WO2007040012A1 - スタビライザ制御装置 - Google Patents

スタビライザ制御装置 Download PDF

Info

Publication number
WO2007040012A1
WO2007040012A1 PCT/JP2006/317581 JP2006317581W WO2007040012A1 WO 2007040012 A1 WO2007040012 A1 WO 2007040012A1 JP 2006317581 W JP2006317581 W JP 2006317581W WO 2007040012 A1 WO2007040012 A1 WO 2007040012A1
Authority
WO
WIPO (PCT)
Prior art keywords
stabilizer
control
vehicle
controller
pair
Prior art date
Application number
PCT/JP2006/317581
Other languages
English (en)
French (fr)
Inventor
Yuuki Ohta
Hiroaki Kato
Eitaku Nobuyama
Original Assignee
Aisin Seiki Kabushiki Kaisha
Kyushu Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Kabushiki Kaisha, Kyushu Institute Of Technology filed Critical Aisin Seiki Kabushiki Kaisha
Publication of WO2007040012A1 publication Critical patent/WO2007040012A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability

Definitions

  • the present invention relates to a stabilizer control device for a vehicle, and more particularly to a stabilizer control device that variably controls a torsional force of a stabilizer disposed between left and right wheels by an electrically driven actuator.
  • a stabilizer control device for a vehicle is configured to reduce or suppress the roll motion of the vehicle body by applying an appropriate roll moment to the external force by the operation of the stabilizer during the turning of the vehicle.
  • Patent Document 1 proposes a stabilizer effect control device that drives and controls the actuator according to the turning strength of the vehicle to change the apparent torsional rigidity of the stabilizer.
  • each sensor signal force is configured to calculate the thrust of the electromagnetic linear actuator, convert this thrust into a current value, set the target current value, and execute PID control. Yes.
  • the exciting current is supplied according to the synchronization signal based on the output of the position detection means, and the actual current is fed back, so that the stabilizer is twisted. It is stated that the actuator is driven to expand and contract so as to optimize the rigidity.
  • Patent Document 2 proposes a vehicle roll stabilization device in which a stabilizer bar is divided into two parts and an electromechanical turning actuator is provided between the half of the stabilizer bars. That is, in Patent Document 2, the electromechanical swing actuator used to generate the pre-tensioning torque has three basic components, namely, an electric motor, a reduction gear device, and a brake disposed between them. The torque generated by the motor is also converted to the torque required for pre-stabilization of the stabilizer via the reduction gear device, and the stabilizer half is connected to the electromechanical swing actuator via the bearing. The other stabilizer half is connected to the output side (high torque side) of the reduction gear device and supported in the bearing.
  • the electromechanical swing actuator used to generate the pre-tensioning torque has three basic components, namely, an electric motor, a reduction gear device, and a brake disposed between them.
  • the torque generated by the motor is also converted to the torque required for pre-stabilization of the stabilizer via the reduction gear device, and the stabilizer half is connected to the electromechanical swing actuator via the bearing.
  • Patent Document 3 discloses an electric motor that can suppress vibration of an electric motor by a simple control method and can realize vibration suppression control of a motor that can be deployed relatively easily between different vehicle types.
  • a vibration suppression control device has been proposed.
  • Patent Document 3 discloses H ⁇ control with constant scaling regarding a design method in vibration suppression control of an electric motor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-71739
  • Patent Document 2 Japanese Translation of Special Publication 2002-518245
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-171778
  • the feedback controller may become too high (high gain). For this reason, when mounted on a microcomputer, even if the actual torsional angular force S 1LSB changes, the duty ratio of the PWM signal that is input to the electric motor exceeds the upper limit of 100%, resulting in an uncontrollable state. There is a risk that control will diverge.
  • an object of the present invention is to quickly and appropriately suppress the vehicle body roll motion in a stabilizer control device that controls the torsional force of the stabilizer by controlling the actuator.
  • a stabilizer control device of the present invention includes a pair of stabilizer bars disposed between left and right wheels of a vehicle, and at least an electric motor and disposed between the pair of stabilizer bars.
  • Control means for feedback-controlling the actuator so as to follow the target torque calculated by the target torque calculating means
  • the control means includes a H ⁇ controller with constant scaling of a two-degree-of-freedom control system, and the 11 ⁇ controller generates a torsional torque generated at an end of the pair of stabilizer bars attached to the vehicle Is to be controlled.
  • the index indicating the driving state of the vehicle which is the detection result of the vehicle state detecting means, includes the lateral acceleration, the yorate, and the vehicle speed of the vehicle. Includes steering angle.
  • the actuator can be equipped with an electric motor and a reduction gear.
  • the H ⁇ controller may be configured to control a torsional torque generated at an end portion of the pair of stabilizer bars attached to the vehicle based on an output torque of the actuator.
  • the H ⁇ controller may be configured to control torsional torque generated at the end of the pair of stabilizer bars attached to the vehicle based on the motor current of the actuator.
  • the H ⁇ controller may be configured to control a torsional torque generated at an attachment end portion of the pair of stabilizer bars to the vehicle based on an output torsion angle of the actuator.
  • Yo ⁇ the H ⁇ controller may be configured to control a torsional torque generated at an attachment end portion of the pair of stabilizer bars to the vehicle based on an output torsion angle of the actuator.
  • the control means is configured to derive the H ⁇ control controller by assigning a weight to suppress gain to the input side of the H ⁇ control controller with constant scaling of the two-degree-of-freedom control system. Good.
  • a weight for example, a two-degree-of-freedom control system controller
  • the controller is designed so that the response of the reference model and the control system are the same (design), and the control response (target followability) is evaluated. Therefore, the first weighting function is given to the difference between the reference model output and the control system output, and the second weighting function is given to the loop that evaluates the robust stability. Furthermore, a loop for suppressing high gain is added to the input side of the controller Kb, and a third weight function is given to this.
  • the torsional torque generated at the end of the pair of stabilizer bars attached to the vehicle follows the target torque calculated by the target torque calculating means.
  • the actuator is feedback-controlled, and in particular, the torsional torque generated at the end of the pair of stabilizer bars attached to the vehicle is controlled by the H ⁇ controller with constant scaling in the two-degree-of-freedom control system.
  • the vehicle body roll motion can be appropriately suppressed.
  • the index representing the driving state of the vehicle which is the detection result of the vehicle state detecting means, includes the lateral acceleration, the yorate, and the vehicle speed of the vehicle, and the index representing the steering state by the driver depends on the steering operation of the driver. Including the steering angle, for example, control is performed so as to appropriately follow the target torque calculated based on these, so that quick and smooth control is possible.
  • the H ⁇ controller described above is configured to control torsional torque as described above, it is possible to ensure good target following performance and robust stability, and to attach a pair of stabilizer bars to a vehicle.
  • the torsion torque generated at the end can be controlled quickly and without variation.
  • the above control means is configured to derive the H ⁇ control controller by giving a weight to suppress the gain to the input side of the H ⁇ controller with constant scaling of the two-degree-of-freedom control system, An H ⁇ controller with constant scaling for a two-degree-of-freedom control system can be derived appropriately, and the high gain of the H ⁇ controller can be suppressed.
  • FIG. 1 is a control block diagram showing an example of basic control of a stabilizer control device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing an outline of a vehicle including a stabilizer control device according to an embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a specific configuration example of a stabilizer actuator according to an embodiment of the present invention.
  • FIG. 4 is a control block diagram showing another control example of the stabilizer character provided for one embodiment of the present invention.
  • Fig. 5 is a control block diagram showing still another control example of the stabilizer actuator provided for the embodiment of the present invention.
  • FIG. 6 is a block diagram showing the assignment of a weight function when a two-degree-of-freedom control system controller is derived using H ⁇ control with constant scaling in an embodiment of the present invention.
  • FIG. 7 is a block diagram showing a general control object generated by assigning the weighting function of FIG.
  • FIG. 8 is a block diagram showing a transfer function from an external input w to a control amount z.
  • FIG. 9 is a block diagram showing a scaled general control object to which a constant scaling matrix and its inverse matrix are added to the embodiment of FIG.
  • a torsion spring A front wheel side stabilizer SBf and a rear wheel side stabilizer SBr are provided.
  • the torsional rigidity of each of the front wheel side stabilizer SBf and the rear wheel side stabilizer SBr is variably controlled by the stabilizers FT and RT in order to suppress the vehicle body roll angle. It is comprised so that.
  • These stabilizers hereinafter simply referred to as “activators”) FT and RT are controlled by a stabilizer control unit ECU1 in the electronic control unit ECU.
  • each wheel WHxx is equipped with a wheel speed sensor WSxx. These are connected to the electronic control unit ECU, and the rotation speed of each wheel, that is, a pulse signal having a pulse number proportional to the wheel speed is input to the electronic control unit ECU. ing.
  • the vehicle speed (vehicle speed) Vs can be estimated and calculated based on the wheel speeds detected by these wheel speed sensors WSxx.
  • a steering angle sensor SA that detects the steering angle (nord angle) ⁇ of the steering wheel SW, a longitudinal acceleration sensor XG that detects vehicle longitudinal acceleration Gx, a lateral acceleration sensor YG that detects vehicle lateral acceleration Gy, a vehicle A short rate sensor YR that detects short rate ⁇ is connected to the electronic control unit ECU.
  • the electronic control unit ECU includes a force of the stabilizer control unit ECU1, a brake control unit ECU2, a steering control unit ECU3, and the like. These control units ECU1 to ECU3 are respectively It is connected to the communication bus via a communication unit (not shown) equipped with a CPU, ROM and RAM for communication. Thus, information necessary for each control system can be transmitted to other control system powers.
  • FIG. 3 shows a specific configuration example (same configuration as RT3 ⁇ 4) of the stabilizer actuator FT.
  • the front wheel side stabilizer SBf is divided into a pair of left and right stabilizer bars SBfr and SBfl, and one end of each is connected to the left and right wheel suspension devices (not shown) as mounting ends (SBfre and SBfle). One end of the other end is connected to the motor RO of the electric motor MR via the reduction gear RD, and the other side is connected to the stator SR of the electric motor MR.
  • the stabilizer bars SBfr and SBfl are held on the vehicle body by holding means HLfr and HLfl.
  • a rotation angle sensor RS is provided in the stabilizer actuator FT as a rotation angle detection means for detecting the rotation angle of the electric motor MR.
  • FIG. 1 shows basic control of an example of the stabilizer actuator.
  • the lateral acceleration sensor YG shown in FIG. 2 shows the lateral acceleration Gy of the vehicle, and the lateral sensor YR shows the vehicle.
  • the vehicle speed Vs estimated and calculated as described above are supplied to the target torque calculator TC as a vehicle state detection result.
  • the steering angle ⁇ is detected by the steering angle sensor SA shown in FIG. 2, and is supplied to the target torque calculation unit TC, where the target torque r is set.
  • a vehicle speed sensor (not shown) may be provided so that the vehicle speed Vs can be directly detected.
  • the torsional torque y (hereinafter referred to as actual torque y) generated at the ends (SBf re and SBfle) of the pair of stabilizer bars (for example, SBfr and SBfl) to the vehicle is caused to follow the target torque r.
  • feedback control is performed by the controller FC. That is, for example, the voltage applied to the electric motor MR is determined as a PWM input signal (duty signal) as needed so that the target torque r and the actual torque y match, and the stabilizer actuator FT is controlled. It is comprised so that. Thereby, the vehicle body roll angle at the time of vehicle turning can be suppressed appropriately.
  • the controller FC is configured with an H ⁇ controller with constant scaling of a two-degree-of-freedom control system, and the two-degree-of-freedom control system controllers Kb and Kf with constant scaling. It is configured to derive using H ⁇ control.
  • This controller For roller FC it is shown in Fig. 4 that the torsion angle (target torsion angle m and actual torsion angle ya) is proportional to the torsion torque (target torque r and actual torque y) of the stabilizer bar (SBfr and SBfl). It can also be configured as shown.
  • the H ⁇ controller with constant scaling is controlled based on the motor current supplied to the electric motor MR instead of the actual torque y (or the actual torsion angle ya in FIG. 4). You can also.
  • FIG. 5 is obtained by replacing the stabilizer FT in FIG. 4 with the symbol P, and is expressed by the following [Equation 1].
  • PO is the nominal transfer function of P
  • is the multiplicative uncertainty of P, which can represent the characteristics of the electric motor MR.
  • FIG. 6 shows means for assigning weights when deriving the two-degree-of-freedom control system controllers Kb and Kf using H ⁇ control with constant scaling.
  • M indicates a reference model
  • the controller FC is designed so that the response of this model M and the control system is the same.
  • the first weight function W1 (hereinafter simply referred to as the weight function W1) is given to the difference between the output of the model M and the output y of the control system, from wl to zl The transfer function of is evaluated.
  • a loop is formed in which the w2 force reaches z2, and a second weighting function W2 (hereinafter simply referred to as a weighting function W2) is assigned thereto.
  • W2 a second weighting function
  • the lowercase letter w represents a signal and is distinguished from the weight function W.
  • weighting function W3 (hereinafter simply referred to as weighting function W3) is provided on the input side. , And the transfer function from w3 to z2 is evaluated.
  • FIG. 7 shows a general control target generated by giving the weight function. However, the relationship is shown in [Equation 2] below.
  • Such a controller is derived by the DK iteration method (D—K iteration), and a controller that satisfies the above equation [4] is derived.
  • the scaled general control target is shown, and the controller Kb and Kf are derived so that the H ⁇ norm of the general control target is minimized by changing the component d.
  • the programs that make up these are implemented.
  • the controller becomes too high as described above, the high gain can be suppressed by adding the weight function W3 in the above design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)
  • Feedback Control In General (AREA)

Abstract

アクチュエータを制御してスタビライザのねじり力を制御するスタビライザ制御装置において、迅速且つ適切に車体ロール運動を抑制することを目的とする。車両状態検出手段の検出結果(横加速度Gy、ヨーレイトγ、車速Vs及び操舵角δ)に基づき電気モータMRに対する目標トルクrを演算する。そして、一対のスタビライザバーの車両への取付端部に発生するねじりトルク(実トルクy)を、目標トルクrに追従させるように、コントローラFC(特に、2自由度制御系の定数スケーリング付きH∞制御コントローラ)によりフィードバック制御を行う。

Description

明 細 書
スタビライザ制御装置
技術分野
[0001] 本発明は、車両のスタビライザ制御装置に関し、特に、左右車輪間に配設するスタ ビライザのねじり力を電気駆動のァクチユエータによって可変制御するスタビライザ制 御装置に係る。
背景技術
[0002] 一般的に、車両のスタビライザ制御装置は、車両の旋回走行中にスタビライザの作 用により適切なロールモーメントを外部力も付与し、車体のロール運動を低減または 抑制するように構成されている。この機能を実現するため、例えば特許文献 1には、 車両の旋回強さに応じてァクチユエータを駆動 ·制御してスタビライザの見掛け上の ねじり剛性を変化させるスタビライザの効力制御装置が提案されている。具体的には 、各種センサ信号力 電磁式リニアァクチユエータの推力を算出し、この推力を電流 値に変換することにより、目標電流値を設定し、 PID制御を実行するように構成され ている。そして、 3相デルタ結線されたコイルの積層体力もなるステータに対し、位置 検出手段の出力に基づく同期信号に応じて励磁電流を供給すると共に、実電流をフ イードバックすることにより、スタビライザのねじり剛性を最適化するようにァクチユエ一 タが伸縮駆動される旨、記載されている。
[0003] 更に、特許文献 2には、スタビライザバーを二分割し、その半部分間に電気機械式 旋回ァクチユエータを設けた車両の横揺れ安定ィ匕装置が提案されている。即ち、特 許文献 2においては、予緊張トルクを発生するために使用される電気機械式旋回ァ クチユエータは、 3つの基本構成要素、即ち電動機、減速歯車装置及びそれらの中 間に配置されたブレーキ力も構成され、電動機により発生されたトルクは、減速歯車 装置を介して、スタビライザの予緊張のために必要なトルクに変換され、スタビライザ 半部分は、軸受を介して電気機械式旋回ァクチユエ一タな 、しハウジングに直接支 持され、そして他方のスタビライザ半部分は、減速歯車装置の出力側(高トルク側)と 結合され、且つ軸受内に支持される構成が示されている。 [0004] 一方、特許文献 3には、電動モータの振動を簡単な制御方法で抑制でき、し力も異 なる車種間にも比較的簡単に展開可能なモータの振動抑制制御を実現できる電動 モータの振動抑制制御装置が提案されている。そして、この特許文献 3には、電動モ ータの振動抑制制御における設計手法に関し、定数スケーリングつき H∞制御が開 示されている。
[0005] 特許文献 1 :特開 2000— 71739号公報
特許文献 2:特表 2002— 518245号公報
特許文献 3 :特開 2002— 171778号公報
発明の開示
発明が解決しょうとする課題
[0006] 前掲の特許文献 2に記載の装置において、特許文献 1に記載のように電流フィード バック制御を行って、電動機 (電気モータ)の出力を発生させ、減速歯車装置 (減速 機)を用いて動力伝達するための制御手段として、例えば、特許文献 3に記載のよう な定数スケーリングつき H∞制御を用いることとすれば、ばらつきなく高応答のロール 運動抑制制御を実現することができる。但し、このコントローラ設計手法を 2自由度制 御系に適用した場合には、以下の問題が生じる。即ち、通常、 2自由度制御系でサ ーボ制御を構築した場合 (例えば、後述の図 4に示すように構成した場合)、フィード ノ ックコントローラはばらつきを抑え、フィードフォワードコントローラは応答性を確保 する役割を担うことになるが、ばらつきと応答性を考慮し、定数スケーリング付き H∞ 制御コントローラを設計すると、フィードバックコントローラがハイゲイン(高ゲイン)に なり過ぎる場合がある。このため、マイクロコンピュータに実装したときに、実ねじり角 力 S 1LSB変化しただけでも電動モータへの入力である PWM信号のデューティ比が 1 00%の上限を超えてしまい、制御不能状態となって、制御が発散してしまうおそれが ある。
[0007] そこで、本発明は、ァクチユエータを制御してスタビライザのねじり力を制御するスタ ビライザ制御装置にお 、て、迅速且つ適切に車体ロール運動を抑制することを課題 とする。
課題を解決するための手段 [0008] 上記の課題を達成するため、本発明のスタビライザ制御装置は、車両の左右車輪 間に配設される一対のスタビライザバーと、少なくとも電気モータを有し前記一対のス タビラィザバーの間に配設されるァクチユエータを具備し、前記一対のスタビラィザバ 一の各々の自由端部を前記車両への取付端部としたスタビライザと、前記車両の運 転状態及び運転者による操舵状態を検出する車両状態検出手段と、該車両状態検 出手段の検出結果に基づき前記ァクチユエータに対する目標トルクを演算する目標 トルク演算手段と、前記一対のスタビライザバーの前記車両への取付端部に発生す るねじりトルクを、前記目標トルク演算手段が演算した前記目標トルクに追従させるよ うに、前記ァクチユエータをフィードバック制御する制御手段を備え、該制御手段は、 2自由度制御系の定数スケーリング付き H∞制御コントローラを具備し、該11∞制御 コントローラにより、前記一対のスタビライザバーの前記車両への取付端部に発生す るねじりトルクを制御することとしたものである。上記車両状態検出手段の検出結果で ある車両の運転状態を表す指標としては、車両の横加速度、ョーレイト及び車速を含 み、運転者による操舵状態を表す指標としては、運転者のステアリング操作による操 舵角を含む。また、ァクチユエータとしては、電気モータ及び減速機を備えたものとす ることがでさる。
[0009] 前記 H∞制御コントローラは、前記ァクチユエータの出力トルクに基づき、前記一対 のスタビライザバーの前記車両への取付端部に発生するねじりトルクを制御するよう に構成するとよい。
[0010] また、前記 H∞制御コントローラは、前記ァクチユエータのモータ電流に基づき、前 記一対のスタビライザバーの前記車両への取付端部に発生するねじりトルクを制御 するように構成してちょい。
[0011] あるいは、前記 H∞制御コントローラは、前記ァクチユエータの出力ねじり角に基づ き、前記一対のスタビライザバーの前記車両への取付端部に発生するねじりトルクを 制御するように構成してもよ ヽ。
[0012] そして、前記制御手段は、前記 2自由度制御系の定数スケーリング付き H∞制御コ ントローラの入力側に、ゲインを抑制する重みを付与して前記 H∞制御コントローラを 導出するように構成するとよい。この重みとして、例えば、 2自由度制御系コントローラ Kf及び Kbを定数スケーリング付き H∞制御を用いて導出する際には、規範モデルと 制御系の応答が同一になるようにコントローラが設計され( 設計)、制御応答性( 目標追従性)を評価するため、規範モデルの出力と制御系の出力の差に第 1の重み 関数が付与されると共に、ロバスト安定性を評価するループに対し、第 2の重み関数 が付与される。更に、コントローラ Kbの入力側にハイゲインィ匕を抑制するためのルー プが付加され、これに第 3の重み関数が付与される。
発明の効果
[0013] 而して、本発明のスタビライザ制御装置によれば、一対のスタビライザバーの車両 への取付端部に発生するねじりトルクを、 目標トルク演算手段が演算した目標トルク に追従させるように、ァクチユエータをフィードバック制御することとし、特に、 2自由度 制御系の定数スケーリング付き H∞制御コントローラにより、一対のスタビライザバー の車両への取付端部に発生するねじりトルクを制御することとしているので、迅速且 つ適切に車体ロール運動の抑制を行なうことができる。車両状態検出手段の検出結 果である車両の運転状態を表す指標としては、車両の横加速度、ョーレイト及び車速 を含み、運転者による操舵状態を表す指標としては、運転者のステアリング操作によ る操舵角を含み、例えば、これらに基づいて算出される目標トルクに適切に追従する ように制御されるので、迅速且つ円滑な制御が可能となる。
[0014] 上記の H∞制御コントローラは、前述のようにねじりトルクを制御する構成とすれば、 良好な目標追従性とロバスト安定性を確保することができ、一対のスタビライザバー の車両への取付端部に発生するねじりトルクを、速やかに、且つばらつきなく制御す ることができる。特に、上記の制御手段を、 2自由度制御系の定数スケーリング付き H ∞制御コントローラの入力側に、ゲインを抑制する重みを付与して H∞制御コント口 ーラを導出する構成とすれば、 2自由度制御系の定数スケーリング付き H∞制御コン トローラを適切に導出することができ、当該 H∞制御コントローラのハイゲインィ匕を抑 えることができる。
図面の簡単な説明
[0015] [図 1]本発明の一実施形態に係るスタビライザ制御装置の基本制御の一例を示す制 御ブロック図である。 圆 2]本発明の一実施形態に係るスタビライザ制御装置を備えた車両の概要を示す 構成図である。
圆 3]本発明の一実施形態におけるスタビラィザァクチユエータの具体的構成例を示 す構成図である。
[図 4]本発明の一実施形態に供するスタビラィザァクチユエータの他の制御例を示す 制御ブロック図である。
[図 5]本発明の一実施形態に供するスタビラィザァクチユエータの更に他の制御例を 示す制御ブロック図である。
圆 6]本発明の一実施形態において、 2自由度制御系コントローラを定数スケーリング 付き H∞制御を用いて導出する際の重み関数の付与を示すブロック図である。 圆 7]図 6の重み関数の付与により生成される一般ィ匕制御対象を示すブロック図であ る。
[図 8]外部入力 wから制御量 zまでの伝達関数を示すブロック図である。
圆 9]図 7の態様に対し定数スケーリング行列及びその逆行列を付与したスケールド 一般ィ匕制御対象を示すブロック図である。
符号の説明
SBf 前輪側スタビライザ
SBfr, SBfl 前輪側スタビライザバー
SBr 後輪側スタビライザ
FT, RT スタビラィザァクチユエータ
MR 電気モータ
TC 目標トルク演算部
FC コントローラ
SW ステアリングホイ一ノレ
SA 操! "它角センサ
WHfr, WHfl, WHrr, WHrl 車輪
WSfr, WSfl, WSrr, WSrl 車輪速度センサ
YR ョーレイトセンサ XG 前後加速度センサ
YG 横加速度センサ
ECU 電子制御装置
発明を実施するための最良の形態
[0017] 以下、本発明の望ましい実施形態を説明する。先ず、本発明の一実施形態に係る スタビライザ制御装置を備えた車両の全体構成について図 2を参照して説明すると、 車体(図示せず)にロール方向の運動が入力された場合に、ねじりばねとして作用す る前輪側スタビライザ SBfと後輪側スタビライザ SBrが配設される。これら前輪側スタ ビライザ SBf及び後輪側スタビライザ SBrは、車体のロール運動である車体ロール角 を抑制するために、各々のねじり剛性がスタビラィザァクチユエータ FT及び RTによつ て可変制御されるように構成されている。尚、これらのスタビラィザァクチユエータ(以 下、単にァクチユエータという) FT及び RTは、電子制御装置 ECU内のスタビライザ 制御ユニット ECU1によって制御される。
[0018] 図 2に示すように各車輪 WHxxには車輪速度センサ WSxxが配設され (添字 XXは各 車輪を意味し、 frは右側前輪、 fl左側前輪、 rrは右側後輪、 rlは左側後輪を示す)、こ れらが電子制御装置 ECUに接続されており、各車輪の回転速度、即ち車輪速度に 比例するパルス数のパルス信号が電子制御装置 ECUに入力されるように構成され ている。而して、これらの車輪速度センサ WSxxの検出車輪速度に基づき車体速度( 車速) Vsを推定演算することができる。更に、ステアリングホイール SWの操舵角(ノヽ ンドル角) δを検出する操舵角センサ SA、車両の前後加速度 Gxを検出する前後加 速度センサ XG、車両の横加速度 Gyを検出する横加速度センサ YG、車両のョーレ イト γを検出するョーレイトセンサ YR等が電子制御装置 ECUに接続されている。
[0019] 尚、電子制御装置 ECU内には、上記のスタビライザ制御ユニット ECU1のほ力、ブ レーキ制御ユニット ECU2、操舵制御ユニット ECU3等が構成されており、これらの 制御ユニット ECU1乃至 3は夫々、通信用の CPU、 ROM及び RAMを備えた通信 ユニット(図示せず)を介して通信バスに接続されている。而して、各制御システムに 必要な情報を他の制御システム力も送信することができる。
[0020] 図 3は、スタビラィザァクチユエータ FTの具体的構成例 (RT¾同様の構成)を示す もので、前輪側スタビライザ SBfは左右一対のスタビライザバー SBfr及び SBflに二分 割されており、夫々の一端が取付端部(SBfre及び SBfle)として左右の車輪懸架装 置(図示せず)に接続され、他端の一方側が減速機 RDを介して電気モータ MRの口 ータ RO、その他方側が電気モータ MRのステータ SRに接続されている。尚、スタビ ライザバー SBfr及び SBflは保持手段 HLfr及び HLflにより車体に保持される。而して 、電気モータ MRが通電されると、二分割のスタビライザバー SBfr及び SBflの夫々に 対しねじり力が生じ、前輪側スタビライザ SBfのねじりばね特性が変更されるので、車 体のロール剛性が制御されることになる。尚、電気モータ MRの回転角を検出する回 転角検出手段として、回転角センサ RSがスタビラィザァクチユエータ FT内に配設さ れている。
[0021] 上記のスタビライザ制御装置において、図 1は、スタビラィザァクチユエータの一例 の基本制御を示すもので、図 2に示す横加速度センサ YGによって車両の横加速度 Gyが、ョーレイトセンサ YRによって車両のョーレイト γが夫々検出され、前述のよう に推定演算された車速 Vsと共に、車両状態の検出結果として、 目標トルク演算部 TC に供給される。また、運転者による操舵状態として、図 2に示す操舵角センサ SAによ つて操舵角 δが検出され、 目標トルク演算部 TCに供給され、ここで目標トルク rが設 定される。尚、車速センサ(図示せず)を配設し、車速 Vsを直接検出し得るように構成 してちよい。
[0022] そして、一対のスタビライザバー(例えば SBfr及び SBfl)の車両への取付端部(SBf re及び SBfle)に発生するねじりトルク y (以下、実トルク y)を、 目標トルク rに追従させ るように、コントローラ FCにてフィードバック制御が行われる。即ち、 目標トルク rと実ト ルク yがー致するように、例えば電気モータ MRに印加される電圧が PWM入力信号 (デューティ信号)として随時決定されて、スタビラィザァクチユエータ FTが制御され るように構成されている。これにより、車両旋回時の車体ロール角を適切に抑制する ことができる。
[0023] コントローラ FCにおいては、図 1の破線内に示すように 2自由度制御系の定数スケ 一リング付き H∞制御コントローラが構成され、 2自由度制御系コントローラ Kb及び K fを定数スケーリング付き H∞制御を用いて導出するように構成されている。このコント ローラ FCに関し、スタビライザバー(SBfr及び SBfl)のねじりトルク(目標トルク r及び 実トルク y)に対し、ねじり角(目標ねじり角 m及び実ねじり角 ya)が比例することに鑑 み、図 4に示すように構成することもできる。あるいは、図示は省略するが、実トルク y( 又は、図 4の実ねじり角 ya)に代えて、電気モータ MRに供給されるモータ電流に基 づき、定数スケーリング付き H∞制御コントローラによる制御を行うこともできる。
[0024] 図 5は、図 4のスタビラィザァクチユエータ FTを記号 Pで置き換えたもので、下記 [数 1]式で表される。ここで、 POは Pのノミナルの伝達関数、 Δは Pの乗法的不確かさを 示し、これらによって電気モータ MRの特性を表すことができる。
[数 1]
P = PO(\ + )
[0025] 次に、図 6は、 2自由度制御系コントローラ Kb及び Kfを定数スケーリング付き H∞ 制御を用いて導出する際の重みを付与する手段を示す。図 6において、「M」は規範 モデルを示しており、このモデル Mと制御系の応答が同一になるようにコントローラ F Cが設計される。制御応答性(目標追従性)を評価するため、第 1の重み関数 W1 (以 下、単に重み関数 W1という)がモデル Mの出力と制御系の出力 yの差に付与され、 wlから zlまでの伝達関数が評価される。また、ロバスト安定性を評価するため、 w2 力も z2に至るループが形成され、ここに第 2の重み関数 W2 (以下、単に重み関数 W 2という)が付与される。尚、各図において小文字の wは信号を表し、重み関数 Wと区 別される。
[0026] 一般的に、定数スケーリング付き H∞制御コントローラを設計する際には、上記の重 み関数 W1及び W2が用いられる。これに対し、本実施形態ではコントローラ Kbのハ ィゲインィ匕を抑制するため、更に、 w3から z2に至るループが加えられ、その入力側 に第 3の重み関数 W3 (以下、単に重み関数 W3という)が付与され、 w3から z2までの 伝達関数が評価されるように構成されて ヽる。
[0027] 図 7は、上記重み関数の付与によって生成される一般ィ匕制御対象である。但し、下 記 [数 2]に示す関係にある。
[数 2] < 1 < 1 < 1 そして、上記の関係となるように、下記 [数 3]に示すように重み関数 Wlが設定され 、他の重み関数 W2及び W3も同様に設定される。
[数 3]
Figure imgf000011_0001
[0029] 図 8は、外部入力 w(= [wl, w2, w3] ')力も制御量 z (= [zl, ζ2]τ)までの伝達関 数 Tzw(s)を示しており、 μ—設計問題において、この伝達関数 Tzw(s)の構造ィ匕特 異値 (Tzw)が下記 [数 4]式を満たすならば、不確かさ Δ、 Δ のあらゆる可能性
Δ 2 3 について、常に下記 [数 5]の関係にある(Tzlwlは、追従性を評価する wlから zlま での伝達関数である)。従って、 [数 4]式を満足すれば、ロバスト安定性で且つハイ ゲインィ匕が抑制され、カロえて、追従性能もロバストな(ロバストパフォーマンス)コント口 ーラ Kf及び Kbを求めることができる。
[数 4]
Figure imgf000011_0002
ω
[数 5]
||7zlwl|| < 1
[0030] しかし、上記 [数 4]式を直接計算することはできないので、構造化特異値の下記 [ 数 6]の性質を利用し (D及び Dはスケーリング行列を表す)、下記 [数 7]式を満足す
1 2
るようなコントローラを DK反復法 (D—Kイタレーシヨン)により導出し、上記 [数 4]式 を満足するコントローラを導出することとしている。
[数 6] μ, {fzw) < mfD aiD^TzwD-, ) [数 7]
D TzwD. < 1 図 9は、図 7の態様に対し定数スケーリング行列 D及びその逆行列 D 1を付与した
1 2
スケールドー般ィ匕制御対象を示しており、その構成要素である dを変化させ、一般ィ匕 制御対象の H∞ノルムが最小になるようなコントローラ Kb及び Kfが導出される。而し て、これらを構成するプログラムが実装される。尚、一般的な電気モータ駆動装置に おいて、前述のようにコントローラがハイゲインになり過ぎる場合には、上記の ー設 計における重み関数 W3を付与することによってハイゲインィ匕を抑制することができる

Claims

請求の範囲
[1] 車両の左右車輪間に配設される一対のスタビライザバーと、少なくとも電気モータを 有し前記一対のスタビライザバーの間に配設されるァクチユエータを具備し、前記一 対のスタビライザバーの各々の自由端部を前記車両への取付端部としたスタビライザ と、前記車両の運転状態及び運転者による操舵状態を検出する車両状態検出手段 と、該車両状態検出手段の検出結果に基づき前記ァクチユエータに対する目標トル クを演算する目標トルク演算手段と、前記一対のスタビライザバーの前記車両への取 付端部に発生するねじりトルクを、前記目標トルク演算手段が演算した前記目標トル クに追従させるように、前記ァクチユエータをフィードバック制御する制御手段を備え
、該制御手段は、 2自由度制御系の定数スケーリング付き H∞制御コントローラを具 備し、該11∞制御コントローラにより、前記一対のスタビライザバーの前記車両への取 付端部に発生するねじりトルクを制御するスタビライザ制御装置。
[2] 前記 H∞制御コントローラは、前記ァクチユエータの出力トルクに基づき、前記一対 のスタビライザバーの前記車両への取付端部に発生するねじりトルクを制御する請求 項 1記載のスタビライザ制御装置。
[3] 前記制御手段は、前記 2自由度制御系の定数スケーリング付き H∞制御コントロー ラの入力側に、ゲインを抑制する重みを付与して前記 H∞制御コントローラを導出す る請求項 2に記載のスタビライザ制御装置。
[4] 前記 H∞制御コントローラは、前記ァクチユエータのモータ電流に基づき、前記一 対のスタビライザバーの前記車両への取付端部に発生するねじりトルクを制御する請 求項 1記載のスタビライザ制御装置。
[5] 前記制御手段は、前記 2自由度制御系の定数スケーリング付き H∞制御コントロー ラの入力側に、ゲインを抑制する重みを付与して前記 H∞制御コントローラを導出す る請求項 4記載のスタビライザ制御装置。
[6] 前記 H∞制御コントローラは、前記ァクチユエータの出力ねじり角に基づき、前記一 対のスタビライザバーの前記車両への取付端部に発生するねじりトルクを制御する請 求項 1記載のスタビライザ制御装置。
[7] 前記制御手段は、前記 2自由度制御系の定数スケーリング付き H∞制御コントロー ラの入力側に、ゲインを抑制する重みを付与して前記 H∞制御コントローラを導出す る請求項 6記載のスタビライザ制御装置。
PCT/JP2006/317581 2005-09-20 2006-09-05 スタビライザ制御装置 WO2007040012A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005272129A JP2007083760A (ja) 2005-09-20 2005-09-20 スタビライザ制御装置
JP2005-272129 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007040012A1 true WO2007040012A1 (ja) 2007-04-12

Family

ID=37906056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317581 WO2007040012A1 (ja) 2005-09-20 2006-09-05 スタビライザ制御装置

Country Status (2)

Country Link
JP (1) JP2007083760A (ja)
WO (1) WO2007040012A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350075B2 (ja) * 2005-08-29 2009-10-21 富士通マイクロエレクトロニクス株式会社 Dc−dcコンバータの制御回路およびその制御方法
JP4962211B2 (ja) * 2007-08-22 2012-06-27 トヨタ自動車株式会社 車両用スタビライザシステム
DE102013107094A1 (de) 2013-07-05 2015-01-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Steuern eines Momentes einer Wankstabilisierung
CN104527364B (zh) * 2014-12-05 2017-02-01 浙江美力科技股份有限公司 双通道液压马达式主动稳定杆的控制系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171778A (ja) * 2000-09-25 2002-06-14 Aisin Seiki Co Ltd 電動モータの振動抑制制御装置及び電動モータの振動抑制制御における設計手法
JP2003033065A (ja) * 2001-07-19 2003-01-31 Aisin Seiki Co Ltd 電動モータの制御装置及びその設計手法
JP2005225301A (ja) * 2004-02-12 2005-08-25 Aisin Seiki Co Ltd スタビライザ制御装置
JP2005238972A (ja) * 2004-02-26 2005-09-08 Aisin Seiki Co Ltd スタビライザ制御装置
JP2005262946A (ja) * 2004-03-17 2005-09-29 Aisin Seiki Co Ltd スタビライザ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171778A (ja) * 2000-09-25 2002-06-14 Aisin Seiki Co Ltd 電動モータの振動抑制制御装置及び電動モータの振動抑制制御における設計手法
JP2003033065A (ja) * 2001-07-19 2003-01-31 Aisin Seiki Co Ltd 電動モータの制御装置及びその設計手法
JP2005225301A (ja) * 2004-02-12 2005-08-25 Aisin Seiki Co Ltd スタビライザ制御装置
JP2005238972A (ja) * 2004-02-26 2005-09-08 Aisin Seiki Co Ltd スタビライザ制御装置
JP2005262946A (ja) * 2004-03-17 2005-09-29 Aisin Seiki Co Ltd スタビライザ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE SOCIETY OF AUTOMOTIVE ENGINEERS OF JAPAN: "Jidosha Gijutsu Series 2, Jidosha no Seigyo Gijutsu", vol. 1ST ED., 10 April 1997, pages: 134 - 135 *

Also Published As

Publication number Publication date
JP2007083760A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4336217B2 (ja) スタビライザ制御装置
JP4779652B2 (ja) スタビライザ制御装置
US7384047B2 (en) Stabilizer control apparatus
US7418325B2 (en) Suspension system for vehicle
EP1491371B1 (en) Stabilizer control device
JP4341632B2 (ja) スタビライザ制御装置
JP2005262946A (ja) スタビライザ制御装置
JP5123143B2 (ja) 車両の電動パワーステアリング装置
JP5434383B2 (ja) 電動パワーステアリング装置
JP4770328B2 (ja) スタビライザ制御装置
JP7376407B2 (ja) 操舵制御装置
JP4650092B2 (ja) 車両用操舵制御装置
WO2006135072A1 (en) Vehicle stabilizer system
JP4045445B2 (ja) スタビライザ制御装置
WO2007040012A1 (ja) スタビライザ制御装置
US10858039B2 (en) Steering control unit
KR20190056732A (ko) 액티브 롤 제어 시스템의 사용 전류 제한 시스템 및 방법
JP2009078759A (ja) 車両用サスペンション制御装置
JP5045872B2 (ja) 電動パワーステアリング装置
EP4234366A1 (en) Steering device
JP2007245960A (ja) スタビライザ制御装置
JP2005145360A (ja) サスペンション制御装置
JP2008221929A (ja) 電動パワーステアリング装置の制御装置
JP2009078758A (ja) 車両用サスペンション制御装置
KR20190084482A (ko) 액티브 롤 스태빌라이저의 데드 밴드 보상 및 응답 성능 향상 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832379

Country of ref document: EP

Kind code of ref document: A1