EP0654528A1 - Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation - Google Patents

Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation Download PDF

Info

Publication number
EP0654528A1
EP0654528A1 EP93870224A EP93870224A EP0654528A1 EP 0654528 A1 EP0654528 A1 EP 0654528A1 EP 93870224 A EP93870224 A EP 93870224A EP 93870224 A EP93870224 A EP 93870224A EP 0654528 A1 EP0654528 A1 EP 0654528A1
Authority
EP
European Patent Office
Prior art keywords
process according
catalyst
fat
oil
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93870224A
Other languages
German (de)
English (en)
Inventor
Mihail Gheorghiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP93870224A priority Critical patent/EP0654528A1/fr
Publication of EP0654528A1 publication Critical patent/EP0654528A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange

Definitions

  • the present invention relates to a process for the manufacture of methyl esters of fatty acids from a natural fat or oil by transesterification with methanol in the presence of a catalyst.
  • Methyl esters derived from natural oil or fat have become important in the oleochemical industry as fuels or as raw materials for the manufacture of several derivatives, such as fatty alcohols or fatty alkanolamides. These methyl esters can be produced by esterification of fatty acids, but the conventional process used to manufacture these methyl esters is catalytic transesterification or methanolysis of the triglycerides, that is to say an ester substitution, with an excess of methanol.
  • the transesterification which is carried out according to the following reaction scheme: oil or fat + methanol ⁇ methyl esters + glycerol the glycerol molecule in the triglyceride is replaced by three methanol molecules.
  • One of the essential aims of the present invention consists in remedying the aforementioned drawbacks of existing methods and in providing an industrially and economically valid method making it possible to obtain methyl esters in high yield and which does not in particular require the neutralization of fatty acids and which does not use or give corrosive products.
  • the process according to the invention consists in using, as catalyst, an organotitanate-based catalyst.
  • the organotitanate is chosen from the group comprising tetraalkyl orthotitanates, monomeric and polymeric cresyl titanates, titanium lactate, stearic titanate, 2-ethylhexyl titanate, n-butyl titanate polymer, titanium acetylacetonate, triethanolamine titanate and octylene glycol titanate and mixtures of two or more of these two substances.
  • a tetraalkyl orthotitanate containing from 1 to 5 carbon atoms is used as organotitanate, the tetrabutyl orthotitanate being particularly suitable in this regard.
  • the catalyst comprises zinc acetylacetonate, the amount by weight of zinc acetylacetonate being from 2 to 5% and preferably 3% relative to the titanium of the catalyst.
  • the oil or the fat, the methanol and the catalyst are mixed before being subjected to transesterification.
  • the transesterification is carried out at a pressure of 35 to 60 bars, preferably from 45 to 55 bars and at a temperature of 150 to 300 ° C, preferably from 200 to 250 ° C, a pressure between 48 and 50 bars and a temperature between 222 and 227 ° C proving to be particularly advantageous.
  • the present invention also relates to the methyl esters of fatty acids as thus obtained and their use as fuels in mixture or not with other fuels.
  • the present invention therefore relates to a process for the production of methyl esters of acids.
  • organotitanates which may be suitable for this purpose, mention will be made in particular of tetraalkyl orthotitanates, in particular tetraalkyl orthotitanates containing from 1 to 5 carbon atoms, cresyl titanates monomer and polymer, titanium lactate, stearic titanate, titanate 2-ethylhexyl, polymeric n-butyl titanate, titanium acetylacetonate, triethanolamine titanate and octylene glycol titanate.
  • tetraalkyl orthotitanates in particular tetraalkyl orthotitanates containing from 1 to 5 carbon atoms, cresyl titanates monomer and polymer, titanium lactate, stearic titanate, titanate 2-ethylhexyl, polymeric n-butyl titanate, titanium acetylacetonate, triethanolamine titanate and octylene glycol titanate.
  • C1-C5 tetraalkyl orthotitanates are particularly advantageous; examples of these are especially tetraethyl, tetrapropyl, tetraisopropyl, tetrabutyl and tetraisobutyl orthotitanates.
  • Tetrabutyl orthotitanate is the preferred organotitanate as a catalyst.
  • the catalyst can also comprise a small amount of zinc acetylacetonate, which increases the activity of the organotitanate, the amount by weight of zinc acetylacetonate of the catalyst being from 2 to 5% and preferably from 3% relative to the titanium.
  • the oil or the fat, the methanol and the catalyst are mixed before being introduced into the transesterification reactor with the aim, on the one hand, of obtaining a fine dispersion of the catalyst in the reaction mass. and, on the other hand, to protect the catalyst from too long a presence with the hydroxyl radicals of methanol.
  • This preliminary mixing, when one is carried out, and the transesterification are generally carried out at a pressure of 35 to 60 bars and at a temperature of 150 to 300 ° C., a pressure of 45 to 55 bars and a temperature from 200 to 250 ° C being preferable. Particularly advantageous results are obtained, however, with a pressure between 48 and 50 bars and a temperature between 222 and 227 ° C.
  • the oil or fat and methanol are generally maintained in the presence of the organotitanate catalyst for approximately 0.5 to 4 hours, and preferably for 2 to 3 hours.
  • a good reaction yield is obtained when the amount by weight of catalyst per tonne of oil or fat is between 0.5 and 1.5 kg and preferably when it is of the order of 1.3 kg.
  • the fat or oil must be mixed with an excess of methanol which corresponds to 1-3 times the stoichiometric quantity necessary to replace the glycerol. bound in fat or oil.
  • the oil or fat to be mixed with methanol can contain free acidity, i.e. a free fatty acid content of up to 5% and therefore should not normally be neutralized.
  • the orthotitanate catalyst requires an oil or fat with a low water and phosphorus content, the oil or fat will therefore have to be pretreated before its possible preliminary mixing with methanol and the catalyst and the reaction. transesterification.
  • the pretreatment of oil or fat comprises two stages, namely acid degumming to reduce its phosphorus content to 50 ppm or less and dry pretreatment followed by filtration, for example on land bleaching, to reduce humidity to about 0.01% and phosphorus content to 15 ppm or less.
  • natural oil or fat it is understood in the context of the present invention an oil or fat having a linear chain of fatty acids.
  • Vegetable oils are all usable, in particular rapeseed oil, palm oil and palm kernel oil. Animal fats are also all usable.
  • the preheated liquid mixture comprising the oil or fat to be treated, methanol, of a purity of at least 99% , advantageously 99.5% and the catalyst is preferably introduced continuously by a high pressure pump into the reactor. It crosses the transesterification zone maintained at the specified temperature and pressure. During the transesterification reaction, the catalyst is consumed and finally removed as a residue. It will be noted, in this regard, that it is not necessary for the oil or the fat, the methanol and the catalyst to be mixed before introduction into the reactor.
  • the mixing can take place partly or completely in the reactor.
  • the oil and the catalyst can be mixed and this mixture can be introduced into the reactor at the same time as methanol, or else the three components can be introduced simultaneously into the reactor and be mixed there.
  • the product leaving the reactor is then subjected instantaneous evaporation in a first separator where the excess methanol is evaporated. This evaporated methanol is recycled after condensation and distillation and reused in transesterification. The mixture is then transferred to a second separator which removes the last traces of methanol.
  • the mixture of methyl esters and glycerol is introduced into a decanter.
  • the upper phase consists of methyl esters and the lower phase consists of glycerol. Glycerol does not require any refining and it can be directly concentrated from 40-50% to 82-88%.
  • Pharmacopoeial grade glycerol is obtained by distillation of the concentrated product.
  • the glycerol present in the methyl esters is separated by washing against the current with demineralized water. If necessary, the methyl esters are distilled.
  • the purity of the methyl esters before distillation is greater than 95%.
  • methyl esters obtained according to the process of the invention are used as fuel in mixture with other fuels, for example at a rate of 50/50 with diesel, they must not be distilled but only dried to a moisture content less than 0.05%. If they are used as 100% fuel or as a raw material for oleochemical derivatives, they must be distilled to a purity higher than 98.5%.
  • These fatty acid methyl esters can also be converted by hydrogenation in the presence of a copper chromite catalyst to fatty alcohols. Conversion to alkanolamides, sulfonated esters or other derivatives is possible by known conventional reactions.
  • the methyl esters obtained also have a purity of more than 95% .
  • Example 1 is repeated, but with rapeseed oil in place of palm and / or palm kernel oil. Similar results are obtained.
  • Methyl esters are also obtained with a purity of more than 95%.
  • the process for preparing methyl esters according to the invention is extremely simple and economical to carry out.
  • the crude oil or fat should only be degummed and dried and does not require, as in conventional processes, a step of removing fatty acids by chemical means (alkaline neutralization) or by physical means (steam entrainment).
  • the crude glycerol obtained contains very few non-volatile products and does not require either chemical refining or separation of the soaps before concentration.
  • the crude methyl esters obtained also have a very high purity.
  • the reactor and the accessories can be constructed essentially of mild steel and, for example, partially in ordinary SS 304 stainless steel. Besides the fact that the process can be applied continuously, the consumption of catalyst is also very low and will have little influence on the purity of the final products and on the operating costs of the process.

Abstract

Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou d'une graisse naturelle par transestérification avec du méthanol en présence d'un catalyseur, dans lequel on utilise, comme catalyseur, un catalyseur à base d'organotitanate, en particulier l'orthotitanate de tétrabutyle, esters méthyliques tels qu'ainsi obtenus et leur utilisation comme carburants.

Description

  • La présente invention est relative à un procédé de fabrication d'esters méthyliques d'acides gras à partir d'une graisse ou d'une huile naturelle par transestérification avec du méthanol en présence d'un catalyseur.
  • Les esters méthyliques dérivés d'huile ou de graisse naturelle sont devenus importants dans l'industrie oléochimique comme carburants ou comme matières premières pour la fabrication de plusieurs dérivés, tels que des alcools gras ou des alcanolamides gras. Ces esters méthyliques peuvent être fabriqués par estérification d'acides gras mais le procédé classique utilisé pour fabriquer ces esters méthyliques est la transestérification catalytique ou méthanolyse des triglycérides, c'est-à-dire une substitution d'ester, avec un excès de méthanol. Au cours de la transestérification qui se fait d'après le schéma réactionnel suivant :
    huile ou graisse + méthanol → esters méthyliques + glycérol
    la molécule de glycérol dans le triglycéride est remplacée par trois molécules de méthanol. La fabrication d'esters méthyliques par transestérification est décrite dans "Manufacture of Fatty Alcohols Based on Natural Fats and Oils" de U.R. Kreutze, JAOCS, vol. 61, n° 2 (février 1984), pages 343-345 et dans "CEH Marketing Research Report - Detergent Alcohols" de R.F. Modler et coll., 1990, Chemical Economics Handbook, SRI International.
  • Dans ces procédés connus, on obtient un bon rendement en esters d'acides gras par l'utilisation d'un catalyseur alcalin, tel que l'hydroxyde de sodium ou de potassium en solution dans de l'alcool méthylique ou le méthylate de sodium.
  • L'utilisation d'un catalyseur alcalin présente cependant plusieurs inconvénients :
    • le catalyseur alcalin est très corrosif et le milieu de réaction étant donné son pH élevé (de l'ordre de 8 à 10) donne également des sous-produits très corrosifs; l'équipement utilisé pour le procédé doit par conséquent être en acier inoxydable;
    • une étape supplémentaire de neutralisation des acides gras libre contenus dans l'huile ou la graisse avec séparation du savon ainsi formé est nécessaire;
    • une étape supplémentaire de raffinage des eaux glycérineuses et de séparation du sel est également nécessaire;
    • les rendements de la récupération du méthanol en excès et du glycérol sont faibles.
  • Un des buts essentiels de la présente invention consiste à remédier aux inconvénients précités des procédés existants et à prévoir un procédé industriellement et économiquement valable permettant d'obtenir des esters méthyliques en un rendement élevé et qui ne nécessite pas notamment la neutralisation des acides gras et qui n'utilise ou ne donne pas de produits corrosifs.
  • A cet effet, le procédé suivant l'invention consiste à utiliser, comme catalyseur, un catalyseur à base d'organotitanate.
  • Avantageusement, l'organotitanate est choisi dans le groupe comprenant les orthotitanates de tétraalkyle, les titanates de crésyle monomère et polymère, le lactate de titane, le titanate stéarique, le titanate de 2-éthylhexyle, le titanate de n-butyle polymère, l'acétylacétonate de titane, le titanate de triéthanolamine et le titanate d'octylène glycol et les mélanges de deux ou de plus de deux de ces substances.
  • Suivant une forme de réalisation avantageuse de l'invention, on utilise comme organotitanate un orthotitanate de tétraalkyle comportant de 1 à 5 atomes de carbone, l'orthotitanate de tétrabutyle convenant particulièrement bien à cet égard.
  • Suivant une forme de réalisation particulièrement avantageuse de l'invention, le catalyseur comprend de l'acétylacétonate de zinc, la quantité en poids d'acétylacétonate de zinc étant de 2 à 5 % et de préférence de 3 % par rapport au titane du catalyseur.
  • Suivant un mode de réalisation avantageux de l'invention, l'huile ou la graisse, le méthanol et le catalyseur sont mélangés avant d'être soumis à la transestérification.
  • Suivant un mode de réalisation particulièrement avantageux de l'invention, on réalise la transestérification à une pression de 35 à 60 bars, de préférence de 45 à 55 bars et à une température de 150 à 300°C, de préférence de 200 à 250°C, une pression se situant entre 48 et 50 bars et une température entre 222 et 227°C s'avérant particulièrement avantageuses.
  • La présente invention concerne également les esters méthyliques d'acides gras tels qu'ainsi obtenus et leur utilisation comme carburants en mélange ou non avec d'autres carburants.
  • D'autres détails et particularités de l'invention ressortiront de la description donnée ci-après à titre d'exemple non limitatif ou de quelques formes particulières de l'invention.
  • La présente invention est donc relative à un procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle par transestérification avec du méthanol en présence d'un catalyseur, qui consiste à utiliser, comme catalyseur, un catalyseur comprenant un ou plusieurs organotitanates. Parmi les organotitanates pouvant convenir à cet effet, on citera notamment les orthotitanates de tétraalkyle, notamment les orthotitanates de tétraalkyle comportant de 1 à 5 atomes de carbone, les titanates de crésyle monomère et polymère, le lactate de titane, le titanate stéarique, le titanate de 2-éthylhexyle, le titanate de n-butyle polymère, l'acétylacétonate de titane, le titanate de triéthanolamine et le titanate d'octylène glycol. Les orthotitanates de tétraalkyle en C₁-C₅ s'avèrent particulièrement avantageux; des exemples de ceux-ci sont notamment les orthotitanates de tétraéthyle, tétrapropyle, tétraisopropyle, tétrabutyle et tétraisobutyle. L'orthotitanate de tétrabutyle est l'organotitanate préféré comme catalyseur. Le catalyseur peut également comprendre une petite quantité d'acétylacétonate de zinc, qui accroît l'activité de l'organotitanate, la quantité en poids d'acétylacétonate de zinc du catalyseur étant de 2 à 5 % et de préférence de 3 % par rapport au titane.
  • Suivant l'invention, l'huile ou la graisse, le méthanol et le catalyseur sont mélangés avant d'être introduits dans le réacteur de transestérification dans le but, d'une part, d'obtenir une fine dispersion du catalyseur dans la masse réactionnelle et, d'autre part, de protéger le catalyseur d'une présence trop longue avec les radicaux hydroxyle du méthanol. Ce mélange préalable, lorsqu'on en effectue un, et la transestérification sont réalisés d'une manière générale à une pression de 35 à 60 bars et à une température de 150 à 300°C, une pression de 45 à 55 bars et une température de 200 à 250°C étant préférables. On obtient cependant des résultats particulièrement avantageux avec une pression se situant entre 48 et 50 bars et une température se situant entre 222 et 227°C. L'huile ou la graisse et le méthanol sont maintenus généralement en présence du catalyseur à base d'organotitanate pendant environ 0,5 à 4 heures, et de préférence pendant 2 à 3 heures. On obtient un bon rendement réactionnel lorsque la quantité en poids de catalyseur par tonne d'huile ou de graisse est comprise entre 0,5 et 1,5 kg et de préférence lorsqu'elle est de l'ordre de 1,3 kg. Pour obtenir des esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle par transestérification, on doit mélanger la graisse ou l'huile avec un excès de méthanol qui correspond à 1-3 fois la quantité stoechiométrique nécessaire pour remplacer le glycérol lié dans la graisse ou l'huile.
  • L'huile ou la graisse à mélanger avec le méthanol peut contenir une acidité libre, c'est-à-dire une teneur en acides gras libres allant jusqu'à 5 % et ne doit pas par conséquent normalement être neutralisée. Toutefois, étant donné que le catalyseur à base d'orthotitanate requiert une huile ou graisse à faible teneur en eau et en phosphore, l'huile ou la graisse devra donc être prétraitée avant son éventuel mélange préalable avec le méthanol et le catalyseur et la réaction de transestérification. Suivant l'invention, le prétraitement de l'huile ou de la graisse comporte deux étapes, à savoir le dégommage acide pour réduire sa teneur en phosphore à 50 ppm ou moins et le prétraitement à sec suivi d'une filtration, par exemple sur terre décolorante, pour réduire l'humidité à environ 0,01 % et la teneur en phosphore à 15 ppm ou moins. On notera que la plupart des huiles végétales, telles que l'huile de colza, ont une teneur en humidité de 0,3 à 0,5 % et contiennent 1 à 2 % de gommes (phospholipides). L'huile ou la graisse brute devra par conséquent être soumise au prétraitement à deux étapes précité, c'est-à-dire à l'étape de dégommage acide et à l'étape de séchage combinée avec la filtration. Au cours de l'étape de dégommage, la teneur en phosphore sera réduite par exemple à 25-50 ppm et au cours de l'étape de séchage et filtration, l'humidité sera réduite par exemple à 0,01 % et la teneur en phosphore sera encore réduite, par exemple à 10-15 ppm. Il est bien entendu que lors de l'utilisation d'huile dégommée, seule l'étape de séchage sera nécessaire.
  • Par huile ou graisse naturelle, il est entendu dans le cadre de la présente invention une huile ou graisse ayant une chaîne linéaire d'acides gras. Les huiles végétales sont toutes utilisables, en particulier l'huile de colza, l'huile de palme et l'huile de palmiste. Les graisses animales sont également toutes utilisables.
  • Le mélange liquide préchauffé comprenant l'huile ou la graisse à traiter, le méthanol, d'une pureté d'au moins 99 %, avantageusement de 99,5 % et le catalyseur est de préférence introduit en continu par une pompe à haute pression dans le réacteur. Il traverse la zone de transestérification maintenue aux température et pression spécifiées. Pendant la réaction de transestérification, le catalyseur est consommé et finalement éliminé comme résidu. On notera, à cet égard, qu'il n'est pas nécessaire que l'huile ou la graisse, le méthanol et le catalyseur soient mélangés avant l'introduction dans le réacteur. Le mélange peut avoir lieu en partie ou complètement dans le réacteur. L'huile et le catalyseur peuvent être mélangés et ce mélange peut être introduit dans le réacteur en même temps que le méthanol ou bien les trois composants peuvent être introduits simultanément dans le réacteur et y être mélangés.
  • Après la réaction, dont la durée est de l'ordre de 0,5 à 4 heures et de préférence de 2 à 3 heures, le produit sortant du réacteur est ensuite soumis à une évaporation instantanée dans un premier séparateur où l'excès de méthanol est évaporé. Ce méthanol évaporé est recyclé après condensation et distillation et réutilisé dans la transestérification. Le mélange est ensuite transféré vers un deuxième séparateur qui élimine les dernières traces de méthanol. Le mélange d'esters méthyliques et de glycérol est introduit dans un décanteur. La phase supérieure est constituée par les esters méthyliques et la phase inférieure est constituée de glycérol. Le glycérol n'exige aucun raffinage et il peut être directement concentré de 40-50 % à 82-88 %. Le glycérol de qualité pharmacopée est obtenu par distillation du produit concentré. Le glycérol présent dans les esters méthyliques est séparé par lavage à contre-courant avec de l'eau déminéralisée. Si cela s'avère nécessaire, les esters méthyliques sont distillés. La pureté des esters méthyliques avant la distillation est supérieure à 95 %.
  • Si les esters méthyliques obtenus suivant le procédé de l'invention sont utilisés comme carburant en mélange avec d'autres carburants, par exemple à raison de 50/50 avec du gazole, ils ne doivent pas être distillés mais seulement séchés à une teneur en humidité inférieure à 0,05 %. S'ils sont utilisés comme carburant à 100 % ou comme matière première pour des dérivés oléochimiques, ils doivent être distillés à une pureté supérieure à 98,5 %. Ces esters méthyliques d'acides gras peuvent également être transformés par hydrogénation en présence d'un catalyseur au chromite de cuivre en alcools gras. La conversion en alcanolamides, en esters sulfonés ou en d'autres dérivés est possible par des réactions classiques connues.
  • Les quelques exemples qui suivent permettent d'illustrer l'invention sans toutefois constituer une limitation à celle-ci.
  • Exemple 1
  • 1000 kg d'huile de palme et/ou d'huile de palmiste sont mélangés à 300 kg de méthanol et 1,5 kg d'orthotitanate de tétraisobutyle, à une pression de 50 bars et une température de 220°C et puis transférés dans un réacteur maintenu également sous une pression de 50 bars et à une température de 220°C. Le mélange dans le réacteur est soumis à une vitesse spatiale horaire liquide (LHSV) de 4-6 m/heure et y est maintenu pendant 2,5 heures. Le produit sortant du réacteur est soumis à une évaporation instantanée, une séparation et une décantation. Les esters méthyliques obtenus ont une pureté de plus de 95 %.
  • Exemple 2
  • De l'huile de colza brute obtenue par pression et extraction par solvant contenant moins de 4 % d'acides gras libres, une humidité de 0,5 %, 2 % de gommes et 1 % de matières solides, est dégommée et séchée. 1000 kg de cette huile sont ensuite mélangés à 300 kg de méthanol et 1,5 kg d'orthotitanate de tétraisopropyle et traités sous les mêmes conditions que celles de l'Exemple 1. Les esters méthyliques obtenus ont également une pureté de plus de 95 %.
  • Exemple 3
  • On répète l'Exemple 1 mais avec de l'huile de colza à la place de l'huile de palme et/ou de palmiste. On obtient des résultats similaires.
  • Exemple 4
  • On mélange 1000 kg d'huile de palme, de palmiste ou de colza à 300 kg de méthanol et 1,5 kg d'orthotitanate de tétraisobutyle contenant 3 % en poids d'acétylacétonate de zinc (par rapport au titane) et on procède ensuite sous les mêmes conditions que celles illustrées dans l'Exemple 1. On obtient également des esters méthyliques avec une pureté de plus de 95 %.
  • Outre les avantages qui ont déjà été mentionnés précédemment, le procédé de préparation d'esters méthyliques suivant l'invention est extrêmement simple et économique à réaliser. L'huile ou la graisse brute ne doit être que dégommée et séchée et ne nécessite pas comme dans les procédés classiques une étape d'élimination des acides gras par voie chimique (neutralisation alcaline) ou par voie physique (entraînement à la vapeur). Le glycérol brut obtenu contient très peu de produits non volatils et n'a besoin ni d'un raffinage chimique ni d'une séparation des savons avant la concentration. Les esters méthyliques bruts obtenus ont également une très grande pureté. Comme on l'a déjà précisé, compte tenu du fait que le catalyseur n'est pas alcalin et n'est pas corrosif et qu'aucun sous-produit corrosif ne se forme, le réacteur et les accessoires peuvent être construits essentiellement en acier doux et, par exemple, partiellement en acier inoxydable ordinaire SS 304. Outre le fait que le procédé peut être appliqué en continu la consommation en catalyseur est également très faible et n'aura que peu d'influence sur la pureté des produits finals et sur les coûts opératoires du procédé.
  • Il doit être entendu que la présente invention n'est en aucune façon limitée aux formes de réalisation ci-dessus et que bien des modifications peuvent y être apportés sans sortir du cadre du présent brevet.

Claims (22)

  1. Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou d'une graisse naturelle par transestérification avec du méthanol en présence d'un catalyseur, caractérisé en ce qu'on utilise, comme catalyseur, un catalyseur à base d'organotitanate.
  2. Procédé suivant la revendication 1, caractérisé en ce que l'organotitanate est choisi dans le groupe comprenant les orthotitanates de tétraalkyle, les titanates de crésyle monomère et polymère, le lactate de titane, le titanate stéarique, le titanate de 2-éthylhexyle, le titanate de n-butyle polymère, l'acétylacétonate de titane, le titanate de triéthanolamine, le titanate d'octylène glycol et les mélanges de deux ou de plus de deux de ces substances.
  3. Procédé suivant la revendication 2, caractérisé en ce qu'on utilise, comme organotitanate, un orthotitanate de tétraalkyle comportant de 1 à 5 atomes de carbone.
  4. Procédé suivant la revendication 3, caractérisé en ce que l'orthotitanate de tétraalkyle est l'orthotitanate de tétrabutyle.
  5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que le catalyseur comprend de l'acétylacétonate de zinc.
  6. Procédé suivant la revendication 5, caractérisé en ce que la quantité en poids d'acétylacétonate de zinc du catalyseur est de 2 à 5 % par rapport au titane.
  7. Procédé suivant la revendication 6, caractérisé en ce que la quantité en poids d'acétylacétonate de zinc est de 3 %.
  8. Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce que l'huile ou la graisse, le méthanol et le catalyseur sont mélangés ensemble avant d'être soumis à la transestérification.
  9. Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on réalise la transestérification à une pression de 35 à 60 bars et à une température de 150 à 300°C.
  10. Procédé suivant la revendication 9, caractérisé en ce qu'on réalise la transestérification à une pression de 45 à 55 bars et à une température de 200 à 250°C.
  11. Procédé suivant la revendication 10, caractérisé en ce que la pression se situe entre 48 et 50 bars et la température entre 222 et 227°C.
  12. Procédé suivant l'une quelconque des revendications 9 à 11, caractérisé en ce que la durée de la transestérification est de 0,5 à 4 heures.
  13. Procédé suivant la revendication 12, caractérisé en ce que la transestérification dure 2 à 3 heures.
  14. Procédé suivant l'une quelconque des revendications 1 à 13, caractérisé en ce que la quantité en poids de catalyseur utilisée par tonne d'huile ou de graisse est comprise entre 0,5 et 1,5 kg.
  15. Procédé suivant la revendication 14, caractérisé en ce que la quantité en poids de catalyseur utilisée par tonne d'huile ou de graisse est de l'ordre de 1,3 kg.
  16. Procédé suivant l'une quelconque des revendications 1 à 15, caractérisé en ce que la quantité en poids de méthanol utilisée est de 1 à 3 fois la quantité stoechiométrique nécessaire pour remplacer le glycérol lié dans l'huile ou la graisse.
  17. Procédé suivant l'une quelconque des revendications 1 à 16, caractérisé en ce que l'huile ou la graisse utilisée a une acidité libre ne dépassant pas 5 %.
  18. Procédé suivant la revendication 17, caractérisé en ce que l'huile ou la graisse est, avant transestérification, dégommée et ensuite séchée.
  19. Procédé suivant la revendication 18, caractérisé en ce que le dégommage permet de réduire la teneur en phosphore à 50 ppm ou moins.
  20. Procédé suivant l'une ou l'autre des revendications 18 et 19, caractérisé en ce que le séchage, suivi d'une filtration, permet de réduire la teneur en humidité à 0,01 % ou moins et la teneur en phosphore à 15 ppm ou moins.
  21. Esters méthyliques d'acides gras, tels qu'obtenus par le procédé suivant l'une quelconque des revendications 1 à 20.
  22. Utilisation des esters méthyliques d'acides gras suivant la revendication 21 et/ou tels qu'obtenus suivant l'une quelconque des revendications 1 à 20, comme carburants en mélange ou non avec d'autres carburants.
EP93870224A 1993-11-22 1993-11-22 Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation Withdrawn EP0654528A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93870224A EP0654528A1 (fr) 1993-11-22 1993-11-22 Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93870224A EP0654528A1 (fr) 1993-11-22 1993-11-22 Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation

Publications (1)

Publication Number Publication Date
EP0654528A1 true EP0654528A1 (fr) 1995-05-24

Family

ID=8215408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93870224A Withdrawn EP0654528A1 (fr) 1993-11-22 1993-11-22 Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation

Country Status (1)

Country Link
EP (1) EP0654528A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3143912A1 (fr) 2015-09-08 2017-03-22 Eugster/Frismag AG Dispositif de préparation de boissons et procédé de fonctionnement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808421A (en) * 1955-12-13 1957-10-01 Eastman Kodak Co Method for preparing mixed triglyceride compositions
US3917662A (en) * 1974-04-29 1975-11-04 Zoecon Corp Preparation of fatty acid esters
FR2332806A1 (fr) * 1975-11-26 1977-06-24 Emery Industries Inc Catalyseurs de metaux de transition et leurs procedes de preparation et d'utilisation
EP0070492A2 (fr) * 1981-07-20 1983-01-26 Henkel Kommanditgesellschaft auf Aktien Procédé de préparation d'esters alkyliques d'acides gras à façonnage amélioré
EP0147914A2 (fr) * 1983-12-27 1985-07-10 Ciba Corning Diagnostics Corp. Compositions d'enzymes immobilisées
FR2560210A1 (fr) * 1983-12-30 1985-08-30 Inst Francais Du Petrole Procede de fabrication d'un ester methylique, ethylique, propylique ou butylique d'acide gras adapte a l'utilisation comme carburant diesel
DE3421217A1 (de) * 1984-06-07 1985-09-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von fettsaeureestern kurzkettiger alkohole
WO1990008123A1 (fr) * 1989-01-17 1990-07-26 Davy Mckee (London) Limited Procede

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808421A (en) * 1955-12-13 1957-10-01 Eastman Kodak Co Method for preparing mixed triglyceride compositions
US3917662A (en) * 1974-04-29 1975-11-04 Zoecon Corp Preparation of fatty acid esters
FR2332806A1 (fr) * 1975-11-26 1977-06-24 Emery Industries Inc Catalyseurs de metaux de transition et leurs procedes de preparation et d'utilisation
EP0070492A2 (fr) * 1981-07-20 1983-01-26 Henkel Kommanditgesellschaft auf Aktien Procédé de préparation d'esters alkyliques d'acides gras à façonnage amélioré
EP0147914A2 (fr) * 1983-12-27 1985-07-10 Ciba Corning Diagnostics Corp. Compositions d'enzymes immobilisées
FR2560210A1 (fr) * 1983-12-30 1985-08-30 Inst Francais Du Petrole Procede de fabrication d'un ester methylique, ethylique, propylique ou butylique d'acide gras adapte a l'utilisation comme carburant diesel
DE3421217A1 (de) * 1984-06-07 1985-09-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von fettsaeureestern kurzkettiger alkohole
WO1990008123A1 (fr) * 1989-01-17 1990-07-26 Davy Mckee (London) Limited Procede

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3143912A1 (fr) 2015-09-08 2017-03-22 Eugster/Frismag AG Dispositif de préparation de boissons et procédé de fonctionnement

Similar Documents

Publication Publication Date Title
EP0194165B1 (fr) Procédé de fabrication d'une composition d'esters d'acide gras utilisables comme carburant de substitution du gazole avec de l'alcool ethylique hydrate et composition d'esters ainsi formés
EP1934321B1 (fr) Procede de fabrication d'esters ethyliques d'acides gras a partir de triglycerides et d'alcools
EP1941013B1 (fr) Procede perfectionne de fabrication d'esters ethyliques a partir de corps gras d origine naturelle
EP0591019B1 (fr) Procédé amélioré de fabrication d'esters à partir de corps gras d'origine naturelle
EP0518765B1 (fr) Procédé pour l'obtention de polyglycérols et d'esters de polyglycérols
EP0806471B1 (fr) Procédé de fabrication d'esters éthyliques d'acides gras
US5532392A (en) Process for the preparation of methyl fatty acid esters starting from natural oil or fat, methyl esters obtained in this way and use thereof
EP0924185A1 (fr) Procédé de fabrication d'esters de corps gras et les esters de haute pureté obtenus
EP2734495B1 (fr) Procede de synthese d'acides omega-fonctionnalises a partir d'acides ou d'esters gras
FR2890656A1 (fr) Procede de fabrication d'esters a partir de triglycerides et d'alcools
FR2929621A1 (fr) Utilisation d'acide methane sulfonique pour l'esterification d'acides gras
FR2700536A1 (fr) Procédé perfectionné pour oligomériser les acides et les esters polyinsaturés.
FR2743084A1 (fr) Procede de fabrication de produits solides par esterification des acides gras libres en presence de catalyseurs acides
EP2867196A1 (fr) Procédé de synthèse d'acides insaturés biosourcés
EP1941014B1 (fr) Procede ameliore de fabrication d'esters ethyliques a partir de corps gras d'origine naturelle
FR2486072A1 (fr) Procede pour la fabrication de l'acide b-hydroxybutyrique et de ses oligocondensats
EP2964603B1 (fr) Utilisation d'acide sulfonique pour la recuperation de glycerol issu de la reaction de trans-esterification de triglycerides
EP0654528A1 (fr) Procédé de fabrication d'esters méthyliques d'acides gras à partir d'une huile ou graisse naturelle, esters méthyliques tels qu'ainsi obtenus et leur utilisation
BE1006287A3 (fr) Procede de fabrication d'esters methyliques d'acides gras a partir d'une huile ou graisse naturelle, esters methyliques tels qu'ainsi obtenus et leur utilisation.
FR2698101A1 (fr) Procédé de transestérification catalytique de corps gras d'origine végétale ou animale et procédé de récupération des produits obtenus.
FR2780410A1 (fr) Procede et dispositif pour l'extraction d'huile de graines oleagineuses
FR2957075A1 (fr) Procede d'obtention de compositions de biosolvants par esterification et compositions de biosolvants obtenues
WO2018096248A1 (fr) Composition acide pour le traitement d'acides gras
FR2960874A1 (fr) Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de metallophosphates azotes
FR2730732A1 (fr) Procede de valorisation, sous la forme d'un ester, de l'acide acetique contenu dans les fractions legeres de purification de l'acide acrylique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19951125