EP0654528A1 - Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung - Google Patents

Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung Download PDF

Info

Publication number
EP0654528A1
EP0654528A1 EP93870224A EP93870224A EP0654528A1 EP 0654528 A1 EP0654528 A1 EP 0654528A1 EP 93870224 A EP93870224 A EP 93870224A EP 93870224 A EP93870224 A EP 93870224A EP 0654528 A1 EP0654528 A1 EP 0654528A1
Authority
EP
European Patent Office
Prior art keywords
process according
catalyst
fat
oil
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93870224A
Other languages
English (en)
French (fr)
Inventor
Mihail Gheorghiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP93870224A priority Critical patent/EP0654528A1/de
Publication of EP0654528A1 publication Critical patent/EP0654528A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange

Definitions

  • the present invention relates to a process for the manufacture of methyl esters of fatty acids from a natural fat or oil by transesterification with methanol in the presence of a catalyst.
  • Methyl esters derived from natural oil or fat have become important in the oleochemical industry as fuels or as raw materials for the manufacture of several derivatives, such as fatty alcohols or fatty alkanolamides. These methyl esters can be produced by esterification of fatty acids, but the conventional process used to manufacture these methyl esters is catalytic transesterification or methanolysis of the triglycerides, that is to say an ester substitution, with an excess of methanol.
  • the transesterification which is carried out according to the following reaction scheme: oil or fat + methanol ⁇ methyl esters + glycerol the glycerol molecule in the triglyceride is replaced by three methanol molecules.
  • One of the essential aims of the present invention consists in remedying the aforementioned drawbacks of existing methods and in providing an industrially and economically valid method making it possible to obtain methyl esters in high yield and which does not in particular require the neutralization of fatty acids and which does not use or give corrosive products.
  • the process according to the invention consists in using, as catalyst, an organotitanate-based catalyst.
  • the organotitanate is chosen from the group comprising tetraalkyl orthotitanates, monomeric and polymeric cresyl titanates, titanium lactate, stearic titanate, 2-ethylhexyl titanate, n-butyl titanate polymer, titanium acetylacetonate, triethanolamine titanate and octylene glycol titanate and mixtures of two or more of these two substances.
  • a tetraalkyl orthotitanate containing from 1 to 5 carbon atoms is used as organotitanate, the tetrabutyl orthotitanate being particularly suitable in this regard.
  • the catalyst comprises zinc acetylacetonate, the amount by weight of zinc acetylacetonate being from 2 to 5% and preferably 3% relative to the titanium of the catalyst.
  • the oil or the fat, the methanol and the catalyst are mixed before being subjected to transesterification.
  • the transesterification is carried out at a pressure of 35 to 60 bars, preferably from 45 to 55 bars and at a temperature of 150 to 300 ° C, preferably from 200 to 250 ° C, a pressure between 48 and 50 bars and a temperature between 222 and 227 ° C proving to be particularly advantageous.
  • the present invention also relates to the methyl esters of fatty acids as thus obtained and their use as fuels in mixture or not with other fuels.
  • the present invention therefore relates to a process for the production of methyl esters of acids.
  • organotitanates which may be suitable for this purpose, mention will be made in particular of tetraalkyl orthotitanates, in particular tetraalkyl orthotitanates containing from 1 to 5 carbon atoms, cresyl titanates monomer and polymer, titanium lactate, stearic titanate, titanate 2-ethylhexyl, polymeric n-butyl titanate, titanium acetylacetonate, triethanolamine titanate and octylene glycol titanate.
  • tetraalkyl orthotitanates in particular tetraalkyl orthotitanates containing from 1 to 5 carbon atoms, cresyl titanates monomer and polymer, titanium lactate, stearic titanate, titanate 2-ethylhexyl, polymeric n-butyl titanate, titanium acetylacetonate, triethanolamine titanate and octylene glycol titanate.
  • C1-C5 tetraalkyl orthotitanates are particularly advantageous; examples of these are especially tetraethyl, tetrapropyl, tetraisopropyl, tetrabutyl and tetraisobutyl orthotitanates.
  • Tetrabutyl orthotitanate is the preferred organotitanate as a catalyst.
  • the catalyst can also comprise a small amount of zinc acetylacetonate, which increases the activity of the organotitanate, the amount by weight of zinc acetylacetonate of the catalyst being from 2 to 5% and preferably from 3% relative to the titanium.
  • the oil or the fat, the methanol and the catalyst are mixed before being introduced into the transesterification reactor with the aim, on the one hand, of obtaining a fine dispersion of the catalyst in the reaction mass. and, on the other hand, to protect the catalyst from too long a presence with the hydroxyl radicals of methanol.
  • This preliminary mixing, when one is carried out, and the transesterification are generally carried out at a pressure of 35 to 60 bars and at a temperature of 150 to 300 ° C., a pressure of 45 to 55 bars and a temperature from 200 to 250 ° C being preferable. Particularly advantageous results are obtained, however, with a pressure between 48 and 50 bars and a temperature between 222 and 227 ° C.
