WO2007034770A1 - 表示装置およびカラーフィルタ基板 - Google Patents

表示装置およびカラーフィルタ基板 Download PDF

Info

Publication number
WO2007034770A1
WO2007034770A1 PCT/JP2006/318486 JP2006318486W WO2007034770A1 WO 2007034770 A1 WO2007034770 A1 WO 2007034770A1 JP 2006318486 W JP2006318486 W JP 2006318486W WO 2007034770 A1 WO2007034770 A1 WO 2007034770A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
red
display device
color
Prior art date
Application number
PCT/JP2006/318486
Other languages
English (en)
French (fr)
Inventor
Kozo Nakamura
Kazunari Tomizawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to CN200680034319XA priority Critical patent/CN101268499B/zh
Priority to JP2007536483A priority patent/JP5014139B2/ja
Priority to EP06798097.9A priority patent/EP1927969B1/en
Publication of WO2007034770A1 publication Critical patent/WO2007034770A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Definitions

  • the present invention relates to a display device, and more particularly to a multi-primary color display device that performs display using four or more primary colors.
  • the present invention also relates to a color filter substrate used in such a display device.
  • one pixel is composed of three sub-pixels that display the three primary colors of light, red, green, and blue, which enables color display.
  • FIG. 47 shows the color reproduction range of a conventional display device that displays using the three primary colors.
  • FIG. 47 is an xy chromaticity diagram in the XYZ color system, and a triangle having three vertices corresponding to the three primary colors of red, green, and blue represents the color reproduction range.
  • the colors of various objects that exist in nature see Non-Patent Document 1 revealed by Pointer are plotted with X marks.
  • Non-Patent Document 1 there are object colors that are not included in the color reproduction range, and a display device that displays using the three primary colors cannot display some of the object colors.
  • Patent Document 1 As shown in FIG. 48, one sub-pixel R, G, B, Ye, C, and M that display red, green, blue, yellow, cyan, and magenta A liquid crystal display device 800 in which the pixel P is configured is disclosed.
  • the color reproduction range of this liquid crystal display device 800 is shown in FIG.
  • Fig. 49 the color reproduction range represented by a hexagon with the six points corresponding to the six primary colors as vertices almost covers the object colors.
  • the color reproduction range can be widened by increasing the number of primary colors used for display.
  • display devices that perform display using four or more primary colors are collectively referred to as “multi-primary color display devices”.
  • Patent Document 1 Special Table 2004-529396
  • Non-Patent Literature 1 M. R. Pointer, Hie gamut of real surface colors, Color Research an d Application, Vol. 5, No. 3, pp. 145—155 (1980)
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device having a wide color reproduction range and capable of displaying bright red, and a color used in such a display device. It is to provide a filter substrate.
  • a display device is a display device having pixels defined by a plurality of sub-pixels, wherein the plurality of sub-pixels include first and second red sub-pixels that display red, green It includes the green sub-pixel to display, the blue sub-pixel to display blue, and the yellow sub-pixel to display yellow, thereby achieving the above object.
  • the Y values of the first and second red sub-pixels are respectively 5% or more and 11% or less
  • Y value of the green sub pixel is 20% or more and 35% or less
  • Y value of the blue sub pixel is 5% or more and 10% or less
  • Y value of the yellow sub pixel is 30% or more 50 % Or less.
  • the first and second red sub-pixels each have a dominant wavelength of 605 nm to 635 nm
  • the green sub-pixel has a dominant wavelength of 520 nm to 550 nm
  • the blue sub-pixel is 565 nm or more and 580 nm or less.
  • each of the first and second red sub-pixels has a color purity of 90% or more, and the green sub-pixel has a color purity of 65% or more and 80% or less.
  • the color purity of the element is 90% to 95%, and the color purity of the yellow sub-pixel is 85% to 95%.
  • the plurality of sub-pixels have substantially the same size.
  • the first and second red sub-pixels are driven independently of each other.
  • the first and second red sub-pixels are driven by the same switching element.
  • the first red sub-pixel and the second red sub-pixel are arranged continuously in the pixel.
  • the green sub-pixel and the yellow sub-pixel are arranged continuously and sandwiched between other sub-pixels.
  • the first red sub-pixel, the second red sub-pixel, the green sub-pixel, and the yellow sub-pixel are arranged continuously in the pixel. .
  • the plurality of sub-pixels further include a cyan sub-pixel that displays cyan.
  • the Y value in the XYZ color system when the pixel displays white is 100%
  • the Y value of the cyan sub pixel is 10% or more and 30% or less.
  • the dominant wavelength of the cyan sub pixel is not less than 475 nm and not more than 500 nm.
  • the color purity of the cyan sub-pixel is 65% or more and 80% or less.
  • the cyan sub-pixel, the green sub-pixel, and the blue sub-pixel are arranged continuously in the pixel.
  • the display device according to the present invention is a liquid crystal display device including a liquid crystal layer.
  • the color filter substrate according to the present invention has pixels defined by a plurality of sub-pixels.
  • a color filter substrate for a display device comprising: a substrate; and a plurality of color filters provided in a region corresponding to the pixel on the substrate, wherein the plurality of color filters transmit red light.
  • the plurality of color filters further include a cyan color filter that transmits cyan light.
  • the pixel of the display device according to the present invention includes sub-pixels that display other colors in addition to sub-pixels that display red, green, and blue.
  • the display device according to the present invention uses more than three primary colors for display, and therefore has a wider color reproduction range than a display device using three conventional primary colors for display.
  • the pixel of the display device according to the present invention has two sub-pixels for displaying red. Therefore, the red Y value can be improved and bright red can be displayed.
  • FIG. 1 is a diagram schematically showing a liquid crystal display device 100 in a preferred embodiment of the present invention.
  • FIG. 2 is a diagram showing a color reproduction range of the liquid crystal display device 100.
  • FIG. 3 is a graph showing spectral transmittance characteristics of a color filter corresponding to the configuration exemplified in Table 1.
  • FIG. 4 is a graph showing a backlight spectrum corresponding to the configuration exemplified in Table 1.
  • FIG. 5 is a graph showing spectral transmittance characteristics of a color filter corresponding to the configuration exemplified in Table 3.
  • FIG. 6 is a graph showing a backlight spectrum corresponding to the configuration exemplified in Table 3.
  • FIG. 7 is a graph showing the C * -L * characteristics of red in the liquid crystal display device 800 of Patent Document 1 and the liquid crystal display device 100 according to the present invention.
  • FIG. 8 is a graph showing C * -L * characteristics of the liquid crystal display device 800 of Patent Document 1 and the magenta of the liquid crystal display device 100 according to the present invention.
  • [FIG. 9] (a) to (c) are graphs showing the C * L * characteristics of the object color for red, green, and blue.
  • FIG. 10 (a) to (c) are graphs showing the C * L * characteristics of the object color for yellow, cyan, and magenta.
  • FIG. 11 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 1.
  • FIG. 12 is a graph showing a backlight spectrum corresponding to Example 1.
  • FIG. 13 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 2.
  • FIG. 14 is a graph showing a backlight spectrum corresponding to Example 2.
  • FIG. 15 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 3.
  • FIG. 16 is a graph showing a backlight spectrum corresponding to Example 3.
  • FIG. 17 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 4.
  • FIG. 18 is a graph showing a backlight spectrum corresponding to Example 4.
  • FIG. 19 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 5.
  • FIG. 20 is a graph showing a backlight spectrum corresponding to Example 5.
  • FIG. 21 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 6.
  • FIG. 22 is a graph showing a backlight spectrum corresponding to Example 6.
  • FIG. 23 is a graph showing the spectral transmittance characteristics of the color filter corresponding to Example 7.
  • FIG. 24 is a graph showing a backlight spectrum corresponding to Example 7.
  • FIG. 25 is a graph showing spectral transmittance characteristics of a color filter corresponding to Example 8.
  • FIG. 26 is a graph showing a backlight spectrum corresponding to Example 8.
  • FIG. 27 (a) to (e) are views showing examples of preferred U ⁇ arrangement of sub-pixels.
  • FIG. 28] (a) to (f) are diagrams showing a preferred arrangement example of sub-pixels.
  • FIG. 29] (a) to (f) are diagrams showing a preferred arrangement example of sub-pixels.
  • FIG. 30 (a) to (d) are diagrams showing a preferred arrangement of sub-pixels.
  • FIG. 31 (a) and (b) are diagrams showing a preferred arrangement example of sub-pixels.
  • FIG. 32 A diagram schematically showing another liquid crystal display device 200 according to a preferred embodiment of the present invention.
  • FIG. 33] (a) to (c) are diagrams showing an example of arrangement and preference of sub-pixels.
  • FIGS. 34 (a) and 34 (b) are diagrams showing examples of preferred arrangement of sub-pixels.
  • [FIG. 35] (a) to (d) are diagrams showing an example of arrangement and preference of sub-pixels.
  • FIG. 36 (a) to (d) are diagrams showing an example of arrangement and preference of sub-pixels.
  • FIG. 37] (a) to (d) are diagrams showing an example of arrangement and preference of sub-pixels.
  • FIG. 38] (a) and (b) are diagrams showing an example of arrangement and preference of sub-pixels.
  • FIG. 39 (a) to (d) are diagrams showing an example of arrangement and preference of sub-pixels.
  • FIGS. 40A and 40B are diagrams showing other arrangement examples of sub-pixels.
  • FIG. 41 is a diagram showing another arrangement example of sub-pixels.
  • FIG. 42 is a cross-sectional view schematically showing liquid crystal display devices 100 and 200.
  • FIG. 43 (a) and (b) are diagrams showing examples of arrangement of switching elements.
  • FIGS. 44 (a) and 44 (b) are diagrams showing other arrangement examples of the switching elements.
  • FIG. 45 is a cross-sectional view schematically showing a color filter substrate of liquid crystal display device 100.
  • FIG. 46 is a block diagram schematically showing a multi-primary color controller of liquid crystal display devices 100 and 200.
  • FIG. 47 is a diagram showing a color reproduction range of a conventional liquid crystal display device using three primary colors for display.
  • FIG. 48 is a diagram schematically showing a conventional multi-primary-color liquid crystal display device 800.
  • FIG. 49 is a diagram showing a color reproduction range of a liquid crystal display device 800.
  • R1 first red sub-pixel
  • each sub-pixel Increasing the number of primary colors used for display increases the number of sub-pixels per pixel, so the area of each sub-pixel inevitably decreases. Therefore, the brightness of the color displayed by each sub-pixel (XYZ Equivalent to the Y value in the color system). For example, if the number of primary colors used for display is increased from three to six, the area of each sub-pixel will be about half, and the brightness (Y value) of each sub-pixel will also be about half.
  • “Brightness” is one of three elements that define a color together with “hue” and “saturation”. Therefore, by increasing the number of primary colors, the color reproduction range (that is, the range of reproducible “hue” and “saturation”) on the xy chromaticity diagram as shown in FIG. When “” decreases, the actual color reproduction range (color reproduction range including “brightness”) cannot be made sufficiently wide.
  • the inventors of the present application have examined that subpixels displaying green and blue have low brightness.
  • the power to display a variety of object colors even when lowered The sub-pixels that display red showed that some object colors could not be displayed when the brightness decreased.
  • the display quality of red is decreased, and the red color is changed to black and red (that is, ⁇ , red).
  • the present invention has been conceived based on the above findings.
  • embodiments of the present invention will be described with reference to the drawings.
  • the present invention will be described using a liquid crystal display device as an example.
  • the present invention is not limited to a liquid crystal display device, but includes a CRT (CRT), an organic EL display device, a plasma display panel, and a SED (Surface-conduction Electron-emitter Disp. lay) and other various display devices.
  • FIG. 1 schematically shows a liquid crystal display device 100 according to the present embodiment.
  • the liquid crystal display device 100 has a plurality of pixels arranged in a matrix.
  • FIG. 1 shows four pixels P among a plurality of pixels of the liquid crystal display device 100.
  • Each pixel P is defined by a plurality of sub-pixels as shown in FIG.
  • the plurality of sub-pixels that define the pixel P are the first and second red sub-pixels R1 and R2 that display red, the green sub-pixel G that displays green, and the blue that displays blue.
  • FIG. 1 illustrates the case where these six sub-pixels are arranged in one row and six columns in the pixel P.
  • the liquid crystal display device 100 has a wider color reproduction range because the number of primary colors used for display is larger than that of a general liquid crystal display device that performs display using three primary colors.
  • FIG. 2 shows an example of the color reproduction range in the liquid crystal display device 100. As shown in FIG. 2, the color reproduction range of the liquid crystal display device 100 covers various object colors.
  • the color reproduction range is represented by hexagons because the red displayed by the first red sub-pixel R1 is different from the red displayed by the second red sub-pixel R2. Because it is. Of course, the red displayed by the first red sub-pixel R1 and the red displayed by the second red sub-pixel R2 may be the same. In that case, the color reproduction range is represented by a pentagon. In any case, the color reproduction range can be improved as compared with a general liquid crystal display device in which the color reproduction range is represented by a triangle.
  • the pixel of the liquid crystal display device 100 includes two sub-pixels (first pixels) for displaying red. 1 and second subpixels Rl and R2), the lightness (Y value) of red can be improved and bright red can be displayed as compared with the liquid crystal display device 800 shown in FIG. .
  • the color reproduction range including lightness expressed only by hue and saturation represented on the xy chromaticity diagram.
  • Table 1 shows an example of the Y value, xy chromaticity, dominant wavelength (complementary dominant wavelength for magenta) and color purity of each subpixel in the multi-primary color liquid crystal display device 800 of Patent Document 1 and its display quality. Show. Table 1 also shows the Y value, xy chromaticity, and color temperature when the pixel displays white. The Y value of each sub-pixel is relative to the Y value of the pixel when white is displayed as 100%. Note that the dominant wavelength and complementary dominant wavelength roughly represent hue, and the color purity roughly represents saturation.
  • Figures 3 and 4 show the spectral transmittance characteristics of the color filter corresponding to the configuration exemplified here and the spectrum of the knocklight.
  • the red and green subpixels G displayed by the red subpixel R are displayed. It is necessary to evaluate the yellow displayed by the mixed color of green and the yellow displayed by the yellow subpixel Ye alone.
  • cyan it is necessary to evaluate the cyan displayed by the mixed color of the green displayed by the green subpixel G and the blue displayed by the blue subpixel B together with the cyan displayed by the cyan subpixel alone. is there.
  • magenta it is necessary to evaluate the magenta displayed by the mixed color of red displayed by the red sub-pixel R and blue displayed by the blue sub-pixel B and the magenta displayed by the magenta sub-pixel M alone. There is.
  • Table 2 shows examples of the Y value, xy chromaticity, primary wavelength (complementary dominant wavelength for magenta) and color purity of the primary colors used in the display of the liquid crystal display device 800, and the display quality.
  • the display quality of red is still low. This is because the Y value decreases as the number of primary colors increases. In the example shown here, the display quality of blue is also low. This is because the Y value was accidentally too low due to the specifications of the color filter and backlight used in the prototype. The decrease in blue Y value can be solved by changing the specifications of the color filter and backlight, so it is not an essential problem.
  • Table 3 shows an example of the Y value, xy chromaticity, dominant wavelength, and color purity of each sub-pixel in the liquid crystal display device 100 according to the present invention and its display quality. Also, the spectral transmittance characteristics of the color filter corresponding to the configuration exemplified here and the spectrum of the knocklight are shown in FIG. Figure 6 shows,
  • the display quality of the first red sub-pixel Rl, the second red sub-pixel R2, and the yellow sub-pixel Ye is not good.
  • the display quality of the cyan sub-pixel is slightly inferior to that of the green sub-pixel G and blue sub-pixel B.
  • the liquid crystal display device 100 according to the present invention is!
  • the results shown in Table 3 do not apply to the primary colors used for display.
  • the display quality shown in Table 3 is merely “sub-pixel display quality” and not “primary color display quality” used for display.
  • magenta is displayed in a mixed color (a mixed color of red displayed by the first and second red subpixels R1 and R2 and blue displayed by the blue subpixel B). be able to.
  • Table 4 shows an example of the primary color Y value, xy chromaticity, dominant wavelength (complementary dominant wavelength for magenta) and color purity used for display of the liquid crystal display device 100 according to the present invention, and the display quality. .
  • FIG. 7 shows the C * -L * characteristics of red in each of the liquid crystal display device 800 of Patent Document 1 and the liquid crystal display device 100 according to the present invention.
  • C * corresponds to [(a *) 2 + (b *) 2 ] in the L * a * b * color system and indicates saturation.
  • L * corresponds to the Y value in the XYZ color system and indicates the brightness.
  • the red range of the object color is indicated by a dotted line.
  • the liquid crystal display device 800 cannot cover all of the object color red because the lightness (L *) of red is low.
  • the object color red can be almost covered, and in particular, red with the highest saturation (circled in FIG. 7). (Part), that is, the most vivid red can be reproduced, so that the color reproduction range can be widened and bright red can be displayed.
  • the liquid crystal display device 800 of Patent Document 1 has a sub-pixel for displaying magenta, whereas the liquid crystal display device 100 according to the present invention does not have a sub-pixel for displaying magenta.
  • the inventor of the present application examined the effect of this on the magenta display.
  • FIG. 8 shows the C * -L * characteristics of magenta in each of the liquid crystal display device 800 of Patent Document 1 and the liquid crystal display device 100 according to the present invention.
  • the range of magenta of the object color is indicated by a dotted line!
  • magenta sub-pixels are provided in each pixel, magenta of the object color is almost covered, and magenta having the highest saturation. (The part circled in Figure 8) can be reproduced.
  • magenta sub-pixel is not provided, the magenta of the object color is almost covered, and magenta having the highest saturation (that is, the most vivid magenta). Zenta) can be reproduced.
  • the liquid crystal display device 100 according to the present invention has a wide range of coverage.
  • magenta of the object color can be sufficiently reproduced even if the magenta sub-pixel is omitted.
  • the extension of the magenta of the object color is almost linear as shown in Fig. 2, If the color purity of the sub-pixels R1 and R2 and the blue sub-pixel B is sufficiently high, it is a force that can sufficiently reproduce magenta of the object color by additive color mixing.
  • the extension of the object color yellow is rounded as shown in Fig. 2, the yellow and cyan object colors are difficult to reproduce without the yellow subpixel Ye and the cyan subpixel C.
  • the liquid crystal display device has a wide color reproduction range and can display bright red.
  • the red displayed by the first red sub-pixel R1 and the red displayed by the second red sub-pixel R1 may be the same or different. If they are the same, the color filter creation process can be shortened.
