WO2007029561A1 - Aligner - Google Patents

Aligner Download PDF

Info

Publication number
WO2007029561A1
WO2007029561A1 PCT/JP2006/316956 JP2006316956W WO2007029561A1 WO 2007029561 A1 WO2007029561 A1 WO 2007029561A1 JP 2006316956 W JP2006316956 W JP 2006316956W WO 2007029561 A1 WO2007029561 A1 WO 2007029561A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
photomask
stage
light source
Prior art date
Application number
PCT/JP2006/316956
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Kajiyama
Yoshio Watanabe
Original Assignee
V Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co., Ltd. filed Critical V Technology Co., Ltd.
Priority to CN2006800329154A priority Critical patent/CN101258447B/en
Publication of WO2007029561A1 publication Critical patent/WO2007029561A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning

Definitions

  • the present invention relates to an exposure apparatus that irradiates an object to be exposed with exposure light through a photomask to form an exposure pattern, and more specifically, uses of exposure light to irradiate a strip-shaped photomask.
  • the present invention relates to an exposure apparatus that attempts to improve efficiency.
  • a conventional exposure apparatus includes a light source 2 whose exposure optical system 1 is for ultraviolet irradiation, for example, an ultra-high pressure mercury lamp force, a concave mirror 3 that collects irradiation light from the light source 2, Located near the focal point of the concave mirror 3 and arranged between the cylindrical optical integrator 4 that uniformizes the luminance distribution of the light beam L on the exposure surface, and the mask stage 6 that holds the optical integrator 4 and the photomask 5 It consists of a curved mirror 7 that guides the incident exposure light as a parallel light beam to the exposure surface, and a set of flat mirrors 8 and 8 that reverse the optical path.
  • a light source 2 whose exposure optical system 1 is for ultraviolet irradiation, for example, an ultra-high pressure mercury lamp force
  • a concave mirror 3 that collects irradiation light from the light source 2
  • the cylindrical optical integrator 4 that uniformizes the luminance distribution of the light beam L on the exposure surface
  • the mask stage 6 that holds the optical integrat
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-347883 (FIG. 7)
  • an object of the present invention is to provide an exposure apparatus that addresses such problems and attempts to improve the use efficiency of exposure light that irradiates a strip-shaped photomask.
  • an exposure apparatus has a stage on which an object to be exposed is placed on an upper surface, a strip-like shape disposed above the stage and parallel to the upper surface of the stage.
  • a mask stage capable of holding a photomask; and a light source that irradiates exposure light to the photomask held on the mask stage. The exposure light emitted from the light source is transmitted through the photomask.
  • An exposure apparatus for irradiating the object to be exposed to form a predetermined exposure pattern at a predetermined position, wherein a cross section of a light beam of exposure light emitted from the light source on an optical path between the light source and a mask stage
  • Light beam cross-sectional shape shaping means for shaping the shape according to the shape of the strip-shaped photomask is provided.
  • exposure light is emitted from the light source, and the cross-sectional shape of the exposure light beam emitted from the light source is shaped according to the shape of the strip-shaped photomask by the light beam cross-sectional shape shaping unit.
  • the shaped exposure light is irradiated onto a photomask held on a mask stage, and the exposure light is further irradiated onto an object to be exposed placed on the upper surface of the stage via the photomask.
  • the exposure pattern is formed.
  • the light beam cross-sectional shape shaping means is a cylindrical lens that forms a linear beam at the focal position by refracting in only one direction of two axes perpendicular to the incidence of parallel rays.
  • the cross-sectional shape of the light beam is shaped by a cylindrical lens that refracts the parallel incident light only in one axial direction and forms a linear beam at the focal position.
  • a condensing lens that emits incident exposure light as parallel light is disposed on the optical path between the beam cross-sectional shape shaping means and the mask stage.
  • the exposure light incident on the condenser lens disposed on the optical path between the light beam cross-sectional shape shaping means and the mask stage is emitted as parallel light.
  • the exposure light can be collected on the strip-shaped photomask, the utilization efficiency of the exposure light irradiated to the strip-shaped photomask can be improved. it can. Therefore, it is possible to increase the energy density of the exposure light that irradiates the object to be exposed. Thereby, the exposure processing time of the object to be exposed is shortened, and the tact can be increased.
  • the cross-sectional shape of the light beam of the exposure light can be easily shaped into a flat shape by reducing the cross-sectional shape to one of the two orthogonal axes.
  • the light rays in the direction along the long axis of the photomask can be made parallel to each other. Therefore, along the longitudinal direction of the strip-shaped photomask. Thus, the resolution of the exposure pattern formed can be improved.
  • a plurality of exposure patterns can be formed along the longitudinal direction of the strip-shaped photomask.
  • FIG. 1 is a front view showing a first embodiment of an exposure apparatus according to the present invention.
  • FIG. 2 is a side view showing the main part of FIG.
  • FIG. 3 is a plan view showing a color filter substrate used in the exposure apparatus.
  • FIG. 4 is an explanatory view showing an irradiation state of exposure light having an elliptical light beam cross section with respect to a strip-shaped photomask in the exposure apparatus.
  • FIG. 5 is a front view showing a second embodiment of the exposure apparatus according to the present invention.
  • FIG. 6 is a diagram showing a configuration example of a fly-eye lens used in the second embodiment.
  • (a) is a front view
  • (b) is a right side view
  • (c) is a plan view.
  • FIG. 7 is a front view showing a conventional exposure apparatus.
  • FIG. 8 is an explanatory view showing an irradiation state of exposure light having a circular light beam cross section with respect to a strip-shaped photomask in a conventional exposure apparatus.
  • FIG. 1 is a front view showing a first embodiment of an exposure apparatus according to the present invention
  • FIG. 2 is a side view showing the main part of FIG.
  • This exposure apparatus forms an exposure pattern by irradiating an object to be exposed with exposure light through a photomask.
  • a stage 13, a mask stage 6, a light source 2, a cylindrical lens 14, and a callide are formed. It consists of a scope 15 and a condenser lens 16.
  • the exposure apparatus is a proximity exposure apparatus that exposes a photomask and an object to be exposed will be described, and the case where the object to be exposed is a color filter substrate will be described.
  • the color filter substrate 10 is formed with a black matrix 18 in which a large number of pixels 17 are provided corresponding to the pixels in the exposure region 28.
  • the upper left corner of the pixel 17a at the left end in FIG. 3 serves as a reference position S1 for alignment with a reference position S2 (see FIG. 4) of the photomask 5 described later. It is set in advance.
  • a mask stage 6 is disposed above the stage 13 in close proximity.
  • This mask stage 6 is capable of holding a strip-shaped photomask 5 parallel to the upper surface 13a of the stage 13, and is orthogonal to the direction of arrow A in a plane parallel to the upper surface 13a of the stage 13. It can be moved in the direction and can be rotated ( ⁇ ) about the central axis of the surface of the photomask 5 (see FIG. 4).
  • the strip-shaped photomask 5 has a plurality of long and rectangular mask patterns 19 arranged in a line along the longitudinal direction in the conveying direction indicated by an arrow A as shown in FIG. As shown in FIG.
  • the left edge of the mask pattern 19a at the left end shown in FIG. 4 is set in advance as a reference position S2 for aligning with the reference position S1 of the color filter substrate 10. Yes.
  • a cylindrical lens 14 is disposed on the optical path between the light source 2 and the mask stage 6.
  • This cylindrical lens 14 forms a linear beam at the focal position by refracting only in two uniaxial directions perpendicular to the incidence of parallel rays.
  • the cylindrical surface is parallel to its central axis.
  • the cross section of the luminous flux 12 of the exposure light emitted from the light source 2 (hereinafter simply referred to as “cross section”) is matched to the shape of the strip-shaped photomask 5. For example, as shown in FIG. 4, it becomes a beam cross-sectional shape shaping means for shaping from a circle (shown by a broken line in the figure) to an ellipse (shown by a solid line in the figure).
  • the central axis of the cylinder is photo-aligned so that the long axis of the shaped elliptical light beam 12 substantially coincides with the central axis in the longitudinal direction of the strip-shaped photomask 5.
  • the mask 5 is arranged so as to substantially coincide with the central axis.
  • a kaleidoscope 15 is disposed on the optical path between the light source 2 and the cylindrical lens 14.
  • the kaleidoscope 15 makes the brightness distribution of the exposure light irradiated to the photomask 5 uniform, is formed to a predetermined length, and has multiple sides parallel to its central axis. Each is a reflective surface. Then, the end 15a on the light source 2 side is substantially coincident with the focal point of the convex lens 22, and the end 15b on the cylindrical lens 14 side is It is made to substantially coincide with the focal point of a condenser lens 16 described later.
  • a condenser lens 16 is disposed on the optical path between the cylindrical lens 14 and the mask stage 6.
  • the condenser lens 16 serves as a condenser lens that emits the light beam L of the exposure light incident thereon as parallel light beams parallel to each other.
  • the exposure light emitted from the condenser lens 16 irradiates the photomask 5 vertically.
  • the exposure light passes through the photomask 5 in the vertical direction and vertically exposes the color resist on the color filter substrate 10. Therefore, the resolving power of the exposure pattern 23 (see FIG. 3) formed on the color filter substrate 10 is improved, and the exposure pattern 23 is sharply formed.
  • the stage 13 is moved at a constant speed by the conveying means 27, and the color filter substrate 10 is indicated by an arrow A in FIG. Transport in the direction.
  • the mask stage 6 is controlled based on the image of the pixel 17 of the black trimmer 18 of the color filter substrate 10 imaged by an imaging camera (not shown), and the surface parallel to the upper surface of the stage 13 1 is moved in a direction perpendicular to the direction of arrow A shown in FIG. 1 and rotated (0) around the center axis of the surface of the photomask 5 to set a reference position preset on the color filter substrate 10.
  • the reference position S2 (see FIG. 4) of the photomask 5 held on the mask stage 6 is positioned with respect to S1 (see FIG. 3).
  • the light source 2 is turned on and exposure light is emitted from the light source 2, and the photomask 5 held on the mask stage 6 is irradiated by the exposure light. Then, the mask pattern 19 formed on the photomask 5 is transferred onto the color filter substrate 10 being conveyed in the direction of arrow A shown in FIG. As a result, as shown in FIG. 3, a striped exposure pattern 23 is formed on a predetermined pixel 17 of the black matrix 18 on the color filter substrate 10.
  • the exposure light emitted from the light source 2 is reflected forward by the concave mirror 3 and condensed at the focal point by the convex lens 22 provided in front of the light source 2.
  • the condensed exposure light is incident on the light source 2 side end 15 a of the scope scope 15.
  • this callide scope 15 The light is mixed by multiple reflection at the side surface 15c parallel to the central axis in the longitudinal direction, and emitted from the end 15b on the cylindrical lens 14 side.
  • the exposure light emitted from the kaleidoscope 15 is incident on the cylindrical lens 14. At this time, of the exposure light emitted from the kaleidoscope 15, as shown in FIG. 1, in the surface 14a of the cylindrical lens 14, the direction perpendicular to the central axis of the cylinder (the left-right direction in the figure) The emitted light beam L is refracted inward so as to be narrowed and exits the cylindrical lens 14.
  • the exposure light emitted from the kaleidoscope 15 As shown in FIG. 2, in the surface 14a of the cylindrical lens 14 in the direction along the central axis of the cylinder (the left-right direction in the figure).
  • the emitted light beam L exits the cylindrical lens 14 without changing the radiation angle. Therefore, as shown by the broken line in FIG. 4, the exposure light of the light beam 12 having a polygonal cross section (shown as a circle in the figure) emitted from the kaleidoscope 15 is shown as a solid line in the figure.
  • the exposure light whose sectional shape of the light beam 12 is shaped into, for example, an elliptical circular force is incident on the condenser lens 16.
  • the light beam L in the direction along the major axis of the elliptical cross section that is, the light beam L radiated in the direction along the central axis of the cylindrical lens 14 is, as shown in FIG. It is emitted as parallel light parallel to the optical axis.
  • the light beam L in the direction along the minor axis having an elliptical cross section is further focused by the condenser lens 16 as shown in FIG.
  • the cylindrical lens 14 is arranged so that the central axis of the cylinder substantially coincides with the central axis in the longitudinal direction of the strip-shaped photomask 5 held by the mask stage 6, so that the condenser lens
  • the exposure light having an elliptical cross section emitted from 16 irradiates the photomask 5 with its long axis aligned with the central axis in the longitudinal direction of the strip-shaped photomask 5.
  • the exposure light emitted from the light source 2 is collected on the photomask 5, the energy density of the exposure light that irradiates the photomask 5 is improved.
  • the light beam L in the direction along the long axis of the exposure light having an elliptical cross section hangs down the photomask 5.
  • the color resist on the color filter substrate 10 is exposed vertically. Therefore, among the exposure patterns 23 formed on the color filter substrate 10, the resolving power along the longitudinal direction of the strip-shaped photomask 5 is improved, and the exposure pattern 23 in the direction orthogonal to the arrow A shown in FIG. Edge 23a, 23b force S Sharp.
  • the light beam L in the direction along the short axis of the exposure light having an elliptical cross section passes obliquely through the photomask 5 and wraps around the lower side of the photomask 5, so that the color layer on the color filter substrate 10 is reflected. Expose the dies diagonally. Therefore, the resolving power in the direction orthogonal to the longitudinal direction of the strip-shaped photomask 5 in the exposure pattern 23 formed on the color filter substrate 10 is reduced, and the edge of the exposure pattern 23 in the direction of arrow A shown in FIG. Part 23c, 23d lose power.
  • the exposure pattern 23 has a stripe shape extending in the direction of arrow A as shown in FIG.
  • the force described in the case where the light beam cross-sectional shape of the exposure light radiated from the kaleidoscope 15 is circular is not limited to this, and the cross-sectional shape of the kaleidoscope 15 is rectangular.
  • the light beam cross-sectional shape of the exposure light that is formed and emitted may be substantially rectangular.
  • a light pipe may be used instead of the kaleidoscope 15.
  • FIG. 5 is a front view showing a second embodiment of the exposure apparatus according to the present invention.
  • This exposure apparatus focuses on the optical path between the light source 2 and the mask stage 6 as a beam cross-sectional shape shaping means by performing a refracting action only in one of the two axes perpendicular to the incidence of the parallel light beam.
  • a fly-eye lens 24 that forms a plurality of linear beams at a position is disposed, and a strip-like lens is provided together with a condenser lens 16 disposed on the optical path between the fly-eye lens 24 and the mask stage 6.
  • the brightness distribution can be made uniform at the same time as the exposure light is collected on the photomask 5. Therefore, in the second embodiment, the kaleidoscope 15 provided in the first embodiment can be omitted.
  • a specific configuration example of the fly-eye lens 24 includes a minute convex cylindrical lens 25a on the end surface 24b on the condenser lens 16 side, and Fig. 6 (c).
  • the central axis of the cylinder is parallel to the Y axis in the XY plane.
  • a first cylindrical lens array 25 arranged in four is formed.
  • a second cylindrical lens array 26 is formed in which the central axis of the cylinder is parallel to the X axis and, for example, four are arranged in the Y axis direction.
  • the path of the light beam in the direction along the X axis and the Y axis will be described.
  • the light beam L incident on the end surface 24a on the light source 2 side of the fly eye lens 24 the light beam L radiating in the X-axis direction and entering the second cylindrical lens array 26 shown in FIG. Without being refracted by the second cylindrical lens array 26 (actually, it is refracted so as to spread slightly outward), the first lens formed on the end surface 24b on the condenser lens 16 side. Is incident on the cylindrical lens array 25. Then, the light beam L is refracted inwardly so as to be narrowed down by the first cylindrical lens array 25 and is emitted from the end surface 24b on the condenser lens 16 side through the fly-eye lens 24.
  • the exposure light ray L incident on the end surface 24a on the light source 2 side of the fly-eye lens 24 it radiates in the Y-axis direction shown in Fig. 6 (c) and enters the second cylindrical lens array 26.
  • the light beam L is refracted so as to be broadly spread by the second cylindrical lens array 26 and further spreads outward to be incident on the first cylindrical lens array 25 formed on the end surface 24b on the condenser lens 16 side.
  • the light beam L is not refracted by the first cylindrical lens array 25 (actually, it is refracted so as to be slightly squeezed inward), and the fly-eye lens 24 passes through the end surface 24b on the condenser lens 16 side. Eject.
  • the cross-sectional shape of the light beam of the exposure light emitted from the fly-eye lens 24 is a flat shape with the major axis in the Y-axis direction and the minor axis in the X-axis direction shown in FIG. Further, since the exposure light emitted from each of the minute cylindrical lenses 25a of the first cylindrical lens array 25 is superimposed on the photomask 5 to irradiate the photomask 5, the exposure light on the photomask 5 is irradiated. The luminance distribution becomes uniform.
  • the exposure apparatus is a proximity exposure apparatus that exposes the photomask 5 and the object to be exposed in proximity
  • the present invention is not limited to this.
  • the present invention can be applied to any exposure apparatus that uses a strip-shaped photomask 5.
  • the case where the object to be exposed is the color filter substrate 10 is described.
  • any substrate may be used as long as the striped exposure pattern 23 is formed.

Abstract

An aligner comprising a stage (13) having an upper surface (13a) for mounting a color filter substrate (11), a mask stage (6) arranged above the stage (13) such that a stripe photomask (5) can be held on the upper surface of the stage (13) in parallel therewith, and a light source (2) for irradiating the photomask (5) held on the mask stage (6) with exposure light, and forming a predetermined exposure pattern at a predetermined position by irradiating the color filter substrate (11) with exposure light radiated from the light source (2) through the photomask (5). A cylindrical lens (14) for shaping the cross-sectional profile of the beams of exposure light radiated from the light source (2) in accordance with the profile of the stripe photomask (5) is arranged on the optical path between the light source (2) and the mask stage (6). Consequently, utilization efficiency of exposure light radiated for the stripe photomask is enhanced.

Description

明 細 書  Specification
露光装置  Exposure equipment
技術分野  Technical field
[0001] 本発明は、被露光体に対してフォトマスクを介して露光光を照射して露光パターン を形成する露光装置に関し、詳しくは、短冊状のフォトマスクに対して照射する露光 光の利用効率を向上しょうとする露光装置に係るものである。  The present invention relates to an exposure apparatus that irradiates an object to be exposed with exposure light through a photomask to form an exposure pattern, and more specifically, uses of exposure light to irradiate a strip-shaped photomask. The present invention relates to an exposure apparatus that attempts to improve efficiency.
背景技術  Background art
[0002] 従来の露光装置は、図 7に示すように、露光光学系 1が紫外線照射用の例えば超 高圧水銀ランプ力 なる光源 2と、光源 2からの照射光を集光する凹面鏡 3と、凹面鏡 3の焦点近傍に配置され露光面上の光線 Lの輝度分布を均一にする円柱状のォプ ティカルインテグレータ 4と、オプティカルインテグレータ 4とフォトマスク 5を保持する マスクステージ 6との間に配置され入射する露光光を平行な光束として露光面に導く 曲面ミラー 7と、光路を反転する一組の平面ミラー 8, 8とによって構成されており、光 源 2から照射され、曲面ミラー 7で光線 Lが互いに平行な光束とされた露光光がマスク ステージ 6に保持されたフォトマスク 5に対して垂直に照射するようになっていた (例え ば、特許文献 1参照)。なお、同図において、符号 9は被露光体を上面に載置するヮ ークステージを示し、符号 10は例えばカラーフィルタ基板カゝら成る被露光体を示し、 符号 11は露光光の光路を開閉制御する露光制御用シャッターを示して!/、る。  As shown in FIG. 7, a conventional exposure apparatus includes a light source 2 whose exposure optical system 1 is for ultraviolet irradiation, for example, an ultra-high pressure mercury lamp force, a concave mirror 3 that collects irradiation light from the light source 2, Located near the focal point of the concave mirror 3 and arranged between the cylindrical optical integrator 4 that uniformizes the luminance distribution of the light beam L on the exposure surface, and the mask stage 6 that holds the optical integrator 4 and the photomask 5 It consists of a curved mirror 7 that guides the incident exposure light as a parallel light beam to the exposure surface, and a set of flat mirrors 8 and 8 that reverse the optical path. The exposure light having the light beams parallel to each other is irradiated perpendicularly to the photomask 5 held on the mask stage 6 (see, for example, Patent Document 1). In the figure, reference numeral 9 denotes a workpiece stage on which the object to be exposed is placed, upper reference numeral 10 denotes an object to be exposed such as a color filter substrate cover, and reference numeral 11 denotes an opening / closing control of the optical path of the exposure light. Show the exposure control shutter! /
特許文献 1:特開 2004— 347883号公報 (第 7図)  Patent Document 1: Japanese Patent Laid-Open No. 2004-347883 (FIG. 7)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、このような従来の露光装置においては、曲面ミラー 7から射出する光束 12の 断面形状は、図 8に示すように円形となるため、例えばフォトマスク 5が短冊状に形成 されたものである場合には、同図において斜線を付して示す部分の光線 Lが露光に 寄与せず無駄に消費されて、短冊状のフォトマスク 5に対して照射する露光光の利用 効率が低力つた。したがって、被露光体を照射する露光光のエネルギー密度が低く て露光処理時間が長くなり、タ外が低いという問題点を有していた。 [0004] そこで、本発明は、このような問題点に対処し、短冊状のフォトマスクに対して照射 する露光光の利用効率を向上しょうとする露光装置を提供することを目的とする。 課題を解決するための手段 However, in such a conventional exposure apparatus, since the cross-sectional shape of the light beam 12 emitted from the curved mirror 7 is circular as shown in FIG. 8, for example, the photomask 5 is formed in a strip shape. In this case, the light beam L shown by hatching in the figure does not contribute to the exposure and is wasted, and the use efficiency of the exposure light applied to the strip-shaped photomask 5 is low. I helped. Therefore, the energy density of exposure light for irradiating the object to be exposed is low, the exposure processing time is long, and the outside is low. Accordingly, an object of the present invention is to provide an exposure apparatus that addresses such problems and attempts to improve the use efficiency of exposure light that irradiates a strip-shaped photomask. Means for solving the problem
[0005] 上記目的を達成するために、本発明による露光装置は、被露光体を上面に載置す るステージと、前記ステージの上方に配設され、該ステージの上面に平行に短冊状 のフォトマスクを保持可能としたマスクステージと、前記マスクステージに保持された フォトマスクに対して露光光を照射する光源と、を備え、前記光源から放射された露 光光を前記フォトマスクを介して前記被露光体上に照射して所定位置に所定の露光 ノターンを形成する露光装置であって、前記光源とマスクステージとの間の光路上に 、前記光源から放射された露光光の光束の断面形状を前記短冊状のフォトマスクの 形状に合わせて整形する光束断面形状整形手段を配設したものである。  In order to achieve the above object, an exposure apparatus according to the present invention has a stage on which an object to be exposed is placed on an upper surface, a strip-like shape disposed above the stage and parallel to the upper surface of the stage. A mask stage capable of holding a photomask; and a light source that irradiates exposure light to the photomask held on the mask stage. The exposure light emitted from the light source is transmitted through the photomask. An exposure apparatus for irradiating the object to be exposed to form a predetermined exposure pattern at a predetermined position, wherein a cross section of a light beam of exposure light emitted from the light source on an optical path between the light source and a mask stage Light beam cross-sectional shape shaping means for shaping the shape according to the shape of the strip-shaped photomask is provided.
[0006] このような構成により、光源で露光光を放射し、光束断面形状整形手段で光源から 放射された露光光の光束の断面形状を短冊状のフォトマスクの形状に合わせて整形 し、該整形された露光光をマスクステージに保持されたフォトマスクに照射し、さらに 該露光光を上記フォトマスクを介してステージの上面に載置された被露光体上に照 射して所定位置に所定の露光パターンを形成する。  With such a configuration, exposure light is emitted from the light source, and the cross-sectional shape of the exposure light beam emitted from the light source is shaped according to the shape of the strip-shaped photomask by the light beam cross-sectional shape shaping unit. The shaped exposure light is irradiated onto a photomask held on a mask stage, and the exposure light is further irradiated onto an object to be exposed placed on the upper surface of the stage via the photomask. The exposure pattern is formed.
[0007] また、前記光束断面形状整形手段は、平行光線の入射に対して直交 2軸の 1軸方 向にのみ屈折作用をして焦点位置で線状のビームを形成するシリンドリカルレンズで ある。これにより、平行な入射光に対して 1軸方向にのみ屈折作用をして焦点位置で 線状のビームを形成するシリンドリカルレンズで光束の断面形状を整形する。  [0007] Further, the light beam cross-sectional shape shaping means is a cylindrical lens that forms a linear beam at the focal position by refracting in only one direction of two axes perpendicular to the incidence of parallel rays. As a result, the cross-sectional shape of the light beam is shaped by a cylindrical lens that refracts the parallel incident light only in one axial direction and forms a linear beam at the focal position.
[0008] さらに、前記光束断面形状整形手段は、平行光線の入射に対して直交 2軸の 1軸 方向にのみ屈折作用をして焦点位置で線状の複数のビームを形成するフライアイレ ンズである。これにより、平行な入射光に対して 1軸方向にのみ屈折作用をして焦点 位置で線状の複数のビームを形成するフライアイレンズで光束の断面形状を整形す る。  [0008] Further, the light beam cross-sectional shape shaping means is a fly-eye lens that forms a plurality of linear beams at the focal position by refracting only in the direction of two axes perpendicular to the incidence of parallel rays. . As a result, the cross-sectional shape of the light beam is shaped by a fly-eye lens that refracts only in one axial direction with respect to parallel incident light and forms a plurality of linear beams at the focal position.
[0009] そして、前記光源と光束断面形状整形手段との間の光路上には、前記フォトマスク に対して照射する露光光の輝度分布を均一にするカライドスコープが配設されたもの である。これにより、光源と光束断面形状整形手段との間の光路上に配設されたカラ イドスコープでフォトマスクに対して照射する露光光の輝度分布を均一にする。 [0009] Then, a kaleidoscope is provided on the optical path between the light source and the light beam cross-sectional shape shaping means to make the luminance distribution of the exposure light irradiated to the photomask uniform. . As a result, the color disposed on the optical path between the light source and the light beam cross-sectional shape shaping means. The brightness distribution of the exposure light irradiated on the photomask with the idscope is made uniform.
[0010] また、前記光束断面形状整形手段とマスクステージとの間の光路上には、入射する 露光光を平行光として射出する集光レンズが配設されたものである。これにより、光 束断面形状整形手段とマスクステージとの間の光路上に配設された集光レンズで入 射する露光光を平行光として射出する。  [0010] Further, a condensing lens that emits incident exposure light as parallel light is disposed on the optical path between the beam cross-sectional shape shaping means and the mask stage. As a result, the exposure light incident on the condenser lens disposed on the optical path between the light beam cross-sectional shape shaping means and the mask stage is emitted as parallel light.
[0011] さらに、前記ステージは、その上面に載置された被露光体に露光光を照射して露 光が行なわれているときに、前記被露光体を前記短冊状のフォトマスクの面に平行で その長手方向と直交する方向に搬送するものである。これにより、ステージでその上 面に載置された被露光体に露光光を照射して露光が行なわれているときに、被露光 体を短冊状のフォトマスクの面に平行でその長手方向と直交する方向に搬送する。  [0011] Furthermore, the stage is configured so that the object to be exposed is placed on the surface of the strip-shaped photomask when exposure is performed by irradiating the object to be exposed placed on the upper surface with exposure light. It is transported in a direction parallel to the longitudinal direction. Thus, when exposure is performed by irradiating an exposure object placed on the upper surface of the stage with exposure light, the exposure object is parallel to the surface of the strip-shaped photomask and its longitudinal direction. Transport in the orthogonal direction.
[0012] そして、前記短冊状のフォトマスクは、その長手方向に沿って複数のマスクパターン を一列に並べて配置したものである。これにより、長手方向に沿って複数のマスクパ ターンを一列に並べて配置した短冊状のフォトマスクで所定の露光パターンを形成 する。  [0012] The strip-shaped photomask has a plurality of mask patterns arranged in a line along the longitudinal direction. Thereby, a predetermined exposure pattern is formed with a strip-shaped photomask in which a plurality of mask patterns are arranged in a line along the longitudinal direction.
発明の効果  The invention's effect
[0013] 請求項 1に係る発明によれば、露光光を短冊状のフォトマスク上に集めることができ るので、短冊状のフォトマスクに対して照射する露光光の利用効率を向上することが できる。したがって、被露光体に照射する露光光のエネルギー密度を増すことができ る。これにより、被露光体の露光処理時間が短くなり、タクトを上げることができる。  [0013] According to the invention of claim 1, since the exposure light can be collected on the strip-shaped photomask, the utilization efficiency of the exposure light irradiated to the strip-shaped photomask can be improved. it can. Therefore, it is possible to increase the energy density of the exposure light that irradiates the object to be exposed. Thereby, the exposure processing time of the object to be exposed is shortened, and the tact can be increased.
[0014] また、請求項 2に係る発明によれば、露光光の光束の断面形状を直交 2軸の 1軸方 向に絞って容易に扁平状に整形することができる。  [0014] According to the invention according to claim 2, the cross-sectional shape of the light beam of the exposure light can be easily shaped into a flat shape by reducing the cross-sectional shape to one of the two orthogonal axes.
[0015] さらに、請求項 3に係る発明によれば、露光光の光束の断面形状を直交 2軸の 1軸 方向に絞って容易に扁平状に整形することができる。また、フォトマスクに対する露光 光の均一照射を可能とすることができる。  [0015] Further, according to the invention of claim 3, it is possible to easily shape the cross-sectional shape of the light beam of the exposure light into a flat shape by reducing the cross-sectional shape in one of the two orthogonal axes. Further, it is possible to uniformly irradiate the photomask with exposure light.
[0016] そして、請求項 4に係る発明によれば、フォトマスクに対して露光光を均一に照射す ることができる。したがって、被露光体を均一に露光することができる。  [0016] According to the invention of claim 4, it is possible to uniformly irradiate the photomask with exposure light. Accordingly, the object to be exposed can be uniformly exposed.
[0017] また、請求項 5に係る発明によれば、特に、フォトマスクの長軸に沿った方向の光線 を互いに平行にすることができる。したがって、短冊状のフォトマスクの長手方向に沿 つて形成された露光パターンの解像力を向上することができる。 [0017] According to the invention of claim 5, particularly, the light rays in the direction along the long axis of the photomask can be made parallel to each other. Therefore, along the longitudinal direction of the strip-shaped photomask. Thus, the resolution of the exposure pattern formed can be improved.
[0018] さらに、請求項 6に係る発明によれば、被露光体を搬送しながら露光パターンを形 成することができる。したがって、露光処理時間をより短縮することができる。  [0018] Further, according to the invention of claim 6, it is possible to form an exposure pattern while conveying the object to be exposed. Therefore, the exposure processing time can be further shortened.
[0019] そして、請求項 7に係る発明によれば、短冊状のフォトマスクの長手方向に沿って 複数の露光パターンを形成することができる。 [0019] According to the invention of claim 7, a plurality of exposure patterns can be formed along the longitudinal direction of the strip-shaped photomask.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明による露光装置の第 1の実施形態を示す正面図である。 FIG. 1 is a front view showing a first embodiment of an exposure apparatus according to the present invention.
[図 2]図 1の要部を示す側面図である。  2 is a side view showing the main part of FIG.
[図 3]上記露光装置に使用されるカラーフィルタ基板を示す平面図である。  FIG. 3 is a plan view showing a color filter substrate used in the exposure apparatus.
[図 4]上記露光装置において、短冊状のフォトマスクに対する光束断面が楕円形の露 光光の照射状態を示す説明図である。  FIG. 4 is an explanatory view showing an irradiation state of exposure light having an elliptical light beam cross section with respect to a strip-shaped photomask in the exposure apparatus.
[図 5]本発明による露光装置の第 2の実施形態を示す正面図である。  FIG. 5 is a front view showing a second embodiment of the exposure apparatus according to the present invention.
[図 6]上記第 2の実施形態に使用されるフライアイレンズの一構成例を示す図であり、 FIG. 6 is a diagram showing a configuration example of a fly-eye lens used in the second embodiment.
(a)は正面図、(b)は右側面図、(c)は平面図である。 (a) is a front view, (b) is a right side view, and (c) is a plan view.
[図 7]従来の露光装置を示す正面図である。  FIG. 7 is a front view showing a conventional exposure apparatus.
[図 8]従来の露光装置において、短冊状のフォトマスクに対する光束断面が円形の露 光光の照射状態を示す説明図である。  FIG. 8 is an explanatory view showing an irradiation state of exposure light having a circular light beam cross section with respect to a strip-shaped photomask in a conventional exposure apparatus.
符号の説明  Explanation of symbols
[0021] 2…光源 [0021] 2 ... Light source
5· · ·フォトマスク  5 ··· Photomask
6· ··マスクステージ  6. Mask stage
10· · ·カラーフィルタ基板 (被露光体)  10. Color filter substrate (exposed object)
12…光束  12 ... Flux
13· "ステージ  13 · “Stage
13a…ステージの上面  13a… Top of stage
14· · ·シリンドリカルレンズ (光束断面形状整形手段)  14 · · · Cylindrical lens (light beam cross-sectional shape shaping means)
15…カライドスコープ  15 ... Callide scope
16· · ·コンデンサレンズ (集光レンズ;) 19· ··マスクノターン 16 ··· Condenser lens (Condenser lens;) 19 ... Mask no turn
23…露光パターン  23 ... exposure pattern
24· ··フライアイレンズ (光束断面形状整形手段)  24 ··· Fly eye lens (light beam cross-sectional shape shaping means)
L…光  L ... light
