WO2007034068A1 - Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d’origine naturelle - Google Patents

Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d’origine naturelle Download PDF

Info

Publication number
WO2007034068A1
WO2007034068A1 PCT/FR2006/002142 FR2006002142W WO2007034068A1 WO 2007034068 A1 WO2007034068 A1 WO 2007034068A1 FR 2006002142 W FR2006002142 W FR 2006002142W WO 2007034068 A1 WO2007034068 A1 WO 2007034068A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
reaction
catalyst
mixture
ester
Prior art date
Application number
PCT/FR2006/002142
Other languages
English (en)
Other versions
WO2007034068B1 (fr
Inventor
Gérard Hillion
Bruno Delfort
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Priority to EP06808164.5A priority Critical patent/EP1941014B1/fr
Priority to BRPI0616210-0A priority patent/BRPI0616210A2/pt
Priority to CA002621912A priority patent/CA2621912A1/fr
Priority to MX2008003425A priority patent/MX2008003425A/es
Priority to CN2006800346412A priority patent/CN101268175B/zh
Priority to AU2006293813A priority patent/AU2006293813B2/en
Publication of WO2007034068A1 publication Critical patent/WO2007034068A1/fr
Publication of WO2007034068B1 publication Critical patent/WO2007034068B1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to the manufacture of ethyl esters of fatty acids useful as diesel substitutes, from natural oils or fats, vegetable or animal, or other mixtures of glycerides.
  • the transesterification reaction with methanol and ethanol is well known to those skilled in the art. It most often uses homogeneous catalysts, for example acidic catalysts (sulphonic acids, sulfuric acid, etc.), as described in particular in US Pat. No. 4,695,411, various metal compounds, for example metal salts such as salts of titanium, zinc, magnesium, tin, antimony or lead, these metal compounds may be in the form of alcoholates, alkyl derivatives or oxides.
  • homogeneous basic catalysts of the NaOH, KOH or LiOH type are used in solution in methanol, or directly alkoxides of these same metals, or certain carbonates such as, for example, sodium carbonate.
  • Transesterification in the presence of methanol is generally carried out in a single catalytic step in the case of a reaction conducted in batch or at least two stages of catalysis when operating continuously via overflow reactors.
  • the solvent power of ethanol being much higher than that of methanol, this has the effect of rendering soluble the glycerine formed during the reaction.
  • the conversion to esters is penalized, which prevents a high conversion from being obtained in a single reaction stage.
  • a second transesterification step is therefore necessary after the glycerin formed has been removed from the reaction medium.
  • the partial distillation of ethanol or the addition of a certain amount of water or a third solvent such as a hydrocarbon, for example n-heptane makes it possible to reduce the solubility of glycerol and to eliminate a sufficient amount, which allows to achieve in the second stage of catalysis a high conversion.
  • Another alternative for achieving high conversions is to distil under certain conditions and under reduced pressure the ethyl esters made during the first transesterification step.
  • the invention provides a process for producing fatty acid ethyl esters from vegetable or animal oils or fats or other glyceride mixtures which comprises the following sequence of steps:
  • step (a) in which the oil, fat, or glyceride mixture is transesterified with ethanol using a soluble catalyst, or becoming it during the reaction;
  • step (b) in which the glycerin formed is decanted and removed (without the need for an evaporation operation of the excess ethanol);
  • step (c) in which a second transesterification reaction is carried out so as to obtain a product whose ester content is at least 97% by weight; a step (d) in which the excess ethanol is evaporated in the presence of the catalyst under suitable conditions to avoid the reverse reaction of the transesterification (or feedback), the ethanol obtained being then practically anhydrous; ;
  • step (e) in which the ester is purified by washing sequences with water; a step (f) in which the ester mixture is dried under reduced pressure.
  • step (c) The excess of ethanol present in the reaction medium which is evaporated after the second catalysis step [step (c)] is practically anhydrous and has the advantage of being able to be recycled without resorting to a step of rectification.
  • This evaporation is conducted under such conditions that a feedback is avoided which consists of the reaction of glycerin with the ethyl esters manufactured to reform glycerides and ethanol. Temperature and residence time are the two main parameters that influence the speed of this reverse reaction.
  • Step (a) The oil, the fat, vegetable or animal, or the starting mixture of glycerides generally has an acid number of at most 2.
  • ethanol is used, the water content of which is for example between 3000 and 5000 ppm, using an ethanol / oil stoichiometry such that a conversion to ester manufactured greater than or equal to 90% is obtained.
  • This stoichiometry ethanol / oil is generally between 1, 3 and 2, preferably between 1, 6 and 1, 8.
  • the advantage of this step in the process of the invention is that its implementation allows, in the next step (b), a natural decantation of the glycerin, without recourse to an evaporation operation of excess ethanol.
  • the catalyst used is a homogeneous basic catalyst, i.e. a soluble catalyst, or becomes soluble during the reaction. It can be obtained for example by dissolving a strong base in an alcohol (methanol or ethanol) or from an alkali metal alkoxide, which can be for example a sodium ethoxide or methoxide, or from a metal compound of alkoxide, alkyl and / or oxide type. Sodium methoxide is preferred because it has the advantage of being a cheap product, commercially available in 30% solution in methanol.
  • the reaction temperature is generally between 20 and 100 ° C., preferably between 40 and 80 ° C.
  • the reaction time which makes it possible to reach thermodynamic equilibrium is generally between 40 and 160 minutes.
  • the mixture of esters obtained will contain a certain proportion of methyl esters, in general between 10 and 15% by weight.
  • the natural settling of the glycerine is obtained as soon as the stirring is stopped and at a temperature of the medium of, for example, between 40 and 60 ° C.
  • the glycerin contained in the lower phase is then removed by racking.
  • Step (c) This second transesterification step is carried out after adding a new amount of alkaline catalyst and a quantity of ethanol corresponding to a stoichiometry ethanol / starting oil generally between 0.3 and 1, preferably between 0.5 and 0.7.
  • the catalysis temperature is of the same order of magnitude as that of step (a), with a catalysis time of between 20 and 45 minutes.
  • step (c) a product is obtained whose ester content is at least 97% by weight.
  • the removal of excess ethanol from the reaction medium is generally carried out by evaporation in the presence of the catalyst.
  • the ethanol obtained is substantially anhydrous and can be recycled to the process without having to undergo a rectification.
  • the evaporation conditions must be adapted in order to avoid the feedback reaction, which consists in the fact that the glycerol formed reacts with the ethyl esters manufactured, by reforming partial glycerides (mono- and diglycerides) or total glycerides (triglycerides), reconstituting thus the starting oil.
  • the residence time and the temperature are the two main parameters that influence the speed of this reverse reaction.
  • the use of a falling film evaporator is in this case preferred to reduce the residence time.
  • the temperature is generally less than 120 ° C., preferably less than 100 ° C.
  • the residence time is in general less than 1 minute, preferably less than 30 seconds.
  • the ester phase is purified by removing the residual catalyst and the soluble glycerin by a succession of washes with water.
  • a first neutralizing washing which effectively removes the traces of sodium soaps contained in the ester phase by using a strong mineral acid, such as sulfuric acid, hydrochloric acid or phosphoric acid, and then one or more washing (s) with pure water, according to the removal efficiency of the excess of strong acid.
  • a strong mineral acid such as sulfuric acid, hydrochloric acid or phosphoric acid
  • Step ffl traces of water and ethanol are removed by drying (evaporation under reduced pressure), so that the ester mixture meets the specifications of a Biodiesel on the two criteria (water and ethanol content) of EN 14214.
  • step (a) In a glass reactor equipped with a bottom valve, stirred and heated to 70 ° C., 1000 g of refined rapeseed oil of food grade and 266 g of ethanol containing 3000 ppm of water are introduced, respecting a stoichiometry ethanol / oil of 1, 7. Then 10 g of a methanolic solution containing 30% of sodium methoxide are introduced. Stirring and the temperature are maintained at 70 ° C. ⁇ 2 ° C. for 60 minutes (this constitutes step (a)).
  • step (b) the reaction medium is decanted at 60 ° C. 15 to 20 minutes after stopping the stirring, 95 g of a glycerol solution composed of glycerin, ethanol, amine, ethyl esters, sodium soaps and alcoholates (mixture of methylate, ethylate, and glycerate) of sodium.
  • a glycerol solution composed of glycerin, ethanol, amine, ethyl esters, sodium soaps and alcoholates (mixture of methylate, ethylate, and glycerate) of sodium.
  • composition of the mixture is as follows (in% by mass): Ethyl and methyl esters: 91.5
  • step (c) in the same reactor, a second transesterification step is carried out.
  • 93 g of ethanol containing 3000 ppm of water are added to the ester phase, which corresponds to a stoichiometry of ethanol / starting oil of 0.6, and 3.33 g of sodium methoxide in solution at room temperature. 30% in methanol. It is maintained in a stirred medium at 60 ° C. for at least 30 minutes. Under these temperature conditions, the glycerin formed remains soluble in the reaction medium.
  • composition of the mixture is as follows (in% by mass):
  • step (d) most of the excess ethanol is removed from the reaction medium by continuously feeding a falling film evaporator.
  • the operating conditions are as follows:
  • average residence time estimated between 15 and 20 seconds.
  • step (e) the ethyl ester phase obtained is purified by carrying out a series of washes with water.
  • the entire reaction mixture is introduced and its temperature is brought to 60 ° C. 30 g of deionized water are added, the mixture is stirred for 5 minutes and the mixture is decanted for 15 to 20 minutes. An aqueous phase is withdrawn enriched in alcohol, glycerin and sodium salts. The operation is repeated until a pH value of the aqueous solution of between 7 and 8 is obtained.
  • composition of the ester mixture obtained which complies with the EN 14214 standard for a Biodiesel, is the following (in mass%):
  • Example 1 is reproduced identically, except that, in step (d), the set temperature of the falling film is brought to 148 ° C.
  • the residual amount of ethanol in the ester mixture is less than 0.3%.
  • Example 1 is reproduced identically until step (e) included.
  • Step (d) which consists of removing most of the excess ethanol, is carried out batchwise in the reactor equipped with a bottom valve.
  • the operating conditions are: a reaction mixture temperature of 100 ° C. and a pressure of 160 mmHg.
  • the duration of the evaporation necessary to reach a residual ethanol content of the order of 1, 5% by weight is 30 minutes.
  • the residence time esyt an important parameter which conditions the appearance of the feedback.
  • the falling film appears as the preferred tool for combining a suitable temperature and residence time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Un procédé permettant, à partir d'huiles ou de graisses naturelles, végétales ou animales, ou d'autres mélanges de glycérides, l'obtention quasi-quantitative d'esters éthyliques d'acides gras utilisables comme substituts du gazole, comprend la succession d'étapes suivantes : une étape (a) dans laquelle on transestérifie l'huile, la graisse ou le mélange de glycérides par de l'éthanol en utilisant un catalyseur soluble, ou le devenant au cours de la réaction ; une étape (b) dans laquelle la glycérine formée est décantée et éliminée sans qu'on ait recours à une opération d'évaporation de l'excès d'éthanol ; une étape (c) dans laquelle on réalise une deuxième réaction de transestérification de façon à obtenir un produit dont la teneur en esters est d'au moins 97 % en masse ; une étape (d) dans laquelle on réalise une évaporation de l'excès d'éthanol en présence du catalyseur dans des conditions adaptées pour éviter la réaction inverse de la transestérification, l'éthanol étant obtenu pratiquement anhydre (il peut être recyclé dans le procédé sans avoir à subir une rectification) ; une étape (e) dans laquelle l'ester subit une purification par des séquences de lavage à l'eau ; et une étape (f) dans laquelle le mélange d'esters est séché sous pression réduite.

Description

PROCÉDÉ AMÉLIORÉ DE FABRICATION D'ESTERS ÉTHYLIQUES À PARTIR DE CORPS GRAS DORIGINE NATURELLE
La présente invention concerne la fabrication d'esters éthyliques d'acides gras utilisables comme substituts du gazole, à partir d'huiles ou de graisses naturelles, végétales ou animales, ou d'autres mélanges de glycérides.
Elle a plus particulièrement pour objet un procédé amélioré de transestérifica- tion permettant, à partir d'huiles ou de graisses naturelles, végétales ou animales, ou d'autres mélanges de glycérides, l'obtention quasi-quantitative d'esters éthyliques d'acides gras.
La réaction de transestérification par le méthanol et l'éthanol est bien connue de l'homme du métier. Elle utilise le plus souvent des catalyseurs homogènes, par exemple des catalyseurs acides (acides sulfoniques, acide sulfurique etc.), comme décrit notamment dans le brevet US-A-4 695 411 , des composés métalliques divers, par exemple des sels métalliques comme des sels de titane, de zinc, de magnésium, d'étain, d'antimoine ou de plomb, ces composés métalliques pouvant être sous la forme d'alcoolates, de dérivés alkyles ou d'oxydes. De préférence, on utilise plus particulièrement, de par leur grande réactivité, des catalyseurs basiques homogènes du type NaOH, KOH ou LiOH en solution dans le méthanol, ou directement des alcoolates de ces mêmes métaux, ou encore certains carbonates comme par exemple le carbonate de potassium et le carbonate de sodium, comme cités par Freedman B. et al : JAOCS 6J. n°10, p.1638 ; par Pryde E.H., "Vegetable OiI Fuels", Proc. Int. Conf., Fargo, ND, 1982, pp. 117-122 ; et dans le brevet US-A-2 383 602.
La transestérification en présence de méthanol est généralement réalisée en une seule étape de catalyse dans le cas d'une réaction conduite en batch ou au minimum en deux étapes de catalyse lorsque l'on opère en continu par l'intermédiaire de réacteurs à débordement.
Les procédés d'éthanolyse décrits sont peu nombreux et beaucoup moins performants que ceux qui utilisent le méthanol. En effet, avec l'éthanol et en utilisant un même ratio molaire alcool/huile qu'avec le méthanol, il est impossible d'obtenir naturellement une séparation du glycérol formé (voir notamment le brevet US-A-
2.383 602).
Le pouvoir solvant de l'éthanol étant bien supérieur à celui du méthanol, ceci a pour conséquence de rendre soluble la glycérine formée pendant la réaction. La conversion en esters s'en trouve pénalisée, ce qui empêche d'obtenir en une seule étape de réaction une conversion élevée.
Une seconde étape de transestérification est donc nécessaire après qu'on a éliminé du milieu réactionnel la glycérine formée. La distillation partielle d'éthanol ou l'ajout d'une certaine quantité d'eau ou d'un tiers solvant tel qu'un hydrocarbure, par exemple du n-heptane, permet de diminuer la solubilité de la glycérine et d'en éliminer une quantité suffisante, ce qui permet d'atteindre en deuxième étape de catalyse une conversion élevée. Une autre alternative permettant d'atteindre des conversions élevées consiste à distiller dans certaines conditions et sous pression réduite les esters éthyliques fabriqués au cours de la première étape de transestérification.
On a maintenant découvert, de manière inattendue, que l'on pouvait réaliser l'éthanolyse d'une huile, d'une graisse, ou de tout autre mélange de glycérides, en deux étapes de catalyse en utilisant un catalyseur basique soluble, tout en obtenant une décantation naturelle de la glycérine après la première étape de transestérification, sans avoir recours à une distillation de l'excès d'alcool ou à un ajout d'eau ou d'un tiers solvant.
Ainsi, l'invention propose un procédé de fabrication d'esters éthyliques d'acides gras à partir d'huiles ou de graisses végétales ou animales ou d'autres mélanges de glycérides qui comprend la succession d'étapes suivantes :
- une étape (a) dans laquelle on transestérifie l'huile, la graisse, ou le mélange de glycérides par de l'éthanol en utilisant un catalyseur soluble, ou le devenant au cours de la réaction ;
- une étape (b) dans laquelle la glycérine formée est décantée et éliminée (sans qu'on ait recours à une opération d'évaporation de l'excès d'éthanol) ;
- une étape (c) dans laquelle on réalise une deuxième réaction de transestérification de façon à obtenir un produit dont la teneur en esters est d'au moins 97 % en masse ; - une étape (d) dans laquelle on réalise une évaporation de l'excès d'éthanol en présence du catalyseur dans des conditions adaptées pour éviter la réaction inverse de la transestérification (ou rétro-réaction), l'éthanol obtenu étant alors pratiquement anhydre ;
- une étape (e) dans laquelle l'ester subit une purification par des séquences de lavage à l'eau ; - une étape (f) dans laquelle le mélange d'esters est séché sous pression réduite.
Dans le procédé de l'invention, en répartissant judicieusement la stoechiomé- trie en éthanol sur les deux étapes (a) et (c) de transestérification et en utilisant comme catalyseur soit un alcoolate alcalin obtenu par dissolution dans un alcool (méthanol ou éthanol) d'un hydroxyde de sodium, de potassium ou de lithium, soit une solution méthanolique de méthylate de sodium disponible commercialement, on obtient aisément à l'issue de la première étape de catalyse [étape (a)] une conversion en esters fabriqués supérieure ou égale à 90 %. Il est alors possible, après élimination de la glycérine formée, d'effectuer La seconde étape de catalyse [étape (c)] est alors effectuée après l'ajout d'un appoint d'éthanol et de catalyseur. La conversion en esters éthyliques ainsi obtenue est alors suffisante pour atteindre la qualité demandée à un mélange d'esters à usage carburant.
L'utilisation comme catalyseur, dans les étapes (a) et (c), d'un alcoolate de métal alcalin, par exemple de l'éthylate ou du méthylate de sodium ou de potassium, offre l'avantage d'obtenir de l'éthanol pratiquement anhydre en fin de deuxième étape de catalyse. L'alcoolate joue en effet le rôle d'un desséchant, comme le montre l'équation chimique d'hydrolyse de l'alcoolate par l'eau (l'eau provenant essentiellement des charges : huile et éthanol). Cette réaction est stoechiométrique et, dans le cas du méthylate, elle s'écrit comme suit :
MOCH3 + H2O > CH3OH + MOH
(où M représente le métal alcalin). Ceci est un moyen élégant d'éliminer physiquement l'eau du milieu réactionnel.
L'excès d'éthanol présent dans le milieu réactionnel que l'on évapore après la seconde étape de catalyse [étape (c)], est pratiquement anhydre et présente l'avantage de pouvoir être recyclé sans qu'on ait recours à une étape de rectification. Cette évaporation est conduite dans des conditions telles qu'on évite une rétro- réaction qui consiste en la réaction de la glycérine avec les esters éthyliques fabriqués pour reformer des glycérides et de l'éthanol. La température et le temps de séjour sont les deux principaux paramètres qui influent sur la vitesse de cette réaction inverse.
Les différentes étapes du procédé de l'invention sont décrites plus en détail ci- après, en liaison avec la figure annexée.
Étape (a) L'huile, la graisse, végétale ou animale, ou le mélange de glycérides de départ présente en général un indice d'acide d'au plus 2. On utilise en général de l'éthanol dont Ia teneur en eau est comprise par exemple entre 3000 et 5000 ppm, en utilisant une stoechiométrie éthanol/huile telle qu'on obtient une conversion en esters fabriqués supérieure ou égale à 90 %. Cette stoechiométrie éthanol/huile est généralement comprise entre 1 ,3 et 2, de préférence entre 1 ,6 et 1 ,8.
L'intérêt de cette étape dans le procédé de l'invention est que sa mise en œuvre permet, dans l'étape suivante (b), une décantation naturelle de la glycérine, sans qu'on ait recours à une opération d'évaporation de l'excès d'éthanol. Le catalyseur utilisé est un catalyseur basique homogène, c'est-à-dire un catalyseur soluble, ou qui le devient au cours de la réaction. Il peut être obtenu par exemple par dissolution d'une base forte dans un alcool (méthanol ou éthanol), ou encore à partir d'un alcoolate de métal alcalin, qui peut être par exemple un éthylate ou un méthylate de sodium, ou à partir d'un composé métallique de type alcoolate, alkyle et/ou oxyde. Le méthylate de sodium est préféré car il présente l'avantage d'être un produit bon marché, disponible industriellement en solution à 30 % dans le méthanol.
La température de réaction est généralement comprise entre 20 et 1000C, de préférence entre 40 et 800C. En mode batch, le temps de réaction qui permet d'atteindre l'équilibre thermodynamique est généralement compris entre 40 et 160 minutes.
On notera que si l'on utilise comme catalyseur un méthylate de métal alcalin en solution dans le méthanol, le mélange d'esters obtenus contiendra une certaine proportion d'esters méthyliques, en général entre 10 et 15 % en masse.
Étape (b)
La décantation naturelle de la glycérine est obtenue dès l'arrêt de l'agitation et à une température du milieu comprise par exemple entre 40 et 600C. La glycérine contenue dans la phase inférieure est ensuite éliminée par soutirage.
Étape (c) Cette deuxième étape de transestérification est réalisée après ajout d'une nouvelle quantité de catalyseur alcalin et d'une quantité d'éthanol correspondant à une stoechiométrie éthanol/huile de départ comprise en général entre 0,3 et 1 , de préférence entre 0,5 et 0,7.
La température de catalyse est du même ordre de grandeur que celle de l'étape (a), avec un temps de catalyse compris entre 20 et 45 minutes. Par cette étape (c), on obtient un produit dont la teneur en esters est d'au moins 97 % en masse.
Étape (d)
Dans cette étape, l'élimination de l'excès d'éthanol du milieu réactionnel se fait en général par évaporation en présence du catalyseur. L'éthanol obtenu est pratiquement anhydre et peut être recyclé dans le procédé sans avoir à subir une rectification.
Les conditions d'évaporation doivent être adaptées afin d'éviter la rétro- réaction, qui consiste en ce que le glycérol formé réagit avec les esters éthyliques fabriqués, en reformant des glycérides partiels (mono- et diglycérides) ou totaux (triglycérides), reconstituant ainsi l'huile de départ.
Le temps de séjour et la température sont les deux principaux paramètres qui influent sur la vitesse de cette réaction inverse. L'emploi d'un évaporateur de type film tombant est dans ce cas préféré pour réduire le temps de séjour. La température est en général inférieure à 1200C, de préférence inférieure à 1000C. Le temps de séjour est en général inférieur à 1 minute, de préférence inférieur à 30 secondes.
Étape (e)
Dans cette étape, on purifie la phase esters en la débarrassant du catalyseur résiduel et de la glycérine soluble par une succession de lavages à l'eau.
Si nécessaire, on peut effectuer un premier lavage neutralisant qui élimine efficacement les traces de savons de sodium contenus dans la phase esters en utilisant un acide minéral fort, comme l'acide sulfurique, l'acide chlorhydrique ou l'acide phosphorique, puis on effectue un ou plusieurs lavage(s) à l'eau pure, selon l'efficacité d'élimination de l'excès d'acide fort.
Étape ffl On élimine les traces d'eau et d'éthanol par un séchage (évaporation sous pression réduite), de façon que le mélange d'esters réponde aux spécifications d'un Biodiesel concernant les deux critères (teneurs en eau et en éthanol) de la norme EN 14214.
Les exemples suivants illustrent le procédé de l'invention.
Exemple 1
Dans un réacteur en verre équipé d'une vanne de fond, agité et chauffé à 700C, on introduit 1000 g d'huile de colza raffinée de qualité alimentaire et 266 g d'éthanol contenant 3000 ppm d'eau, en respectant une stoechiométrie éthanol /huile de 1 ,7. Puis on introduit 10 g d'une solution méthanolique à 30 % de méthylate de sodium. On maintient l'agitation et la température de 700C ± 2°C pendant 60 minutes (ceci constitue l'étape (a)).
Dans l'étape (b), on décante le milieu réactionnel à 600C. 15 à 20 minutes après l'arrêt de l'agitation, on soutire 95 g d'une solution glycérineuse composée de glycérine, d'éthanol, d'esters éthyliques, de savons de sodium et d'alcoolates (mélange de méthylate, d'éthylate, et de glycérate) de sodium.
A l'issue de cette première réaction de transestérification, la composition du mélange est la suivante (en % masse) : - Esters éthyliques et méthyliques : 91 ,5
- Triglycérides : 0,9
- Diglycérides : 2,6
- Monoglycérides : 3,7
- Stérols et esters de stérols : 1 ,3. Dans l'étape (c), dans le même réacteur, on réalise une deuxième étape de transestérification. Pour ce faire, on ajoute à la phase esters 93 g d'éthanol contenant 3000 ppm d'eau, ce qui correspond à une stoechiométrie éthanol/huile de départ de 0,6, et 3,33 g de méthylate de sodium en solution à 30 % dans le méthanol. On maintient en milieu agité à 6O0C pendant au moins 30 minutes. Dans ces conditions de température, la glycérine formée reste soluble dans le milieu réactionnel.
A l'issue de cette deuxième réaction de transestérification, la composition du mélange est la suivante (en % masse) :
- esters éthyliques et méthyliques : 97,5 - triglycérides : < 0,1
- diglycérides : 0,2
- monoglycérides : 0,7
- stérols et esters de stérols : 1 ,6. Dans l'étape (d), on élimine la plus grande partie de l'excès d'éthanol du milieu réactionnel en alimentant en continu un évaporateur à film tombant.
Les conditions opératoires sont les suivantes :
- débit d'alimentation : 600 ml/heure, - température de consigne du film tombant : 1000C,
- pression : 160 mm de Hg,
- temps de séjour moyen estimé entre 15 et 20 secondes.
Dans ces conditions, aucune rétro-réaction n'a été constatée. En partant d'une teneur initiale en éthanol d'environ 17 % dans le mélange d'esters, on obtient à l'issue de cette étape une teneur résiduelle en éthanol comprise entre 1 ,8 et 2 % en masse. La teneur en eau de l'éthanol distillé est inférieure à 400 ppm.
Dans l'étape (e), on purifie la phase d'esters éthyliques obtenue en effectuant une série de lavages à l'eau.
Dans le réacteur équipé d'une vanne de fond, on introduit la totalité du mélange réactionnel et on amène sa température à 600C. On ajoute de 30 g d'eau désionisée, on agite 5 minutes et on décante 15 à 20 minutes. On soutire une phase aqueuse enrichie en alcool, glycérine et sels de sodium. On répète l'opération jusqu'à obtention d'une valeur de pH de la solution aqueuse comprise entre 7 et 8.
La composition du mélange d'esters obtenu, qui respecte la norme EN 14214 relative à un Biodiesel, est la suivante (en % masse) :
- esters éthyliques et méthyliques : 97,5
- triglycérides : < 0,1
- diglycérides : 0,2
- monoglycérides : 0,7 - stérols et esters de stérols : 1 ,6.
On recueille au final 1023 g d'un mélange d'esters éthyliques et méthyliques qui contient 10,3 % d'esters méthyliques. La présence d'esters méthyliques provient de l'utilisation comme catalyseur de méthylate de sodium, la totalité du méthanol mis en jeu étant alors transformée en esters méthyliques.
Exemple 2 (comparatif)
On reproduit à l'identique l'Exemple 1 , si ce n'est que, dans l'étape (d), la température de consigne du film tombant est portée à 1480C. La quantité résiduelle d'éthanol dans le mélange d'esters est inférieure à 0,3 %.
Dans ces conditions, on constate une rétro-réaction, comme le montre la composition du mélange obtenu (en % masse) : - esters éthyliques et méthyliques : 66,2
- triglycérides : 13,9
- diglycérides : 16,1
- monoglycérides : 2,2
- stérols et esters de stérols : 1 ,6.
Exemple 3 (comparatif)
On reproduit à l'identique l'Exemple 1 jusqu'à l'étape (e) incluse.
L'étape (d), qui consiste à éliminer la plus grande partie de l'excès d'éthanol, est réalisée en batch dans le réacteur équipé d'une vanne de fond.
Les conditions opératoires sont : une température du mélange réactionnel de 1000C et une pression de 160 mm de Hg.
La durée de l'évaporation nécessaire pour atteindre une teneur résiduelle en éthanol de l'ordre de 1 ,5 % en masse est de 30 minutes.
Dans ces conditions, la rétro-réaction est effective au vu de la composition du mélange (en % masse) : - esters éthyliques et méthyliques : 94,4
- triglycérides : 0,4
- diglycérides : 1 ,9
- monoglycérides : 1 ,7
- stérols et esters de stérols : 1 ,6. Les résultats de cet exemple montrent que, malgré une température de
1000C, identique à celle mise en jeu dans l'Exemple 1 , le temps de séjour esyt un paramètre important qui conditionne l'apparition de la rétro-réaction. Le film tombant apparaît comme l'outil préféré pour allier une température et un temps de séjour convenables.

Claims

REVENDICATIONS
1. Procédé de fabrication d'esters éthyliques d'acides gras à partir d'huiles ou de graisses végétales ou animales ou d'autres mélanges de glycérides caractérisé en ce qu'il comprend la succession d'étapes suivantes : - une étape (a) dans laquelle on transestérifie l'huile, la graisse, ou le mélange de glycérides par de l'éthanol en utilisant un catalyseur soluble, ou le devenant au cours de la réaction ;
- une étape (b) de décantation et d'élimination de la glycérine formée ;
- une étape (c) dans laquelle on réalise une deuxième réaction de transesté- rification de façon à obtenir un produit dont la teneur en esters est d'au moins 97 % en masse ;
- une étape (d) dans laquelle on réalise une évaporation de l'excès d'éthanol en présence du catalyseur dans des conditions adaptées pour éviter la réaction inverse de la transestérification, l'éthanol obtenu étant alors prati- quement anhydre ;
- une étape (e) dans laquelle l'ester subit une purification par des séquences de lavage à l'eau ; et
- une étape (f) dans laquelle le mélange d'esters est séché sous pression réduite.
2. Procédé selon la revendication 1 caractérisé en ce que, dans l'étape (a), on utilise une huile ou une graisse, végétale ou animale, ou un mélange de glycérides dont l'indice d'acide est au plus de 2, de l'éthanol dont la teneur en eau est comprise entre 3000 et 5000 ppm, dans un rapport stoechiométrique éthanol/huile compris entre 1 ,3 et 2.
3. Procédé selon la revendication 2 caractérisé en ce que ledit rapport stoechiométrique éthanol/huile est compris entre 1 ,6 et 1 ,8.
4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que, dans l'étape (a) et dans l'étape (c), le catalyseur utilisé est obtenu par dissolution d'une base forte dans de l'alcool, ou encore à partir d'un alcoolate de métal alcalin, ou à partir d'un composé métallique de type alcoolate, alkyle et/ou oxyde.
5. Procédé selon la revendication 4 caractérisé en ce que l'on utilise comme catalyseur du méthylate de sodium en solution dans du méthanol.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que, dans l'étape (a) et dans l'étape (c), la température de réaction est comprise entre 20 et 1000C.
7. Procédé selon l'une des revendications 1 à 6 caractérisé en ce que, dans l'étape (a), le temps de réaction en mode batch qui permet d'atteindre l'équilibre thermodynamique est compris entre 40 et 160 minutes.
8. Procédé selon la l'une des revendications 1 à 7 caractérisé en ce que, dans l'étape (b), la décantation naturelle de la glycérine est obtenue à une température du milieu comprise entre 40 et 600C.
9. Procédé selon l'une des revendications 1 à 8 caractérisé en ce que, dans l'étape (c), la quantité d'éthano! utilisée correspond à un rapport stoechiométri- que éthanol/huile de départ compris entre 0,3 et 1.
10. Procédé selon la revendication 9 caractérisé en ce que ledit rapport stoechio- métrique éthanol/huile de départ est compris entre 0,5 et 0,7.
11. Procédé selon l'une des revendications 9 et 10 caractérisé en ce que, dans l'étape (c), le temps de catalyse est compris entre 20 et 45 minutes.
12. Procédé selon l'une des revendications 1 à 11 caractérisé en ce que, dans l'étape (d), on emploie un évaporateur de type film tombant, la température est inférieure à 1200C et le temps de séjour est inférieur à 1 minute.
13. Procédé selon l'une des revendications 1 à 12 caractérisé en ce que, dans l'étape (e), on effectue un premier lavage neutralisant au moyen d'un acide minéral fort, puis un ou plusieurs lavage(s) à l'eau pure.
PCT/FR2006/002142 2005-09-21 2006-09-19 Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d’origine naturelle WO2007034068A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06808164.5A EP1941014B1 (fr) 2005-09-21 2006-09-19 Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d'origine naturelle
BRPI0616210-0A BRPI0616210A2 (pt) 2005-09-21 2006-09-19 processo melhorado de fabricaÇço de Ésteres etÍlicos a partir de corpos graxos de origem natural
CA002621912A CA2621912A1 (fr) 2005-09-21 2006-09-19 Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d'origine naturelle
MX2008003425A MX2008003425A (es) 2005-09-21 2006-09-19 Metodo mejorado para hacer esteres de etilo a partir de grasas naturales.
CN2006800346412A CN101268175B (zh) 2005-09-21 2006-09-19 从天然来源的脂肪物质中制备乙酯的改进的方法
AU2006293813A AU2006293813B2 (en) 2005-09-21 2006-09-19 Improved method for making ethyl esters from natural fats

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0509734 2005-09-21
FR0509734A FR2890962B1 (fr) 2005-09-21 2005-09-21 Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d'origine naturelle

Publications (2)

Publication Number Publication Date
WO2007034068A1 true WO2007034068A1 (fr) 2007-03-29
WO2007034068B1 WO2007034068B1 (fr) 2007-05-24

Family

ID=36195960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002142 WO2007034068A1 (fr) 2005-09-21 2006-09-19 Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d’origine naturelle

Country Status (10)

Country Link
US (1) US7566794B2 (fr)
EP (1) EP1941014B1 (fr)
CN (1) CN101268175B (fr)
AR (1) AR056526A1 (fr)
AU (1) AU2006293813B2 (fr)
BR (1) BRPI0616210A2 (fr)
CA (1) CA2621912A1 (fr)
FR (1) FR2890962B1 (fr)
MX (1) MX2008003425A (fr)
WO (1) WO2007034068A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG146458A1 (en) * 2007-03-09 2008-10-30 Lipico Bioenergy Pte Ltd A continuous process and an apparatus for the preparation of biodiesel
US20080282606A1 (en) * 2007-04-16 2008-11-20 Plaza John P System and process for producing biodiesel
US20080312480A1 (en) * 2007-06-15 2008-12-18 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
GB0725194D0 (en) * 2007-12-24 2008-01-30 Desmet Ballestra Engineering S Process for producing biodiesel with improved filtration characteristics and biodiesel thus produced
US9328054B1 (en) 2013-09-27 2016-05-03 Travis Danner Method of alcoholisis of fatty acids and fatty acid gyicerides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238195A1 (de) * 1992-11-12 1994-05-19 Feld & Hahn Gmbh Verfahren und Vorrichtung zur Herstellung von Rapsmethylester
US5354878A (en) * 1992-03-26 1994-10-11 Joosten Connemann Process for the continuous production of lower alkyl esters of higher fatty acids
US5434279A (en) * 1991-11-06 1995-07-18 Wimmer; Theodor Process for preparing fatty acid esters of short-chain monohydric alcohols
US5514820A (en) * 1989-09-29 1996-05-07 Henkel Kommanditgesellschaft Auf Aktien Continuous process for the production of lower alkyl esters
US20030004363A1 (en) * 2000-10-05 2003-01-02 Michael Koncar Method for preparing fatty acid alkyl esters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665097A (en) * 1979-05-30 1981-06-02 Lion Corp Manufacture of fatty acid lower alcohol ester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514820A (en) * 1989-09-29 1996-05-07 Henkel Kommanditgesellschaft Auf Aktien Continuous process for the production of lower alkyl esters
US5434279A (en) * 1991-11-06 1995-07-18 Wimmer; Theodor Process for preparing fatty acid esters of short-chain monohydric alcohols
US5354878A (en) * 1992-03-26 1994-10-11 Joosten Connemann Process for the continuous production of lower alkyl esters of higher fatty acids
DE4238195A1 (de) * 1992-11-12 1994-05-19 Feld & Hahn Gmbh Verfahren und Vorrichtung zur Herstellung von Rapsmethylester
US20030004363A1 (en) * 2000-10-05 2003-01-02 Michael Koncar Method for preparing fatty acid alkyl esters

Also Published As

Publication number Publication date
FR2890962A1 (fr) 2007-03-23
US7566794B2 (en) 2009-07-28
CA2621912A1 (fr) 2007-03-29
BRPI0616210A2 (pt) 2011-06-14
EP1941014B1 (fr) 2013-11-06
CN101268175A (zh) 2008-09-17
WO2007034068B1 (fr) 2007-05-24
AU2006293813B2 (en) 2011-12-22
MX2008003425A (es) 2008-03-27
AR056526A1 (es) 2007-10-10
EP1941014A1 (fr) 2008-07-09
US20070073070A1 (en) 2007-03-29
CN101268175B (zh) 2011-08-24
AU2006293813A1 (en) 2007-03-29
FR2890962B1 (fr) 2007-11-23

Similar Documents

Publication Publication Date Title
EP1941013B1 (fr) Procede perfectionne de fabrication d&#39;esters ethyliques a partir de corps gras d origine naturelle
EP0806471B1 (fr) Procédé de fabrication d&#39;esters éthyliques d&#39;acides gras
EP1934321B1 (fr) Procede de fabrication d&#39;esters ethyliques d&#39;acides gras a partir de triglycerides et d&#39;alcools
EP0591019B1 (fr) Procédé amélioré de fabrication d&#39;esters à partir de corps gras d&#39;origine naturelle
FR2752242A1 (fr) Procede de fabrication d&#39;esters a partir d&#39;huiles vegetales ou animales et d&#39;alcools
JP2007502271A (ja) グリセリンを用いてアルキルエステルを製造する方法
EP2147089B1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de phosphate ou de compose organophosphore de zirconium
FR2772756A1 (fr) Procede de fabrication d&#39;esters de corps gras et les esters de haute purete obtenus
JP2009502812A (ja) カルボン酸アルキルエステルの製造方法
EP1941014B1 (fr) Procede ameliore de fabrication d&#39;esters ethyliques a partir de corps gras d&#39;origine naturelle
EP1512738B1 (fr) Procede relatif a l&#39;elaboration de composition d&#39;ester d&#39;alkyle d&#39;acide gras
FR2890656A1 (fr) Procede de fabrication d&#39;esters a partir de triglycerides et d&#39;alcools
EP2964603B1 (fr) Utilisation d&#39;acide sulfonique pour la recuperation de glycerol issu de la reaction de trans-esterification de triglycerides
FR2698101A1 (fr) Procédé de transestérification catalytique de corps gras d&#39;origine végétale ou animale et procédé de récupération des produits obtenus.
EP2344615B1 (fr) Procede de transesterification d&#39;huiles hydroxylees
FR2960874A1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de metallophosphates azotes
EP0654528A1 (fr) Procédé de fabrication d&#39;esters méthyliques d&#39;acides gras à partir d&#39;une huile ou graisse naturelle, esters méthyliques tels qu&#39;ainsi obtenus et leur utilisation
CZ289417B6 (cs) Způsob výroby bionafty z rostlinných olejů, zejména z řepkového oleje
FR2970250A1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de phosphates de metaux de transition du groupe 13

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006808164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2621912

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/003425

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200680034641.2

Country of ref document: CN

Ref document number: 1383/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006293813

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006293813

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006808164

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0616210

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080318