  • the oil or fat and methanol are generally maintained in the presence of the organotitanate catalyst for approximately 0.5 to 4 hours, and preferably for 2 to 3 hours.
  • a good reaction yield is obtained when the amount by weight of catalyst per tonne of oil or fat is between 0.5 and 1.5 kg and preferably when it is of the order of 1.3 kg.
  • the fat or oil must be mixed with an excess of methanol which corresponds to 1-3 times the stoichiometric quantity necessary to replace the glycerol. bound in fat or oil.
  • the oil or fat to be mixed with methanol can contain free acidity, i.e. a free fatty acid content of up to 5% and therefore should not normally be neutralized.
  • the orthotitanate catalyst requires an oil or fat with a low water and phosphorus content, the oil or fat will therefore have to be pretreated before its possible preliminary mixing with methanol and the catalyst and the reaction. transesterification.
  • the pretreatment of oil or fat comprises two stages, namely acid degumming to reduce its phosphorus content to 50 ppm or less and dry pretreatment followed by filtration, for example on land bleaching, to reduce humidity to about 0.01% and phosphorus content to 15 ppm or less.
  • natural oil or fat it is understood in the context of the present invention an oil or fat having a linear chain of fatty acids.
  • Vegetable oils are all usable, in particular rapeseed oil, palm oil and palm kernel oil. Animal fats are also all usable.
  • the preheated liquid mixture comprising the oil or fat to be treated, methanol, of a purity of at least 99% , advantageously 99.5% and the catalyst is preferably introduced continuously by a high pressure pump into the reactor. It crosses the transesterification zone maintained at the specified temperature and pressure. During the transesterification reaction, the catalyst is consumed and finally removed as a residue. It will be noted, in this regard, that it is not necessary for the oil or the fat, the methanol and the catalyst to be mixed before introduction into the reactor.
  • the mixing can take place partly or completely in the reactor.
  • the oil and the catalyst can be mixed and this mixture can be introduced into the reactor at the same time as methanol, or else the three components can be introduced simultaneously into the reactor and be mixed there.
  • the product leaving the reactor is then subjected instantaneous evaporation in a first separator where the excess methanol is evaporated. This evaporated methanol is recycled after condensation and distillation and reused in transesterification. The mixture is then transferred to a second separator which removes the last traces of methanol.
  • the mixture of methyl esters and glycerol is introduced into a decanter.
  • the upper phase consists of methyl esters and the lower phase consists of glycerol. Glycerol does not require any refining and it can be directly concentrated from 40-50% to 82-88%.
  • Pharmacopoeial grade glycerol is obtained by distillation of the concentrated product.
  • the glycerol present in the methyl esters is separated by washing against the current with demineralized water. If necessary, the methyl esters are distilled.
  • the purity of the methyl esters before distillation is greater than 95%.
  • methyl esters obtained according to the process of the invention are used as fuel in mixture with other fuels, for example at a rate of 50/50 with diesel, they must not be distilled but only dried to a moisture content less than 0.05%. If they are used as 100% fuel or as a raw material for oleochemical derivatives, they must be distilled to a purity higher than 98.5%.
  • These fatty acid methyl esters can also be converted by hydrogenation in the presence of a copper chromite catalyst to fatty alcohols. Conversion to alkanolamides, sulfonated esters or other derivatives is possible by known conventional reactions.
  • the methyl esters obtained also have a purity of more than 95% .
  • Example 1 is repeated, but with rapeseed oil in place of palm and / or palm kernel oil. Similar results are obtained.
  • Methyl esters are also obtained with a purity of more than 95%.
  • the process for preparing methyl esters according to the invention is extremely simple and economical to carry out.
  • the crude oil or fat should only be degummed and dried and does not require, as in conventional processes, a step of removing fatty acids by chemical means (alkaline neutralization) or by physical means (steam entrainment).
  • the crude glycerol obtained contains very few non-volatile products and does not require either chemical refining or separation of the soaps before concentration.
  • the crude methyl esters obtained also have a very high purity.
  • the reactor and the accessories can be constructed essentially of mild steel and, for example, partially in ordinary SS 304 stainless steel. Besides the fact that the process can be applied continuously, the consumption of catalyst is also very low and will have little influence on the purity of the final products and on the operating costs of the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
EP93870224A 1993-11-22 1993-11-22 Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung Withdrawn EP0654528A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93870224A EP0654528A1 (de) 1993-11-22 1993-11-22 Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93870224A EP0654528A1 (de) 1993-11-22 1993-11-22 Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung

Publications (1)

Publication Number Publication Date
EP0654528A1 true EP0654528A1 (de) 1995-05-24

Family

ID=8215408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93870224A Withdrawn EP0654528A1 (de) 1993-11-22 1993-11-22 Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung

Country Status (1)

Country Link
EP (1) EP0654528A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3143912A1 (de) 2015-09-08 2017-03-22 Eugster/Frismag AG Getränkezubereitungsvorrichtung sowie betriebsverfahren

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808421A (en) * 1955-12-13 1957-10-01 Eastman Kodak Co Method for preparing mixed triglyceride compositions
US3917662A (en) * 1974-04-29 1975-11-04 Zoecon Corp Preparation of fatty acid esters
FR2332806A1 (fr) * 1975-11-26 1977-06-24 Emery Industries Inc Catalyseurs de metaux de transition et leurs procedes de preparation et d'utilisation
EP0070492A2 (de) * 1981-07-20 1983-01-26 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von Fettsäurealkylestern mit verbesserter Verarbeitbarkeit
EP0147914A2 (de) * 1983-12-27 1985-07-10 Ciba Corning Diagnostics Corp. Immobilisierte Enzymzusammensetzungen
FR2560210A1 (fr) * 1983-12-30 1985-08-30 Inst Francais Du Petrole Procede de fabrication d'un ester methylique, ethylique, propylique ou butylique d'acide gras adapte a l'utilisation comme carburant diesel
DE3421217A1 (de) * 1984-06-07 1985-09-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von fettsaeureestern kurzkettiger alkohole
WO1990008123A1 (en) * 1989-01-17 1990-07-26 Davy Mckee (London) Limited Process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808421A (en) * 1955-12-13 1957-10-01 Eastman Kodak Co Method for preparing mixed triglyceride compositions
US3917662A (en) * 1974-04-29 1975-11-04 Zoecon Corp Preparation of fatty acid esters
FR2332806A1 (fr) * 1975-11-26 1977-06-24 Emery Industries Inc Catalyseurs de metaux de transition et leurs procedes de preparation et d'utilisation
EP0070492A2 (de) * 1981-07-20 1983-01-26 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von Fettsäurealkylestern mit verbesserter Verarbeitbarkeit
EP0147914A2 (de) * 1983-12-27 1985-07-10 Ciba Corning Diagnostics Corp. Immobilisierte Enzymzusammensetzungen
FR2560210A1 (fr) * 1983-12-30 1985-08-30 Inst Francais Du Petrole Procede de fabrication d'un ester methylique, ethylique, propylique ou butylique d'acide gras adapte a l'utilisation comme carburant diesel
DE3421217A1 (de) * 1984-06-07 1985-09-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von fettsaeureestern kurzkettiger alkohole
WO1990008123A1 (en) * 1989-01-17 1990-07-26 Davy Mckee (London) Limited Process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3143912A1 (de) 2015-09-08 2017-03-22 Eugster/Frismag AG Getränkezubereitungsvorrichtung sowie betriebsverfahren

Similar Documents

Publication Publication Date Title
EP0194165B1 (de) Verfahren zur Herstellung einer Fettsäureesterzusammensetzung zur Verwendung als Dieselölbrennstoffersatz mit hydriertem Ethylalkohol und derart hergestellte Zusammensetzungen
EP1934321B1 (de) Verfahren zur herstellung von fettsäureethylestern aus triglyceriden und alkoholen
EP1941013B1 (de) Verbessertes verfahren zur herstellung von ethylestern aus natürlichen fetten
EP0591019B1 (de) Verbessertes Verfahren zur Herstellung von Esters aus natürlichen Fette
EP0518765B1 (de) Verfahren zur Herstellung von Polyglycerinen und Polyglycerinestern
EP0806471B1 (de) Verfahren zur Herstellung von Fettsäureäthylestern
US5532392A (en) Process for the preparation of methyl fatty acid esters starting from natural oil or fat, methyl esters obtained in this way and use thereof
EP0924185A1 (de) Verfahren zum Herstellen von Fettsäureester und so erhaltende hochreine Ester
EP2734495B1 (de) Verfahren zur synthese von omega-funktionalisierten säuren aus fettsäuren oder fettsäureestern
FR2890656A1 (fr) Procede de fabrication d'esters a partir de triglycerides et d'alcools
FR2929621A1 (fr) Utilisation d'acide methane sulfonique pour l'esterification d'acides gras
FR2700536A1 (fr) Procédé perfectionné pour oligomériser les acides et les esters polyinsaturés.
FR2743084A1 (fr) Procede de fabrication de produits solides par esterification des acides gras libres en presence de catalyseurs acides
CH667671A5 (fr) Procede pour la fabrication d'une preparation enzymatique pour interesterification.
EP2964603B1 (de) Verwendung einer sulfonsäure zur rückgewinnung von glycerol aus einer triglyceridumesterungsreaktion
WO2014001725A1 (fr) Procédé de synthèse d'acides insaturés biosourcés
EP1941014B1 (de) Verbessertes verfahren zur herstellung von ethylestern aus natürlichen fetten
FR2486072A1 (fr) Procede pour la fabrication de l'acide b-hydroxybutyrique et de ses oligocondensats
EP0654528A1 (de) Verfahren zur Herstellung von Fettsäuremethylestern aus einem natürlichen Öl oder Fett, die dabei erhaltenen Fettsäuremethylester, und ihre Verwendung
BE1006287A3 (fr) Procede de fabrication d'esters methyliques d'acides gras a partir d'une huile ou graisse naturelle, esters methyliques tels qu'ainsi obtenus et leur utilisation.
FR2698101A1 (fr) Procédé de transestérification catalytique de corps gras d'origine végétale ou animale et procédé de récupération des produits obtenus.
EP0967264A1 (de) Verfahren und Vorrichtung zur Extraktion von Öl aus Ölsaaten
FR2957075A1 (fr) Procede d'obtention de compositions de biosolvants par esterification et compositions de biosolvants obtenues
EP3544948A1 (de) Säurezusammensetzung zur behandlung von fettsäuren
FR2960874A1 (fr) Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de metallophosphates azotes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19951125