  • the number of primary colors displayed in the sub-pixel is six (that is, the color reproduction range is represented by hexagons on the chromaticity diagram), so the number of colors that can be reproduced (especially The number of display colors in the vicinity of red increases.
  • the green Y value is preferably 20% to 35%
  • the blue Y value is preferably 5% to 10%.
  • yellow L * is 82 to 94 and cyan L * Is 38 to 79
  • magenta L * is preferably 46 to 62. If this condition is expressed by Y value instead of L *, yellow Y value is 60% to 85%, cyan Y value is 10% to 55%, and magenta Y value is 15% to 30%. It is preferable that
  • the Y value is too low, the color becomes dark even if the saturation is high. For example, red looks crimson, yellow looks ocher, and green and blue appear black. Conversely, if the Y value is too high, the display will look like a luminescent color, causing a sense of discomfort. This tendency is particularly remarkable for red and green. For cyan, as shown in FIG. 10 (b), the force is relatively wide and a good display can be obtained within the range of Y values.
  • Table 5 shows preferable ranges of the primary color threshold, the dominant wavelength, and the color purity used for the display of the liquid crystal display device 100.
  • the red Y value is 10% to 22%
  • the green Y value is 20% to 35%
  • the blue Y value is 5% to 10%.
  • the Y value is preferably 60% to 85%
  • the Y value of cyan is preferably 10% to 55%
  • the Y value of magenta is preferably 15% to 30%.
  • the dominant wavelength of red is 605 nm to 635 nm
  • the dominant wavelength of green is 520 nm to 550 nm
  • the dominant wavelength of blue is 470 nm or less.
  • the dominant wavelength of yellow is 565 nm to 580 nm
  • the main wavelength of cyan is preferably 475nm or more and 500nm or less! /.
  • the red color purity is 90% or more
  • the green color purity is 65% or more and 80% or less
  • the blue color purity is 90% or more and 95% or less
  • the yellow color purity is 85%.
  • the cyan color purity is 65% to 80%
  • the magenta color purity is 60% to 80%.
  • the first and second red sub-pixels R1 and R2 contribute to the display
  • the first and second red sub-pixels Rl, R2, yellow sub-pixel Ye and the green sub-pixel G contributes to the display
  • the green sub-pixel G, cyan sub-pixel C, and blue sub-pixel B contribute to display
  • the first and second red sub-pixels Rl, R2, and blue sub-pixel B contribute to display.
  • preferred ranges of the main wavelength, Y value, and color purity of each sub-pixel of the liquid crystal display device 100 are as shown in Table 6.
  • the Y values of the first and second red subpixels R1 and R2 are 5% to 11%, respectively, and the Y value of the green subpixel G is 20% to 35%, blue. It is preferable that the Y value of sub-pixel B is 5% or more and 10% or less.Y yellow value of Ye is 30% or more and 50% or less, and Y value of cyan sub-pixel C is 10% or more and 30% or less. Preferably there is.
  • the primary wavelengths of the first and second red subpixels R1 and R2 are 605 nm to 635 nm, the green subpixel G has a main wavelength of 520 nm to 550 nm, and the blue subpixel B has a main wavelength of 470 nm or less. It is preferable that the main wavelength of the yellow subpixel Ye is 565 nm to 580 nm and the main wavelength of the cyan subpixel C is 475 nm to 500 nm.
  • the color purity of each of the first and second red sub-pixels Rl and R2 is 90% or more
  • the color purity of the green sub-pixel G is 65% or more and 80% or less
  • the color purity of the blue sub-pixel B The yellow subpixel Ye has a color purity of 85% or more and 95% or less
  • the cyan subpixel C has a color purity of 65% or more and 80% or less.
  • Table 7 shows the Y value, xy chromaticity, dominant wavelength, color purity, and display quality of each sub-pixel in this example
  • Table 8 shows the Y value, xy chromaticity, main quality of each primary color in this example. Indicates wavelength (complementary dominant wavelength for magenta), color purity, and display quality.
  • FIG. 11 and FIG. 12 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical ranges shown in Table 6. Therefore, as shown in Table 8, the Y value, dominant wavelength, and color purity of each primary color are generally within the preferred numerical ranges shown in Table 5, and very good display quality was obtained for all primary colors. .
  • Table 9 shows the Y value of each sub-pixel in this example
  • Table 10 shows the Y value of each primary color in this example
  • FIG. 13 and FIG. 14 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical ranges shown in Table 6. Therefore, as shown in Table 10, the Y value, dominant wavelength, and color purity of each primary color are generally within the preferred numerical ranges shown in Table 5, and very good displays for red, green, yellow, and cyan. Quality was obtained, and good display quality was also obtained for blue and magenta.
  • Table 11 shows the Y value of each sub-pixel in this example
  • Table 12 shows the Y value of each primary color in this example
  • FIG. 15 and FIG. 16 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical ranges shown in Table 6.
  • the Y value, dominant wavelength, and color purity of each primary color are generally within the preferred numerical ranges shown in Table 5, and very good display quality for red, yellow, cyan, and magenta. A good display quality was also obtained for green and blue.
  • Table 13 shows the Y value of each sub-pixel in this example
  • Table 14 shows the Y value of each primary color in this example
  • FIG. 17 and FIG. 18 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical ranges shown in Table 6. Therefore, as shown in Table 14, the Y value, dominant wavelength, and color purity of each primary color are generally within the preferred numerical ranges shown in Table 5, and are very high for red, green, yellow, cyan, and magenta. Good display quality was obtained, and good display quality was also obtained for blue.
  • Table 15 shows the Y value of each sub-pixel in this example
  • Table 16 shows the Y value of each primary color in this example.
  • FIG. 19 and FIG. 20 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical ranges shown in Table 6. Therefore, as shown in Table 16, the Y value, dominant wavelength, and color purity of each primary color are generally within the preferred numerical ranges shown in Table 5, with red, blue, yellow, cyan, and magenta. A very good display quality was obtained, and a good display quality was obtained even for green.
  • Table 17 shows the Y value of each sub-pixel in this example
  • Table 18 shows the Y value of each primary color in this example
  • FIG. 21 and FIG. 22 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical ranges shown in Table 6.
  • the Y value, dominant wavelength, and color purity of each primary color are generally within the preferable numerical ranges shown in Table 5, and very good displays for red, green, yellow, and magenta. Quality was obtained, and good display quality was also obtained for blue and cyan.
  • Table 19 shows the Y value of each sub-pixel in this example
  • Table 20 shows the Y value of each primary color in this example
  • FIG. 23 and FIG. 24 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y value, dominant wavelength, and color purity of each sub-pixel are generally within the preferable numerical range shown in Table 6.
  • the Y value, dominant wavelength, and color purity of each primary color are generally within the preferred numerical ranges shown in Table 5 for green, yellow, blue, cyan, and magenta! A very good display quality was obtained, and a good display quality was obtained even with red V.
  • Table 21 shows the Y value of each sub-pixel in this example
  • Table 22 shows the Y value of each primary color in this example
  • FIG. 25 and FIG. 26 show the spectral transmittance characteristics of the color filter and the backlight spectrum in this example.
  • the Y values of the first and second red sub-pixels R1 and R2 are 4% within the preferable numerical range shown in Table 6 (5% to 11%). Slightly low. Therefore, the red Y value cannot be made sufficiently high, and as shown in Table 22, the red Y value falls within the preferable numerical range shown in Table 5 (10% or more and 22% or less) 7. Slightly low at 9%. Therefore, the red display is slightly darker than in Examples 1-7.
  • magenta display is also slightly darker than in Examples 1-7.
  • FIGS. 27 (a) to 27 (e) show preferred arrangement examples of the first red sub-pixel R1 and the second red sub-pixel R2.
  • subpixels XI, X2, X3, and X4 are green subpixel G, blue subpixel B, yellow subpixel Ye, and cyan subpixel C !.
  • the first red sub-pixel R1 and the second red sub-pixel R2 are arranged so as to be continuous in the pixel as shown in FIGS. 27 (a) to (e). , Prefer to be.
  • a red line is displayed. It may appear shattered.
  • Figs. 28 (a) to 28 (f) show preferred arrangement examples of the green sub-pixel G and the yellow sub-pixel Ye.
  • subpixels XI, X2, X3, and X4 are deviations of the first red subpixel Rl, the second red subpixel R2, the blue subpixel B, and the cyan subpixel C !.
  • the green sub-pixel G and the yellow sub-pixel Ye are continuous in the pixel and sandwiched by other sub-pixels (that is, the pixel sub-pixel Ye). It is preferable that they are arranged so that they are not located at the ends. As shown in Table 6 etc., the green subpixel G and the yellow subpixel Ye have higher Y values than other subpixels. Therefore, by arranging the green sub-pixel G and the yellow sub-pixel Ye near the center of the pixel as shown in the figure, it is possible to suppress problems such as coloring of edges when displaying characters.
  • FIGS. 29A to 29F show preferable arrangement examples of the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the yellow sub-pixel Ye.
  • sub-pixels XI and X 2 are deviations of blue sub-pixel B or cyan sub-pixel C.
  • the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the yellow sub-pixel Ye are arranged so as to be continuous in the pixel as shown in FIGS. It is preferable that they are arranged in the.
  • FIGS. 30A to 30D show a preferable arrangement example of the cyan sub-pixel C, the green sub-pixel G, and the blue sub-pixel B.
  • FIG. 30 sub-pixels XI and X2 are! And misalignment of the first red sub-pixel R1 and the second red sub-pixel R2.
  • the cyan sub-pixel C, the green sub-pixel G, and the blue sub-pixel B are preferably arranged so as to be continuous in the pixel as shown in FIGS. 30 (a) to (d).
  • the green sub-pixel G and the yellow sub-pixel Ye are arranged continuously and sandwiched between other sub-pixels, so that characters are displayed. It is possible to prevent the edge coloring from occurring.
  • FIGS. 31 (a) and 31 (b) show preferred arrangement examples of all the sub-pixels.
  • the first red sub-pixel R1 and the second red sub-pixel R2 are connected continuously, so that the generation of a feeling of crushing when the red line is displayed is prevented. Can be prevented.
  • the green sub-pixel G and the yellow sub-pixel Ye are continuous and sandwiched between other sub-pixels, it is possible to prevent coloring of the edge when displaying characters.
  • the sub-pixels that contribute to the yellow display that is, the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the yellow sub-pixel Ye
  • the yellow line It is also possible to prevent the occurrence of a crushing feeling when displaying.
  • Sub pixels that contribute to cyan display that is, cyan sub pixel C, green sub pixel G, and blue sub pixel B) are continuously displayed. V, so it can also prevent the occurrence of crushing when displaying the cyan line
  • the present invention has been described by taking as an example the case where a plurality of sub-pixels are arranged in one row as shown in FIG. 1, but the liquid crystal display shown in FIG.
  • a plurality of sub-pixels may be arranged in a plurality of rows and a plurality of columns (here 2 rows and 3 columns) in the pixel P. Even when such a mosaic arrangement is adopted, the color reproduction range can be widened and bright red can be displayed, as in the liquid crystal display device 100 shown in FIG.
  • FIGS. 33 (a) to 33 (c) show preferred arrangement examples of the first red sub-pixel R1 and the second red sub-pixel R2.
  • subpixels XI, X2, X3, and X4 are green subpixel G, blue subpixel B, yellow subpixel Ye, and cyan subpixel C !.
  • FIGS. 34 (a) and (b) show preferred arrangement examples of the green sub-pixel G and the yellow sub-pixel Ye.
  • subpixels XI, X2, X3, and X4 are deviations of the first red subpixel Rl, the second red subpixel R2, the blue subpixel B, and the cyan subpixel C !.
  • the green sub-pixel G and the yellow sub-pixel Ye are continuous in the pixel and sandwiched between other sub-pixels (that is, By placing it so that it is not located at the edge of the pixel, it is possible to prevent coloring of the edge when displaying characters.
  • FIGS. 35A to 35D show preferable arrangement examples of the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the yellow sub-pixel Ye.
  • sub-pixels XI and X2 are deviations of blue sub-pixel B or cyan sub-pixel C !.
  • the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the yellow sub-pixel Ye are continuous in the pixel as shown in FIGS. 35 (a) to (d). It is preferable that they are arranged in the. By arranging these sub-pixels that contribute to the yellow display so that they are continuous in the pixel, it is possible to prevent the occurrence of the crushing feeling when displaying the yellow line.
  • the first red sub-pixel R1 and the second red sub-pixel R2 are continuous, so that the feeling of crushing when a red line is displayed is displayed. Can also be prevented.
  • the green sub-pixel G and the yellow sub-pixel Y e are arranged continuously and sandwiched between other sub-pixels. Coloring of the edge when displayed can also be prevented.
  • FIGS. 36A to 36D show preferable arrangement examples of the cyan sub-pixel C, the green sub-pixel G, and the blue sub-pixel B.
  • FIG. 36 sub-pixels XI and X2 are! And deviations of the first red sub-pixel R1 and the second red sub-pixel R2.
  • the cyan sub-pixel C, the green sub-pixel G, and the blue sub-pixel B are preferably arranged so as to be continuous in the pixel as shown in FIGS.
  • the green sub-pixel G and the yellow sub-pixel Ye are arranged continuously and sandwiched between other sub-pixels, so that characters are displayed. It is possible to prevent the edge coloring from occurring.
  • FIGS. 37A to 37D show preferable arrangement examples of all the sub-pixels.
  • the first red sub-pixel R1 and the second red sub-pixel R2 are continuous. Can be prevented.
  • the green sub-pixel G and the yellow sub-pixel Ye are continuous and sandwiched between other sub-pixels, it is possible to prevent coloring of the edge when displaying characters.
  • the sub-pixels that contribute to the yellow display that is, the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the yellow sub-pixel Ye
  • the yellow line is It can also prevent the occurrence of crushing feeling when displayed.
  • sub-pixels that contribute to cyan display that is, cyan sub-pixel C, green sub-pixel G, and blue sub-pixel B
  • the yellow sub-pixel Ye and the cyan sub-pixel C are continuous in the pixel and sandwiched between other sub-pixels (that is, It is also preferable to arrange it so that it is not located at the end of the pixel.
  • sub-pixels XI, X2, X3 and And X4 is any one of the first red sub-pixel Rl, the second red sub-pixel R2, the green sub-pixel G, and the blue sub-pixel B.
  • the cyan sub-pixel C also has a high Y value, although not as much as the yellow sub-pixel Ye and the green sub-pixel G. Therefore, by arranging the yellow subpixel Ye and the cyan subpixel C close to the center of the pixel as shown in the figure, it is possible to obtain the effect of suppressing the coloring of the edge when displaying characters. .
  • FIGS. 39A to 39D show other preferable arrangement examples.
  • subpixels XI and X2 are either subpixel G or blue subpixel B.
  • the first red sub-pixel R1 and the second red sub-pixel R2 are continuous, so that a feeling of crushing when a red line is displayed is generated. Can be prevented.
  • the yellow sub-pixel Ye and the cyan sub-pixel C are continuous and sandwiched between other sub-pixels, it is possible to prevent coloring of the edge when displaying characters.
  • one pixel is defined by six sub-pixels, but the present invention is not limited to this.
  • the pixels are the first red sub-pixel R1 and the second By including the red sub-pixel R2, the effect of displaying bright red is obtained.
  • FIGS. 40A and 40B show examples of pixels defined by five sub-pixels. Fig 40
  • the pixels shown in (a) and (b) are defined by the first red subpixel Rl, the second red subpixel R2, the green subpixel G, the blue subpixel B, and the yellow subpixel Ye. This corresponds to the pixel illustrated in (a) and (b) excluding the cyan sub-pixel C.
  • the pixel contains the yellow sub-pixel Ye, so a conventional general liquid crystal display that displays using the three primary colors Compared to the device, the color reproduction range can be widened. Further, since the pixel includes the first red sub-pixel R1 and the second red sub-pixel R2, it is possible to display brightness and red.
  • the first red subpixel R1 and the first red subpixel R1 and the first subpixel R1 and the second subpixel R1, as illustrated in FIGS. 40 (a) and (b), are illustrated.
  • the second red sub-pixel R2 is continuous.
  • the green sub-pixel G and the yellow sub-pixel Ye are continuous. It is preferable to be sandwiched between elements.
  • subpixels contributing to yellow display that is, the first red subpixel Rl, the second red subpixel R2, the green subpixel G, and the yellow subpixel Ye
  • the sub-pixels contributing to the display that is, the green sub-pixel G and the blue sub-pixel B) are continuous.
  • the pixel includes the yellow subpixel Ye rather than the cyan subpixel C. Since the yellow subpixel Ye has a higher Y value than the cyan subpixel C, a brighter display is possible for the entire pixel when the yellow subpixel Ye is included.
  • the 41 is a sub-pixel that contributes to yellow display, which is preferable in that the first red sub-pixel R1 and the second red sub-pixel R2 are continuous (that is, the first red sub-pixel R1).
  • the pixel Rl, the second red subpixel R2, the green subpixel G, and the yellow subpixel Ye) are also preferred.
  • the liquid crystal display devices 100 and 200 include an active matrix substrate 10, a color filter substrate 20, and a liquid crystal layer 30 provided therebetween.
  • a plurality of switching elements eg, TFTs
  • pixel electrodes electrically connected to the respective switching elements
  • FIGS. 43 (a) and (b) a switching element 11 is provided corresponding to each sub-pixel, and each sub-pixel is driven independently.
  • FIGS. 44 (a) and (b) the switching element 11 corresponding to one of the first red sub-pixel R1 and the second red sub-pixel R2 is omitted, and the first red sub-pixel is omitted.
  • R1 and the second red sub-pixel R2 may be driven by the same switching element 11.
  • the ⁇ characteristic when the display surface is observed from the front direction and the oblique direction are observed. It is possible to reduce the viewing angle dependency of the y characteristic that is different from the y characteristic.
  • the color filter substrate 20 includes a transparent substrate (for example, a glass substrate or a plastic substrate) 21 and a plurality of color filters provided in a region corresponding to the pixels on the substrate 21.
  • a transparent substrate for example, a glass substrate or a plastic substrate
  • the plurality of color filters include first and second red color filters 22R1 and 22R2 that transmit red light, green color filter 22G that transmits green light, and blue light.
  • a black matrix 23 is provided between the color filters.
  • a counter electrode 24 is provided on the color filter and the black matrix 23.
  • the color filter can be formed using a known method, for example, an inkjet It can be formed using a method.
  • the liquid crystal display devices 100 and 200 perform multi-primary color display. Therefore, a multi-primary color controller is provided that receives an image signal input from the outside and generates various control signals for multi-primary color display.
  • An example of a multi-primary color controller is shown in FIG.
  • the multi-primary color controller 40 shown in FIG. 46 includes a conversion matrix 41, a mapping unit 42, a plurality of two-dimensional lookup tables 43, and a multiplier 44.
  • the input RGB signal is converted by the conversion matrix 41 into a signal corresponding to the color space of the XYZ color system (XYZ signal).
  • the XYZ signal is mapped to the xy coordinate space by the mapping unit 42, thereby generating a signal corresponding to the Y value and the chromaticity coordinate (X, y).
  • a plurality of two-dimensional lookup tables 43 prepared for the number of primary colors, from the chromaticity coordinates (X, y), data corresponding to the hue and saturation of the color to be displayed in each sub-pixel (r, g, b, ye, c) are generated.
  • signals R, G, ⁇ , Ye, and C corresponding to each primary color are generated. Note that the method described here is merely an example, and the method for generating a signal for multi-primary color display is not limited to this.
  • a display device that has a wide color reproduction range and can display bright red. Further, according to the present invention, a color filter substrate used in such a display device is provided.
  • the present invention is suitably used for various display devices.
  • a liquid crystal display device a CRT (brown tube), an organic EL display device, a plasma display panel, a SED (Surface- conducti on Electron-emitter Display; Is preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

