WO2007036544A1 - Nouvelles puces pour la detection par le plasmon de surface (spr) - Google Patents

Nouvelles puces pour la detection par le plasmon de surface (spr) Download PDF

Info

Publication number
WO2007036544A1
WO2007036544A1 PCT/EP2006/066810 EP2006066810W WO2007036544A1 WO 2007036544 A1 WO2007036544 A1 WO 2007036544A1 EP 2006066810 W EP2006066810 W EP 2006066810W WO 2007036544 A1 WO2007036544 A1 WO 2007036544A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
layer
sio
deposited
compound
Prior art date
Application number
PCT/EP2006/066810
Other languages
English (en)
Inventor
Rabah Boukherroub
Sabine Szunerits
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to US11/992,808 priority Critical patent/US8279444B2/en
Priority to JP2008532776A priority patent/JP5623014B2/ja
Priority to EP06793869A priority patent/EP1937869A1/fr
Publication of WO2007036544A1 publication Critical patent/WO2007036544A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a method of manufacturing a solid support coated with a metal layer on which is deposited an SiO x layer of uniform thickness and stable by Plasma Enrichment Plasma Chemical Vapor Phase Deposition
  • the invention also comprises the use of such supports thus obtained or processes using such supports to determine by surface
  • SPR Plasmon Resonance
  • SPR Surface Plasmon Resonance
  • a surface sensitive spectroscopic technique has matured over the years into a well-accepted analytical tool for the monitoring of interfacial processes as well as the characterization of thin films (1 -9).
  • the selectivity of the method comes from the stimulation of magnetic electric fields on metal surfaces in the surface plasmons created at the metal-dielectric interface.
  • Surface plasmas are excited on gold surfaces when p-polarized light illuminates the gold / dielectric interface with a totally reflected prism, coupling incident light into the surface plasmon modes at an angle.
  • the formation of the plasmon is linked by a marked decrease in the reflected light measured by a photodiode and noted the resonance angle.
  • This angle is extremely sensitive to any change in the refractive index (n) of the adjacent medium and any change in optical thickness.
  • Gold and silver are the ideal candidates as metallic films for an SPR chip in the visible light region. Although silver films give a more distinct SPR spectrum than gold and generate highly calibrated stimulation, this metal tends to be unstable in the reaction media. Thin gold films thus offer a better choice for SPR applications with regard to stability and sensitivity considerations. Indeed, the SPR technique has been widely used for detection without labeling, the study of the DNA hybridization reaction and the detection of molecular and biomolecular events in real time. this is possible because the detection principle is based on the optical contrast change induced by a molecule linked to the interface compared to the surrounding medium.
  • the chemistry used for the immobilization of biological components at the gold surface of the SPR chip is mainly based on the use of thiol compounds (10-15) or conductive polymers (1, 3, 8).
  • Biacore manufactures bioanalytical systems based on the phenomenon of SPR (9a). In this system, a functionalized dextran layer coupled to the gold surface was used to bind different chemical and biological species on the surface.
  • silane coupling chemistry is used on silicon dioxide substrates for the immobilization of biomolecules such as DNA, carbohydrates or proteins and their interaction with complementary analytes has been detected using fluorescence techniques.
  • fluorescence and SPR studies on the gold chip was not possible because of the complete attenuation of the fluorescence signal on the gold substrates.
  • One way to take advantage of SPR spectroscopy to track the course of surface reactions and the coupling chemistry developed for SiO x is to coat the noble metal with a thin layer of SiO x .
  • the development of new SPR chips made of gold films coated with thin layers of silicon dioxide has already been attempted in the literature.
  • Thin silica films (SiO x ) were deposited at low pressure or using the sol-gel technique (16). The authors found that the vapor deposited silica layers showed a lack of stability in an aqueous buffer solution such as PBS. The silica layer is detached from the surface of the metal in a few minutes of exposure to aqueous solutions.
  • the sol-gel technique has been successfully applied to generate stable AuZSiO x interfaces. The technique was based on self-assembly of 3- (mercaptopropyl) trimethoxysilane on the metal surface followed by subsequent hydrolysis of the trimethoxysilyl groups to generate surface silanol groups required for the spin-tetramethoxysilane condensation reaction.
  • the composite films Au / SiO x were manufactured by Liao et al. in a multi-target magnetron sputtering system where the composite has been optically characterized by SPR in transmission mode (17). Moreover, the direct functionalization of SPR chips with ⁇ -aminopropylethoxysilane has been reported in the literature (18). Exposure of the sensor chip to silane vapor led to the introduction of terminal amino groups and further immobilization of the antibodies on the gold surface. The authors found that SPR responses depended on the exposure time of SPR chips to silane vapor and longer exposure times were desirable to generate an appreciable response. However, the authors did not comment on the type of bond between the gold surface and the silane multilayer (18).
  • the Granéli and Kasemo group reported that by depositing 1 nm of titanium between the gold and silicon dioxide layers (30 nm in the case of an SPR chip), stable films could be obtained and the formation Sustained phospholipid layers were investigated using a quartz resonator weight microbalance and SPR (19-22). In this case, a 1 nm adhesion layer of titanium was required and the silicon dioxide film was deposited using electron beam evaporation.
  • the inventors have been able to demonstrate that it was possible to use plasma-stimulated vapor deposition (PECVD) to deposit thin silica dielectric films with controlled thicknesses on SPR chips, this in a reproducible manner.
  • PECVD plasma-stimulated vapor deposition
  • the inventors have also been able to demonstrate, surprisingly, that the silica-coated SPR chip obtained by such a deposition method has, for thicknesses of approximately 7 nm, a similar intensity of reflectivity and a slightly stronger peak compared to signal obtained for a bare gold surface.
  • These silica films also have a very good stability both in organic and aqueous solutions and in the presence of piranha solution at 80 ° C., the latter solution may be necessary to generate surface silanol groups suitable for chemical chemistry. silane coupling.
  • the solid support coated with a metal layer on which is deposited a layer of SiO x of uniform and stable thickness obtained by the method of the invention describes Hereinafter appears compatible with a detection scheme by SPR, allows the covalent grafting of target molecules of interest at the interface or can be used as a support for captive phospholipid bilayers. This therefore opens up the possibility of studying surface processes by using SPRs on silica surfaces.
  • the subject of the present invention is a method for manufacturing a solid support coated with a metal layer on which a metal layer is deposited a SiO x layer of uniform and stable thickness, said support having a surface Plasmon Resonance response.
  • SPR surface Plasmon Resonance response.
  • PECVD Plasma Enrichment Chemical Vapor Deposition
  • SPR Surface Plasmon Resonance
  • said metal layer according to the manufacturing method of the invention is chosen from a layer of gold or silver, gold being the most preferred.
  • the manufacturing method according to the invention is characterized in that said layer of SiO x deposited by PECVD has a thickness between 5 nm and 80 nm, preferably a thickness greater than or equal to 5 nm and less than or equal to 40 nm or a thickness greater than or equal to 5 nm and less than or equal to 20 nm, more preferably a thickness equal to 7 nm ⁇ 1.5 nm.
  • the manufacturing method according to the invention is characterized in that said metal layer has a thickness equal to about 50 nm. In a particular embodiment, the manufacturing method according to the invention is characterized in that said metal layer is coated with gold or silver particles before the deposition of the SiO x layer by PECVD.
  • the manufacturing method according to the invention is characterized in that said solid support is previously coated with a titanium layer before being coated with said metal layer, preferably with a thickness of about 5 nm (5 nm ⁇ 1.5 nm).
  • the manufacturing method according to the invention is characterized in that the gas mixture used in the PECVD process is an SiH 4 (preferably 3% N 2 ) and N 2 O mixture, preferably at a respective flow rate of 260 cmVmin and 700 cmVmin, preferably with a temperature for the substrate of
  • the manufacturing method according to the invention is characterized in that the deposition of SiO x on the support by the PECVD process is carried out at a speed of approximately 414 ⁇ / min.
  • the manufacturing method according to the invention is characterized in that the deposition of SiO x by the PECVD method on the support is at a total pressure in the reactor of 1 T and a power of 10 W at 13.56 Mhz.
  • the manufacturing method according to the invention is characterized in that the SiO x layer deposited by PECVD has a refractive index of between 1.45 and 1.48, preferably chosen from the group consisting of the following refractive indexes: 1.45; 1,465 and 1,48.
  • the manufacturing method according to the invention is characterized in that it comprises an additional step in which a second metal film is deposited on the SiO x layer deposited by PECVD, preferably gold or of silver, which second metal film is evaporated to form metal nanoparticles on the SiO x layer, preferably said second metal film has a thickness of less than 5 nm (see FIGS. 4A and 4B).
  • the manufacturing method according to the invention is characterized in that the layer of SiO x deposited by PECVD is deposited on only a part of the surface of the support coated with the metal film, preferably in a geometric configuration adapted to SPR imaging.
  • the deposition is for example done using a mask adapted to the desired geometric configuration.
  • a mask adapted to the desired geometric configuration.
  • said support is preferably a transparent solid support, in particular made of glass.
  • the present invention relates to a support coated with a SiO x layer obtainable by the process according to the invention, characterized in that the thickness of the SiO x layer deposited on said support is uniform and in that the thickness of the deposited SiO x layer and / or the SPR response is (are) not modified after treatment of the support with a piranha solution (sulfuric acid mixture / 30% hydrogen peroxide, in a ratio of 3/1) to 80 ° C.
  • a piranha solution sulfuric acid mixture / 30% hydrogen peroxide, in a ratio of 3/1
  • the present invention also comprises a support according to the invention or obtained by a process according to the invention, characterized in that said support has a refractive index of approximately 1.48 (1.48 ⁇ 0.4), preferably a refractive index of between 1.45 and 1.48, preferably chosen from the group consisting of the following refractive indices: 1.45; 1.465 and 1.48, with 1.48 being the most preferred index value.
  • the support according to the invention is characterized in that the deposited SiO x layer is treated after deposition in order to produce reactive groups capable of forming a covalent or non-covalent bond with a target molecule of interest that it is desired on said support, preferably a covalent bond.
  • Non-covalent bonds are here understood to mean ionic bonds, hydrogen bonds, Van der Waals forces or hydrophobic bonds.
  • said reactive groups that it is desired to generate are Si-OH groups, in particular by treatment with a piranha solution.
  • the present invention also comprises a support according to the invention or obtained by a process according to the invention, characterized in that the SiO x layer is treated so that it allows the coupling of organosilane compounds.
  • the present invention also comprises a support according to the invention or obtained by a process according to the invention, characterized in that the surface of the support on which a layer of SiO x has been deposited has functional groups of organosilane type, preferably aminosilane , such as 3-amino-propyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, or of thiolsilane type, preferably of the mercaptosilane type such as (3-mercaptopropyl) trimethoxysilane.
  • organosilane type preferably aminosilane , such as 3-amino-propyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, or of thiolsilane type, preferably of the mercaptosilane type such as (3-mercaptopropyl) trimeth
  • the present invention also comprises a support according to the invention or obtained by a process according to the invention, characterized in that said target compound is fixed by covalent bond on said support.
  • said target compound is a polypeptide, a nucleic acid or a carbohydrate.
  • polypeptide will be understood to denote any compound comprising a peptide consisting of a sequence of natural amino acids or not, of L or D form, said peptide compound being able to be chosen in particular from peptides, acid-nucleic peptides. (PNA), lipopeptides or glycopeptides.
  • PNA acid-nucleic peptides.
  • polypeptide will also be understood to mean proteins or peptides, terms which will be used interchangeably here.
  • nucleic acid is intended to denote a precise sequence of nucleotides, modified or otherwise, making it possible to define a fragment or a region of a nucleic acid, whether or not containing unnatural nucleotides, and possibly corresponding to a double-stranded DNA, single-stranded DNA as transcripts of said DNAs, such as RNAs.
  • the subject of the present invention is the use of a support according to the invention or obtained by a process according to the invention, for the determination or the analysis of the bond between two compounds by SPR and / or by fluorescence.
  • the SPR supports or chips coated with silica films according to the invention have indeed an appreciable SPR response that can be compared to the signal obtained for a support having a bare gold surface.
  • silica layers appear to be effective in reducing the fluorescence inhibition observed on bare gold surfaces. This result thus allows the combination of fluorescence spectroscopy and SPR.
  • the subject of the present invention is the use of a support according to the invention or obtained by a process according to the invention, for determining or monitoring the reaction between at least two compounds by SPR.
  • the present invention relates to the use of a support according to the invention or obtained by a process according to the invention, for the detection in a sample of nucleic acids, polypeptides, carbohydrates, liposomes, vesicles or cells, preferably for the detection of nucleic acids, polypeptides or carbohydrates in a sample.
  • This method is advantageously used with a support according to the invention, on which the nucleic acid sought hybridises specifically with a probe (target compound) present on the surface of said support or the desired polypeptide or carbohydrate is fixed or adsorbed specifically with a target compound present on the surface of said support, the presence or absence of the desired nucleic acid, polypeptide or carbohydrate being determined by SPR (see for example the Biacore system). It is the same for any determination of the presence of a compound of interest in a sample having a specific affinity for a target compound present on the surface of said support according to the invention.
  • the target compound is of the polypeptide type
  • binding for example of the type antibody-antigen, ligand-receptor type or enzyme-substrate, etc. binding for example of the type antibody-antigen, ligand-receptor type or enzyme-substrate, etc.
  • the present invention provides a method for determining the presence or amount of a compound in a sample, which compound is capable of binding or adsorbing specifically to a target compound, characterized in that said process comprises the following steps: a) the preparation of a support according to the invention or obtained by a process according to the invention, on which said target compound is supported, preferably by covalent bonding; b) bringing said support obtained in step a) into contact with said sample which may contain the compound capable of binding or adsorbing specifically to said target compound under conditions suitable for the formation of a specific complex between said target compound and said compound whose presence or amount in the sample is to be determined; c) where appropriate, at least one washing step to remove compounds not specifically attached or adsorbed to said target compound; and d) determining the presence or amount of said compound in the sample by the so-called surface plasmon resonance technique.
  • the present invention provides a kit for determining the presence or amount of a compound in a sample by surface plasmon resonance and / or fluorescence, characterized in that it comprises a support according to the invention or obtained by a process according to the invention.
  • the present invention relates to a method for screening compounds capable of binding or adsorbing specifically on a given target compound, characterized in that it comprises the following steps: a) contacting said compound to be tested on a support according to the invention or obtained by a process according to the invention, under the conditions allowing the specific binding or adsorption of said test compound and on which said target compound is fixed, preferably by covalent bonding ; b) removing by at least one washing step under the appropriate conditions test compounds unbound or specifically adsorbed on said target compound; and c) selecting the test compound if the presence of this compound is detected by surface plasmon resonance on the support.
  • the present invention relates to an instrument or device for diagnosis or analysis comprising a support according to the invention as defined above and on which support a SiO x layer has been deposited by PECVD, in particular with the characteristics of thickness and / or of homogeneity and / or of stability and / or of refractive index as defined above or in the examples below, or to a diagnostic or analysis instrument or device comprising a support obtained by a process according to the invention.
  • the legends of the figures and examples which follow are intended to illustrate the invention without in any way limiting its scope. Legends of the figures
  • Figures IA and IB AFM topographic images in tapping mode of the gold surface
  • Figure 2 Incidence angle reflectivity curves for different SiO x thicknesses deposited on 50 nm thick gold layers on glass with a 5 nm titanium adhesive layer.
  • the dashed lines are the experimental results; the solid lines are the appropriate curves 0 nm (m), 7.5 nm (o), 20 nm (•), 40 ( ⁇ ) nm.
  • Figure 3 Incidence angle reflectivity curves for an Au / SiO x interface of 7.5 nm SiO x on 50 nm thick gold layers on glass with a titanium adhesion layer of 5 nm.
  • the solid line is the curve adapted for 7.5 nm of SiOx on gold; (m) is the interface after the deposit; (o) is the same surface after treatment twice with piranha at 80 0 C for 15 min.
  • FIGS. 4A and 4B 3-dimensional diagram showing a support on which gold or silver nanoparticles have been deposited by evaporation on an SiO x film deposited on a 50 nm thick gold layer on glass ( Figure 4A).
  • Figure 4A Image obtained by scanning electron microscopy (SEM) of the surface of a support coated with a layer of SiO x 10 nm thick by the PECVD technique and on which a thin film of gold was evaporated.
  • Figure 5 Support model coated with an SiO x film deposited on a gold layer having a geometric configuration adapted to SPR imaging.
  • All cleaning and pickling reagents are of semiconductor quality. All chemicals are of reagent grade or higher quality and have been used as received unless otherwise stated.
  • the gold samples Prior to deposition of the silica film, the gold samples were first degreased in isopropanol and acetone in an ultrasonic bath at room temperature, then rinsed thoroughly with Milli-Q water. and dried under a stream of nitrogen. The gold plates were then heated in the plasma chamber at 300 ° C. at a pressure of 0.005 Torr for 1 hour.
  • SiO x layers were synthesized by plasma stimulated vapor deposition in Plasmalab 800Plus for PECVD (Oxford Instruments). The growth conditions used were as follows: substrate temperature: 300 ° C.
  • the deposition rate was 414 ⁇ / min and the silica films had a refractive index of 1.48.
  • the thickness of the silica films was adjusted by varying the deposition time.
  • the instrument for surface plasmon resonance was an Autolab ESPRIT (Autolab, Utrecht, The Netherlands) allowing simultaneous electrochemical and SPR measurements. In this work, we will only use the SPR part.
  • AFM measurements The samples were imaged with a Model 3100 Model AFM (Veeco, Santa Barbara, CA) equipped with a nanoscope IV (digital instruments) controller, at room temperature under ambient conditions.
  • Single-beam silicon cantilevers (AFM-TM Arrow, Nanoworld) were used with -42 N / m spring constants and resonance frequencies of about -250 kHz. All images of AFM (Atomic Force Microscopy) were acquired in operating mode at a constant force of 5 to 50 pN.
  • Spectroscopic ellipsometry data were obtained in the visible range using a UVISEL by Jobin Yvon Horiba Spectroscopic Ellipsometer equipped with DeltaPsi 2 data analysis software.
  • the system acquired a spectrum ranging from 2 to 4.5 eV (corresponding to 300 to 750 nm) with 0.05 eV intervals (or
  • the contact angles of the water were measured using deionized water.
  • a goniometer system controlled by a remote computer (DIGIDROP by GBX, France) was used to measure the contact angles. The accuracy is ⁇ 2 °. All measurements were made in an ambient atmosphere at room temperature.
  • SiO x layers having thicknesses greater than 44 nm has not been discussed in this study as they do not show a significant SPR response.
  • Figure IA shows AFM in tapping mode of a cleaned gold surface. The surface is composed of grains having an average size of 40 nm and the roughness of the surface has been found to be less than 1.8 nm. The chemical deposition of the silica films on the surface did not induce a topographic change of the surface.
  • the AFM image of the surface covered with SiO x film has similar characteristics and the same roughness as the native surface (FIG. 1B). There are two methods for evaluating interfacial interactions in SPR.
  • the critical angle and the resonance angle are characteristic of the system to be studied and any change in the refractive index of the dielectric medium will cause the resonance angle to shift to higher angles.
  • Figure 2 shows the offset of the resonance angle once layers of silicon dioxide having different thicknesses (7.5 nm, 20 nm, 44 nm) were deposited ex-situ on the gold-coated glass slide. . While the critical angle does not change (not shown) when using water as the solvent in all experiments, the angle when the minimum surface plasmon intervenes shifts to higher angles with SiO thickness.
  • silica films In addition to presenting a platform compatible with SPR chips and in addition to surface functionalization, silica films must support several treatments to be useful for long-term studies. Thus, gold slides coated with silica films were subjected to ultrasonic cleaning in isopropanol (5 min at room temperature), acetone (5 min at room temperature) and water. deionized (5 min at room temperature). Ellipsometry analysis of the resulting surfaces showed no significant change in the thickness of the silica films. Only a 4% reduction in the thickness of the surface was observed (see Table 1). This analysis highlights the thicknesses determined by ellipsometry and SPR and confirms the stability of the films. This even by cleaning the interface.
  • the chemical reactivity of SPR chips coated with SiO x films was examined.
  • the surface covered with a 7 nm thick silica film was first cleaned with a piranha solution and the resulting surface was incubated in a 10-2 M perfluoroalkylsilane solution for 2 h at room temperature. The course of the reaction was followed by measurements of the contact angle.
  • the initial gold SPR chips on glass showed a hydrophobic character with a contact angle of 74 °.
  • wetting properties of the surface changed from hydrophobic to hydrophilic.
  • the oxidized surface has a water contact angle of less than 15 ° (similar to glass). After chemical coupling with organosilane, the contact angle increased to 114 °.
  • Piranha treatment generated reactive surface silanol groups required for organosilane coupling chemistry. This property will pull advantage of surface chemistry to build complex architectures and to introduce functional groups on the surface using the well-known surface chemistry of organosilanes. Conclusion Stable silica films having thicknesses ranging from 7 to 100 nm on a metal, especially gold can be deposited using a PECVD technique. The films are stable in corrosive environments: sonication in organic and aqueous solutions, and in piranha solutions at 80 ° C. The piranha treatment has generated surface Si-OH groups necessary for silane coupling chemistry.
  • SPR chips coated with silica films exhibited an appreciable SPR response that can be compared to the signal obtained from a bare gold surface.
  • Silica layers have been shown to be effective in reducing the fluorescence inhibition observed on bare gold substrates. This result will allow the combination of fluorescence spectroscopy and SPR and opens up new opportunities to detect and image biomolecular events on surfaces with potential applications in various fields including microfluidics and biochips.
  • Silica films having thicknesses of up to at least 40 nm allowed visualization of the effect of surface plasmons.
  • the SPR analyzes also allowed the determination of the thickness of the silicas which were compared to the ellipsometric results.
  • Chemical treatment with a piranha solution generated silanol surface groups that were coupled with trichlorosilane.

Abstract

L'invention a pour objet un procédé de fabrication d'un support solide revêtu d'une couche métallique sur laquelle couche métallique est déposée une couche de SiOx d'épaisseur uniforme et stable, ledit support permettant de déterminer par Surface Plasmon Resonance (« SPR ») la présence d'un composé présent à la surface dudit support. L'invention comprend également de tels supports susceptibles d'être obtenus par ce procédé ainsi que leurs utilisations notamment comme biopuces à acides nucléiques ou à protéines.

Description

Nouvelles puces pour la détection par leplasmon de surface (SPR)
La présente invention a pour objet un procédé de fabrication d'un support solide revêtu d'une couche métallique sur laquelle est déposée une couche de SiOx d'épaisseur uniforme et stable par Enrichissement Plasma Déposition Chimique en Phase Vapeur
(« PECVD »). L'invention comprend également l'utilisation de tels supports ainsi obtenus ou des procédés mettant en œuvre de tels supports pour déterminer par Surface
Plasmon Résonance (« SPR ») la présence d'un composé capable de se lier spécifiquement ou s'adsorber à un composé cible présent à la surface dudit support. L'invention a aussi pour objet des kits d'analyse comprenant de tels supports ainsi que des méthodes de criblage et de sélection de composés d'intérêt utilisant ces supports.
La résonance plasmonique de surface, dénommée SPR pour « Surface Plasmon Résonance », une technique spectroscopique sensible à la surface, a mûri au cours des années en un outil analytique bien accepté pour le suivi des processus interfaciaux tout comme la caractérisation des films minces (1-9). La sélectivité de la méthode provient de la stimulation des champs électriques magnétiques sur des surfaces métalliques dans les plasmons surfaciques créés à l'interface métal-diélectrique. Des plasmons surfaciques sont excités sur des surfaces d'or quand une lumière polarisée p illumine l'interface or/diélectrique par un prisme sous réflexion totale, couplant sous un certain angle la lumière incidente dans les modes de plasmons de surface. La formation du plasmon est liée par une diminution marquée de la lumière réfiectée mesurée par une photodiode et notée l'angle de résonance. Cet angle est extrêmement sensible à tout changement dans l'indice de réfraction (n) du milieu adjacent et tout changement de l'épaisseur optique. L'or et l'argent sont les candidats idéaux en tant que films métalliques pour une puce de SPR dans la région de la lumière visible. Bien que des films d'argent donnent un spectre de SPR plus distinct que l'or et qu'il génère une stimulation hautement étalonnée, ce métal a tendance à être instable dans les milieux réactionnels. Des films d'or minces présentent ainsi un meilleur choix pour les applications de SPR en ce qui concerne des considérations de stabilité et de sensibilité. En effet, la technique de SPR a été largement utilisée pour la détection sans marquage, l'étude de la réaction d'hybridation de l'ADN et la détection des événements moléculaires et biomoléculaires en temps réel. Ceci est possible du fait que le principe de détection est basé sur le changement de contraste optique induit par une molécule liée à l'interface en comparaison au milieu environnant. La chimie utilisée pour l'immobilisation des composants biologiques à la surface d'or de la puce de SPR est principalement basée sur l'utilisation de composés thiolés (10-15) ou des polymères conducteurs (1, 3, 8). L'entreprise Biacore fabrique des systèmes bio analytiques basés sur le phénomène de SPR (9a). Dans ce système, on a utilisé une couche de dextrane fonctionnalisée couplée à la surface d'or pour lier différentes espèces chimiques et biologiques sur la surface.
Dans de nombreuses applications de biocapteurs, cependant, on utilise une chimie de couplage au silane sur des substrats de dioxyde de silicium pour l'immobilisation des biomolécules telles que l'ADN, les carbohydrates ou des protéines et leur interaction avec des analytes complémentaires a été détectée en utilisant des techniques de fluorescence. Cependant, la combinaison de fluorescence et d'études de SPR sur la puce d'or n'a pas été possible, à cause de l'atténuation complète du signal de fluorescence sur les substrats d'or. Un moyen de tirer avantage de la spectroscopie par SPR pour suivre le cours des réactions de surface et la chimie de couplage développée pour SiOx consiste à recouvrir le métal noble avec une couche mince de SiOx. Le développement de nouvelles puces de SPR constituées de films d'or recouverts de couches minces de dioxyde de silicium a déjà été tenté dans la littérature. On a déposé des films de silice minces (SiOx) à faible pression ou en utilisant la technique sol-gel (16). Les auteurs ont trouvé que les couches de silice déposées par vapeur ont montré un manque de stabilité dans une solution tampon aqueuse telle que le PBS. La couche de silice se décroche de la surface du métal en quelques minutes d'exposition aux solutions aqueuses. Cependant, la technique sol-gel a été appliquée avec succès pour générer les interfaces AuZSiOx stables. On a basé la technique sur l'auto-assemblage du 3-(mercaptopropyl)triméthoxysilane sur la surface métallique suivi par une hydrolyse ultérieure des groupes triméthoxysilyle pour générer des groupes silanol de surface nécessaires pour la réaction de condensation du tétraméthoxysilane déposé à la tournette.
Les films composites Au/SiOx ont été fabriqués par Liao et al. dans un système de pulvérisation de magnétrons multicible où le composite a été caractérisé optiquement par SPR en mode transmission (17). Par ailleurs, la fonctionnalisation directe des puces de SPR avec du γ-aminopropyléthoxysilane a été rapportée dans la littérature (18). L'exposition de la puce de capteur à la vapeur de silane a conduit à l'introduction de groupes amino terminaux et en outre une immobilisation des anticorps sur la surface d'or. Les auteurs ont trouvé que les réponses de SPR dépendaient du temps d'exposition des puces de SPR à la vapeur de silane et des temps d'exposition plus longs étaient souhaitables pour générer une réponse appréciable. Cependant, les auteurs n'ont pas commenté le type de liaison entre la surface d'or et la multicouche de silane (18). Le groupe de Granéli et Kasemo a rapporté qu'en déposant 1 nm de titane entre les couches d'or et de dioxyde de silicium (30 nm dans le cas d'une puce de SPR), des films stables pourraient être obtenus et la formation de couches de phospholipides soutenues a été recherchée en utilisant une microbalance pondérale à résonateur à quartz et de SPR (19- 22). Dans ce cas, une couche d'adhésion de 1 nm de titane était nécessaire et le film de dioxyde de silicium a été déposé en utilisant une évaporation par faisceau électronique.
Ainsi, au regard de ce qui précède, il serait souhaitable de pouvoir disposer d'une technique simple de synthèse contrôlable et adaptable à grande échelle pour déposer des films de silice stables sur des supports solides ou puces de SPR, technique qui sera bénéfique pour la communauté scientifique et qui pourra permettre de combiner la chimie de couplage au silane avec une spectroscopie de SPR.
Ceci est justement l'objet de la présente invention. Les inventeurs ont pu mettre en évidence qu'il était possible d'utiliser un dépôt en phase vapeur stimulé par plasma (PECVD) pour déposer des films minces diélectriques de silice avec des épaisseurs contrôlées sur des puces de SPR, ceci de manière reproductible. Les inventeurs ont pu mettre en évidence aussi et de façon surprenante que la puce de SPR recouverte de silice obtenue par un tel procédé de dépôt présente pratiquement pour des épaisseurs d'environ 7 nm une intensité similaire de réflectivité et un pic légèrement plus fort comparée au signal obtenu pour une surface d'or nue. Ces films de silice présentent également une très bonne stabilité à la fois dans des solutions organiques et aqueuses et en présence de solution piranha à 800C, cette dernière solution pouvant s'avérer nécessaire pour générer des groupes silanol de surface adaptés pour la chimie de couplage au silane.
Le support solide revêtu d'une couche métallique sur laquelle est déposée une couche de SiOx d'épaisseur uniforme et stable obtenu par le procédé de l'invention décrit ci-après apparaît ainsi compatible avec un schéma de détection par SPR, permet le greffage de façon covalente de molécules cibles d'intérêt à l'interface ou peut être utilisée comme support pour des bicouches de phospholipides captives. Ceci ouvre donc la possibilité d'étudier des processus de surface en utilisant des SPR sur des surfaces de silice.
Ainsi, la présente invention a pour objet un procédé de fabrication d'un support solide revêtu d'une couche métallique sur laquelle couche métallique est déposée une couche de SiOx d'épaisseur uniforme et stable, ledit support présentant une réponse par Surface Plasmon Résonance (« SPR ») appréciable et/ou permettant de déterminer par SPR la présence d'un composé capable de se lier spécifiquement à un composé cible présent à la surface dudit support, caractérisé en ce que ladite couche de SiOx est déposée par Enrichissement Plasma Déposition Chimique en Phase Vapeur (« PECVD » pour « Plasma Enhanced Chemical Vapour Déposition »). Par réponse par Surface Plasmon Résonance (« SPR ») appréciable, on entend désigner ici la possibilité pour le support solide revêtu d'une couche métallique sur laquelle est déposée une couche de SiOx d'être utilisé comme capteur dans des études par la SPR.
Dans un mode de réalisation préféré, ladite couche métallique selon le procédé de fabrication de l'invention est choisie parmi une couche d'or ou d'argent, l'or étant le plus préféré.
Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que ladite couche de SiOx déposée par PECVD a une épaisseur comprise entre 5 nm et 80 nm, de préférence une épaisseur supérieure ou égale à 5 nm et inférieure ou égale à 40 nm ou une épaisseur supérieure ou égale à 5 nm et inférieure ou égale à 20 nm, de manière plus préférée une épaisseur égale à 7 nm ± 1,5 nm.
Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que ladite couche métallique a une épaisseur égale à environ 50 nm. Dans un mode de réalisation particulier, le procédé de fabrication selon l'invention est caractérisé en ce que ladite couche métallique est revêtue de particules d'or ou d'argent avant le dépôt de la couche de SiOx par PECVD.
Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que ledit support solide est préalablement revêtu d'une couche de titane avant d'être revêtu de ladite couche métallique, de préférence d'épaisseur d'environ 5 nm (5 nm ± 1,5 nm).
Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que le mélange de gaz utilisé dans le procédé PECVD est un mélange SiH4 (de préférence à 3 % en N2) et N2O, de préférence à un débit respectif de 260 cmVmin et 700 cmVmin, de préférence avec une température pour le substrat de
3000C.
Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que le dépôt de SiOx sur le support par le procédé PECVD est réalisé à une vitesse d'environ 414 Â/min.
Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que le dépôt de SiOx par le procédé PECVD sur le support est à une pression totale dans le réacteur de 1 T et une puissance de 10 W à 13,56 Mhz. Dans un mode de réalisation également préféré, le procédé de fabrication selon l'invention est caractérisé en ce que la couche de SiOx déposée par PECVD présente un indice de réfraction compris entre 1,45 et 1,48, de préférence choisi dans le groupe constitué des indices de réfraction suivants : 1,45 ; 1,465 et 1,48.
Dans un mode de réalisation particulier, le procédé de fabrication selon l'invention est caractérisé en ce qu'il comprend une étape additionnelle dans laquelle on dépose sur la couche de SiOx déposée par PECVD un second film métallique, de préférence d'or ou d'argent, lequel second film métallique est évaporé pour former des nanoparticules métalliques sur la couche de SiOx, de préférence ledit second film métallique présente une épaisseur inférieure à 5 nm (voir figures 4 A et 4B). Dans un mode de réalisation particulier, le procédé de fabrication selon l'invention est caractérisé en ce que la couche de SiOx déposée par PECVD est déposée sur une partie seulement de la surface du support revêtu du film métallique, de préférence selon une configuration géométrique adaptée à l'imagerie par SPR. Dans ce mode de réalisation particulier, le dépôt est par exemple fait en utilisant un masque adapté à la configuration géométrique souhaitée. Parmi les configurations géométriques adaptées à l'imagerie par SPR, on pourra par exemple se référer à la figure 5. Dans le procédé de fabrication selon l'invention, ledit support est de préférence un support solide transparent, notamment en verre.
Sous un autre aspect, la présente invention a pour objet un support revêtu d'une couche de SiOx susceptible d'être obtenu par le procédé selon l'invention, caractérisé en ce que l'épaisseur de la couche de SiOx déposée sur ledit support est uniforme et en ce que l'épaisseur de la couche de SiOx déposée et/ou la réponse SPR n'est(ne sont) pas modifiée(s) après traitement du support avec une solution piranha (mélange d'acide sulfurique / peroxyde d'hydrogène à 30 %, dans un rapport 3/1) à 800C.
La présente invention comprend également un support selon l'invention ou obtenu par un procédé selon l'invention, caractérisé en ce que ledit support présente un indice de réfraction d'environ 1,48 (1,48 ± 0, 4), de préférence un indice de réfraction compris entre 1,45 et 1,48, de préférence choisi dans le groupe constitué des indices de réfraction suivants : 1,45 ; 1,465 et 1,48, 1,48 étant la valeur de l'indice la plus préférée.
Dans un mode de réalisation préféré, le support selon l'invention est caractérisé en ce que la couche de SiOx déposée est traitée après dépôt afin de produire des groupements réactifs capables de former une liaison covalente ou non avec une molécule cible d'intérêt que l'on souhaite sur ledit support, de préférence une liaison covalente.
Par liaisons non covalentes, on entend désigner ici les liaisons ioniques, les liaisons hydrogène, les forces de Van der Waals ou encore les liaisons hydrophobes.
De préférence, lesdits groupements réactifs que l'on souhaite générer sont des groupements Si-OH, notamment par traitement avec une solution de piranha.
La présente invention comprend également un support selon l'invention ou obtenu par un procédé selon l'invention, caractérisé en ce que la couche de SiOx est traitée de telle sorte qu'elle permette le couplage de composés organosilanes.
La présente invention comprend également un support selon l'invention ou obtenu par un procédé selon l'invention, caractérisé en ce que la surface du support sur laquelle a été déposée une couche de SiOx présente des groupements fonctionnels de type organosilane, de préférence aminosilane, tels que le 3-amino-propyltriméthoxysilane et le N-(2-aminoéthyl)-3-amino-propyltriméthoxysilane, ou de type thiolsilane, de préférence de type mercaptosilane tel que le (3-mercaptopropyl)-triméthoxysilane.
On pourra par exemple se référer à la demande de brevet internationale publiée le 21 août 2003 sous le No. WO 03/068712 décrivant de tels protocoles de silanisation de lames de verre (« fonctionnalisation ») présentant des groupements silanols Si-OH.
La présente invention comprend aussi un support selon l'invention ou obtenu par un procédé selon l'invention, caractérisé en ce que ledit composé cible est fixé par liaison covalente sur ledit support.
De préférence, ledit composé cible est un polypeptide, un acide nucléique ou un carbohydrate.
Dans la présente description, on entendra désigner par polypeptide tout composé comprenant un peptide constitué d'une séquence d'acides aminés naturels ou non, de forme L ou D, ledit composé peptidique pouvant être choisi notamment parmi les peptides, les peptides-nucléiques acides (PNA), les lipopeptides ou les glycopeptides. Dans la présente invention, on entendra désigner par le terme polypeptide également les protéines ou les peptides, termes qui seront ici employés indifféremment.
Par acide nucléique, on entend désigner un enchaînement précis de nucléotides, modifiés ou non, permettant de définir un fragment ou une région d'un acide nucléique, comportant ou non des nucléotides non naturels, et pouvant correspondre aussi bien à un ADN double brin, un ADN simple brin que des produits de transcription desdits ADNs, tels que les ARNs.
Sous un autre aspect, la présente invention a pour objet l'utilisation d'un support selon l'invention ou obtenu par un procédé selon l'invention, pour la détermination ou l'analyse de liaison entre deux composés par SPR et/ou par fluorescence. Les supports ou puces de SPR recouverts de films de silice selon l'invention présentent en effet une réponse SPR appréciable que l'on peut comparer au signal obtenu pour un support présentant une surface d'or nue. De plus, les couches de silice s'avèrent être efficaces pour réduire l'inhibition de fluorescence observée sur des surfaces d'or nues. Ce résultat permet ainsi la combinaison de spectroscopie de fluorescence et de SPR. Sous un autre aspect, la présente invention a pour objet l'utilisation d'un support selon l'invention ou obtenu par un procédé selon l'invention, pour la détermination ou le suivi de réaction entre au moins deux composés par SPR.
Sous un autre aspect, la présente invention a pour objet l'utilisation d'un support selon l'invention ou obtenu par un procédé selon l'invention, pour la détection dans un échantillon d'acides nucléiques, de polypeptides, de carbohydrates, de liposomes, de vésicules ou de cellules, de préférence pour la détection d'acides nucléiques, de polypeptides ou de carbohydrates dans un échantillon.
Ce procédé est avantageusement utilisé avec un support selon l'invention, sur lequel l'acide nucléique recherché s'hybride spécifiquement avec une sonde (composé cible) présente à la surface dudit support ou le polypeptide ou carbohydrate recherché se fixe ou s'adsorbe spécifiquement avec un composé cible présent à la surface dudit support, la présence ou non de l'acide nucléique, du polypeptide ou du carbohydrate recherché étant déterminé par SPR (voir par exemple le système Biacore). Il en est de même pour toute détermination de la présence d'un composé d'intérêt dans un échantillon présentant une affinité spécifique pour un composé cible présent à la surface dudit support selon l'invention.
Lorsque le composé cible est de type polypeptide, on pourra par exemple rechercher la présence dans un échantillon d'un composé d'intérêt capable de reconnaître et/ou de se fixer ou encore s'adsorber spécifiquement sur ce polypeptide (liaison par exemple de type anticorps-antigène, de type ligand-récepteur ou encore enzyme-substrat, etc.). L'homme de l'art saura utiliser les conditions et les protocoles standard bien connus pour ce type d'interaction spécifique que l'on souhaite mettre en oeuvre.
Sous un autre aspect, la présente invention a pour objet un procédé de détermination de la présence ou de la quantité d'un composé dans un échantillon, ledit composé étant capable de se lier ou s'adsorber spécifiquement à un composé cible, caractérisé en ce que ledit procédé comprend les étapes suivantes : a) la préparation d'un support selon l'invention ou obtenu par un procédé selon l'invention, sur lequel support ledit composé cible est fixé, de préférence par liaison covalente ; b) la mise en contact dudit support obtenu à l'étape a) avec ledit échantillon susceptible de contenir le composé capable de se lier ou s'adsorber spécifiquement audit composé cible dans des conditions appropriées pour la formation d'un complexe spécifique entre ledit composé cible et ledit composé dont on cherche à déterminer la présence ou sa quantité dans l'échantillon ; c) le cas échéant, au moins une étape de lavage afin d'éliminer les composés non spécifiquement fixés ou adsorbés audit composé cible ; et d) la détermination de la présence ou de la quantité dudit composé dans l'échantillon par la technique dite de résonance plasmonique de surface.
Sous un autre aspect, la présente invention a pour objet un kit pour la détermination de la présence ou la quantité d'un composé dans un échantillon par résonance plasmonique de surface et/ou par fluorescence, caractérisé en ce qu'il comprend un support selon l'invention ou obtenu par un procédé selon l'invention.
Sous un autre aspect, la présente invention a pour objet une méthode de criblage de composés capables de se fixer ou s'adsorber spécifiquement sur un composé cible donné, caractérisée en ce qu'elle comprend les étapes suivantes : a) la mise en contact dudit composé à tester sur un support selon l'invention ou obtenu par un procédé selon l'invention, dans les conditions permettant la fixation ou l'adsorption spécifique dudit composé à tester et sur lequel support ledit composé cible est fixé, de préférence par liaison covalente ; b) l'élimination par au moins une étape de lavage dans les conditions appropriées des composés à tester non fixés ou adsorbés spécifiquement sur ledit composé cible ; et c) la sélection du composé testé si la présence de ce composé est détectée par résonance plasmonique de surface sur le support.
Enfin, la présente invention est relative à un instrument ou dispositif de diagnostic ou d'analyse comprenant un support selon l'invention tel que défini ci-avant et sur lequel support une couche de SiOx a été déposée par PECVD, notamment avec les caractéristiques d'épaisseur et/ou d'homogénéité et/ou de stabilité et/ou d'indice de réfraction telles que définies ci-avant ou dans les exemples ci-après, ou à un instrument ou dispositif de diagnostic ou d'analyse comprenant un support obtenu par un procédé selon l'invention. Les légendes des figures et exemples qui suivent sont destinés à illustrer l'invention sans aucunement en limiter la portée. Légendes des figures
Figures IA et IB : Images topographiques AFM en mode tapping de la surface d'or
(figure IA), et de la surface AuZSiOx (d = 7,5 nm) (figure IB).
Figure 2 : Courbes de réflectivité contre angle d'incidence pour différentes épaisseurs de SiOx déposées sur des couches d'or de 50 nm d'épaisseur sur du verre avec une couche adhérente de titane de 5 nm. Les lignes en pointillés sont les résultats expérimentaux ; les lignes pleines sont les courbes adaptées 0 nm (m), 7,5 nm (o), 20 nm (•), 40 (α) nm.
Figure 3 : Courbes de réflectivité contre angle d'incidence pour une interface Au/SiOx de 7,5 nm de SiOx sur des couches d'or de 50 nm d'épaisseur sur du verre avec une couche d'adhésion de titane de 5 nm. La ligne pleine est la courbe adaptée pour 7,5 nm de SiOx sur de l'or ; (m) est l'interface après le dépôt ; (o) est la même surface après traitement deux fois avec du piranha à 800C pendant 15 min.
Figures 4A et 4B : Schéma en 3 dimensions représentant un support sur lequel des nanoparticules d'or ou d'argent ont été déposées par évaporation sur un film de SiOx déposé sur une couche d'or de 50 nm d'épaisseur sur du verre (figure 4A). Image obtenue par microscopie électronique à balayage (SEM) de la surface d'un support revêtu d'une couche de SiOx d'épaisseur 10 nm par la technique PECVD et sur laquelle un film mince d'or a été évaporé.
Figure 5 : Modèle de support revêtu d'un film de SiOx déposé sur une couche d'or présentant une configuration géométrique adaptée à l'imagerie par SPR.
EXEMPLE 1 : Matériaux et Méthodes 1) Matériaux
Tous les réactifs de nettoyage et de décapage sont de qualité semi-conducteur. Tous les produits chimiques sont de qualité réactif ou de qualité supérieure et ont été utilisés tels qu'ils ont été reçus sauf mention contraire.
- Ci0H4F17Cl3Si : fournisseur Gelest Inc. (11 E. Steel Rd. Morrisville, PA USA), isopropanol, acétone : fournisseur Aldrich (utilisés sans autre purification),
- peroxyde d'hydrogène et acide sulfurique de qualité semi-conducteur. 2) Préparation des lames d'or Les lames d'or ont été préparées sur la plateforme PROMESS du CEA de Grenoble par un dépôt sous vide de 5 nm de titane et 50 nm d'or sur des lames de verre nettoyées (76 x 26 x 1 mm3, n = 1,58 à λ = 633 nm, CML, France).
3) Préparation de lames composites d'or-SiOx
Avant le dépôt du film de silice, les échantillons d'or ont été tout d'abord dégraissés dans de l'isopropanol et de l'acétone dans un bain à ultrasons à température ambiante, puis rincés abondamment avec de l'eau Milli-Q et séchés sous un flux d'azote. Les lames d'or ont été alors chauffées dans la chambre à plasma à 3000C à une pression de 0,005 Torr pendant 1 heure. Des couches de SiOx ont été synthétisées par un dépôt en phase vapeur stimulé par plasma dans un Plasmalab 800Plus pour PECVD (Oxford Instruments). Les conditions de croissance utilisées étaient comme suit : température du substrat : 3000C ; mélange de gaz : SiH4 (3 % dans du N2) et N2O (l'écoulement gazeux était de 260 sccm et 700 sccm pour SiH4 et N2O, respectivement) ; pression totale dans le réacteur : 1 Torr ; alimentation : 10 W à 13,56 MHz. Dans ces conditions expérimentales, la vitesse de dépôt était de 414 Â/min et les films de silice présentent un indice de réfraction de 1,48. L'épaisseur des films de silice a été ajustée en faisant varier le temps de dépôt.
4) Tests de stabilité Les échantillons d'or recouverts de couches de silice ont tout d'abord été lavés par une ultrasonication successive dans de l'isopropanol, de l'acétone et de l'eau désionisée à température ambiante puis dans 3 : 1 (v/v) de H2SO4 concentré/30 % H2O2 pendant 15 min suivie d'un rinçage abondant avec de l'eau Milli-Q. Les échantillons résultant ont été séchés sous un flux d'azote. La solution piranha réagit violemment avec des matériaux organiques. Elle doit être manipulée avec extrêmement d'attention, et suivie d'un rinçage abondant avec de l'eau désionisée.
5) Instrumentation SPR
L'instrument pour la résonance des plasmons de surface était un Autolab ESPRIT (Autolab, Utrecht, Pays-Bas) permettant des mesures simultanées électrochimiques et de SPR. Dans ce travail, on utilisera seulement la partie SPR.
6) Mesures d'AFM Les échantillons ont été imagés avec un système Dimension 3100 modèle AFM (Veeco, Santa Barbara, CA) équipé d'un contrôleur nanoscope IV (instruments numériques), à température ambiante dans des conditions ambiantes. Des cantilevers de silicium à un seul faisceau (AFM-TM Arrow, Nanoworld) ont été utilisés avec des constantes du ressort -42 N/m et des fréquences de résonance d'environ -250 kHz. Toutes les images d'AFM (Microscopie à Force Atomique) ont été acquises en mode exploitation à une force constante de 5 à 50 pN.
7) Ellipsométrie
Les données d' ellipsométrie spectroscopique ont été obtenues dans la plage visible en utilisant un UVISEL par Jobin Yvon Horiba Spectroscopic Ellipsometer équipé d'un logiciel d'analyse des données DeltaPsi 2. Le système a acquis un spectre allant de 2 à 4,5 eV (correspondant à 300 à 750 nm) avec des intervalles de 0,05 eV (ou
7,5 nm). Les données ont été prises en utilisant un angle d'incidence de 70° et on a réglé le compensateur à 45,0°. On a adapté les données par une analyse de régression à un modèle film sur substrat comme décrit par leur épaisseur et leurs indices de réfractions complexes. Les valeurs données dans les tableaux 1 et 2 donnent une moyenne sur 5 mesures prises sur différents points de la surface.
8) Mesures de l'angle de contact
Les angles de contact de l'eau ont été mesurés en utilisant de l'eau désionisée. Un système de goniomètre contrôlé par un ordinateur à distance (DIGIDROP par GBX, France) a été utilisé pour mesurer les angles de contact. La précision est de ± 2°. Toutes les mesures ont été faites dans une atmosphère ambiante à température ambiante.
EXEMPLE 2 : Résultats Les films de silice étudiés ici ont été déposés sur des surfaces de puces de SPR utilisant une décomposition chimique d'un mélange gazeux de SiH4 et N2O dans un réacteur à plasma à 3000C. Dans ces conditions expérimentales, les films déposés présentent un indice de réfraction de 1,48 et la vitesse de dépôt était de 414 Â/min. L'épaisseur du film a été contrôlée par le temps de réaction. L'étude par ellipsométrie des films déposés après 10, 30, 60, 75 et 120 s a eu pour résultat des épaisseurs de 7,5, 20, 44, 51 et 63 nm respectivement (voir Tableau 1). Tableau 1 : Détermination par ellipsométrie de l'épaisseur des couches de SiOx déposées avant et (A) après sonication dans de Pisopropanol/acétone/eau et après 15 min de nettoyage piranha (H2SO4ZH2O2 : = 3/1 (v/v)) (B).
Entrée Tel que déposé Après traitement A1 Après traitement B2 d/nm d/nm d/nm
1 7,51 7,21 (4 %) 7,12 (1,25 %)
2 20,00 20,16 (0,8 %) 19,37 (3,9 %)
3 44,20 42,98 (2,76 %) 42,57 (0,95 %)
4 62,95 64,27 (2,05 %) 60,00 (6,64 %) sonication successivement dans de Pisopropanol/acétone/eau 15 min dans une solution piranha
Les couches de SiOx ayant des épaisseurs supérieures à 44 nm n'ont pas été discutées dans cette étude comme elles ne montrent pas de réponse de SPR significative. Nous avons ensuite examiné la topographie des puces de SPR avant et après le revêtement de silice. La figure IA montre l'AFM en mode tapping d'une surface d'or nettoyée. La surface est composée de grains ayant une taille moyenne de 40 nm et la rugosité de la surface a été trouvée inférieure à 1,8 nm. Le dépôt chimique des films de silice sur la surface n'a pas induit de changement topographique de la surface. L'image par AFM de la surface recouverte avec un film de SiOx (épaisseur 7,5 nm) présente des caractéristiques similaires et la même rugosité que la surface native (figure IB). II existe deux procédés pour évaluer les interactions interfaciales en SPR. Dans le mode balayage, la variation de l'intensité de la lumière réfléchie en fonction de l'angle d'incidence du faisceau de lumière est détectée. L'angle critique et l'angle de résonance sont caractéristiques du système à étudier et tout changement dans l'indice de réfraction du milieu diélectrique provoquera le décalage de l'angle de résonance vers des angles plus élevés. La figure 2 montre le décalage de l'angle de résonance une fois que des couches de dioxyde de silicium ayant différentes épaisseurs (7,5 nm, 20nm, 44 nm) ont été déposées ex-situ sur la lame de verre recouverte d'or. Alors que l'angle critique ne change pas (non montré) quand on utilise de l'eau en tant que solvant dans toutes les expériences, l'angle quand le plasmon de surface minimum intervient se décale vers des angles supérieurs avec une épaisseur de SiOx croissante : 66,03° (0 nm), 66,19° (7,5 nm), 66,45° (20 nm), 66,96° (44 nm). Les interfaces de dioxyde de silicium-or avec une épaisseur de SiOx supérieure à 60 nm n'ont pas montré un signal de SPR minimum sur un prisme de verre d'indice de réfraction de 1,58 en utilisant l'instrument Autolab- ESPRIT SPR comme les angles détectables étaient à l'extérieur de la limite de détection. En plus d'un changement de l'angle de résonance, l'intensité de résonance minimum est réduite de 0,048 (0 nm) à 0,053 (7,5 nm), 0,059 (20 nm) et 0,080 (44 nm), respectivement, correspondant à une dose d'intensité de 0,5, 1,1, 3,2 %. Les courbes expérimentales ont été adaptées à des courbes de SPR théoriques et les épaisseurs correspondantes ont été déterminées en utilisant les paramètres suivants : n(prisme) = 1,58, n(or) = 0,197 + i3,442 avec d = 530 nm, n(titane) = 2,36 + i3,l 12 avec d = 60 nm, n(SiOx) = 1,48.
Tableau 2 :
Z E~ntré,e „ , SPR ,1, „ S .,PR ,2
Tel que dépose Traitement
1 8 nm 8 nm
2 23 nm 22 nm
3 45 nm 43 nm 5
1 les courbes expérimentales ont été adaptées à des courbes de SPR théoriques en utilisant n(prisme) = 1,58, n(or) = 0,197 + i3,442 avec d = 530 nm, n(titane) = 2,36 + i3,112 avec d = 60 nm, n(SiOx)) = 1,48
2 sonication dans de l'isopropanol/acétone/eau et 15 min dans une solution piranha
Les résultats des expériences de SPR sont comparables à ceux obtenus à partir de mesures ellipsométriques dans l'air (7,5, 20, 44,2 nm) (Tableau 1). Plusieurs points ont été mesurés sur l'interface Au/SiOX; les valeurs moyennes de d = 7,51 ; 20,00 ; 44,2 ; 62,95 ont été respectivement obtenues. Stabilité des films de dioxyde de silicium sur l'or
En plus de présenter une plateforme compatible aux puces SPR et en outre une fonctionnalisation de surface, les films de silice doivent supporter plusieurs traitements chimiques pour être utiles pour des études à long terme. Ainsi, les lames d'or recouvertes avec des films de silice ont été soumises à un nettoyage aux ultrasons dans de l'isopropanol (5 min à température ambiante), de l'acétone (5 min à température ambiante) et de l'eau désionisée (5 min à température ambiante). L'analyse par ellipsométrie de surfaces résultantes n'a montré aucune évolution significative de l'épaisseur des films de silice. Seule une réduction de 4 % de l'épaisseur de la surface a été observée (voir tableau 1). Cette analyse met en évidence les épaisseurs déterminées par ellipsométrie et SPR et confirme la stabilité des films. Ceci même en nettoyant l'interface. De plus, les puces de SPR recouvertes de SiOx ont été montrées comme étant stables dans les solutions de piranha (H2SO4/H2O2 = 3/1 (v/v)) pendant 15 minutes. A nouveau, on a observé moins de 4 % de réduction de l'épaisseur de la surface (voir tableaux 1 et 2). Ceci peut être dû au retrait de tout absorbât ou contaminant sur la surface. Les solutions piranha sont connues pour décomposer les absorbâts organiques sur la surface. Les résultats de l' ellipsométrie ont été confirmés par spectroscopie SPR. Fonctionnalisation de surface
La réactivité chimique des puces de SPR recouvertes de films de SiOx a été examinée. La surface recouverte avec un film de silice de 7 nm d'épaisseur a été tout d'abord nettoyée avec une solution piranha et on a incubé la surface résultante dans une solution à 10~2 M de perfluoroalkylsilane pendant 2 h à température ambiante. Le cours de la réaction a été suivi par les mesures de l'angle de contact. Les puces de SPR initiales or sur verre ont montré un caractère hydrophobe avec un angle de contact de 74°. Après le dépôt de silice et le traitement par piranha, des propriétés mouillantes de la surface ont changé de hydrophobe à hydrophile. La surface oxydée a présenté un angle de contact de l'eau inférieure à 15° (similaire au verre). Après le couplage chimique avec Porganosilane, l'angle de contact a augmenté jusqu'à 114°. Ceci est en accord avec l'immobilisation chimique de la molécule de silane sur la surface. Il a été trouvé que ce traitement n'a induit aucun changement de l'épaisseur ou de la réponse de SPR et a produit une quantité considérable de Si-OH utilisé pour coupler un trichloroperfluorosilane. A notre connaissance, ceci est le premier exemple présentant une telle stabilité de films de silice sur de l'or préparés thermiquement.
Le traitement piranha a généré des groupes silanol de surface réactifs nécessaires pour une chimie de couplage d'un organosilane. Cette propriété permettra de tirer avantage de la chimie de surface pour construire des architectures complexes et pour introduire des groupes fonctionnels sur la surface en utilisant la chimie de surface bien connue des organosilanes. Conclusion Des films de silice stables ayant des épaisseurs allant de 7 à 100 nm sur un métal, notamment de l'or peuvent être déposés en utilisant une technique PECVD. Les films sont stables dans des environnements corrosifs : sonication dans des solutions organiques et aqueuses, et dans des solutions piranha à 800C. Le traitement piranha a généré des groupes Si-OH de surface nécessaires pour une chimie de couplage au silane. Les puces de SPR recouvertes de films de silice ont présenté une réponse SPR appréciable que l'on peut comparer au signal obtenu d'une surface d'or nue. Les couches de silice s'avèrent être efficaces pour réduire l'inhibition de fluorescence observée sur des substrats d'or nus. Ce résultat permettra la combinaison de spectroscopie de fluorescence et de SPR et ouvre ainsi de nouvelles opportunités pour détecter et imager des événements biomoléculaires sur les surfaces avec des applications potentielles dans divers domaines y compris la microfiuidique et les biopuces.
Ces exemples mettent en évidence la fabrication et la caractérisation de films d'une épaisseur de l'ordre du nanomètre stable de silice amorphe (SiOx) déposés sur des lames de verre recouvertes d'une couche d'adhésion de 5 nm de titane et de 50 nm d'or en utilisant une technique de dépôt en phase vapeur stimulé par plasma (PECVD). Les surfaces résultantes ont été caractérisées en utilisant une microscopie à force atomique (AFM), une ellipsométrie, des mesures de l'angle de contact et une résonance des plasmons de surface (SPR). L'analyse par AFM indique que des films homogènes de silice ayant une rugosité faible ont été formés sur la surface d'or. Les films de silice déposés ont montré une stabilité excellente dans différents solvants et dans une solution piranha. Il n'y a eu aucune variation significative dans l'épaisseur ou dans le signal de SPR après ces traitements sévères. Les films de silice ayant des épaisseurs allant jusqu'à au moins 40 nm ont permis la visualisation de l'effet des plasmons de surface. Les analyses par SPR ont permis en outre, la détermination de l'épaisseur des silices qu'on a comparées aux résultats ellipsométriques. Le changement de l'angle de contact pour la surface d'or hydrophobe et le film AuZSiOx hydrophile. Le traitement chimique avec une solution piranha a généré des groupes de surfaces de silanol qui ont été couplés du trichlorosilane.
Références
(1) Fortin, E. et al., Electronalysis 2005, 17, 495-503.
(2) Georgiadis, R. et al, Langmuir 2000, 16, 6759-6762.
(3) Guedon, P. et al, Anal. Chem. 2000, 72, 6003-6009.
(4) Jordan, C. E. et al, Anal. Chem. 1997, 69, 1449-1456.
(5) Kambhampati, D. K. et al, Current Opinion in colloid & interface science 1999,
4, 273-280.
(6) Knoll, W., Ann. Rev. Phys. Chem. 1998, 49, 565-634.
(V) Rothenhausler, B. et al, Nature 1998, 332, 615-617.
(8) Szunerits, S. et al, Langmuir 2004, 20, 9236-9241. (9a) Voir : http//www.biacore.com. (9b) Thiel, A. J. et al, Anal. Chem. 1997, 69, 4948-4956.
(10) Damos, F. S. et al, Langmuir 2005, 21, 602-609.
(11) Peterlinz, K. A. et al, Am. Chem. Soc. 1997, 119, 3401-3402. (12) Pyo, H. et al, Langmuir 2005, 21, 166-171.
(13) Smith, E. A. et al, Am. Chem. Soc. 2003, 125, 6140-6148.
(14) Smith, E. A. et al, Langmuir 2001, 17, 2502-2507.
(15) Jung, L. S. et al, J. Phys. Chem. B. 2000, 104, 11168-11178. ( 16) Kambhampati, D. K. et al. , Langmuir 2001, 17, 1169-1175. (17) Liao, H. B. et al, J. Appl. Phys. 2003, 93, 4485-4488.
(18) Sasaki, S. et al, Anal. Chim. Acta 1998, 368, 71-76.
(19) Glasmastar, K. et al, Colloid and Interface Sci. 2002, 246, 40-47.
(20) Granéli, A. et al, Langmuir 2003, 19, 842-850.
(21) Granéli, A. et al, Biosensors & Biolectronics 2004, 20, 498-504. (22) Reimhult, E. et al, Anal. Chem. 2004, 76, 7211-7220.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un support solide revêtu d'une couche métallique sur laquelle couche métallique est déposée une couche de SiOx d'épaisseur uniforme et stable, ledit support permettant de déterminer par résonance plasmonique de surface (« SPR ») la présence d'un composé capable de se lier spécifiquement à un composé cible présent à la surface dudit support, caractérisé en ce que ladite couche de SiOx est déposée par Enrichissement Plasma Déposition Chimique en Phase Vapeur (« PECVD » pour « Plasma Enhanced Chemical Vapour Déposition »).
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que ladite couche métallique est choisie parmi une couche d'or ou d'argent.
3. Procédé de fabrication selon la revendication 2, caractérisé en ce que ladite couche métallique est une couche d'or.
4. Procédé de fabrication selon l'une des revendications 1 à 3, caractérisé en ce que ladite couche de SiOx déposée par PECVD a une épaisseur comprise entre 5 nm et 80 nm.
5. Procédé de fabrication selon la revendication 4, caractérisé en ce que ladite couche de SiOx déposée par PECVD a une épaisseur supérieure ou égale à 5 nm et inférieure ou égale à 40 nm.
6. Procédé de fabrication selon la revendication 5, caractérisé en ce que ladite couche de SiOx déposée par PECVD a une épaisseur supérieure ou égale à 5 nm et inférieure ou égale à 20 nm.
7. Procédé de fabrication selon la revendication 6, caractérisé en ce que ladite couche de SiOx déposée par PECVD a une épaisseur égale à 7 nm ± 1, 5 nm.
8. Procédé de fabrication selon l'une des revendications 1 à 7, caractérisé en ce que ladite couche métallique a une épaisseur égale à environ 50 nm.
9. Procédé de fabrication selon l'une des revendications 1 à 8, caractérisé en ce que ladite couche métallique est revêtue de particules d'or ou d'argent avant le dépôt de la couche de SiOx par PECVD.
10. Procédé de fabrication selon l'une des revendications 1 à 8, caractérisé en ce que ledit support solide est préalablement revêtu d'une couche de titane avant d'être revêtu de ladite couche métallique, de préférence d'épaisseur d'environ 5 nm.
11. Procédé de fabrication selon l'une des revendications 1 à 10, caractérisé en ce que le mélange de gaz utilisé dans le procédé PECVD est un mélange SiH4 (de préférence à 3 % en N2) et N2O, de préférence à un débit respectif de 260 cmVmin et 700 cmVmin, de préférence avec une température pour le substrat de 3000C.
12. Procédé de fabrication selon l'une des revendications 1 à 11, caractérisé en ce que le dépôt de SiOx sur le support par le procédé PECVD est réalisé à une vitesse d'environ 414 Â/min.
13. Procédé de fabrication selon l'une des revendications 1 à 12, caractérisé en ce que le dépôt de SiOx par le procédé PECVD sur le support est à une pression totale dans le réacteur de 1 T et une puissance de 10 W à 13,56 MHz.
14. Procédé de fabrication selon l'une des revendications 1 à 13, caractérisé en ce que la couche de SiOx déposée par PECVD présente un indice de réfraction compris entre 1,45 et 1,48, de préférence choisi dans le groupe constitué des indices de réfraction suivants : 1,45 ; 1,465 et 1,48.
15. Procédé de fabrication selon l'une des revendications 1 à 14, caractérisé en ce qu'il comprend une étape additionnelle dans laquelle on dépose sur la couche de SiOx déposée par PECVD un second film métallique, de préférence d'or ou d'argent, lequel second film métallique est évaporé pour former des nanoparticules métalliques sur la couche de SiOx.
16. Procédé de fabrication selon la revendication 15, caractérisé en ce que ledit second film métallique présente une épaisseur inférieure à 5 nm.
17. Procédé de fabrication selon l'une des revendications 1 à 14, caractérisé en ce que la couche de SiOx déposée par PECVD est déposée sur une partie seulement de la surface du support revêtu du film métallique, de préférence selon une configuration géométrique adaptée à l'imagerie par SPR.
18. Procédé de fabrication selon l'une des revendications 1 à 17, caractérisé en ce que ledit support est un support solide transparent.
19. Procédé de fabrication selon l'une des revendications 1 à 18, caractérisé en ce que ledit support est en verre.
20. Support revêtu d'une couche de SiOx susceptible d'être obtenu ou directement obtenu par le procédé selon l'une des revendications 1 à 19, caractérisé en ce que l'épaisseur de la couche de SiOx déposée sur ledit support est uniforme et en ce que l'épaisseur de la couche de SiOx déposée et/ou la réponse SPR n'est(ne sont) pas modifïée(s) après traitement du support avec une solution piranha (mélange d'acide sulfurique / peroxyde d'hydrogène à 30 %, dans un rapport 3/1) à 800C.
21. Support selon la revendication 20, caractérisé en ce que ledit support présente un index de réfraction d'environ 1,48.
22. Support selon la revendication 20 ou 21, caractérisé en ce que la couche de SiOx déposée est traitée après dépôt afin de produire des groupements Si-OH.
23. Support selon la revendication 22, caractérisé en ce que la couche de SiOx est traitée avec une solution de piranha.
24. Support selon l'une des revendications 20 à 23 ou obtenu par un procédé selon l'une des revendications 1 à 19, caractérisé en ce que la couche de SiOx est traitée de telle sorte qu'elle permette le couplage de composés organosilanes.
25. Support selon l'une des revendications 20 à 24 ou obtenu par un procédé selon l'une des revendications 1 à 19, caractérisé en ce que la surface du support sur laquelle a été déposée une couche de SiOx présente des groupements fonctionnels de type organosilane.
26. Support selon la revendication 25, caractérisé en ce que la surface du support sur laquelle a été déposée une couche de SiOx présente des groupements fonctionnels de type aminosilane, tels que le 3-amino-propyltriméthoxysilane et le N-(2- aminoéthyl)-3-amino-propyltriméthoxysilane.
27. Support selon la revendication 25, caractérisé en ce que la surface du support sur laquelle a été déposée une couche de SiOx présente des groupements fonctionnels de type thiolsilane, de préférence de type mercaptosilane tel que le (3- mercaptopropyl)-triméthoxysilane.
28. Support selon l'une des revendications 20 à 27 ou obtenu par un procédé selon l'une des revendications 1 à 19, caractérisé en ce que ledit composé cible est fixé par liaison covalente sur ledit support.
29. Support selon l'une des revendications 20 à 28 ou obtenu par un procédé selon l'une des revendications 1 à 19, caractérisé en ce que ledit composé cible est un polypeptide, un acide nucléique ou un carbohydrate.
30. Utilisation d'un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19 pour la détermination ou le suivi de réaction entre au moins deux composés par SPR et/ou par fluorescence.
31. Utilisation d'un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19 pour la détermination ou le suivi de réaction entre au moins deux composés par SPR.
32. Utilisation d'un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19 pour la détection dans un échantillon d'acides nucléiques, de polypeptides, d'hydrates de carbone, de liposomes, de vésicules ou de cellules.
33. Utilisation d'un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19 pour la détection d'acides nucléiques ou de polypeptides dans un échantillon.
34. Procédé de détermination de la présence ou de la quantité d'un composé dans un échantillon, ledit composé étant capable de se lier ou s'adsorber spécifiquement à un composé cible, caractérisé en ce que ledit procédé comprend les étapes suivantes : a) la préparation d'un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19 sur lequel support ledit composé cible est fixé, de préférence par liaison covalente ; b) la mise en contact dudit support obtenu à l'étape a) avec ledit échantillon susceptible de contenir le composé capable de se lier ou s'adsorber spécifiquement audit composé cible dans des conditions appropriées pour la formation d'un complexe spécifique entre ledit composé cible et ledit composé dont on cherche à déterminer la présence ou sa quantité dans l'échantillon ; c) le cas échéant, au moins une étape de lavage afin d'éliminer les composés non spécifiquement fixés ou adsorbés audit composé cible ; et d) la détermination de la présence ou de la quantité dudit composé dans l'échantillon par la technique dite de Surface Plasmon Résonance.
35. Kit pour la détermination de la présence ou la quantité d'un composé dans un échantillon par Surface Plasmon Résonance et/ou par fluorescence, caractérisé en ce qu'il comprend un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19.
36. Méthode de criblage de composés capables de se fixer ou s'adsorber spécifiquement sur un composé cible donné, caractérisée en ce qu'elle comprend les étapes suivantes : a) la mise en contact dudit composé à tester sur un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19 dans les conditions permettant la fixation spécifique dudit composé à tester et sur lequel support ledit composé cible est fixé, de préférence par liaison covalente ; b) l'élimination par au moins une étape de lavage dans les conditions appropriées des composés à tester non fixés ou adsorbés spécifiquement sur ledit composé cible ; et c) la sélection du composé testé si la présence de ce composé est détectée par
Surface Plasmon Résonance sur le support.
37. Instrument ou dispositif de diagnostic ou d'analyse comprenant un support selon l'une des revendications 20 à 29 ou obtenu par un procédé selon l'une des revendications 1 à 19.
PCT/EP2006/066810 2005-09-27 2006-09-27 Nouvelles puces pour la detection par le plasmon de surface (spr) WO2007036544A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/992,808 US8279444B2 (en) 2005-09-27 2006-09-27 Chips for surface plasmon (SPR) detection
JP2008532776A JP5623014B2 (ja) 2005-09-27 2006-09-27 表面プラズモン共鳴(spr)検出用の新規チップ
EP06793869A EP1937869A1 (fr) 2005-09-27 2006-09-27 Nouvelles puces pour la detection par le plasmon de surface (spr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0509851 2005-09-27
FR0509851A FR2891279B1 (fr) 2005-09-27 2005-09-27 Nouvelles puces pour la detection par le plasmon de surface (spr)

Publications (1)

Publication Number Publication Date
WO2007036544A1 true WO2007036544A1 (fr) 2007-04-05

Family

ID=36577581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066810 WO2007036544A1 (fr) 2005-09-27 2006-09-27 Nouvelles puces pour la detection par le plasmon de surface (spr)

Country Status (5)

Country Link
US (1) US8279444B2 (fr)
EP (1) EP1937869A1 (fr)
JP (1) JP5623014B2 (fr)
FR (1) FR2891279B1 (fr)
WO (1) WO2007036544A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286778A (ja) * 2007-04-16 2008-11-27 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー
JP2010160152A (ja) * 2009-01-06 2010-07-22 Samsung Electronics Co Ltd 混成化反応のモニタリングが可能なバイオチップ、バイオチップ上の混成化反応をモニタリングする装置、バイオチップ上の混成化モニタリング方法
WO2010139869A1 (fr) 2009-06-05 2010-12-09 Ecole Polytechnique / Dgar Utilisation d'une couche de silicium amorphe et procédés d'analyse
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
WO2012010811A1 (fr) 2010-07-21 2012-01-26 Ecole Polytechnique / Dgar Procédé et dispositif d'analyse d'interactions moléculaires, et leurs utilisations
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984166B2 (ja) * 2007-02-19 2012-07-25 独立行政法人産業技術総合研究所 超高密度貴金属ナノ粒子分散コンポジット薄膜を用いたセンサ及びセンサシステム
FR2924723B1 (fr) * 2007-12-11 2010-12-17 Centre Nat Rech Scient Support solide revetu d'au moins un film de metal et d'au moins une couche d'oxyde transparent et conducteur pour la detection par spr et/ou par une methode electrochimique
US8722428B2 (en) * 2009-11-25 2014-05-13 University Of Maryland, Baltimore County Metal enhanced fluorescence from metallic nanoburger structures
WO2011084671A2 (fr) * 2009-12-17 2011-07-14 University Of Maryland, Baltimore County Substrats de métal mixte pour fluorescence améliorée par métal
GB201002855D0 (en) * 2010-02-19 2010-04-07 Materialise Dental Nv Method and system for achiving subject-specific, three-dimensional information about the geometry of part of the body
JP5516198B2 (ja) * 2010-07-30 2014-06-11 コニカミノルタ株式会社 プラズモン励起センサチップおよびこれを用いたプラズモン励起センサ、並びにアナライトの検出方法
US8358455B2 (en) 2010-08-13 2013-01-22 Jake Adam Todd Data integrity methods for quantum computational plasmonic information representation and processing systems
JP5479314B2 (ja) * 2010-12-10 2014-04-23 日東電工株式会社 Sprセンサセルおよびsprセンサ
JP5395129B2 (ja) * 2011-03-28 2014-01-22 日東電工株式会社 Sprセンサセルおよびsprセンサ
JP5425141B2 (ja) * 2011-03-28 2014-02-26 日東電工株式会社 Sprセンサセルおよびsprセンサ
JP6018774B2 (ja) 2011-03-31 2016-11-02 住友化学株式会社 金属系粒子集合体
JP6125758B2 (ja) 2011-03-31 2017-05-10 住友化学株式会社 光学素子
JP6085095B2 (ja) 2011-03-31 2017-02-22 住友化学株式会社 光学素子
FR2975489B1 (fr) * 2011-05-19 2013-07-05 Centre Nat Rech Scient Composant thermo electrique a guide plasmonique, integrant un dispositif de mesure de la puissance couplee dans le mode guide
WO2013051470A1 (fr) 2011-10-03 2013-04-11 住友化学株式会社 Elément électroluminescent à point quantique
KR20140148430A (ko) 2012-03-27 2014-12-31 스미또모 가가꾸 가부시키가이샤 무기층 발광 소자
JP2013257154A (ja) * 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 測定チップ
JP6029899B2 (ja) * 2012-09-07 2016-11-24 日東電工株式会社 Sprセンサセルおよびsprセンサ
FR3058521B1 (fr) * 2016-11-08 2021-01-08 Univ Montpellier Dispositif et procede de detection de presence de molecules determinees, biocapteur
JP6466541B2 (ja) * 2017-07-12 2019-02-06 エイジア ヴァイタル コンポーネンツ カンパニー リミテッド 放熱ユニットの製造方法
CN109880424A (zh) * 2019-03-11 2019-06-14 新化县中润化学科技有限公司 一种二氧化硅/银微米球、超疏水涂料的制备方法
IT202100002966A1 (it) * 2021-02-10 2022-08-10 Sambonet Paderno Ind S P A Copertura per prodotti argentati destinati ad entrare in contatto con alimenti
WO2023238375A1 (fr) * 2022-06-10 2023-12-14 日本電信電話株式会社 Procédé et système d'évaluation de cellules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327225A (en) * 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
US6194223B1 (en) * 1997-04-14 2001-02-27 Roche Diagnostics Gmbh Method for the simultaneous determination of biomolecular interactions by means of plasmon resonance and fluoresence detection
JP2001215190A (ja) * 2000-02-02 2001-08-10 Toto Ltd センサ素子の製造方法
US6329209B1 (en) * 1998-07-14 2001-12-11 Zyomyx, Incorporated Arrays of protein-capture agents and methods of use thereof
US20020085204A1 (en) * 2000-12-29 2002-07-04 Elkind Jerome L. Robust integrated surface plasmon resonance sensor
EP1422315A1 (fr) * 2002-11-22 2004-05-26 Silverstar S.r.l. Matériau métallique revêtu avec une couche de protection réalisée par des oxides de silicium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2098467A5 (fr) * 1969-11-06 1972-03-10 Eternit
JPS5011440A (fr) * 1973-06-01 1975-02-05
US6994964B1 (en) * 1999-09-01 2006-02-07 Affymetrix, Inc. Macromolecular arrays on polymeric brushes and methods for preparing the same
WO2002066162A1 (fr) * 2001-02-16 2002-08-29 Vir A/S Procede de preparation de dispositifs de detection optique (bio)chimiques
JP2004521323A (ja) * 2001-03-27 2004-07-15 サラフスカイ,ジョシュア,エス. 表面選択的非線形光学技法を使用してプローブ−ターゲット相互作用を検出する方法および装置
JP4598395B2 (ja) * 2001-11-30 2010-12-15 ノースウエスタン ユニバーシティ 直接書き込み式ナノリソグラフィーによるナノスケールチップからの核酸の沈着方法
US20070286773A1 (en) * 2002-05-16 2007-12-13 Micronit Microfluidics B.V. Microfluidic Device
JP2004061211A (ja) * 2002-07-26 2004-02-26 Shimadzu Corp 蛍光検出方法及び装置
DE102004039628A1 (de) * 2004-08-10 2006-02-23 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Trägerplatte zur Durchführung funktioneller Tests an biologischen Zellen sowie Verfahren zur Beschichtung der Trägerplatte
US20070059616A1 (en) * 2005-09-12 2007-03-15 Xerox Corporation Coated substrate for photoreceptor
US7192818B1 (en) * 2005-09-22 2007-03-20 National Taiwan University Polysilicon thin film fabrication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327225A (en) * 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
US6194223B1 (en) * 1997-04-14 2001-02-27 Roche Diagnostics Gmbh Method for the simultaneous determination of biomolecular interactions by means of plasmon resonance and fluoresence detection
US6329209B1 (en) * 1998-07-14 2001-12-11 Zyomyx, Incorporated Arrays of protein-capture agents and methods of use thereof
JP2001215190A (ja) * 2000-02-02 2001-08-10 Toto Ltd センサ素子の製造方法
US20020085204A1 (en) * 2000-12-29 2002-07-04 Elkind Jerome L. Robust integrated surface plasmon resonance sensor
EP1422315A1 (fr) * 2002-11-22 2004-05-26 Silverstar S.r.l. Matériau métallique revêtu avec une couche de protection réalisée par des oxides de silicium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIAO H B ET AL: "Preparation and optical characterization of Au/SiO2 composite films with multilayer structure", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 93, no. 8, 15 April 2003 (2003-04-15), pages 4485 - 4488, XP012059412, ISSN: 0021-8979 *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 25 12 April 2001 (2001-04-12) *
SASAKI S ET AL: "NOVEL SURFACE PLASMON RESONANCE SENSOR CHIP FUNCTIONALIZED WITH ORGANIC SILICA COMPOUNDS FOR ANTIBODY ATTACHMENT", ANALYTICA CHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 368, no. 368, 17 July 1998 (1998-07-17), pages 71 - 76, XP001037383, ISSN: 0003-2670 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081385A (ja) * 2007-04-16 2014-05-08 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー、並びに検出方法
JP2008286778A (ja) * 2007-04-16 2008-11-27 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー
JP2010160152A (ja) * 2009-01-06 2010-07-22 Samsung Electronics Co Ltd 混成化反応のモニタリングが可能なバイオチップ、バイオチップ上の混成化反応をモニタリングする装置、バイオチップ上の混成化モニタリング方法
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
WO2010139869A1 (fr) 2009-06-05 2010-12-09 Ecole Polytechnique / Dgar Utilisation d'une couche de silicium amorphe et procédés d'analyse
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
WO2012010811A1 (fr) 2010-07-21 2012-01-26 Ecole Polytechnique / Dgar Procédé et dispositif d'analyse d'interactions moléculaires, et leurs utilisations
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Also Published As

Publication number Publication date
FR2891279A1 (fr) 2007-03-30
EP1937869A1 (fr) 2008-07-02
JP2009510423A (ja) 2009-03-12
US20100149540A1 (en) 2010-06-17
US8279444B2 (en) 2012-10-02
JP5623014B2 (ja) 2014-11-12
FR2891279B1 (fr) 2007-12-14

Similar Documents

Publication Publication Date Title
WO2007036544A1 (fr) Nouvelles puces pour la detection par le plasmon de surface (spr)
Yadav et al. Comparative study of solution–phase and vapor–phase deposition of aminosilanes on silicon dioxide surfaces
Chiu et al. Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors
Busse et al. Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods
Kim et al. Investigations of the effect of curing conditions on the structure and stability of amino-functionalized organic films on silicon substrates by Fourier transform infrared spectroscopy, ellipsometry, and fluorescence microscopy
Seitz et al. Control and stability of self-assembled monolayers under biosensing conditions
Saengdee et al. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization
Han et al. Surface activation of thin silicon oxides by wet cleaning and silanization
Maalouli et al. Comparison of photo-and Cu (I)-catalyzed “click” chemistries for the formation of carbohydrate SPR interfaces
Herth et al. Investigation of amorphous SiOx layer on gold surface for Surface Plasmon Resonance measurements
Shi et al. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating
Brunet et al. Etching and chemical control of the silicon nitride surface
Maurya et al. Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria
Manesse et al. Electrochemical impedance spectroscopy and surface plasmon resonance studies of DNA hybridization on gold/SiO x interfaces
Dufil et al. Growth and organization of (3-Trimethoxysilylpropyl) diethylenetriamine within reactive amino-terminated self-assembled monolayer on silica
Lacour et al. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes
Henriksson et al. Functionalization of Oxide‐Free Silicon Surfaces for Biosensing Applications
Alves et al. Plasmon waveguide resonance for sensing glycan–lectin interactions
Boden et al. Solution deposition conditions influence the surface properties of 3-mercaptopropyl (trimethoxysilane)(MPTS) films
Demes et al. DNA grafting on silicon nanonets using an eco-friendly functionalization process based on epoxy silane
Gubala et al. Functionalization of cycloolefin polymer surfaces by plasma-enhanced chemical vapour deposition: comprehensive characterization and analysis of the contact surface and the bulk of aminosiloxane coatings
Bienaime et al. Reconstitution of a protein monolayer on thiolates functionalized GaAs surface
WO2010139869A1 (fr) Utilisation d&#39;une couche de silicium amorphe et procédés d&#39;analyse
Ghorbanpour Fabrication of a New Amine Functionalised Bi-layered Gold/Silver SPR Sensor Chip.
Coyle et al. Tetraethyl orthosilicate and acrylic acid forming robust carboxylic functionalities on plastic surfaces for biodiagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11992808

Country of ref document: US

Ref document number: 2008532776

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006793869

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006793869

Country of ref document: EP