CN107405091A - 使用动态心率预测模型的生物激励动作补偿及实时生理负荷估计 - Google Patents

使用动态心率预测模型的生物激励动作补偿及实时生理负荷估计 Download PDF

Info

Publication number
CN107405091A
CN107405091A CN201580071106.3A CN201580071106A CN107405091A CN 107405091 A CN107405091 A CN 107405091A CN 201580071106 A CN201580071106 A CN 201580071106A CN 107405091 A CN107405091 A CN 107405091A
Authority
CN
China
Prior art keywords
heart rate
model
sensor
dynamic
physiological load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580071106.3A
Other languages
English (en)
Inventor
劳伦斯·理查德·奥利弗
F·鲍尔杜普瑞兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Q Bbc Worldwide Ltd
Original Assignee
Life Q Bbc Worldwide Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Q Bbc Worldwide Ltd filed Critical Life Q Bbc Worldwide Ltd
Publication of CN107405091A publication Critical patent/CN107405091A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Obesity (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明涉及一种方法,由此方法能够在动作破坏信号的时段期间提高从传感器数据所收集的心率预测的准确度。所利用的模型还可以被反演,以推断关于对象的生理状态的信息,诸如实时能量利用或生理负荷。此外,此方法还可以被用来将每种能量系统(即,磷酸原系统、无氧糖酵解以及有氧呼吸)对使用者所经受的生理负荷的贡献进行分段。此方法的核心在于描述在不同的生理需求下对人类心率的动态调整的模型。

Description

使用动态心率预测模型的生物激励动作补偿及实时生理负荷 估计
技术领域
本发明涉及生理参数的非侵入式监测领域。更具体地,引入了一种系统和方法,通过该系统和方法,可以在移动使信号失真的条件下提高用传感器数据进行心率预测的准确度。此外,可以反演在该方法中利用的模型来推断关于对象的生理状态的信息,例如实时能量利用。此方法的核心在于描述不同生理需求下人类心率的动态调整的模型。
背景技术
从追踪一段时间内的心率所获得的健康效益正在吸引越来越多的个体注意。虽然从基于胸带的心率监测器到穿戴式解决方案存在明显移动,但是使用心电图(ECG)和光学体积描记术(PPG)二者测量的心率信号会在体力活动的时段内被动作伪像破坏。惯性动作传感器(诸如加速度计)已经成为测量动作和/或活动的流行工具,因此形成旨在补偿已知的破坏生理信号的动作伪像的许多专利和申请的一部分。Schoshe Industries Inc.的专利申请US20120150052描述了一个实例,该实例使用动作感测系统(红色LED)和一个加速度计来相应地感测光学心率监测器分别相对于皮肤以及相对于心脏的位置的变化。然后使用来自该动作感测系统和该加速度计的信息来补偿PPG心率监测器信号中的动作伪像。类似地,专利申请US20140018635使用一个卡尔曼滤波器来使用加速度计信号适应性地滤除光学信号中的噪声。描述类似方法的其他专利包括US8945017(Fitbit Inc.)和EP2229880(CSEM)。此外,US8483788描述了动作补偿脉冲血氧计,该血氧计使用一个加速度计来测量由光发射器和检测器之间的动作引起的变化。然后使用加速度计数据、与光发射器和检测器之间的模型距离相关的方程以及基于光的预期行为的模型的组合来计算衰减因子。然后,使用查找表来找到对应于该衰减因子的动作测量,并且使用此测量以更好地计算感兴趣的生理参数。
Koninklijke Philips N.V的专利申请US20140213858首先通过测量光学心率信号的信号质量来解决该问题。只有当信号质量在一个特定阈值以下时,动作信号才被用来使用一个指数预测模型来估计心率。多个专利申请和出版物也利用了动态模型和建模技术以提取生理信息,诸如心率,尤其是在存在动作伪像的情况下。例如,StreamlineAutomation,Llc.的美国专利申请20100274102公开了一种使用去除噪声和动作伪像的概率模型来处理来自生物医学传感器(例如,脉搏血氧计、心电图仪)的生理数据的系统和方法。此发明将动态状态空间模型(DSSM)和数据处理器,该数据处理器能够将sigma点卡尔曼滤波器(SPKF)或序贯蒙特卡罗(Monte Carlo)(SMC)算法与贝叶斯(Bayesian)统计结合。此外,使用了由心血管和光体积描记术(PPG)模型构建的数学模型来去除噪声和动作伪像。
下文更详细地解释的本发明提出了一种能够基于推断的活动水平来预测心率变化的动态心率模型。这将被用于在运动期间心率不能够与动作信号分离的情境,因此提供平滑过渡。该模型是概率性的且将心率轨迹映射到生理负荷。以此方式,该模型的反演型式也可以被用来预测生理负荷。这以相比于现有技术中所考虑的方式更易响应的方式示出能量消耗。例如(WO201412083、WO201008443、EP2489302,WO2012172375)呈现了用于在运动期间估计能量消耗的方法,然而这些方法与本发明不同,且这些方法不能够在三种能量系统之间区分能量供应源自哪种能量系统。
肌肉的能量需求通过三种能量系统来实现:无氧能量系统(被进一步分类为非乳酸成分和乳酸成分)以及有氧能量系统。因此,运动分段是指确定在运动期间三种能量系统中的每种能量系统对总能量供应的相对贡献。关于运动分段的现有技术在某种程度上依赖于有氧和/或无氧阈值的确定,其倾向于得出关于这些能量系统中的每种能量系统的相对贡献与时间进程以及在运动期间利用它们的程度的不准确的假设。
例如,Polar Electro Oy.的US5810722公开了一种可以确定有氧阈值和无氧阈值的系统和方法。该方法的基本前提包括使个体经受逐渐增加的应力(即,运动强度)以获得用于有氧代谢的阈值和用于无氧代谢的阈值。所采取的方法是基于ECG读数,并且基于从ECG传感器获得的心率和呼吸频率数据来确定所述阈值。根据此专利,专利申请CA2656538呈现的方法涉及通过在任务期间在不止一个时间点计算呼吸率(RR)、心率(HR)以及RR:HR的比率来确定代谢转变点,因此将代谢转变点描述为RR:HR比率的时间的可识别点。一些发明已经使用呼吸交换率(RER)和心率的测量来确定无氧阈值(US7390304、US5297558、US6554776),而其他发明已经基于心率区来估计有氧和无氧阈值(WO1996020640)。
由Polar Electro Oy.的EP1127543和EP1125744所采取的另一种方法利用数学模型来确定乳酸浓度。该数学模型被实施为使心率数据与如通过应力水平参考有氧反应和无氧反应(能量代谢)以及葡萄糖所确定的乳酸浓度相关的神经网络。此外,美国专利公开50187626的发明利用了一种数学模型,该数学模型通过分析得到的功率值的对数衰减来确定无氧容量(即,完全耗尽近似所得到的功率值的对数函数所花费的时间被视为该无氧容量值)。因此,此方法主要是基于功率输出和最大发挥。
专利公布文本US6920348描述了ECG测量(即,威尔逊点)的分析,以确定代谢因子。使用ECG测量的一阶导数来确定代谢因子,确定一阶导数的正峰值的绝对值(Rx)以及一阶导数的正峰值和负峰值的绝对值之和(RSx),并且通过Rx除以RSx来确定与代谢因子(Vx)成比例的数。本发明中所包括的代谢因子是有氧容量、乳酸血症(无氧功率和容量)、磷酸肌酸容量(无氧容量)、总代谢容量和总无氧容量。
专利申请EP2815344公开了一种系统和方法,在该系统和方法中,基于数据的建模技术(使心率响应与运动强度关联)被配置为估计并且预测乳酸阈值,该乳酸阈值可以被用来预测和/或监测有氧训练区和无氧训练区之间的转变。最后,在Toumaz Healthcare的专利申请EP2705791中描述了一种系统,用于估计有氧能量水平和无氧能量水平,以检测对象达到所谓的乳酸阈值的点,从而允许使用此知识调整能量消耗预测。在乳酸阈值处,能量产生包括有氧能量产生和无氧能量产生二者,有氧能量产生和无氧能量产生具有极其不同的效率,而在此阈值以下,只考虑有氧能量产生,这简化了这些计算。此专利的存在强调了在所涉及的能量系统方面对人类能量消耗的估计分段的需要。在专利EP2705791的情况下,此分段是关于乳酸盐阈值进行的,乳酸盐阈值是相对于身体内的稳态能量消耗限定的。例如,在他的乳酸阈值以下跑步的运动员可以保持纯有氧能量消耗。
虽然上文所提及的方法全都提供了关于估计有氧能量系统和无氧能量系统之间的转变的新颖发明,其中大多数发明依赖于乳酸盐阈值,但是这些发明中的任何一个都没有提供合并关于所述三种能量系统的生理机能的知识的解决方案。例如,尽管每种系统可以被视为单独的实体,但它们是紧密集成的并且一起起作用,以确保三磷酸腺苷(ATP)的充足供应和再生,ATP是一种用于所有生物工作提供能量的高能磷酸分子。重要的是注意,所述三种能量系统不是被依次激活的,因为它们不在离散的时间段内运行。相反,所有体力活动都将从所述三种系统中的每种系统得到一些能量,但是它们的相对贡献取决于特定运动回合或区段的持续时间和强度。
发明内容
本发明由三个范围(即,心率(HR)预测准确度、实时能量利用和前后的能量系统分段)组成,但应注意,所有这三种方法都依赖于描述在不同的生理需求下HR的动态变化的类似或相同的基本模型。在此将生理负荷限定为由对象的身体需求和供应的能量的总量。此数量可以以能量的标准单位(诸如瓦特)来表示,或者被归一化为个体的最大能量生成能力并且被表示为百分比值。关于确定实时能量消耗及其根据不同生化能量系统(磷酸原/无氧/有氧)的分段,此方法被执行以代替稳态概念,且此方法旨在根据这些系统的瞬时活动水平来计算能量消耗并且对能量消耗进行分段。此方法的结果之一是,甚至一个亚乳酸阈值运动区段将示出在无氧能量利用的一个初始阶段之后,有氧能量系统被激活到一个充分的水平以完全匹配对象的稳态能量需求。
使用动态心率模型的HR预测准确度:如背景技术部分所强调的,用来估计HR的许多传感器技术由于动作伪像而损失准确度。动作伪像可以被进一步分为周期性的和非周期性的,其中许多常见的运动模态生成周期性噪声。由于能够提供加速度读数和陀螺仪读数的微机电系统(MEM)设备的广泛可用性,所以可以获得动作伪像的独立测量,该测量可以被用来辅助解释估计心率的通道,通常以光体积描记术(PPG)的形式。由于在活动期间运动员的步调或脚着地速率,所以经常观察到周期性的动作伪像,并且对于每个运动模态(诸如慢跑),动作伪像具有相对稳定的频率和强度值。当运动区段期间HR从休息值(称为rHR,通常为70bpm)增大从而赶上并超过步调噪声信号(对于慢跑通常是每分钟150步)时,采用基于频域的技术(诸如快速傅里叶变换(FFT)来分离HR和动作伪像变得很困难。
所提出的系统和方法包括一种模型,该模型基于所推断的活动水平(通常来自加速度计通道)来预测HR变化,从而在HR信号不能够与动作伪像信号准确地分离的条件下来预测可能的HR轨迹,这允许所预测的HR和动作频率在运动期间的平滑过渡。该技术的核心是假设在基于加速度计的活动与测试对象运动时的生理负荷之间存在映射。重要的是注意,此映射或倍数值在不同的运动和不同的传感器位置之间不保持恒定,但是在传感器保持在相同位置的相同运动区段中大致保持恒定。使用在运动过渡(如通过加速度计确定的)时此映射系数极可能变化的概率模型,可以获得一系列最可能的映射系数,从而获得生理负荷以及可能的HR轨迹预测。
实时能量消耗:在上文所描述的过程中,还获得了生理负荷的连续估计,其可以被用来以更准确且更易响应的方式示出能量消耗,相比于当瞬时HR值被认为是瞬时代谢活动水平的测量时可能的方式(这是现有技术)。为了做到这一点,对动态HR模型进行反演,以基于HR预测的一个给定时间序列来产生生理负荷估计。这使得可以将该模型应用于HR预测,该HR预测源自产生这样的输出的任何设备,包括基于ECG和PPG的技术,并且可以提供瞬时生理负荷的测量。为了描述此过程,将使用简化的HR预测模型作为一个实施例来例示反演过程(参见详细描述)。
实时能量分段:本发明引入了类似的二次模型,其预测将生理负荷分割为来自不同能量产生系统的贡献。通常,产生系统包括但不限于非乳酸无氧过程(磷酸原系统)、乳酸无氧过程和有氧过程。该模型记录这些系统中的每个系统的状态,该模型通常是但不限于常微分方程(ODE)模型。能量产生系统的状态根据生理负荷和基质(能量产生系统从该基质得到能量)而变化。非乳酸无氧过程依赖于储存在ATP、磷酸肌酸以及其他类似分子中的高能磷酸键。此能量系统与消耗能量以产生移动的肌肉蛋白质具有最直接的联系,因此最快响应于能量需求的变化。乳酸发酵可以被视为是此链(其中ATP的第一再生作为糖类(诸如葡萄糖)分解的一部分而发生)中的第二链路。对生理能量需求的最后且最不易响应的链路是有氧能量系统,与乳酸无氧过程相比,该有氧能量系统需要通过细胞的线粒体完全氧化葡萄糖分子来产生大量ATP分子。然而,此系统受氧气的可得性和二氧化碳分子的清除速率的限制。预测这些能量系统中的每个对瞬时生理负荷的贡献的效用包括能够提供关于在不同运动时段和类型的回合期间所训练的能量系统的类型的反馈,以辅助个体朝向改善所关注的能量系统的方向来定制他们的训练。
附图说明
将参考附图仅通过实施例的方式描述本发明的优选实施方案:
图1:来自将生理负荷映射到心率变化的简单模型的输出的描述。
图2:心率变化到生理负荷的映射以及在前后的骑自行车和慢跑区段期间应该建立的所推断的负荷差异的表示。
图3:对于针对从前后的骑自行车和慢跑区段所收集的数据,不同活动到生理负荷映射的描述。
图4:基于与概率推断方法(HMM)组合的动态心率模型,所校正的生理负荷映射的描述。
图5:周期性步调噪声与心率信号的交叉的表示。
图6:示出了在不同运动强度下的两个前后的慢跑区段的心率数据的曲线图。
图7:针对如图6中示出的不同强度的两个慢跑区段所推断的生理负荷的表示。
图8:在满生理负荷下三种不同的能量系统的简单模型的输出。
图9:该能量系统模型在图7中所估计的生理负荷中的应用的表示。
图10:针对图7中所估计的生理负荷,能量利用的分段的表示。
图11示出了在移动技术和互联网技术的背景下本发明的一个基本实施方案。
具体实施方式
以下详细描述和附图描述了本发明的不同方面。所述描述和附图用于使本领域技术人员能够完全理解本发明,并不意在以任何方式限制本发明的范围。在公开和描述本方法和系统之前,应理解,所述方法和系统不限于特定方法、特定部件或特定实施方式。还应理解,在本文中所使用的术语仅是出于描述特定方面的目的,且不意在限制。
本发明的前提是使用简单的示例模型来论述的。该模型是以数学方式限定的,论述其基本行为中的一些行为,此外,还呈现了可以应用它的新颖方式。该模型将体力活动水平的一些测量视为输入,在此情况下,这是使用来自放置在测试对象的上臂上的加速度计的读数来论述的。对于此示例性实施例,据推测可以测量的最大加速度矢量具有的大小是重力加速度的大小的六倍(6G)。然后,由于重力而减去1G,取绝对值(因为向上加速度可能导致负加速度值),这被重新缩放到在一个小的时间窗口内所记录的最大加速度的百分比值。当查看时,通常将看到当对象休息时,百分比值接近于零,而慢跑对象将生成通常在百分之几十的值。此百分比值被称为测量的活动水平(MA),且出于论述的目的简单地陈述了此实施例,以涵盖将身体移动相关信号转换为体力活动水平的估计的一般过程。
如果假设在此测量的活动水平与对象的身体所经受的生理能量需求之间存在一些映射,则该测量的活动水平可以被转换为推断的生理负荷值。当这样的负荷被施加到个人的生理机能时,身体通过将心率和心搏量(heart stroke volume)增加到一个点来反应,在该点处,输送到肌肉的氧气的量与生理负荷匹配。对于一特定可持续生理负荷,个体将具有一个心率,在该心率下氧气的供应和代谢能量的需求相当地匹配。在此实施方案中,目标心率被指定为在恒定负荷下的特定运动的心率。
该目标心率的可能的值的范围在休息时所测量的最小值(rHR)与在峰值运动强度处所确定的最大值之间。运动的生理负荷可以被映射到目标心率(tHR),在最简单的情况下,通过简单地采用具有常数kl的线性方程,诸如:
tHR=k1(MA)+rHR (1)
在图1中,方程1已被用于两个运动区段,一个区段位于最大生理负荷的一半(50%)处且下一个区段位于满生理负荷(100%)处。用虚线指示目标心率,60bpm处对应于休息、120bpm处对应于第一运动区段且180bpm处对应于第二运动区段。
在此之后,方程2描述心率如何随时间变化(sHR’(t))以达到该目标心率。在真实运动数据中,关系类似于当前心率与目标心率之间的差异的指数衰减。这可以使用常微分方程来描述,其中心率与所述差异成比例地变化。
sHR′(t)=k2(tHR-sHR)+rHR (2)
用两个单独的值k2a和k2b更好地描述方程2的松弛常数k2,例如其中相应地sHR<tHR且sHR>=tHR,因为心率通常更快地适应于增加的目标HR值而非减少的HR值。这提供了动态心率模型的简单实例的完整描述。
在图2中,示出了两个模拟运动区段的模型输出,其中首先在慢跑区段中然后在骑自行车区段中应用相同的生理负荷。在这两个情况下,对象面临满生理负荷(100%)达5分钟,但体力活动读数需要不同倍数,以达到100%。在此情况下,显然需要额外信息来找到适当的系数,以在加速度计的活动读数与对象经受的生理负荷之间映射。如果使用黄金标准设备(诸如ECG心率监测器),则这使得可以计算生理负荷和用于将活动测量映射到心率的适当的因子,所述适当的因子将示出对象骑自行车的时间段与对象在慢跑的时间段相比的两个差异的因子。
对于用来确定心率的传感器易受动作伪像影响的应用,诸如基于PPG的技术,可以通过来自基于加速度计的HR预测的输出来增强在严重信号失真期间进行的心率预测。存在许多统计框架,由此通过利用系统的物理模型和独立的噪声测量可以显著地改善噪声读数。在这样的方法中,当接收到清楚的信号时,基于传感器读数不断地更新该模型的内部状态的估计,且当信号质量变差时,该模型变得更自主并且更依靠该模型。