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図 1は本発明による露光装置の第 1の実施形態を示す正面図であり、図 2は図 1の 要部を示す側面図である。この露光装置は、被露光体に対してフォトマスクを介して 露光光を照射して露光パターンを形成するもので、ステージ 13と、マスクステージ 6と 、光源 2と、シリンドリカルレンズ 14と、カライドスコープ 15と、コンデンサレンズ 16とか らなる。なお、ここでは、露光装置がフォトマスクと被露光体とを近接させて露光する 近接露光装置である場合にっ 、て説明し、また被露光体がカラーフィルタ基板であ る場合について説明する。  FIG. 1 is a front view showing a first embodiment of an exposure apparatus according to the present invention, and FIG. 2 is a side view showing the main part of FIG. This exposure apparatus forms an exposure pattern by irradiating an object to be exposed with exposure light through a photomask. A stage 13, a mask stage 6, a light source 2, a cylindrical lens 14, and a callide are formed. It consists of a scope 15 and a condenser lens 16. Here, the case where the exposure apparatus is a proximity exposure apparatus that exposes a photomask and an object to be exposed will be described, and the case where the object to be exposed is a color filter substrate will be described.
[0023] 上記ステージ 13は、所定のカラーレジストを塗布したカラーフィルタ基板 10を上面 13aに載置するものであり、上面 13aに載置された上記カラーフィルタ基板 10に露光 光を照射して露光が行なわれているときに、搬送手段 27によって駆動されて、上記 カラーフィルタ基板 10を後述する短冊状のフォトマスク 5の面に平行でその長手方向 と直交する方向(図 1に示す矢印 A方向)に一定の速度で搬送するようになっている。  [0023] The stage 13 is for placing the color filter substrate 10 coated with a predetermined color resist on the upper surface 13a, and exposing the color filter substrate 10 placed on the upper surface 13a by exposing it to exposure light. When the color filter substrate 10 is driven by the conveying means 27, the color filter substrate 10 is parallel to the surface of a strip-shaped photomask 5 to be described later and is orthogonal to the longitudinal direction (the direction of arrow A shown in FIG. 1). ) Is transported at a constant speed.
[0024] なお、上記カラーフィルタ基板 10には、図 3に示すように、露光領域 28に画素に対 応して多数のピクセル 17を設けたブラックマトリクス 18が形成されている。そして、上 記多数のピクセル 17のうち、図 3において左端部のピクセル 17aの左上端隅部が後 述するフォトマスク 5の基準位置 S2 (図 4参照)と位置合わせするための基準位置 S1 として予め設定されている。  As shown in FIG. 3, the color filter substrate 10 is formed with a black matrix 18 in which a large number of pixels 17 are provided corresponding to the pixels in the exposure region 28. Of the many pixels 17, the upper left corner of the pixel 17a at the left end in FIG. 3 serves as a reference position S1 for alignment with a reference position S2 (see FIG. 4) of the photomask 5 described later. It is set in advance.
[0025] 上記ステージ 13の上方には、近接してマスクステージ 6が配設されている。このマス クステージ 6は、上記ステージ 13の上面 13aに平行に短冊状のフォトマスク 5を保持 可能としたものであり、ステージ 13の上面 13aと平行な面内にて矢印 A方向と直交す る方向に移動することができ、また上記フォトマスク 5の面の中心軸を中心として回転 ( Θ )することができるようになつている(図 4参照)。 [0026] ここで、上記短冊状のフォトマスク 5は、図 4に示すようにその長手方向に沿って、矢 印 Aで示す搬送方向に長 、矩形状の複数のマスクパターン 19を一列に並べて配置 したものであり、図 2に示すように透明なガラス基板 20上に被着された例えば Crの不 透明膜 21をエッチングして形成され、該不透明膜 21が形成された面を下にして上記 マスクステージ 6に保持されるようになっている。そして、例えば上記複数のマスクパ ターン 19のうち、図 4に示す左端部のマスクパターン 19aの左縁部が上記カラーフィ ルタ基板 10の基準位置 S1と位置合わせするための基準位置 S2として予め設定され ている。 A mask stage 6 is disposed above the stage 13 in close proximity. This mask stage 6 is capable of holding a strip-shaped photomask 5 parallel to the upper surface 13a of the stage 13, and is orthogonal to the direction of arrow A in a plane parallel to the upper surface 13a of the stage 13. It can be moved in the direction and can be rotated (Θ) about the central axis of the surface of the photomask 5 (see FIG. 4). Here, the strip-shaped photomask 5 has a plurality of long and rectangular mask patterns 19 arranged in a line along the longitudinal direction in the conveying direction indicated by an arrow A as shown in FIG. As shown in FIG. 2, it is formed by etching a non-transparent film 21 of, for example, Cr deposited on a transparent glass substrate 20, and the surface on which the opaque film 21 is formed faces downward. It is held by the mask stage 6 described above. For example, among the plurality of mask patterns 19, the left edge of the mask pattern 19a at the left end shown in FIG. 4 is set in advance as a reference position S2 for aligning with the reference position S1 of the color filter substrate 10. Yes.
[0027] 上記マスクステージ 6に保持されたフォトマスク 5に対して露光光を照射可能に光源 2が設けられている。この光源 2は、紫外線を放射するものであり、例えば超高圧水銀 ランプ、キセノンランプや紫外線発光レーザ等である。そして、凹面鏡 3で反射された 露光光の放射方向前方には、凸レンズ 22を配置して露光光を集光できるようになつ ている。  A light source 2 is provided so that exposure light can be irradiated onto the photomask 5 held on the mask stage 6. The light source 2 emits ultraviolet rays, and is, for example, an ultrahigh pressure mercury lamp, a xenon lamp, an ultraviolet light emitting laser, or the like. Then, a convex lens 22 is disposed in front of the exposure light in the radial direction reflected by the concave mirror 3 so that the exposure light can be condensed.
[0028] 上記光源 2とマスクステージ 6との間の光路上には、シリンドリカルレンズ 14が配設 されている。このシリンドリカルレンズ 14は、平行光線の入射に対して直交 2軸の 1軸 方向にのみ屈折作用をして焦点位置で線状のビームを形成するものであり、円柱を その中心軸に平行な面で分割したような形状を有しており、光源 2から放射された露 光光の光束 12の横断面(以下、単に「断面」と記載する)形状を短冊状のフォトマスク 5の形状に合わせて整形するものであり、例えば、図 4に示すように円形(同図に破線 で示す)から楕円形(同図に実線で示す)に整形する光束断面形状整形手段となるも のである。そして、同図に示すように、整形された断面楕円形の光束 12の長軸が上 記短冊状のフォトマスク 5の長手方向の中心軸と略合致するように、その円柱の中心 軸をフォトマスク 5の上記中心軸に略合致させて配置されている。  A cylindrical lens 14 is disposed on the optical path between the light source 2 and the mask stage 6. This cylindrical lens 14 forms a linear beam at the focal position by refracting only in two uniaxial directions perpendicular to the incidence of parallel rays. The cylindrical surface is parallel to its central axis. The cross section of the luminous flux 12 of the exposure light emitted from the light source 2 (hereinafter simply referred to as “cross section”) is matched to the shape of the strip-shaped photomask 5. For example, as shown in FIG. 4, it becomes a beam cross-sectional shape shaping means for shaping from a circle (shown by a broken line in the figure) to an ellipse (shown by a solid line in the figure). Then, as shown in the figure, the central axis of the cylinder is photo-aligned so that the long axis of the shaped elliptical light beam 12 substantially coincides with the central axis in the longitudinal direction of the strip-shaped photomask 5. The mask 5 is arranged so as to substantially coincide with the central axis.
[0029] 上記光源 2とシリンドリカルレンズ 14との間の光路上には、カライドスコープ 15が配 設されている。このカライドスコープ 15は、フォトマスク 5に対して照射する露光光の 輝度分布を均一にするものであり、所定の長さに形成され、その中心軸に平行な側 面を多面に形成してそれぞれ反射面としたものである。そして、その光源 2側の端部 15aを上記凸レンズ 22の焦点に略一致させ、シリンドリカルレンズ 14側の端部 15bを 後述するコンデンサレンズ 16の焦点に略一致させている。 A kaleidoscope 15 is disposed on the optical path between the light source 2 and the cylindrical lens 14. The kaleidoscope 15 makes the brightness distribution of the exposure light irradiated to the photomask 5 uniform, is formed to a predetermined length, and has multiple sides parallel to its central axis. Each is a reflective surface. Then, the end 15a on the light source 2 side is substantially coincident with the focal point of the convex lens 22, and the end 15b on the cylindrical lens 14 side is It is made to substantially coincide with the focal point of a condenser lens 16 described later.
[0030] 上記シリンドリカルレンズ 14とマスクステージ 6との間の光路上には、コンデンサレン ズ 16が配設されている。このコンデンサレンズ 16は、それに入射する露光光の光線 Lを互いに平行な平行光として射出する集光レンズとなるものである。これにより、コン デンサレンズ 16から射出した露光光は、フォトマスク 5を垂直に照射する。そして、上 記露光光は、上記フォトマスク 5を垂直方向に通過してカラーフィルタ基板 10のカラ 一レジストを垂直に露光する。したがって、カラーフィルタ基板 10上に形成された露 光パターン 23 (図 3参照)の解像力が向上して、露光パターン 23が鮮鋭に形成され るよつになる。 A condenser lens 16 is disposed on the optical path between the cylindrical lens 14 and the mask stage 6. The condenser lens 16 serves as a condenser lens that emits the light beam L of the exposure light incident thereon as parallel light beams parallel to each other. Thereby, the exposure light emitted from the condenser lens 16 irradiates the photomask 5 vertically. The exposure light passes through the photomask 5 in the vertical direction and vertically exposes the color resist on the color filter substrate 10. Therefore, the resolving power of the exposure pattern 23 (see FIG. 3) formed on the color filter substrate 10 is improved, and the exposure pattern 23 is sharply formed.
[0031] 次に、このように構成された露光装置の動作について説明する。  Next, the operation of the exposure apparatus configured as described above will be described.
先ず、カラーレジストが塗布されたカラーフィルタ基板 10をステージ 13上に載置し た状態で、搬送手段 27によってステージ 13が一定速度で移動されて上記カラーフィ ルタ基板 10を図 1に矢印 Aで示す方向に搬送する。  First, with the color filter substrate 10 coated with a color resist being placed on the stage 13, the stage 13 is moved at a constant speed by the conveying means 27, and the color filter substrate 10 is indicated by an arrow A in FIG. Transport in the direction.
[0032] このとき、図示省略の撮像カメラによって撮像されたカラーフィルタ基板 10のブラッ クマトリタス 18のピクセル 17の像に基づいてマスクステージ 6が制御されて、上記ステ ージ 13の上面と平行な面内にて図 1に示す矢印 A方向と直交する方向に移動され、 また上記フォトマスク 5の面の中心軸を中心として回転( 0 )されて、カラーフィルタ基 板 10に予め設定された基準位置 S1 (図 3参照)に対してマスクステージ 6上に保持さ れたフォトマスク 5の基準位置 S2 (図 4参照)が位置決めされる。  At this time, the mask stage 6 is controlled based on the image of the pixel 17 of the black trimmer 18 of the color filter substrate 10 imaged by an imaging camera (not shown), and the surface parallel to the upper surface of the stage 13 1 is moved in a direction perpendicular to the direction of arrow A shown in FIG. 1 and rotated (0) around the center axis of the surface of the photomask 5 to set a reference position preset on the color filter substrate 10. The reference position S2 (see FIG. 4) of the photomask 5 held on the mask stage 6 is positioned with respect to S1 (see FIG. 3).
[0033] 同時に、光源 2が点灯されて光源 2から露光光が放射され、該露光光によってマス クステージ 6に保持されたフォトマスク 5が照射される。そして、フォトマスク 5上に形成 されたマスクパターン 19が搬送手段 27によって図 1に示す矢印 A方向に搬送されて いるカラーフィルタ基板 10上に転写される。これにより、図 3に示すように、カラーフィ ルタ基板 10上には、ブラックマトリクス 18の所定のピクセル 17上にストライプ状の露 光パターン 23が形成されることとなる。  At the same time, the light source 2 is turned on and exposure light is emitted from the light source 2, and the photomask 5 held on the mask stage 6 is irradiated by the exposure light. Then, the mask pattern 19 formed on the photomask 5 is transferred onto the color filter substrate 10 being conveyed in the direction of arrow A shown in FIG. As a result, as shown in FIG. 3, a striped exposure pattern 23 is formed on a predetermined pixel 17 of the black matrix 18 on the color filter substrate 10.
[0034] この場合、光源 2から放射された露光光は、凹面鏡 3で前方に反射され、光源 2の 前方に設けられた凸レンズ 22でその焦点に集光される。集光された露光光は、カラ イドスコープ 15の光源 2側の端部 15aに入射する。そして、このカライドスコープ 15の 長手方向の中心軸に平行な側面 15cで多重反射して混合されてシリンドリカルレン ズ 14側の端部 15bから射出する。 In this case, the exposure light emitted from the light source 2 is reflected forward by the concave mirror 3 and condensed at the focal point by the convex lens 22 provided in front of the light source 2. The condensed exposure light is incident on the light source 2 side end 15 a of the scope scope 15. And this callide scope 15 The light is mixed by multiple reflection at the side surface 15c parallel to the central axis in the longitudinal direction, and emitted from the end 15b on the cylindrical lens 14 side.
[0035] カライドスコープ 15を射出した露光光は、シリンドリカルレンズ 14に入射する。このと き、カライドスコープ 15を射出した露光光のうち、図 1に示すようにシリンドリカルレン ズ 14の面 14a内にてその円柱の中心軸と直交する方向(同図において、左右方向) に放射した光線 Lは、絞られるように内側に屈折されて上記シリンドリカルレンズ 14を 射出する。 The exposure light emitted from the kaleidoscope 15 is incident on the cylindrical lens 14. At this time, of the exposure light emitted from the kaleidoscope 15, as shown in FIG. 1, in the surface 14a of the cylindrical lens 14, the direction perpendicular to the central axis of the cylinder (the left-right direction in the figure) The emitted light beam L is refracted inward so as to be narrowed and exits the cylindrical lens 14.
[0036] 一方、カライドスコープ 15を射出した露光光のうち、図 2に示すようにシリンドリカル レンズ 14の面 14a内にてその円柱の中心軸に沿った方向(同図において、左右方向 )に放射した光線 Lは、放射角度を変えることなくシリンドリカルレンズ 14を射出する。 したがって、図 4に破線で示すように、カライドスコープ 15を射出した断面多角形(同 図にはおいては、円形で示す)の光束 12の露光光は、同図に実線で示すようにシリ ンドリカルレンズ 14によってその円柱の中心軸に平行な軸を長軸とし、該中心軸と直 交する軸を短軸とする扁平な形状(同図においては、楕円で示す)の光束 12に整形 される。  On the other hand, of the exposure light emitted from the kaleidoscope 15, as shown in FIG. 2, in the surface 14a of the cylindrical lens 14 in the direction along the central axis of the cylinder (the left-right direction in the figure). The emitted light beam L exits the cylindrical lens 14 without changing the radiation angle. Therefore, as shown by the broken line in FIG. 4, the exposure light of the light beam 12 having a polygonal cross section (shown as a circle in the figure) emitted from the kaleidoscope 15 is shown as a solid line in the figure. A cylindrical lens 14 shapes the light beam 12 into a flat shape (shown as an ellipse in the figure) with the long axis as the axis parallel to the central axis of the cylinder and the short axis as the axis perpendicular to the central axis. Is done.
[0037] このようにして、光束 12の断面形状が例えば円形力も楕円形に整形された露光光 は、コンデンサレンズ 16に入射する。この場合、断面楕円形の長軸に沿った方向の 光線 L、即ち上記シリンドリカルレンズ 14の円柱の中心軸に沿った方向に放射した光 線 Lは、図 2に示すようにコンデンサレンズ 16によってその光軸に平行な平行光とさ れて射出する。一方、断面楕円形の短軸に沿った方向の光線 Lは、図 1に示すように コンデンサレンズ 16によってさらに絞られてその光軸側に集まるように射出する。  In this way, the exposure light whose sectional shape of the light beam 12 is shaped into, for example, an elliptical circular force is incident on the condenser lens 16. In this case, the light beam L in the direction along the major axis of the elliptical cross section, that is, the light beam L radiated in the direction along the central axis of the cylindrical lens 14 is, as shown in FIG. It is emitted as parallel light parallel to the optical axis. On the other hand, the light beam L in the direction along the minor axis having an elliptical cross section is further focused by the condenser lens 16 as shown in FIG.
[0038] ここで、上記シリンドリカルレンズ 14がその円柱の中心軸をマスクステージ 6に保持 された短冊状のフォトマスク 5の長手方向の中心軸に略合致させて配置されているの で、コンデンサレンズ 16を射出した断面楕円形の露光光は、図 4に示すように、その 長軸を短冊状のフォトマスク 5の長手方向の中心軸に合致させた状態でフォトマスク 5を照射することとなる。この場合、光源 2から放射した露光光は、フォトマスク 5上に 集められるので、フォトマスク 5を照射する露光光のエネルギー密度が向上する。そ の後、断面楕円形の露光光の長軸に沿った方向の光線 Lは、上記フォトマスク 5を垂 直に通過し、カラーフィルタ基板 10上のカラーレジストを垂直に露光する。したがって 、カラーフィルタ基板 10上に形成される露光パターン 23のうち、短冊状のフォトマス ク 5の長手方向に沿った解像力が向上し、図 3に示す矢印 Aと直交する方向の露光 パターン 23の縁部 23a, 23b力 S鮮鋭となる。 [0038] Here, the cylindrical lens 14 is arranged so that the central axis of the cylinder substantially coincides with the central axis in the longitudinal direction of the strip-shaped photomask 5 held by the mask stage 6, so that the condenser lens As shown in FIG. 4, the exposure light having an elliptical cross section emitted from 16 irradiates the photomask 5 with its long axis aligned with the central axis in the longitudinal direction of the strip-shaped photomask 5. . In this case, since the exposure light emitted from the light source 2 is collected on the photomask 5, the energy density of the exposure light that irradiates the photomask 5 is improved. Thereafter, the light beam L in the direction along the long axis of the exposure light having an elliptical cross section hangs down the photomask 5. Passing directly, the color resist on the color filter substrate 10 is exposed vertically. Therefore, among the exposure patterns 23 formed on the color filter substrate 10, the resolving power along the longitudinal direction of the strip-shaped photomask 5 is improved, and the exposure pattern 23 in the direction orthogonal to the arrow A shown in FIG. Edge 23a, 23b force S Sharp.
[0039] 一方、断面楕円形の露光光の短軸に沿った方向の光線 Lは、上記フォトマスク 5を 斜めに通過してフォトマスク 5の下側に回りこみ、カラーフィルタ基板 10上のカラーレ ジストを斜め方向に露光する。したがって、カラーフィルタ基板 10上に形成される露 光パターン 23のうち、短冊状のフォトマスク 5の長手方向と直交する方向の解像力が 低下し、図 3に示す矢印 A方向の露光パターン 23の縁部 23c, 23d力ぼける。しかし 、この場合、上記露光パターン 23は、図 3に示すように矢印 A方向に延びるストライプ 状を有するものであり、露光パターン 23の矢印 A方向の縁部 23c, 23dのぼけは、隣 接する異なる色のカラーフィルタになんら影響を及ぼすものでない。したがって、上 記露光パターン 23の矢印 A方向の縁部 23c, 23dのぼけは許容される。  On the other hand, the light beam L in the direction along the short axis of the exposure light having an elliptical cross section passes obliquely through the photomask 5 and wraps around the lower side of the photomask 5, so that the color layer on the color filter substrate 10 is reflected. Expose the dies diagonally. Therefore, the resolving power in the direction orthogonal to the longitudinal direction of the strip-shaped photomask 5 in the exposure pattern 23 formed on the color filter substrate 10 is reduced, and the edge of the exposure pattern 23 in the direction of arrow A shown in FIG. Part 23c, 23d lose power. However, in this case, the exposure pattern 23 has a stripe shape extending in the direction of arrow A as shown in FIG. 3, and the blurs of the edge portions 23c and 23d in the direction of arrow A of the exposure pattern 23 are adjacent to each other. It has no effect on the color filter of the color. Therefore, blurring of the edge portions 23c and 23d in the direction of arrow A of the exposure pattern 23 is allowed.
[0040] なお、以上の説明においては、カライドスコープ 15から放射する露光光の光束断 面形状が円形の場合について述べた力 これに限られず、カライドスコープ 15の断 面形状を方形状に形成して放射する露光光の光束断面形状を略方形状としてもよい 。また、カライドスコープ 15に替えてライトパイプを使用してもよい。  In the above description, the force described in the case where the light beam cross-sectional shape of the exposure light radiated from the kaleidoscope 15 is circular is not limited to this, and the cross-sectional shape of the kaleidoscope 15 is rectangular. The light beam cross-sectional shape of the exposure light that is formed and emitted may be substantially rectangular. In addition, a light pipe may be used instead of the kaleidoscope 15.
[0041] 図 5は、本発明による露光装置の第 2の実施形態を示す正面図である。この露光装 置は、光源 2とマスクステージ 6との間の光路上に、光束断面形状整形手段として、平 行光線の入射に対して直交 2軸の 1軸方向にのみ屈折作用をして焦点位置で線状 の複数のビームを形成するフライアイレンズ 24を配設したものであり、該フライアイレ ンズ 24とマスクステージ 6との間の光路上に配設したコンデンサレンズ 16とあいまつ て短冊状のフォトマスク 5上に露光光を集めると同時に輝度分布を均一にできるよう になっている。したがって、第 2の実施形態においては、第 1の実施形態において備 えたカライドスコープ 15を省略することができる。  FIG. 5 is a front view showing a second embodiment of the exposure apparatus according to the present invention. This exposure apparatus focuses on the optical path between the light source 2 and the mask stage 6 as a beam cross-sectional shape shaping means by performing a refracting action only in one of the two axes perpendicular to the incidence of the parallel light beam. A fly-eye lens 24 that forms a plurality of linear beams at a position is disposed, and a strip-like lens is provided together with a condenser lens 16 disposed on the optical path between the fly-eye lens 24 and the mask stage 6. The brightness distribution can be made uniform at the same time as the exposure light is collected on the photomask 5. Therefore, in the second embodiment, the kaleidoscope 15 provided in the first embodiment can be omitted.
[0042] 上記フライアイレンズ 24の具体的構成例は、図 6 (a)に示すように、コンデンサレン ズ 16側の端面 24bに微小な凸面状のシリンドリカルレンズ 25aを、図 6 (c)に破線で 示すようにその円柱の中心軸を XY平面における Y軸に平行として X軸方向に例えば 四つ並べて配置した第 1のシリンドリカルレンズアレイ 25を形成し、図 6 (b)に示すよう に光源 2側の端面 24aに微小な凹面状のシリンドリカルレンズ 26aを、図 6 (c)に実線 で示すようにその円柱の中心軸を X軸に平行として Y軸方向に例えば四つ並べて配 置した第 2のシリンドリカルレンズアレイ 26を形成したものである。 [0042] As shown in Fig. 6 (a), a specific configuration example of the fly-eye lens 24 includes a minute convex cylindrical lens 25a on the end surface 24b on the condenser lens 16 side, and Fig. 6 (c). As shown by the broken line, the central axis of the cylinder is parallel to the Y axis in the XY plane. A first cylindrical lens array 25 arranged in four is formed. As shown in the figure, a second cylindrical lens array 26 is formed in which the central axis of the cylinder is parallel to the X axis and, for example, four are arranged in the Y axis direction.
[0043] 次に、 X軸及び Y軸に沿った方向の光線の進路について説明する。フライアイレン ズ 24の光源 2側の端面 24aに入射した露光光の光線 Lのうち、図 6 (c)に示す X軸方 向に放射して第 2のシリンドリカルレンズアレイ 26に入射した光線 Lは、上記第 2のシ リンドリカルレンズアレイ 26で屈折されることなくことなく(実際には、若干外側に広が るように屈折されて)、コンデンサレンズ 16側の端面 24bに形成された第 1のシリンドリ カルレンズアレイ 25に入射する。そして、この光線 Lは、上記第 1のシリンドリカルレン ズアレイ 25によって絞られるように内側に大きく屈折されてコンデンサレンズ 16側の 端面 24bからフライアイレンズ 24を射出する。  Next, the path of the light beam in the direction along the X axis and the Y axis will be described. Of the exposure light beam L incident on the end surface 24a on the light source 2 side of the fly eye lens 24, the light beam L radiating in the X-axis direction and entering the second cylindrical lens array 26 shown in FIG. Without being refracted by the second cylindrical lens array 26 (actually, it is refracted so as to spread slightly outward), the first lens formed on the end surface 24b on the condenser lens 16 side. Is incident on the cylindrical lens array 25. Then, the light beam L is refracted inwardly so as to be narrowed down by the first cylindrical lens array 25 and is emitted from the end surface 24b on the condenser lens 16 side through the fly-eye lens 24.
[0044] 一方、フライアイレンズ 24の光源 2側の端面 24aに入射した露光光の光線 Lのうち、 図 6 (c)に示す Y軸方向に放射して第 2のシリンドリカルレンズアレイ 26に入射した光 線 Lは、上記第 2のシリンドリカルレンズアレイ 26で大きく広がるように屈折されてさら に外側に広がってコンデンサレンズ 16側の端面 24bに形成された第 1のシリンドリカ ルレンズアレイ 25に入射する。そして、この光線 Lは、上記第 1のシリンドリカルレンズ アレイ 25によって屈折されることなく(実際には、若干内側に絞られるように屈折され て)コンデンサレンズ 16側の端面 24bからフライアイレンズ 24を射出する。したがって 、上記フライアイレンズ 24から射出する露光光の光束の断面形状は、同図(c)に示 す Y軸方向を長軸とし、 X軸方向を短軸とする扁平な形状となる。また、上記第 1のシ リンドリカルレンズアレイ 25の各微小なシリンドリカルレンズ 25aを射出した露光光は、 フォトマスク 5上で互いに重ね合わされてフォトマスク 5に照射するので、フォトマスク 5 上の露光光の輝度分布が均一になる。  [0044] On the other hand, out of the exposure light ray L incident on the end surface 24a on the light source 2 side of the fly-eye lens 24, it radiates in the Y-axis direction shown in Fig. 6 (c) and enters the second cylindrical lens array 26. The light beam L is refracted so as to be broadly spread by the second cylindrical lens array 26 and further spreads outward to be incident on the first cylindrical lens array 25 formed on the end surface 24b on the condenser lens 16 side. . The light beam L is not refracted by the first cylindrical lens array 25 (actually, it is refracted so as to be slightly squeezed inward), and the fly-eye lens 24 passes through the end surface 24b on the condenser lens 16 side. Eject. Therefore, the cross-sectional shape of the light beam of the exposure light emitted from the fly-eye lens 24 is a flat shape with the major axis in the Y-axis direction and the minor axis in the X-axis direction shown in FIG. Further, since the exposure light emitted from each of the minute cylindrical lenses 25a of the first cylindrical lens array 25 is superimposed on the photomask 5 to irradiate the photomask 5, the exposure light on the photomask 5 is irradiated. The luminance distribution becomes uniform.
[0045] なお、上記実施形態にお!ヽては、露光装置がフォトマスク 5と被露光体とを近接さ せて露光する近接露光装置である場合について説明したが、本発明はこれに限られ ず、短冊状のフォトマスク 5を使用する如何なる露光装置にも適用することができる。 また、以上の説明においては、被露光体がカラーフィルタ基板 10である場合につい て述べたが、ストライプ状の露光パターン 23が形成されるものであれば、如何なる基 板であってもよい。 Note that although the case where the exposure apparatus is a proximity exposure apparatus that exposes the photomask 5 and the object to be exposed in proximity has been described in the above embodiment, the present invention is not limited to this. However, the present invention can be applied to any exposure apparatus that uses a strip-shaped photomask 5. In the above description, the case where the object to be exposed is the color filter substrate 10 is described. As described above, any substrate may be used as long as the striped exposure pattern 23 is formed.

Claims

請求の範囲 The scope of the claims
[1] 被露光体を上面に載置するステージと、  [1] a stage for placing an object to be exposed on the upper surface;
前記ステージの上方に配設され、該ステージの上面に平行に短冊状のフォトマスク を保持可能としたマスクステージと、  A mask stage disposed above the stage and capable of holding a strip-shaped photomask parallel to the upper surface of the stage;
前記マスクステージに保持されたフォトマスクに対して露光光を放射する光源と、 を備え、前記光源カゝら放射された露光光を前記フォトマスクを介して前記被露光体上 に照射して所定位置に所定の露光パターンを形成する露光装置であって、 前記光源とマスクステージとの間の光路上に、前記光源から放射された露光光の 光束の断面形状を前記短冊状のフォトマスクの形状に合わせて整形する光束断面 形状整形手段を配設したことを特徴とする露光装置。  A light source that emits exposure light to the photomask held on the mask stage, and the exposure light emitted from the light source cover is irradiated onto the object to be exposed through the photomask. An exposure apparatus for forming a predetermined exposure pattern at a position, wherein a cross-sectional shape of a light beam of exposure light emitted from the light source is formed on the optical path between the light source and the mask stage, and the shape of the strip-shaped photomask. An exposure apparatus comprising a light beam cross-sectional shape shaping means for shaping in accordance with the above.
[2] 前記光束断面形状整形手段は、平行光線の入射に対して直交 2軸の 1軸方向に のみ屈折作用をして焦点位置で線状のビームを形成するシリンドリカルレンズである ことを特徴とする請求項 1記載の露光装置。  [2] The light beam cross-sectional shape shaping means is a cylindrical lens that forms a linear beam at the focal position by refracting in only one of the two axes perpendicular to the incidence of parallel rays. The exposure apparatus according to claim 1.
[3] 前記光束断面形状整形手段は、平行光線の入射に対して直交 2軸の 1軸方向に のみ屈折作用をして焦点位置で線状の複数のビームを形成するフライアイレンズで あることを特徴とする請求項 1記載の露光装置。 [3] The beam cross-sectional shape shaping means is a fly-eye lens that forms a plurality of linear beams at a focal position by performing a refracting action only in one axial direction of two axes orthogonal to the incidence of parallel rays. The exposure apparatus according to claim 1, wherein:
[4] 前記光源と光束断面形状整形手段との間の光路上には、前記フォトマスクに対して 照射する露光光の輝度分布を均一にするカライドスコープが配設されたことを特徴と する請求項 1記載の露光装置。 [4] A kaleidoscope is provided on the optical path between the light source and the light beam cross-sectional shape shaping means to make the luminance distribution of the exposure light irradiated to the photomask uniform. The exposure apparatus according to claim 1.
[5] 前記光束断面形状整形手段とマスクステージとの間の光路上には、入射する露光 光を平行光として射出する集光レンズが配設されたことを特徴とする請求項 1記載の 露光装置。 5. The exposure according to claim 1, wherein a condensing lens that emits incident exposure light as parallel light is disposed on an optical path between the beam cross-sectional shape shaping means and the mask stage. apparatus.
[6] 前記ステージは、その上面に載置された被露光体に露光光を照射して露光が行な われているときに、前記被露光体を前記短冊状のフォトマスクの面に平行でその長手 方向と直交する方向に搬送するものであることを特徴とする請求項 1記載の露光装置  [6] The stage is configured so that the object to be exposed is parallel to the surface of the strip-shaped photomask when exposure is performed by irradiating the object to be exposed placed on the upper surface with exposure light. 2. The exposure apparatus according to claim 1, wherein the exposure apparatus transports in a direction orthogonal to the longitudinal direction.
[7] 前記短冊状のフォトマスクは、その長手方向に沿って複数のマスクパターンを一列 に並べて配置したものであることを特徴とする請求項 1記載の露光装置。 7. The exposure apparatus according to claim 1, wherein the strip-shaped photomask has a plurality of mask patterns arranged in a line along a longitudinal direction thereof.
PCT/JP2006/316956 2005-09-09 2006-08-29 Aligner WO2007029561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800329154A CN101258447B (en) 2005-09-09 2006-08-29 Exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-261981 2005-09-09
JP2005261981A JP2007072371A (en) 2005-09-09 2005-09-09 Exposure apparatus

Publications (1)

Publication Number Publication Date
WO2007029561A1 true WO2007029561A1 (en) 2007-03-15

Family

ID=37835682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316956 WO2007029561A1 (en) 2005-09-09 2006-08-29 Aligner

Country Status (5)

Country Link
JP (1) JP2007072371A (en)
KR (1) KR20080059558A (en)
CN (1) CN101258447B (en)
TW (1) TW200710603A (en)
WO (1) WO2007029561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000241A2 (en) * 2007-06-22 2008-12-31 Josef Lindthaler Contact exposure device for a printing screen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI444674B (en) 2008-05-28 2014-07-11 Toppan Printing Co Ltd Process for producing color filter, process for producing substrate having pattern and miniature photomask
JP5355261B2 (en) * 2009-07-07 2013-11-27 株式会社日立ハイテクノロジーズ Proximity exposure apparatus, exposure light forming method for proximity exposure apparatus, and display panel substrate manufacturing method
JP2013195442A (en) * 2012-03-15 2013-09-30 V Technology Co Ltd Exposure device, exposure method, and manufacturing method of exposed material
CN105022234B (en) * 2015-07-14 2017-05-17 浙江大学 Cross-scale microstructure fabrication method based on multiple exposures
CN105137722A (en) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 Edge exposure device and edge exposure method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636501A (en) * 1986-06-27 1988-01-12 Komatsu Ltd Integrator prism
JPH07249561A (en) * 1994-03-09 1995-09-26 Nikon Corp Illuminating optical device
JPH08304732A (en) * 1995-04-28 1996-11-22 Kowa Co Slit light irradiation optical system
JPH09232226A (en) * 1996-02-22 1997-09-05 Sony Corp Scan type aligner
JPH09274323A (en) * 1996-04-04 1997-10-21 Toppan Printing Co Ltd Pattern exposing method
JPH09281711A (en) * 1996-04-18 1997-10-31 Toppan Printing Co Ltd Pattern exposure method
JP2000114160A (en) * 1998-10-08 2000-04-21 Canon Inc Optical system for circular-arcuate illumination and aligner using the same
JP2001068409A (en) * 1992-11-05 2001-03-16 Nikon Corp Illumination optical device, scanning exposure device, and exposure method
JP2001350271A (en) * 2000-06-06 2001-12-21 Toray Eng Co Ltd Peripheral aligner
JP2003255552A (en) * 2002-03-06 2003-09-10 Nec Corp Laser irradiation device, exposure method using scanning laser beam, and manufacturing method for color filter using scanning laser beam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207204A (en) * 1984-03-30 1985-10-18 市光工業株式会社 Lamp implement for vehicle
JPH08278404A (en) * 1995-04-10 1996-10-22 Toppan Printing Co Ltd Lens sheet and its production
JPH10213743A (en) * 1997-01-28 1998-08-11 Fuitsuto:Kk Optical system for converting aspect ratio and image processor capable of converting aspect ratio
JP2002139696A (en) * 2000-11-01 2002-05-17 Sony Corp Illuminator having beam intensity distribution changing optical system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636501A (en) * 1986-06-27 1988-01-12 Komatsu Ltd Integrator prism
JP2001068409A (en) * 1992-11-05 2001-03-16 Nikon Corp Illumination optical device, scanning exposure device, and exposure method
JPH07249561A (en) * 1994-03-09 1995-09-26 Nikon Corp Illuminating optical device
JPH08304732A (en) * 1995-04-28 1996-11-22 Kowa Co Slit light irradiation optical system
JPH09232226A (en) * 1996-02-22 1997-09-05 Sony Corp Scan type aligner
JPH09274323A (en) * 1996-04-04 1997-10-21 Toppan Printing Co Ltd Pattern exposing method
JPH09281711A (en) * 1996-04-18 1997-10-31 Toppan Printing Co Ltd Pattern exposure method
JP2000114160A (en) * 1998-10-08 2000-04-21 Canon Inc Optical system for circular-arcuate illumination and aligner using the same
JP2001350271A (en) * 2000-06-06 2001-12-21 Toray Eng Co Ltd Peripheral aligner
JP2003255552A (en) * 2002-03-06 2003-09-10 Nec Corp Laser irradiation device, exposure method using scanning laser beam, and manufacturing method for color filter using scanning laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000241A2 (en) * 2007-06-22 2008-12-31 Josef Lindthaler Contact exposure device for a printing screen
WO2009000241A3 (en) * 2007-06-22 2009-02-19 Josef Lindthaler Contact exposure device for a printing screen

Also Published As

Publication number Publication date
CN101258447A (en) 2008-09-03
JP2007072371A (en) 2007-03-22
KR20080059558A (en) 2008-06-30
TW200710603A (en) 2007-03-16
CN101258447B (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5224341B2 (en) Exposure apparatus and photomask
KR100859400B1 (en) Light irradiation apparatus
JPH09190969A (en) Projecting exposure system and manufacture of device using it
WO2007029561A1 (en) Aligner
TWI463270B (en) Laser exposure apparatus
JP5354803B2 (en) Exposure equipment
CN107229190B (en) Exposure device and illumination optical device
US20120212717A1 (en) Exposure apparatus and photo mask
JP2009058666A (en) Exposure apparatus
EP1020739A2 (en) Irradiation device for producing polarized light to optically align a liquid crystal cell element
KR101247491B1 (en) Light irradiation device
TW201407295A (en) Illuminating apparatus, processing apparatus and device manufacturing method
WO2018193913A1 (en) Light irradiation device
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
TWI649632B (en) Exposure device and exposure method
US6532047B1 (en) Irradiation device for polarized light for optical alignment of a liquid crystal cell element
TW201433826A (en) Illumination optical system, exposure device, and method for manufacturing device
JP2004245912A (en) Light irradiation system
KR0165701B1 (en) Illumination system and exposure apparatus using the same
JPH11260705A (en) Exposure apparatus
JP4268813B2 (en) Exposure method and exposure apparatus
JP2009182191A (en) Exposure lighting device
JP3627355B2 (en) Scanning exposure equipment
JP2001332473A5 (en)
WO2020213341A1 (en) Lens unit, and light radiating device provided with lens unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032915.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087007851

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06796936

Country of ref document: EP

Kind code of ref document: A1