JPH09190969A - Projecting exposure system and manufacture of device using it - Google Patents
Projecting exposure system and manufacture of device using itInfo
- Publication number
- JPH09190969A JPH09190969A JP8019384A JP1938496A JPH09190969A JP H09190969 A JPH09190969 A JP H09190969A JP 8019384 A JP8019384 A JP 8019384A JP 1938496 A JP1938496 A JP 1938496A JP H09190969 A JPH09190969 A JP H09190969A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical element
- light
- diaphragm
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70141—Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は投影露光装置及びそ
れを用いたデバイスの製造方法に関し、具体的にはI
C、LSI、磁気ヘッド、液晶パネル等の半導体デバイ
スの製造装置である所謂ステッパーにおいて、被照射面
であるレチクル面上のパターンを適切なる照度分布の光
束で照明し高い解像力が容易に得られるようにしたもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus and a device manufacturing method using the same, and more specifically to I
In a so-called stepper, which is a manufacturing device for semiconductor devices such as C, LSI, magnetic heads, and liquid crystal panels, a pattern on the reticle surface, which is a surface to be illuminated, is illuminated with a light flux having an appropriate illuminance distribution so that high resolution can be easily obtained. It is the one.
【0002】[0002]
【従来の技術】最近の半導体デバイスの製造技術は、電
子回路の高集積化に伴い解像パターン線幅も例えば1μ
m以下となり、光学的な投影露光装置においても従来に
比べてより解像力化されたものが要望されている。解像
力を向上させる手段としては、露光波長を固定して光学
系のNA(開口数)を大きくしていく方法や、露光波長
としてより短い波長の光を用いる方法等がある。この
他、レチクル面上への照明方法を変えることにより、即
ち投影光学系の瞳面上に形成される0次光の光強度分布
(有効光源分布)を変える、所謂、変形照明方法を用い
て解像力を高める方法がある。2. Description of the Related Art In recent semiconductor device manufacturing technology, the resolution pattern line width is, for example, 1 μm as electronic circuits are highly integrated.
Since this is less than or equal to m, there is a demand for an optical projection exposure apparatus having a higher resolution than the conventional one. As a means for improving the resolution, there are a method of fixing the exposure wavelength and increasing the NA (numerical aperture) of the optical system, a method of using light having a shorter wavelength as the exposure wavelength, and the like. In addition, by changing the illumination method on the reticle surface, that is, by changing the light intensity distribution (effective light source distribution) of the 0th order light formed on the pupil surface of the projection optical system, a so-called modified illumination method is used. There are ways to increase the resolution.
【0003】本出願人はこの変形照明方法を用いて、解
像力を高めた露光方法及びそれを用いた投影露光装置
を、特開平4−267515号公報で提案している。The applicant of the present application has proposed, in Japanese Patent Application Laid-Open No. 4-267515, an exposure method in which the resolving power is enhanced by using this modified illumination method and a projection exposure apparatus using the exposure method.
【0004】[0004]
【発明が解決しようとする課題】一般に投影光学系の瞳
面上の有効光源分布(光強度分布)は投影するパターン
像の解像力に大きく影響してくる。この為、現在の半導
体チップ製造用の投影露光装置では各工程毎に最適な方
法でレチクルを照明できる複数の照明モードをもって変
形照明することが提案されている。又、多くの投影露光
装置では、複数の照明モードのうち、ある照明モードA
で照度むらが最小になるように照明系の各要素の位置を
調整している。しかしながら、変形照明方法を用いて照
明モードを照明モードAと異なる照明モードBに変えた
ときは、照明系の各要素が照明モードAと同じでは必ず
しも照度むらが最小とはならなかった。Generally, the effective light source distribution (light intensity distribution) on the pupil plane of the projection optical system greatly affects the resolution of the projected pattern image. For this reason, it has been proposed in the present projection exposure apparatus for manufacturing semiconductor chips to perform modified illumination with a plurality of illumination modes capable of illuminating the reticle by an optimal method for each process. In many projection exposure apparatuses, a certain illumination mode A among a plurality of illumination modes is used.
The position of each element of the illumination system is adjusted so that the uneven illuminance is minimized. However, when the illumination mode is changed to the illumination mode B different from the illumination mode A by using the modified illumination method, the illuminance unevenness is not always the minimum when each element of the illumination system is the same as the illumination mode A.
【0005】この為、照明系の各要素を調整した照明モ
ードAでは照度むらが少なく露光装置の実力が発揮でき
るが、照明モードBでは照度むらが発生して露光装置の
実力を十分発揮することができないという問題点があっ
た。Therefore, in the illumination mode A in which each element of the illumination system is adjusted, the unevenness of illuminance is small and the ability of the exposure apparatus can be exhibited, but in the illumination mode B, the unevenness of illuminance occurs and the ability of the exposure apparatus is sufficiently exhibited. There was a problem that I could not do it.
【0006】本発明は、照明モードを種々と切り替えて
も照度むらが最小となり、レチクル面上の各種のパター
ンをウエハ面上に高い解像力で投影できる投影露光装置
及びそれを用いたデバイスの製造方法の提供を目的とす
る。The present invention provides a projection exposure apparatus capable of projecting various patterns on a reticle surface onto a wafer surface with high resolution and a method of manufacturing a device using the projection exposure apparatus, in which unevenness in illuminance is minimized even when various illumination modes are switched. For the purpose of providing.
【0007】特に、本発明は2次光源形成手段としての
オプティカルインテグレータを含む照明系を用いて被照
射面を照明する際、入射角度によって分光特性を異なる
光学素子を用いることにより、変形照明や通常照明等の
種々な照明モードにおいて、適切なる照度分布で被照射
面を照明することができ、レチクル面上のパターンをウ
エハ面上に高い解像力で容易に露光転写することができ
る投影露光装置及びそれを用いたデバイスの製造方法の
提供を目的とする。In particular, according to the present invention, when illuminating a surface to be illuminated by using an illumination system including an optical integrator as a secondary light source forming means, by using an optical element having a spectral characteristic different depending on an incident angle, modified illumination or normal A projection exposure apparatus capable of illuminating a surface to be illuminated with an appropriate illuminance distribution in various illumination modes such as illumination, and capable of easily exposing and transferring a pattern on a reticle surface onto a wafer surface with high resolution. An object of the present invention is to provide a method for manufacturing a device using.
【0008】[0008]
【課題を解決するための手段】本発明の投影露光装置
は、 (1−1)光入出射面を有し該光入射面で光源からの光
を受け、該光出射面側に2次光源を形成する2次光源形
成手段と、該2次光源からの光を物平面に照射する光照
射手段と、光照射された該物平面上のパターンを像平面
上に投影する投影手段とを有し、該2次光源の近傍に入
射角度により透過率が異なるコーティングを施した光軸
に対してなす角が変化する回動可能な光学素子を設け、
該光学素子を回動させて該物平面上の照度分布を調整し
ていることを特徴としている。A projection exposure apparatus according to the present invention comprises (1-1) a secondary light source having a light entrance / exit surface for receiving light from a light source at the light entrance surface and having a light exit surface side. A secondary light source forming means for forming a light source, a light irradiating means for irradiating the object plane with light from the secondary light source, and a projecting means for projecting the light-irradiated pattern on the object plane onto the image plane. In the vicinity of the secondary light source, a rotatable optical element whose angle formed with respect to the optical axis coated with a coating having different transmittance depending on the incident angle is provided is provided.
The illuminance distribution on the object plane is adjusted by rotating the optical element.
【0009】特に、(1−1−1)前記光学素子に所定
の開口形状の開口絞りを設けた絞り一体型光学素子を複
数個有し、該複数の絞り一体型光学素子の開口絞りの開
口形状は互いに異なっており、このうちの1つの絞り一
体型光学素子を選択して光路中に挿脱可能に装着してい
ること、(1−1−2)前記光学素子は前記開口絞りに
対して回動可能となるように構成していること、(1−
1−3)前記光学素子は平行平面板又は光学楔より構成
されていることを特徴としている。In particular, (1-1-1) a plurality of diaphragm-integrated optical elements in which an aperture diaphragm having a predetermined aperture shape is provided in the optical element, and the aperture diaphragm apertures of the plurality of diaphragm-integrated optical elements are provided. The shapes are different from each other, and one of the diaphragm-integrated optical elements is selected so that it can be inserted into and removed from the optical path, (1-1-2) the optical element with respect to the aperture diaphragm. It is configured to be rotatable by
1-3) It is characterized in that the optical element is constituted by a plane parallel plate or an optical wedge.
【0010】(1−2)光源からの光束を複数の微小レ
ンズを2次元的に配列したオプティカルインテグレータ
に導光し、該オプティカルインテグレータの光出射面か
らの光束を光照射手段により集光して、物平面上のパタ
ーンを照明し、該物平面上のパターンを投影光学系によ
り像平面上に投影する際、該オプティカルインテグレー
タの光出射面の近傍に入射角度により透過率が異なるコ
ーティングを施した光軸に対してなす角が変化する回動
可能な光学素子を設け、該光学素子を回動させて該物平
面上の照度分布を調整していることを特徴としている。(1-2) A light beam from a light source is guided to an optical integrator in which a plurality of microlenses are arranged two-dimensionally, and a light beam from a light emitting surface of the optical integrator is condensed by a light irradiation means. When a pattern on the object plane is illuminated and the pattern on the object plane is projected onto the image plane by the projection optical system, a coating having different transmittance depending on the incident angle is applied in the vicinity of the light emitting surface of the optical integrator. It is characterized in that a rotatable optical element whose angle formed with respect to the optical axis changes is provided and the optical element is rotated to adjust the illuminance distribution on the object plane.
【0011】特に、(1−2−1)前記光学素子に所定
の開口形状の開口絞りを設けた絞り一体型光学素子を複
数個有し、該複数の絞り一体型光学素子の開口絞りの開
口形状は互いに異なっており、このうちの1つの絞り一
体型光学素子を選択して光路中に挿脱可能に装着してい
ること、(1−2−2)前記光学素子は前記開口絞りに
対して回動可能となるように構成しているこ、(1−2
−3)前記光学素子は平行平面板又は光学楔より構成さ
れていることを特徴としている。In particular, (1-2-1) there is provided a plurality of diaphragm-integrated optical elements in which an aperture diaphragm having a predetermined aperture shape is provided in the optical element, and the aperture diaphragm apertures of the plurality of diaphragm-integrated optical elements are provided. The shapes are different from each other, and one of the diaphragm-integrated optical elements is selected so that it can be inserted into and removed from the optical path. (1-2-2) The optical element is different from the aperture diaphragm. It is configured to be rotatable by (1-2
-3) The optical element is characterized by being constituted by a plane-parallel plate or an optical wedge.
【0012】本発明のデバイスの製造方法は、 (2−1)光源からの光束を2次光源を形成する複数の
微小レンズより成るオプティカルインテグレータに導光
し、該オプティカルインテグレータの光出射面からの光
束を光照射手段により集光してレチクル面上のパターン
を照明し、該パターンを投影光学系によりウエハ面上に
投影し露光した後に、該ウエハを現像処理してデバイス
を製造する際、該オプティカルインテグレータの光出射
面の近傍に入射角度により透過率が異なるコーティング
を施した光軸に対してなす角が変化する回動可能な光学
素子を設け、該光学素子を回動させて該物平面上の照度
分布を調整していることを特徴としている。In the device manufacturing method of the present invention, (2-1) a light beam from a light source is guided to an optical integrator composed of a plurality of minute lenses forming a secondary light source, and the light is emitted from the light emitting surface of the optical integrator. When a light flux is condensed by a light irradiation means to illuminate a pattern on a reticle surface, the pattern is projected onto a wafer surface by a projection optical system and exposed, and then the wafer is subjected to a developing treatment to manufacture a device. Provided in the vicinity of the light emitting surface of the optical integrator is a rotatable optical element whose angle is changed with respect to the optical axis coated with a coating having different transmittance depending on the incident angle, and the optical element is rotated to move the object plane. The feature is that the illuminance distribution above is adjusted.
【0013】特に、(2−1−1)前記光学素子は前記
開口絞りに対して回動可能となるように構成しているこ
と、(2−1−2)前記光学素子は平行平面板又は光学
楔より構成されていることを特徴としている。In particular, (2-1-1) the optical element is configured to be rotatable with respect to the aperture stop, and (2-1-2) the optical element is a plane parallel plate or It is characterized by being composed of an optical wedge.
【0014】(2−2)前記光学素子に所定の開口形状
の開口絞りを設けた絞り一体型光学素子を複数個有し、
該複数の絞り一体型光学素子の開口絞りの開口形状は互
いに異なっており、このうちの1つの絞り一体型光学素
子を選択して光路中に挿脱可能に装着していることを特
徴としている。(2-2) A plurality of diaphragm-integrated optical elements in which an aperture diaphragm having a predetermined aperture shape is provided in the optical element,
The aperture shapes of the plurality of diaphragm-integrated optical elements are different from each other, and one of these diaphragm-integrated optical elements is selected and mounted so that it can be inserted into and removed from the optical path. .
【0015】特に、(2−2−1)前記光学素子は前記
開口絞りに対して回動可能となるように構成しているこ
と、(2−2−2)前記光学素子は平行平面板又は光学
楔より構成されていることを特徴としている。In particular, (2-2-1) the optical element is configured to be rotatable with respect to the aperture stop, and (2-2-2) the optical element is a plane parallel plate or It is characterized by being composed of an optical wedge.
【0016】[0016]
【発明の実施の形態】図1は本発明の実施形態1の要部
概略図である。図2は図1の一部分の拡大説明図であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment of the present invention. FIG. 2 is an enlarged explanatory view of a part of FIG.
【0017】図中、2は楕円鏡である。1は光源として
の発光管であり、紫外線及び遠紫外線等を放射する高輝
度の発光部1aを有している。発光部1aは楕円鏡2の
第1焦点2a近傍に配置している。3はコールドミラー
であり、多層膜を備え、発光部1aからの光の内の大部
分の赤外光と可視光を透過させると共に大部分の紫外光
を反射する。楕円鏡2はコールドミラー3を介して第2
焦点4近傍に発光部1aの像(光源像)1bを形成して
いる。In the figure, reference numeral 2 denotes an elliptical mirror. Reference numeral 1 denotes an arc tube as a light source, which has a high-luminance light emitting section 1a that emits ultraviolet rays, far ultraviolet rays, and the like. The light emitting section 1a is disposed near the first focal point 2a of the elliptical mirror 2. Reference numeral 3 denotes a cold mirror, which has a multilayer film and transmits most of infrared light and visible light of the light from the light emitting portion 1a and reflects most of ultraviolet light. The elliptical mirror 2 is connected to the second
An image (light source image) 1b of the light emitting portion 1a is formed near the focal point 4.
【0018】5は光学系であり、コンデンサーレンズや
ズームレンズ(変倍光学系)等から成り、第2焦点4近
傍に形成した発光部像1bをオプティカルインテグレー
タ6の光入射面6aに再結像させている。この時の結像
倍率は光学系5をズームレンズより構成し、それにより
変更可能としている。An optical system 5 is composed of a condenser lens, a zoom lens (variable magnification optical system), etc., and re-images the light emitting portion image 1b formed in the vicinity of the second focal point 4 on the light incident surface 6a of the optical integrator 6. I am letting you. The imaging magnification at this time can be changed by configuring the optical system 5 with a zoom lens.
【0019】尚、光学系5の光路中には必要に応じてプ
リズムを設けて、後述する変形照明に対応してオプティ
カルインテグレータ6の入射面6a上での照度分布を調
整するようにしている。A prism is provided in the optical path of the optical system 5 as needed to adjust the illuminance distribution on the incident surface 6a of the optical integrator 6 in response to modified illumination described later.
【0020】オプティカルインテグレータ6は複数の微
小レンズ6−i(i=1〜N)を光軸と直交する平面に
沿って2次元的に所定のピッチで配列してハエの眼レン
ズを構成しており、その光射出面6b近傍に2次光源を
形成している。The optical integrator 6 forms a fly-eye lens by arranging a plurality of minute lenses 6-i (i = 1 to N) two-dimensionally at a predetermined pitch along a plane orthogonal to the optical axis. A secondary light source is formed near the light exit surface 6b.
【0021】ここでオプティカルインテグレータ6は光
入射面6aを有し、光入射面6aで光源1からの光を受
け、光出射面6bに2次光源を形成する2次光源形成手
段の一要素を構成している。又、楕円鏡2、ミラー3、
そして光学系5は光源1の像を2次光源形成手段の光入
射面に投影する光源像投影手段の一要素を構成してい
る。Here, the optical integrator 6 has a light incident surface 6a, receives light from the light source 1 at the light incident surface 6a, and forms an element of a secondary light source forming means for forming a secondary light source on the light emitting surface 6b. I am configuring. Also, the elliptical mirror 2, the mirror 3,
The optical system 5 constitutes one element of the light source image projection means for projecting the image of the light source 1 on the light incident surface of the secondary light source forming means.
【0022】7は可変開口絞りであり、通常の円形開口
の絞りを含む、図3(A),(B),(C),(D)に
示すような投影レンズ13の瞳面14上の光強度分布を
変化させる各種の絞りから成っている。これにより、所
謂、変形照明を行っている。Reference numeral 7 denotes a variable aperture stop, which includes a normal circular aperture stop, on the pupil plane 14 of the projection lens 13 as shown in FIGS. 3 (A), (B), (C) and (D). It consists of various diaphragms that change the light intensity distribution. In this way, so-called modified illumination is performed.
【0023】図3(A)が示す絞りは通常用いられてい
る開口絞りであり、開口径はσ値(=照明光学系のNA
/投影光学系のNA)が0.5〜0.7程度となる大き
さである。図3(B)が示す絞りはσ値が0.3〜0.
4程度となる開口径をもつ開口絞りであり、位相シフト
マスクを用いたとき等に用いられる。図3(C)が示す
絞りは輪帯照明用開口絞りであり、図3(D)が示す開
口絞りは4重極照明用開口絞りであり、解像力及び焦点
深度を向上させる変形照明を行なう絞りの一種である。The aperture stop shown in FIG. 3A is a commonly used aperture stop, and the aperture diameter is σ value (= NA of illumination optical system).
/ NA of the projection optical system is about 0.5 to 0.7. The diaphragm shown in FIG. 3B has a σ value of 0.3 to 0.
An aperture stop having an aperture diameter of about 4 is used when a phase shift mask is used. The aperture stop shown in FIG. 3C is an aperture stop for annular illumination, and the aperture stop shown in FIG. 3D is an aperture stop for quadrupole illumination, and is an aperture stop that performs modified illumination to improve resolution and depth of focus. Is a kind of.
【0024】本実施形態では、可変開口絞り7として7
a,7b,7c,7dの何れかを選択することにより照
明モードを変えている。この為に、開口絞り7a〜7d
を形成した円盤状ターレットを用いている。In this embodiment, the variable aperture stop 7 is 7
The illumination mode is changed by selecting any one of a, 7b, 7c, and 7d. Therefore, the aperture stops 7a to 7d
The disk-shaped turret is used.
【0025】17は照度むら補正板であり、透明基板上
に入射角度によって透過率又は分光透過率が変わるコー
ティング(多層膜)を施した光学素子より成っている。
照度むら補正板17は光軸Laに対して所定の角度傾け
られるホルダー18によって保持している。又、ホルダ
ー18は光軸Laに対して回転可能となっている。これ
により照度むら補正板17への光束の入射角を種々と変
えて、被照射面上における照度むらを調整している。Reference numeral 17 denotes an illuminance unevenness correcting plate, which is composed of an optical element having a coating (multilayer film) whose transmittance or spectral transmittance changes depending on the incident angle on a transparent substrate.
The uneven illuminance correction plate 17 is held by a holder 18 that is tilted at a predetermined angle with respect to the optical axis La. Further, the holder 18 is rotatable with respect to the optical axis La. Thereby, the incident angle of the light flux on the uneven illuminance correction plate 17 is changed to adjust the uneven illuminance on the surface to be illuminated.
【0026】本実施形態では、図2に示すように、開口
絞り7、照度むら補正板17、そしてホルダー18は一
つのユニット19として構成している。このユニット1
9は絞り付きフィルター交換機構16に簡単に着脱可能
となっており、必要に応じて交換可能である。絞り付き
フィルター交換機構16には複数のユニット19が装着
でき、ユニット19は照明モードに応じて絞り付きフィ
ルター交換機構16の回転によって任意に選択してい
る。本実施形態において、開口絞り7や光学系5、そし
て照度むら補正板17などは2次光源の光強度分布を変
える2次光源調整手段の一要素を構成している。In this embodiment, as shown in FIG. 2, the aperture stop 7, the illuminance unevenness correction plate 17, and the holder 18 are constructed as one unit 19. This unit 1
9 can be easily attached to and detached from the filter exchange mechanism 16 with a diaphragm, and can be exchanged if necessary. A plurality of units 19 can be attached to the filter exchange mechanism 16 with a diaphragm, and the unit 19 is arbitrarily selected by rotating the filter exchange mechanism 16 with a diaphragm according to the illumination mode. In the present embodiment, the aperture stop 7, the optical system 5, the illuminance unevenness correction plate 17 and the like constitute one element of the secondary light source adjusting means for changing the light intensity distribution of the secondary light source.
【0027】8は集光レンズとしてのコンデンサーレン
ズである。9はミラー、10はマスキングブレードであ
る。オプティカルインテグレータ6の光射出面6b近傍
の2次光源から射出した複数の光束は、照度むら補正板
17を通過した後に、集光レンズ8で集光され、ミラー
9で反射し、マスキングブレード10に入射し、該マス
キングブレード10の開口面を均一に照明している。マ
スキングブレード10は、複数の可動の遮光板より成
り、任意の開口形状が形成されるようにしている。Reference numeral 8 is a condenser lens as a condenser lens. Reference numeral 9 is a mirror, and 10 is a masking blade. A plurality of light fluxes emitted from the secondary light source near the light emission surface 6b of the optical integrator 6 pass through the illuminance unevenness correction plate 17, are condensed by the condenser lens 8, are reflected by the mirror 9, and are reflected by the masking blade 10. The light enters and illuminates the opening surface of the masking blade 10 uniformly. The masking blade 10 is composed of a plurality of movable light shielding plates so that an arbitrary opening shape is formed.
【0028】11は結像レンズであり、マスキングブレ
ード10の開口を被照射面としてのレチクル(物平面)
12面上に結像し且つ、レチクル12面上の必要な領域
を均一に照明している。ここで集光レンズ8、ミラー
9、結像レンズ11などは2次光源からの光を物平面に
照射する光照射手段の一要素を構成している。Reference numeral 11 denotes an image forming lens, which is a reticle (object plane) whose opening is an opening of the masking blade 10.
The image is formed on the 12th surface and the necessary area on the 12th surface of the reticle is uniformly illuminated. Here, the condenser lens 8, the mirror 9, the imaging lens 11 and the like constitute one element of a light irradiation unit that irradiates the object plane with light from the secondary light source.
【0029】13はレンズ系より成る投影光学系(投影
手段)であり、レチクル12面上の回路パターンをウエ
ハチャックに載置した像平面であるウエハ(基板)15
面上に縮小投影している。投影光学系は屈折系の他に投
影ミラーなどの反射系を含む反射屈折光学系等により構
成しても良い。14は投影光学系13の瞳面(絞り)で
ある。Reference numeral 13 denotes a projection optical system (projection means) composed of a lens system, which is a wafer (substrate) 15 which is an image plane on which a circuit pattern on the surface of the reticle 12 is placed on a wafer chuck.
The projection is reduced on the surface. The projection optical system may be configured by a catadioptric optical system including a reflective system such as a projection mirror in addition to the refractive system. Reference numeral 14 denotes a pupil plane (diaphragm) of the projection optical system 13.
【0030】本実施形態における光学系では、発光部1
aと第2焦点4とオプティカルインテグレータ6の入射
面6aが略共役関係となっている。又、マスキングブレ
ード10とレチクル12とウエハ15が共役関係となっ
ている。又、開口絞り7と投影光学系13の瞳面14と
が略共役関係となっている。In the optical system of this embodiment, the light emitting section 1
a, the second focal point 4, and the incident surface 6a of the optical integrator 6 have a substantially conjugate relationship. Further, the masking blade 10, the reticle 12, and the wafer 15 are in a conjugate relationship. Further, the aperture stop 7 and the pupil plane 14 of the projection optical system 13 have a substantially conjugate relationship.
【0031】本実施形態では以上のような構成により、
レチクル12面上の回路パターンをウエハ15面上に縮
小投影し、ウエハ15を回路パターン像により露光して
いる。そして所定の現像処理過程を経て半導体素子を製
造している。In the present embodiment, with the above configuration,
The circuit pattern on the surface of the reticle 12 is reduced and projected onto the surface of the wafer 15 to expose the wafer 15 with a circuit pattern image. The semiconductor device is manufactured through a predetermined development process.
【0032】次に、本実施形態において開口絞り7の開
口形状を変えて照明モードを変えると共に照度むら補正
板17を回動させることにより、ウエハ15面上の照度
むらを補正する方法について説明する。Next, a method of correcting the illuminance unevenness on the surface of the wafer 15 by changing the aperture shape of the aperture stop 7 to change the illumination mode and rotating the illuminance unevenness correction plate 17 in the present embodiment will be described. .
【0033】図4(A),(B)は本実施形態における
照度むら補正板17で用いている光学薄膜(コーティン
グ膜)の光学特性(分光特性)の説明図である。同図で
は、横軸に波長、縦軸に透過率Tをとっている。FIGS. 4A and 4B are explanatory views of optical characteristics (spectral characteristics) of the optical thin film (coating film) used in the uneven illuminance correction plate 17 in this embodiment. In the figure, the horizontal axis represents wavelength and the vertical axis represents transmittance T.
【0034】同図では、特定の波長に対して高い透過率
を示す光学薄膜の分光特性を示している。図中、λ0 は
露光波長、実線の曲線Paは入射角度θ=0、点線の曲
線Pbは入射角度θ=εの場合の分光透過率を示してい
る。一般に光学薄膜は入射角が大きくなると分光特性が
短波長側にシフトする。光学薄膜が露光波長に対して透
過率が傾きを持つ曲線Paのような特性を持つ場合、入
射角度が0度でなくなると分光特性が短波長側にシフト
して曲線Pbの状態になる。このとき露光光は、照度む
ら補正板への入射角度の違いによって透過率の差がΔT
となる。In the figure, the spectral characteristics of the optical thin film showing a high transmittance for a specific wavelength are shown. In the figure, λ 0 represents the exposure wavelength, the solid curve Pa represents the incident angle θ = 0, and the dotted curve Pb represents the spectral transmittance when the incident angle θ = ε. Generally, the optical thin film shifts its spectral characteristics toward the short wavelength side as the incident angle increases. When the optical thin film has a characteristic such as a curve Pa whose transmittance is inclined with respect to the exposure wavelength, when the incident angle is not 0 degree, the spectral characteristic shifts to the short wavelength side and becomes the state of the curve Pb. At this time, the exposure light has a difference in transmittance of ΔT due to a difference in the incident angle to the uneven illuminance correction plate.
Becomes
【0035】本実施形態では以上のような分光特性を有
する光学薄膜を施した照度むら補正板17を用いて、露
光光に対する透過率を入射角度の変化により敏感に変化
させている。即ち、図5に示すように、照度むら補正板
17を光路中で回転させて光束の入射角度を変えること
により、マスキングブレード10(ウエハ面15)の各
点Qa,Qb,Qcでの照度むらを種々と補正するよう
にしている。In this embodiment, the illuminance unevenness correction plate 17 provided with the optical thin film having the above-mentioned spectral characteristics is used to sensitively change the transmittance for exposure light by changing the incident angle. That is, as shown in FIG. 5, by rotating the uneven illuminance correction plate 17 in the optical path to change the incident angle of the light flux, the uneven illuminance at each point Qa, Qb, Qc of the masking blade 10 (wafer surface 15) is changed. Is corrected variously.
【0036】図5は図1の照度むら補正板17近傍の光
路の拡大説明図を示している。同図においては、フライ
アイレンズ6の射出面6b近傍には絞り7があり、任意
の2次光源形状を形成している。2次光源からの光束は
照度むら補正板17を透過し、コンデンサーレンズ8に
よって収斂し、マスキングブレード(被照射面)10を
照明する。このとき2次光源からの射出角が同じ光線は
被照射面10上の同じ場所を照明する。即ち、射出角α
の光線は点Qa、射出角0の光線は点Qb、射出角γの
光線は点Qcに集光する。従って位置Qaの照度を低く
したいときには、射出角αの光線の透過率を低くしてや
ればよい。FIG. 5 is an enlarged explanatory view of the optical path in the vicinity of the uneven illuminance correction plate 17 of FIG. In the figure, there is a diaphragm 7 near the exit surface 6b of the fly-eye lens 6 to form an arbitrary secondary light source shape. The luminous flux from the secondary light source passes through the uneven illuminance correction plate 17, is converged by the condenser lens 8, and illuminates the masking blade (irradiated surface) 10. At this time, the light rays having the same emission angle from the secondary light source illuminate the same place on the irradiated surface 10. That is, the exit angle α
The ray of light is focused on the point Qa, the ray of exit angle 0 is focused on the point Qb, and the ray of exit angle γ is focused on the point Qc. Therefore, when it is desired to reduce the illuminance at the position Qa, the transmittance of the light ray having the exit angle α may be reduced.
【0037】例えば、図3(C)の絞り7を用いた輪帯
照明のときの照度むらが、図6(A)であったとする。
おおざっぱにみると高い像高では照度が高くなってい
る。よって照度むら補正板17には、図4(A)のよう
な入射角が大きくなるほど照度が落ちる特性の膜をもつ
ものを用いる。照度むら補正板17を光軸に対して垂直
に挿入すると照度むらは図6(C)のようになる。照度
むら補正板17を光軸に垂直に挿入すると光軸に対して
同一像高での照度の補正量はほぼ等しいので、図5の位
置Qa、位置Qcともに照度が低下している。しかし中
心照度に対して位置Qaでは照度が高く、位置Qcでは
照度が低くなっている。For example, it is assumed that the illuminance unevenness at the time of annular illumination using the diaphragm 7 of FIG. 3 (C) is as shown in FIG. 6 (A).
At a high image height, the illuminance is high. Therefore, as the uneven illuminance correction plate 17, one having a film having a characteristic that the illuminance decreases as the incident angle increases as shown in FIG. 4A is used. When the uneven illuminance correction plate 17 is inserted perpendicularly to the optical axis, the uneven illuminance is as shown in FIG. 6C. When the uneven illuminance correction plate 17 is inserted perpendicularly to the optical axis, the correction amounts of the illuminance at the same image height with respect to the optical axis are almost the same, so the illuminance is lowered at both the position Qa and the position Qc in FIG. However, the illuminance is high at the position Qa and low at the position Qc with respect to the central illuminance.
【0038】これは照度むらが像高別照度むら(光軸に
対して等しい照度むら。レンズの反射防止膜の角度特性
などに起因する。)だけでなく、非対称な照度むら(像
面上で傾きを持つ照度むら。レンズ系の偏心などに起因
する。)があるからである。This is because not only the illuminance unevenness varies depending on the image height (the illuminance unevenness with respect to the optical axis is caused by the angular characteristics of the antireflection film of the lens, etc.) but also the asymmetrical illuminance unevenness (on the image plane). This is because there is an uneven illuminance due to inclination, which is caused by the eccentricity of the lens system.
【0039】ここで照度むら補正板17を矢印tの方向
に傾ければQaに集光される光線の照度むら補正板17
に入射する角度は大きくなり、点Qcに集光される光線
の照度むら補正板17に入射する角度は小さくなる。す
ると点Qaに集光する光線の透過率は小さくなり、点Q
cに集光する光線の透過率は大きくなり、相対的に点Q
cの照度は上昇する。これにより照射面10上での照度
むらを、図6(C)のごとくなるように改善している。Here, if the uneven illuminance correction plate 17 is tilted in the direction of the arrow t, the uneven illuminance correction plate 17 of the light beam focused on Qa is obtained.
Is large, and the angle of the light beam focused at the point Qc is small on the uneven illuminance correction plate 17. Then, the transmittance of the light beam condensed at the point Qa becomes small, and the point Qa
The transmittance of the light beam focused on c increases, and the point Q
The illuminance of c increases. Thereby, the uneven illuminance on the irradiation surface 10 is improved so as to be as shown in FIG.
【0040】また図3(B),(D)等の絞りを用いた
別の照明モードにおいて、照射面上での高い像高になる
ほど照度が低くなるような照度むらを示した場合には、
図4(B)のごとく入射角が大きくなるほど透過率が大
きくなるようなコーティングを施した照度むら補正板を
用いることにより、速やかに照度むらを補正するように
している。このように各照明モードに応じた分光特性の
異なる照度むら補正板を用い、かつ照度むら補正板の光
軸に対する角度を制御することにより、照明モードを変
えても照射面上の照度むらを小さく押さえるようにして
いる。Further, in another illumination mode using a diaphragm as shown in FIGS. 3B and 3D, when the illuminance unevenness becomes lower as the image height becomes higher on the irradiation surface,
As shown in FIG. 4B, the uneven illuminance is corrected promptly by using the uneven illuminance correction plate coated such that the transmittance increases as the incident angle increases. In this way, by using the uneven illuminance correction plate with different spectral characteristics according to each illumination mode and controlling the angle of the uneven illuminance correction plate with respect to the optical axis, the uneven illuminance on the irradiation surface can be reduced even if the illumination mode is changed. I try to hold it down.
【0041】本実施形態では、像面上のある断面での照
度むら補正について述べているが、絞りに対して照度む
ら補正板が回転できる構造になっていることにより、あ
らゆる断面での照度むらを補正することができる。また
照度むら補正板はホルダーにより絞りと一体化されてい
るが、絞り付きフィルター交換機構16とは簡単に着脱
可能となっており、別の絞りと別の照度むら補正板を組
み合わせて装着しても良く、これによれば、あらゆる変
形照明に対して均一な照度を得ることができる。In this embodiment, the illuminance unevenness correction at a certain cross section on the image plane is described. However, since the illuminance unevenness correction plate can be rotated with respect to the diaphragm, the illuminance unevenness at any cross section is obtained. Can be corrected. The illuminance unevenness correction plate is integrated with the diaphragm by the holder, but it can be easily attached to and removed from the filter exchange mechanism 16 with a diaphragm, so that another diaphragm and another illuminance unevenness correction plate can be attached in combination. According to this, uniform illuminance can be obtained for all modified illumination.
【0042】次に図7(A)〜(C),図8(A)〜
(C)に照度むら補正板などの他の実施形態を示すが、
便宜上、照度むら補正用の光学薄膜については、図4
(A)のように入射角が大きくなるほど透過率が小さく
なるようなコーティングを施したものを用いるとする。Next, FIGS. 7A to 7C and 8A to
(C) shows another embodiment such as an uneven illuminance correction plate.
For convenience, FIG. 4 shows an optical thin film for correcting uneven illuminance.
As shown in (A), it is assumed that a coating having a smaller transmittance as the incident angle becomes larger is used.
【0043】図7(A)は照度むら補正板17の角度を
容易に制御できるホルダー18の実施形態を示してい
る。このホルダー18は円筒を斜めに切った2つの鏡筒
18a,18bからなり、それぞれの鏡筒18a,18
bが光軸に対して独立に回転できるようになっている。
そして射出側の鏡筒18bの射出面に照度むら補正板1
7を固定している。FIG. 7A shows an embodiment of the holder 18 in which the angle of the uneven illuminance correction plate 17 can be easily controlled. The holder 18 is composed of two lens barrels 18a and 18b which are obtained by cutting a cylinder obliquely.
b can rotate independently of the optical axis.
Then, the uneven illuminance correction plate 1 is provided on the exit surface of the lens barrel 18b on the exit side.
7 is fixed.
【0044】以下に本機構によって像面上の照度が補正
できることを説明する。図7(B)は、この2組の鏡筒
18a,18bを互い違いに構成して、絞り面の照射面
側に設置した概略図である。このときの照度分布が図6
(B)のごとく照射面Qaの照度が相対的に高いとす
る。このとき本実施形態の射出面側の鏡筒18bを18
0度回転させて(図7(C))、照度むら補正板17を
光軸に対して傾けて、これにより照射面10上の照度む
らを補正している。It will be described below that the illuminance on the image plane can be corrected by this mechanism. FIG. 7B is a schematic view in which the two sets of lens barrels 18a and 18b are alternately arranged and installed on the irradiation surface side of the diaphragm surface. The illuminance distribution at this time is shown in FIG.
It is assumed that the illuminance on the irradiation surface Qa is relatively high as in (B). At this time, the lens barrel 18b on the exit surface side of the present embodiment is
The illuminance unevenness correction plate 17 is rotated by 0 degree (FIG. 7C) and is tilted with respect to the optical axis, whereby the illuminance unevenness on the irradiation surface 10 is corrected.
【0045】図8(A)は角度制御機構17を照度むら
補正板そのものに持たせる他の実施形態を示している。
本実施形態では、図8(A)のごとく照度むら補正板1
7が同じ斜角の2枚の光学楔17a,17bより構成し
ている。そして光学楔17a,17bが光軸に対してそ
れぞれ独立に回転できるようになっている。本実施形態
では照度むら補正用の光学薄膜は2つの光学楔17a,
17bのそれぞれ向かい合う2面に施されている。以下
に本機構によって像面上の照度が補正できることを説明
する。FIG. 8 (A) shows another embodiment in which the illuminance unevenness correcting plate itself has the angle control mechanism 17.
In the present embodiment, the illuminance unevenness correction plate 1 as shown in FIG.
Reference numeral 7 is composed of two optical wedges 17a and 17b having the same oblique angle. The optical wedges 17a and 17b can rotate independently of the optical axis. In this embodiment, the optical thin film for illuminance unevenness correction has two optical wedges 17a,
17b is provided on each of two opposite surfaces. It will be described below that the illuminance on the image plane can be corrected by this mechanism.
【0046】図8(B)はこの2組の光学楔17a,1
7bを厚い部分と薄い部分が向き合うように構成して絞
り面の照射面側に設置した概略図である。このときの照
度分布が図6(B)のごとく照射面Qaの照度が相対的
に高いとする。このとき本実施形態の入射側の光学楔1
7aを180度回転させる(図8(C))と点Qaに集
光する光線の1つ目の光学楔17aを射出する際の透過
率が図8(B)の状態より高くなり、点Qcに集光する
光線の1つ目の光学楔17aを射出する際の透過率が図
8(B)の状態より低くなる。これによって相対的に照
射面上での照度むらを補正している。FIG. 8B shows the two sets of optical wedges 17a, 1a.
FIG. 7 is a schematic view in which 7b is configured such that a thick portion and a thin portion face each other and is installed on the irradiation surface side of the diaphragm surface. It is assumed that the illuminance distribution at this time is relatively high on the irradiation surface Qa as shown in FIG. 6B. At this time, the optical wedge 1 on the incident side of the present embodiment
When 7a is rotated 180 degrees (FIG. 8 (C)), the transmittance of the light beam condensed at the point Qa at the time of exiting the first optical wedge 17a becomes higher than that in the state of FIG. 8 (B), and the point Qc The transmittance at the time of exiting the first optical wedge 17a of the light beam converged on is lower than that in the state of FIG. 8 (B). This relatively corrects the illuminance unevenness on the irradiation surface.
【0047】尚、以上の各実施形態においては水銀ラン
プを光源とする投影露光装置の例を示したが、レーザー
光源を用いる場合にも照度むらを同様に補正することが
できる。In each of the above embodiments, an example of a projection exposure apparatus using a mercury lamp as a light source is shown. However, even when a laser light source is used, uneven illuminance can be similarly corrected.
【0048】次に上記説明した投影露光装置を利用した
半導体デバイスの製造方法の実施形態を説明する。Next, an embodiment of a method of manufacturing a semiconductor device using the above-described projection exposure apparatus will be described.
【0049】図9は半導体デバイス(ICやLSI等の
半導体チップ、或いは液晶パネルやCCD等)の製造の
フローを示す。FIG. 9 shows a flow of manufacturing a semiconductor device (semiconductor chip such as IC or LSI, or liquid crystal panel, CCD or the like).
【0050】ステップ1(回路設計)では半導体デバイ
スの回路設計を行なう。ステップ2(マスク製作)では
設計した回路パターンを形成したマスクを製作する。In step 1 (circuit design), a circuit of a semiconductor device is designed. Step 2 is a process for making a mask on the basis of the circuit pattern design.
【0051】一方、ステップ3(ウエハ製造)ではシリ
コン等の材料を用いてウエハを製造する。ステップ4
(ウエハプロセス)は前工程と呼ばれ、前記用意したマ
スクとウエハを用いてリソグラフィ技術によってウエハ
上に実際の回路を形成する。On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4
The (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer.
【0052】次のステップ5(組立)は後工程と呼ば
れ、ステップ4によって作製されたウエハを用いて半導
体チップ化する工程であり、アッセンブリ工程(ダイシ
ング、ボンディング)、パッケージング工程(チップ封
入)等の工程を含む。The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and includes an assembly process (dicing and bonding) and a packaging process (chip encapsulation). And the like.
【0053】ステップ6(検査)ではステップ5で作製
された半導体デバイスの動作確認テスト、耐久性テスト
等の検査を行なう。こうした工程を経て半導体デバイス
が完成し、これが出荷(ステップ7)される。In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).
【0054】図10は上記ウエハプロセスの詳細なフロ
ーを示す。ステップ11(酸化)ではウエハの表面を酸
化させる。ステップ12(CVD)ではウエハ表面に絶
縁膜を形成する。FIG. 10 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface.
【0055】ステップ13(電極形成)ではウエハ上に
電極を蒸着によって形成する。ステップ14(イオン打
込み)ではウエハにイオンを打ち込む。ステップ15
(レジスト処理)ではウエハに感光剤を塗布する。ステ
ップ16(露光)では前記説明した露光装置によってマ
スクの回路パターンをウエハに焼付露光する。In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. Step 15
In (resist processing), a photosensitive agent is applied to the wafer. Step 16 (exposure) uses the above-described exposure apparatus to print and expose the circuit pattern of the mask onto the wafer.
【0056】ステップ17(現像)では露光したウエハ
を現像する。ステップ18(エッチング)では現像した
レジスト以外の部分を削り取る。ステップ19(レジス
ト剥離)ではエッチングがすんで不要となったレジスト
を取り除く。これらのステップを繰り返し行なうことに
よってウエハ上に多重に回路パターンが形成される。In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist are scraped off. In step 19 (resist stripping), the resist that has become unnecessary after the etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
【0057】本実施形態の製造方法を用いれば、従来は
製造が難しかった高集積度の半導体デバイスを容易に製
造することができる。By using the manufacturing method of the present embodiment, it is possible to easily manufacture a highly integrated semiconductor device which has been conventionally difficult to manufacture.
【0058】[0058]
【発明の効果】本発明によれば、以上のように各要素を
設定することにより、照明モードを種々と切り替えても
照度むらが最小となり、レチクル面上の各種のパターン
をウエハ面上に高い解像力で投影できる投影露光装置及
びそれを用いたデバイスの製造方法を達成することがで
きる。According to the present invention, by setting each element as described above, the illuminance unevenness is minimized even when the illumination mode is switched variously, and various patterns on the reticle surface are high on the wafer surface. A projection exposure apparatus capable of projecting with a resolving power and a device manufacturing method using the same can be achieved.
【0059】又、本発明によれば以上のように、2次光
源形成手段としてのオプティカルインテグレータを含む
照明系を用いて被照射面を照明する際、入射角度によっ
て分光特性を異なる光学素子を用いることにより、変形
照明や通常照明等の種々な照明モードにおいて、適切な
る照度分布で被照射面を照明することができ、レチクル
面上のパターンをウエハ面上に高い解像力で容易に露光
転写することができる投影露光装置及びそれを用いたデ
バイスの製造方法を達成することができる。Further, according to the present invention, as described above, when the illuminated surface is illuminated by using the illumination system including the optical integrator as the secondary light source forming means, the optical element having the spectral characteristic different depending on the incident angle is used. In this way, the illuminated surface can be illuminated with an appropriate illuminance distribution in various illumination modes such as modified illumination and normal illumination, and the pattern on the reticle surface can be easily exposed and transferred onto the wafer surface with high resolution. It is possible to achieve a projection exposure apparatus and a device manufacturing method using the same.
【図1】 本発明の実施形態1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.
【図2】 図1の一部分の拡大斜視図FIG. 2 is an enlarged perspective view of a part of FIG.
【図3】 図1の一部分の説明図FIG. 3 is an explanatory view of a part of FIG. 1;
【図4】 図1の光学素子の分光特性の説明図4 is an explanatory diagram of spectral characteristics of the optical element of FIG.
【図5】 図1の一部分の拡大説明図FIG. 5 is an enlarged explanatory view of a part of FIG. 1;
【図6】 図1の被照射面の照度むらの説明図FIG. 6 is an explanatory diagram of illuminance unevenness on the illuminated surface of FIG.
【図7】 図1の光学素子の駆動方法の説明図FIG. 7 is an explanatory diagram of a driving method of the optical element of FIG.
【図8】 図1の光学素子の駆動方法の説明図FIG. 8 is an explanatory diagram of a driving method of the optical element of FIG.
【図9】 本発明に係るデバイスの製造方法のフローチ
ャートFIG. 9 is a flowchart of a device manufacturing method according to the present invention.
【図10】 本発明に係るデバイスの製造方法のフロー
チャートFIG. 10 is a flowchart of a device manufacturing method according to the present invention.
1 水銀ランプ等の紫外線源 1a 発光部 2 楕円ミラー 3 コールドミラー 4 第2焦点 5,8,11 コンデンサーレンズ 6 オプティカルインテグレータ(ハエの目レンズ) 6a ハエの目レンズレンズ入射部 6b ハエの目レンズレンズ射出部 7 絞り 9 反射ミラー 10 マスキングブレード 12 レチクル 13 投影レンズ 14 投影レンズ瞳 15 ウエハ 16 絞り付きフィルター交換機構 17 照度むら補正板(光学素子) 18 ホルダー 1 UV light source such as mercury lamp 1a Light emitting part 2 Elliptical mirror 3 Cold mirror 4 Second focal point 5,8,11 Condenser lens 6 Optical integrator (fly's eye lens) 6a Fly's eye lens Lens entrance part 6b Fly's eye lens lens Ejection unit 7 Aperture 9 Reflective mirror 10 Masking blade 12 Reticle 13 Projection lens 14 Projection lens pupil 15 Wafer 16 Filter exchange mechanism with aperture 17 Illuminance unevenness correction plate (optical element) 18 Holder
Claims (16)
の光を受け、該光出射面側に2次光源を形成する2次光
源形成手段と、該2次光源からの光を物平面に照射する
光照射手段と、光照射された該物平面上のパターンを像
平面上に投影する投影手段とを有し、該2次光源の近傍
に入射角度により透過率が異なるコーティングを施した
光軸に対してなす角が変化する回動可能な光学素子を設
け、該光学素子を回動させて該物平面上の照度分布を調
整していることを特徴とする投影露光装置。1. A secondary light source forming means for forming a secondary light source on the light exit surface side, the secondary light source forming means having a light incident / exit surface and receiving light from the light source at the light entrance surface, and light from the secondary light source. Having a light irradiating means for irradiating the object plane to the object plane and a projecting means for projecting the light-irradiated pattern on the object plane onto the image plane, and a coating having different transmittance depending on the incident angle in the vicinity of the secondary light source. The projection exposure apparatus is characterized in that a rotatable optical element whose angle formed with respect to the optical axis subjected to the change is provided, and the optical element is rotated to adjust the illuminance distribution on the object plane. .
次元的に配列したオプティカルインテグレータに導光
し、該オプティカルインテグレータの光出射面からの光
束を光照射手段により集光して、物平面上のパターンを
照明し、該物平面上のパターンを投影光学系により像平
面上に投影する際、該オプティカルインテグレータの光
出射面の近傍に入射角度により透過率が異なるコーティ
ングを施した光軸に対してなす角が変化する回動可能な
光学素子を設け、該光学素子を回動させて該物平面上の
照度分布を調整していることを特徴とする投影露光装
置。2. A light beam from a light source is passed through a plurality of minute lenses.
The light is guided to a two-dimensionally arranged optical integrator, the light flux from the light emitting surface of the optical integrator is condensed by the light irradiation means, the pattern on the object plane is illuminated, and the pattern on the object plane is projected. When projecting on the image plane by the system, a rotatable optical element whose angle formed with respect to the optical axis coated with a coating having different transmittance depending on the incident angle is provided near the light emitting surface of the optical integrator, A projection exposure apparatus, wherein the optical element is rotated to adjust an illuminance distribution on the object plane.
りを設けた絞り一体型光学素子を複数個有し、該複数の
絞り一体型光学素子の開口絞りの開口形状は互いに異な
っており、このうちの1つの絞り一体型光学素子を選択
して光路中に挿脱可能に装着していることを特徴とする
請求項1の投影露光装置。3. A plurality of diaphragm-integrated optical elements in which an aperture diaphragm having a predetermined aperture shape is provided in the optical element, and the aperture shapes of the aperture diaphragms of the plurality of diaphragm-integrated optical elements are different from each other. 2. The projection exposure apparatus according to claim 1, wherein one of the diaphragm-integrated optical elements is selected and mounted so that it can be inserted into and removed from the optical path.
りを設けた絞り一体型光学素子を複数個有し、該複数の
絞り一体型光学素子の開口絞りの開口形状は互いに異な
っており、このうちの1つの絞り一体型光学素子を選択
して光路中に挿脱可能に装着していることを特徴とする
請求項2の投影露光装置。4. A plurality of diaphragm-integrated optical elements in which an aperture diaphragm having a predetermined aperture shape is provided in the optical element, and the aperture shapes of the aperture diaphragms of the plurality of diaphragm-integrated optical elements are different from each other, 3. The projection exposure apparatus according to claim 2, wherein one of the diaphragm-integrated optical elements is selected and mounted so that it can be inserted into and removed from the optical path.
動可能となるように構成していることを特徴とする請求
項3の投影露光装置。5. The projection exposure apparatus according to claim 3, wherein the optical element is configured to be rotatable with respect to the aperture stop.
動可能となるように構成していることを特徴とする請求
項4の投影露光装置。6. The projection exposure apparatus according to claim 4, wherein the optical element is configured to be rotatable with respect to the aperture stop.
り構成されていることを特徴とする請求項1の投影露光
装置。7. The projection exposure apparatus according to claim 1, wherein the optical element comprises a plane-parallel plate or an optical wedge.
り構成されていることを特徴とする請求項2の投影露光
装置。8. The projection exposure apparatus according to claim 2, wherein the optical element comprises a plane-parallel plate or an optical wedge.
り構成されていることを特徴とする請求項3の投影露光
装置。9. The projection exposure apparatus according to claim 3, wherein the optical element comprises a plane-parallel plate or an optical wedge.
より構成されていることを特徴とする請求項4の投影露
光装置。10. The projection exposure apparatus according to claim 4, wherein the optical element comprises a plane-parallel plate or an optical wedge.
複数の微小レンズより成るオプティカルインテグレータ
に導光し、該オプティカルインテグレータの光出射面か
らの光束を光照射手段により集光してレチクル面上のパ
ターンを照明し、該パターンを投影光学系によりウエハ
面上に投影し露光した後に、該ウエハを現像処理してデ
バイスを製造する際、該オプティカルインテグレータの
光出射面の近傍に入射角度により透過率が異なるコーテ
ィングを施した光軸に対してなす角が変化する回動可能
な光学素子を設け、該光学素子を回動させて該物平面上
の照度分布を調整していることを特徴とするデバイスの
製造方法。11. A reticle surface in which a light beam from a light source is guided to an optical integrator composed of a plurality of minute lenses forming a secondary light source, and a light beam from a light emission surface of the optical integrator is condensed by a light irradiation means. When the above pattern is illuminated, the pattern is projected onto the wafer surface by a projection optical system and exposed, and then the wafer is developed to manufacture a device, when the device is manufactured by the incident angle near the light emitting surface of the optical integrator. It is characterized in that a rotatable optical element whose angle formed with respect to the optical axis that is coated with different transmittance is changed and the optical element is rotated to adjust the illuminance distribution on the object plane. Manufacturing method of device.
回動可能となるように構成していることを特徴とする請
求項11のデバイスの製造方法。12. The method of manufacturing a device according to claim 11, wherein the optical element is configured to be rotatable with respect to the aperture stop.
より構成されていることを特徴とする請求項11のデバ
イスの製造方法。13. The method of manufacturing a device according to claim 11, wherein the optical element comprises a plane-parallel plate or an optical wedge.
絞りを設けた絞り一体型光学素子を複数個有し、該複数
の絞り一体型光学素子の開口絞りの開口形状は互いに異
なっており、このうちの1つの絞り一体型光学素子を選
択して光路中に挿脱可能に装着していることを特徴とす
る請求項11のデバイスの製造方法。14. A plurality of diaphragm-integrated optical elements in which an aperture diaphragm having a predetermined aperture shape is provided in the optical element, and the aperture shapes of the aperture diaphragms of the plurality of diaphragm-integrated optical elements are different from each other, 12. The method for manufacturing a device according to claim 11, wherein one of the diaphragm-integrated optical elements is selected and mounted so that it can be inserted into and removed from the optical path.
回動可能となるように構成していることを特徴とする請
求項14のデバイスの製造方法。15. The method of manufacturing a device according to claim 14, wherein the optical element is configured to be rotatable with respect to the aperture stop.
より構成されていることを特徴とする請求項14のデバ
イスの製造方法。16. The method of manufacturing a device according to claim 14, wherein the optical element is constituted by a plane-parallel plate or an optical wedge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01938496A JP3232473B2 (en) | 1996-01-10 | 1996-01-10 | Projection exposure apparatus and device manufacturing method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01938496A JP3232473B2 (en) | 1996-01-10 | 1996-01-10 | Projection exposure apparatus and device manufacturing method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09190969A true JPH09190969A (en) | 1997-07-22 |
JP3232473B2 JP3232473B2 (en) | 2001-11-26 |
Family
ID=11997813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01938496A Expired - Fee Related JP3232473B2 (en) | 1996-01-10 | 1996-01-10 | Projection exposure apparatus and device manufacturing method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3232473B2 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127418A (en) * | 1995-10-27 | 1997-05-16 | Nikon Corp | Illumination optical system |
US6285442B1 (en) | 1998-04-30 | 2001-09-04 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method using the exposure apparatus |
US6333777B1 (en) | 1997-07-18 | 2001-12-25 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method |
EP1186956A2 (en) * | 2000-09-02 | 2002-03-13 | Carl Zeiss | Projection exposure apparatus |
WO2003023832A1 (en) * | 2001-09-07 | 2003-03-20 | Nikon Corporation | Exposure method and system, and device production method |
EP1336898A2 (en) * | 2002-02-13 | 2003-08-20 | Canon Kabushiki Kaisha | Exposure apparatus and method, and device fabricating method using the same |
US6665052B2 (en) | 1998-01-30 | 2003-12-16 | Canon Kabushiki Kaisha | Illumination optical system and projection exposure apparatus |
US6768546B2 (en) | 1998-04-30 | 2004-07-27 | Canon Kabushiki Kaisha | Projection exposure apparatus and device manufacturing method using the same |
KR100470953B1 (en) * | 1996-06-28 | 2005-06-17 | 가부시키가이샤 니콘 | Reflective refraction optical system and its adjustment method |
WO2006018972A1 (en) * | 2004-08-17 | 2006-02-23 | Nikon Corporation | Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method |
JP2006267566A (en) * | 2005-03-24 | 2006-10-05 | Victor Co Of Japan Ltd | Projection type picture display device |
US7619716B2 (en) | 2005-12-08 | 2009-11-17 | Canon Kabushiki Kaisha | Exposure method |
WO2009150871A1 (en) * | 2008-06-12 | 2009-12-17 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
WO2010032585A1 (en) * | 2008-09-17 | 2010-03-25 | 株式会社ニコン | Illumination optical system, photolithography apparatus and method for manufacturing device |
JP2010511298A (en) * | 2006-12-01 | 2010-04-08 | カール・ツァイス・エスエムティー・アーゲー | Optical system with interchangeable and operable correction arrangement for reducing image aberrations |
WO2010073795A1 (en) * | 2008-12-24 | 2010-07-01 | 株式会社 ニコン | Illumination optical system, exposure apparatus, and device manufacturing method |
WO2010073794A1 (en) * | 2008-12-24 | 2010-07-01 | 株式会社 ニコン | Illumination optical system, exposure apparatus, and device manufacturing method |
JP2010157650A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, exposure apparatus, and method of manufacturing device |
JP2010157649A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, aligner, and device manufacturing method |
JP2010232688A (en) * | 2010-07-08 | 2010-10-14 | Nikon Corp | Method of adjusting lighting optical device, exposure device, and exposure method |
JP2011040618A (en) * | 2009-08-12 | 2011-02-24 | Nikon Corp | Diffraction optical element, illumination optical system, exposure apparatus, method of manufacturing device, and method of designing diffraction optical element |
US8077288B2 (en) | 2005-12-08 | 2011-12-13 | Canon Kabushiki Kaisha | Exposure apparatus |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US8605253B2 (en) | 2006-07-03 | 2013-12-10 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
CN107272347A (en) * | 2016-03-31 | 2017-10-20 | 佳能株式会社 | Irradiation unit, Optical devices, imprinting apparatus, the manufacture method of projection arrangement and article |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
JP2020122929A (en) * | 2019-01-31 | 2020-08-13 | キヤノン株式会社 | Illumination optical system, exposure device and manufacturing method of article |
-
1996
- 1996-01-10 JP JP01938496A patent/JP3232473B2/en not_active Expired - Fee Related
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127418A (en) * | 1995-10-27 | 1997-05-16 | Nikon Corp | Illumination optical system |
KR100470953B1 (en) * | 1996-06-28 | 2005-06-17 | 가부시키가이샤 니콘 | Reflective refraction optical system and its adjustment method |
US6333777B1 (en) | 1997-07-18 | 2001-12-25 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method |
US6665052B2 (en) | 1998-01-30 | 2003-12-16 | Canon Kabushiki Kaisha | Illumination optical system and projection exposure apparatus |
US6285442B1 (en) | 1998-04-30 | 2001-09-04 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method using the exposure apparatus |
US6768546B2 (en) | 1998-04-30 | 2004-07-27 | Canon Kabushiki Kaisha | Projection exposure apparatus and device manufacturing method using the same |
EP1186956A2 (en) * | 2000-09-02 | 2002-03-13 | Carl Zeiss | Projection exposure apparatus |
JP2002093700A (en) * | 2000-09-02 | 2002-03-29 | Carl Zeiss:Fa | Projection aligner |
EP1186956B1 (en) * | 2000-09-02 | 2011-10-05 | Carl Zeiss SMT GmbH | Projection exposure apparatus |
WO2003023832A1 (en) * | 2001-09-07 | 2003-03-20 | Nikon Corporation | Exposure method and system, and device production method |
EP1336898A2 (en) * | 2002-02-13 | 2003-08-20 | Canon Kabushiki Kaisha | Exposure apparatus and method, and device fabricating method using the same |
EP1336898A3 (en) * | 2002-02-13 | 2009-07-01 | Canon Kabushiki Kaisha | Exposure apparatus and method, and device fabricating method using the same |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
JP2006059834A (en) * | 2004-08-17 | 2006-03-02 | Nikon Corp | Illumination optical device, regulating method of illumination optical device, exposure device and exposure method |
WO2006018972A1 (en) * | 2004-08-17 | 2006-02-23 | Nikon Corporation | Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method |
JP4599936B2 (en) * | 2004-08-17 | 2010-12-15 | 株式会社ニコン | Illumination optical apparatus, adjustment method of illumination optical apparatus, exposure apparatus, and exposure method |
US9235133B2 (en) | 2004-08-17 | 2016-01-12 | Nikon Corporation | Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method |
JP2006267566A (en) * | 2005-03-24 | 2006-10-05 | Victor Co Of Japan Ltd | Projection type picture display device |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US7619716B2 (en) | 2005-12-08 | 2009-11-17 | Canon Kabushiki Kaisha | Exposure method |
US8077288B2 (en) | 2005-12-08 | 2011-12-13 | Canon Kabushiki Kaisha | Exposure apparatus |
US10042265B2 (en) | 2006-07-03 | 2018-08-07 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
US8605253B2 (en) | 2006-07-03 | 2013-12-10 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
US9494868B2 (en) | 2006-07-03 | 2016-11-15 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
US8659745B2 (en) | 2006-12-01 | 2014-02-25 | Carl Zeiss Smt Gmbh | Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations |
JP2010511298A (en) * | 2006-12-01 | 2010-04-08 | カール・ツァイス・エスエムティー・アーゲー | Optical system with interchangeable and operable correction arrangement for reducing image aberrations |
US8542346B2 (en) | 2006-12-01 | 2013-09-24 | Carl Zeiss Smt Gmbh | Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
WO2009150871A1 (en) * | 2008-06-12 | 2009-12-17 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
TWI480705B (en) * | 2008-09-17 | 2015-04-11 | 尼康股份有限公司 | Illumination optical system, exposure apparatus, and device manufacturing method |
WO2010032585A1 (en) * | 2008-09-17 | 2010-03-25 | 株式会社ニコン | Illumination optical system, photolithography apparatus and method for manufacturing device |
WO2010073794A1 (en) * | 2008-12-24 | 2010-07-01 | 株式会社 ニコン | Illumination optical system, exposure apparatus, and device manufacturing method |
WO2010073795A1 (en) * | 2008-12-24 | 2010-07-01 | 株式会社 ニコン | Illumination optical system, exposure apparatus, and device manufacturing method |
US8451430B2 (en) | 2008-12-24 | 2013-05-28 | Nikon Corporation | Illumination optical system, exposure apparatus, and device manufacturing method |
US8947635B2 (en) | 2008-12-24 | 2015-02-03 | Nikon Corporation | Illumination optical system, exposure apparatus, and device manufacturing method |
JP2010157650A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, exposure apparatus, and method of manufacturing device |
JP2010157649A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, aligner, and device manufacturing method |
JP2011040618A (en) * | 2009-08-12 | 2011-02-24 | Nikon Corp | Diffraction optical element, illumination optical system, exposure apparatus, method of manufacturing device, and method of designing diffraction optical element |
JP2010232688A (en) * | 2010-07-08 | 2010-10-14 | Nikon Corp | Method of adjusting lighting optical device, exposure device, and exposure method |
CN107272347A (en) * | 2016-03-31 | 2017-10-20 | 佳能株式会社 | Irradiation unit, Optical devices, imprinting apparatus, the manufacture method of projection arrangement and article |
CN107272347B (en) * | 2016-03-31 | 2020-09-22 | 佳能株式会社 | Irradiation device, optical device, imprint device, projection device, and method for manufacturing article |
JP2020122929A (en) * | 2019-01-31 | 2020-08-13 | キヤノン株式会社 | Illumination optical system, exposure device and manufacturing method of article |
Also Published As
Publication number | Publication date |
---|---|
JP3232473B2 (en) | 2001-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3232473B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3259657B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3275575B2 (en) | Projection exposure apparatus and device manufacturing method using the projection exposure apparatus | |
US7126757B2 (en) | Illumination apparatus, exposure apparatus using the same, and device fabricating method | |
JP3057998B2 (en) | Illumination device and projection exposure apparatus using the same | |
JP3413160B2 (en) | Illumination apparatus and scanning exposure apparatus using the same | |
JP2002359176A (en) | Luminaire, illumination control method, aligner, device and manufacturing method thereof | |
JPWO2006085626A1 (en) | Exposure method and apparatus, and device manufacturing method | |
JP3817365B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP2002075824A (en) | Lighting apparatus using plurality of light sources, lighting control device and method and exposure system | |
KR19990083636A (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3200244B2 (en) | Scanning exposure equipment | |
US5574492A (en) | Imaging method and semiconductor device manufacturing method using the same | |
JP3599648B2 (en) | Illumination apparatus, projection exposure apparatus, and device manufacturing method using the same | |
JP2004055856A (en) | Lighting device, manufacturing method for exposure device and for device utilizing the same | |
JP3008744B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
JP3507459B2 (en) | Illumination apparatus, exposure apparatus, and device manufacturing method | |
JP4545854B2 (en) | Projection exposure equipment | |
JP3571935B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP2000114164A (en) | Scanning projection aligner and manufacture of device using the same | |
JPH0936026A (en) | Projection aligner and manufacturing method of semiconductor device using the same apparatus | |
JP3236193B2 (en) | Illumination apparatus, exposure apparatus, and device manufacturing method | |
JP2006019510A (en) | Aligner and fabrication process of microdevice | |
JP3376043B2 (en) | Illumination device and projection exposure apparatus using the same | |
JP3563888B2 (en) | Illumination apparatus and projection exposure apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070921 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080921 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090921 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090921 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110921 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110921 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |