構成を説明する。基材フィルム、高屈折率層及び低屈折率層は、以下の関係を満足する屈折率を有する。   The basic structure of the optical film of the present invention will be described. The base film, the high refractive index layer, and the low refractive index layer have a refractive index that satisfies the following relationship.

低屈折率層の屈折率<基材フィルムの屈折率<ハードコート層の屈折率<高屈折率層の屈折率。   Refractive index of low refractive index layer <refractive index of base film <refractive index of hard coat layer <refractive index of high refractive index layer.

また、本発明においては、ハードコート層或いは高屈折率層に凹凸を付与して防眩性反射防止層を備えた光学フィルムとすることも好ましい。   Moreover, in this invention, it is also preferable to set it as an optical film provided with the unevenness | corrugation to a hard-coat layer or a high refractive index layer, and provided with the glare-proof antireflection layer.

この他、基材フィルム、ハードコート層(防眩層)、中屈折率層、高屈折率層、低屈折率層、の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することが好ましく、表面に防眩層を設けてもよい。
(高屈折率層)
本発明においては、反射率の低減のために、基材フィルム若しくはハードコート層を付与した基材フィルムと低屈折率層との間に、屈折率が基材フィルムよりも高い高屈折率層を設けることが好ましい。また、基材フィルムと高屈折率層との間に中屈折率層を設けることも、反射率の低減のために好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。高屈折率層の膜厚は、光学干渉層の特性から、5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。高屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。高屈折率層は、導電性粒子とそれと組成の異なる無機粒子、及びバインダーを含むことが好ましい。導電性粒子と無機粒子は両方もしくはどちらか片方のみの使用でも本発明を達成することができる。
In addition, a layer structure in the order of a base film, a hard coat layer (antiglare layer), a medium refractive index layer, a high refractive index layer, and a low refractive index layer is also a preferable configuration. It is preferable to impart an antiglare property to the low refractive index layer on the surface, and an antiglare layer may be provided on the surface.
(High refractive index layer)
In the present invention, in order to reduce the reflectance, a high refractive index layer having a refractive index higher than that of the base film is provided between the base film provided with the base film or the hard coat layer and the low refractive index layer. It is preferable to provide it. It is also preferable to provide a middle refractive index layer between the base film and the high refractive index layer in order to reduce the reflectance. The refractive index of the high refractive index layer is preferably 1.55 to 2.30, and more preferably 1.57 to 2.20. The film thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.2 μm from the characteristics of the optical interference layer. The haze of the high refractive index layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less. The strength of the high refractive index layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more, with a pencil hardness of 1 kg load. The high refractive index layer preferably contains conductive particles, inorganic particles having a composition different from the conductive particles, and a binder. The present invention can be achieved by using both conductive particles and inorganic particles or only one of them.

高屈折率層に用いる導電性粒子は、屈折率が1.60〜2.60であることが好ましく、1.65〜2.50であることが更に好ましい。導電性粒子の1次粒子の平均粒子径は、10〜200nmであることが好ましく、20〜150nmであることが更に好ましく、30〜100nmであることが最も好ましい。導電性微粒子の平均粒子径は、走査電子顕微鏡(SEM)などによる電子顕微鏡写真から計測することもできる。また、動的光錯乱法や静的光錯乱法などを利用する粒度分布計などによって計測してもよい。粒径が小さすぎると凝集しやすくなり、分散性が劣化する。粒径が大きすぎるとヘイズが著しく上昇し好ましくない。導電性粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状あるいは不定形状であることが好ましい。   The conductive particles used for the high refractive index layer preferably have a refractive index of 1.60 to 2.60, and more preferably 1.65 to 2.50. The average particle diameter of the primary particles of the conductive particles is preferably 10 to 200 nm, more preferably 20 to 150 nm, and most preferably 30 to 100 nm. The average particle diameter of the conductive fine particles can also be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. Further, it may be measured by a particle size distribution meter using a dynamic light confusion method or a static light confusion method. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the conductive particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

導電性粒子の使用量は、高屈折率層中に5〜85質量%が好ましい。10〜80質量%であることがより好ましく、20〜75質量%が、最も好ましい。使用量が少ないと所望の屈折率や導電性などの効果が得られず、多すぎると膜強度の劣化などが発生する。   As for the usage-amount of electroconductive particle, 5-85 mass% is preferable in a high refractive index layer. More preferably, it is 10-80 mass%, and 20-75 mass% is the most preferable. If the amount used is small, desired effects such as refractive index and conductivity cannot be obtained, and if it is too large, film strength is deteriorated.

上記導電性粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。無機微粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、時アセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、及びメタノール、エタノール、イソプロパノールが特に好ましい。   The conductive particles are supplied to a coating liquid for forming a high refractive index layer in a dispersion state dispersed in a medium. As the dispersion medium for the inorganic fine particles, a liquid having a boiling point of 60 to 170 ° C. is preferably used. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol (eg, acetone alcohol) , Esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, diethyl ether, dioxane, Tiger hydrofuran), ether alcohols (e.g., 1-methoxy-2-propanol), propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate. Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and methanol, ethanol, and isopropanol are particularly preferable.

また導電性粒子は、分散機を用いて媒体中に分散することが出来る。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。   The conductive particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder. It is also preferable to contain a dispersant.

また、高屈折率層には、前述の導電性粒子とは組成の異なる無機粒子を含有する。使用する無機粒子は、中空シリカ、コロイダルシリカ、およびフッ化マグネシウムよりなる群の中から選ばれた1種の無機粒子であるものである。   The high refractive index layer contains inorganic particles having a composition different from that of the conductive particles. The inorganic particles used are one kind of inorganic particles selected from the group consisting of hollow silica, colloidal silica, and magnesium fluoride.

無機粒子の使用量は、高屈折率層中に1〜30質量%が好ましく、3〜25質量%であることがより好ましく、5〜20質量%が、最も好ましい。使用量が少ないと所望の耐擦傷性や密着性、硬度、高温高湿下での耐薬品性といった効果が得られず、多すぎると膜強度の劣化などが発生する。   1-30 mass% is preferable in a high refractive index layer, as for the usage-amount of an inorganic particle, it is more preferable that it is 3-25 mass%, and 5-20 mass% is the most preferable. If the amount used is small, desired effects such as scratch resistance, adhesion, hardness, chemical resistance under high temperature and high humidity cannot be obtained, and if too large, film strength is deteriorated.

高屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。   The high refractive index layer preferably uses a polymer having a crosslinked structure (hereinafter also referred to as a crosslinked polymer) as a binder polymer. Examples of the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), and crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin. Among them, a crosslinked product of polyolefin, polyether and polyurethane is preferred, a crosslinked product of polyolefin and polyether is more preferred, and a crosslinked product of polyolefin is most preferred. Further, it is further preferable that the crosslinked polymer has an anionic group. The anionic group has a function of maintaining the dispersion state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film. The anionic group may be directly bonded to the polymer chain or may be bonded to the polymer chain via a linking group, but is bonded to the main chain as a side chain via the linking group. Is preferred.

アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。   Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, sulfonic acid groups and phosphoric acid groups are preferred. Here, the anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated. The linking group that binds the anionic group and the polymer chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof. The crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. In this case, the proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. preferable. The repeating unit may have two or more anionic groups.

アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。尚、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。   The crosslinked polymer having an anionic group may contain other repeating units (a repeating unit having neither an anionic group nor a crosslinked structure). Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group. The benzene ring has a function of increasing the refractive index of the high refractive index layer. The amino group, the quaternary ammonium group, and the benzene ring can obtain the same effect even if they are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.

上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。   In the crosslinked polymer containing a repeating unit having an amino group or a quaternary ammonium group as a constituent unit, the amino group or quaternary ammonium group may be directly bonded to the polymer chain, or may be a side chain via a linking group. May be bonded to the polymer chain, but the latter is more preferred. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably carbon number. 1 to 6 alkyl groups. The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer chain is a divalent group selected from —CO—, —NH—, —O—, an alkylene group, an arylene group, and combinations thereof. Is preferred. When the crosslinked polymer includes a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, more preferably 0.08 to 30% by mass, Most preferably, it is 0.1-28 mass%.

架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることが出来る。   The cross-linked polymer is preferably produced by a polymerization reaction at the same time as or after application of the coating liquid by preparing a coating liquid for forming a high refractive index layer by blending a monomer for generating a cross-linked polymer. Each layer is formed with the production of the crosslinked polymer. The monomer having an anionic group functions as a dispersant for inorganic fine particles in the coating solution. The monomer having an anionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles. The monomer having an amino group or a quaternary ammonium group functions as a dispersion aid in the coating solution. The monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having an anionic group. These monomers can be made to function effectively before application of the coating liquid by a method of forming a crosslinked polymer by a polymerization reaction simultaneously with or after application of the coating liquid.

2個以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。   Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, penta Erythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate , Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives ( 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg, divinyl sulfone), acrylamide (eg, methylenebisacrylamide), methacrylamide, and the like Can be mentioned. Commercially available monomers may be used as the monomer having an anionic group and the monomer having an amino group or a quaternary ammonium group. As a commercially available monomer having a commercially available anionic group, KAYAMAPMPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Antox MS-60, MS-2N, MS-NH4 (manufactured by Nippon Emulsifier Co., Ltd.) , Aronix M-5000, M-6000, M-8000 series (manufactured by Toagosei Chemical Industry Co., Ltd.), Biscote # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.), New Frontier GX-8289 (Daiichi Kogyo Seiyaku) NK ester CB-1, A-SA (manufactured by Shin-Nakamura Chemical Co., Ltd.), AR-100, MR-100, MR-200 (manufactured by Eighth Chemical Industry Co., Ltd.), and the like. It is done. Examples of commercially available monomers having a commercially available amino group or quaternary ammonium group include DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), and Bremer QA (Nippon Yushi Co., Ltd.). ) And New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.).

ポリマーの重合反応は、光重合反応または熱重合反応を用いることが出来る。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる前述した熱重合開始剤、及び光重合開始剤が挙げられる。   For the polymerization reaction of the polymer, a photopolymerization reaction or a thermal polymerization reaction can be used. A photopolymerization reaction is particularly preferable. A polymerization initiator is preferably used for the polymerization reaction. For example, the above-mentioned thermal polymerization initiator and photopolymerization initiator used for forming the binder polymer of the hard coat layer may be mentioned.

重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。   A commercially available polymerization initiator may be used as the polymerization initiator. In addition to the polymerization initiator, a polymerization accelerator may be used. The addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers. The coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application | coating, and may additionally process the thermosetting reaction of the formed polymer.

高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることが出来る。   A polymer having a relatively high refractive index is preferably used for the high refractive index layer. Examples of the polymer having a high refractive index include polystyrene, styrene copolymer, polycarbonate, melamine resin, phenol resin, epoxy resin, and polyurethane obtained by reaction of cyclic (alicyclic or aromatic) isocyanate and polyol. . Polymers having other cyclic (aromatic, heterocyclic, alicyclic) groups and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.

金属酸化物層は金属酸化物を含む無機微粒子を含有する塗布液を塗設することによって設けることが好ましい。   The metal oxide layer is preferably provided by coating a coating solution containing inorganic fine particles containing a metal oxide.

皮膜形成能を有する有機金属化合物から、高屈折率層を形成してもよい。   The high refractive index layer may be formed from an organometallic compound having a film forming ability.

有機金属化合物は、適当な媒体に分散し得るか、或いは液状であることが好ましい。有機金属化合物の例としては、金属アルコレート(例えば、チタンテトラエトキシド、チタンテトラ−i−プロポキシド、チタンテトラ−n−プロポキシド、チタンテトラ−n−ブトキシド、チタンテトラ−sec−ブトキシド、チタンテトラ−tert−ブトキシド、アルミニウムトリエトキシド、アルミニウムトリ−i−プロポキシド、アルミニウムトリブトキシド、アンチモントリエトキシド、アンチモントリブトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラ−i−プロポキシド、ジルコニウムテトラ−n−プロポキシド、ジルコニウムテトラ−n−ブトキシド、ジルコニウムテトラ−sec−ブトキシド、ジルコニウムテトラ−tert−ブトキシド)、キレート化合物(例えば、ジ−イソプロポキシチタニウムビスアセチルアセトネート、ジ−ブトキシチタニウムビスアセチルアセトネート、ジ−エトキシチタニウムビスアセチルアセトネート、ビスアセチルアセトンジルコニウム、アルミニウムアセチルアセトネート、アルミニウムジ−n−ブトキシドモノエチルアセトアセテート、アルミニウムジ−i−プロポキシドモノメチルアセトアセテート、トリ−n−ブトキシドジルコニウムモノエチルアセトアセテート)、有機酸塩(例えば、炭酸ジルコニールアンモニウム)及びジルコニウム等が挙げられる。
(低屈折率層)
本発明における光学フィルムの低屈折率層は、基材フィルムの屈折率よりも低い層を低屈折率層という。熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層、ゾルゲル法による低屈折率層、及び粒子とバインダーポリマーを用い、粒子間または粒子内部に空隙を有する低屈折率層等が用いられる。低屈折率層の屈折率は、低ければ反射防止性能が良化するため好ましいが、低屈折率層の強度付与の観点では困難となる。このバランスから、低屈折率層の屈折率は1.30〜1.45の範囲のものが好ましい。また、低屈折率層の膜厚は、光学干渉層としての特性から、5nm〜0.5μmが好ましく、30nm〜0.2μmであることがさらに好ましい。
The organometallic compound is preferably dispersible in a suitable medium or is in a liquid state. Examples of organometallic compounds include metal alcoholates (eg, titanium tetraethoxide, titanium tetra-i-propoxide, titanium tetra-n-propoxide, titanium tetra-n-butoxide, titanium tetra-sec-butoxide, titanium Tetra-tert-butoxide, aluminum triethoxide, aluminum tri-i-propoxide, aluminum tributoxide, antimony triethoxide, antimony riboxide, zirconium tetraethoxide, zirconium tetra-i-propoxide, zirconium tetra-n- Propoxide, zirconium tetra-n-butoxide, zirconium tetra-sec-butoxide, zirconium tetra-tert-butoxide), chelate compounds (eg, di-isopropoxy titanium bioxide) Acetylacetonate, di-butoxytitanium bisacetylacetonate, di-ethoxytitanium bisacetylacetonate, bisacetylacetone zirconium, aluminum acetylacetonate, aluminum di-n-butoxide monoethylacetoacetate, aluminum di-i-propoxide monomethyl Acetoacetate, tri-n-butoxide zirconium monoethyl acetoacetate), organic acid salts (for example, zirconyl ammonium carbonate), zirconium and the like.
(Low refractive index layer)
In the low refractive index layer of the optical film in the present invention, a layer lower than the refractive index of the base film is referred to as a low refractive index layer. Using a low-refractive-index layer formed by cross-linking of a fluorine-containing resin that is cross-linked by heat or ionizing radiation (hereinafter also referred to as “fluorinated resin before cross-linking”), a low-refractive index layer by a sol-gel method, and particles and a binder polymer A low refractive index layer having voids between or inside the particles is used. If the refractive index of the low refractive index layer is low, it is preferable because the antireflection performance is improved, but it is difficult from the viewpoint of imparting strength to the low refractive index layer. From this balance, the refractive index of the low refractive index layer is preferably in the range of 1.30 to 1.45. The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 30 nm to 0.2 μm, from the characteristics as an optical interference layer.

架橋前の含フッ素樹脂として、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることが出来る。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入出来ることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。   A preferred example of the fluorine-containing resin before crosslinking is a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group. Specific examples of the fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (produced by Osaka Organic Chemicals) or M-2020 (produced by Daikin)), fully or partially fluorinated vinyl ethers, etc. Is mentioned. As monomers for imparting a crosslinkable group, glycidyl methacrylate, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxyl group, hydroxyl group, amino group, sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.). The latter can introduce a crosslinked structure after copolymerization by adding a compound that reacts with a functional group in the polymer and one or more reactive groups. No. 147739. Examples of the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group. When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type. In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, the ionizing radiation curable type is used.

また上記モノマーに加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることが出来る。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。   In addition to the above monomers, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking. The monomer that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl vinyl ether) Etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Ronitoriru derivatives and the like can be mentioned. In addition, it is also preferable to introduce a polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties. For example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.

架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。   The proportion of each of the above monomers used to form the fluorinated copolymer before crosslinking is preferably 20 to 70 mol%, more preferably 40 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer. The amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.

含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることが出来る。   The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization.

架橋前の含フッ素樹脂は、市販されており使用することが出来る。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。   The fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.

架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。   The low refractive index layer containing a cross-linked fluororesin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.

架橋した含フッ素樹脂を構成成分とする低屈折率層が無機粒子を含有することは、強度向上の点から好ましい。低屈折率層に用いられる無機微粒子としては、非晶質のものが好ましく用いられ、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、中でも金属酸化物が特に好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。2種以上の金属を含む無機微粒子を用いてもよい。特に好ましい無機微粒子は、二酸化珪素微粒子、即ちシリカ微粒子である。無機微粒子の平均粒径は0.001〜0.2μmであることが好ましく、0.005〜0.05μmであることがより好ましい。微粒子の粒径はなるべく均一(単分散)であることが好ましい。無機微粒子の粒径は大きすぎると光が散乱し、フィルムが不透明になり、小さすぎるものは凝集し易く合成及び取り扱いが困難である。   It is preferable from the viewpoint of strength improvement that the low refractive index layer containing a crosslinked fluorine-containing resin as a constituent component contains inorganic particles. As the inorganic fine particles used in the low refractive index layer, amorphous particles are preferably used, and are preferably composed of metal oxides, nitrides, sulfides or halides, and metal oxides are particularly preferable. As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. Inorganic fine particles containing two or more metals may be used. Particularly preferred inorganic fine particles are silicon dioxide fine particles, that is, silica fine particles. The average particle size of the inorganic fine particles is preferably 0.001 to 0.2 μm, and more preferably 0.005 to 0.05 μm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible. If the particle size of the inorganic fine particles is too large, light is scattered and the film becomes opaque. If the particle size is too small, the particles are likely to aggregate and difficult to synthesize and handle.

無機微粒子の配合量は、低屈折率層の全質量の5〜90質量%であることが好ましく、更に好ましくは10〜70質量%であり、特に好ましくは10〜50質量%である。無機微粒子は、表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシ金属化合物(例、チタンカップリング剤、シランカップリング剤等)が好ましく用いられる。無機微粒子がシリカの場合は後述するシランカップリング剤による処理が特に有効である。   The blending amount of the inorganic fine particles is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and particularly preferably 10 to 50% by mass with respect to the total mass of the low refractive index layer. The inorganic fine particles are preferably used after being subjected to a surface treatment. The surface treatment method includes physical surface treatment such as plasma discharge treatment and corona discharge treatment and chemical surface treatment using a coupling agent, but the use of a coupling agent is preferred. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent, etc.) is preferably used. When the inorganic fine particles are silica, treatment with a silane coupling agent described later is particularly effective.

また、低屈折率層用の素材として、各種ゾルゲル素材を用いることも出来る。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることが出来る。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。   Various sol-gel materials can also be used as the material for the low refractive index layer. As such a sol-gel material, metal alcoholates (alcohols such as silane, titanium, aluminum, and zirconium), organoalkoxy metal compounds, and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.

低屈折率層として、無機もしくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した層を用いることも好ましい。微粒子の平均粒径は、0.5〜200nmであることが好ましく、1〜100nmであることがより好ましく、3〜70nmであることが更に好ましく、5〜40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。   As the low refractive index layer, it is also preferable to use a layer formed by using inorganic or organic fine particles and forming microvoids between or within the fine particles. The average particle diameter of the fine particles is preferably 0.5 to 200 nm, more preferably 1 to 100 nm, still more preferably 3 to 70 nm, and most preferably in the range of 5 to 40 nm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible.

無機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。特に好ましい無機化合物は、二酸化珪素、即ちシリカである。   The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride. . As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. An inorganic compound containing two kinds of metals may be used. A particularly preferred inorganic compound is silicon dioxide, ie silica.

無機微粒子内ミクロボイドは、例えば、粒子を形成するシリカの分子を架橋させることにより形成することが出来る。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することが出来る。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることも出来る。市販の多孔質無機微粒子(例えば、二酸化珪素ゾル)を用いてもよい。ミクロボイドを有する無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。   The microvoids in the inorganic fine particles can be formed, for example, by crosslinking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous. (Porous) inorganic fine particles having microvoids are prepared by a sol-gel method (described in JP-A-53-112732 and JP-B-57-9051) or a precipitation method (described in APPLIED OPTICS, 27, 3356 (1988)). Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, silicon dioxide sol) may be used. The inorganic fine particles having microvoids are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone) are preferable.

有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35〜80質量%であることが好ましく、45〜75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30〜80モル%であることが更に好ましく、35〜50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。   The organic fine particles are also preferably amorphous. The organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method). The organic fine particle polymer preferably contains a fluorine atom. The proportion of fluorine atoms in the polymer is preferably 35 to 80% by mass, and more preferably 45 to 75% by mass. It is also preferable to form microvoids in the organic fine particles by, for example, cross-linking the polymer forming the particles and reducing the volume. In order to crosslink the polymer forming the particles, it is preferable to use 20 mol% or more of the monomer for synthesizing the polymer as a polyfunctional monomer. The ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%. Examples of the monomer used for the synthesis of the organic fine particles include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene) as examples of monomers containing fluorine atoms used to synthesize fluorine-containing polymers. , Perfluoro-2,2-dimethyl-1,3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid, and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (eg, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (eg, methyl vinyl ether), vinyl esters ( Examples thereof include vinyl acetate and vinyl propionate), acrylamides (for example, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles. Examples of polyfunctional monomers include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (for example, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (for example, divinylcyclohexane, 1,4-divinylbenzene), divinyl Examples include sulfones, bisacrylamides (eg, methylenebisacrylamide) and bismethacrylamides.

粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することが出来る。尚、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の低屈折率層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、低屈折率層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、低屈折率層の強度に問題が生じない)値に容易に調節出来る。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な低屈折率層を得ることが出来る。これにより、低屈折率層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることが出来る。粒子間ミクロボイドは、微粒子及びポリマーによって低屈折率層内で閉じていることが好ましい。閉じている空隙には、低屈折率層表面に開かれた開口と比較して、低屈折率層表面での光の散乱が少ないとの利点もある。   Microvoids between particles can be formed by stacking at least two fine particles. When spherical particles having the same particle diameter (completely monodispersed) are closely packed, microvoids between particles with a porosity of 26% by volume are formed. When spherical fine particles having the same particle diameter are simply filled with cubic particles, microvoids between fine particles having a porosity of 48% by volume are formed. In an actual low-refractive index layer, the particle size distribution of fine particles and intra-particle microvoids exist, so the porosity varies considerably from the above theoretical value. When the porosity is increased, the refractive index of the low refractive index layer is lowered. When microvoids are formed by stacking fine particles, the size of the microvoids can be adjusted to an appropriate value (does not scatter light and cause no problem with the strength of the low refractive index layer) by adjusting the particle size of the fine particles. You can adjust. Furthermore, by making the particle diameters of the fine particles uniform, it is possible to obtain an optically uniform low refractive index layer in which the size of microvoids between particles is uniform. As a result, the low refractive index layer is microscopically a microvoided porous film, but can be made optically or macroscopically uniform. The interparticle microvoids are preferably closed in the low refractive index layer by fine particles and a polymer. The closed gap also has an advantage that light scattering on the surface of the low refractive index layer is less than that of an opening opened on the surface of the low refractive index layer.

ミクロボイドを形成することにより、低屈折率層の巨視的屈折率は、低屈折率層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような低屈折率層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。その為、ミクロボイドを形成することによって、屈折率が非常に低い低屈折率層を得ることが出来る。   By forming the microvoids, the macroscopic refractive index of the low refractive index layer becomes lower than the sum of the refractive indexes of the components constituting the low refractive index layer. The refractive index of the layer is the sum of the refractive indices per volume of the layer components. The refractive index of the constituent component of the low refractive index layer such as fine particles or polymer is larger than 1, whereas the refractive index of air is 1.00. Therefore, a low refractive index layer having a very low refractive index can be obtained by forming microvoids.

低屈折率層は、5〜80質量%の量のポリマーを含むことが好ましい。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持出来るように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全てを組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類出来る。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子が二酸化珪素からなる場合は、シランカップリング剤による表面処理が特に有効に実施出来る。具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
The low refractive index layer preferably contains the polymer in an amount of 5 to 80% by mass. The polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids. The amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids. The amount of the polymer is preferably 10 to 30% by mass of the total amount of the low refractive index layer. In order to adhere the fine particles with the polymer, (1) the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder. The polymer to be bonded to the surface treatment agent (1) is preferably the shell polymer (2) or the binder polymer (3). The polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer. The polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer and performing a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to carry out a combination of two or all of the above (1) to (3), and to carry out a combination of (1) and (3) or a combination of (1) to (3). Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.
(1) Surface treatment It is preferable that the fine particles (particularly inorganic fine particles) are subjected to a surface treatment to improve the affinity with the polymer. The surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. When the fine particles are made of silicon dioxide, surface treatment with a silane coupling agent can be carried out particularly effectively. Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane. Methoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxy Propyltriethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, Examples include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリングを用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施出来る。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane couplings may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate. The surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and allowing the dispersion to stand at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.
(2) Shell The polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain. A polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred. Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred. The refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases. In order to lower the refractive index of the low refractive index layer, the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms. The polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Examples thereof include esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.

シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。   The polymer forming the shell may be a copolymer composed of a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom. The repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom. Examples of ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic acid esters (eg, methyl acrylate, ethyl acrylate, acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyltoluene, α-methylstyrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides), methacrylamide and acrylonitrile.

後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用出来る。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
When the binder polymer (3) described later is used in combination, a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking. The shell polymer may have crystallinity. When the glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, it is easy to maintain microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength). In that case, it is desirable to use a binder polymer (3) described later in combination, and form the low refractive index layer as a continuous layer with the binder polymer. By forming a polymer shell around the fine particles, core-shell fine particles are obtained. The core-shell fine particles preferably contain 5 to 90% by volume of a core composed of inorganic fine particles, and more preferably 15 to 80% by volume. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.
(3) Binder The binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain. The binder polymer is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups. Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (for example, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol). Tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives For example, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg, divinyl sulfone), acrylamide (eg, methylene bisacrylamide) and methacrylamide Can be mentioned. The polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound. Instead of or in addition to the monomer having two or more ethylenically unsaturated groups, a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group. Examples of crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxyl groups, methylol groups, and active methylene groups. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. The cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group. As the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer, a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable. Examples of photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.

バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。好ましい光学フィルムとしては、屈折率が該基材フィルムよりも高い高屈折率層と、屈折率が該基材フィルムよりも低い低屈折率層を有する光学フィルムにおいて、該高屈折率層は下記(a)〜(c)を含有する塗布液をコーティングして形成し、該低屈折率層は下記(d)と(e)を含有する塗布液をコーティングして形成し、且つ熱処理されたことを特徴とする光学フィルムがあげられる。
(a)平均粒子径が10〜200nmである金属酸化物微粒子
(b)金属化合物
(c)電離放射線硬化型樹脂
(d)下記一般式(1)で表される有機珪素化合物もしくはその加水分解物あるいはその重縮合物
一般式(1) Si(OR)4
(式中、Rはアルキル基であり、好ましくは炭素数1〜4のアルキル基である。)
(e)外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子
〈高屈折率層〉
(高屈折率層の金属酸化物微粒子)
本発明における光学フィルムに用いられる高屈折率層には金属酸化物微粒子が含有される。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることが出来、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが好ましく、特に好ましくは酸化インジウム−スズ(ITO)である。
The binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after the coating of the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good. As a preferable optical film, an optical film having a high refractive index layer having a refractive index higher than that of the base film and a low refractive index layer having a refractive index lower than that of the base film, the high refractive index layer is: a coating solution containing a) to (c) is formed by coating, and the low refractive index layer is formed by coating a coating solution containing the following (d) and (e), and has been heat-treated. The characteristic optical film is mention | raise | lifted.
(A) Metal oxide fine particles having an average particle diameter of 10 to 200 nm (b) Metal compound (c) Ionizing radiation curable resin (d) Organosilicon compound represented by the following general formula (1) or a hydrolyzate thereof Or its polycondensate General formula (1) Si (OR) 4
(In the formula, R is an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms.)
(E) Hollow silica-based fine particles having a shell layer and porous or hollow inside <high refractive index layer>
(Metal oxide fine particles of high refractive index layer)
The high refractive index layer used in the optical film in the present invention contains metal oxide fine particles. The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the above can be used, and these metal oxide fine particles are doped with a trace amount of atoms such as Al, In, Sn, Sb, Nb, a halogen element, and Ta. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is preferably used as a main component, and particularly preferably indium tin oxide (ITO).

これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することが出来る。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。   The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

高屈折率層の屈折率は、具体的には、基材フィルムの屈折率より高く、23℃、波長550nm測定で、1.55〜2.30の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。   Specifically, the refractive index of the high refractive index layer is preferably higher than the refractive index of the base film, and is preferably in the range of 1.55 to 2.30 when measured at 23 ° C. and a wavelength of 550 nm. The means for adjusting the refractive index of the high refractive index layer is that the kind and addition amount of the metal oxide fine particles are dominant, so that the refractive index of the metal oxide fine particles is preferably 1.80 to 2.60, More preferably, it is 1.85 to 2.50.