明 細 書
表示装置およびカラーフィルタ基板
技術分野
[0001] 本発明は、表示装置に関し、特に、 4色以上の原色を用いて表示を行う多原色表 示装置に関する。また、本発明は、そのような表示装置に用いられるカラーフィルタ 基板にも関する。
背景技術
[0002] 現在、種々の表示装置が様々な用途に利用されている。一般的な表示装置では、 光の三原色である赤、緑、青を表示する 3つのサブ画素によって 1つの画素が構成さ れており、そのことによってカラー表示が可能になっている。
[0003] しかしながら、従来の表示装置は、表示可能な色の範囲(「色再現範囲」と呼ばれる 。)が狭いという問題を有している。図 47に、三原色を用いて表示を行う従来の表示 装置の色再現範囲を示す。図 47は、 XYZ表色系における xy色度図であり、赤、緑、 青の三原色に対応した 3つの点を頂点とする三角形が色再現範囲を表している。ま た、図中には、 Pointerによって明らかにされた、自然界に存在する様々な物体の色( 非特許文献 1参照)が X印でプロットされている。図 47からわ力るように、色再現範囲 に含まれない物体色が存在しており、三原色を用いて表示を行う表示装置では、一 部の物体色を表示することができな 、。
[0004] そこで、表示装置の色再現範囲を広くするために、表示に用いる原色の数を 4っ以 上に増やす手法が提案されている。
[0005] 例えば、特許文献 1には、図 48に示すように、赤、緑、青、黄、シアン、マゼンタを 表示する 6つのサブ画素 R、 G、 B、 Ye、 C、 Mによって 1つの画素 Pが構成された液 晶表示装置 800が開示されている。この液晶表示装置 800の色再現範囲を図 49に 示す。図 49に示すように、 6つの原色に対応した 6つの点を頂点とする六角形によつ て表される色再現範囲は、物体色をほぼ網羅している。このように、表示に用いる原 色の数を増やすことによって、色再現範囲を広くすることができる。本願明細書では、 4色以上の原色を用いて表示を行う表示装置を「多原色表示装置」と総称する。 特許文献 1:特表 2004— 529396号公報
非特干文献 1 :M. R. Pointer, Hie gamut of real surface colors, Color Research an d Application, Vol.5, No.3, pp.145— 155 (1980)
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、本願発明者が多原色表示装置の表示品位にっ 、て詳細な検討を行 つたところ、単純に原色の数を増やすだけでは十分な表示品位が得られな 、ことが わかった。例えば、特許文献 1に開示されている表示装置では、表示される赤がどす 黒 、赤すなわち喑 、赤になってしま 、、実際には表示できな 、物体色が存在してし まつ。
[0007] 本発明は、上記問題に鑑みてなされたものであり、その目的は、色再現範囲が広く 、且つ、明るい赤を表示することができる表示装置およびそのような表示装置に用い られるカラーフィルタ基板を提供することにある。
課題を解決するための手段
[0008] 本発明による表示装置は、複数のサブ画素によって規定される画素を有する表示 装置であって、前記複数のサブ画素は、赤を表示する第 1および第 2の赤サブ画素、 緑を表示する緑サブ画素、青を表示する青サブ画素および黄を表示する黄サブ画 素を含み、そのことによって上記目的が達成される。
[0009] ある好適な実施形態において、前記画素が白を表示したときの XYZ表色系におけ る Y値を 100%としたとき、前記第 1および第 2の赤サブ画素の Y値はそれぞれ 5%以 上 11%以下、前記緑サブ画素の Y値は 20%以上 35%以下、前記青サブ画素の Y 値は 5%以上 10%以下、前記黄サブ画素の Y値は 30%以上 50%以下である。
[0010] ある好適な実施形態において、前記第 1および第 2の赤サブ画素の主波長はそれ ぞれ 605nm以上 635nm以下、前記緑サブ画素の主波長は 520nm以上 550nm以 下、前記青サブ画素の主波長は 470nm以下、前記黄サブ画素の主波長は 565nm 以上 580nm以下である。
[0011] ある好適な実施形態において、前記第 1および第 2の赤サブ画素のそれぞれの色 純度は 90%以上、前記緑サブ画素の色純度は 65%以上 80%以下、前記青サブ画 素の色純度は 90%以上 95%以下、前記黄サブ画素の色純度は 85%以上 95%以 下である。
[0012] ある好適な実施形態において、前記複数のサブ画素は、実質的に同じ大きさを有 する。
[0013] ある好適な実施形態において、前記第 1および第 2の赤サブ画素は互いに独立に 駆動される。
[0014] ある好適な実施形態において、前記第 1および第 2の赤サブ画素は同一のスィッチ ング素子によって駆動される。
[0015] ある好適な実施形態において、前記画素内において、前記第 1の赤サブ画素と前 記第 2の赤サブ画素とが連続するように配置されて 、る。
[0016] ある好適な実施形態において、前記画素内において、前記緑サブ画素と前記黄サ ブ画素とが連続し、且つ、他のサブ画素によって挟まれるように配置されている。
[0017] ある好適な実施形態において、前記画素内において、前記第 1の赤サブ画素、前 記第 2の赤サブ画素、前記緑サブ画素および前記黄サブ画素が連続するように配置 されている。
[0018] ある好適な実施形態にぉ 、て、前記複数のサブ画素は、シアンを表示するシアン サブ画素をさらに含む。
[0019] ある好適な実施形態において、前記画素が白を表示したときの XYZ表色系におけ る Y値を 100%としたとき、前記シアンサブ画素の Y値は 10%以上 30%以下である。
[0020] ある好適な実施形態において、前記シアンサブ画素の主波長は 475nm以上 500 nm以下である。
[0021] ある好適な実施形態において、前記シアンサブ画素の色純度は 65%以上 80%以 下である。
[0022] ある好適な実施形態において、前記画素内において、前記シアンサブ画素、前記 緑サブ画素および前記青サブ画素が連続するように配置されて 、る。
[0023] ある好適な実施形態にぉ ヽて、本発明による表示装置は、液晶層を備えた液晶表 示装置である。
[0024] 本発明によるカラーフィルタ基板は、複数のサブ画素によって規定される画素を有 する表示装置用のカラーフィルタ基板であって、基板と、前記基板上の前記画素に 対応する領域内に設けられた複数のカラーフィルタとを備え、前記複数のカラーフィ ルタは、赤色の光を透過する第 1および第 2の赤カラーフィルタ、緑色の光を透過す る緑カラーフィルタ、青色の光を透過する青カラーフィルタおよび黄色の光を透過す る黄カラーフィルタを含み、そのことによって上記目的が達成される。
[0025] ある好適な実施形態にぉ 、て、前記複数のカラーフィルタは、シアン色の光を透過 するシアンカラーフィルタをさらに含む。
発明の効果
[0026] 本発明による表示装置の画素は、赤、緑、青を表示するサブ画素に加え、他の色を 表示するサブ画素を含んでいる。つまり、本発明による表示装置は、表示に用いる原 色の数が 3つよりも多ぐそのため、従来の三原色を表示に用いる表示装置よりも色 再現範囲が広い。また、本発明による表示装置の画素は、赤を表示するサブ画素を 2つ有している。そのため、赤の Y値を向上することができ、明るい赤を表示すること ができる。
図面の簡単な説明
[0027] [図 1]本発明の好適な実施形態における液晶表示装置 100を模式的に示す図である [図 2]液晶表示装置 100の色再現範囲を示す図である。
[図 3]表 1に例示した構成に対応するカラーフィルタの分光透過率特性を示すグラフ である。
[図 4]表 1に例示した構成に対応するバックライトのスペクトルを示すグラフである。
[図 5]表 3に例示した構成に対応するカラーフィルタの分光透過率特性を示すグラフ である。
[図 6]表 3に例示した構成に対応するバックライトのスペクトルを示すグラフである。
[図 7]特許文献 1の液晶表示装置 800および本発明による液晶表示装置 100の赤に つ 、ての C*—L*特'性を示すグラフである。
[図 8]特許文献 1の液晶表示装置 800および本発明による液晶表示装置 100のマゼ ンタについての C*— L*特性を示すグラフである。 [図 9] (a)〜(c)は、赤、緑、青について物体色の C* L*特性を示すグラフである。
[図 10] (a)〜(c)は、黄、シアン、マゼンタについて物体色の C* L*特性を示すダラ フである。
[図 11]実施例 1に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 12]実施例 1に対応するバックライトのスペクトルを示すグラフである。
[図 13]実施例 2に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 14]実施例 2に対応するバックライトのスペクトルを示すグラフである。
[図 15]実施例 3に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 16]実施例 3に対応するバックライトのスペクトルを示すグラフである。
[図 17]実施例 4に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 18]実施例 4に対応するバックライトのスペクトルを示すグラフである。
[図 19]実施例 5に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 20]実施例 5に対応するバックライトのスペクトルを示すグラフである。
[図 21]実施例 6に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 22]実施例 6に対応するバックライトのスペクトルを示すグラフである。
[図 23]実施例 7に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 24]実施例 7に対応するバックライトのスペクトルを示すグラフである。
[図 25]実施例 8に対応するカラーフィルタの分光透過率特性を示すグラフである。
[図 26]実施例 8に対応するバックライトのスペクトルを示すグラフである。
[図 27] (a)〜(e)は、サブ画素の好ま Uヽ配置例を示す図である。
[図 28] (a)〜(f )は、サブ画素の好ま ヽ配置例を示す図である。
[図 29] (a)〜(f )は、サブ画素の好ま ヽ配置例を示す図である。
[図 30] (a)〜(d)は、サブ画素の好ま 、配置例を示す図である。
[図 31] (a)および (b)は、サブ画素の好ましい配置例を示す図である。
圆 32]本発明の好適な実施形態における他の液晶表示装置 200を模式的に示す図 である。
[図 33] (a)〜(c)は、サブ画素の好ま 、配置例を示す図である。
[図 34] (a)および (b)は、サブ画素の好ま 、配置例を示す図である。 [図 35] (a)〜(d)は、サブ画素の好ま 、配置例を示す図である。
[図 36] (a)〜(d)は、サブ画素の好ま 、配置例を示す図である。
[図 37] (a)〜(d)は、サブ画素の好ま 、配置例を示す図である。
[図 38] (a)および (b)は、サブ画素の好ま 、配置例を示す図である。
[図 39] (a)〜(d)は、サブ画素の好ま 、配置例を示す図である。
[図 40] (a)および (b)は、サブ画素の他の配置例を示す図である。
[図 41]サブ画素の他の配置例を示す図である。
[図 42]液晶表示装置 100および 200を模式的に示す断面図である。
[図 43] (a)および (b)は、スイッチング素子の配置例を示す図である。
[図 44] (a)および (b)は、スイッチング素子の他の配置例を示す図である。
[図 45]液晶表示装置 100のカラーフィルタ基板を模式的に示す断面図である。
[図 46]液晶表示装置 100および 200の多原色コントローラを模式的に示すブロック図 である。
[図 47]三原色を表示に用いる従来の液晶表示装置の色再現範囲を示す図である。
[図 48]従来の多原色液晶表示装置 800を模式的に示す図である。
[図 49]液晶表示装置 800の色再現範囲を示す図である。
符号の説明
R1 第 1の赤サブ画素
R2 第 2の赤サブ画素
G 緑サブ画素
B 青サブ画素
Ye 黄サブ画素
C シアンサブ画素
10 アクティブマトリクス基板
11 スイッチング素子
20 カラーフィルタ基板
21 透明基板
22R1 第 1の赤カラーフィルタ 22R2 第 2の赤カラーフィルタ
22G 緑カラーフィルタ
22B 青カラーフィルタ
22Ye 黄カラーフィルタ
22C シアンカラーフィルタ
23 ブラックマトリクス
24 対向電極
30 液晶層
40 多原色コントローラ
41 変換マトリクス
42 マツピンクュ-ッ卜
43 2次元ルックアップテーブル
44 乗算器
100、 200 液晶表示装置
発明を実施するための最良の形態
[0029] 本発明の実施形態を説明する前に、まず、特許文献 1に開示されている液晶表示 装置 800において赤がどす黒くなる(暗くなる)理由を説明する。
[0030] 表示に用いる原色の数を増やすと、 1画素あたりのサブ画素の数が増えるので、各 サブ画素の面積は必然的に小さくなり、そのため、各サブ画素が表示する色の明度( XYZ表色系における Y値に相当)が低くなる。例えば、表示に用いる原色の数を 3つ から 6つに増やすと、各サブ画素の面積は約半分となり、各サブ画素の明度 (Y値)も 約半分となる。
[0031] 「明度」は、「色相」や「彩度」とともに色を規定する 3つの要素のうちの 1つである。そ のため、原色の数を増やすことによって図 49に示したように xy色度図上における色 再現範囲(つまり再現可能な「色相」および「彩度」の範囲)が広がっても、「明度」が 低下すると実際の色再現範囲(「明度」も含めた色再現範囲)を十分に広くすることは できない。
[0032] 本願発明者が検討したところ、緑や青を表示するサブ画素については、明度が低 下しても種々の物体色を十分に表示することができる力 赤を表示するサブ画素に ついては、明度が低下すると一部の物体色を表示できなくなることがわ力つた。このよ うに、用いる原色の数を増やすことによって明度 (Y値)が低下すると、赤の表示品位 が低下し、赤がどす黒 、赤 (つまり喑 、赤)となってしまう。
[0033] 本願発明は、上記知見に基づいて想到されたものである。以下、図面を参照しなが ら本発明の実施形態を説明する。なお、以下では液晶表示装置を例として本発明を 説明するが、本発明は、液晶表示装置だけでなぐ CRT (ブラウン管)、有機 EL表示 装置、プラズマディスプレイパネル、 SED (Surface-conduction Electron-emitter Disp lay)などの種々の表示装置に好適に用いられる。
[0034] 図 1に、本実施形態における液晶表示装置 100を模式的に示す。液晶表示装置 1 00は、マトリクス状に配列された複数の画素を有している。図 1には、液晶表示装置 1 00の複数の画素のうち 4つの画素 Pを示して 、る。
[0035] 各画素 Pは、図 1に示すように、複数のサブ画素によって規定されている。画素 Pを 規定する複数のサブ画素は、具体的には、赤を表示する第 1および第 2の赤サブ画 素 R1および R2と、緑を表示する緑サブ画素 Gと、青を表示する青サブ画素 Bと、黄 を表示する黄サブ画素 Yeと、シアンを表示するシアンサブ画素 Cである。図 1には、 これら 6つのサブ画素が画素 P内で 1行 6列に配置されている場合を例示している。
[0036] 本発明による液晶表示装置 100では、三原色を用いて表示を行う一般的な液晶表 示装置よりも、表示に用いられる原色の数が多いので、色再現範囲が広い。図 2に、 液晶表示装置 100における色再現範囲の一例を示す。図 2に示すように、液晶表示 装置 100の色再現範囲は、種々の物体色を網羅している。
[0037] なお、図 2において、色再現範囲が六角形で表されているのは、第 1の赤サブ画素 R1の表示する赤と第 2の赤サブ画素 R2の表示する赤とが異なっているためである。 勿論、第 1の赤サブ画素 R1の表示する赤と第 2の赤サブ画素 R2の表示する赤とは 同じであってもよい。その場合、色再現範囲は五角形で表される。いずれにしても、 色再現範囲が三角形で表される一般的な液晶表示装置に比べると、色再現範囲を 向上することができる。
[0038] また、本発明による液晶表示装置 100の画素は、赤を表示するサブ画素を 2つ(第 1および第 2のサブ画素 Rlおよび R2)含んでいるので、図 46に示した液晶表示装置 800よりも、赤の明度 (Y値)を向上することができ、明るい赤を表示することができる。 つまり、 xy色度図上に表される色相および彩度だけでなぐ明度も含めた色再現範 囲を広くすることができる。
[0039] ここで、液晶表示装置 100における Y値の向上を、特許文献 1の多原色液晶表示 装置 800と比較しながら具体的に説明する。
[0040] 表 1に、特許文献 1の多原色液晶表示装置 800における各サブ画素の Y値、 xy色 度、主波長(マゼンタについては補色主波長)および色純度の一例とその表示品位 とを示す。表 1には、画素が白を表示したときの Y値、 xy色度および色温度も示して いる。各サブ画素の Y値は、白表示時の画素の Y値を 100%とし、それに対する相対 的な値を示している。なお、主波長および補色主波長は、色相を大まかに表し、色純 度は、彩度を大まかに表すものである。また、ここで例示した構成に対応するカラーフ ィルタの分光透過率特性と、ノ ックライトのスペクトルとを図 3および図 4に示す。
[0041] [表 1]
Figure imgf000011_0001
*)色温度(K) *)補色主波長(nm)
[0042] 表 1に示すように、赤、青、黄を表示するサブ画素 R、 B、 Yeの表示品位が悪ぐま た、シアンを表示するサブ画素 Cの表示品位も、緑、マゼンタを表示するサブ画素 G 、 Mに比べるとやや悪い。し力しながら、表 1に示す結果が、表示に用いる原色にそ のままあてはまるわけではない。黄、シアン、マゼンタは、赤、緑、青の加法混色によ つても表示することができる力もである。これらの色(シアン、黄、マゼンタ)については 、サブ画素 Ye、 Cおよび Mがそれぞれ単独で表示する色と、加法混色によって表示 する色とを合わせて評価する必要がある。
[0043] 具体的には、黄については、赤サブ画素 Rの表示する赤と緑サブ画素 Gの表示す る緑との混色によって表示される黄と、黄サブ画素 Yeが単独で表示する黄とを合わ せて評価する必要がある。また、シアンについては、緑サブ画素 Gの表示する緑と青 サブ画素 Bの表示する青との混色によって表示されるシアンと、シアンサブ画素じが 単独で表示するシアンとを合せて評価する必要がある。さらに、マゼンタについては 、赤サブ画素 Rの表示する赤と青サブ画素 Bの表示する青との混色によって表示さ れるマゼンタと、マゼンタサブ画素 Mが単独で表示するマゼンタとを合せて評価する 必要がある。
[0044] 表 2に、液晶表示装置 800の表示に用いられる原色の Y値、 xy色度、主波長(マゼ ンタについては補色主波長)および色純度の一例とその表示品位とを示す。
[0045] [表 2]
Figure imgf000012_0001
*)Ye=R+Ye+G *)C=G+C+B *)M=R+B+M
す)補色主波長 (nm)
[0046] 表 2に示すように、黄、シアンについても十分な表示品位が得られていることがわか る。これは、他のサブ画素の加法混色による色が加味される結果、 Y値が大きく向上 する(ほぼ単純な算術和となる)力 である。
[0047] し力しながら、表 2に示したように、赤については、依然として表示品位が低いまま である。これは、原色の数を増やすことによって Y値が低下しているためである。なお 、ここで示した例では、青についても表示品位が低くなつている力 これは、試作に使 用したカラーフィルタおよびバックライトの仕様によって偶々 Y値が低くなりすぎたた めである。青の Y値の低下については、カラーフィルタおよびバックライトの仕様変更 により解決し得るので、本質的な問題ではな 、。
[0048] 続いて、表 3に、本発明による液晶表示装置 100における各サブ画素の Y値、 xy色 度、主波長および色純度の一例とその表示品位とを示す。また、ここで例示した構成 に対応するカラーフィルタの分光透過率特性と、ノ ックライトのスペクトルとを図 5およ び図 6に示す,
[0049] [表 3]
Figure imgf000013_0001
*)色温度 (K)
[0050] 表 3に示すように、サブ画素単独で評価した場合には、第 1の赤サブ画素 Rl、第 2 の赤サブ画素 R2、黄サブ画素 Yeの表示品位は良くない。また、シアンサブ画素じの 表示品位も、緑サブ画素 Gや青サブ画素 Bの表示品位にはやや劣る。しかしながら、 本発明による液晶表示装置 100にお!/、ても、表 3に示す結果がそのまま表示に用い る原色にあてはまるわけではない。つまり、表 3に示す表示品位は、あくまでも「サブ 画素の表示品位」であり、表示に用いる「原色の表示品位」ではない。
[0051] 黄やシアンにっレ、ては、既に述べたように、黄サブ画素 Yeやシアンサブ画素じが 単独で表示する色と、加法混色によって表示される色とを合せて評価する必要があり 、赤については、第 1の赤サブ画素 R1の表示する赤と第 2の赤サブ画素 R2の表示 する赤とを合せて評価する必要がある。また、本発明による液晶表示装置 100にお いても、マゼンタを混色 (第 1および第 2の赤サブ画素 R1および R2の表示する赤と青 サブ画素 Bの表示する青との混色)によって表示することができる。
[0052] 表 4に、本発明による液晶表示装置 100の表示に用いられる原色の Y値、 xy色度、 主波長(マゼンタについては補色主波長)および色純度の一例とその表示品位とを 示す。
[0053] [表 4] W R* Ye* G C* B M*
Y [%] 100 20.9 72.0 29.0 46.4 5.4 26.2
0.302 0.681 0.451 0.177 0.150 0,149 0.338
y 0.250 0.296 0.504 0.707 0.177 0.042 0.132
主波長 [nmj 630 573 527 479 460 553†
色純度 [9 &】 94 86 77 76 96 SO
ϊ¾ άΐιί ◎ ◎ ◎ ◎ ◎ ◎
*)R=R1+ *)Ye=Rl+R2 *)C=G+C+B *)M=R1+R2+B
R2 +Ye+G す)補色主波長 (nm)
[0054] 表 4からわ力るように、黄、シアンについては非常に良好な表示品位が得られてい る。また、マゼンタについても、非常に良好な表示品位が得られていることがわかる。 さらに、赤についても、 Y値が大きく向上し、そのことによって表示品位が大きく向上し ていることがわ力る。
[0055] ここで、特許文献 1の液晶表示装置 800と本発明による液晶表示装置 100との赤の 再現範囲の違いをより具体的に説明する。
[0056] 図 7に、特許文献 1の液晶表示装置 800および本発明による液晶表示装置 100の それぞれの、赤についての C*— L*特性を示す。図 7は、 L*C*h表色系における色相 角 h = 40° (赤に相当)について C*と L*との関係を示すグラフである。 C*は、 L*a*b*表 色系における [ (a*) 2+ (b*) 2]に相当し、彩度を示す。また、 L*は、 XYZ表色系にお ける Y値に相当し、明度を示す。図 7中には、点線によって物体色の赤の範囲を示し ている。
[0057] 図 7からわカ^)ように、液晶表示装置 800では、赤の明度 (L*)が低いために物体色 の赤のすべてをカバーすることはできない。これに対し、本発明による液晶表示装置 100では、赤の明度が高いために、物体色の赤をほぼカバーできており、特に、最も 彩度の高い赤(図 7中に丸で囲んでいる部分)つまり最も鮮やかな赤を再現できるの で、色再現範囲を広くし、且つ、明るい赤を表示することが可能になる。
[0058] また、特許文献 1の液晶表示装置 800がマゼンタを表示するサブ画素を有している のに対し、本発明による液晶表示装置 100は、マゼンタを表示するサブ画素を有し ていない。このことによるマゼンタ表示への影響を本願発明者は検討した。
[0059] 図 8に、特許文献 1の液晶表示装置 800および本発明による液晶表示装置 100の それぞれの、マゼンタについての C*一 L*特性を示す。図 8は、 L*C*h表色系における 色相角 h= 350° (マゼンタに相当)について C*と L*との関係を示すグラフである。図 8中には、点線によって物体色のマゼンタの範囲を示して!/、る。
[0060] 図 8からわかるように、液晶表示装置 800では、マゼンタのサブ画素が各画素に設 けられているために、物体色のマゼンタがほぼカバーされており、最も彩度の高いマ ゼンタ(図 8中に丸で囲んでいる部分)を再現できる。これに対し、本発明による液晶 表示装置 100では、マゼンタのサブ画素が設けられていないにも関わらず、物体色 のマゼンタがほぼカバーされており、最も彩度の高いマゼンタ(つまり最も鮮やかなマ ゼンタ)を再現できる。図 8からもゎカゝるように、むしろ、本発明による液晶表示装置 1 00の方力 カバーする範囲が広い。
[0061] なお、マゼンタサブ画素を省略しても十分に物体色のマゼンタを再現できる理由は 、図 2に示されているように、物体色のマゼンタの外延がほぼ直線状だからであり、赤 サブ画素 R1および R2と青サブ画素 Bの色純度が十分に高ければ、加法混色によつ て物体色のマゼンタを十分に再現できる力 である。これに対し、物体色の黄ゃシァ ンの外延は、図 2に示すように丸みを帯びているため、黄サブ画素 Yeやシアンサブ 画素 Cがなければ物体色の黄やシアンは再現しにくい。
[0062] 上述したように、本発明による液晶表示装置においては、色再現範囲が広ぐ且つ 、明るい赤を表示することができる。なお、第 1の赤サブ画素 R1が表示する赤と、第 2 の赤サブ画素 R1が表示する赤とは、同じであってもよいし、異なっていてもよい。こ れらが同じである場合には、カラーフィルタの作成プロセスを短縮できる。一方、これ らが異なっている場合には、サブ画素で表示される原色が 6つとなる(つまり色再現 範囲が色度図上で六角形で表される)ので、再現できる色の数 (特に赤近傍の表示 色数)が増える。
[0063] 続、て、液晶表示装置 100の各サブ画素の Y値、主波長および色純度の好ま U、 範囲を説明する。
[0064] 忠実な色再現を行うためには、表示に用いる原色の明度すなわち Y値を物体色の 明度に従って決定することが好ましい。図 9 (a)〜(c)および図 10 (a)〜(c)に、赤 (h =40° )、緑 (h= 160° )、青(h= 310° )、黄(h= 90° )、シアン(h= 220° )お よびマゼンタ(h= 350° )について物体色の C* L*特性を示す。 [0065] 彩度の高!ヽ色を再現するためには、図 9 (a)〜(c)に示すように、赤の L*は 38以上 54以下、緑の L*は 52以上 66以下、青の L*は 27以上 38以下であることが好ましい。 L*と Y値とは、 L*= 116 'Y1/3— 16の関係を満足するので、この条件を L*ではなく Y値 で表すと、赤の Y値は 10%以上 22%以下、緑の Y値は 20%以上 35%以下、青の Y 値は 5%以上 10%以下であることが好ましい。
[0066] また、同様に、彩度の高!ヽ色を再現するためには、図 10 (a)〜(c)に示すように、黄 の L*は 82以上 94以下、シアンの L*は 38以上 79以下、マゼンタの L*は 46以上 62以 下であることが好ましい。この条件を L*ではなく Y値で表すと、黄の Y値は 60%以上 8 5%以下、シアンの Y値は 10%以上 55%以下、マゼンタの Y値は 15%以上 30%以 下であることが好ましい。
[0067] Y値が低すぎると、たとえ彩度が高くても黒ずんだ色となる。例えば、赤は真紅、黄 は黄土色、緑や青は黒に見えてしまう。逆に Y値が高すぎると、発光色のような表示と なり、違和感が生じる。特に、赤や緑についてはこの傾向が顕著である。なお、シアン につ 、ては、図 10 (b)力 もわかるように比較的広 、Y値の範囲内で良好な表示が 得られる。
[0068] 表 5に、液晶表示装置 100の表示に用いられる原色の Υ値、主波長、および色純 度の好ましい範囲を示す。
[0069] [表 5]
Figure imgf000016_0001
既に説明したように、赤の Y値は 10%以上 22%以下、緑の Y値は 20%以上 35% 以下、青の Y値は 5%以上 10%以下であることが好ましぐ黄の Y値は 60%以上 85 %以下、シアンの Y値は 10%以上 55%以下、マゼンタの Y値は 15%以上 30%以下 であることが好ましい。 [0071] また、赤の主波長は 605nm以上 635nm以下、緑の主波長は 520nm以上 550nm 以下、青の主波長は 470nm以下であることが好ましぐ黄の主波長は 565nm以上 5 80nm以下、シアンの主波長は 475nm以上 500nm以下であることが好まし!/、。
[0072] さらに、赤の色純度は 90%以上、緑の色純度は 65%以上 80%以下、青の色純度 は 90%以上 95%以下であることが好ましぐ黄の色純度は 85%以上 95%以下、シ アンの色純度は 65%以上 80%以下、マゼンタの色純度は 60%以上 80%以下であ ることが好ましい。
[0073] 赤については第 1および第 2の赤サブ画素 R1および R2が表示に寄与し、黄につ いては第 1、第 2の赤サブ画素 Rl、 R2、黄サブ画素 Yeおよび緑サブ画素 Gが表示 に寄与する。また、シアンについては緑サブ画素 G、シアンサブ画素 Cおよび青サブ 画素 Bが表示に寄与し、マゼンタについては第 1、第 2の赤サブ画素 Rl、 R2および 青サブ画素 Bが表示に寄与する。これらのことを考慮すると、液晶表示装置 100の各 サブ画素の主波長、 Y値、色純度の好ましい範囲は、表 6に示す通りとなる。
[0074] [表 6]
Figure imgf000017_0001
[0075] 表 6に示すように、第 1および第 2の赤サブ画素 R1および R2の Y値はそれぞれ 5% 以上 11%以下、緑サブ画素 Gの Y値は 20%以上 35%以下、青サブ画素 Bの Y値は 5%以上 10%以下であることが好ましぐ黄サブ画素 Yeの Y値は 30%以上 50%以 下、シアンサブ画素 Cの Y値は 10%以上 30%以下であることが好ましい。
[0076] また、第 1および第 2の赤サブ画素 R1および R2の主波長はそれぞれ 605nm以上 635nm以下、緑サブ画素 Gの主波長は 520nm以上 550nm以下、青サブ画素 Bの 主波長は 470nm以下であることが好ましぐ黄サブ画素 Yeの主波長は 565nm以上 580nm以下、シアンサブ画素 Cの主波長は 475nm以上 500nm以下であることが 好ましい。 [0077] さらに、第 1および第 2の赤サブ画素 Rlおよび R2のそれぞれの色純度は 90%以 上、緑サブ画素 Gの色純度は 65%以上 80%以下、青サブ画素 Bの色純度は 90% 以上 95%以下であることが好ましぐ黄サブ画素 Yeの色純度は 85%以上 95%以下 、シアンサブ画素 Cの色純度は 65%以上 80%以下であることが好まし 、。
[0078] 各サブ画素の Y値、主波長、色純度を上述した好ましい範囲内に設定することによ つて、色再現範囲を広くし、且つ、明るい赤を表示するという本願発明の効果を高く することができる。
[0079] ここで、本発明による液晶表示装置 100を、カラーフィルタおよびバックライトの仕様 を変えて複数試作し、その表示品位を検証した結果を説明する。なお、以下では、表 示品位の検証結果を表 7から表 20に示す力 表 7、 9、 11、 13、 15、 17および 19中 に示されている表示品位が「サブ画素の表示品位」であり、表 8、 10、 12、 14、 16、 1 8および 20に示されている表示品位が「原色の表示品位」であることに留意されたい
[0080] (実施例 1)
表 7に、本実施例における各サブ画素の Y値、 xy色度、主波長、色純度および表 示品位を示し、表 8に、本実施例における各原色の Y値、 xy色度、主波長(マゼンタ については補色主波長)、色純度および表示品位を示す。また、本実施例における カラーフィルタの分光透過率特性およびバックライトのスペクトルを、図 11および図 1 2に示す。
[0081] 表 7に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 8に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、全ての原色について 非常に良好な表示品位が得られた。
[0082] [表 7] W R1 R2 Ye G C B
Y [%] 100 8.8 9.5 36.2 30.0 10.3 5.6
0.293 0.684 0.677 0.461 0.167 0.136 0.149 y 0.273 0.293 0.305 0.517 0.722 0.140 0.045 主波長 [nm] 9103* 630 620 574 526 477 450
色純度 94 96 94 79 85 95
表示品位 X X X ◎ 〇 〇
f)色温度 (κ)
[0083] [表 8]
Figure imgf000019_0001
)R=R1+ *)Ye=Rl+ 2 )C=G+C+B *)M=R1+R2+B R2 +Ye+G )補色主波長 (nm)
[0084] (実施例 2)
表 9に、本実施例における各サブ画素の Y値等を示し、表 10に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 13および図 14に示す。
[0085] 表 9に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 10に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、赤、緑、黄およびシァ ンについて非常に良好な表示品位が得られ、青およびマゼンタについても良好な表 示品位が得られた。
[0086] [表 9] W R1 R1 Ye G C B
Y [%] 100 5.3 5.3 46.0 27.2 11.6 5.1
0.284 0.673 0.673 0.441 0.251 0.143 0.146 y 0.294 0.315 0.315 0.538 0,625 0.165 0.047 主波長 [nm】 9306* 617 617 570 537 478 463 色純度 [%1 97 97 93 67 79 96
X X X ◎ 〇 〇
s)色温度(K)
[0087] [表 10]
Figure imgf000020_0001
*) =R1+ *)Ye=Rl+R2 )C=G+C+B )M=R1+R2+B R2 +Ye+G )補色主波長 (nm)
[0088] (実施例 3)
表 11に、本実施例における各サブ画素の Y値等を示し、表 12に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 15および図 16に示す。
[0089] 表 11に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 12に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、赤、黄、シアンおよび マゼンタについて非常に良好な表示品位が得られ、緑および青についても良好な表 示品位が得られた。
[0090] [表 11] W R1 R1 Ye G C B
γ [%】 100 7.1 7.1 32.5 19.3 26.3 8.3
X 0.283 0,697 0.697 0.452 0.191 0.153 0.144 y 0.293 0.296 0.296 0.526 0.739 0.216 0.096 主波長【nm】 9454* 627 627 572 532 482 471 色純度【%] 98 98 94 88 71 89
? 。。位 X X X 〇 @ ©
*)色温度(κ)
[0091] [表 12]
Figure imgf000021_0001
*)R=R1+ *)Ye=Rl+R2 *)C=G+C+B *)M=R1+R2+B
R2 +Ye+G †)補色主波長(nm)
[0092] (実施例 4)
表 13に、本実施例における各サブ画素の Y値等を示し、表 14に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 17および図 18に示す。
[0093] 表 13に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 14に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、赤、緑、黄、シアンおよ びマゼンタについて非常に良好な表示品位が得られ、青についても良好な表示品 位が得られた。
[0094] [表 13] W R1 R2 Ye G C B
100 7.1 7.8 31.3 26.7 23.3 4.0
0.284 0.685 0.678 0.444 0.178 0.153 0.148 y 0.294 0.295 0.298 0.525 0.717 0.192 0.051 主波長 [nm】 9855* 625 625 572 527 481 463
色純度 i 96 94 91 79 74 95
表示品位 X X X ◎ 〇 〇
*)色温度 (κ)
[0095] [表 14]
Figure imgf000022_0001
*)R=R1+ *)Ye=Rl+R2 *)C=G+C+B *、M=R1+R2+B
R2 +Ye+G †)補色主波長(nm)
[0096] (実施例 5)
表 15に、本実施例における各サブ画素の Y値等を示し、表 16に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 19および図 20に示す。
[0097] 表 15に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 16に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、赤、青、黄、シアンおよ びマゼンタにつ 、て非常に良好な表示品位が得られ、緑につ 、ても良好な表示品 位が得られた。
[0098] [表 15]
Figure imgf000022_0002
*)色温度 (K) [0099] [表 16]
Figure imgf000023_0001
*)R=R1+ *)Ye=Rl+R2 )C=G+C+B *)M=R1+R2+B R2 +Ye+G )補色主波長 (nm)
[0100] (実施例 6)
表 17に、本実施例における各サブ画素の Y値等を示し、表 18に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 21および図 22に示す。
[0101] 表 17に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 18に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、赤、緑、黄およびマゼ ンタについて非常に良好な表示品位が得られ、青およびシアンについても良好な表 示品位が得られた。
[0102] [表 17]
Figure imgf000023_0002
色温度(K)
[0103] [表 18] W R* Ye* G B M*
Y [%] 100 15.3 79.9 31.2 51.4 10.0 25.2
0.286 0.687 0.454 0.176 0.148 0.146 0.308
y 0.287 0.294 0.503 0.714 0.219 0.082 0.145 主波長 [nmj 620 578 527 483 469 560† 色純度 [%] 96 89 78 72 90 69 表示品位 ◎ ◎ © 〇 〇 ◎
*、R=R1+ *)Ye=Rl+R2 *)C=G+C+B *)M=R1+R2+B
R2 +Ye+G ナ)補色主波長 (nm)
[0104] (実施例 7)
表 19に、本実施例における各サブ画素の Y値等を示し、表 20に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 23および図 24に示す。
[0105] 表 19に示すように、各サブ画素の Y値、主波長および色純度は、概ね表 6に示した 好ましい数値範囲内である。そのため、表 20に示すように、各原色の Y値、主波長お よび色純度は、概ね表 5に示した好ましい数値範囲内であり、緑、黄、青、シアンおよ びマゼンタにつ!/、て非常に良好な表示品位が得られ、赤につ V、ても良好な表示品 位が得られた。
[0106] [表 19]
Figure imgf000024_0001
*)色温度(K)
[0107] [表 20] W R* Ye* G C* B M*
Y [%] 100 16.5 80.3 22.1 41.7 5.3 21.7
0.299 0.655 0.471 0.246 0.161 0.146 0.298
y 0.294 0,337 0.500 0,651 0.195 0.047 0.132
主波長【nm] 609 576 538 480 462 560す
色純度【%1 88 91 73 70 96 73
¾k ロ口 Hi 〇 ◎ ◎ ◎ ◎ ◎
*)R=R1+ *)Ye=Rl+R2 *)C=G+C+B *)M=R1+R2+B
R2 +Ye+G ナ)補色主波長 (nm)
[0108] (実施例 8)
表 21に、本実施例における各サブ画素の Y値等を示し、表 22に、本実施例におけ る各原色の Y値等を示す。また、本実施例におけるカラーフィルタの分光透過率特性 およびバックライトのスペクトルを、図 25および図 26に示す。
[0109] 表 21に示すように、第 1および第 2の赤サブ画素 R1および R2の Y値は、表 6に示し た好ましい数値範囲(5%以上 11%以下)内にはなぐ 4%とやや低い。そのため、赤 の Y値を十分に高くすることができず、表 22に示すように、赤の Y値は、表 5に示した 好ましい数値範囲(10%以上 22%以下)内ではなぐ 7. 9%とやや低い。従って、実 施例 1〜7に比べると、赤の表示がやや暗くなる。また、第 1および第 2の赤サブ画素 R1および R2の Y値がやや低いため、マゼンタの Y値を十分に高くすることができず、 表 22に示すように、マゼンタの Y値は、表 5に示した好ましい数値範囲(15%以上 30 %以下)内ではなぐ 13. 1%とやや低い。従って、実施例 1〜7に比べると、マゼンタ の表示もやや暗くなる。
[0110] [表 21]
Figure imgf000025_0001
*)色温度 (K)
[01 1 1] [表 22] W R* Ye* G C* B M*
Y [%] 100 7.9 86.2 21.5 35.2 5.3 13.1
0.286 0.656 0.463 0.246 0.157 0J46 0,242 y 0.287 0.299 0.510 0.668 0.156 0.047 0.094 主波長 [nm】 625 574 540 477 462 567す
色純度 I 88 92 80 77 96 78
表示品位 Δ ◎ ◎ ◎ © Δ
*、R=R1+ *、Ye=Rl+R2 *)C=G+C+B *)M=R1+R2+B
R2 +Ye+G )補色主波長(nm)
[0112] 続いて、画素内におけるサブ画素の好ましい配置を説明する。
[0113] まず、図 27 (a)〜(e)に、第 1の赤サブ画素 R1および第 2の赤サブ画素 R2の好ま しい配置例を示す。図 27中、サブ画素 XI、 X2、 X3および X4は、緑サブ画素 G、青 サブ画素 B、黄サブ画素 Yeおよびシアンサブ画素 Cの!、ずれかである。
[0114] 第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とは、図 27 (a)〜(e)に示すように、画 素内にぉレ、て連続するように配置されて 、ることが好ま 、。第 1の赤サブ画素 R1と 第 2の赤サブ画素 R2とが画素内で離れて 、る(つまり他のサブ画素を挟むように配 置されている)と、赤のラインを表示したときにぶつぶつして見えることがある。第 1の 赤サブ画素 R1と第 2の赤サブ画素 R2とを連続するように配置すると、そのようなぶつ ぶつ感の発生を防止することができる。
[0115] 次に、図 28 (a)〜(f)に、緑サブ画素 Gおよび黄サブ画素 Yeの好ましい配置例を 示す。図 28中、サブ画素 XI、 X2、 X3および X4は、第 1の赤サブ画素 Rl、第 2の赤 サブ画素 R2、青サブ画素 Bおよびシアンサブ画素 Cの!、ずれかである。
[0116] 緑サブ画素 Gと黄サブ画素 Yeとは、図 28 (a)〜(f)に示すように、画素内において 連続し、且つ、他のサブ画素によって挟まれるように(つまり画素の端部に位置しない ように)配置されていることが好ましい。表 6などに示しているように、緑サブ画素 Gお よび黄サブ画素 Yeは、他のサブ画素に比べて Y値が高い。そのため、図示したよう に緑サブ画素 Gおよび黄サブ画素 Yeを画素の中央に近い部分に配置することによ つて、文字を表示したときのエッジの色付きなどの問題を抑制することができる。
[0117] 続いて、図 29 (a)〜(f)に、第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ画 素 Gおよび黄サブ画素 Yeの好ましい配置例を示す。図 29中、サブ画素 XIおよび X 2は、青サブ画素 Bまたはシアンサブ画素 Cの 、ずれかである。 [0118] 第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ画素 Gおよび黄サブ画素 Ye は、図 29 (a)〜(f)に示すように、画素内において連続するように配置されていること が好ましい。黄の表示に寄与するこれらのサブ画素を、画素内で連続するように配置 することにより、黄のラインを表示したときのぶつぶつ感の発生を防止することができ る。また、図 29 (a)〜(f)に示す配置では、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが連続して 、るので、赤のラインを表示したときのぶつぶつ感の発生も防止する ことができる。さらに、図 29 (a)、(b)、(e)および (f)に示す配置では、緑サブ画素 G と黄サブ画素 Yeとが連続し、且つ、他のサブ画素によって挟まれるように配置されて いるので、文字を表示したときのエッジの色付きも防止することができる。
[0119] 次に、図 30 (a)〜(d)に、シアンサブ画素 C、緑サブ画素 Gおよび青サブ画素 Bの 好ましい配置例を示す。図 30中、サブ画素 XIおよび X2は第 1の赤サブ画素 R1およ び第 2の赤サブ画素 R2の!、ずれかである。
[0120] シアンサブ画素 C、緑サブ画素 Gおよび青サブ画素 Bは、図 30 (a)〜(d)に示すよ うに、画素内において連続するように配置されていることが好ましい。シアンの表示に 寄与するこれらのサブ画素を、画素内で連続するように配置することによって、シアン のラインを表示したときのぶつぶつ感の発生を防止することができる。また、図 30 (a) 〜(d)に示す配置では、緑サブ画素 Gと黄サブ画素 Yeとが連続し、且つ、他のサブ 画素によって挟まれるように配置されているので、文字を表示したときのエッジの色付 さち防止することがでさる。
[0121] 続いて、図 31 (a)および (b)に、すべてのサブ画素の好ましい配置例を示す。図 31
(a)および (b)に示す配置では、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが連 続して 、るので、赤のラインを表示したときのぶつぶつ感の発生を防止することがで きる。また、緑サブ画素 Gと黄サブ画素 Yeとが連続し、且つ、他のサブ画素によって 挟まれているので、文字を表示したときのエッジの色付きも防止することができる。さ らに、黄の表示に寄与するサブ画素(つまり第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ画素 Gおよび黄サブ画素 Ye)が連続しているので、黄のラインを表示し たときのぶつぶつ感の発生も防止することができる。そして、シアンの表示に寄与す るサブ画素(つまりシアンサブ画素 C、緑サブ画素 Gおよび青サブ画素 B)が連続して V、るので、シアンのラインを表示したときのぶつぶつ感の発生も防止することができる
[0122] なお、ここまでは、図 1に示すように 1つの画素内で複数のサブ画素が 1行に配置さ れている場合を例として本発明を説明したが、図 32に示す液晶表示装置 200のよう に、複数のサブ画素が画素 P内で複数行複数列(ここでは 2行 3列)に配置されてい てもよい。このようなモザイク状の配置を採用しても、図 1に示した液晶表示装置 100 と同様に、色再現範囲を広くし、且つ、明るい赤を表示することが可能になる。
[0123] ここで、モザイク状の配置を採用した場合のサブ画素の好ましい配置を説明する。
[0124] まず、図 33 (a)〜(c)に、第 1の赤サブ画素 R1および第 2の赤サブ画素 R2の好ま しい配置例を示す。図 33中、サブ画素 XI、 X2、 X3および X4は、緑サブ画素 G、青 サブ画素 B、黄サブ画素 Yeおよびシアンサブ画素 Cの!、ずれかである。
[0125] 第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とを、図 33 (a)〜(c)に示すように画素 内において連続するように配置することによって、赤のラインを表示したときのぶつぶ っ感の発生を防止することができる。
[0126] 次に、図 34 (a)および (b)に、緑サブ画素 Gおよび黄サブ画素 Yeの好ましい配置 例を示す。図 34中、サブ画素 XI、 X2、 X3および X4は、第 1の赤サブ画素 Rl、第 2 の赤サブ画素 R2、青サブ画素 Bおよびシアンサブ画素 Cの!、ずれかである。
[0127] 緑サブ画素 Gと黄サブ画素 Yeとを、図 34 (a)および (b)に示すように、画素内にお いて連続し、且つ、他のサブ画素によって挟まれるように(つまり画素の端部に位置し な 、ように)配置することによって、文字を表示したときのエッジの色付きを防止するこ とがでさる。
[0128] 続いて、図 35 (a)〜(d)に、第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ 画素 Gおよび黄サブ画素 Yeの好ましい配置例を示す。図 35中、サブ画素 XIおよび X2は、青サブ画素 Bまたはシアンサブ画素 Cの!、ずれかである。
[0129] 第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ画素 Gおよび黄サブ画素 Ye は、図 35 (a)〜(d)に示すように、画素内において連続するように配置されていること が好ましい。黄の表示に寄与するこれらのサブ画素を、画素内で連続するように配置 することにより、黄のラインを表示したときのぶつぶつ感の発生を防止することができ る。また、図 35 (a)〜(d)に示す配置では、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが連続して 、るので、赤のラインを表示したときのぶつぶつ感の発生も防止する ことができる。さらに、図 35 (a)〜(d)に示す配置では、緑サブ画素 Gと黄サブ画素 Y eとが連続し、且つ、他のサブ画素によって挟まれるように配置されているので、文字 を表示したときのエッジの色付きも防止することができる。
[0130] 次に、図 36 (a)〜(d)に、シアンサブ画素 C、緑サブ画素 Gおよび青サブ画素 Bの 好ましい配置例を示す。図 36中、サブ画素 XIおよび X2は第 1の赤サブ画素 R1およ び第 2の赤サブ画素 R2の!、ずれかである。
[0131] シアンサブ画素 C、緑サブ画素 Gおよび青サブ画素 Bは、図 36 (a)〜(d)に示すよ うに、画素内において連続するように配置されていることが好ましい。シアンの表示に 寄与するこれらのサブ画素を、画素内で連続するように配置することによって、シアン のラインを表示したときのぶつぶつ感の発生を防止することができる。また、図 36 (a) 〜(d)に示す配置では、緑サブ画素 Gと黄サブ画素 Yeとが連続し、且つ、他のサブ 画素によって挟まれるように配置されているので、文字を表示したときのエッジの色付 さち防止することがでさる。
[0132] 続いて、図 37 (a)〜(d)に、すべてのサブ画素の好ましい配置例を示す。図 37 (a) 〜(d)に示す配置では、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが連続してい るので、赤のラインを表示したときのぶつぶつ感の発生を防止することができる。また 、緑サブ画素 Gと黄サブ画素 Yeとが連続し、且つ、他のサブ画素によって挟まれて いるので、文字を表示したときのエッジの色付きも防止することができる。さらに、黄の 表示に寄与するサブ画素(つまり第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サ ブ画素 Gおよび黄サブ画素 Ye)が連続しているので、黄のラインを表示したときのぶ つぶつ感の発生も防止することができる。そして、シアンの表示に寄与するサブ画素 (つまりシアンサブ画素 C、緑サブ画素 Gおよび青サブ画素 B)が連続しているので、 シアンのラインを表示したときのぶつぶつ感の発生も防止することができる。
[0133] また、図 38 (a)および (b)に示すように、黄サブ画素 Yeとシアンサブ画素 Cとを、画 素内において連続し、且つ、他のサブ画素によって挟まれるように(つまり画素の端 部に位置しないように)配置することも好ましい。図 38中、サブ画素 XI、 X2、 X3およ び X4は、第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ画素 Gおよび青サブ 画素 Bのいずれかである。表 6などに示しているように、シアンサブ画素 Cも、黄サブ 画素 Yeや緑サブ画素 Gほどではないものの、 Y値が高い。そのため、図示したように 黄サブ画素 Yeおよびシアンサブ画素 Cを画素の中央に近い部分に配置することによ つても、文字を表示したときのエッジの色付きを抑制するという効果を得ることができ る。
[0134] 図 39 (a)〜(d)に、他の好ましい配置例を示す。図 39中、サブ画素 XIおよび X2は 、サブ画素 Gおよび青サブ画素 Bのいずれかである。図 39 (a)〜(d)に示す配置で は、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが連続しているので、赤のラインを 表示したときのぶつぶつ感の発生を防止することができる。また、黄サブ画素 Yeとシ アンサブ画素 Cとが連続し、且つ、他のサブ画素によって挟まれているので、文字を 表示したときのエッジの色付きも防止することができる。
[0135] なお、ここまでの説明では、 6つのサブ画素によって 1つの画素が規定される構成を 例示したが、本発明はこれに限定されるものではない。さらに多く(7つ以上)のサブ 画素によって 1つの画素が規定される構成や、 5つのサブ画素によって 1つの画素が 規定される構成においても、画素が第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とを 含むことにより、明るい赤を表示するという効果が得られる。
[0136] 図 40 (a)および (b)に、 5つのサブ画素によって規定される画素の例を示す。図 40
(a)および (b)に示す画素は、第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ 画素 G、青サブ画素 Bおよび黄サブ画素 Yeによって規定されており、図 31 (a)およ び (b)に例示した画素から、シアンサブ画素 Cを除いたものに相当する。
[0137] 図 40 (a)および (b)に示すような構成を採用しても、画素に黄サブ画素 Yeが含まれ ているので、三原色を用いて表示を行う従来の一般的な液晶表示装置に比べて色 再現範囲を広くすることができる。また、画素に第 1の赤サブ画素 R1と第 2の赤サブ 画素 R2とが含まれて 、るので、明る 、赤を表示することも可能になる。
[0138] また、 5つのサブ画素によって 1つの画素を規定する場合であっても、図 40 (a)およ び (b)に例示しているように、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが連続し ていることが好ましぐ緑サブ画素 Gと黄サブ画素 Yeとが連続し、且つ、他のサブ画 素によって挟まれていることが好ましい。また、黄の表示に寄与するサブ画素(つまり 第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2、緑サブ画素 Gおよび黄サブ画素 Ye) が連続していることが好ましぐシアンの表示に寄与するサブ画素(つまり緑サブ画素 Gおよび青サブ画素 B)が連続して 、ることが好ま 、。
[0139] なお、 5つのサブ画素によって 1つの画素を規定する場合、画素にはシアンサブ画 素 Cよりも黄サブ画素 Yeが含まれていることが好ましい。黄サブ画素 Yeは、シアンサ ブ画素 Cよりも Y値が高いため、黄サブ画素 Yeが含まれている方が画素全体で明る い表示が可能となる。
[0140] また、これまでは、画素を規定する複数のサブ画素が実質的に同じ大きさを有する 構成を図示したが、図 41に示すように、画素を規定する複数のサブ画素は異なった 大きさを有してもよい。図 41に示す構成では、緑サブ画素 Gおよび黄サブ画素 Yeが 、第 1の赤サブ画素 Rl、第 2の赤サブ画素 R2および青サブ画素 Bの 1. 5倍の大きさ を有している。このような構成であっても、明るい赤を表示することができる。なお、図 41に例示した配置は、第 1の赤サブ画素 R1および第 2の赤サブ画素 R2が連続して いる点で好ましぐ黄の表示に寄与するサブ画素(つまり第 1の赤サブ画素 Rl、第 2 の赤サブ画素 R2、緑サブ画素 Gおよび黄サブ画素 Ye)が連続している点でも好まし い。
[0141] ただし、大きさの異なるサブ画素を設けると、表示装置の設計を困難にしたり、表示 装置の製造工程を複雑にしたりすることがある。画素を規定する複数のサブ画素が 実質的に同じ大きさを有していると、このような問題が発生しない。
[0142] 続いて、本実施形態における液晶表示装置 100および 200のより具体的な構造を 説明する。
[0143] 液晶表示装置 100および 200は、例えば、図 42に示すように、アクティブマトリクス 基板 10と、カラーフィルタ基板 20と、これらの間に設けられた液晶層 30とを有してい る。
[0144] アクティブマトリクス基板 10上には、図示していないが、複数のスイッチング素子(例 えば TFT)と、各スイッチング素子に電気的に接続された画素電極とが設けられてい る。 [0145] 典型的には、図 43 (a)および (b)に示すように、各サブ画素に対応してスイッチング 素子 11が設けられており、各サブ画素は独立に駆動される。ただし、図 44 (a)および (b)に示すように、第 1の赤サブ画素 R1および第 2の赤サブ画素 R2の一方に対応し たスイッチング素子 11を省略し、第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とを同 一のスイッチング素子 11で駆動してもよ 、。
[0146] 第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが互いに独立に駆動される構成を用 いると、表示面を正面方向から観察したときの γ特性と斜め方向から観察したときの y特性とが異なるという y特性の視角依存性を低減することができる。
[0147] γ特性の視角依存性を低減する手法としては、特開 2004— 62146号公報ゃ特開 2004 - 78157号公報にマルチ画素駆動と呼ばれる手法が提案されて!、る。この手 法では、 1つのサブ画素を 2つの領域に分割し、それぞれの領域に異なる電圧を印 カロすること〖こよって γ特性の視角依存性を低減している。
[0148] 第 1の赤サブ画素 R1と第 2の赤サブ画素 R2とが互いに独立に駆動される構成を用 いると、当然ながら、第 1の赤サブ画素 R1の液晶層と第 2の赤サブ画素 R2の液晶層 とに互いに異なる電圧を印加することができる。そのため、上記特開 2004— 62146 号公報ゃ特開 2004— 78157号公報に開示されているマルチ画素駆動と同様に、 Ύ特性の視角依存性を低減すると ヽぅ効果が得られる。
[0149] カラーフィルタ基板 20の具体的な構成を、液晶表示装置 100を例にとり図 45に示 す。カラーフィルタ基板 20は、透明な基板 (例えばガラス基板やプラスチック基板) 2 1と、基板 21上の画素に対応する領域内に設けられた複数のカラーフィルタとを備え ている。
[0150] 複数のカラーフィルタは、具体的には、赤色の光を透過する第 1および第 2の赤カラ 一フィルタ 22R1および 22R2と、緑色の光を透過する緑カラーフィルタ 22Gと、青色 の光を透過する青カラーフィルタ 22Βと、黄色の光を透過する黄カラーフィルタ 22Ye と、シアン色の光を透過するシアンカラーフィルタ 22Cである。
[0151] カラーフィルタ同士の間には、ブラックマトリクス 23が設けられている。また、カラー フィルタおよびブラックマトリクス 23上に、対向電極 24が設けられている。
[0152] カラーフィルタは、公知の手法を用いて形成することができ、例えば、インクジェット 法を用いて形成することができる。
[0153] 液晶表示装置 100および 200は、既に述べたように、多原色表示を行う。そのため 、外部から入力される画像信号を受け取って多原色表示用の各種制御信号を生成 する多原色コントローラを備えている。多原色コントローラの一例を図 46に示す。
[0154] 図 46に示す多原色コントローラ 40は、変換マトリクス 41、マッピングユニット 42、複 数の 2次元ルックアップテーブル 43および乗算器 44を有している。
[0155] 外部力 入力された RGB信号は、変換マトリクス 41によって XYZ表色系の色空間 に対応した信号 (XYZ信号)に変換される。 XYZ信号は、マッピングユニット 42によ つて xy座標空間に写像され、それによつて Y値と色度座標 (X, y)に対応した信号が 生成される。原色の数だけ用意された複数の二次元ルックアップテーブル 43によつ て、色度座標 (X, y)から、各サブ画素で表示すべき色の色相および彩度に対応した データ (r, g, b, ye, c)が生成される。これらのデータと Y値とが乗算器 44で乗算され ること〖こよって、各原色に対応した信号 R, G, Β, Ye, Cが生成される。なお、ここで説 明した手法は一例であり、多原色表示用の信号を生成する手法はこれに限定される ものではない。
産業上の利用可能性
[0156] 本発明によると、色再現範囲が広ぐ且つ、明るい赤を表示することができる表示装 置が提供される。また、本発明によると、そのような表示装置に用いられるカラーフィ ルタ基板が提供される。
[0157] 本発明は、種々の表示装置に好適に用いられ、例えば、液晶表示装置、 CRT (ブ ラウン管)、有機 EL表示装置、プラズマディスプレイパネル、 SED (Surface- conducti on Electron-emitter Display;に好適に用いられる。

Claims

請求の範囲
[1] 複数のサブ画素によって規定される画素を有する表示装置であって、
前記複数のサブ画素は、赤を表示する第 1および第 2の赤サブ画素、緑を表示す る緑サブ画素、青を表示する青サブ画素および黄を表示する黄サブ画素を含む表 示装置。
[2] 前記画素が白を表示したときの XYZ表色系における Y値を 100%としたとき、前記 第 1および第 2の赤サブ画素の Y値はそれぞれ 5%以上 11%以下、前記緑サブ画素 の Y値は 20%以上 35%以下、前記青サブ画素の Y値は 5%以上 10%以下、前記 黄サブ画素の Y値は 30%以上 50%以下である請求項 1に記載の表示装置。
[3] 前記第 1および第 2の赤サブ画素の主波長はそれぞれ 605nm以上 635nm以下、 前記緑サブ画素の主波長は 520nm以上 550nm以下、前記青サブ画素の主波長 は 470nm以下、前記黄サブ画素の主波長は 565nm以上 580nm以下である請求 項 1または 2に記載の表示装置。
[4] 前記第 1および第 2の赤サブ画素のそれぞれの色純度は 90%以上、前記緑サブ 画素の色純度は 65%以上 80%以下、前記青サブ画素の色純度は 90%以上 95% 以下、前記黄サブ画素の色純度は 85%以上 95%以下である請求項 1から 3のいず れかに記載の表示装置。
[5] 前記複数のサブ画素は、実質的に同じ大きさを有する請求項 1から 4のいずれかに 記載の表示装置。
[6] 前記第 1および第 2の赤サブ画素は互いに独立に駆動される請求項 1から 5のいず れかに記載の表示装置。
[7] 前記第 1および第 2の赤サブ画素は同一のスイッチング素子によって駆動される請 求項 1から 5のいずれかに記載の表示装置。
[8] 前記画素内において、前記第 1の赤サブ画素と前記第 2の赤サブ画素とが連続す るように配置されて 、る請求項 1から 7の 、ずれかに記載の表示装置。
[9] 前記画素内において、前記緑サブ画素と前記黄サブ画素とが連続し、且つ、他の サブ画素によって挟まれるように配置されて 、る請求項 1から 8の 、ずれかに記載の 表示装置。
[10] 前記画素内において、前記第 1の赤サブ画素、前記第 2の赤サブ画素、前記緑サ ブ画素および前記黄サブ画素が連続するように配置されて 、る請求項 1から 9の 、ず れかに記載の表示装置。
[11] 前記複数のサブ画素は、シアンを表示するシアンサブ画素をさらに含む請求項 1か ら 10のいずれかに記載の表示装置。
[12] 前記画素が白を表示したときの XYZ表色系における Y値を 100%としたとき、前記 シアンサブ画素の Y値は 10%以上 30%以下である請求項 11に記載の表示装置。
[13] 前記シアンサブ画素の主波長は 475nm以上 500nm以下である請求項 11または
12に記載の表示装置。
[14] 前記シアンサブ画素の色純度は 65%以上 80%以下である請求項 11から 13のい ずれかに記載の表示装置。
[15] 前記画素内において、前記シアンサブ画素、前記緑サブ画素および前記青サブ画 素が連続するように配置されて 、る請求項 11から 14の 、ずれかに記載の表示装置
[16] 液晶層を備えた液晶表示装置である請求項 1から 15のいずれかに記載の表示装 置。
[17] 複数のサブ画素によって規定される画素を有する表示装置用のカラーフィルタ基 板であって、
基板と、
前記基板上の前記画素に対応する領域内に設けられた複数のカラーフィルタとを 備え、
前記複数のカラーフィルタは、赤色の光を透過する第 1および第 2の赤カラーフィル タ、緑色の光を透過する緑カラーフィルタ、青色の光を透過する青カラーフィルタおよ び黄色の光を透過する黄カラーフィルタを含むカラーフィルタ基板。
[18] 前記複数のカラーフィルタは、シアン色の光を透過するシアンカラーフィルタをさら に含む請求項 17に記載のカラーフィルタ基板。
PCT/JP2006/318486 2005-09-21 2006-09-19 表示装置およびカラーフィルタ基板 WO2007034770A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680034319XA CN101268499B (zh) 2005-09-21 2006-09-19 显示装置和滤色基片
JP2007536483A JP5014139B2 (ja) 2005-09-21 2006-09-19 表示装置およびカラーフィルタ基板
EP06798097.9A EP1927969B1 (en) 2005-09-21 2006-09-19 Color filter substrate and display device comprising such a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005274510 2005-09-21
JP2005-274510 2005-09-21

Publications (1)

Publication Number Publication Date
WO2007034770A1 true WO2007034770A1 (ja) 2007-03-29

Family

ID=37883554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318486 WO2007034770A1 (ja) 2005-09-21 2006-09-19 表示装置およびカラーフィルタ基板

Country Status (6)

Country Link
US (2) US7760177B2 (ja)
EP (1) EP1927969B1 (ja)
JP (1) JP5014139B2 (ja)
CN (2) CN102122460B (ja)
TW (1) TWI356224B (ja)
WO (1) WO2007034770A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256819A (ja) * 2007-04-03 2008-10-23 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2008268703A (ja) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2009008920A (ja) * 2007-06-28 2009-01-15 Toppan Printing Co Ltd カラーフィルタおよび液晶表示装置
JP2009300955A (ja) * 2008-06-17 2009-12-24 Toppan Printing Co Ltd カラーフィルタ及び液晶表示装置
EP2194424A1 (en) * 2007-09-13 2010-06-09 Sharp Kabushiki Kaisha Multiple-primary-color liquid crystal display device
WO2011040370A1 (ja) 2009-09-30 2011-04-07 シャープ株式会社 液晶表示装置
WO2011052612A1 (ja) 2009-10-29 2011-05-05 シャープ株式会社 液晶表示装置
WO2011093243A1 (ja) 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置
WO2014174895A1 (ja) * 2013-04-26 2014-10-30 シャープ株式会社 表示装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265546B2 (ja) * 2005-01-31 2009-05-20 ソニー株式会社 撮像装置、画像処理装置および画像処理方法
JP4528859B2 (ja) * 2006-06-19 2010-08-25 シャープ株式会社 表示装置
CN101523478B (zh) * 2006-10-13 2011-09-21 夏普株式会社 显示装置和信号转换装置
US8451302B2 (en) * 2007-01-25 2013-05-28 Sharp Kabushiki Kaisha Multi primary color display device
JP4763078B2 (ja) * 2007-03-16 2011-08-31 シャープ株式会社 表示装置
KR100892225B1 (ko) * 2007-04-16 2009-04-09 삼성전자주식회사 컬러 디스플레이 장치
BRPI0916678A2 (pt) * 2008-07-28 2015-11-17 Sharp Kk dispositivo de dispositivo de exibição de cor multi primária
US9324286B2 (en) * 2008-11-28 2016-04-26 Sharp Kabushiki Kaisha Multiple primary color liquid crystal display device and signal conversion circuit
JP5768424B2 (ja) * 2011-03-22 2015-08-26 ソニー株式会社 表示装置
CN102749751B (zh) * 2011-04-22 2015-09-16 群创光电股份有限公司 显示面板
TWI484817B (zh) * 2011-12-15 2015-05-11 Au Optronics Corp 顯示面板
US8902265B2 (en) * 2012-03-07 2014-12-02 Eastman Kodak Company Method for controlling display with alternating color pixels
US10304906B2 (en) 2013-01-18 2019-05-28 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US9590017B2 (en) 2013-01-18 2017-03-07 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US10243023B2 (en) 2013-01-18 2019-03-26 Universal Display Corporation Top emission AMOLED displays using two emissive layers
US10229956B2 (en) 2013-01-18 2019-03-12 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US10580832B2 (en) 2013-01-18 2020-03-03 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
TWI490614B (zh) 2013-01-24 2015-07-01 E Ink Holdings Inc 電泳顯示裝置
JP2015184623A (ja) * 2014-03-26 2015-10-22 ソニー株式会社 画像表示装置、カラーフィルタおよび画像信号処理装置
US10700134B2 (en) * 2014-05-27 2020-06-30 Universal Display Corporation Low power consumption OLED display
CN104460077B (zh) * 2014-12-31 2018-01-12 深圳市华星光电技术有限公司 像素单元结构及显示装置
US10263050B2 (en) 2015-09-18 2019-04-16 Universal Display Corporation Hybrid display
US9818804B2 (en) 2015-09-18 2017-11-14 Universal Display Corporation Hybrid display
KR102567648B1 (ko) * 2016-03-14 2023-08-17 삼성디스플레이 주식회사 액정 표시 장치
CN105869524A (zh) * 2016-04-29 2016-08-17 中山市宏晟祥光电照明科技有限公司 Led灯珠光效增强型显示屏模组
CN106647061B (zh) * 2017-01-23 2018-11-23 武汉华星光电技术有限公司 像素结构及液晶显示面板
CN106918959A (zh) * 2017-03-24 2017-07-04 京东方科技集团股份有限公司 像素结构、显示面板以及显示装置
US10768469B2 (en) * 2017-04-28 2020-09-08 Japan Display Inc. Active matrix display device
CN109426027B (zh) * 2017-08-30 2021-10-08 群创光电股份有限公司 显示装置
US20190064515A1 (en) * 2017-08-30 2019-02-28 Innolux Corporation Display device and electronic apparatus using the same
CN108153055B (zh) * 2018-01-08 2020-08-04 昆山龙腾光电股份有限公司 背光模组和液晶显示器
CN108732812B (zh) * 2018-05-28 2021-05-14 厦门天马微电子有限公司 显示面板和显示装置
US10797112B2 (en) 2018-07-25 2020-10-06 Universal Display Corporation Energy efficient OLED TV
KR20230103653A (ko) * 2021-12-31 2023-07-07 엘지디스플레이 주식회사 유기 발광 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527477B2 (ja) * 1988-06-14 1996-08-21 シャープ株式会社 絵素表示装置
JPH10123501A (ja) * 1996-08-26 1998-05-15 Canon Inc 表示装置
JP2005523465A (ja) * 2002-04-11 2005-08-04 ジェノア・カラー・テクノロジーズ・リミテッド 属性を向上させるカラー表示装置および方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8604402D0 (en) * 1986-02-21 1986-03-26 Gen Electric Co Plc Liquid crystal displays
US4800375A (en) * 1986-10-24 1989-01-24 Honeywell Inc. Four color repetitive sequence matrix array for flat panel displays
US5642176A (en) * 1994-11-28 1997-06-24 Canon Kabushiki Kaisha Color filter substrate and liquid crystal display device
JP3362758B2 (ja) * 1996-03-15 2003-01-07 富士ゼロックス株式会社 反射型カラー表示装置
US5899550A (en) * 1996-08-26 1999-05-04 Canon Kabushiki Kaisha Display device having different arrangements of larger and smaller sub-color pixels
JP4034022B2 (ja) 2000-01-25 2008-01-16 シャープ株式会社 液晶表示装置
JP2001242451A (ja) * 2000-03-01 2001-09-07 Fujitsu Ltd 反射型表示素子用の反射側基板及び反射型表示素子
JP2001306023A (ja) 2000-04-18 2001-11-02 Seiko Epson Corp 画像表示装置
US7268757B2 (en) * 2001-06-11 2007-09-11 Genoa Color Technologies Ltd Device, system and method for color display
JP3873827B2 (ja) * 2001-07-26 2007-01-31 セイコーエプソン株式会社 液晶装置及び電子機器
JP2003107437A (ja) * 2001-07-26 2003-04-09 Seiko Epson Corp 液晶装置用基板、液晶装置、及び、電子機器
US20040051724A1 (en) * 2002-09-13 2004-03-18 Elliott Candice Hellen Brown Four color arrangements of emitters for subpixel rendering
JP2003284084A (ja) * 2002-03-20 2003-10-03 Sony Corp 画像処理装置および方法、並びに画像処理装置の製造方法
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4248306B2 (ja) 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
US6888604B2 (en) * 2002-08-14 2005-05-03 Samsung Electronics Co., Ltd. Liquid crystal display
JP4366988B2 (ja) * 2003-05-01 2009-11-18 セイコーエプソン株式会社 有機el装置および電子機器
KR100943273B1 (ko) * 2003-05-07 2010-02-23 삼성전자주식회사 4-컬러 변환 방법 및 그 장치와 이를 이용한 유기전계발광표시장치
JP2007501440A (ja) * 2003-05-27 2007-01-25 ジェノア・カラー・テクノロジーズ・リミテッド スペクトルに基づいて構成した後方照明を有する多原色ディスプレイ
WO2005057532A2 (en) * 2003-12-15 2005-06-23 Genoa Color Technologies Ltd. Multi-primary liquid crystal display
US7495722B2 (en) * 2003-12-15 2009-02-24 Genoa Color Technologies Ltd. Multi-color liquid crystal display
KR101072375B1 (ko) * 2003-12-29 2011-10-11 엘지디스플레이 주식회사 화소별 개구율 자동제어가 가능한 액정표시장치
JP4696661B2 (ja) * 2004-04-26 2011-06-08 三菱化学株式会社 カラーフィルター用青色組成物、カラーフィルター及びカラー画像表示装置
US7515122B2 (en) * 2004-06-02 2009-04-07 Eastman Kodak Company Color display device with enhanced pixel pattern
KR100883734B1 (ko) * 2004-08-19 2009-02-12 샤프 가부시키가이샤 다원색 표시 장치 및 액정 표시 장치
KR101122229B1 (ko) * 2004-10-05 2012-03-19 삼성전자주식회사 4색 액정 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527477B2 (ja) * 1988-06-14 1996-08-21 シャープ株式会社 絵素表示装置
JPH10123501A (ja) * 1996-08-26 1998-05-15 Canon Inc 表示装置
JP2005523465A (ja) * 2002-04-11 2005-08-04 ジェノア・カラー・テクノロジーズ・リミテッド 属性を向上させるカラー表示装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1927969A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256819A (ja) * 2007-04-03 2008-10-23 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2008268703A (ja) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2009008920A (ja) * 2007-06-28 2009-01-15 Toppan Printing Co Ltd カラーフィルタおよび液晶表示装置
EP2194424A1 (en) * 2007-09-13 2010-06-09 Sharp Kabushiki Kaisha Multiple-primary-color liquid crystal display device
EP2194424A4 (en) * 2007-09-13 2010-12-22 Sharp Kk Liquid crystal display device with several primary colors
JP2009300955A (ja) * 2008-06-17 2009-12-24 Toppan Printing Co Ltd カラーフィルタ及び液晶表示装置
US8692960B2 (en) 2009-09-30 2014-04-08 Sharp Kabushiki Kaisha Liquid crystal display device
CN102576165A (zh) * 2009-09-30 2012-07-11 夏普株式会社 液晶显示装置
WO2011040370A1 (ja) 2009-09-30 2011-04-07 シャープ株式会社 液晶表示装置
CN102576165B (zh) * 2009-09-30 2014-11-12 夏普株式会社 液晶显示装置
WO2011052612A1 (ja) 2009-10-29 2011-05-05 シャープ株式会社 液晶表示装置
JP5329675B2 (ja) * 2009-10-29 2013-10-30 シャープ株式会社 液晶表示装置
US8675031B2 (en) 2009-10-29 2014-03-18 Sharp Kabushiki Kaisha Liquid crystal display device
WO2011093243A1 (ja) 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置
US9019186B2 (en) 2010-01-29 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display device
WO2014174895A1 (ja) * 2013-04-26 2014-10-30 シャープ株式会社 表示装置

Also Published As

Publication number Publication date
CN101268499A (zh) 2008-09-17
CN102122460A (zh) 2011-07-13
EP1927969B1 (en) 2017-05-24
US20100238102A1 (en) 2010-09-23
TWI356224B (en) 2012-01-11
CN101268499B (zh) 2011-03-02
US20070063946A1 (en) 2007-03-22
CN102122460B (zh) 2012-08-29
TW200717090A (en) 2007-05-01
JP5014139B2 (ja) 2012-08-29
EP1927969A1 (en) 2008-06-04
EP1927969A4 (en) 2011-05-11
JPWO2007034770A1 (ja) 2009-03-26
US7760177B2 (en) 2010-07-20

Similar Documents

Publication Publication Date Title
WO2007034770A1 (ja) 表示装置およびカラーフィルタ基板
JP4763078B2 (ja) 表示装置
US9953590B2 (en) Color display devices and methods with enhanced attributes
EP1741283B1 (en) Bright liquid crystal display with 4 white subpixels containing color subpixel repeating group
US7583279B2 (en) Subpixel layouts and arrangements for high brightness displays
US8405687B2 (en) Multi-primary color display device
JP4646977B2 (ja) カラーフィルタ基板及び表示装置
EP3190458B1 (en) Pixel structure and display device
WO2007148519A1 (ja) 表示装置
WO2012005170A1 (ja) 多原色液晶表示装置
JP5408863B2 (ja) 表示装置
TWI410732B (zh) 畫素結構

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034319.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006798097

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006798097

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007536483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE