WO2007032226A1 - 心拍計および心拍波形のノイズ除去方法 - Google Patents

心拍計および心拍波形のノイズ除去方法 Download PDF

Info

Publication number
WO2007032226A1
WO2007032226A1 PCT/JP2006/317523 JP2006317523W WO2007032226A1 WO 2007032226 A1 WO2007032226 A1 WO 2007032226A1 JP 2006317523 W JP2006317523 W JP 2006317523W WO 2007032226 A1 WO2007032226 A1 WO 2007032226A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart rate
rate change
change
error
error detection
Prior art date
Application number
PCT/JP2006/317523
Other languages
English (en)
French (fr)
Inventor
Hideki Shimizu
Tsuneharu Kasai
Original Assignee
Citizen Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co., Ltd. filed Critical Citizen Holdings Co., Ltd.
Priority to US12/066,943 priority Critical patent/US8897864B2/en
Priority to CN200680033640.6A priority patent/CN101262815B/zh
Priority to JP2007535427A priority patent/JP4458436B2/ja
Publication of WO2007032226A1 publication Critical patent/WO2007032226A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts

Definitions

  • the present invention relates to a heart rate monitor and a heartbeat waveform noise removal method, and more particularly to body movement noise noise removal.
  • Patent Document 1 is known as a pulse detection circuit that irradiates light to a body, detects reflected light or transmitted light with a light receiving element, converts the received light signal into a pulse signal, and detects a pulse.
  • Patent Document 2 pays attention to the fact that the pulse caused by noise is a relatively narrow pulse, and the pulse wave output by the pulse wave detection circuit is between the pulse wave detection circuit and the pulse wave calculation means.
  • a pulse wave evaluation means for evaluating the pulse width of the signal is provided, and only the signal recognized as a normal pulse wave signal is transmitted to the pulse wave calculation means to obtain the stability of the pulse display.
  • body motion is removed using an acceleration sensor and wavelet transform.
  • a body motion waveform is detected by the acceleration sensor using body motion as an acceleration, and the wavelet is detected by the body motion waveform.
  • the body motion analysis data for each frequency domain is generated by performing the transformation, and the pulse wave analysis data for each frequency domain is generated by applying the wavelet transform to the pulse wave waveform in which the detection site force of the living body is also detected. It has been disclosed to detect a pulse by subtracting body movement analysis data from analysis data.
  • Patent Document 4 discloses that high-frequency component noise is removed from a PPG signal by wavelet transform in photoplethysmography (PPG) for optically extracting heartbeat information. Yes.
  • Patent Document 1 Japanese Patent Publication No. 61-29730
  • Patent Document 2 Japanese Patent Publication No. 4-79250
  • Patent Document 3 Japanese Patent Laid-Open No. 11-9564
  • Patent Document 4 Japanese Patent Publication No. 2003-310562
  • Heart rate measurement by a heart rate meter is performed under various measurement conditions such as during non-exercise and during exercise.
  • the heart rate waveform detected by the heart rate sensor is not limited to the basic waveform, and the noise characteristics superimposed on the basic waveform also have different signal characteristics such as frequency and peak value.
  • a noise component is superimposed on the heartbeat waveform during exercise.
  • This noise component is generated due to displacement of the heart rate sensor when the person wearing the heart rate sensor moves, in addition to disturbance noise, which is an electrical high-frequency noise that enters the heart rate sensor and the transmission system.
  • disturbance noise which is an electrical high-frequency noise that enters the heart rate sensor and the transmission system.
  • Body motion noise which is fine motion noise, is included.
  • this body movement noise is roughly classified into two types depending on the generation factor and the magnitude of the noise error.
  • Heart rate error is less than about a second.
  • the heart rate error is mainly 20 beats Z60 seconds or more. It becomes.
  • FIG. 23 is a diagram for explaining a heartbeat error due to body motion noise generated when the heartbeat sensor largely fluctuates as described above.
  • Fig. 23 (a) shows the heartbeat waveform output by the heartbeat sensor.
  • the shape is not output at all, and the output is saturated due to abnormal oscillation during the period a2 and a4.
  • the heartbeat cannot be detected from the heartbeat waveform in the time span of T1 to T4 (bl to b4 in Fig. 23 (b)).
  • the heart rate is expressed as a heart rate per unit time, the heart rate also decreases during the period of cl to c4 even in the heart rate shown in Fig. 23 (c).
  • Disturbance noise which is electrical high-frequency noise that penetrates into the heart rate sensor and the transmission system, and body movement noise that occurs due to misalignment of the heart rate sensor are superimposed with the main noise component of the heart rate. Since it is a form, it is possible to apply a noise removal technique by signal processing such as filter processing.
  • an object of the present invention is to solve the conventional problems and to obtain an accurate heartbeat even when the main component of the heartbeat is lost due to a large body motion noise or the like.
  • the heart rate meter of the present invention is a heart rate meter for measuring a heart rate of a living body, and a heart rate change detecting unit that obtains a change in heart rate with respect to a heart rate obtained from a heart rate waveform;
  • a heart rate error detection and correction unit for detecting a heart rate error based on the detected error and correcting the error detected heart rate;
  • the heartbeat waveform noise removal method of the present invention includes a heart rate change detection step for obtaining a change in heart rate for the heart rate obtained from the heart rate waveform, and a heart rate change based on a change in heart rate change.
  • a heart rate error detection and correction process for detecting an error and correcting the detected heart rate error.
  • the heart rate is, for example, a signal representing a heartbeat waveform output by a heartbeat sensor detecting a heartbeat of a living body.
  • Each heartbeat is extracted by processing, the heartbeats are counted, converted into a number per unit time (for example, lmin), and expressed.
  • the heart rate change represents how the heart rate changes with time.
  • the heart rate change can be represented by the number of changes in the heart rate increased or decreased over a predetermined time. For example, if the heart rate changes from 80 beats Zmin to 100 beats Zmin before and after a predetermined time, the heart rate will increase by 20% of the difference, and the change in heart rate will be "+ 20 It becomes "beat".
  • the predetermined time can be an arbitrary time as long as it is longer than the time of the heartbeat interval, and can be, for example, 30 seconds.
  • the heart rate change can be expressed by a differential value of the heart rate at a predetermined time in addition to the above-described change number.
  • the heart rate is obtained by counting the heart rate of the living body and is essentially a discontinuous quantity, and no differential value can be obtained for the heart rate itself, but by approximating the temporal change of the heart rate with a function, A differential value of the heart rate can be obtained.
  • heart rate waveform In heart rate measurement, if information about the heart rate is lost due to large body motion noise or the like, the heart rate waveform itself cannot detect the main component that identifies the heart rate, the heart rate position, and the like.
  • a change in heart rate is obtained for the heart rate obtained from the heart rate waveform, and the heart rate error is corrected based on the change in the heart rate change.
  • heart rate changes can be detected in a plurality of forms.
  • heart rate change can be obtained from the number of heart rate changes per predetermined time, for example, the heart rate change number can be obtained from the difference between heart rate sampling values. .
  • the differential force of the heart rate at a predetermined time is obtained.
  • the inventor of the present application has found that the heart rate varies depending on the person to be measured, but the change in the heart rate shows a common change tendency even if the person to be measured is different.
  • the change in heart rate that appears when a certain load is applied to the subject is commonly characterized. It was found that it showed a change tendency.
  • FIG. 1 shows the heart rate (shown in FIG. 1 (a)) and heart rate change (shown in FIG. 1 (b)) when a constant load is applied.
  • the heart rate change is represented by the change number for each predetermined time of the heart rate.
  • the heart rate varies depending on the individual difference of the person to be measured, whereas the heart rate change shows a change tendency almost common within a predetermined change range. For example, when you start exercising, heart rate changes tend to decrease after increasing once. After this heart rate change increases or decreases, the heart rate becomes almost constant during exercise. On the other hand, when the exercise ends, the beat change tends to increase after decreasing once. Due to this change in heart rate, the heart rate returns to the pre-exercise state after a predetermined period of time has elapsed after the end of exercise.
  • This heart rate change tends to be a change that is almost common within a predetermined change range, regardless of individual differences among the persons to be measured.
  • the present invention pays attention to the change in the heart rate, and due to large body movement noise or the like, the loss of the heartbeat waveform detection signal (al, a3 in Fig. 23 (a)) or the oscillation of the heartbeat waveform detection signal. Saturation (a2, a4 in Fig. 23 (a)) occurs, and the resulting heart rate error is detected from the heart rate change error. Next, the detected error portion of the heart rate change is corrected by the reference heart rate change, and the heart rate is corrected based on the corrected heart rate change.
  • Heart rate error detection correction is based on heart rate error detection that detects heart rate change errors as heart rate errors based on changes in heart rate changes, and heart rate error detection based on heart rate error detection. And heart rate error correction.
  • FIG. 2 is a diagram for explaining heart rate change error detection, heart rate change error correction, and heart rate error correction performed based on heart rate change. If the loss of heart rate information occurs in part of the heart rate (A, B, C in the figure) due to body movement noise (Fig. 2 (a)), an error occurs in the heart rate change due to the loss of this heart rate information ( Figure 2 (b)). This heart rate change error is detected and corrected (Fig. 2 (c)). By correcting the heart rate change, the corrected heart rate change will include information regarding the corrected heart rate.
  • heart rate error detection is performed by comparing the change in the target heart rate of the target heart rate with the change in the reference heart rate change as a reference, and the similarity in the change in both heart rate changes.
  • a heart rate change error detection for detecting a heart rate change error of interest and a heart rate change error correction for correcting a heart rate change error is performed by comparing the change in the target heart rate of the target heart rate with the change in the reference heart rate change as a reference, and the similarity in the change in both heart rate changes.
  • a plurality of heart rate change values that the target heart rate change has in the predetermined time range are used as the transition of the heart rate change, and the same number that the reference heart rate change has in the predetermined time range.
  • the change in the heart rate is taken as the transition of the reference heart rate change, and in both transitions, the difference between the corresponding heart rate change values is taken as the similarity of the transition, and the target heart rate change error is detected.
  • a plurality of reference heart rate change patterns having different combinations of heart rate change value powers are prepared, and a reference heart rate change pattern estimated from the plurality of reference heart rate change patterns is prepared. And the target heart rate change.
  • the timing for estimating the reference heart rate change pattern used for comparison from a plurality of reference heart rate change patterns can be linked to the timing of exercise load.
  • heart rate change error detection detects an error in heart rate change based on the number of target heart rate change values whose difference exceeds a set value. For example, if at least one of a plurality of heart rate change values constituting the heart rate change pattern is outside the range of the heart rate change value of the reference heart rate change pattern, there is an error in heart rate change. To do.
  • heart rate change error correction corrects the heart rate change value of the target heart rate change detected by heart rate change error detection to the heart rate change value of the reference heart rate change.
  • the heart rate error correction unit corrects the corresponding heart rate based on the heart rate change value detected and corrected by the heart rate error detection described above.
  • an accurate heartbeat can be obtained even when the main component of the heartbeat is lost due to large body motion noise or the like.
  • FIG. 1 is a diagram showing heart rate and heart rate change when a certain load is applied.
  • FIG. 2 is a diagram for explaining heart rate change error detection, heart rate change error correction, and heart rate error correction based on heart rate change.
  • FIG. 3 is a diagram for explaining a schematic configuration of the present invention.
  • FIG. 4 is a diagram for explaining a configuration of a heart rate monitor of the present invention.
  • FIG. 5 is a schematic cross-sectional view for explaining a configuration example of a heart rate sensor.
  • FIG. 6 is a diagram for explaining another configuration of the heart rate monitor of the present invention.
  • FIG. 7 is a schematic cross-sectional view for explaining another configuration example of the heart rate sensor.
  • FIG. 8 is a diagram for explaining a configuration example of a heart rate change detection unit and a heart rate error detection unit.
  • FIG. 9 is a diagram for explaining an example of a heart rate change pattern.
  • FIG. 10 is a flowchart for explaining an operation example of a heart rate error detection and correction unit.
  • FIG. 11 is a diagram for explaining an example of a change in heart rate in an operation example of the heart rate error detection and correction unit.
  • FIG. 12 is an operation explanatory diagram for explaining an operation example of a heart rate error detection / correction unit.
  • FIG. 13 is an example of a circuit configuration of a heart rate error detection unit.
  • FIG. 14 is an example of a circuit configuration of a heart rate error detection unit.
  • FIG. 15 is a diagram for explaining a beat number change pattern.
  • FIG. 16 is an example of a circuit configuration in which heart rate error detection units are connected in parallel.
  • FIG. 17 is another example of the circuit configuration of the heart rate error detection unit.
  • FIG. 18 is an example of a circuit configuration constituting the heart rate error correction unit.
  • FIG. 19 is a flowchart for explaining an operation example of a heart rate error correction unit.
  • FIG. 20 is a diagram for explaining an operation example of a heart rate error correction unit.
  • FIG. 21 is a diagram for explaining another mode of heart rate change error detection according to the present invention.
  • FIG. 22 is a flow chart for explaining another aspect of heart rate change error detection according to the present invention.
  • FIG. 23 is a diagram for explaining a heart rate error due to body motion noise that occurs when the heart rate sensor largely fluctuates. Explanation of symbols
  • the heart rate monitor 1 of the present invention includes a heart beat detecting unit that detects a heart beat waveform of a living body, and a signal processing unit that detects a heart beat obtained by performing signal processing on the detected heart beat waveform.
  • the heart rate detected by the signal processing unit is counted by the heart rate counting unit 7, and the counted heart rate is notified by display, transmission, recording, etc. in a heart rate notification unit 8A (not shown) provided in the notification unit 8. Is called.
  • the above-described heartbeat detection unit can be configured by, for example, the heartbeat sensor 2 and the detection circuit 3 that acquires a detection signal from the output of the heartbeat sensor 2.
  • an optical sensor can be used as the heart rate sensor 2
  • the detection circuit 3 converts an output obtained by the heart rate sensor 2 such as an optical signal into an electric signal, and amplifies the signal as necessary. It can be converted to a digital signal by conversion.
  • the signal processing unit detects a heart rate based on the heart rate waveform detected by the detection circuit 3, and detects a heart rate change based on the heart rate detected by the heart rate detection unit 4.
  • a heart rate change detection unit 5 and a heart rate error detection correction unit 6 that detects a heart rate error based on the heart rate change detected by the heart rate change detection unit 5 and corrects the heart rate error. .
  • the heart rate sensor 2 when the heart rate monitor is used in an exercise state, the heart rate sensor 2 may be separated from the vascular force of the measurement subject to be measured. In such a case, the detection In the detection signal that is the output of path 3, there are places where the output cannot be obtained and parts where the output saturates due to the intrusion of ambient light. If such an output cannot be obtained or an output saturation point occurs, an error occurs in the heart rate obtained from the heart rate detector 4.
  • Heart rate change detector 5 detects a heart rate change, which is a temporal variation of the heart rate. For example, a change in heart rate is detected by obtaining a difference between heart rates output from the heart rate detection unit 4 before and after a predetermined time. This heart rate change corresponds to a differential value of the heart rate, and when a function approximating the change of the heart rate is obtained, it can also be detected by a differential value of this function at a predetermined time.
  • the heart rate error detection / correction unit 6 performs heart rate error detection by detecting heart rate change error correction and heart rate change error correction (FIG. 2 (a) to FIG. 2).
  • Fig. 2 (c) heart rate error correction is performed by correcting the detected heart rate change error (Figs. 2 (c) to 2 (d)).
  • the heart rate counting unit 7 counts the heart rate based on the heart rate corrected by the heart rate error detection and correction unit 6. Since the heart rate counted here is a heart rate in which error correction is performed, an accurate heart rate can also be solved.
  • FIG. 4 is a diagram for explaining the configuration of the heart rate monitor shown in FIG. Here, an example of an optical sensor as the heart rate sensor 2 is shown!
  • the heart rate monitor 1 has a heart rate sensor 2 that acquires heart rate information from the living body 30, a detection circuit 3 that forms an output force detection signal of the heart rate sensor 2, and a detection signal from the detection circuit 3 by performing signal processing on the heart rate sensor 2.
  • the heart rate notification unit 8A constitutes a notification unit 8 together with the exercise notification unit 8B.
  • the heart rate notification unit 8A transmits it to another device or records it on a recording device.
  • the exercise notification unit 8B instructs the subject to start or stop the exercise.
  • a load can be imposed on the subject at a predetermined timing.
  • the time information is sent from the motion notification unit 8B to the heart rate error detection / correction unit 6 at the start of exercise and the end of exercise.
  • the type and magnitude of the load imposed on the subject are set in advance.
  • the signal processing unit 10 includes a heart rate detection unit 4 that detects a heart rate, a heart rate change detection unit 5 that detects a detected heart rate force change, and a heart rate change based on the detected heart rate change.
  • a heart rate error detection and correction unit 6 that performs error detection and error correction and a heart rate counting unit 7 that counts the corrected heart rate are provided.
  • the heart rate sensor 2 includes a light emitting element portion 2a that irradiates light to the living body 30 driven by the light emitting circuit 9, and a light receiving element portion 2b that receives light scattered, reflected, or transmitted by the living body 30.
  • FIG. 5 is a schematic cross-sectional view for explaining a configuration example of the heart rate sensor 2, and shows a configuration example in which the living body 30 is irradiated with light and the reflected light is detected.
  • the light-emitting element part 2a and the light-receiving element part 2b are opposed to each other with the light-shielding plate 2c interposed therebetween, and are installed at positions symmetrical with respect to an irradiation point (not shown).
  • the light shielding plate 2c blocks light that is directly incident on the light receiving element portion 2b from the light emitting element portion 2a.
  • the light irradiated to the living body 30 from the light emitting element portion 2a is scattered by the tissue in the living body 30 and the blood in the blood vessel 31, and is emitted out of the living body 30 again.
  • the intensity of light emitted from the living body 30 varies depending on the blood flow.
  • the heart rate monitor 1 of the present invention detects a heart rate based on a change in light intensity that varies according to the blood flow of this light intensity.
  • the detection circuit 3 receives the optical signal obtained from the light receiving element unit 2b and converts it into an electrical signal detection signal, an amplification circuit unit 3b that amplifies the detection signal, and a digital signal.
  • An AZD conversion unit 3c for conversion is provided.
  • the signal processing unit 10 includes the heart rate detection unit 4, the heart rate change detection unit 5, the heart rate error detection correction unit 6, and the heart rate counting unit 7, which are obtained.
  • the heart rate is sent to the heart rate notification unit 8 to notify the counted heart rate.
  • Heart rate error detection and correction unit 6 includes a heart rate error detection unit 6A that detects a heart rate error, and a heart rate that corrects the heart rate based on the heart rate error detected by heart rate error detection unit 6A. And a correction unit 6B.
  • the heart rate notification unit 8 can have any combination of display, recording, transmission, and the like of the heart rate.
  • FIG. 6 is a diagram for explaining another configuration of the heart rate monitor shown in FIG. In this configuration example, an example of the tactile sensor 2A as the heart rate sensor 2 is shown!
  • the heart rate monitor 1 includes the heart rate sensor 2, the detection circuit 3, the signal processing unit 10, and the notification unit 8, and the detection signal of the tactile sensor 2 A that is the heart rate sensor 2 is Then, the signal is amplified by the amplifier circuit section 3b in the detection circuit 3, and converted into a digital signal by the AZD conversion section 3c.
  • a tactile sensor 2 A is provided as the heart rate sensor 2.
  • the tactile sensor 2A is a collective term for sensors that detect vibration generated by biological force.
  • the tactile sensor 2A detects a heartbeat by detecting a pulse wave of an arterial blood vessel in the living body.
  • FIG. 7 is a schematic cross-sectional view for explaining one configuration example of the tactile sensor 2A.
  • the arterial blood vessel 31 in the living body vibrates in synchronization with the pulse according to the fluctuation of the blood flowing in the blood vessel.
  • This vibration of the arterial blood vessel propagates as a vibration wave in the living tissue 33.
  • the tactile sensor 2A is attached in contact with a living body, for example, the skin surface, and detects a vibration wave that has propagated through the tissue 33 of the living body. This vibration wave is detected as a pressure change or a vibration change.
  • the tactile sensor 2A various sensors according to the mode of detecting the vibration wave can be used. For example, when a pressure sensor is used as the tactile sensor 2A, a vibration wave is detected as a pressure change. When a vibration sensor is used as the tactile sensor 2A, a vibration wave is detected as a vibration change. As the vibration change, for example, a change in amplitude or frequency is detected.
  • the tactile sensor 2A detects a vibration wave propagating through the tissue 33 of the living body through the skin.
  • the tactile sensor 2A is provided in the vicinity of the measurement site for detecting the pulse of the living body.
  • the tactile sensor 2A can increase detection sensitivity by bringing it into contact with the skin 34 in the vicinity of the measurement site, and can further increase detection sensitivity by pressing the tactile sensor 2A against the skin 34.
  • the tactile sensor 2A of this configuration example detects a vibration wave that fluctuates according to the blood flow, and the detection circuit 3 amplifies the detection signal by the amplification circuit unit 3b and converts it to a digital signal by the AZD conversion unit 3c. Replace.
  • an optical sensor When an optical sensor is used as the heart rate sensor, a part for detecting a heart rate signal can be specified in a narrow range, and the heart rate state at a specific position can be detected. If a tactile sensor is used as the heart rate sensor, heart rate signals are acquired from a wide range. It is possible to eliminate the need for high accuracy in positioning the heart rate sensor, and to alleviate poor detection due to misalignment during use.
  • the heart rate change detection unit 5 receives the heart rate D detected by the heart rate detection unit 4 and stores it in a heart rate temporary storage unit 5a and a heart rate D stored in the heart rate temporary storage unit 5a.
  • a difference calculation unit 5b that calculates a heart rate change E based on the difference, and a heart rate change storage unit 5c that stores the heart rate change obtained by the difference calculation unit 5b.
  • Temporary heart rate temporary storage 5a stores input heart rate D as current heart rate DO and rewrites previously stored current heart rate DO as previous heart rate D1. Every time a new heart rate D is input, the heart rate temporary storage unit 5a rewrites the current heart rate DO and the previous heart rate D1, and discards the previous previous heart rate D1. Is done.
  • the heart rate change storage unit 5c stores a plurality of heart rate change values E obtained by the difference calculation unit 5b at different times.
  • three heart rate change values [E0, El, E2] of the present heart rate change value E0, the previous heart rate change value E1, and the previous heart rate change value E2 are stored.
  • the memory of the heart rate change value is updated every time the heart rate change value E is calculated by the difference calculation unit 5b, and the oldest heart rate change value E2 is discarded and updated with a new heart rate change value E2.
  • the heart rate change storage unit 5c stores the current and past three heart rate change values [E0, El, E2] at each point in time for each elapsed time. Become.
  • the heart rate change error is detected by using a plurality of consecutive heart rate change values as a change pattern of the heart rate change.
  • the number of continuous heart rate change values is three, but the number is not limited to three and can be any number.
  • the number of consecutive heart rate change values is two, the number of patterns from which heart rate change errors can be detected is limited, and the detection accuracy may be reduced.
  • the detection accuracy for detecting heart rate change errors improves, but the calculation time required for error detection becomes longer and the initial time point is increased.
  • the number of heart rate change values required for error detection is insufficient, it takes a long time to detect heart rate change for the first time, and there is a risk of overlooking the initial heart rate change error. Therefore, the number of consecutive heart rate change values is set in consideration of the above points.
  • the detection of the heart rate change is performed every time the heart rate is acquired. Do it every time you get your heart rate.
  • the heart rate error detection unit 6A includes a heart rate change error detection unit 6a, a reference heart rate change pattern storage unit 6b, a reference heart rate change pattern selection unit 6c, and a heart rate change error correction unit 6d. Prepare.
  • the heart rate change error detection unit 6a detects whether or not there is an error in the heart rate change detected by the heart rate change detection unit. This error detection compares the change pattern of the heart rate change in the target heartbeat waveform with the change pattern of the reference heart rate change obtained in advance 1.
  • the target heart rate change pattern matches the reference heart rate change pattern, it is determined that there is no error in heart rate change, and the target heart rate change pattern is the reference heart rate change pattern. If it does not match, it is determined that there is a heart rate change error.
  • the heart rate change pattern shows a different pattern depending on the elapsed time of the heart rate change.
  • FIG. 9 is a diagram for explaining an example of a heart rate change pattern.
  • Heart rate change patterns a to k (Fig. 9 (b)) are divided into heart rate change waveforms with a predetermined time width (time width indicated by an arrow in the figure) as a unit, and the heart rate change value within this time width.
  • the state in which fluctuates is extracted as a heart rate change pattern.
  • a heart rate change pattern is formed by three consecutive heart rate change values.
  • a heart rate change pattern to be compared is determined and stored in advance as a reference heart rate change pattern.
  • This reference heart rate change pattern is similar to the heart rate change pattern.
  • a plurality of patterns are stored in the reference heart rate change pattern storage unit 6b in order to show different patterns depending on the elapsed time of the change. Therefore, when the heart rate change pattern is compared with the reference heart rate change pattern, there are a plurality of reference heart rate change patterns that do not match.
  • the target heart rate change pattern does not match! If there are multiple reference heart rate change patterns, there is an error in the target heart rate change pattern, as well as the target heart rate change pattern. There are cases where the pattern is not mistaken but the elapsed time to be compared is different, so it should not be the target of comparison, but only the result of comparison with the heart rate change pattern.
  • the heart rate change value is based on the number of different heart rate change values. Error detection. For example, if a large number of heart rate change values are different, it is determined that the reference heart rate change pattern is not subject to comparison, and if the number of different heart rate change values is small, the reference heart rate change The pattern is suitable for the comparison target, and it is determined that the target heart rate change includes an error. The set value of the number of heart rate change values used for this determination is set in advance.
  • the position of the heart rate change value that does not match represents the position in which the heart rate change is incorrect, which can be used to detect the position of the error. I'll do it.
  • the reference heart rate change pattern storage unit 6b measures a heart rate under the same measurement conditions when a certain load is imposed on a plurality of subjects in advance, and based on the plurality of measurement results! /
  • the common heart rate change pattern is stored as the reference heart rate change pattern.
  • This reference heart rate change pattern has different patterns depending on the elapsed time of heart rate change as shown in FIG.
  • the heart rate change error detection unit 6a takes in the change value of the target heart rate change from the heart rate change storage unit 5c and reads the reference heart rate change pattern storage unit 6b from the reference heart rate change pattern storage unit 6b. The change values of these change patterns are compared. Note that the change value comparison is performed by comparing the heart rate change values at a plurality of time points before the target time point with a reference heart rate change pattern, thereby detecting an error at the target time point.
  • the timing at which the heart rate change error detection unit 6a reads the reference heart rate change pattern from the reference heart rate change pattern storage unit 6b can be performed based on the signal of the motion notification unit 8B force.
  • the motion notification unit 8B is configured to notify the subject of the start of the load, and the heart rate change starts the fluctuation of the point in time when the load is imposed on the subject.
  • the heart rate change error detection unit 6a reads the reference heart rate change pattern that appears at the start of exercise from the reference heart rate change pattern storage unit 6b at the start of exercise, and the reference heart rate that appears at the end of exercise at the end of exercise.
  • the change pattern is read from the reference heart rate change pattern storage unit 6b.
  • the reference heart rate change pattern storage unit 6b stores the reference heart rate change pattern.
  • Multiple reference heart rate change pattern powers Appropriate patterns can be selected. This selection can be performed by the heart rate change pattern selection unit 6c. For example, using the elapsed time of the heart rate change as a parameter, a pattern that can be taken when the heart rate change to be evaluated is the target is selected. Can do.
  • the selection of the reference heart rate change pattern is not based on the elapsed time of the heart rate change.
  • the heart rate change error detection unit 6a The effect of reducing the processing amount of the pattern comparison performed in step 1 is effective.
  • the heart rate change error correction unit 6d extracts a heart rate change value corresponding to the lost heart rate from the heart rate change values of the reference heart rate change pattern, and uses the heart rate change value. Correct heart rate change error. More specifically, the heart rate change error correction unit 6d sets the target time point detected by the heart rate change error detection unit 6a as an error position, and uses the reference heart rate change pattern stored in the reference heart rate change pattern storage unit 6b. The heart rate change value corresponding to the target time point is read and replaced with the heart rate change value recognized as an error to correct the heart rate change error.
  • the heart rate correction unit 6B obtains a heart rate position based on the heart rate error position detected by the heart rate change error detection unit 6a, and the heart rate change detected by the heart rate change error correction unit 6d. Correct the heart rate based on the number of errors.
  • the heart rate temporary storage unit 5a inputs the heart rate D from the heart rate detection unit 4, stores the input heart rate D as the current heart rate DO, and the previously stored current heart rate. Rewrite DO as the previous heart rate D1 (Sl).
  • the heart rate change value obtained by the above calculation is stored as the current heart rate change value E0, and the heart rate change value E0 that was the current heart rate change value at the previous time is defined as the previous heart rate change value E1. Further, the heart rate change value E1 that was the previous heart rate change value at the previous time is stored as the heart rate change value E2 before the previous time. As a result, three heart rate change values [EO, E1, E2] of the current heart rate change value E0, the previous heart rate change value E1, and the previous heart rate change value E2 are stored. (S3).
  • a reference heart rate change pattern used for heart rate change error detection and correction is estimated, and error detection and error correction are performed using the estimated reference heart rate change pattern.
  • the heart rate change pattern obtained in step S3 is used as each reference heart rate change pattern. Do by comparing.
  • Figure 11 shows the reference heart rate change pattern
  • E0 is the number of heart rate changes at the target time of evaluation
  • E1 is the number of heart rate changes at the time immediately before the target time
  • E2 is two times before the target time. This is the change in heart rate at the time of.
  • pattern 3 in which the value of [E2, E1] fits within the evaluation criterion is estimated as the reference heart rate change pattern (S4).
  • the E0 value of the pattern 3 estimated as the reference heart rate change pattern is compared with the E0 value of the evaluation heart rate change pattern.
  • FIG. 13 is an example of a circuit configuration of the heart rate error detection unit.
  • the circuit configuration example shown in FIG. 13 can be configured by a delay circuit 21, adders 22, 24, comparators 23, 25, and the like.
  • the number of delay circuits 21 corresponding to the heart rate n constituting the heart rate change pattern (for example, (n—1) delay circuits 21 are cascade-connected, and n is added to the input terminal and the output terminal of each delay circuit 21.
  • Connect to each adder 22 Set to each adder 22 to subtract the heart rate change value ⁇ 0 to ⁇ -1 of the reference heart rate change pattern.
  • the output of each adder 22 is input to the comparator 23
  • the comparison is performed using the judgment width A as an evaluation criterion, and the processing by the adder 22 and the comparator 23 described above corresponds to S4 and S5 in the flowchart described above.
  • the output of the comparator 23-0 that compares the outputs of the adders connected to the input terminal represents the difference from the reference value of the heart rate change E0. Also, the outputs of the comparators 23-l to 23-n-l that compare the outputs of the adders connected to each delay device represent the difference from the reference value of the heart rate change El to En.
  • Comparator 25 can determine whether the reference heart rate change pattern is compatible or not by comparing this sum and the set number m (for example, (n-1)).
  • the reference heart rate change pattern is appropriately determined by the output of the comparator 25.
  • the error can be detected by the output of the comparator 23-0. If no output is obtained from comparator 23-0, it can be determined that there is no error.
  • FIG. 13 is an example of configuring a heart rate change pattern with n consecutive heart rate change values.
  • force n 3
  • the circuit configuration diagram of FIG. 14 and the heart rate change pattern of FIG. This will be described with reference to the drawings for explaining the above.
  • “1” is output from the comparator 23-0, which indicates the determination of “no error”.
  • the comparator outputs “1” when it is within the evaluation criteria.
  • FIG. 14 (b) and FIG. 15 (b) show the evaluation target heart rate change pattern ([E2, El, E0]
  • FIGS. 14 (c) and 15 (c) show heart rate change patterns to be evaluated ([E2, El, E0]
  • Comparator 25 sets the output "1" of adder 24 to the set value
  • the heart rate change error detection unit 6a prepares the circuit having the above-described configuration for each reference heart rate change pattern and connects it in parallel, and the heart rate change is connected to each pattern circuit in parallel. It can be configured by inputting.
  • the reference heart rate change values E0 to En are as shown in FIG. Alternatively, it may be set in order from the storage unit 6b for storing the reference heart rate formation change value.
  • the heart rate change error detection unit 6a can be configured by a single circuit without connecting a plurality of circuit configurations as shown in FIG.
  • FIG. 18 shows an example of a circuit configuration constituting the heart rate error correction unit.
  • a heart rate error correction unit 6B includes a heart rate storage unit 6e that stores heart rate D, a correction heart rate calculation unit 6f that calculates a heart rate to be corrected, and a heart rate storage unit 6e that uses the calculated corrected heart rate. And a rewriting unit 6g for rewriting the heart rate.
  • Heart rate change Et is the heart rate Dt at the correction time t and the heart rate Dt- at the previous time t-1.
  • Heart rate change error correction unit 6 Reads heart rate change value et (corrected heart rate change value E at correction time t) corrected by d (
  • the heart rate Dt-1 at time t-1 immediately before the same time beam is read from the heart rate storage unit 6e (S13).
  • the corrected heart rate dt is calculated (FIG. 20 (d)) (S14).
  • the rewriting unit 6g corrects the heart rate by rewriting the heart rate Dt of the heart rate storage unit 6e to dt (S15).
  • the corrected heart rate can be subjected to display processing including notification, transmission to another device, or storage, etc. (S16).
  • Each processing described above is not limited to a circuit configuration by hardware, and can be executed by software processing by a program that instructs the CPU to execute each processing described above.
  • heart rate error detection unit 6a in the heart rate error detection unit 6A described above an example of performing heart rate change error detection based on a continuous heart rate change pattern (eg, [El, E2])
  • error detection by heart rate change is not limited to this change pattern.
  • error detection may be determined only by the heart rate change value E0 at the target time.
  • FIGS. 21 and 22 are diagrams and flowcharts for explaining another aspect of the error detection of heart rate change according to the present invention.
  • FIG. 21 (b) shows a case where an error occurs in the heart rate change in "P1" and "P2".
  • Fig. 21 (a) shows the case where no error occurred in heart rate changes.
  • FIG. 21 (c) shows an example in which the value of “P1” exceeding the upper limit value Emax + is corrected to Emax +, and the value of “P2” exceeding the lower limit value Emax ⁇ is corrected to Emax ⁇ .
  • This heart rate change error correction process is performed, for example, according to the flowchart shown in FIG. It can be carried out.
  • the heart rate temporary storage unit 5a inputs the heart rate D from the heart rate detection unit 4, stores the input heart rate D as the current heart rate DO, and the previously stored current heart rate. Rewrite DO as the previous heart rate D1 (S21).
  • the heart rate change value obtained by the calculation is stored as the current heart rate change value E0 (S23).
  • the heart rate change value E0 is outside the range defined by the upper limit value Emax + and the lower limit value Emax-, it is determined that the heart rate change value E0 is incorrect, and the heart rate change value E0 is the upper limit value Emax +. If it exceeds, the heart rate change value E0 is set to the upper limit value Emax +, and if the heart rate change value E0 exceeds the lower limit value Emax-, the heart rate change value E0 is set to the lower limit value Emax-.
  • the heartbeat waveform noise removing method of the present invention can be applied to a device that measures a body function using a heartbeat as one data, in addition to being applied to a heart rate monitor.

Abstract

生体の心拍数を測定する心拍計において、心拍波形から求めた心拍数について心拍数の変化を求める心拍数変化検出部5と、心拍数変化の推移に基づいて心拍数の誤りを検出し、誤り検出の心拍数を訂正する心拍数誤り検出訂正部6とを備え、心拍数誤り検出訂正部6は、心拍数変化の推移に基づいて前記心拍数変化の誤りを心拍数の誤りとして検出する心拍数誤り検出部6Aと、心拍数誤り検出に基づいて心拍数の誤りを訂正する心拍数誤り訂正部6Bとを備え、大きな体動ノイズ等により、心拍の主成分が失われた場合であっても正確な心拍を取得する。

Description

明 細 書
心拍計および心拍波形のノイズ除去方法
技術分野
[0001] 本発明は、心拍計および心拍波形のノイズ除去方法に関し、特に体動ノイズのノィ ズ除去に関する。
背景技術
[0002] 生体の心拍を測定する心拍計は従来より種々提案されている。発光素子力 身体 に光を照射し、その反射光または透過光を受光素子で検出し、受光信号を脈拍信号 に変換して脈拍を検出する脈拍検出回路として、例えば、特許文献 1が知られている
[0003] このような心拍計では、雑音に対して脈拍数が安定して表示されることが求められ ており、脈拍数表示の安定性を高める提案されている(例えば、特許文献 2、特許文 献 3、特許文献 4)。
[0004] 特許文献 2は、雑音に起因するパルスが比較的幅のせまいパルスであることに着目 し、脈波検出回路と脈波演算手段との間に、脈波検出回路が出力する脈波信号の パルス幅を評価する脈波パルス評価手段を設け、正規の脈波信号と認められる信号 のみを脈波演算手段に伝達することによって、脈拍表示の安定性を得ようとするもの である。
[0005] また、特許文献 3には、加速度センサとウェーブレット変換を用いて体動を除去する ものであり、加速度センサによって、体動を加速度として体動波形を検出し、この体 動波形にウェーブレット変換を施して周波数領域毎の体動解析データを生成し、ま た、生体の検出部位力も検出した脈波波形にウェーブレット変換を施して周波数領 域毎の脈波解析データを生成し、脈波解析データから体動解析データを減算して脈 拍を検出することが開示されている。
[0006] また、心拍情報を光学的に取り出すフォトプレチスムグラフィー(PPG)において、 PP G信号から高周波成分の雑音をウェーブレット変換を用いて除去する点については 、特許文献 4にも示されている。 [0007] 特許文献 1:特公昭 61— 29730号公報
特許文献 2:特公平 4— 79250号公報
特許文献 3:特開平 11― 9564号公報
特許文献 4:特公 2003— 310562号公報
発明の開示
発明が解決しょうとする課題
[0008] 心拍計による心拍数の測定は、例えば非運動時や運動時と!、うように様々な測定 条件で行われる。このように異なる測定条件下では、心拍センサで検出される心拍波 形は、基本波形に限らずこの基本波形に重畳されるノイズ成分についても、その周 波数や波高値などの信号特性が異なる。
[0009] 運動中の心拍波形は、主成分を構成する基本波と高調波の他に加えてノイズ成分 が重畳されている。このノイズ成分は、心拍センサや伝送系中に侵入する電気的な 高周波ノイズである外乱ノイズの他に、心拍センサを装着した被測定者が運動した際 に心拍センサの装着位置ずれ等で発生する微動ノイズである体動ノイズを含んでい る。
[0010] さらに、この体動ノイズは、その発生要因及びノイズ誤差の大きさによって大きく 2種 類に分けられる。
[0011] 一つは、心拍センサが血管上に載った状態ではある力 心拍センサの位置がずれ ることによって心拍波形レベルに微小ノイズが重畳する場合であり、このときは主に 2 0拍 Z60秒未満程度の心拍誤差となる。他の一つは、心拍センサが血管の上から外 れてしまい、心拍波形が全く出力されないか、あるいは外乱光によって異常発振する 場合であり、このときは主に 20拍 Z60秒以上の心拍誤差となる。
[0012] 上記した体動ノイズにぉ 、て、後者のように、心拍センサが血管の上から外れてし まい、心拍波形が全く出力されないか、あるいは外乱光によって異常発振する場合 には、いずれの場合も心拍数は計数されないことになる。
[0013] 図 23は、上記したように、心拍センサが大きく変動することで発生する体動ノイズに よる心拍誤差を説明するための図である。
[0014] 図 23 (a)は心拍センサで出力される心拍波形を示し、 al及び a3の期間では心拍波 形が全く出力されず、 a2及び a4の期間では異常発振によって出力が飽和している。 この al〜a4の期間ではそれぞれ T1〜T4の時間幅において心拍波形から心拍を検出 することができない(図 23 (b)中の bl〜b4)。
[0015] 心拍数は、単位時間当たりの心拍数で表されるため、図 23 (c)で示される心拍数 においても、各 cl〜c4の期間において心拍数が低下することになる。
[0016] 心拍センサや伝送系中に侵入する電気的な高周波ノイズである外乱ノイズや、心 拍センサの装着の位置ずれ等で発生する体動ノイズは、心拍の主成分のノイズ成分 が重畳した形態であるため、フィルタ処理等の信号処理によるノイズ除去の手法を適 用することができる。
[0017] し力しながら、上記した心拍センサが血管の上力も外れてしまい、心拍波形が遺失 したり発振した場合には、心拍の主成分自体が失われているため、上記した特許文 献に開示される処理など信号処理によるノイズ除去の手法の適用では対応すること ができない。
[0018] 上記したように、大きな体動ノイズが発生した場合には、心拍センサの出力である心 拍波形を信号処理する手法では正確な心拍を取得することが困難であるという問題 がある。
[0019] そこで、本発明は従来の問題を解決し、大きな体動ノイズ等により、心拍の主成分 が失われた場合であっても正確な心拍を取得することを目的とする。
課題を解決するための手段
[0020] 本発明の心拍計は、生体の心拍数を測定する心拍計において、心拍波形から求 めた心拍数について心拍数の変化を求める心拍数変化検出部と、心拍数変化の推 移に基づいて心拍数の誤りを検出し、誤り検出の心拍数を訂正する心拍数誤り検出 訂正部とを備える。
[0021] また、本発明の心拍波形のノイズ除去方法は、心拍波形から求めた心拍数につい て心拍数の変化を求める心拍数変化検出工程と、心拍数変化の推移に基づいて心 拍数の誤りを検出し、検出心拍数の誤りを訂正する心拍数誤り検出訂正工程とを備 える。
[0022] 心拍数は、例えば、心拍センサが生体の心拍を検出して出力する心拍波形を信号 処理することにより各心拍を抽出し、その心拍を計数し、単位時間(例えば、 lmin)当 たりの個数に変換して表して 、る。
[0023] ここで、心拍数変化は上記した心拍数が時間的に如何に変化するかを表すもので ある。心拍数変化は、所定時間で心拍数の増減した変化数で表すことができる。例 えば、所定時間の前後で、心拍数が 80拍 Zminから 100拍 Zminに変化した場合には 、その心拍数はその差分の 20柏が増カロしたことになり、心拍数変化は「 + 20拍」となる 。所定時間は、心拍間隔の時間よりも長い時間であれば任意の時間とすることができ 、例えば 30secを単位とすることができる。
[0024] また、心拍数変化は上記した変化数の他に、所定時刻における心拍数の微分値で 表すことができる。心拍数は生体の心拍を計数することで得られるものであって本来 非連続な数量であり、心拍数自体について微分値は求められないが、心拍数の時間 的変化を関数で近似させることによって心拍数の微分値を求めることができる。
[0025] 心拍測定において、大きな体動ノイズ等によって心拍に関する情報が失われてい る場合には、心拍波形自体力 心拍を特定する主成分や心拍位置等を検出すること はできない。
[0026] そこで、本発明の心拍計及び心拍波形のノイズ除去方法では、心拍波形から求め た心拍数についてその心拍数の変化を求め、この心拍数変化の推移に基づいて心 拍数の誤りを検出し、誤り検出した心拍数を訂正することによって、大きな体動ノイズ 等により心拍の主成分が失われた場合であっても正確な心拍の取得を可能とする。
[0027] 本発明では、複数の形態で心拍数変化を検出することができる。
[0028] 心拍数変化検出の第 1の形態では、所定時間毎の心拍数の変化数から心拍数変 化を求め、例えば、心拍数のサンプリング値の差分から心拍数変化数を求めることが できる。
[0029] 心拍数変化検出の第 2の形態では、所定時刻における心拍数の微分値力 心拍 数変化を求める。
[0030] 本出願の発明者は、心拍数は被測定者によって個人差が現れるが、その心拍数の 変化については被測定者が異なっても共通する変化傾向を示すことを見出した。特 に、一定の負荷を被測定者に与えた場合に現れる心拍数変化は、共通して特徴的 な変化傾向を示して 、ることを見出した。
[0031] 図 1は、一定の負荷が与えられた場合の心拍数 (図 1 (a)に示す)と心拍数変化(図 1 (b)に示す)を示している。ここで、心拍数変化は、心拍数の所定時間毎に変化数 で表される。
[0032] 心拍数は、被測定者の個人差によってその大きさが様々であるのに対して、心拍数 変化は所定の変化幅内でほぼ共通する変化傾向を示している。例えば、運動を開始 すると心拍数変化は一旦増カロした後に減少する傾向を示す。この心拍数変化が増 減した後、運動中はほぼ一定の心拍数となる。一方、運動を終了すると、拍数変化は 一旦減少した後に増加する傾向を示す。この心拍数変化によって、運動が終了した 後、所定時間が経過すると心拍数は運動前の状態に戻る。
[0033] この心拍数変化は、被測定者の個人差に係わらず、所定の変化幅内でほぼ共通 する変化傾向となる。
[0034] 本発明は、この心拍数変化に注目し、大きな体動ノイズ等により、心拍波形の検出 信号の遺失(図 23 (a)の al,a3)や、心拍波形の検出信号の発振による飽和(図 23 (a )の a2,a4)が発生し、これにより生じる心拍数の誤りを心拍数変化の誤りから検出する 。次に、検出した心拍数変化の誤り部分を基準の心拍数変化により訂正し、さらに、 訂正した心拍数変化に基づいて心拍数を訂正する。
[0035] 心拍数誤り検出訂正は、心拍数変化の推移に基づいて心拍数変化の誤りを心拍 数の誤りとして検出する心拍数誤り検出と、心拍数誤り検出に基づいて心拍数の誤り を訂正する心拍数誤り訂正とを備える。
[0036] 図 2は、心拍数変化に基づいて行う、心拍数変化の誤り検出、心拍数変化の誤り訂 正、及び心拍数の誤り訂正を説明するための図である。体動ノイズによって心拍数の 一部(図中の A, B, C)に心拍情報の遺失が発生すると(図 2 (a) )、この心拍情報の 遺失により心拍数変化に誤りが発生する(図 2 (b) )。この心拍数変化の誤りを検出し 訂正する(図 2 (c) )。心拍数変化を訂正することよって、訂正された心拍数変化は、 訂正された心拍数に係わる情報を含むことになる。
[0037] そこで、この訂正された心拍数変化((図 2 (c) )に基づいて、誤りを含む心拍数(図 2 (a) )を訂正して、訂正された心拍数を求める((図 2 (d) )。 [0038] 本発明において、心拍数誤り検出は、対象とする心拍数の対象心拍数変化の推移 と、基準となる基準心拍数変化の推移とを比較し、この両心拍数変化の推移の類似 度に基づいて、対象とする心拍数変化の誤りを検出する心拍数変化誤り検出と、心 拍数変化の誤りを訂正する心拍数変化誤り訂正とを備える。
[0039] 心拍数変化誤り検出は、所定時間域において対象心拍数変化が有する複数個の 心拍数変化値を心拍数変化の推移とし、同所定時間域にぉ 、て基準心拍数変化が 有する同数の心拍数変化値を基準心拍数変化の推移とし、この両推移において、対 応する各心拍数変化値の差分を推移の類似度とし、対象とする心拍数変化の誤りを 検出する。
[0040] 上記心拍数変化誤り検出処理は、異なる組み合わせの心拍数変化値力 なる複数 の基準心拍数変化パターンを用意しておき、複数の基準心拍数変化パターンから推 定した基準心拍数変化パターンと対象心拍数変化とを比較することで行うことができ る。
[0041] 複数の基準心拍数変化パターンから比較に用いる基準心拍数変化パターンを推 定するタイミングは、運動負荷のタイミングに連動して行うことができる。
[0042] また、心拍数変化誤り検出は、差分が設定値を超える対象心拍数変化値の個数に 基づいて心拍数変化の誤りを検出する。例えば、心拍数変化パターンを構成する複 数の心拍数変化値の内の少なくとも一つが、基準心拍数変化パターンの心拍数変 化値の範囲外である場合に、心拍数変化誤りがあるものとする。
[0043] 誤りが検出されたときには、心拍数変化誤り訂正は、心拍数変化誤り検出で検出し た対象心拍数変化の心拍数変化値を、基準心拍数変化の心拍数変化値に訂正す る。
[0044] さらに、心拍数の誤りの訂正部は、前記した心拍誤り検出で検出訂正した心拍数変 化値に基づいて、対応する心拍数を訂正する。
発明の効果
[0045] 本発明によれば、大きな体動ノイズ等により、心拍の主成分が失われた場合であつ ても正確な心拍を取得すことができる。
図面の簡単な説明 [図 1]一定の負荷が与えられた場合の心拍数と心拍数変化を示す図である。
[図 2]心拍数変化に基づいて行う、心拍数変化の誤り検出、心拍数変化の誤り訂正、 及び心拍数の誤り訂正を説明するための図である。
[図 3]本発明の概略構成を説明するための図である。
[図 4]本発明の心拍計の構成を説明するための図である。
[図 5]心拍センサの一構成例を説明するための概略断面図である。
[図 6]本発明の心拍計の別の構成を説明するための図である。
[図 7]心拍センサの別の構成例を説明するための概略断面図である。
[図 8]心拍数変化検出部、及び心拍数誤り検出部の構成例を説明するための図であ る。
[図 9]心拍数変化パターンの一例を説明するための図である。
[図 10]心拍数誤り検出訂正部の動作例を説明するためのフローチャートである。
[図 11]心拍数誤り検出訂正部の動作例の心拍数数変化の例を説明するための図で ある。
[図 12]心拍数誤り検出訂正部の動作例を説明するための動作説明図である。
[図 13]心拍数誤り検出部の回路構成の一例である。
[図 14]心拍数誤り検出部の回路構成の一例である。
[図 15]拍数変化パターンを説明するための図である。
[図 16]心拍数誤り検出部の並列接続された回路構成の一例である。
[図 17]心拍数誤り検出部の回路構成の他の例である。
[図 18]心拍数誤り訂正部を構成する一回路構成例である。
[図 19]心拍数誤り訂正部の動作例を説明するためのフローチャートである。
[図 20]心拍数誤り訂正部の動作例を説明するための図である。
[図 21]本発明の心拍数変化の誤り検出の別の態様を説明するための図である。
[図 22]本発明の心拍数変化の誤り検出の別の態様を説明するためのフローチャート である。
[図 23]心拍センサが大きく変動することで発生する体動ノイズによる心拍誤差を説明 するための図である。 符号の説明
1 心拍計
2 心拍センサ
2a 発光素子部
2b 受光素子部
2c 遮光部
2A 触覚センサ
3 検出回路
4 心拍数検出部
5 心拍数変化検出部
5a 心拍数一時記憶部
5b 差分演算部
5c 心拍数変化記憶部
6 心拍数誤検出訂正部
6A 心拍数誤検出部
6B 心拍数誤訂正部
6a 心拍数変化誤検出部
6b 基準心拍数変化パターン記憶部
6c 基準心拍数変化パターン選択部
6d 心拍数変化訂正部
6e 心拍数記憶部
6f 訂正心拍数演算部
6g 書き換え部
7 心拍数計数部
8 心拍報知部
9 発光回路部
10 信号処理部
21 遅延器 22 加算器
23 比較器
24 加算器
25 比較器
30 生体
31 血管
32 振動波
33 生体組織
34 皮膚
発明を実施するための最良の形態
[0048] 以下、本発明の心拍計、及び心拍波形からノイズ成分を除去して心拍を検出する 手順につ 、て図を用いて詳細に説明する。
[0049] はじめに、本発明の概略構成について図 3を用いて説明する。図 3において、本発 明の心拍計 1は、生体の心拍波形を検出する心拍検出部と、検出した心拍波形を信 号処理した心拍を検出する信号処理部とを備える。信号処理部で検出した心拍は心 拍数計数部 7で計数し、計数した心拍数は報知部 8が備える心拍数報知部 8A (図示 していない)において表示、送信、記録等による報知が行われる。
[0050] なお、前記した心拍検出部は、例えば、心拍センサ 2と、心拍センサ 2の出力から検 出信号を取得する検出回路 3とにより構成することができる。心拍センサ 2は、例えば 、光学式センサを用いることができ、検出回路 3は光信号等の心拍センサ 2で取得さ れた出力を電気信号に変換し、必要に応じて信号増幅したり、 AZD変換によりデジ タル信号に変換することができる。
[0051] 信号処理部は、検出回路 3で検出した心拍波形に基づいて心拍数を検出する心 拍数検出部 4と、心拍数検出部 4で検出した心拍数に基づいて心拍数変化を検出す る心拍数変化検出部 5と、心拍数変化検出部 5で検出した心拍数変化に基づいて心 拍数誤りを検出し、その心拍数誤りを訂正する心拍数誤り検出訂正部 6とを備える。
[0052] この概略構成において、心拍計が運動状態で使用されたときには、心拍センサ 2が 測定対象である被測定者の血管力 離れる場合がある。このような場合には、検出回 路 3の出力である検出信号には、出力が得られない箇所や、外乱光の侵入によって 発振し出力が飽和する部分等が発生する。このような出力が得られない箇所や出力 の飽和箇所が発生すると、心拍数検出部 4から得られる心拍数に誤りが発生する。
[0053] 心拍数変化検出部 5は、心拍数の時間変動である心拍数変化を検出する。例えば 、所定時間の前後で心拍数検出部 4から出力される心拍数の差分を求めることで、 心拍数変化を検出する。なお、この心拍数変化は心拍数の微分値に相当し、心拍数 の変化を近似する関数が得られる場合には、この関数の所定時刻における微分値に よって検出することもできる。
[0054] 心拍数誤り検出訂正部 6は、前記図 2で説明したように、心拍数変化の誤り検出と 心拍数変化の誤り訂正とによって心拍数誤り検出を行 、(図 2 (a)〜図 2 (c) )、検出 した心拍数変化の誤り訂正によって心拍数の誤り訂正を行う(図 2 (c)〜図 2 (d) )。
[0055] 心拍数計数部 7は、心拍数誤り検出訂正部 6で訂正した心拍数に基づいて心拍数 を計数する。ここで計数される心拍数は、誤り訂正が行われた心拍数であるため、正 確な心拍数をも解くことができる。
[0056] 図 4は、図 3で示した心拍計の構成を説明するための図である。なお、ここでは、心 拍センサ 2として光学式センサの例につ!、て示して!/、る。
[0057] 心拍計 1は、生体 30から心拍情報を取得する心拍センサ 2と、心拍センサ 2の出力 力 検出信号を形成する検出回路 3と、検出回路 3からの検出信号を信号処理して 心拍を検出する信号処理部 10と、計数した心拍数を報知する心拍数報知部 8Aを備 える。なお、心拍数報知部 8Aは運動報知部 8Bと共に報知部 8を構成している。心拍 数報知部 8Aは心拍数を表示装置に表示する他、他の装置に送信したり、あるいは 記録装置に記録する。また、運動報知部 8Bは、被験者に対して運動の開始や運動 の停止を指示する。これによつて、被験者に対して負荷を所定のタイミングで課する ことができる。また、運動報知部 8Bからは、運動の開始時点及び運動の終了時点で 心拍数誤り検出訂正部 6に時刻情報が送られる。なお、本発明の心拍計では、被験 者に課する負荷の種類や大きさは予め設定されているものとする。
[0058] 信号処理部 10は、心拍数を検出する心拍数検出部 4と、検出した心拍数力 その 変化を検出する心拍数変化検出部 5と、検出した心拍数変化に基づいて心拍数の 誤り検出及び誤り訂正を行う心拍数誤り検出訂正部 6と、訂正した心拍数を計数する 心拍数計数部 7とを備える。
[0059] 心拍センサ 2は、発光回路 9によって駆動された生体 30に光を照射する発光素子 部 2aと、生体 30で散乱あるいは反射、又は透過した光を受光する受光素子部 2bを 備える。図 5は心拍センサ 2の一構成例を説明するための概略断面図であり、生体 3 0に対して光を照射し、反射した光を検出する構成例を示している。発光素子部 2aと 受光素子部 2bは遮光板 2cを挟んで対向し、照射点(図示していない)に対して対称 の位置に設置されている。ここで、遮光板 2cは発光素子部 2aから受光素子部 2bへ 直接に入射する光を阻止して 、る。
[0060] 発光素子部 2aから生体 30に照射された光は、生体 30内の組織や血管 31内の血 液で散乱し、再び生体 30の外に出射される。生体 30から出射する光の強度は、血 流に応じて変動する。本発明の心拍計 1は、この光の強度の血流に応じて変動する 光強度の変化に基づいて心拍を検出するものである。
[0061] 検出回路 3は、受光素子部 2bから得られる光信号を受光し、電気信号の検出信号 に変換する受光回路部 3aと、検出信号を信号増幅する増幅回路部 3bと、デジタル 信号に変換する AZD変換部 3cを備える。
[0062] 信号処理部 10は、前記したように、心拍数検出部 4と、心拍数変化検出部 5と、心 拍数誤り検出訂正部 6と、心拍数計数部 7とを備え、求めた心拍を心拍数報知部 8に 送って計数した心拍数を報知する。
[0063] 心拍数誤り検出訂正部 6は、心拍数の誤りを検出する心拍数誤り検出部 6Aと、心 拍数誤り検出部 6Aで検出した心拍数誤りに基づいて心拍数を訂正する心拍数訂正 部 6Bとを備える。また、心拍数報知部 8は、心拍数の表示、記録、送信等のいずれ 力 ある 、は任意の組み合わせとすることができる。
[0064] 図 6は、図 3で示した心拍計の別の構成を説明するための図である。この構成例で は、心拍センサ 2として触覚センサ 2Aの例につ!、て示して!/、る。
[0065] 心拍計 1は、前記図 4で示したように心拍センサ 2と、検出回路 3と、信号処理部 10 と、報知部 8を備え、心拍センサ 2である触覚センサ 2Aの検出信号は、検出回路 3中 の増幅回路部 3bで信号増幅され、 AZD変換部 3cでデジタル信号に変換される。 [0066] この構成例では、心拍センサ 2として触覚センサ 2Aを備える。ここで、この触覚セン サ 2Aは、生体力 発せられる振動を検出するセンサを総称しており、例えば、生体 中の動脈血管の脈波を検出することで、心拍を検出する。
[0067] 図 7は触覚センサ 2Aの一構成例を説明するための概略断面図である。生体内の 動脈血管 31は、血管内を流れる血液の変動に応じて、脈拍に同期して振動する。こ の動脈血管の振動は、生体の組織 33内を振動波となって伝搬する。触覚センサ 2A は、生体の、例えば皮膚表面に接触して取り付けられ、生体の組織 33内を伝搬した 振動波を検出する。この振動波の検出は、圧力変化や振動変化として検出される。
[0068] 触覚センサ 2Aは、振動波を検出する態様に応じた各種センサを用いることができ る。例えば、触覚センサ 2Aとして圧力センサを用いた場合には、振動波を圧力変化 として検出する。また、触覚センサ 2Aとして振動センサを用いた場合には、振動波を 振動変化として検出する。振動変化としては、例えば、振幅や周波数等の変化を検 出する。
[0069] 触覚センサ 2Aは、生体の組織 33内を伝搬した振動波を、皮膚を介して検出する。
そのため、触覚センサ 2Aは生体の脈拍を検出する測定部位の近傍に設けられる。 触覚センサ 2Aは、測定部位の近傍の皮膚 34に接触させることで検出感度を高める ことができ、また、触覚センサ 2Aを皮膚 34に押し当てることによって、より検出感度を 高めることができる。
[0070] この構成例の触覚センサ 2Aは、血流に応じて変動する振動波を検出し、検出回路 3は検出信号を増幅回路部 3bで信号増幅し、 AZD変換部 3cでデジタル信号に変 換する。
[0071] なお、信号処理部 10内の心拍数検出部 4、心拍数変化検出部 5、心拍数誤り検出 訂正部 6、および心拍数計数部 7の構成や信号処理、また、心拍数報知部 8の構成 や信号処理、及び各部の作用動作は、前記図 4を用いた説明と同様であるため、ここ での説明は省略する。
[0072] なお、心拍センサとして光学センサを用いた場合には、心拍信号を検出する部位を 狭い範囲で特定することができ、特定位置での心拍状態を検出することができる。ま た、心拍センサとして触覚センサを用いた場合には、心拍信号を広範囲から取得す ることができ、心拍センサの取り付けの位置決めに高 、精度を不要とすることができ、 また、使用中の位置ずれによる検出不良を緩和することができる。
[0073] 次に、心拍数変化検出部 5の構成例、及び心拍数誤り検出訂正部 6内の心拍数誤 り検出部 6Aの構成例について、図 8を用いて説明する。
[0074] はじめに、心拍数変化検出部 5の構成例について説明する。心拍数変化検出部 5 は、心拍数検出部 4で検出した心拍数 Dを入力して記憶する心拍数一時記憶部 5aと 、心拍数一時記憶部 5aに記憶されている心拍数 Dに基づいて心拍数変化 Eを算出 する差分演算部 5bと、差分演算部 5bで求めた心拍数変化を記憶する心拍数変化 記憶部 5cとを備える。
[0075] 心拍数一時記憶部 5aは、入力した心拍数 Dを今回拍数 DOとして記憶すると共に、 前回記憶していた今回心拍数 DOを前回心拍数 D1として書き替える。心拍数一時記 憶部 5aは、新たに心拍数 Dが入力される毎に、今回心拍数 DOと前回心拍数 D1の書 き換えを行い、書き替えられた以前の前回心拍数 D1は破棄される。
[0076] 差分演算部 5bは、今回心拍数 DOと前回心拍数 D1との差分 (E0 = D0— D1)演算 によって心拍数変化値 E0を求める。この差分演算は、心拍数が所定時間で変動す る変化数を求めるものである。
[0077] 心拍数変化記憶部 5cは、差分演算部 5bで求めた心拍数変化値 Eを、異なる時刻 について複数記憶する。ここでは、今回の心拍数変化値 E0と、前回の心拍数変化値 E1と、前々回の心拍数変化値 E2の 3つの心拍数変化値 [E0, El, E2]を記憶する。 この心拍数変化値の記憶は、差分演算部 5bで心拍数変化値 Eが演算される毎に更 新され、最も古い心拍数変化値 E2は破棄され、新たな心拍数変化値 E2で更新され る。
[0078] これによつて、心拍数変化記憶部 5cは、経過時間毎にその時点で、現在とそれより 過去の連続する 3つの心拍数変化値 [E0, El, E2]を記憶することになる。
[0079] 本発明では、この連続する複数の心拍数変化値を心拍数変化の変化パターンとし て用いることによって、心拍数変化の誤り検出を行う。なお、ここでは、連続する心拍 数変化値の個数として 3個の場合を示しているが、 3個に限らず任意の個数とするこ とがでさる。 [0080] なお、連続する心拍数変化値を 2個とした場合には、心拍数変化誤りを検出するこ とができるパターン数が限定され、検出精度が低下するおそれがある。また、連続す る心拍数変化値の個数を増やした場合には、心拍数変化の誤りを検出する検出精 度は向上するが、誤り検出に要する演算時間が長時間化する他、最初の時点では 誤り検出に要する心拍数変化値の個数が不足するため、最初に心拍数変化を検出 するまでの時間が長くかかり、初期段階の心拍数変化誤りを見逃すおそれがある。し たがって、連続する心拍数変化値の個数は、上記の点を考慮して設定される。
[0081] なお、上記した心拍数変化検出部 5の構成例では、心拍数変化の検出を、心拍数 を取得する毎に行う例を示している力 S、心拍数変化の検出を複数回の心拍数を取得 する毎に行うようにしてもよ 、。
[0082] 次に、心拍数誤り検出訂正部 6の心拍数誤り検出部 6Aの構成例について説明す る。図 8において、心拍数誤り検出部 6Aは、心拍数変化誤り検出部 6aと、基準心拍 数変化パターン記憶部 6bと、基準心拍数変化パターン選択部 6cと、心拍数変化誤 り訂正部 6dを備える。
[0083] 心拍数変化誤り検出部 6aは、心拍数変化検出部で検出した心拍数変化に誤りが ある力否かを検出する。この誤り検出は、対象の心拍波形における心拍数変化の変 化パターンと、予め求めてお 1、た基準心拍数変化の変化パターンとを比較する。
[0084] 対象の心拍数変化パターンと基準心拍数変化の変化パターンとがー致した場合に は、心拍数変化の誤りは無いと判定され、対象の心拍数変化パターンが基準の心拍 数変化パターンと一致しない場合には心拍数変化誤りがあるものと判定する。
[0085] 心拍数変化パターンは心拍数変化の経過時間によって異なるパターンを示す。図 9は、心拍数変化パターンの一例を説明するための図である。心拍数変化パターン a 〜k (図 9 (b) )は、心拍数変化の波形を、所定時間幅 (図中の矢印で示す時間幅)を 単位として区切り、この時間幅内で心拍数変化値が変動する状態を心拍数変化バタ ーンとして抽出したものである。なお、ここでは、 3個の連続する心拍数変化値によつ て心拍数変化パターンを形成する例を示している。
[0086] 比較を行う心拍数変化パターンは、基準心拍数変化パターンとして、予め定めて記 憶しておく。この基準心拍数変化パターンは、心拍数変化パターンと同様に、心拍数 変化の経過時間によって異なるパターンを示すため、基準心拍数変化パターン記憶 部 6bに複数記憶される。したがって、心拍数変化パターンを基準心拍数変化パター ンと比較した場合には、一致しな 、基準心拍数変化パターンが複数存在する。
[0087] 対象の心拍数変化パターンと一致しな!、基準の心拍数変化パターンが複数ある場 合として、対象とする心拍数変化パターンに誤りがある場合の他に、対象とする心拍 数変化パターンに誤りはなぐ単に比較する経過時間が異なることによって、本来比 較の対象とすべきものでな 、心拍数変化パターンと比較した結果に過ぎな 、場合が ある。
[0088] 一般に、比較する経過時間が異なる場合には、心拍数変化パターンの各心拍数変 化値の多くは相違する。これに対して、比較する経過時間を同じくし、比較すべき心 拍数変化パターンである場合には、誤りがなければ心拍数変化パターンの各心拍数 変化値は一致し、誤りがある場合には、その誤った箇所の心拍数変化値が相違する
[0089] そこで、心拍数変化誤り検出部 6aでは、対象とする心拍数変化パターンと一致しな い基準心拍数変化パターンが複数のある場合には、心拍数変化値が異なる個数の 大小に基づいて、誤り検出を行う。例えば、多数の心拍数変化量値が異なる場合に は、その基準心拍数変化パターンは比較対象外であると判定し、異なる心拍数変化 量値の個数が少ない場合には、その基準心拍数変化パターンは比較対象に適した ものであり、対象とする心拍数変化は誤りを含む物であると判定する。この判定のた めに用いる、心拍数変化量値の個数の設定値は予め設定しておく。
[0090] また、誤り検出された心拍数変化パターンにおいて、一致しない心拍数変化値の 位置は心拍数変化が誤っている位置を表しており、これによつて誤りの位置を検出す ることがでさる。
[0091] 基準心拍数変化パターン記憶部 6bは、あらかじめ複数の被験者に対して一定の 負荷を課すと 、つた同一の測定条件で心拍数の測定を行 、、この複数の測定結果 に基づ!/、て、共通する心拍数変化パターンを基準心拍数変化パターンとして記憶し ている。この基準心拍数変化パターンは、前記図 9で示したように、心拍数変化の経 過時間によって異なるパターンを有している。 [0092] 心拍数変化誤り検出部 6aは、心拍数変化記憶部 5cから対象とする心拍数変化の 変化値を取り込むと共に、基準心拍数変化パターン記憶部 6bから基準心拍数変化 パターンを読み込んで、これらの変化パターンの変化値を比較する。なお、変化値の 比較は、対象としている時点よりも前の複数の時点での心拍数変化値を基準心拍数 変化パターンと比較することによって、その対象時点での誤り検出を行う。
[0093] 心拍数変化誤り検出部 6aが基準心拍数変化パターン記憶部 6bから基準心拍数変 化パターンを読み込むタイミングは、運動報知部 8B力 の信号に基づ 、て行うことが できる。運動報知部 8Bは被験者に対して負荷の開始を報知する構成であり、心拍数 変化は、被験者に負荷が課せられた時点力 変動を開始する。
[0094] したがって、運動報知部 8Bからの信号を監視することで、心拍数変化の変動開始 を知ることができ、非運動時におけるノイズを排除することができる。
[0095] 心拍数変化誤り検出部 6aは、運動開始時には、運動開始に現れる基準心拍数変 ィ匕パターンを基準心拍数変化パターン記憶部 6bから読み出し、運動終了時には、 運動終了に現れる基準心拍数変化パターンを基準心拍数変化パターン記憶部 6b から読み出す。
[0096] また、この比較動作にぉ 、て、対象とする心拍数変化の変化値が取り得る基準心 拍数変化パターンが複数存在する場合には、基準心拍数変化パターン記憶部 6bに 記憶する複数の基準心拍数変化パターン力 適当なパターンを選択することができ る。この選択は、心拍数変化パターン選択部 6cによって行うことができ、例えば、心 拍数変化の経過時間をパラメータとして、評価対象の心拍数変化がその対象とする 時点で取り得るパターンを選択することができる。
[0097] この基準心拍数変化パターンの選択は、心拍数変化の経過時間からは取り得な 、 心拍数変化パターンを一致パターンとして誤って検出することを防ぐ他に、心拍数変 化誤り検出部 6aで行うパターン比較の処理量を低減させる効果がある。
[0098] 心拍数変化誤りや心拍数誤りを訂正するには訂正するための情報を要するが、前 記したように、心拍センサが測定部位力 外れるといった体動ノイズでは、心拍波形 は心拍情報を含んで!/、な!/、ため、心拍波形に基づ!/、て訂正を行うことは困難である 。そこで、本発明では、心拍数誤り検出部 6Aにおいて用いた基準心拍数変化バタ ーンが持つ心拍情報を用いることで、遺失している心拍情報を補填する。
[0099] 心拍数変化誤り訂正部 6dは、基準心拍数変化パターンの心拍数変化値の中から 遺失している心拍数に対応する心拍数変化値を抽出し、その心拍数変化値を用い て心拍数変化の誤りを訂正する。より詳細には、心拍数変化誤り訂正部 6dは、心拍 数変化誤り検出部 6aで検出した対象時点を誤り位置とし、基準心拍数変化パターン 記憶部 6bに記憶する基準心拍数変化パターンから、その対象時点に対応する心拍 数変化値を読み出し、誤りと認定した心拍数変化値に代えて置き換えることによって 心拍数変化の誤りを訂正する。
[0100] さらに、心拍数訂正部 6Bは、心拍数変化誤り検出部 6aで検出した心拍数誤り位置 に基づいて心拍位置を求め、また、心拍数変化誤り訂正部 6dで検出した心拍数変 化の誤り数に基づ 、て心拍数を訂正する。
[0101] 以下、心拍数誤り検出訂正部 6の動作例について、図 10のフローチャート、図 11 の心拍数変化の例、図 12の動作説明図を用いて説明する。
[0102] はじめに、心拍数一時記憶部 5aは心拍数検出部 4から心拍数 Dを入力し、入力し た心拍数 Dを今回拍数 DOとして記憶すると共に、前回記憶していた今回心拍数 DO を前回心拍数 D1として書き替える (Sl)。
[0103] 差分演算部 5bは、今回心拍数 DOと前回心拍数 D1との差分 (E0 = D0— D1)演算 を行う (S2)。
[0104] 前記演算で求めた心拍数変化値を現時点の心拍数変化値 E0として記憶し、前回 の時点で現時点の心拍数変化値であった心拍数変化値 E0を前心拍数変化値 E1と して記憶し、さらに、前回の時点で前回の心拍数変化値であった心拍数変化値 E1を 前々心拍数変化値 E2として記憶する。これにより、今回の心拍数変化値 E0と、前回 の心拍数変化値 E1と、前々回の心拍数変化値 E2の 3つの心拍数変化値 [EO, E1, E2]を記憶する。(S3)。
[0105] 次に、心拍数変化誤り検出訂正に用いる基準心拍変化パターンを推定し、推定し た基準心拍数変化パターンを用いて、誤り検出及び誤り訂正を行う。
[0106] 複数の基準心拍数変化パターンから判定に用いる基準心拍数変化パターンを推 定するには、 S3の工程で求めた心拍数変化パターンを各基準心拍数変化パターンと 比較することによって行う。
例えば、図 11は基準心拍数変化パターンとして、
パタ -ン 1 : [E2, El, E0] = [0, 0, 0]
パタ -ン 2 : [E2, El, E0] = [0, 0, +10]
パタ -ン 3 : [E2, El, E0] = [0, +10, +20]
パタ -ン 4 : [E2, El, E0] = [+10, +20, +10]
パタ -ン 5 : [E2, El, E0] = [0, 0, -5] パタ -ン n: [E2, El, E0] =
とし、 E2, Elにそれぞれ ± 5の判定幅を持たせた場合の心拍数変化誤り検出訂正に ついて示している。
[0108] なお、ここで、 E0は評価の対象時点での心拍数変化数であり、 E1は対象時点より一 つ前の時点での心拍数変化数であり、 E2は対象時点より二つ前の時点の心拍数変 化数である。
[0109] 基準心拍数変化パターンの推定は、 E1と E2の値を比較することによって行う。例え ば、この設定例では、評価対象心拍数変化のパターンが [E2, El, E0] = [0, +8, +5 0]の場合(図 12 (b) )には、パターン 3 ( [E2, El, E0] = [0, +10, +20])の E2の評価 基準は E2= ±5であり、 Elの評価基準はEl = +5〜 + 15でぁるため、評価対象心拍 数変化の E2 = 0, El =+8の各値はその評価基準内に適合する。これにより、パターン 3を基準心拍数変化パターンとして推定する。
[0110] 図 12 (c)では、基準心拍数変化パターンの候補としてパターン 1, 2も考慮し得るが 、パターン 1 ( [E2, El, E0] = [0, 0, 0])の E2の評価基準は E2= ±5であり、 E1の評 価基準は E1 = ±5であるため、評価対象心拍数変化の El =+8の値はその評価基準 内に適合せず、また、パターン 2 ( [E2, El, E0] = [0, 0, + 10])の E2の評価基準は E 2= ±5であり、 E1の評価基準は El = ±5であるため、評価対象心拍数変化の El =+8 の値はその評価基準内に適合しな 、(図 12 (d) )。
[0111] したがって、上記したように、 [E2, E1]の値が評価基準内に適合するパターン 3を 基準心拍数変化パターンとして推定する (S4)。 [0112] 次に、基準心拍数変化パターンとして推定したパターン 3の E0の値と評価対象心 拍数変化パターンの E0の値とを比較し、一致して 、な 、場合には(S5)評価対象心 拍数変化パターンの E0 = + 50の値を基準心拍数変化パターン 3の E0 = +20の値で 置き換えて訂正を行う。この訂正により、心拍数変化のパターン([E2, El, E0] = [0, +8, +20] )を得ることができる(図 12 (e) ) (S6)。
[0113] なお、 S5の比較工程で、基準心拍数変化パターン 3の E0と評価対象心拍数変化パ ターンの E0とが一致している場合には、評価対象の心拍数変化値に誤りは無いと判 定され、修正する必要はない。心拍数変化が得られる毎に上記した S1〜S6の工程を 繰り返す (S7)。
[0114] 次に、上記した心拍数誤り検出部の処理をノヽードウエアで構成する例を図 13〜図 17を用いて説明する。
[0115] 図 13は、心拍数誤り検出部の回路構成の一例である。図 13に示す回路構成例で は、遅延回路 21、加算器 22、 24、比較器 23、 25等によって構成することができる。
[0116] 心拍数変化パターンを構成する心拍数 nに応じた個数 (例えば、(n— 1個)の遅延 回路 21を従属接続し、入力端及び各遅延回路 21の出力端に n個の加算器 22を接 続する。各加算器 22には基準心拍数変化パターンの心拍数変化値 Ε0〜Εη-1を減 算するように設定する。各加算器 22の出力は比較器 23に入力されて、判定幅 Aを評 価基準として比較が行われる。上記した加算器 22及び比較器 23による処理は、前 記したフローチャートの S4,S5に相当する。
[0117] 入力端に接続される加算器の出力を比較する比較器 23-0の出力は、心拍数変化 E0の基準値との差分を表している。また、各遅延器に接続される加算器の出力を比 較する比較器 23-l〜23-n-lの出力は、心拍数変化 El〜Enの基準値との差分を表 している。
[0118] そこで、各遅延器に接続される加算器の出力を比較する比較器 23-l〜23-n-lの 出力を加算器 24で加算し、心拍数変化値が適合した個数の合算値に相当する出力 を得ることができる。比較器 25はこの合算値と設定数 m (例えば、(n-1))と比較するこ とで、基準心拍数変化パターンの適合、不適合を判定することができる。
[0119] この回路構成によれば、比較器 25の出力によって基準心拍数変化パターンが適 合することを確認することができ、比較器 23-0の出力によって誤り検出を行うことがで きる。比較器 23-0から出力が得られない場合には、誤りはないものと判定することが できる。
[0120] 図 13は、心拍数変化パターンを n個の連続する心拍数変化値で構成する例である 力 n= 3の場合について、図 14の回路構成図、及び図 15の心拍数変化パターンを 説明する図を用いて説明する。
[0121] 図 14、図 15は何れも基準心拍数変化パターンとして([E2, El, E0] = [0, +10, +2 0] )を設定した例を示して!/ヽる。
[0122] 図 14 (a)、図 15 (a)は、評価対象心拍数変化パターンとして([E2, El, E0] = [0, +10, +20])が入力された場合を示している。この例は、評価対象心拍数変化に誤り が無い場合に相当している。図 14 (a)の回路例によれば、比較器 23-0からは" 1"が 出力され、「誤り無し」の判定を表している。なお、ここでは、比較器は、評価基準内で あるときに" 1"を出力するものとしている。
[0123] また、比較器 23-1, 23-2からもそれぞれ" 1"が出力され、加算器 24から加算され た" 2"が出力される。比較器 25は、加算器 24の出力" 2"を設定値" 2"と比較して" 1" を出力する。この出力" 1"は、基準心拍数変化パターンが適合していることを表して いる。
[0124] 次に、図 14 (b)、図 15 (b)は、評価対象心拍数変化パターンとして([E2, El, E0]
= [0, +8, +50])が入力された場合を示している。この例は、評価対象心拍数変化に 誤りが有る場合に相当している。図 14 (b)の回路例によれば、比較器 23-0からは" 0 "が出力され、「誤り有り」の判定を表している。なお、ここでは、比較器は、評価基準 外であるときに" 0"を出力するものとしている。
[0125] また、比較器 23-1, 23-2からもそれぞれ" 1"が出力され、加算器 24から加算され た" 2"が出力される。比較器 25は、加算器 24の出力" 2"を設定値" 2"と比較して" 1" を出力する。この出力" 1"は、基準心拍数変化パターンが適合していることを表して いる。
[0126] 次に、図 14 (c)、図 15 (c)は、評価対象心拍数変化パターンとして([E2, El, E0]
= [0, 0, -10])が入力された場合を示している。この例は、基準心拍数変化パター ンが不適合である場合に相当している。図 14 (c)の回路例によれば、比較器 23-0か らは" 0"が出力され、「誤り有り」の判定を表している。
[0127] また、比較器 23-1からは" 0"が出力され、比較器 23-2からは" 1"が出力され、加算 器 24から加算された" 1"が出力される。比較器 25は、加算器 24の出力" 1"を設定値
"2"と比較して" 0"を出力する。この出力" 0"は、基準心拍数変化パターンが不適合 であることを表している。
[0128] 心拍数変化誤り検出部 6aは、図 16に示すように、上記した構成の回路を基準心拍 数変化パターン毎に用意して並列接続し、各パターンの回路に心拍数変化を並列 に入力することによって構成することができる。
[0129] また、図 13の回路構成では、基準心拍数変化値 E0〜Enを既存の値として設定す る構成を示している力 この基準心拍数変化値 E0〜Enは、図 17に示すように、基準 心拍数形成変化値を記憶する記憶部 6bから順に設定するようにしてもよ ヽ。この構 成によれば、心拍数変化誤り検出部 6aは、図 16に示したように複数の回路構成を接 続することなぐ一つの回路で構成することができる。
[0130] 次に、心拍数誤り訂正部 6Bについて、図 18〜図 20を用いて説明する。
[0131] 図 18は心拍数誤り訂正部を構成する一回路構成例である。図 18において、心拍 数誤り訂正部 6Bは、心拍数 Dを記憶する心拍数記憶部 6eと訂正する心拍数を求め る訂正心拍数演算部 6fと、求めた訂正心拍数で心拍数記憶部 6eの心拍数を書き換 える書き換え部 6gとを備える。
[0132] 次に、図 19のフローチャート及び図 20の訂正心拍数を説明する図を用いて、心拍 数誤り訂正部の動作例を説明する。
[0133] 心拍数変化値 Etは、訂正時刻 t時の心拍数 Dtと一つ前の時刻 t-1時の心拍数 Dt-
1との差分で表される(図 20 (a)、図 20 (b) )。
[0134] ここで、心拍数変化誤り訂正部 6dによって心拍数変化が Et力 etに訂正された場 合には(図 20 (c) ) (S11)、訂正心拍数演算部 6fは、前記の心拍数変化誤り訂正部 6 dで訂正した心拍数変化値 et (訂正時刻 tにおける訂正心拍数変化値 E)を読み出し(
S12)、心拍数記憶部 6eから同時刻はり一つ前の時刻 t-1における心拍数 Dt-1を読 み出す (S13)。 [0135] 訂正心拍数演算部 6fは、読み出した心拍数 Dt-1と心拍数変化値 etとを用いて、 dt = Dt- 1 + et
の演算を行うことによって、訂正された心拍数 dtを算出する(図 20 (d) ) (S14)。
[0136] 書き換え部 6gは、心拍数記憶部 6eの心拍数 Dtを dtに書き換えることによって心拍 数の訂正を行う (S 15)。
[0137] 訂正した心拍数は、報知や、他の装置への送信、ある 、は記憶等を含み表示処理 を行うことができる (S16)。
[0138] 上記した各処理は、ハードウェアにより回路構成に限らず、上記各処理を CPUに 指令するプログラムによるソフトウェア処理によっても実行させることができる。
[0139] 上記した心拍数誤り検出部 6A中の心拍数変化誤り検出部 6aでは、連続する心拍 数の変化パターン (例えば、 [El, E2])に基づいて心拍数変化の誤り検出を行う例を 示したが、心拍数変化による誤り検出はこの変化パターンに限るものではなぐ例え ば、対象時刻における心拍数変化値 E0のみによって誤り検出を判定してもよい。
[0140] 図 21, 22は本発明の心拍数変化の誤り検出の別の態様を説明するための図及び フローチャートである。
[0141] 図 21 (b)は、 "P1"及び" P2"において心拍数変化に誤りが発生した場合を示して いる。なお、図 21 (a)は比較のために心拍数変化に誤りが発生していない場合を示 している。
[0142] 運動による心拍数変化は、実験により、上限及び下限の範囲 (例えば、 ± 20)内に ほぼ収まることが確認されている。そこで、心拍数変化に上限値 Emax+ (例えば、 + 20)と下限値 Emax- (例えば、—20)を設定しておき、この範囲を越えた場合には誤 りが発生したものと判定することで、検出精度は劣るものの簡易的な誤り検出を行うこ とがでさる。
[0143] さらに、この上限あるいは下限を越えて誤りと判定した場合には、その値を上限値 E max +あるいは下限値 Emax-に設定することで簡易的に訂正することができる。図 21 (c)では、上限値 Emax +を超えた" P1"の値を Emax+に訂正し、下限値 Emax-を超 えた" P2"の値を Emax-に訂正する例を示している。
[0144] この心拍数変化誤り訂正の処理は、例えば、図 22に示すフローチャートに従って 行うことができる。
[0145] はじめに、心拍数一時記憶部 5aは心拍数検出部 4から心拍数 Dを入力し、入力し た心拍数 Dを今回拍数 DOとして記憶すると共に、前回記憶していた今回心拍数 DO を前回心拍数 D1として書き替える (S21)。
[0146] 差分演算部 5bは、今回心拍数 DOと前回心拍数 D1との差分 (E0 = D0— D1)演算 を行う (S22)。
[0147] 前記演算で求めた心拍数変化値を現時点の心拍数変化値 E0として記憶する (S23)
[0148] 次に、心拍数変化の上限値 Emax+及び下限値 Emax-を用いて、求めた心拍数変 化値 E0の誤り検出を行う (S24)。
[0149] 心拍数変化値 E0が上限値 Emax+と下限値 Emax-で定まる範囲外である場合には 、その心拍数変化値 E0は誤りであると判定し、心拍数変化値 E0が上限値 Emax+を 超える場合には、心拍数変化値 E0を上限値 Emax+に設定し、また、心拍数変化値 E0が下限値 Emax-を超える場合には、心拍数変化値 E0を下限値 Emax-に設定する
(525) 0
[0150] なお、 S24の比較工程で、心拍数変化値 E0が上限値 Emax+と下限値 Emax-で定 まる範囲内に収まる場合には、評価対象の心拍数変化値に誤りは無いと判定し、修 正する必要はない。心拍数変化が得られる毎に上記した S21〜S25の工程を繰り返す
(526)。
[0151] なお、上記した簡易的な誤り検出及び誤り訂正では、運動報知部からの運動開始 あるいは運動停止による判定パターンの選択は不要である。
産業上の利用可能性
[0152] 本発明の心拍波形のノイズ除去の手法は、心拍計に適用する他、身体機能測定装 置等の心拍を一つのデータとして身体機能を測定する装置に適応することができる。