这样的概率框架的一个应用可以是隐马尔科夫模型(HiddenMarkov Model),其是含有基本模型的可观测量以及隐藏状态的统计模型。当将迄今所讨论的模型与加速度计读数相结合时,活动测量和心率二者都是可观测的。如图2中指出的,从体力活动测量到对象上的生理负荷的映射可以在不同的运动模态之间显著地变化,但是在由一个运动模态组成的区段中是大致上类似的。此映射中的差异可以被简单地描述为HMM中的隐藏状态,且用于推断此差异的最可能值的算法(诸如正向算法(用于局部实时估计)或反向算法(用于最可能的整体估计))已经被很好地建立。在此之后,提供了一个示例性实施方案,示出了如何实施这样的方法,以推断从先前讨论的从骑自行车运动区段和跑步运动区段所收集的真实数据的瞬时生理负荷值。
在图3中,示出了运动和慢跑区段所收集的真实数据,与先前在图2中描述的类似。图3中的下部曲线示出了根据6G三轴加速度计所测量的活动水平,其中总加速度被确定并且如先前所描述的被转换为百分比值,以指示所测量的活动水平。图3中的上部曲线示出了在运动区段期间所记录的心率。从该图可以清楚的是,虽然两个运动区段在5分钟之后达到类似的最大心率值(大约160bpm),但所测量的活动值在两者之间是极为不同的(对于骑自行车,大约30%,且对于跑步,超过90%)。这是所期望的,因为知晓测试对象的臂在跑步期间摆动,而紧握自行车的车把时,测试对象的臂是相当固定的。在图4中示出了,通过使用先前所讨论的动态心率预测模型连同添加到上文所描述的HMM中建模的活动差异状态的活动测量,可以获得两个运动区段的实际生理负荷值(对于骑自行车,大约85%,且对于慢跑,大约95%)。差异曲线还突显了运动区段之间和之后略微升高的生理负荷,这可以部分地归因于被称为运动后过量氧耗(EPOC)的现象,由此无氧能量系统在运动之后被再补充至正常水平(即,磷酸原系统和乳酸发酵系统)。在下一节中提供对这些系统的更深入分析。
除了上文选择的用以推断运动的真正生理负荷的隐藏状态之外,当使用通常采用的频域方法(诸如快速傅里叶变换(FFT))时,还可以对隐藏状态建模,其中动作失真信号和心率信号被预期以这样类似的频率出现,使得两个信号在信号处理期间(图5)不能够彼此分离。这些临时情境被称为“步调锁定”,并且通过在此时段期间仅遵循基于加速度计的HR预测,可以提供可能的心率轨迹的最佳猜测。此预测的HR还可以用于改善在退出此步调锁定状态之后改善第一明确测量的HR读数的检测。注意,在此实施例中,加速度计用于获得活动水平的测量和跑步步调这两者。
至此,已经论述了预测心率的动态变化的基本模型如何响应于不同活动水平,从而生理负荷可以用来辅助信号处理技术,以提供更准确的心率预测或如何利用该模型来推断不同运动状态或休息状态的生理负荷。此动态模型的第二次使用包括用从其他算法获得的HR预测以其反演形式使用该模型。在图6中,描绘了从基于ECG的设备所获得的针对两个连续跑步区段的HR,第一区段是比第二区段更短而强度更小的跑步。使用先前讨论的反演的动态心率模型,可以获得图7中示出的生理负荷的估计,其中针对每个跑步区段示出了两个矩形区域,明确了两个运动之间的时间和强度的差异。
如先前所概述的,本发明涉及提供与稳态概念(诸如乳酸阈值)相反的瞬时活动水平的测量。已经论述了如何可以使用动作和心率活动的测量来获得瞬时生理负荷的估计并由此获得能量消耗的估计。在此下一节中,本发明在有助于身体中的能量产生的不同生化能量系统方面进一步对所估计的瞬时活动水平进行分段。
与使能够移动的肌肉蛋白质有最直接联系的能量系统被称为磷酸原能量系统。此群组由可携带高能磷酸盐电荷的分子(诸如ATP和磷酸肌酸)组成。细胞大致上含有微量的这些分子,但可以通过分解葡萄糖来对这些分子快速再补充。后者可以以氧气依赖(有氧呼吸)方式或氧气独立方式(乳酸发酵)执行。在后者的情况下,葡萄糖分子不会完全分解成CO2,而是转化为乳酸,其累积容量被限制。可以以数学方式对这些过程进行建模,以在不同时间和不同生理负荷下产生这些过程中的每个过程的活动的估计。在图8中,示出了不同时间点处每个系统所参与的程度,其中考虑满生理负荷(100%),使用所述系统的简单ODE模型。使用针对图7中示出的两个跑步区段所计算的即时活动水平作为此模型中的生理负荷值,可以如图9中示出的预测每个能量系统的贡献。注意,磷酸原系统如何快速响应,但很快被耗尽,而无氧糖酵解是将参与维持运动的较大能力的第二个。最后,有氧系统是延长的运动区段的最慢但唯一可持续的能量源。还注意到,图9中的较慢的有氧能量系统轨迹如何紧密遵循图6的HR数据中示出的HR的轨迹,因为HR被紧密耦合到一个速率,该速率为身体可以向肌肉供应氧气的速率。
在图10中示出,所有三种能量系统的贡献可以以这样的方式加在一起,使得在图8中所估计的原始生理负荷可以被用来根据每个系统的贡献对生理负荷进行分段。还注意到,第一短暂跑步如何如所预期的相比于较长持续跑步具有更大的无氧能量系统的贡献,且跑步之间磷酸原系统通量和无氧系统通量的负值如何指示有氧能量系统正起作用以对这些储存器再补充。
在图11中论述了上文所描述的关于动作补偿心率计算和即时生理负荷估计的本发明的一个基本实施方案,其中1是含有测量脉冲和动作信号所必需的传感器装置的能穿戴电子设备。该能穿戴设备可选地含有显示器(2),且能够将数据传输到移动设备(3),或者直接传输到基于互联网的平台(4)。可以在服务器(6)上存储和进一步处理数据,以供将来检索,并且在由个人计算机(5)、移动电话(3)和/或能穿戴设备(1)示例的计算平台上查看所述数据。

Claims (32)

1.一种用于增强心率预测的方法,所述心率预测使用动态心率模型从心率信号确定,该方法包括:
(a)测量来自一个动作捕获传感器的一个动作信号;
(b)测量来自一个心率传感器的一个心率信号;
(c)应用一个动态心率模型,该动态心率模型在心率信号失真的时段期间从该动作信号以及另外的参数推断心率;
(d)传输该心率。
2.根据权利要求1所述的动态心率模型,该动态心率模型能够包括一个常微分方程(ODE)模型。
3.根据权利要求1所述的参数,所述参数能够结合诸如隐马尔可夫模型的概率框架来推断。
4.一种用于增强心率预测的系统,所述心率预测使用动态心率模型从心率信号来确定,该系统包括:
(a)一个能穿戴设备,包括一个动作捕获传感器和一个心率传感器;
(b)测量来自该动作捕获传感器的一个动作信号,该动作捕获传感器能够包括一个加速度计;
(c)测量来自该心率传感器的一个心率信号,该心率传感器能够包括一个心电图(ECG)传感器或光体积描记术(PPG)传感器;
(d)应用一个动态心率模型,该动态心率模型在心率信号失真的时段期间从该动作信号以及另外的参数推断心率;
(e)传输该心率。
5.根据权利要求4所述的动态心率模型,该动态心率模型能够包括一个常微分方程(ODE)模型。
6.根据权利要求4所述的参数,所述参数能够结合诸如隐马尔可夫模型的概率框架来推断。
7.根据权利要求4所述的系统,其中在该系统的显示器中报告该心率。
8.根据权利要求4所述的系统,该系统能够将该心率传输到由移动电话所例示的一个移动电子设备。
9.根据权利要求8所述的移动电子设备,所述移动电子设备被配置为显示该心率。
10.根据权利要求4所述的系统,该系统具有将心率数据无线地传输到一个平台的装置,其中所述数据能够在客户端计算平台上存储、分析和查看,所述客户端计算平台包括但不限于移动计算设备、家庭计算机或能穿戴电子设备。
11.一种使用动态心率模型来推断瞬时生理负荷估计的方法,该方法包括:
(a)测量来自一个动作捕获传感器的一个动作信号;
(b)测量来自一个心率传感器的一个心率信号;
(c)应用一个动态心率模型来估计瞬时生理负荷;
(e)传输瞬时生理负荷估计。
12.根据权利要求11所述的动态心率模型,该动态心率模型能够包括一个常微分方程(ODE)模型。
13.根据权利要求11所述的参数,所述参数能够结合诸如隐马尔可夫模型的概率框架来推断。
14.一种使用动态心率模型来推断瞬时生理负荷估计的系统,该系统包括:
(a)一个能穿戴设备,包括一个动作捕获传感器和一个心率传感器;
(b)测量来自该动作捕获传感器的一个动作信号,该动作捕获传感器能够包括一个加速度计;
(c)测量来自该心率传感器的一个心率信号,该心率传感器能够包括一个心电图(ECG)传感器或光体积描记术(PPG)传感器;
(d)应用一个动态心率模型来估计瞬时生理负荷;
(e)传输瞬时生理负荷估计
15.根据权利要求14所述的动态心率模型,该动态心率模型能够包括一个常微分方程(ODE)模型。
16.根据权利要求14所述的参数,所述参数能够结合诸如隐马尔可夫模型的概率框架来推断。
17.根据权利要求14所述的系统,其中在该系统的显示器上报告瞬时生理负荷估计。
18.根据权利要求14所述的系统,该系统将瞬时生理负荷估计传输到由移动电话所例示的一个移动电子设备,或者直接传输到一个云平台。
19.根据权利要求18所述的移动电子设备,该移动电子设备被配置为显示瞬时生理负荷估计。
20.根据权利要求14所述的系统,该系统具有将生理负荷估计数据无线地传输到一个平台的装置,其中所述数据能够在客户端计算平台上存储、分析和查看,所述客户端计算平台包括但不限于移动计算设备、家庭计算机或能穿戴电子设备。
21.一种用于计算不同生化能量系统对瞬时生理负荷的相对贡献的方法,该方法包括:
(a)测量来自一个动作捕获传感器的一个动作信号;
(b)测量来自一个心率传感器的一个心率信号;
(c)应用一个动态心率模型,该动态心率模型从该心率信号或该动作信号以及另外的参数推断心率,以估计瞬时生理负荷;
(d)计算不同生化能量系统对瞬时生理负荷估计的相对贡献;
(e)传输生化能量系统对瞬时生理负荷的相对贡献。
22.根据权利要求21所述的动态心率模型,该动态心率模型能够包括一个常微分方程(ODE)模型。
23.根据权利要求21所述的参数,所述参数能够结合诸如隐马尔可夫模型的概率框架来推断。
24.根据权利要求23所述的能量系统,该能量系统能够是以下组中的一个或多个:磷酸原系统、无氧糖酵解和有氧呼吸。
25.一种用于计算不同生化能量系统对瞬时生理负荷估计的相对贡献的系统,该系统包括:
(a)一个能穿戴设备,包括一个动作捕获传感器和一个心率传感器;
(b)测量来自该动作捕获传感器的一个动作信号,该动作捕获传感器能够包括一个加速度计;
(c)测量来自该心率传感器的一个心率信号,该心率传感器能够包括一个心电图(ECG)传感器或光体积描记术(PPG)传感器;
(d)应用一个动态心率模型来估计瞬时生理负荷;
(e)计算不同生化能量系统对瞬时生理负荷估计的相对贡献;
(f)传输不同生化能量系统对瞬时生理负荷的相对贡献。
26.根据权利要求25所述的动态心率模型,该动态心率模型能够包括一个常微分方程(ODE)模型。
27.根据权利要求25所述的参数,所述参数能够结合诸如隐马尔可夫模型的概率框架来推断。
28.根据权利要求25所述的能量系统,该能量系统能够是以下组中的一个或多个:磷酸原系统、无氧糖酵解和有氧呼吸。
29.根据权利要求25所述的系统,其中在该系统的显示器上报告不同生化能量系统对瞬时生理负荷的相对贡献。
30.根据权利要求25所述的系统,该系统将不同生化能量系统对瞬时生理负荷的相对贡献传输到由移动电话例示的一个移动电子设备,或者直接传输到一个云平台。
31.根据权利要求25所述的移动电子设备,该移动电子设备被配置为显示不同生化能量系统对瞬时生理负荷的相对贡献。
32.根据权利要求25所述的系统,该系统具有将不同生化能量系统对瞬时生理负荷数据的相对贡献无线地传输到一个平台的装置,其中所述数据能够在客户端计算平台上存储、分析和查看,所述客户端计算平台包括但不限于移动计算设备、家庭计算机或能穿戴电子设备。
CN201580071106.3A 2014-10-27 2015-08-06 使用动态心率预测模型的生物激励动作补偿及实时生理负荷估计 Pending CN107405091A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462068882P 2014-10-27 2014-10-27
US62/068,882 2014-10-27
PCT/US2015/043919 WO2016069082A1 (en) 2014-10-27 2015-08-06 Biologically inspired motion compensation and real-time physiological load estimation using a dynamic heart rate prediction model

Publications (1)

Publication Number Publication Date
CN107405091A true CN107405091A (zh) 2017-11-28

Family

ID=55858139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580071106.3A Pending CN107405091A (zh) 2014-10-27 2015-08-06 使用动态心率预测模型的生物激励动作补偿及实时生理负荷估计

Country Status (6)

Country Link
US (1) US20170238875A1 (zh)
EP (1) EP3212071A4 (zh)
JP (1) JP2017531546A (zh)
CN (1) CN107405091A (zh)
TW (1) TW201632140A (zh)
WO (1) WO2016069082A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108926338A (zh) * 2018-05-31 2018-12-04 中南民族大学 基于深度学习的心率预测方法及装置
CN108937957A (zh) * 2018-06-05 2018-12-07 武汉久乐科技有限公司 检测方法、装置及检测设备
CN112040859A (zh) * 2018-04-12 2020-12-04 日本电信电话株式会社 无氧代谢阈值估计方法和装置
CN116649951A (zh) * 2022-11-11 2023-08-29 荣耀终端有限公司 运动数据处理方法、穿戴设备、终端、健身器设备及介质
CN117133449A (zh) * 2023-10-26 2023-11-28 纳龙健康科技股份有限公司 心电图分析系统、心电图分析模型构造、训练方法和介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537294B (en) * 2014-11-19 2018-05-09 Suunto Oy Wearable sports monitoring equipment and method for characterizing sports performances or sportspersons
US11766214B2 (en) 2014-11-19 2023-09-26 Suunto Oy Wearable sports monitoring equipment and method for characterizing sports performances or sportspersons
US10004408B2 (en) 2014-12-03 2018-06-26 Rethink Medical, Inc. Methods and systems for detecting physiology for monitoring cardiac health
JP6642055B2 (ja) * 2016-02-02 2020-02-05 富士通株式会社 センサ情報処理装置、センサユニット、及び、センサ情報処理プログラム
US10743777B2 (en) 2016-12-08 2020-08-18 Qualcomm Incorporated Cardiovascular parameter estimation in the presence of motion
US20180353090A1 (en) * 2017-06-13 2018-12-13 Huami Inc. Adaptive Heart Rate Estimation
US10631761B2 (en) * 2018-01-10 2020-04-28 Polar Electro Oy Synthetic cardiac output power parameter
KR102526951B1 (ko) * 2018-04-06 2023-04-28 삼성전자 주식회사 전자 장치에서 생체 정보 측정 방법 및 장치
US11850026B2 (en) 2020-06-24 2023-12-26 The Governing Council Of The University Of Toronto Remote portable vital signs monitoring
KR20220127602A (ko) * 2021-03-11 2022-09-20 삼성전자주식회사 심박수 예측 모델을 제공하는 전자 장치 및 그 동작 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179350A1 (en) * 2006-01-27 2007-08-02 Gary Nadeau Method for enhanced performance training
CN101262815A (zh) * 2005-09-15 2008-09-10 西铁城控股株式会社 心率计及心跳波形的噪音除去方法
CN101573710A (zh) * 2006-08-28 2009-11-04 皇家飞利浦电子股份有限公司 用于对心血管功能进行仿真的动态贝叶斯网络
CN102764111A (zh) * 2011-05-06 2012-11-07 精工爱普生株式会社 生物体信息处理装置
CN103781414A (zh) * 2011-09-16 2014-05-07 皇家飞利浦有限公司 用于估计运动期间的心率的设备和方法
CN203732900U (zh) * 2014-05-26 2014-07-23 屈卫兵 一种心率检测智能蓝牙手表
US20140309707A1 (en) * 2013-04-12 2014-10-16 Carnegie Mellon University, A Pennsylvania Non-Profit Corporation Implantable Pacemakers Control and Optimization via Fractional Calculus Approaches
CN104207761A (zh) * 2013-06-03 2014-12-17 飞比特公司 心率数据收集