金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑える事も出来る。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。   The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . For this reason, the surface modification amount with a preferable organic compound is 0.1 mass%-5 mass% with respect to metal oxide particle, More preferably, it is 0.5 mass%-3 mass%. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Among these, the silane coupling agent mentioned later is preferable. Two or more kinds of surface treatments may be combined.

前記金属酸化物微粒子を含有する高屈折率層の厚さは5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。   The thickness of the high refractive index layer containing the metal oxide fine particles is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm.

使用する金属酸化物微粒子と後述する電離放射線硬化型樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。   The ratio of the metal oxide fine particles to be used and a binder such as ionizing radiation curable resin, which will be described later, varies depending on the type and particle size of the metal oxide fine particles, but the volume ratio of the former 1 to the latter 2 to the former 2 The latter one is preferable.

本発明における光学フィルムに用いられる金属酸化物微粒子の使用量は高屈折率層中に5質量%〜85質量%が好ましく、10質量%〜80質量%であることがより好ましく、20〜75質量%が最も好ましい。   The amount of metal oxide fine particles used in the optical film in the present invention is preferably 5% by mass to 85% by mass in the high refractive index layer, more preferably 10% by mass to 80% by mass, and more preferably 20% by mass to 75% by mass. % Is most preferred.

上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。   The metal oxide fine particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol (eg, diacetone alcohol). , Esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, diethyl ether, dioxane, Tiger hydrofuran), ether alcohols (e.g., 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

また金属酸化物微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。   The metal oxide fine particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.

この光学フィルムでは、更にコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性を更に向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。   This optical film may further contain metal oxide fine particles having a core / shell structure. One layer of the shell may be formed around the core, or a plurality of layers may be formed in order to further improve the light resistance. The core is preferably completely covered by the shell.

コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることができるが、ルチル型の酸化チタンを主成分としてもよい。   For the core, titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconium oxide, zinc oxide, cerium oxide, indium oxide doped with tin, tin oxide doped with antimony, etc. can be used. Titanium may be the main component.

シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。   The shell is preferably formed of a metal oxide or sulfide containing an inorganic compound other than titanium oxide as a main component. For example, an inorganic compound mainly composed of silicon dioxide (silica), aluminum oxide (alumina) zirconium oxide, zinc oxide, tin oxide, antimony oxide, indium oxide, iron oxide, zinc sulfide, or the like is used. Of these, alumina, silica, and zirconia (zirconium oxide) are preferable. A mixture of these may also be used.

コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、更に好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の無機微粒子を併用してもよい。   The coating amount of the shell with respect to the core is 2 to 50% by mass as an average coating amount. Preferably it is 3-40 mass%, More preferably, it is 4-25 mass%. When the coating amount of the shell is large, the refractive index of the fine particles is lowered, and when the coating amount is too small, the light resistance is deteriorated. Two or more inorganic fine particles may be used in combination.

コアとなる酸化チタンは、液相法または気相法で作製されたものを使用できる。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることができる。
(金属化合物)
この光学フィルムに用いられる金属化合物は下記一般式(2)で表される化合物またはそのキレート化合物を用いることができる。
The titanium oxide used as a core can use what was produced by the liquid phase method or the gaseous-phase method. As a method for forming the shell around the core, for example, U.S. Pat. No. 3,410,708, JP-B-58-47061, U.S. Pat. No. 2,885,366, and U.S. Pat. No. 1, British Patent No. 1,134,249, US Pat. No. 3,383,231, British Patent No. 2,629,953, No. 1,365,999, etc. Can do.
(Metal compound)
As the metal compound used in the optical film, a compound represented by the following general formula (2) or a chelate compound thereof can be used.

一般式(2) AnMBx−n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
General formula (2) AnMBx-n
In the formula, M represents a metal atom, A represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group, and B represents an atomic group covalently or ionically bonded to the metal atom M. x represents the valence of the metal atom M, and n represents an integer of 2 or more and x or less.

加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記式(2)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも機能性膜の物理的特性を向上させることができる。   Examples of the hydrolyzable functional group A include halogens such as alkoxyl groups and chloro atoms, ester groups and amide groups. The metal compound belonging to the above formula (2) includes an alkoxide having two or more alkoxyl groups bonded directly to a metal atom, or a chelate compound thereof. Preferable metal compounds include titanium alkoxide, zirconium alkoxide, or chelate compounds thereof. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in a large amount. Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating. In addition, since titanium alkoxide has an effect of accelerating the reaction between the ultraviolet curable resin and the metal alkoxide, the physical properties of the functional film can be improved by adding a small amount.

チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。   Examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium, and the like. Is mentioned.

ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。   Examples of the zirconium alkoxide include tetramethoxy zirconium, tetraethoxy zirconium, tetra-iso-propoxy zirconium, tetra-n-propoxy zirconium, tetra-n-butoxy zirconium, tetra-sec-butoxy zirconium, tetra-tert-butoxy zirconium and the like. Is mentioned.

遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、機能性膜の補強効果にも優れるキレート化合物を形成できる。   Preferred chelating agents for coordination with free metal compounds to form chelate compounds include alkanolamines such as diethanolamine and triethanolamine, glycols such as ethylene glycol, diethylene glycol and propylene glycol, acetylacetone and acetoacetate Examples thereof include ethyl and the like having a molecular weight of 10,000 or less. By using these chelating agents, it is possible to form a chelate compound that is stable against moisture mixing and is excellent in the effect of reinforcing the functional membrane.

金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。
(電離放射線硬化型樹脂)
電離放射線硬化型樹脂は金属酸化物微粒子のバインダーとして機能性膜の成膜性や物理的特性の向上のために添加される。電離放射線硬化型樹脂としては、紫外線や電子線のような電離放射線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができる。官能基としては(メタ)アクリロイルオキシ基等のような不飽和二重結合を有する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を2個以上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることができる。必要に応じて光重合開始剤を組み合わせてもよい。このような電離放射線硬化型樹脂としては、例えば多官能アクリレート化合物等が挙げられ、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる化合物であることが好ましい。ここで、多官能アクリレート化合物とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
The addition amount of the metal compound is preferably adjusted so that the content of the metal oxide derived from the metal compound contained in the high refractive index layer is 0.3 to 5% by mass. If it is less than 0.3% by mass, the scratch resistance is insufficient, and if it exceeds 5% by mass, the light resistance tends to deteriorate.
(Ionizing radiation curable resin)
The ionizing radiation curable resin is added as a binder for the metal oxide fine particles to improve the film formability and physical properties of the functional film. As the ionizing radiation curable resin, a monomer or oligomer having two or more functional groups that cause polymerization reaction directly by irradiation of ionizing radiation such as ultraviolet rays or electron beams or indirectly by the action of a photopolymerization initiator is used. Can be used. Examples of the functional group include a group having an unsaturated double bond such as a (meth) acryloyloxy group, an epoxy group, and a silanol group. Among these, radically polymerizable monomers and oligomers having two or more unsaturated double bonds can be preferably used. You may combine a photoinitiator as needed. Examples of such ionizing radiation curable resins include polyfunctional acrylate compounds and the like, and the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. It is preferable that it is a compound chosen from these. Here, the polyfunctional acrylate compound is a compound having two or more acryloyloxy groups and / or methacryloyloxy groups in the molecule.

多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。   Examples of the monomer of the polyfunctional acrylate compound include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethanetriacrylate. Acrylate, tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, Dipen Erythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetra Methylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol te La methacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate preferred. These compounds are used alone or in admixture of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.

電離放射線硬化型樹脂の添加量は、高屈折率組成物では固形分中の15質量%以上50質量%未満であることが好ましい。   The addition amount of the ionizing radiation curable resin is preferably 15% by mass or more and less than 50% by mass in the solid content in the high refractive index composition.

この電離放射線硬化型樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを質量比で3:7〜1:9含有することが好ましい。   In order to accelerate the curing of the ionizing radiation curable resin, a photopolymerization initiator and an acrylic compound having two or more polymerizable unsaturated bonds in the molecule are contained in a mass ratio of 3: 7 to 1: 9. Is preferred.

光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
(溶媒)
この高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
〈低屈折率層〉
この光学フィルムに用いられる低屈折率層の屈折率は、基材フィルムの屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
(solvent)
Examples of the organic solvent used for coating the high refractive index layer include alcohols (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexane). Hexanol, benzyl alcohol, etc.), polyhydric alcohols (for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, Thiodiglycol, etc.), polyhydric alcohol ethers (for example, ethylene glycol monomethyl ether) Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl Ether, ethylene glycol monophenyl ether, propylene glycol monophenyl ether, etc.), amines (for example, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine) Ethylenediamine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.) Heterocycles (for example, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.), sulfoxides (for example, dimethyl sulfoxide, etc.), Examples include sulfones (for example, sulfolane), urea, acetonitrile, acetone, and the like, and alcohols, polyhydric alcohols, and polyhydric alcohol ethers are particularly preferable.
<Low refractive index layer>
The refractive index of the low refractive index layer used in this optical film is lower than the refractive index of the base film, and is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and a wavelength of 550 nm.

低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることがさらに好ましく、30nm〜0.2μmであることが最も好ましい。   The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.

この光学フィルムに用いられる低屈折率層形成用組成物は、(d)下記一般式(3)で表される有機珪素化合物もしくはその加水分解物あるいはその重縮合物及び、(e)外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子が必須成分である。   The composition for forming a low refractive index layer used in this optical film comprises (d) an organosilicon compound represented by the following general formula (3) or a hydrolyzate thereof or a polycondensate thereof, and (e) an outer shell layer. Hollow silica-based fine particles having a porous or hollow interior are essential components.

一般式(3) Si(OR)4
(式中、Rはアルキル基であり、好ましくは炭素数1〜4のアルキル基である。)
他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
〔中空シリカ系微粒子〕
前記(e)で表される外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子について説明する。
General formula (3) Si (OR) 4
(In the formula, R is an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms.)
In addition, a silane coupling agent, a curing agent, a surfactant and the like may be added as necessary.
[Hollow silica fine particles]
The hollow silica-based fine particles having the outer shell layer represented by (e) and having a porous or hollow interior will be described.

中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。   The hollow silica-based fine particles are (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having cavities inside, and the contents are solvent, gas or porous It is a hollow particle filled with a porous material. Note that the low refractive index layer only needs to contain either (I) composite particles or (II) hollow particles, or both.

なお、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子の平均粒子径は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。   The hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls. The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The average particle diameter of the hollow fine particles used is appropriately selected according to the thickness of the transparent film to be formed, and is in the range of 2/3 to 1/10 of the film thickness of the transparent film such as the low refractive index layer to be formed. It is desirable to be in These hollow fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diacetone alcohol) are preferable.

複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。   The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, if the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use a silicate monomer or oligomer having a low polymerization degree, which is a coating liquid component described later. The inside of the composite particles may enter and the internal porosity may decrease, and the low refractive index effect may not be sufficiently obtained. When the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. .

複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いものを得ることが難しいことがある。 The coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica. In addition, components other than silica may be contained. Specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 and the like. Examples of the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like. Of these, porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly suitable. Examples of inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 and the like. 1 type or 2 types or more can be mentioned. In such porous particles, the molar ratio MOX / SiO 2 when the silica is represented by SiO 2 and the inorganic compound other than silica is represented by oxide (MOX) is 0.0001 to 1.0, preferably It is desirable to be in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MO X / SiO 2 of less than 0.0001. Even if it is obtained, particles having a small pore volume and a low refractive index cannot be obtained. In addition, when the molar ratio MO X / SiO 2 of the porous particles exceeds 1.0, the ratio of silica decreases, so that the pore volume increases and it is difficult to obtain a low refractive index. is there.

このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。   The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there.

なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例表した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。   In addition, the pore volume of such porous particles can be determined by a mercury intrusion method. Examples of the contents of the hollow particles include a solvent, a gas, and a porous substance used at the time of preparing the particles. The solvent may contain an unreacted particle precursor used when preparing the hollow particles, the catalyst used, and the like. Examples of the porous substance include those composed of the compounds exemplified for the porous particles. These contents may be composed of a single component or may be a mixture of a plurality of components.

このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空微粒子は製造される。   As a method for producing such hollow fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is suitably employed. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, hollow fine particles are produced from the following first to third steps.

第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
First Step: Preparation of Porous Particle Precursor In the first step, an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance. A mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.

シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。   As the silica raw material, alkali metal, ammonium or organic base silicate is used. Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound or the like to a silicic acid solution.

また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。   In addition, alkali-soluble inorganic compounds are used as raw materials for inorganic compounds other than silica. Specifically, an oxo acid of an element selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, etc., an alkali metal salt or alkaline earth metal salt of the oxo acid, ammonium And salts and quaternary ammonium salts. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, and sodium phosphate are suitable.

これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al2O3、TiO2またはZrO2等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。さらに前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。 Although the pH value of the mixed aqueous solution changes simultaneously with the addition of these aqueous solutions, an operation for controlling the pH value within a predetermined range is not particularly required. The aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction | limiting in particular in the addition rate of the aqueous solution at this time. Further, in the production of composite oxide particles, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols can be used. . Furthermore, the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion. When using a seed particle dispersion, the pH of the seed particle dispersion is adjusted to 10 or higher, and then an aqueous solution of the compound is added to the above-mentioned alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion. When seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.

上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。   The silica raw material and the inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. It grows on the top and particle growth occurs. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.

第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOX)に換算し、MOX/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOX/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。 The composite ratio of the silica and the inorganic compound other than silica in the first step is calculated by converting the inorganic compound to silica into an oxide (MO X ), and the molar ratio of MO X / SiO 2 is 0.05 to 2.0, Preferably it is in the range of 0.2-2.0. Within this range, the pore volume of the porous particles increases as the silica proportion decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small. When preparing the hollow particles, the molar ratio of MO X / SiO 2 is desirably in the range of 0.25 to 2.0.

第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
Second step: Removal of inorganic compound other than silica from porous particles In the second step, inorganic compounds other than silica (elements other than silicon and oxygen) are obtained from the porous particle precursor obtained in the first step. At least a portion is selectively removed. As a specific removal method, the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.

なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。   The porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen. By removing the inorganic compound (elements other than silicon and oxygen) from the porous particle precursor in this way, porous particles having a larger porosity and a larger pore volume can be obtained. Further, if the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.

また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。   In addition, prior to removing inorganic compounds other than silica from the porous particle precursor, fluorine-substituted, obtained by dealkalizing an alkali metal salt of silica into the porous particle precursor dispersion obtained in the first step. It is preferable to add a silicic acid solution containing an alkyl group-containing silane compound or a hydrolyzable organosilicon compound to form a silica protective film. The thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.

このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。   By forming such a silica protective film, inorganic compounds other than silica described above can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. Can do. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.

また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。   When preparing hollow particles, it is desirable to form this silica protective film. When preparing the hollow particles, the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content. When a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.

上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多すぎると、シリカ保護膜が厚くなりすぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor. Examples of hydrolyzable organosilicon compounds used for forming a silica protective film include general formula RnSi (OR ′) 4 -n [R, R ′: hydrocarbon such as alkyl group, aryl group, vinyl group, acrylic group, etc. An alkoxysilane represented by the group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane substituted with fluorine are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed. The produced silicic acid polymer is deposited on the surface of the inorganic oxide particles. At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。   When the dispersion medium of the porous particle precursor is water alone or when the ratio of water to the organic solvent is high, a silica protective film can be formed using a silicic acid solution. When a silicic acid solution is used, a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles. In addition, you may produce a silica protective film together using a silicic acid liquid and the said alkoxysilane.

第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
Third step: Formation of silica coating layer In the third step, the porous particle dispersion prepared in the second step (in the case of hollow particles, the hollow particle precursor dispersion) contains a fluorine-substituted alkyl group-containing silane compound. By adding a hydrolyzable organosilicon compound or silicic acid solution, the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or silicic acid solution to form a silica coating layer.

シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 Examples of the hydrolyzable organosilicon compound used for forming the silica coating layer include the general formula RnSi (OR ′) 4 -n [R, R ′: alkyl group, aryl group, vinyl group, acrylic group as described above. Etc., and alkoxysilanes represented by n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, a hollow particle precursor). In addition, the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors). At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。   When the dispersion medium of porous particles (in the case of hollow particles, the hollow particle precursor) is water alone or a mixed solvent with an organic solvent and the mixed solvent has a high ratio of water to the organic solvent, a silicate solution You may form a coating layer using. The silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.

ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。   The silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface. In addition, you may use a silicic acid liquid for the coating layer formation in combination with the said alkoxysilane. The addition amount of the organosilicon compound or silicic acid solution used for forming the coating layer only needs to be sufficient to cover the surface of the colloidal particles, and the finally obtained silica coating layer has a thickness of 1 to 20 nm. In such an amount, it is added in a dispersion of porous particles (in the case of hollow particles, hollow particle precursor) in a dispersion. When the silica protective film is formed, the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.

次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。   Next, the dispersion liquid of the particles on which the coating layer is formed is heat-treated. By the heat treatment, in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained. In the case of a hollow particle precursor, the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.

このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。   The heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C. When the heat treatment temperature is less than 80 ° C., the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time. Further, when the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.

このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。   The refractive index of the inorganic fine particles thus obtained is as low as less than 1.42. Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow.

外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子の低屈折率層中の含有量は、10〜50質量%であることが好ましい。低屈折率の効果を得る上で、15質量%以上が好ましく、50質量%を超えるとバインダー成分が少なくなり膜強度が不十分となる。特に好ましくは20〜50質量%である。   The content of the hollow silica-based fine particles having an outer shell layer and porous or hollow inside is preferably 10 to 50% by mass. In order to obtain the effect of a low refractive index, the content is preferably 15% by mass or more, and when it exceeds 50% by mass, the binder component is decreased and the film strength becomes insufficient. Most preferably, it is 20-50 mass%.

前記一般式(3)で表される、有機珪素化合物は、式中、Rは炭素数1〜4のアルキル基を表す。   In the organic silicon compound represented by the general formula (3), R represents an alkyl group having 1 to 4 carbon atoms.

具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。   Specifically, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

低屈折率層への添加方法としては、これらのテトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As a method of adding to the low refractive index layer, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these tetraalkoxysilane, pure water, and alcohol is added to the dispersion of the hollow silica fine particles. The silicic acid polymer produced by hydrolyzing tetraalkoxysilane is deposited on the surface of the hollow silica fine particles. At this time, tetraalkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

また、低屈折率層に、下記一般式(4)で表されるフッ素置換アルキル基含有シラン化合物を含有させることも出来る。   The low refractive index layer may contain a fluorine-substituted alkyl group-containing silane compound represented by the following general formula (4).

Figure 2009223129
Figure 2009223129

前記一般式(4)で表されるフッ素置換アルキル基含有シラン化合物について説明する。   The fluorine-substituted alkyl group-containing silane compound represented by the general formula (4) will be described.

式中、R1〜R6は炭素数1〜16、好ましくは1〜4のアルキル基、炭素数1〜6、好ましくは1〜4のハロゲン化アルキル基、炭素数6〜12、好ましくは6〜10のアリール基、炭素数7〜14、好ましくは7〜12のアルキルアリール基、アリールアルキル基、炭素数2〜8、好ましくは2〜6のアルケニル基、または炭素数1〜6、好ましくは1〜3のアルコキシ基、水素原子またはハロゲン原子を示す。 In the formula, R 1 to R 6 are alkyl groups having 1 to 16 carbon atoms, preferably 1 to 4 carbon atoms, halogenated alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, 6 to 12 carbon atoms, preferably 6 carbon atoms. 10 to 10 aryl groups, 7 to 14 carbon atoms, preferably 7 to 12 alkylaryl groups, arylalkyl groups, 2 to 8 carbon atoms, preferably 2 to 6 alkenyl groups, or 1 to 6 carbon atoms, preferably 1 to 3 alkoxy groups, a hydrogen atom or a halogen atom.

Rfは−(CaHbFc)−を表し、aは1〜12の整数、b+cは2aであり、bは0〜24の整数、cは0〜24の整数を示す。このようなRfとしては、フルオロアルキレン基とアルキレン基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物としては、(MeO)3SiC242424Si(MeO)3、(MeO)3SiC244824Si(MeO)3、(MeO)3SiC2461224Si(MeO)3、(H52O)3SiC244824Si(OC253、(H52O)3SiC2461224Si(OC253で表されるメトキシジシラン化合物等が挙げられる。 Rf represents-(CaHbFc)-, a is an integer of 1 to 12, b + c is 2a, b is an integer of 0 to 24, and c is an integer of 0 to 24. Such Rf is preferably a group having a fluoroalkylene group and an alkylene group. Specifically, as such a fluorine-containing silicone compound, (MeO) 3 SiC 2 H 4 C 2 F 4 C 2 H 4 Si (MeO) 3 , (MeO) 3 SiC 2 H 4 C 4 F 8 C 2 H 4 Si (MeO) 3 , (MeO) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (MeO) 3 , (H 5 C 2 O) 3 SiC 2 H 4 C 4 F 8 C 2 H Examples include methoxydisilane compounds represented by 4 Si (OC 2 H 5 ) 3 , (H 5 C 2 O) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si (OC 2 H 5 ) 3 , and the like.

バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、形成される透明被膜自体が疎水性を有しているので、透明被膜が充分緻密化しておらず、多孔質であったり、またクラックやボイドを有している場合であっても、水分や酸・アルカリ等の薬品による透明被膜への進入が抑制される。さらには、基材表面や下層である導電層中に含まれる金属等の微粒子と水分や酸・アルカリ等の薬品とが反応することもない。このため、このような透明被膜は、優れた耐薬品性を有している。   If the fluorine-containing alkyl group-containing silane compound is included as a binder, the transparent film itself is hydrophobic, so the transparent film is not sufficiently densified and is porous or cracked. Even if it has a void or a void, entry into the transparent film by chemicals such as moisture, acid and alkali is suppressed. Furthermore, fine particles such as metals contained in the conductive layer which is the surface of the base material or the lower layer do not react with chemicals such as moisture, acid and alkali. For this reason, such a transparent film has excellent chemical resistance.

また、バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強度に優れた透明被膜を得ることができる。さらに、バインダーが、このような構成単位を有するフッ素置換アルキル基含有シラン化合物を含んでいると、下層に導電層が形成されている場合には、バインダーの収縮率が、導電層と同等か近いものであるため導電層と密着性に優れた透明被膜を形成することができる。さらに、透明被膜を加熱処理する際に、収縮率の違いから、導電層が剥離して、透明導電性層に電気的接触のない部分が生じることもない。このため、膜全体として充分な導電性を維持できる。   In addition, when a fluorine-substituted alkyl group-containing silane compound is included as a binder, not only the hydrophobic property but also the slipperiness (low contact resistance) is obtained, and thus a transparent film having excellent scratch strength can be obtained. Can do. Furthermore, when the binder contains a fluorine-substituted alkyl group-containing silane compound having such a structural unit, when the conductive layer is formed in the lower layer, the shrinkage of the binder is equal to or close to that of the conductive layer. Since it is a thing, the transparent film excellent in adhesiveness with the conductive layer can be formed. Furthermore, when the transparent film is heat-treated, the conductive layer is not peeled off due to the difference in shrinkage rate, and a portion having no electrical contact is not generated in the transparent conductive layer. For this reason, sufficient electroconductivity can be maintained as a whole film.

フッ素置換アルキル基含有シラン化合物と、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、消しゴム強度または爪強度で評価される膜強度が高く、鉛筆硬度も高く、強度の上で優れた透明被膜を形成することができる。   A transparent film containing a fluorine-substituted alkyl group-containing silane compound and hollow silica-based fine particles having the outer shell layer and being porous or hollow inside has high scratch strength and is evaluated by eraser strength or nail strength. The film strength is high, the pencil hardness is high, and a transparent film excellent in strength can be formed.

低屈折率層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。   The low refractive index layer may contain a silane coupling agent. Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane. Ethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltri Acetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropyltri Ethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ- Acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N- Examples include β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。   Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate.

低屈折率層のその他のバインダーとして用いられるポリマーとしては、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂が挙げられる。   Examples of the polymer used as the other binder of the low refractive index layer include polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, and alkyd resin.

低屈折率層は、全体で5〜80質量%のバインダーを含むことが好ましい。バインダーは、中空シリカ微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。
(溶媒)
低屈折率層の塗布組成物には有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
The low refractive index layer preferably contains 5 to 80% by mass of binder as a whole. The binder has a function of adhering the hollow silica fine particles and maintaining the structure of the low refractive index layer including voids. The usage-amount of a binder is adjusted so that the intensity | strength of a low refractive index layer can be maintained, without filling a space | gap.
(solvent)
The coating composition for the low refractive index layer preferably contains an organic solvent. Specific examples of organic solvents include alcohols (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), esters (eg, methyl acetate, ethyl acetate). , Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Group hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

低屈折率層塗布組成物中の固形分濃度は1〜4質量%であることが好ましく、該固形分濃度が4質量%以下にすることによって、塗布ムラが生じにくくなり、1質量%以上にすることによって乾燥負荷が軽減される。
(フッ素系界面活性剤、シリコーンオイルまたはシリコーン界面活性剤)
前記ハードコート層、前記高屈折率層及び低屈折率層にフッ素系界面活性剤、シリコーンオイルまたはシリコーン系の界面活性剤を含有することが好ましい。上記界面活性剤を含有させることで、塗布ムラを低減したり膜表面の防汚性を向上させるのに有効である。
The solid content concentration in the low refractive index layer coating composition is preferably 1 to 4% by mass. By making the solid content concentration 4% by mass or less, coating unevenness is less likely to occur, and the content is 1% by mass or more. By doing so, the drying load is reduced.
(Fluorosurfactant, silicone oil or silicone surfactant)
It is preferable that the hard coat layer, the high refractive index layer, and the low refractive index layer contain a fluorine-based surfactant, a silicone oil, or a silicone-based surfactant. Inclusion of the surfactant is effective for reducing coating unevenness and improving the antifouling property of the film surface.

フッ素系界面活性剤としては、パーフルオロアルキル基を含有するモノマー、オリゴマー、ポリマーを母核としたもので、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン等の誘導体等が挙げられる。   Fluorosurfactants include perfluoroalkyl group-containing monomers, oligomers, and polymers as the core, and include derivatives such as polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, and polyoxyethylene. It is done.

フッ素系界面活性剤は市販品を用いることもでき、例えばサーフロン「S−381」、「S−382」、「SC−101」、「SC−102」、「SC−103」、「SC−104」(何れも旭硝子(株)製)、フロラード「FC−430」、「FC−431」、「FC−173」(何れもフロロケミカル−住友スリーエム製)、エフトップ「EF352」、「EF301」、「EF303」(何れも新秋田化成(株)製)、シュベゴーフルアー「8035」、「8036」(何れもシュベグマン社製)、「BM1000」、「BM1100」(いずれもビーエム・ヒミー社製)、メガファック「F−171」、「F−470」(いずれも大日本インキ化学(株)製)、などを挙げることができる。   Commercially available products may be used as the fluorosurfactant, for example, Surflon “S-381”, “S-382”, “SC-101”, “SC-102”, “SC-103”, “SC-104”. (All manufactured by Asahi Glass Co., Ltd.), Florard “FC-430”, “FC-431”, “FC-173” (all manufactured by Fluorochemical-Sumitomo 3M), Ftop “EF352”, “EF301”, “EF303” (both manufactured by Shin-Akita Kasei Co., Ltd.), Schwego Fluer “8035”, “8036” (both manufactured by Schwegman), “BM1000”, “BM1100” (all manufactured by BM Himmy) , MegaFuck “F-171”, “F-470” (both manufactured by Dainippon Ink & Chemicals, Inc.), and the like.

フッ素系界面活性剤のフッ素含有割合は、0.05〜2%、好ましくは0.1〜1%である。上記のフッ素系界面活性剤は、1種又は2種以上を併用することができ、又その他の界面活性剤と併用することができる。   The fluorine content of the fluorosurfactant is 0.05 to 2%, preferably 0.1 to 1%. The above-mentioned fluorosurfactants can be used alone or in combination of two or more, and can be used in combination with other surfactants.

シリコーンオイルまたはシリコーン界面活性剤について説明する。   The silicone oil or silicone surfactant will be described.

シリコーンオイルは、ケイ素原子に結合した有機基の種類により、ストレートシリコーンオイルと変性シリコーンオイルに大別できる。ストレートシリコーンオイルとは、メチル基、フェニル基、水素原子を置換基として結合したものをいう。変性シリコーンオイルとは、ストレートシリコーンオイルから二次的に誘導された構成部分をもつものである。   Silicone oils can be broadly classified into straight silicone oils and modified silicone oils depending on the type of organic group bonded to silicon atoms. Straight silicone oil refers to those bonded with a methyl group, a phenyl group, or a hydrogen atom as a substituent. A modified silicone oil is one having a component that is secondarily derived from a straight silicone oil.

一方、シリコーンオイルの反応性からも分類することができる。これらをまとめると、以下のようになる。   On the other hand, it can be classified from the reactivity of silicone oil. These are summarized as follows.

シリコーンオイル
1.ストレートシリコーンオイル
1−1.非反応性シリコーンオイル:ジメチル、メチルフェニル置換等
1−2.反応性シリコーンオイル:メチル水素置換等
2.変性シリコーンオイル
ジメチルシリコーンオイルに、さまざまな有機基を導入することで生まれたものが、変性シリコーンオイル
2−1.非反応性シリコーンオイル:アルキル、アルキル/アラルキル、アルキル/ポリエーテル、ポリエーテル、高級脂肪酸エステル置換等、アルキル/アラルキル変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を長鎖アルキル基あるいはフェニルアルキル基に置換えたシリコーンオイル、ポリエーテル変性シリコーンオイルは、親水性のポリオキシアルキレンを疎水性のジメチルシリコーンに導入したシリコーン系高分子界面活性剤、高級脂肪酸変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を高級脂肪酸エステルに置き換えたシリコーンオイル、アミノ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつシリコーンオイル、エポキシ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をエポキシ基含有アルキル基に置換えた構造をもつシリコーンオイル、カルボキシル変性あるいはアルコール変性シリコーンオイルは、シリコーンオイルのメチル基の一部をカルボキシル基あるいは水酸基含有アルキル基に置換えた構造をもつシリコーンオイル
2−2.反応性シリコーンオイル:アミノ、エポキシ、カルボキシル、アルコール置換等
これらの内、ポリエーテル変性シリコーンオイルが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1,000〜100,000、好ましくは2,000〜50,000が適当であり、数平均分子量が1,000未満では、機能性膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、機能性膜表面にブリードアウトしにくくなる傾向にある。
Silicone oil Straight silicone oil 1-1. Non-reactive silicone oil: dimethyl, methylphenyl substitution, etc. 1-2. Reactive silicone oil: methyl hydrogen substitution, etc. Modified silicone oil Modified silicone oil was born by introducing various organic groups into dimethyl silicone oil 2-1. Non-reactive silicone oil: Alkyl, alkyl / aralkyl, alkyl / polyether, polyether, higher fatty acid ester substitution, etc. Alkyl / aralkyl-modified silicone oil is a part of the methyl group of dimethyl silicone oil with a long chain alkyl group or phenyl Silicone oils substituted with alkyl groups, polyether-modified silicone oils are silicone-based polymer surfactants in which hydrophilic polyoxyalkylene is introduced into hydrophobic dimethyl silicone, and higher fatty acid-modified silicone oils are methyl methyl dimethyl silicone oil. Silicone oils and amino-modified silicone oils in which part of the groups are replaced with higher fatty acid esters are silicone oils and epoxy-modified silicones that have a structure in which some of the methyl groups in the silicone oil are replaced with aminoalkyl groups. The silicone oil has a structure in which a part of the methyl group of the silicone oil is replaced with an epoxy group-containing alkyl group. The carboxyl-modified or alcohol-modified silicone oil has a structure in which a part of the methyl group of the silicone oil is a carboxyl group- or hydroxyl group-containing alkyl. Silicone oil having a structure substituted with a group 2-2. Reactive silicone oil: amino, epoxy, carboxyl, alcohol substitution, etc. Of these, polyether-modified silicone oil is preferably added. The number average molecular weight of the polyether-modified silicone oil is, for example, 1,000 to 100,000, preferably 2,000 to 50,000. When the number average molecular weight is less than 1,000, the functional film is dried. On the other hand, if the number average molecular weight exceeds 100,000, it tends to be difficult to bleed out on the functional film surface.

具体的な商品としては、日本ユニカー(株)社のL−45、L−9300、FZ−3704、FZ−3703、FZ−3720、FZ−3786、FZ−3501、FZ−3504、FZ−3508、FZ−3705、FZ−3707、FZ−3710、FZ−3750、FZ−3760、FZ−3785、FZ−3785、Y−7499、信越化学社のKF96L、KF96、KF96H、KF99、KF54、KF965、KF968、KF56、KF995、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、FL100等がある。   As specific products, Nippon Unicar Co., Ltd. L-45, L-9300, FZ-3704, FZ-3703, FZ-3720, FZ-3786, FZ-3501, FZ-3504, FZ-3508, FZ-3705, FZ-3707, FZ-3710, FZ-3750, FZ-3760, FZ-3785, FZ-3785, Y-7499, Shin-Etsu Chemical KF96L, KF96, KF96H, KF99, KF54, KF965, KF968, KF56, KF995, KF351, KF352, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, FL100, and the like.

好ましく用いられるシリコーン界面活性剤は、シリコーンオイルのメチル基の一部を親水性基に置換した界面活性剤である。置換の位置は、シリコーンオイルの側鎖、両末端、片末端、両末端側鎖等がある。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。   The silicone surfactant preferably used is a surfactant in which a part of the methyl group of the silicone oil is substituted with a hydrophilic group. The position of substitution includes a side chain of silicone oil, both ends, one end, both end side chains, and the like. Examples of the hydrophilic group include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt.

シリコーン界面活性剤としては、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤が好ましい。   As the silicone surfactant, a nonionic surfactant having a hydrophobic group composed of dimethylpolysiloxane and a hydrophilic group composed of polyoxyalkylene is preferable.

非イオン界面活性剤は、水溶液中でイオンに解離する基を有しない界面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類の水酸基、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性水酸基の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。好ましく用いられる非イオン界面活性剤は疎水基としてジメチルポリシロキサンを有することに特徴がある。   A nonionic surfactant is a generic term for surfactants that do not have a group capable of dissociating into ions in an aqueous solution. Oxyethylene) or the like as a hydrophilic group. Hydrophilicity increases as the number of alcoholic hydroxyl groups increases and as the polyoxyalkylene chain (polyoxyethylene chain) becomes longer. The nonionic surfactant preferably used is characterized by having dimethylpolysiloxane as a hydrophobic group.

疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、前記の低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し、汚れにくい膜表面を形成するものと考えられる。他の界面活性剤を用いることでは得られない効果である。   When a nonionic surfactant composed of a dimethylpolysiloxane having a hydrophobic group and a polyoxyalkylene having a hydrophilic group is used, the unevenness of the low refractive index layer and the antifouling property of the film surface are improved. It is considered that the hydrophobic group made of polymethylsiloxane is oriented on the surface to form a film surface that is not easily soiled. This effect cannot be obtained by using other surfactants.

これらの非イオン活性剤の具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 SILWET L−77、L−720、L−7001、L−7002、L−7604、Y−7006、FZ−2101、FZ−2104、FZ−2105、FZ−2110、FZ−2118、FZ−2120、FZ−2122、FZ−2123、FZ−2130、FZ−2154、FZ−2161、FZ−2162、FZ−2163、FZ−2164、FZ−2166、FZ−2191等が挙げられる。   Specific examples of these nonionic surfactants include, for example, Nippon Unicar Co., Ltd., silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L-7604, Y-7006, FZ-2101, FZ-2104, FZ-2105, FZ-2110, FZ-2118, FZ-2120, FZ-2122, FZ-2123, FZ-2130, FZ-2154, FZ-2161, FZ-2162, FZ- 2163, FZ-2164, FZ-2166, FZ-2191 and the like.

また、SUPERSILWET SS−2801、SS−2802、SS−2803、SS−2804、SS−2805等が挙げられる。   Moreover, SUPERSILWET SS-2801, SS-2802, SS-2803, SS-2804, SS-2805, etc. are mentioned.

また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン系の界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。主鎖骨格の鎖長が長く、直鎖状の構造であることから、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより、シリカ微粒子の表面を1つの活性剤分子が、複数の箇所で、これを覆うように吸着することができるためと考えられる。   Further, as a preferable structure of the nonionic surfactant in which the hydrophobic group is composed of dimethylpolysiloxane and the hydrophilic group is composed of polyoxyalkylene, the dimethylpolysiloxane structure portion and the polyoxyalkylene chain are alternately and repeatedly bonded. It is preferably a linear block copolymer. Since the main chain skeleton has a long chain length and a linear structure, it is excellent. This is considered to be due to the fact that one activator molecule can be adsorbed on the surface of the silica fine particle at a plurality of locations so as to cover the surface of the silica fine particle by being a block copolymer in which hydrophilic groups and hydrophobic groups are alternately repeated.

これらの具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 ABN SILWET FZ−2203、FZ−2207、FZ−2208等が挙げられる。   Specific examples thereof include, for example, silicone surfactants ABN SILWET FZ-2203, FZ-2207, FZ-2208 and the like manufactured by Nippon Unicar Co., Ltd.

これらのシリコーンオイルまたはシリコーン界面活性剤の中では、ポリエーテル基を有するものが好ましい。   Among these silicone oils or silicone surfactants, those having a polyether group are preferred.

他の界面活性剤も併用して用いてもよく、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン界面活性剤等を併用してもよい。   Other surfactants may also be used in combination. For example, anionic surfactants such as sulfonates, sulfates, phosphates, etc., and ethers having polyoxyethylene chain hydrophilic groups Type, ether ester type nonionic surfactants and the like may be used in combination.

これらのシリコーンオイルまたはシリコーン界面活性剤を、低屈折率層及び低屈折率層に隣接する層、具体的にはハードコート層や高屈折率層に用いることが好ましい。低屈折率層が光学フィルムの最表面層である場合には、機能性膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。高屈折率層及び低屈折率層塗布液中の含有量は、0.05〜2.0質量%であることが好ましい。0.05質量%未満ではクラック耐性効果が不十分であり、2.0質量%を超えると塗布ムラを生じる。   These silicone oils or silicone surfactants are preferably used in the low refractive index layer and the layer adjacent to the low refractive index layer, specifically, the hard coat layer and the high refractive index layer. When the low refractive index layer is the outermost surface layer of the optical film, it not only improves the water repellency, oil repellency and antifouling property of the functional film, but also exhibits an effect on the surface scratch resistance. The content in the coating solution for the high refractive index layer and the low refractive index layer is preferably 0.05 to 2.0% by mass. If it is less than 0.05% by mass, the crack resistance effect is insufficient, and if it exceeds 2.0% by mass, uneven coating occurs.

上記の機能成膜の各層の塗布液には、前述した成分(無機微粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。光学フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号)により、塗布により形成することが出来る。2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
(バックコート層)
本発明に用いられる光学フィルムは、上記の機能性膜を塗布する面の反対側のフィルム面側に、粒径0.01〜1μmの粒子が塗布液全体に対して0.02〜10.00質量%含有されている塗布液を塗布したバックコート層を設けることが好ましい。含有量は、より好ましくは0.05質量%〜5.00質量%であり、更に好ましくは0.08質量%〜2.00質量%である。添加量は多い方が、動摩擦係数が低くなり、また少ない方がヘイズが低く、凝集物も少なくなる。
In addition to the above-mentioned components (inorganic fine particles, polymer, dispersion medium, polymerization initiator, polymerization accelerator), the coating liquid for each layer of the functional film formation described above includes a polymerization inhibitor, a leveling agent, a thickener, and a coloring inhibitor. Further, an ultraviolet absorber, a silane coupling agent, an antistatic agent or an adhesion promoter may be added. Each layer of the optical film can be formed by coating by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, or extrusion coating (US Pat. No. 2,681,294). I can do it. Two or more layers may be applied simultaneously. For the method of simultaneous application, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, It is described in Asakura Shoten (1973).
(Back coat layer)
In the optical film used in the present invention, particles having a particle diameter of 0.01 to 1 μm are 0.02 to 10.00 with respect to the entire coating liquid on the film surface side opposite to the surface on which the functional film is applied. It is preferable to provide a backcoat layer coated with a coating solution containing mass%. The content is more preferably 0.05% by mass to 5.00% by mass, and still more preferably 0.08% by mass to 2.00% by mass. The larger the addition amount, the lower the dynamic friction coefficient, and the smaller the addition amount, the lower the haze and the fewer the aggregates.

本発明に有用なバックコート層に含ませる粒子としては、無機化合物の微粒子または有機化合物の微粒子を挙げることが出来る。   Examples of the particles included in the back coat layer useful in the present invention include inorganic compound fine particles and organic compound fine particles.

バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は珪素を含むものがヘイズを低くする点で好ましく、特に二酸化珪素が好ましい。   As fine particles added to the back coat layer, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxidation. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable from the viewpoint of reducing haze, and silicon dioxide is particularly preferable.

これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。   These fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). . Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used. Examples of the polymer include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.

これらの中でもアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。本発明で用いられる光学フィルムは、ハードコート層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。   Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large anti-blocking effect while keeping haze low. The optical film used in the present invention preferably has a dynamic friction coefficient on the back side of the hard coat layer of 0.9 or less, particularly 0.1 to 0.9.

バックコート層に使用される有機溶媒は特に限定されないが、バックコート層にアンチカール機能を付与することも出来るので、セルロースエステルフィルム及びセルロースエステルフィルムの素材の樹脂を溶解させる有機溶媒または膨潤させる有機溶媒が有用である。これらをセルロースエステルフィルムのカール度合、樹脂の種類、混合割合、塗布量等により適宜選べばよい。   The organic solvent used in the back coat layer is not particularly limited, but since the anti-curl function can be imparted to the back coat layer, the organic solvent that dissolves the cellulose ester film and the resin of the cellulose ester film material or the organic solvent that swells. Solvents are useful. These may be appropriately selected depending on the curl degree of the cellulose ester film, the type of resin, the mixing ratio, the coating amount, and the like.

バックコート層に使用し得る有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノンなどがある。   Examples of the organic solvent that can be used for the backcoat layer include benzene, toluene, xylene, dioxane, acetone, methyl ethyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, N-methylpyrrolidone, 1,3-dimethyl- 2-Imidazolidinone.

溶解させない有機溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノールなどがあるが、有機溶媒としては特にこれらに限定されるものではない。   Examples of the organic solvent that is not dissolved include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, and n-butanol, but the organic solvent is not particularly limited thereto.

バックコート層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。   As a coating method of the backcoat layer coating composition, the coating liquid film thickness (sometimes referred to as wet film thickness) is 1 to 100 μm using a gravure coater, dip coater, wire bar coater, reverse coater, extrusion coater, etc. In particular, 5 to 30 μm is preferable.

バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニルコポリマー、塩化ビニル/塩化ビニリデンコポリマー、塩化ビニル/アクリロニトリルコポリマー、エチレン/ビニルアルコールコポリマー、塩素化ポリ塩化ビニル、エチレン/塩化ビニルコポリマー、エチレン/酢酸ビニルコポリマー等のビニル系ホモポリマー或いはコポリマー、セルロースニトラート、セルロースアセテートプロピオネート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートフタレート、セルロースアセテートブチレート樹脂等のセルロースエステル系樹脂、マレイン酸及び/またはアクリル酸のコポリマー、アクリル酸エステルコポリマー、アクリロニトリル/スチレンコポリマー、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレンコポリマー、メチルメタクリレート/ブタジエン/スチレンコポリマー、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリメチルメタクリレート、ポリメチルメタクリレートとポリメチルアクリレートの共重合体等を挙げることが出来るが、これらに限定されるものではない。特に好ましくはセルロースジアセテート、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。   Examples of the resin used as the binder for the back coat layer include vinyl chloride / vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, vinyl acetate / vinyl alcohol copolymer, partially hydrolyzed vinyl chloride / vinyl acetate copolymer. Vinyl homopolymers or copolymers such as vinyl chloride / vinylidene chloride copolymer, vinyl chloride / acrylonitrile copolymer, ethylene / vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, cellulose nitrate, Cellulose ester-based resins such as cellulose acetate propionate, cellulose diacetate, cellulose triacetate, cellulose acetate phthalate, cellulose acetate butyrate resin, male Copolymers of acid and / or acrylic acid, acrylate copolymers, acrylonitrile / styrene copolymers, chlorinated polyethylene, acrylonitrile / chlorinated polyethylene / styrene copolymers, methyl methacrylate / butadiene / styrene copolymers, acrylic resins, polyvinyl acetal resins, polyvinyl butyral Resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, rubber resin such as styrene / butadiene resin, butadiene / acrylonitrile resin, silicone resin, fluorine resin , Polymethyl methacrylate, copolymers of polymethyl methacrylate and polymethyl acrylate, etc. Door but can be, but is not limited to these. Particularly preferred are cellulose resin layers such as cellulose diacetate and cellulose acetate propionate.

バックコート層を塗設する順番はセルロースエステルフィルムのハードコート層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。または2回以上に分けてバックコート層を塗布することもできる。
(光学フィルムの構成)
好ましい光学フィルムの構成を下記に示すが、これらに限定されるものではない。
The order of coating the back coat layer may be before or after the hard coat layer of the cellulose ester film is coated, but when the back coat layer also serves as an anti-blocking layer, it is preferably coated first. Alternatively, the backcoat layer can be applied in two or more steps.
(Configuration of optical film)
Although the structure of a preferable optical film is shown below, it is not limited to these.

ここでハードコート層とは、前述の活性線硬化樹脂層を意味する。   Here, the hard coat layer means the actinic radiation curable resin layer described above.

基材フィルム/ハードコート層/高屈折率層/低屈折率層
基材フィルム/ハードコート層/高屈折率層
基材フィルム/帯電防止層/ハードコート層/高屈折率層/低屈折率層
基材フィルム/防眩性ハードコート層/高屈折率層/低屈折率層
基材フィルム/帯電防止層/防眩性ハードコート層/高屈折率層/低屈折率層
いずれも基材フィルムの機能性膜を塗設した側と反対面には、前述のバックコート層を設けることが好ましい。
Base film / hard coat layer / high refractive index layer / low refractive index layer Base film / hard coat layer / high refractive index layer Base film / antistatic layer / hard coat layer / high refractive index layer / low refractive index layer Base film / Anti-glare hard coat layer / High refractive index layer / Low refractive index layer Base film / Antistatic layer / Anti-glare hard coat layer / High refractive index layer / Low refractive index layer The back coat layer described above is preferably provided on the side opposite to the side on which the functional film is applied.

本発明は、上記ハードコート層を形成した後ハードコート層の表面を表面処理を行い、該表面処理を行ったハードコート層表面に本発明に係る高屈折率層、低屈折率層を形成することが好ましい。   In the present invention, after the hard coat layer is formed, the surface of the hard coat layer is subjected to surface treatment, and the high refractive index layer and the low refractive index layer according to the present invention are formed on the surface of the hard coat layer subjected to the surface treatment. It is preferable.

表面処理は、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられ、好ましくはアルカリ処理法、コロナ処理法であり、特に好ましくはアルカリ処理法が有効である。   Examples of the surface treatment include cleaning methods, alkali treatment methods, flame plasma treatment methods, high frequency discharge plasma methods, electron beam methods, ion beam methods, sputtering methods, acid treatments, corona treatment methods, atmospheric pressure glow discharge plasma methods, and the like. The alkali treatment method and the corona treatment method are preferable, and the alkali treatment method is particularly effective.

本発明に係る光学フィルムの反射率は分光光度計により測定を行うことができる。その際、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。反射率は低いほど好ましいが、可視光領域の波長における平均値が1.5%以下であることが好ましく、最低反射率は0.8%以下であることが好ましい。また、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。   The reflectance of the optical film according to the present invention can be measured with a spectrophotometer. At that time, after the surface on the measurement side of the sample is roughened, the light absorption treatment is performed using a black spray, and then the reflected light in the visible light region (400 to 700 nm) is measured. The reflectance is preferably as low as possible, but the average value in the visible light wavelength is preferably 1.5% or less, and the minimum reflectance is preferably 0.8% or less. Moreover, it is preferable to have a flat reflection spectrum in the wavelength region of visible light.

また、反射防止処理を施した偏光板表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、FPDテレビ等の最表面に使用する場合にはニュートラルな色調が要望される。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。   In addition, the reflection hue on the surface of the polarizing plate that has undergone antireflection treatment is often colored red or blue due to the high reflectance in the short wavelength region and long wavelength region in the visible light region due to the design of the antireflection film. The color tone of the reflected light varies depending on the application, and when used on the outermost surface of an FPD television or the like, a neutral color tone is desired. In this case, generally preferred reflection hue ranges are 0.17 ≦ x ≦ 0.27 and 0.07 ≦ y ≦ 0.17 on the XYZ color system (CIE1931 color system).

高屈折率層と低屈折率層の膜厚は、各々の層の屈折率より反射率、反射光の色味を考慮して常法に従って計算で求められる。   The film thicknesses of the high refractive index layer and the low refractive index layer can be obtained by calculation according to a conventional method in consideration of the reflectance and the color of reflected light based on the refractive index of each layer.

以上のようにして基材フィルムに機能性層、バックコート層を塗布し、乾燥する。また、所定のタイミングで所望のナーリング高さを有するナーリング処理を施し、巻きとり工程において、ロール状にフィルムを巻きとり、加熱処理を経て、光学フィルムを作製することが出来る。ロール状に巻き取る方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。
(偏光板)
本発明の製造方法によって得られた光学フィルムは、偏光板に適用することができる。
As described above, the functional layer and the back coat layer are applied to the base film and dried. Further, a knurling process having a desired knurling height is performed at a predetermined timing, and in the winding process, the film is wound into a roll shape, and an optical film can be manufactured through a heat treatment. As a method of winding in a roll shape, a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like. .
(Polarizer)
The optical film obtained by the production method of the present invention can be applied to a polarizing plate.

偏光板は一般的な方法で作製することが出来る。本発明の光学フィルムの裏面側をアルカリ鹸化処理し、処理した光学フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜(PVA又は変性PVA)の少なくとも一方の面に、完全鹸化型アルコール水溶液を用いて貼り合わせることが好ましい。偏光膜は5〜30μm、好ましくは10〜25μmの厚みの偏光膜が好ましく用いられる。   The polarizing plate can be produced by a general method. The back surface side of the optical film of the present invention is subjected to alkali saponification treatment, and a completely saponified alcohol aqueous solution is provided on at least one surface of a polarizing film (PVA or modified PVA) produced by immersing and stretching the treated optical film in an iodine solution. It is preferable to stick together. As the polarizing film, a polarizing film having a thickness of 5 to 30 μm, preferably 10 to 25 μm is preferably used.

もう一方の面にも該光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の光学フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20〜200nm、Rtが100〜400nmの位相差を有していることが好ましい。これらは例えば、特開2002−71957、特願2002−155395記載の方法で作成することが出来る。   The optical film may be used on the other surface, or another polarizing plate protective film may be used. The polarizing plate protective film used on the other surface of the optical film of the present invention preferably has an in-plane retardation Ro of 590 nm, a phase difference of 20 to 200 nm, and Rt of 100 to 400 nm. . These can be created by the method described in Japanese Patent Application Laid-Open No. 2002-71957 and Japanese Patent Application No. 2002-155395, for example.

或いは更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348記載の方法で光学異方性層を形成することが出来る。本発明の光学フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることが出来る。   Alternatively, it is preferable to use a polarizing plate protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP-A-2003-98348. By using in combination with the optical film of the present invention, a polarizing plate having excellent flatness and a stable viewing angle expansion effect can be obtained.

裏面側に用いられる偏光板保護フィルムとしては、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UCR−3、KC8UCR−4、KC8UCR−5(コニカミノルタオプト(株)製)等が好ましく用いられる。   As the polarizing plate protective film used on the back side, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5 (manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の光学フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. On the surface of the polarizing film, one side of the optical film of the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.

例えば、特開2004−20633、特開2004−20629、特開2004−184574、特開2003−268127、特開2003−248123、特開2000−121829記載の偏光膜が好ましく用いられる。偏光膜の膜厚は5〜30μmであることが好ましい。   For example, polarizing films described in JP-A-2004-20633, JP-A-2004-20629, JP-A-2004-184574, JP-A-2003-268127, JP-A-2003-248123, and JP-A-2000-121829 are preferably used. The thickness of the polarizing film is preferably 5 to 30 μm.

従来の光学フィルムを使用した偏光板は平面性に劣り、反射像を見ると細かい波打ち状のむらが認められ、60℃、90%RHの条件での耐久性試験により、波打ち状のむらが増大したが、これに対して本発明の光学フィルムを用いた偏光板は、平面性に優れていた。また、60℃、90%RHの条件での耐久性試験によっても波打ち状のむらが増加することはなく、裏面側に光学補償フィルムを有する偏光板であっても、耐久性試験後に視野角特性が変動することなく良好な視認性を提供することが出来た。
(表示装置)
上記偏光板を表示装置に組み込むことによって、種々の視認性に優れた表示装置を作製することが出来る。本発明の光学フィルムは反射型、透過型、半透過型LCD或いはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の光学フィルムは反射防止層の反射光の色むらが著しく少なく、また、平面性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面が30型以上の大画面の表示装置では、色むらや波打ちむらが少なく、長時間の鑑賞でも目が疲れないという効果があった。
The polarizing plate using the conventional optical film is inferior in flatness, and when the reflected image is seen, fine wavy unevenness is recognized, and the wavy unevenness is increased by the durability test under the conditions of 60 ° C. and 90% RH. On the other hand, the polarizing plate using the optical film of the present invention was excellent in flatness. In addition, even in a durability test under the conditions of 60 ° C. and 90% RH, the wavy unevenness does not increase, and even with a polarizing plate having an optical compensation film on the back surface side, the viewing angle characteristics after the durability test are It was possible to provide good visibility without fluctuation.
(Display device)
By incorporating the polarizing plate into a display device, various display devices with excellent visibility can be manufactured. The optical film of the present invention is preferably a reflective, transmissive, transflective LCD, or TN, STN, OCB, HAN, VA (PVA, MVA), IPS, or other driving LCD. Used. Further, the optical film of the present invention has remarkably little unevenness of the reflected light of the antireflection layer, and has excellent flatness, and various display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper Also preferably used. In particular, a large-screen display device with a 30-inch screen or more has the effect that there is little unevenness in color and undulation, and eyes are not tired even during long-time viewing.

以下、本発明を、実施例を挙げて具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。
(実施例1〜37、比較例1〜7)
基材フィルムとして、セルロースエステルフィルムを下記に述べる方法で作成した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the embodiment of this invention is not limited to these.
(Examples 1-37, Comparative Examples 1-7)
A cellulose ester film was prepared as a base film by the method described below.

この基材フィルムの、一方の面(裏面)にバックコート層を設け、更にその反対側の面(表面)にハードコート層を巻き取らずに連続的に設け、次いで下記反射防止層をハードコート層の上に塗設した。ナーリング加工を所定のタイミングで施し、巻き取ったフィルムはロール状のまま加熱処理を行い、光学フィルムNo.1〜44を得た。前記ナーリング加工は熱したエンボスロールを押し当てて行い、エンボスロール温度と押し圧を変えることで所望のナーリング高さを得た。以下にその工程を詳細に述べる。
(基材フィルムの作製)
〈ドープ液の調製〉
下記の材料を、順次密閉容器中に投入し、容器内温度を18℃から85℃まで昇温した後、温度を85℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して2回濾過し、ドープを得た。
(ドープ液の調製)
セルロースエステル(セルローストリアセテート;アセチル基置換度2.9)
100質量部
トリメチロールプロパントリベンゾエート 5.5質量部
エチルフタリルエチルグリコレート 4.5質量部
メチレンクロライド 300質量部
エタノール 40質量部
酸化ケイ素微粒子(アエロジルR972V(日本アエロジル株式会社製))
0.2質量部
上記のように調製したドープを、35℃に保温した流延ダイを通して、ステンレス鋼製エンドレスベルトよりなる35℃の支持体上に流延してウェブを形成し、支持体上で乾燥させ、ウェブの残留溶媒量が75質量%になるまで支持体上で乾燥させた後、剥離ロールによりウェブを支持体から剥離した。
A back coat layer is provided on one side (back side) of this base film, and the hard coat layer is continuously provided on the opposite side (front side) without winding up, and then the following antireflection layer is hard coated. Painted on top of the layer. The knurling process was performed at a predetermined timing, and the wound film was heat-treated in the form of a roll. 1-44 were obtained. The knurling process was performed by pressing a heated embossing roll, and a desired knurling height was obtained by changing the embossing roll temperature and pressing pressure. The process will be described in detail below.
(Preparation of base film)
<Preparation of dope solution>
The following materials were sequentially put into a sealed container, and the temperature in the container was raised from 18 ° C. to 85 ° C., and then stirred for 3 hours while maintaining the temperature at 85 ° C. to completely dissolve the cellulose ester. . The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered twice using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope.
(Preparation of dope solution)
Cellulose ester (cellulose triacetate; acetyl group substitution degree 2.9)
100 parts by mass Trimethylolpropane tribenzoate 5.5 parts by mass Ethylphthalyl ethyl glycolate 4.5 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass Silicon oxide fine particles (Aerosil R972V (produced by Nippon Aerosil Co., Ltd.))
0.2 parts by mass The dope prepared as described above was cast on a 35 ° C. support made of a stainless steel endless belt through a casting die kept at 35 ° C. to form a web. And dried on the support until the residual solvent amount of the web reached 75% by mass, and then the web was peeled from the support with a peeling roll.

ついで、ウェブを上下に複数配置したロールによる搬送乾燥工程で70℃の乾燥風にて乾燥させ、続いてテンターでウェブ両端部を把持した後、130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で120℃の乾燥風にて乾燥させ、残留溶媒量0.1質量%まで乾燥させた後、巻き取りの前に幅手両端部をスリット加工して、基材幅を2000mmとして、それぞれ表1、表2に示す厚み及び巻取り長で巻き取り、屈折率1.49のロール状のセルロースエステルフィルムNo.1〜44を作成し基材フィルムとした。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向の延伸倍率は1.1倍とした。膜厚は、ステンレスベルトに流延するドープ量により調整した。   Next, the web is dried with a drying air at 70 ° C. in a conveying and drying process using a plurality of rolls arranged on the top and bottom, and then grips both ends of the web with a tenter, and then is stretched in the width direction at 130 ° C. 1.1 times before stretching. It extended | stretched so that it might become. After stretching with a tenter, the web is dried with a drying air at 120 ° C. in a conveying and drying process using a plurality of rolls arranged at the top and bottom, dried to a residual solvent amount of 0.1% by mass, and then rolled before winding. Both ends of the hand are slit processed, the substrate width is 2000 mm, and the film is wound with the thickness and winding length shown in Tables 1 and 2, respectively. 1-44 were made and it was set as the base film. The draw ratio in the web conveyance direction immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times. The film thickness was adjusted by the dope amount cast on the stainless steel belt.

作成したセルロースエステルフィルムは、透過型赤外線膜厚計(クラボウ・インダストリィーズ製RX−100型)の透過光測定モードにより幅手方向の膜厚を測定し、前記基材フィルムの局所膜厚偏差を測定し、表1、表2に記載の特性値を有するセルロースエステルフィルムNo.1〜44を各々使用した。
(バックコート層の作製)
上記各々の基材フィルムの、一方の面(裏面)に、下記バックコート層組成物をウェット膜厚10μmとなるように押し出しコーターで塗布し、85℃にて乾燥し、バックコート層を設けた。
〈バックコート層組成物〉
アセトン 54質量部
メチルエチルケトン 24質量部
メタノール 22質量部
ジアセチルセルロース 0.6質量部
超微粒子シリカ2%アセトン分散液(MAT剤として使用)
(日本アエロジル(株)製アエロジル200V)
基材裏面に塗布する塗布液の含有する粒子である超微粒子シリカの粒径及び塗布液全体に対する粒子の含有量を表1、表2に示すMAT剤1次粒径(μm)、MAT剤含有量(質量%)となるように調製した。
The prepared cellulose ester film was measured in the width direction by the transmitted light measurement mode of a transmission type infrared film thickness meter (Kurabo Industries RX-100 type), and the local film thickness deviation of the base film was measured. The cellulose ester film No. having the characteristic values described in Tables 1 and 2 was measured. 1-44 were used respectively.
(Preparation of back coat layer)
The following back coat layer composition was applied to one surface (back surface) of each of the above base films with an extrusion coater so as to have a wet film thickness of 10 μm, and dried at 85 ° C. to provide a back coat layer. .
<Backcoat layer composition>
Acetone 54 parts by weight Methyl ethyl ketone 24 parts by weight Methanol 22 parts by weight Diacetylcellulose 0.6 part by weight Ultrafine silica 2% acetone dispersion (used as MAT agent)
(Japan Aerosil Co., Ltd. Aerosil 200V)
Table 1 and Table 2 show the MAT agent primary particle size (μm) and the MAT agent content of the particle size of the ultrafine silica particles that are particles contained in the coating solution applied to the back surface of the substrate and the content of the particles with respect to the entire coating solution. It prepared so that it might become quantity (mass%).

更に、下記のハードコート層用塗布液を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、もう一方の面(表面)に塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を0.1J/cm2として機能性膜を硬化させて、所定の膜厚でハードコート層を形成した。
(ハードコート層の作製)
下記材料を攪拌、混合しハードコート層塗布液とした。
Further, the following hard coat layer coating solution is filtered through a polypropylene filter having a pore diameter of 0.4 μm to prepare a hard coat layer coating solution, which is applied to the other surface (surface) and dried at 90 ° C. The functional film was cured using an ultraviolet lamp with an illuminance of the irradiated part of 100 mW / cm 2 and an irradiation amount of 0.1 J / cm 2 to form a hard coat layer with a predetermined film thickness.
(Preparation of hard coat layer)
The following materials were stirred and mixed to obtain a hard coat layer coating solution.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 225質量部
イルガキュア184(チバスペシャルティケミカルズ(株)製) 20質量部
プロピレングリコールモノメチルエーテル 110質量部
酢酸エチル 110質量部
(反射防止層の作製)
上記作成したハードコート層上に、下記のように高屈折率層、次いで低屈折率層をその上に設け重層構成の反射防止層を塗設した。また、単層構成では、ハードコート層上に低屈折率層を塗設し、反射防止層とした。このようにして表1、表2のNo.1〜44の光学フィルムを作成した。
(反射防止層の作製:高屈折率層)
ハードコート層上に、下記高屈折率層塗布組成物を押し出しコーターで塗布し、50℃で1分間乾燥させ、次いで紫外線を0.1J/cm2照射して硬化させ、厚さが130nmとなるように高屈折率層を設けた。この高屈折率層の屈折率は1.56であった。
〈高屈折率層塗布組成物〉
アンチモン酸亜鉛ゾル 60質量部
(CX−Z610M−F2、日産化学工業株式会社製)
メトキシポリエチレングリコール#1000アクリレート 8質量部
(NK−エステル AM−230G、新中村化学工業株式会社製)
ペンタエリスリトールテトラアクリレート 4質量部
(NK−エステル A−TMMT、新中村化学工業株式会社製)
1−ヒドロキシーシクロへキシルーフェニルーケトン 2質量部
(イルガキュア184、チバスペシャルティケミカルズ株式会社製)
3−メタクリロイルオキシプロピルトリメトキシシラン 3質量部
(KBM−503、信越化学工業株式会社製)
ポリオキシアルキレンジメチルポリシロキサンコポリマーの10%プロピレングリコールモノメチルエーテル液 2質量部
(FZ−2207、東レダウコーニング株式会社製)
プロピレングリコールモノメチルエーテル 360質量部
イソプロピルアルコール 360質量部
メチルエチルケトン 200質量部
(反射防止層の作製:低屈折率層)
上記の高屈折率層上に、下記の低屈折率層塗布組成物を押し出しコーターで乾燥後の厚さが80nmとなるように塗布し、50℃で1分間乾燥させた後、紫外線を0.1J/cm2照射して硬化させ、更に120℃で1分間熱硬化させた後、巻き取った。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate, Nippon Kayaku) 225 parts by mass Irgacure 184 (manufactured by Ciba Specialty Chemicals) 20 parts by mass Propylene glycol monomethyl ether 110 parts by mass Ethyl acetate 110 parts by mass (antireflection layer) Production)
On the hard coat layer prepared above, a high refractive index layer and then a low refractive index layer were provided as described below, and an antireflection layer having a multilayer structure was coated thereon. In the single-layer configuration, a low refractive index layer is coated on the hard coat layer to form an antireflection layer. In this way, Nos. 1 and 2 in Tables 1 and 2 were used. 1 to 44 optical films were prepared.
(Preparation of antireflection layer: high refractive index layer)
On the hard coat layer, the following high refractive index layer coating composition is applied by an extrusion coater, dried at 50 ° C. for 1 minute, and then cured by irradiation with ultraviolet rays of 0.1 J / cm 2 to a thickness of 130 nm. Thus, a high refractive index layer was provided. The refractive index of this high refractive index layer was 1.56.
<High refractive index layer coating composition>
Zinc antimonate sol 60 parts by mass (CX-Z610M-F2, manufactured by Nissan Chemical Industries, Ltd.)
8 parts by mass of methoxypolyethylene glycol # 1000 acrylate (NK-ester AM-230G, manufactured by Shin-Nakamura Chemical Co., Ltd.)
4 parts by mass of pentaerythritol tetraacrylate (NK-ester A-TMMT, manufactured by Shin-Nakamura Chemical Co., Ltd.)
1-hydroxy-cyclohexyl phenyl ketone 2 parts by mass (Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.)
3-Methacryloyloxypropyltrimethoxysilane 3 parts by mass (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass of 10% propylene glycol monomethyl ether solution of polyoxyalkylenedimethylpolysiloxane copolymer (FZ-2207, manufactured by Toray Dow Corning Co., Ltd.)
Propylene glycol monomethyl ether 360 parts by mass Isopropyl alcohol 360 parts by mass Methyl ethyl ketone 200 parts by mass (Preparation of antireflection layer: low refractive index layer)
On the above-mentioned high refractive index layer, the following low refractive index layer coating composition was applied by an extrusion coater so that the thickness after drying was 80 nm, dried at 50 ° C. for 1 minute, and then irradiated with UV rays at a concentration of 0.1%. The film was cured by irradiation with 1 J / cm 2 , further heat-cured at 120 ° C. for 1 minute, and then wound up.

この時、中空シリカ系微粒子の含有量を制御することにより、塗布乾燥後の機能成膜の幅方向における局所膜厚偏差を表1、表2に示す値になるようにした。
(低屈折率層塗布組成物の調製)
〈テトラエトキシシラン加水分解物の調製〉
テトラエトキシシラン230gとエタノール440gを混和し、これに2%酢酸水溶液120gを添加し、25℃のウォーターバス中で20時間攪拌することで加水分解物を調製した。
At this time, by controlling the content of the hollow silica fine particles, the local film thickness deviation in the width direction of the functional film formation after coating and drying was set to the values shown in Tables 1 and 2.
(Preparation of low refractive index layer coating composition)
<Preparation of tetraethoxysilane hydrolyzate>
A hydrolyzate was prepared by mixing 230 g of tetraethoxysilane and 440 g of ethanol, adding 120 g of a 2% aqueous acetic acid solution, and stirring in a water bath at 25 ° C. for 20 hours.

テトラエトキシシラン加水分解物 90質量部
中空シリカ系微粒子(下記P−2) 所定質量部
KBM503(シランカップリング剤、信越化学(株)製) 3質量部
カルビーノ変性シリコーン樹脂の10%イソプロピルアルコール液 0.6質量部
(KF−6003、信越化学工業株式会社製)
アルミニウムエチルアセトアセテートジイプロピレートの10%イソプロピルアルコール液 6質量部
(ALCH,川研ファインケミカル株式会社製)
α−ブチル−ω−[3−(2、2−ビス(ヒドロキシメチル)ブトキシ)プロピル]ポリジメチルシロキサンの10%イソプロピルアルコール液 2質量部
(サイラプレーンFM−DA21、チッソ株式会社製)
プロピレングリコールモノメチルエーテル 450質量部
イソプロピルアルコール 450質量部
〈中空シリカ系微粒子P−2の調製〉
平均粒径5nm、SiO2濃度20質量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として0.98質量%のケイ酸ナトリウム水溶液9000gとAl23として1.02質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al23核粒子分散液を調製した。
Tetraethoxysilane hydrolyzate 90 parts by mass Hollow silica-based fine particles (P-2 below) Predetermined parts KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 3 parts by mass 10% isopropyl alcohol solution of carbino-modified silicone resin 0 .6 parts by mass (KF-6003, manufactured by Shin-Etsu Chemical Co., Ltd.)
6 parts by mass of 10% isopropyl alcohol solution of aluminum ethyl acetoacetate diisopropylate (ALCH, manufactured by Kawaken Fine Chemical Co., Ltd.)
α-Butyl-ω- [3- (2,2-bis (hydroxymethyl) butoxy) propyl] polydimethylsiloxane 10% isopropyl alcohol solution 2 parts by mass (Silaplane FM-DA21, manufactured by Chisso Corporation)
Propylene glycol monomethyl ether 450 parts by mass Isopropyl alcohol 450 parts by mass <Preparation of hollow silica-based fine particles P-2>
A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1900 g of pure water was heated to 80 ° C. The pH of the reaction mother liquor is 10.5, uterine solution added as SiO 2 as a 0.98 wt% aqueous solution of sodium silicate 9000g and Al 2 O 3 of 1.02% by weight sodium aluminate solution 9000g simultaneously did. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 core particle dispersion having a solid content concentration of 20% by mass.

この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2濃度3.5質量%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。 1700 g of pure water is added to 500 g of this core particle dispersion and heated to 98 ° C., and while maintaining this temperature, a silicic acid solution (SiO 2) obtained by dealkalizing a sodium silicate aqueous solution with a cation exchange resin. A dispersion of core particles in which 3000 g (concentration of 3.5% by mass) was added to form a first silica coating layer was obtained.

次いで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO2・Al23多孔質粒子の分散液を調製した。 Next, 1125 g of pure water is added to 500 g of the core particle dispersion liquid that has been washed with an ultrafiltration membrane to form a first silica coating layer having a solid concentration of 13% by mass, and concentrated hydrochloric acid (35.5%) is further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and SiO 2 · Al from which some of the constituent components of the core particles forming the first silica coating layer were removed. A dispersion of 2 O 3 porous particles was prepared.

上記多孔質粒子分散液1500gと、純水500g、エタノール1,750g及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO228質量%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。次いで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ系微粒子(P−2)の分散液を調製した。 A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1,750 g of ethanol, and 626 g of 28% ammonia water is heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 mass%) is added. The surface of the porous particles on which the first silica coating layer was formed was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer. Subsequently, a dispersion of hollow silica-based fine particles (P-2) having a solid content concentration of 20% by mass in which the solvent was replaced with ethanol using an ultrafiltration membrane was prepared.

この中空シリカ系微粒子の第1シリカ被覆層の厚さは3nm、平均粒径は45nm、MOx/SiO2(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径は動的光散乱法により測定した。このようにしてハードコート層及び反射防止層を設けた各々の光学フィルムを作成した。なお、この低屈折率層の屈折率は1.37であった。 The thickness of the first silica coating layer of the hollow silica-based fine particles was 3 nm, the average particle size was 45 nm, MOx / SiO 2 (molar ratio) was 0.0017, and the refractive index was 1.28. Here, the average particle diameter was measured by a dynamic light scattering method. Thus, each optical film provided with a hard coat layer and an antireflection layer was prepared. The refractive index of this low refractive index layer was 1.37.

なお、上記の基材フィルムの局所膜厚偏差を測定したものと同様の方法を用いて、各々のフィルムについて乾燥後の機能性膜の幅方向の局所膜厚偏差(この時、基材フィルムの厚みは、除外している。)および塗布後の基材フィルム及び機能性膜を含めてたフィルムの幅方向の局所膜厚偏差を測定した結果を表1、表2に示す。   In addition, using the same method as that for measuring the local film thickness deviation of the base film, the local film thickness deviation in the width direction of the functional film after drying for each film (at this time, Table 1 and Table 2 show the results of measuring the local film thickness deviation in the width direction of the film including the base film and the functional film after coating.

また、セルロースエステルフィルム、反射防止層の構成、フィルム端部に加熱したエンボスロールを押し当てて作製したナーリング部の高さとその位置を、各々表1、表2のように変更した以外は同様にして、実施例1〜37と比較例1〜7の光学フィルムNo.1〜44を作成した。その際のナーリング部の高さの設定は、エンボスロール温度と押し圧を変えることで所望の高さが得られるように調整した。
(光学フィルムの巻きとりと加熱処理)
上記のように作製した光学フィルムを直径200mmのプラスチック製の巻きとりコアに表1、表2に示す張力で巻きとり、その後、加熱条件として表1、表2の加熱処理温度、加熱処理期間で保持した。
(ブロッキング、ブラックバンド評価)
上記のようにして作成した実施例1〜37と比較例1〜7の光学フィルムNo.1〜44を、巻状態からブロッキングやブラックバンドの発生を下記基準にて目視で評価した。
(ブロッキング評価基準)
加熱処理後のブロッキング
◎ :発生なく、巻芯転写も少ない
○ :発生なしだが、巻芯転写あり
○△:かなり弱く発生
△ :弱く発生
× :強く発生(ユーザークレームレベル)
(ブラックバンド(BB)評価基準)
加熱処理後のブラックバンド
◎ :発生なく、巻芯転写も少ない
○ :発生なしだが、巻芯転写あり
○△:かなり弱く発生
△ :弱く発生
× :強く発生(ユーザークレームレベル)
評価レベルは、△以上であれば使用可能なレベルである。
Also, the configuration of the cellulose ester film, the antireflection layer, and the height and position of the knurling part produced by pressing a heated embossing roll on the film end were changed as shown in Tables 1 and 2, respectively. In Examples 1 to 37 and Comparative Examples 1 to 7, the optical film Nos. 1-44 were made. The height of the knurling part at that time was adjusted so that a desired height could be obtained by changing the embossing roll temperature and the pressing pressure.
(Optical film winding and heat treatment)
The optical film produced as described above is wound around a plastic winding core having a diameter of 200 mm with the tensions shown in Tables 1 and 2, and then the heating conditions in Tables 1 and 2 as the heating conditions are as follows. Retained.
(Blocking, black band evaluation)
The optical film Nos. 1 to 37 and Comparative Examples 1 to 7 prepared as described above were used. 1 to 44 were visually evaluated from the wound state for the occurrence of blocking and black bands according to the following criteria.
(Blocking evaluation criteria)
Blocking after heat treatment ◎: No generation, little core transfer ○: No generation, but core transfer ○ △: Very weak generation △: Weak generation ×: Strong generation (user claim level)
(Black band (BB) evaluation criteria)
Black band after heat treatment ◎: No generation, little core transfer ○: No generation, but core transfer ○ △: Very weak generation △: Weak generation ×: Strong generation (user claim level)
The evaluation level is a usable level if it is Δ or more.

結果を表1、表2に記す。   The results are shown in Tables 1 and 2.

Figure 2009223129
Figure 2009223129

Figure 2009223129
Figure 2009223129

表1、表2の結果において、実施例1〜7及び比較例1〜7を比較すると、局所膜厚偏差が0.2〜2.5μmである光学フィルムにおいて、ナーリング高さを14〜30μmとすることにより、加熱処理後のブロッキング、ブラックバンド共に良好な結果であることがわかる。また、実施例4及び実施例8〜12を比較すると、基材フィルムの膜厚は、35μm〜100μmのものが加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましく、更に好ましくは40μm〜80μmであることがわかる。また、実施例13と実施例14を比較すると、基材フィルムの局所膜厚偏差が、2.0μm以下が加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいといえる。更に、実施例4と実施例15を比較すると、乾燥後の機能性膜の局所膜厚偏差は、0.5μm以下が、加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいといえる。また、実施例10と実施例16〜21を比較すると、粒径0.01〜1μmの粒子が塗布液全体に対して0.02〜10.00質量%含有されている塗布液を基材フィルムの機能性膜を塗布した面の裏面に塗布することにより、加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいことがわかる。また、実施例2と実施例22を比較すると、ナーリング処理は、基材フィルムにおける機能性膜が塗布される領域の、幅方向外側に施すことが加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいことがわかる。また、実施例2及び実施例23〜26を比較すると、巻きとり工程における巻取り時の張力が30〜400N/mであることが加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいことがわかる。また、実施例2及び実施例27、実施例28を比較すると、巻きとり工程におけるフィルム巻取長が4000m以下であることが加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいことがわかる。また、実施例2及び実施例29〜36を比較すると、巻きとり工程後、巻きとったロール状フィルムを50〜150℃の温度で3〜30日間保持する加熱処理を行うことが加熱処理後のブロッキング及びブラックバンドの発生が抑制され好ましいことがわかる。また、実施例4と実施例37を比較すると、機能性膜の構成としては、単層でも重層でも同様な結果となっていることがわかる。   In the results of Tables 1 and 2, when Examples 1 to 7 and Comparative Examples 1 to 7 are compared, in the optical film having a local film thickness deviation of 0.2 to 2.5 μm, the knurling height is 14 to 30 μm. By doing, it turns out that the blocking after heat processing and a black band are favorable results. Moreover, when Example 4 and Examples 8-12 are compared, as for the film thickness of a base film, the thing of 35 micrometers-100 micrometers is preferable that generation | occurrence | production of the blocking after a heat processing and a black band is suppressed, More preferably, it is 40 micrometers-80 micrometers. It can be seen that it is. Moreover, when Example 13 and Example 14 are compared, it can be said that the local film thickness deviation of the base film is preferably 2.0 μm or less because blocking and black band generation after heat treatment are suppressed. Furthermore, when Example 4 and Example 15 are compared, it can be said that the local film thickness deviation of the functional film after drying is preferably 0.5 μm or less because blocking and black band generation after heat treatment are suppressed. Further, when Example 10 and Examples 16 to 21 are compared, a coating film containing 0.02 to 10.00 mass% of particles having a particle size of 0.01 to 1 μm with respect to the entire coating liquid is used as the base film. It can be seen that it is preferable to apply the functional film to the back surface of the surface on which the functional film is applied because blocking and black band generation after the heat treatment are suppressed. In addition, when Example 2 and Example 22 are compared, the knurling treatment is performed on the outer side in the width direction of the region where the functional film is applied in the base film, thereby suppressing the occurrence of blocking and black bands after the heat treatment. It turns out that it is preferable. Moreover, when Example 2 and Examples 23-26 are compared, it is preferable that the tension | tensile_strength at the time of winding in a winding process is 30-400 N / m because generation | occurrence | production of the blocking after heat processing and a black band is suppressed. Recognize. Moreover, when Example 2 and Example 27 and Example 28 are compared, it turns out that the film winding length in a winding process is 4000 m or less, and generation | occurrence | production of the blocking after heat processing and a black band is suppressed. Moreover, when Example 2 and Examples 29-36 are compared, after the winding process, it is possible to perform a heat treatment for holding the wound roll film at a temperature of 50 to 150 ° C. for 3 to 30 days. It can be seen that blocking and black band generation are suppressed and preferable. Moreover, when Example 4 and Example 37 are compared, it can be seen that the functional film has the same result for both a single layer and a multilayer.

本発明に係るナーリング部の概略図である。It is the schematic of the knurling part which concerns on this invention.

符号の説明Explanation of symbols

1 第1のナーリング部
2 第2のナーリング部
3 ハードコート層
4 反射防止層
F 基材フィルム
H ナーリング部の幅
DESCRIPTION OF SYMBOLS 1 1st knurling part 2 2nd knurling part 3 Hard coat layer 4 Antireflection layer F Base film H Width of knurling part

Claims (13)

連続的に移動するフィルムの表面に機能性膜を塗布する塗布工程と、前記フィルムにナーリング処理を行うナーリング工程と、前記機能性膜を塗布したフィルムを乾燥する乾燥工程と、該乾燥工程の後、前記フィルムを巻きとる巻きとり工程と、を有する光学フィルムの製造方法において、
前記乾燥工程後の前記フィルムの幅方向における局所膜厚偏差が、0.2〜2.5μmであり、
前記ナーリング処理は、前記フィルムの機能性膜を塗布する面側に処理され、ナーリング高さが、14〜30μmであることを特徴とする光学フィルムの製造方法。
A coating step of applying a functional film on the surface of a continuously moving film, a knurling step of knurling the film, a drying step of drying the film coated with the functional film, and after the drying step In a method for producing an optical film, including a winding step of winding the film,
The local film thickness deviation in the width direction of the film after the drying step is 0.2 to 2.5 μm,
The said knurling process is processed to the surface side which apply | coats the functional film of the said film, and knurling height is 14-30 micrometers, The manufacturing method of the optical film characterized by the above-mentioned.
前記塗布工程前のフィルムの膜厚が35〜100μmであることを特徴とする請求項1に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the film thickness before the coating step is 35 to 100 μm. 前記塗布工程前のフィルムの幅方向における局所膜厚偏差が0.1〜2.0μmであることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein a local film thickness deviation in the width direction of the film before the coating step is 0.1 to 2.0 μm. 前記乾燥工程後の機能性膜の幅方向における局所膜厚偏差が0.1〜0.5μmであることを特徴とする請求項1乃至3の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 3, wherein a local film thickness deviation in the width direction of the functional film after the drying step is 0.1 to 0.5 µm. 前記フィルムの前記機能性膜を塗布する面の反対側の面に、体積平均粒径が0.01〜1μmの粒子を0.02〜10.00質量%含有する塗布液を塗布することを特徴とする請求項1乃至4の何れか1項に記載の光学フィルムの製造方法。 A coating liquid containing 0.02 to 10.00 mass% of particles having a volume average particle size of 0.01 to 1 μm is applied to the surface of the film opposite to the surface to which the functional film is applied. The method for producing an optical film according to any one of claims 1 to 4. 前記ナーリング処理は、前記フィルムにおける前記機能性膜が塗布される領域の、幅方向外側に施すことを特徴とする請求項1乃至5の何れか1項に記載の光学フィルムの製造方法。 The optical film manufacturing method according to any one of claims 1 to 5, wherein the knurling treatment is performed on an outer side in a width direction of a region of the film to which the functional film is applied. 前記巻きとり工程における巻取り時の張力が30〜400N/mであることを特徴とする請求項1乃至6の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 6, wherein a tension during winding in the winding step is 30 to 400 N / m. 前記巻きとり工程における前記フィルムの巻取り長が500〜4000mであることを特徴とする請求項1乃至7の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 7, wherein a winding length of the film in the winding step is 500 to 4000 m. 前記フィルムの幅が1000〜4000mmであることを特徴とする請求項1乃至8の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 8, wherein the film has a width of 1000 to 4000 mm. 前記巻きとり工程後、巻きとった前記フィルムを50〜150℃の温度で3〜30日間保持することを特徴とする請求項1乃至9の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 9, wherein after the winding step, the wound film is held at a temperature of 50 to 150 ° C for 3 to 30 days. 請求項1乃至10の何れか1項の光学フィルムの製造方法で作成されたことを特徴とする光学フィルム。 An optical film produced by the method for producing an optical film according to any one of claims 1 to 10. 請求項11の光学フィルムを用いたことを特徴とする偏光板。 A polarizing plate using the optical film according to claim 11. 請求項12の偏光板を用いたことを特徴とする液晶表示装置。 A liquid crystal display device using the polarizing plate according to claim 12.
JP2008069163A 2008-03-18 2008-03-18 Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device Pending JP2009223129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069163A JP2009223129A (en) 2008-03-18 2008-03-18 Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069163A JP2009223129A (en) 2008-03-18 2008-03-18 Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2009223129A true JP2009223129A (en) 2009-10-01

Family

ID=41239952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069163A Pending JP2009223129A (en) 2008-03-18 2008-03-18 Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2009223129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112945A (en) * 2009-11-27 2011-06-09 Nippon Zeon Co Ltd Roll-like wound body
JP2013107333A (en) * 2011-11-22 2013-06-06 Fujifilm Corp Laminated film and method for manufacturing the same
WO2013146965A1 (en) * 2012-03-29 2013-10-03 住友化学株式会社 Manufacturing method for polarizing plate
JP2016146152A (en) * 2014-12-12 2016-08-12 大日本印刷株式会社 Production method of optical film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176068A (en) * 2001-12-07 2003-06-24 Konica Corp Winding method of optical film
JP2005077795A (en) * 2003-09-01 2005-03-24 Konica Minolta Opto Inc Optical film and its manufacturing method
JP2006293201A (en) * 2005-04-14 2006-10-26 Konica Minolta Opto Inc Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176068A (en) * 2001-12-07 2003-06-24 Konica Corp Winding method of optical film
JP2005077795A (en) * 2003-09-01 2005-03-24 Konica Minolta Opto Inc Optical film and its manufacturing method
JP2006293201A (en) * 2005-04-14 2006-10-26 Konica Minolta Opto Inc Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112945A (en) * 2009-11-27 2011-06-09 Nippon Zeon Co Ltd Roll-like wound body
JP2013107333A (en) * 2011-11-22 2013-06-06 Fujifilm Corp Laminated film and method for manufacturing the same
WO2013146965A1 (en) * 2012-03-29 2013-10-03 住友化学株式会社 Manufacturing method for polarizing plate
JP2016146152A (en) * 2014-12-12 2016-08-12 大日本印刷株式会社 Production method of optical film

Similar Documents

Publication Publication Date Title
JP4655663B2 (en) Method for producing roll-shaped film having coating layer, roll-shaped optical film, polarizing plate, liquid crystal display device
JP5170083B2 (en) Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device
JP5332607B2 (en) Antireflection film, method for producing antireflection film, hard coat film, polarizing plate and display device
JP4857801B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and display device
JP2005208290A (en) Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP4400211B2 (en) Low reflection laminate and method for producing low reflection laminate
JP2006293201A (en) Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP2006146027A (en) Antiglare antireflection film, polarizing plate and display
JP2005148444A (en) Clear hard coating member, antireflection layered body using the same, and manufacturing method thereof
JP2005309120A (en) Antireflection film, polarizing plate, and image display device
JP2005266232A (en) Optical film, polarizing plate, and image display device
JP4479260B2 (en) Manufacturing method of optical film
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP2006145736A (en) Antiglare antireflection film, polarizing plate and image display
JP5017775B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate and display device using the same
JP2007025329A (en) Antireflection film, method for producing same, polarizing plate, and display device
JP2009223129A (en) Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device
JP2009288412A (en) Method for producing optical film, optical film, polarizing plate and liquid crystal display apparatus
JP2005275225A (en) Antireflection film, polarizing plate and image display device
JP2005077795A (en) Optical film and its manufacturing method
JPWO2012108209A1 (en) Manufacturing method of optical film
JP2006010923A (en) Clear hard coat film, its manufacturing method, and antireflection film using the same
JP2007062073A (en) Anti-glaring antireflection film, its manufacturing method and image display device
JP2005148272A (en) Antireflective coating, antireflective film and its manufacturing method, polarizing plate and display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410