Claims

請求の範囲
[1] 生体の心拍数を測定する心拍計において、
心拍波形力 求めた心拍数について心拍数の変化を求める心拍数変化検出部と、 前記心拍数変化の推移に基づいて前記心拍数の誤り検出及び心拍数の誤り訂正 を行う心拍数誤り検出訂正部と、
を備えることを特徴とする心拍計。
[2] 前記心拍数変化検出部は、所定時間毎の心拍数の変化数から心拍数変化を求め ることを特徴とする、請求項 1に記載の心拍計。
[3] 前記心拍数変化検出部は、心拍数のサンプリング値の差分力 心拍数変化数を求 めることを特徴とする、請求項 2に記載の心拍計。
[4] 前記心拍数変化検出部は、所定時刻における心拍数の微分値から心拍数変化を 求めることを特徴とする、請求項 1に記載の心拍計。
[5] 前記心拍数変化は一定運動負荷における心拍波形力 求めることを特徴とする、 請求項 1から 4の何れか一つに記載の心拍計。
[6] 前記心拍数誤り検出訂正部は、
前記心拍数変化の推移に基づいて前記心拍数変化の誤りを心拍数の誤りとして検 出する心拍数誤り検出部と、
前記心拍数誤り検出に基づいて心拍数の誤りを訂正する心拍数誤り訂正部と、 を備えることを特徴とする、請求項 1に記載の心拍計。
[7] 前記心拍数誤り検出部は、
対象とする心拍数の対象心拍数変化の推移と、基準となる基準心拍数変化の推移 とを比較し、当該両心拍数変化の推移の類似度に基づいて対象とする心拍数変化 の誤りを検出する心拍数変化誤り検出部と、
心拍数変化の誤りを訂正する心拍数変化誤り訂正部と
を備えることを特徴とする、請求項 1から 5の何れか一つに記載の心拍計。
[8] 前記心拍数変化誤り検出部は、所定時間域において対象心拍数変化が有する複 数個の心拍数変化値を心拍数変化の推移とし、
同所定時間域において基準心拍数変化が有する同数の心拍数変化値を基準心 拍数変化の推移とし、
前記両推移において、対応する各心拍数変化値の差分を推移の類似度とし、対象 とする心拍数変化の誤りを検出することを特徴とする、請求項 7に記載の心拍計。
[9] 異なる組み合わせの心拍数変化値力 なる複数の基準心拍数変化パターンを記 憶する基準心拍数変化パターン記憶部を備え、
前記心拍数変化誤り検出部は、前記複数の基準心拍数変化パターン力 推定した 基準心拍数変化パターンと対象心拍数変化とを比較し、
前記両心拍数変化において、対応する各心拍数変化値の差分を推移の類似度と し、対象とする心拍数変化の誤りを検出することを特徴とする、請求項 7に記載の心 拍計。
[10] 前記心拍数変化誤り検出部は、運動負荷のタイミングに連動して前記基準心拍数 変化パターン記憶部力も基準心拍数変化パターンを読み出すことを特徴とする、請 求項 9に記載の心拍計。
[11] 前記心拍数変化誤り検出部は、前記差分が設定値を超える対象心拍数変化値の 個数に基づいて前記心拍数変化の誤りを検出することを特徴とする、請求項 8乃至 1
0の何れか一つに記載の心拍計。
[12] 前記心拍数変化誤り訂正部は、
前記心拍数変化誤り検出部が検出した対象心拍数変化の心拍数変化値を、基準 心拍数変化の心拍数変化値に訂正することを特徴とする、請求項 7から 11の何れか 一つに記載の心拍計。
[13] 前記心拍数誤り訂正部は、前記心拍誤り検出部で検出訂正した心拍数変化値に 基づいて、対応する心拍数を訂正することを特徴とする、請求項 7から 12の何れか一 つに記載の心拍計。
[14] 心拍波形力 求めた心拍数について心拍数の変化を求める心拍数変化検出工程 と、
前記心拍数変化の推移に基づいて心拍数の誤り検出及び心拍数の誤り訂正を行 う心拍数誤り検出訂正工程とを備えることを特徴とする心拍波形のノイズ除去方法。
[15] 前記心拍数変化検出工程は、所定時間毎の心拍数の変化数を求め、当該変化数 を心拍数変化とすることを特徴とする、請求項 14に記載の心拍波形のノイズ除去方 法。
[16] 前記心拍数変化検出工程は、心拍数のサンプリング値の差分力 心拍数変化数を 求めることを特徴とする、請求項 15に記載の心拍波形のノイズ除去方法。
[17] 前記心拍数変化検出工程は、所定時刻毎に心拍数の微分値を求め、当該微分値 を心拍数変化とすることを特徴とする、請求項 14に記載の心拍波形のノイズ除去方 法。
[18] 前記心拍数波形は、一定運動負荷における心拍波形力も求めることを特徴とする、 請求項 14から 17の何れか一つに記載の心拍波形のノイズ除去方法。
[19] 前記心拍数誤り検出訂正工程は、
前記心拍数変化の推移に基づいて前記心拍数変化の誤りを心拍数の誤りとして検 出する心拍数誤り検出工程と、
前記心拍数誤り検出に基づいて心拍数の誤りを訂正する心拍数誤り訂正工程と、 を備えることを特徴とする、請求項 14に記載の心拍波形のノイズ除去方法。
[20] 前記心拍数誤り検出工程は、
対象とする心拍数の対象心拍数変化の推移と、基準となる基準心拍数変化の推移 とを比較し、当該両心拍数変化の推移の類似度に基づいて対象とする心拍数変化 の誤りを検出する心拍数変化誤り検出工程と、
心拍数変化の誤りを訂正する心拍数変化誤り訂正工程と
を備えることを特徴とする、請求項 14から 19の何れか一つに記載の心拍波形のノ ィズ除去方法。
[21] 前記心拍数変化誤り検出工程は、
所定時間域において対象心拍数変化が有する複数個の心拍数変化値を心拍数 変化の推移とし、
同所定時間域において基準心拍数変化が有する同数の心拍数変化値を基準心 拍数変化の推移とし、
前記両推移において、対応する各心拍数変化値の差分を推移の類似度とし、対象 とする心拍数変化の誤りを検出することを特徴とする、請求項 20に記載の心拍波形 のノイズ除去方法。
[22] 前記心拍数変化誤り検出工程は、
基準心拍数変化パターン記憶部が記憶する異なる組み合わせの心拍数変化値か らなる複数の基準心拍数変化パターン力 基準心拍数変化パターンを推定し、 推定した基準心拍数変化パターンと対象心拍数変化とを比較し、
前記両心拍数変化において、対応する各心拍数変化値の差分を推移の類似度と し、対象とする心拍数変化の誤りを検出することを特徴とする、請求項 21に記載の心 拍波形のノイズ除去方法。
[23] 前記基準心拍数変化パターンを運動負荷のタイミングと関連づけておき、
複数の基準心拍数変化パターン力 運動負荷のタイミングに対応する基準心拍数 変化パターンを抽出することを特徴とする、請求項 22に記載の心拍波形のノイズ除 去方法。
[24] 前記心拍数変化誤り検出工程は、
前記差分が設定値を超える対象心拍数変化値の個数に基づいて前記心拍数変化 の誤りを検出することを特徴とする、請求項 21から 23の何れか一つに記載の心拍波 形のノイズ除去方法。
[25] 前記心拍数変化誤り訂正工程は、
前記心拍数変化誤り検出工程で検出した対象心拍数変化の心拍数変化値を、基 準心拍数変化の心拍数変化値に訂正することを特徴とする、請求項 20から 24の何 れか一つに記載の心拍波形のノイズ除去方法。
[26] 前記心拍数誤り訂正工程は、
前記心拍誤り検出工程で検出した心拍数変化値に基づいて、対応する心拍数を 訂正することを特徴とする、請求項 20から 25の何れか一つに記載の心拍波形のノィ ズ除去方法。
PCT/JP2006/317523 2005-09-15 2006-09-05 心拍計および心拍波形のノイズ除去方法 WO2007032226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/066,943 US8897864B2 (en) 2005-09-15 2006-09-05 Heart rate meter and method for removing noise of heart beat waveform
CN200680033640.6A CN101262815B (zh) 2005-09-15 2006-09-05 心率计及心跳波形的噪音除去方法
JP2007535427A JP4458436B2 (ja) 2005-09-15 2006-09-05 心拍計および心拍波形のノイズ除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005268717 2005-09-15
JP2005-268717 2005-09-15

Publications (1)

Publication Number Publication Date
WO2007032226A1 true WO2007032226A1 (ja) 2007-03-22

Family

ID=37864825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317523 WO2007032226A1 (ja) 2005-09-15 2006-09-05 心拍計および心拍波形のノイズ除去方法

Country Status (4)

Country Link
US (1) US8897864B2 (ja)
JP (1) JP4458436B2 (ja)
CN (1) CN101262815B (ja)
WO (1) WO2007032226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087223A1 (ja) * 2009-01-29 2010-08-05 株式会社 島津製作所 光測定装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301426A1 (en) * 2010-06-04 2011-12-08 Yongji Fu Method and device for conditioning display of physiological parameter estimates on conformance with expectations
CN102844782A (zh) * 2011-02-21 2012-12-26 松下电器产业株式会社 数据处理装置、数据处理系统及数据处理方法
WO2013038296A1 (en) 2011-09-16 2013-03-21 Koninklijke Philips Electronics N.V. Device and method for estimating the heart rate during motion
CN102488512B (zh) * 2011-12-06 2014-07-30 中国科学院苏州纳米技术与纳米仿生研究所 一种心电监护自动报警系统
JP6116017B2 (ja) 2012-01-16 2017-04-19 ヴァレンセル,インコーポレイテッドValencell, Inc. 慣性律動による生理的測定エラーの軽減
WO2013109389A1 (en) * 2012-01-16 2013-07-25 Valencell, Inc. Physiological metric estimation rise and fall limiting
WO2014109982A2 (en) 2013-01-09 2014-07-17 Valencell Inc. Cadence detection based on inertial harmonics
US9980657B2 (en) 2014-05-30 2018-05-29 Microsoft Technology Licensing, Llc Data recovery for optical heart rate sensors
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
US20170238875A1 (en) * 2014-10-27 2017-08-24 Lifeq Global Limited Biologically Inspired Motion Compensation and Real-Time Physiological Load Estimation Using a Dynamic Heart Rate Prediction Model
US9949694B2 (en) 2015-10-05 2018-04-24 Microsoft Technology Licensing, Llc Heart rate correction
US11160466B2 (en) 2015-10-05 2021-11-02 Microsoft Technology Licensing, Llc Heart rate correction for relative activity strain
EP3594815A4 (en) * 2017-03-09 2021-03-24 Pioneer Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, COMPUTER PROGRAM AND RECORDING MEDIUM
CN108742538B (zh) * 2018-06-20 2022-04-01 大国创新智能科技(东莞)有限公司 基于大数据与人工智能的体征测量方法和医疗机器人系统
CN109620196A (zh) * 2019-01-18 2019-04-16 深圳市沃特沃德股份有限公司 纠偏心率的方法、装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173306A (ja) * 1995-12-25 1997-07-08 Matsushita Electric Works Ltd 心拍信号検査用基準値の導出方法及び心拍信号補正方法
JP2001198094A (ja) * 2000-01-19 2001-07-24 Denso Corp 脈拍数検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117830A (en) 1981-01-14 1982-07-22 Matsushita Electric Works Ltd Pulse detecting circuit
JPH0357428A (ja) 1989-07-25 1991-03-12 Seiko Instr Inc 脈拍計
JP2758101B2 (ja) * 1992-03-16 1998-05-28 松下電器産業株式会社 脈波測定装置
US5423325A (en) * 1993-03-12 1995-06-13 Hewlett-Packard Corporation Methods for enhancement of HRV and late potentials measurements
FI100452B (fi) * 1994-12-29 1997-12-15 Polar Electro Oy Menetelmä ja laite henkilön sykemittauksen yhteydessä
DE19681246B4 (de) * 1995-12-25 2004-04-29 Matsushita Electric Works Ltd., Kadoma-Shi Vorrichtung zum Bewirken einer Entspannung
JP3666188B2 (ja) 1997-06-27 2005-06-29 セイコーエプソン株式会社 心機能診断装置
US7062314B2 (en) * 1999-10-01 2006-06-13 Cardiac Pacemakers, Inc. Cardiac rhythm management device with triggered diagnostic mode
JP4119751B2 (ja) * 2000-11-28 2008-07-16 メドトロニック・インコーポレーテッド 埋め込み可能な医療装置
JP2004533297A (ja) * 2001-05-29 2004-11-04 メドトロニック・インコーポレーテッド 心臓病の予防及び処置のための閉ループ神経調節システム
US7139604B1 (en) * 2002-03-28 2006-11-21 Pacesetter, Inc. Cardiac stimulation system and method for discriminating sinus from non-sinus events
KR100462182B1 (ko) 2002-04-15 2004-12-16 삼성전자주식회사 Ppg 기반의 심박 검출 장치 및 방법
US20050251054A1 (en) * 2004-05-10 2005-11-10 Medpond, Llc Method and apparatus for measurement of autonomic nervous system function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173306A (ja) * 1995-12-25 1997-07-08 Matsushita Electric Works Ltd 心拍信号検査用基準値の導出方法及び心拍信号補正方法
JP2001198094A (ja) * 2000-01-19 2001-07-24 Denso Corp 脈拍数検出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087223A1 (ja) * 2009-01-29 2010-08-05 株式会社 島津製作所 光測定装置
CN102281821A (zh) * 2009-01-29 2011-12-14 株式会社岛津制作所 光测定装置
JP5447396B2 (ja) * 2009-01-29 2014-03-19 株式会社島津製作所 光測定装置
US9125626B2 (en) 2009-01-29 2015-09-08 Shimadzu Corporation Light measurement device

Also Published As

Publication number Publication date
US20090112111A1 (en) 2009-04-30
CN101262815B (zh) 2011-04-13
US8897864B2 (en) 2014-11-25
JP4458436B2 (ja) 2010-04-28
JPWO2007032226A1 (ja) 2009-03-19
CN101262815A (zh) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4458436B2 (ja) 心拍計および心拍波形のノイズ除去方法
US9510759B2 (en) Pulse wave propagation time measurement device
JP4855721B2 (ja) 血圧測定装置
JP4657300B2 (ja) 心拍計および心拍検出方法
JP5516428B2 (ja) 拍動周期算出装置およびこれを備えた生体センサ
US8758258B2 (en) Beat detection device and beat detection method
WO2015056434A1 (ja) 生体信号測定器及び接触状態推定方法
WO2005110211A1 (ja) 生体情報検出装置
JP4892616B2 (ja) 生体情報検出装置
JP5760876B2 (ja) 心房細動判定装置、心房細動判定方法およびプログラム
JP2012045304A (ja) 血圧推定装置
KR101706197B1 (ko) 압전센서를 이용한 폐쇄성수면무호흡 선별검사를 위한 장치 및 방법
KR101276973B1 (ko) 맥박수 측정 방법 및 장치
JP2001198094A (ja) 脈拍数検出装置
KR101659798B1 (ko) 가속도센서를 이용한 무구속 비접촉 방식의 의자용 심박수 측정 장치 및 그 방법
JP6704281B2 (ja) 血圧推定装置、血圧推定方法、血圧推定プログラムおよび記録媒体
TWI655930B (zh) Measuring device, measuring method and recording medium
JP2010213809A (ja) 生体信号分析装置
US20200093391A1 (en) Pulse discrimination device and electrocardiogram analyzer
JP4451297B2 (ja) 生体情報検出装置
Zaeni et al. Implementation of Adaptive Threshold for Peak Detection of Photoplethysmography Applied on Microcontroller
JP6098673B2 (ja) 心房細動判定装置、心房細動判定装置の作動方法およびプログラム
US20210361951A1 (en) Pulse discrimination device and electrocardiogram analyzer
JP2005204787A (ja) 生体情報測定装置
KR20150131619A (ko) 생체음향을 이용한 심박규칙도 수치화 방법과 청진 장비

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033640.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535427

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12066943

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797429

Country of ref document: EP

Kind code of ref document: A1