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0410248D0 (en) * 2004-05-07 2004-06-09 Isis Innovation Signal analysis method
US8172761B1 (en) * 2004-09-28 2012-05-08 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
JP5788963B2 (ja) * 2011-02-21 2015-10-07 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America データ処理装置、データ処理システム及びデータ処理方法
US9044149B2 (en) * 2012-06-22 2015-06-02 Fitbit, Inc. Heart rate data collection
WO2014039567A1 (en) * 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
KR101907089B1 (ko) * 2012-11-16 2018-10-11 삼성전자주식회사 젖산 역치 추정 장치 및 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262815A (zh) * 2005-09-15 2008-09-10 西铁城控股株式会社 心率计及心跳波形的噪音除去方法
US20070179350A1 (en) * 2006-01-27 2007-08-02 Gary Nadeau Method for enhanced performance training
CN101573710A (zh) * 2006-08-28 2009-11-04 皇家飞利浦电子股份有限公司 用于对心血管功能进行仿真的动态贝叶斯网络
CN102764111A (zh) * 2011-05-06 2012-11-07 精工爱普生株式会社 生物体信息处理装置
CN103781414A (zh) * 2011-09-16 2014-05-07 皇家飞利浦有限公司 用于估计运动期间的心率的设备和方法
US20140309707A1 (en) * 2013-04-12 2014-10-16 Carnegie Mellon University, A Pennsylvania Non-Profit Corporation Implantable Pacemakers Control and Optimization via Fractional Calculus Approaches
CN104207761A (zh) * 2013-06-03 2014-12-17 飞比特公司 心率数据收集
CN203732900U (zh) * 2014-05-26 2014-07-23 屈卫兵 一种心率检测智能蓝牙手表

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040859A (zh) * 2018-04-12 2020-12-04 日本电信电话株式会社 无氧代谢阈值估计方法和装置
CN112040859B (zh) * 2018-04-12 2024-06-04 日本电信电话株式会社 无氧代谢阈值估计方法和装置
CN108926338A (zh) * 2018-05-31 2018-12-04 中南民族大学 基于深度学习的心率预测方法及装置
CN108926338B (zh) * 2018-05-31 2019-06-18 中南民族大学 基于深度学习的心率预测方法及装置
CN108937957A (zh) * 2018-06-05 2018-12-07 武汉久乐科技有限公司 检测方法、装置及检测设备
CN108937957B (zh) * 2018-06-05 2021-11-09 武汉久乐科技有限公司 检测方法、装置及检测设备
CN116649951A (zh) * 2022-11-11 2023-08-29 荣耀终端有限公司 运动数据处理方法、穿戴设备、终端、健身器设备及介质
CN116649951B (zh) * 2022-11-11 2024-04-02 荣耀终端有限公司 运动数据处理方法、穿戴设备、终端、健身器设备及介质
CN117133449A (zh) * 2023-10-26 2023-11-28 纳龙健康科技股份有限公司 心电图分析系统、心电图分析模型构造、训练方法和介质
CN117133449B (zh) * 2023-10-26 2024-01-12 纳龙健康科技股份有限公司 心电图分析系统、心电图分析模型构造、训练方法和介质

Also Published As

Publication number Publication date
US20170238875A1 (en) 2017-08-24
TW201632140A (zh) 2016-09-16
JP2017531546A (ja) 2017-10-26
EP3212071A4 (en) 2018-08-29
EP3212071A1 (en) 2017-09-06
WO2016069082A1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
CN107405091A (zh) 使用动态心率预测模型的生物激励动作补偿及实时生理负荷估计
US10646151B2 (en) Exercise system and method
US10154789B2 (en) Latent load calibration for calorimetry using sensor fusion
US20140074407A1 (en) Device and method for estimating energy expenditure during exercise
Verikas et al. Electromyographic patterns during golf swing: Activation sequence profiling and prediction of shot effectiveness
FI114201B (fi) Laktaatin määrän arviointi elimistössä
CN107847786A (zh) 评估锻炼强度的活动监测装置
Bajpai et al. Quantifiable fitness tracking using wearable devices
CN103168306A (zh) 判定对象昼夜节律特征的方法
CN107157456A (zh) 估算最大耗氧量和下次总运动时间的方法
US11291392B2 (en) Real-time and continuous determination of excess post-exercise oxygen consumption and the estimation of blood lactate
EP3391809A1 (en) Fitness level prediction device, system and method
Kurihara et al. Estimation of walking exercise intensity using 3-D acceleration sensor
Borror et al. Predicting oxygen uptake responses during cycling at varied intensities using an artificial neural network
Pires et al. Limitations of energy expenditure calculation based on a mobile phone accelerometer
CN115554674A (zh) 一种运动能耗预测方法及装置
Li et al. Internet of things-based smart wearable system to monitor sports person health
CN107194162A (zh) 一种生命特征数据的运动负荷风险评估系统及评估方法
Ataseven et al. Physical Activity Recognition using Deep Transfer Learning with Convolutional Neural Networks
Vila et al. Real-time quality index to control data loss in real-life cardiac monitoring applications
CN112040859A (zh) 无氧代谢阈值估计方法和装置
EP4106624A1 (en) A method and system for determining exercise parameters including aerobic endurance based on heart rate curve analysis
Hochstein et al. Assessment of physical activity of the human body considering the thermodynamic system
Bai [Retracted] Designing and Implementing a Terminal Platform to Manage and Detect the Health of Exercise Parameters Based on Internet Objects
US12017115B2 (en) Method for building up an energy metabolism system for monitoring exercise

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171128

WD01 Invention patent application deemed withdrawn after publication