JP3571935B2 - Projection exposure apparatus and device manufacturing method using the same - Google Patents

Projection exposure apparatus and device manufacturing method using the same Download PDF

Info

Publication number
JP3571935B2
JP3571935B2 JP30329798A JP30329798A JP3571935B2 JP 3571935 B2 JP3571935 B2 JP 3571935B2 JP 30329798 A JP30329798 A JP 30329798A JP 30329798 A JP30329798 A JP 30329798A JP 3571935 B2 JP3571935 B2 JP 3571935B2
Authority
JP
Japan
Prior art keywords
light
light beam
optical system
exposure apparatus
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30329798A
Other languages
Japanese (ja)
Other versions
JP2000114163A (en
Inventor
聡 溝内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30329798A priority Critical patent/JP3571935B2/en
Publication of JP2000114163A publication Critical patent/JP2000114163A/en
Application granted granted Critical
Publication of JP3571935B2 publication Critical patent/JP3571935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は投影露光装置及びそれを用いたデバイスの製造方法に関し、具体的には半導体素子等のデバイスの製造装置において、レチクル面上及びウエハ面上を適切に照明し、高い解像力が容易に得られるようにした例えばステップアンドリピート方式やステップアンドスキャン方式の投影露光装置に好適なものである。
【0002】
【従来の技術】
一般に半導体素子等のデバイス製造用の投影露光装置は高解像力化を図るためにマスク面(レチクル面)やウエハ面における照度ムラの除去が強く要求されている。この要求と、集光効率の向上を図った照明装置を本出願人は例えば特開平1−913号公報において提案している。
【0003】
図26は同公報で提案している照明装置の要部概略図である。図中1は光源で、超高圧水銀ランプ等から成っている。M1は集光手段で楕円ミラー等から成り、該楕円ミラーM1の第1焦点付近に光源1が配置されている。6は光束混合手段で所定形状のオプティカルパイプより成り、該オプティカルパイプ6の入射面6aは楕円ミラーM1の第2焦点付近に配置されている。
【0004】
9は集光レンズ、10は多光束発生手段であるハエの目であり、集光レンズ9はオプティカルパイプ6の出射端6bとハエの目10の入射面10aとが略共役関係となるように設定している。また、その際、出射端6bを入射面10aに所望の倍率で結像するよう集光レンズ9の光学諸定数を定めている。
【0005】
11は照射手段でコンデンサーレンズを含む構成から成り、ハエの目10の出射面10bからの光束を用いてマスクやレチクル面等が設定される被照射面12を照射している。
【0006】
その際、ハエの目10を構成している素子レンズの集光点(後側焦点)を集光手段11の前側焦点に略一値させ、被照射面12と集光手段11の後側焦点とを略一致させるケーラー照明系を構成している。光束混合手段6であるオプティカルパイプは内側面による多重反射を利用して1つの光束から多数の虚又は実の集光点を形成している。
【0007】
図26は照明装置を用いて被照射面12にレチクルを配置し、そのパターンを投影光学系でウエハ面上に投影露光している。
【0008】
【発明が解決しようとする課題】
最近の超LSI等の高集積化を図った半導体素子の製造用の投影露光装置には回路パターンの焼き付けの際に要求される照度分布の均一性とともにウエハ(基板)上で光束のテレセントリック性の高いものが要求されている。
【0009】
一般にこのときの光束のテレセントリック性が崩れてくると解像力が大きく低下してくる。像面(ウエハ面)上での光束のテレセントリック性がずれる原因としては、例えば、
(ア−1) 投影系の製造時に発生する組立誤差による幾何光学的ずれに起因するもの。
【0010】
(ア−2) 投影系の光学素子の誘電体多層膜の透過率の不均一性による光量重心のずれに起因するもの。
【0011】
(ア−3) 照明系の製造時に発生する組立誤差、或いはσの変更や照明モードの変更等の可動部の移動誤差による幾何光学的ずれに起因するもの。
【0012】
(ア−4) 照明系の光学素子の誘電体多層膜の透過率の不均一性による光量重心のずれに起因するもの。
等がある。
【0013】
本発明は前述した原因(ア−1) 〜(ア−4) によって生ずる基板上における光束のテレセントリック性のずれを適切に設定したテレセン調整手段を用いて補正することにより、高解像度のパターンが容易に得られる投影露光装置及びそれを用いたデバイスの製造方法の提供を目的とする。
【0014】
請求項1の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
該テレセン調整手段は、入射面側が凹面で出射面側が凸面の円錐面を持つ光学部材から成り、該多光束発生手段の入射面上での光強度分布を輪帯状に変換すると共に、光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0015】
請求項2の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
該テレセン調整手段は、入射面側が凹面で出射面側が凸面の多角錐面を持つ光学部材から成り、該多光束発生手段の入射面上での光強度分布が強度の強い部分が離散的に存在する様に変換すると共に、光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0016】
請求項の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
該テレセン調整手段は、輪帯状の位相分布を有する回折光学素子を2つ有しており、該多光束発生手段の入射面上での光強度分布を輪帯状に変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0017】
請求項の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
該テレセン調整手段は、回折光学素子を2つ有しており、該回折光学素子は多数の領域に面積分割され、且つ各々の領域は直線状のパターンから形成されており、また各々の領域で光束の回折方向が異なっていて、該多光束発生手段の入射面上での光強度分布を、強度の強い部分が離散的に存在するように変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0018】
請求項の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、入射面側が凹面で出射面側が凸面の円錐面を持つ光学部材を有し、
該光学部材は、前記多光束発生手段の入射面上での光強度分布を輪帯状に変換すると共に、光軸と垂直な面内で移動可能に設けられ、
該光学部材により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0019】
請求項の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、入射面側が凹面で、出射面側が凸面の多角錐面を持つ光学部材を有し、
該光学部材は、前記多光束発生手段の入射面上での光強度分布が強度の強い部分が離散的に存在する様に変換すると共に、光軸と垂直な面内で移動可能に設けられ、
該光学部材により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0020】
請求項の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、輪帯状の位相分布を有する回折光学素子を2つ有しており、
該2つの回折光学素子は、前記多光束発生手段の入射面上での光強度分布を輪帯状に変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられ、
該2つの回折光学素子により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0021】
請求項8の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、回折光学素子を2つ有しており、
該2つの回折光学素子は、多数の領域に面積分割され、且つ各々の領域は直線状のパターンから形成されており、また各々の領域で光束の回折方向が異なっていて、前記多光束発生手段の入射面上での光強度分布を、強度の強い部分が離散的に存在するように変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられ、
該2つの回折光学素子により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0022】
請求項9の発明の投影露光装置は、光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
複数のテレセン調整手段をターレット式に設け、前記光束混合手段と前記多光束発生手段との間の光路中に、該複数のテレセン調整手段のうちの一つを選択して配置することにより、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴としている。
【0023】
請求項10の発明は、請求項9の発明において、前記テレセン調整手段は、複数の傾きの異なる平行平板を有することを特徴としている。
請求項11の発明は、請求項10の発明において、前記テレセン調整手段は、σの変化に対応して、前記複数の平行平板を交換することを特徴としている。
請求項12の発明は、請求項1から4のいずれか1項の発明において、前記基板上でのテレセントリック性を検出する検出器からの結果に基づき前記テレセン調整手段の調整量を自動制御することを特徴としている。
請求項13の発明は、請求項5又は6の発明において、前記基板上でのテレセントリック性を検出する検出器からの結果に基づき前記光学部材の調整量を自動制御することを特徴としている。
請求項14の発明は、請求項7又は8の発明において、前記基板上でのテレセントリック性を検出する検出器からの結果に基づき前記2つの回折光学素子の調整量を自動制御することを特徴としている。
【0024】
請求項15の発明のデバイスの製造方法は、請求項1〜14のいずれか1項記載の投影露光装置を用いてレチクル面上のパターンをウエハ面上に投影し、露光した後に該ウエハを現像処理工程を介してデバイスを製造していることを特徴としている。
【0026】
【発明の実施の形態】
図1は本発明の実施形態1の要部概略図である。同図はLSIやVLSI等の半導体チップやCCD,磁気センサ,液晶素子等のデバイスを製造するステップ&リピート型又はステップ&スキャン型投影露光装置に適用した場合を示している。
【0027】
図1において1はArFエキシマレーザやKrFエキシマレーザ等のレーザ光源である。2は光源1からのコヒーレントなレーザ光束をインコヒーレント化し、ウエハ14でスペックルが生じないようにするためのインコヒーレント化光学系(干渉性低減手段)、3はインコヒーレント化光学系2からの光束を所望のビーム形状に整形するための光束整形光学系(ビーム整形光学系)、4は射出角度保存用の光学素子であり、入射光束の状態にかかわらず、射出角度が一定となる光学作用を有している。
【0028】
5は集光光学系であり、光学素子4からの光束を集光してオプティカルパイプ(光束混合手段)6の入射面6aに導光している。光束混合手段6は集光光学系5からの光束を混合してその射出面6bに均一な照度分布を形成している。
【0029】
7はテレセン調整手段であり、平行平面板より成り、光束混合手段6の出射面6bからの光束の光強度分布を変位させて結像系9に導光して基板14上での光束の(軸上光束の)テレセントリック性を調整している。
【0030】
8は駆動手段であり、テレセン調整手段7の光軸(例えば結像系の光軸)に対する傾きを変えて後述する多光束発生手段10の入射面10a上での光強度分布の重心位置を変位させている。
【0031】
9はズーム光学系(結像系)であり、光束混合手段6からの光束を多光束発生手段10の入射面10aに種々の倍率で投影結像している。
【0032】
多光束発生手段10はハエの目レンズより成り、その射出面10bに複数の2次光源像を形成している。
【0033】
11はコンデンサーレンズ等を含む照射手段であり、多光束発生手段10の各微小レンズからの光束を集光してマスク或いはレチクル等(以下「レチクル」という)の被照射面12を重畳して均一照明している。
【0034】
13は投影光学系であり、射出テレセントリック系より成りレチクル12面上のパターンをウエハ(基板)14面上に縮小投影している。15は検出器であり、入射光束の重心を検出して又は光量分布を検出して基板14面上におけるテレセントリック性を検出している。
【0035】
図1の射出角度保存用の光学素子4は例えば図25(A)に示すようにアパーチャ(絞り)21とレンズ系22から構成している。そして入射光束が例えば光束27(光軸27aa)から光束28(光軸28a)と光軸と直交する方向に微小変動して入射したとしても、それより射出される光束の射出角度29aが一定となる光学性質をもっている。
【0036】
また、射出角度保存用の光学素子4は図25(B)に示すように、複数の微小レンズ23より成るハエの目レンズで構成しても良く、この場合は光束の射出角度29bはハエの目レンズ23の形状により決定される。この場合も入射光束の光軸が微小変動して光束27(光軸27a)又は、光束28が(光軸28a)の状態で入射したとしても、射出される光束の射出角度29bが一定となっている。
【0037】
次に本実施形態において基板14面上でのテレセントリック性がずれる原因について説明する。
【0038】
図2〜図6は本発明に係る投影露光装置において、像面上で主光線が垂直からずれる、所謂テレセントリック性がずれる原因を示した説明図である。
【0039】
図2〜図6では図1の多光束発生手段(ハエの目)10からウエハ(基板)14までの各要素を示している。
【0040】
図2は各要素が1101,1301が理想的な状態で構成された照明系のハエの目10以降と投影系13を示した説明図である。組立誤差もなく、各光学素子に蒸着された誘電体多層膜の透過率の不均一性もなく、基板14上でのテレセントリック性が良好であり、主光線201が基板14に垂直に入射している。
【0041】
図3は投影系13内の光学部材1301が組立誤差等で偏心している場合である。投影系13から出る光束は破線で示す通り偏心して出射している(幾何光学的ずれ)。従って光束重心301は基板14に垂直にならず、傾きを持って入射している。
【0042】
図4は投影系13内に誘電体多層膜の透過率の不均一性の光学要素1302がある場合である。その他の幾何光学的な光束のずれはない。光学要素1302は透過率の悪い要因のモデルを示している。
【0043】
その結果、投影系13から出射される光束は図の破線で示すように、光軸の上部が少なく、下部が多い(光量を破線の数で示した)。従って光量重心401は基板14に垂直にならず傾きを持って入射している。
【0044】
照明系11の光出射側の開口数をNi、投影系13の光入射側の開口数をNpとしたときの比σは
σ=Ni/Np
で表わされる。
【0045】
このときのσ調節を光束混合手段(オプティカルパイプ)6の出射端面6bを略共役に多光束発生手段(ハエの目)10の入射面10aに結像させる結像系9の倍率を変更させることで行う系では、その倍率変更動作(ズーム系)の際の移動レンズの横ズレ(平行偏心)により幾何光学的なずれが生じ、その結果、多光束発生手段10の中心とそこへ入射する光束重心がずれる可能性がある。
【0046】
図5は照射手段11内の光学部材1101が組立誤差あるいは前述の倍率偏光動作の際の横ズレ(偏心)で偏心した要素を示す。その結果照射手段11から出射される光束が被照射面(レチクル)12を照射する段階で既に光束重心は傾いている。
【0047】
その傾きは投影系13に受け継がれ、基板上14でも光束重心501は傾きを持って入射している。また光束混合手段6と結像系9との間に後述するように各種照明モード用の光束調整手段(プリズム,回折光学素子等)が交換可能に設けられている場合、その交換動作時の位置誤差、又は光束調整手段自体の製造誤差から、やはり多光束発生手段10の中心とそこへ入射する光束重心がずれる可能性がある。このときにも光束重心は傾きを持って基板14に入射してくる。
【0048】
光束混合手段6の出射端面6bを略共役となるように多光束発生手段10の入射面10aに結像させる結像系9の透過率が光軸に対して非対称であると、多光束発生手段10の中心とそこへ入射する光束重心がずれてくる。
【0049】
又多光束発生手段(ハエの目)10の出射面10bに形成される2次光源が均一ないし光軸に対して対称な強度分布で生じていたとしても、照射手段(コンデンサー,マスキング結像レンズ)11の透過率が光軸に対して非対称であると、被照射面12の軸上を照射する光束の重心より求まるテレセントリック性がずれてくる。
【0050】
図6は照射手段11内に透過率の悪い光学要素1102が存在している様子を示している。従って照射手段11を出射する段階で光束は、図の破線で示す様に、光軸の上部が少なく下部が多い(光量を破線の数で表した)。
【0051】
その光量分布の不均一性は投影系13に受け継がれ、基板14上で光束重心601は傾きを持って入射してくる。
【0052】
本実施形態では以上説明した要因やその他の種々の要因によって生じる基板14上でのテレセントリック性のズレを図7〜図10に示すように平行平面板よりなるテレセン調整手段7を光軸に対して傾動させて多光束発生手段10の入射面10a上での光強度分布を調整して補正している。
【0053】
図7〜図10は本実施形態におけるテレセン調整手段7の動作の説明図である。図7はテレセン調整手段7が光軸に対して垂直に位置しており、光束混合手段6から射出する光束がテレセン調整手段7で調整されずに(光学的作用を受けずに)そのまま射出している様子を示している。
【0054】
図8は図7の状態においてテレセン調整手段7で何の光学作用も受けずに多光束発生手段10の入射面10a上の光強度分布が正しく形成されている状態を示している。
【0055】
図9はテレセン調整手段7が光軸に対して傾けて光束混合手段6から出射する光束がテレセン調整手段7で調整されて(光学的作用を受けて)変倍して出射している状態を示している。
【0056】
図10は図9の状態においてテレセン調整手段7で光学的作用を受けた結果、多光束発生手段10の入射面10a上で光強度分布が変位している状態を示している。
【0057】
本実施形態では以上のようにテレセン調整手段7を傾動させて種々の原因で生じる基板14上におけるテレセントリック性のずれを補正している。
【0058】
図11は本発明の実施形態2の要部概略図である。本実施形態は図1の実施形態1に比べて複数の傾きの異なるテレセン調整手段701,702‥‥をターレット式に設けて、そのうちの1つを光路中に選択して配置している点が異なっているだけであり、その他の構成は略同様である。
【0059】
本実施形態ではσ調整機能付きの照明系を用いてσ可変の領域を幾分割し、あらかじめ各領域内でバランスさせた傾きの平行平板を交換可能にしておき、それを交換することで対応している。
【0060】
例えばσ0.3〜0.55を第1の領域としてテレセン調整手段701を使用、σ0.55〜0.8を第2の領域としてテレセン調整手段702を使用するよう交換している。
【0061】
図12は本発明の実施形態3の一部分の要部概略図である。図12は図1の集光光学系5からレチクル12に相当する各要素を示している。本実施形態は図1の実施形態1に比べて光束混合手段6の出射側にテレセン調整手段としての機能を持たせた複数の光束調整手段703,704を挿脱可能に設けている点が異なっており、その他の構成は略同じである。
【0062】
本実施形態では光束調整手段703、704によって光束混合手段6からの光束分布を変えている。これによって多光束発生手段10の入射面上の光強度分布を変えてレクチル12面上を輪帯照明(図13の光束調整手段703を用いたとき)や4重極照明(図14の光束調整手段704を用いたとき)等を行うとともにそれらを変位させて基板14上のテレセントリック性を調整している。
【0063】
図12において出射角保存光学素子からの光束は集光光学系5で集光点を作った後、オプティカルパイプ(光束混合手段)6の入射面6aに入射する。オプティカルパイプ6の出射端(出射面)6b近傍には、不図示の駆動機構により着脱交換可能な光束調整手段703,704が設けられており、オプティカルパイプ6を出射する光束分布に対して所望の規制を加えている。
【0064】
光束調整手段703は例えば図13に示すように入射面側に凹の、出射面側の凸の円錐面を有するプリズム部材(光学部材)より成っており、輪帯照明する場合に用いている。
【0065】
図15は光束調整手段703を用いたときの多光束発生手段10の入射面10a上の光強度分布とX−X断面の光強度分布の説明図である。図16は光束調整手段703を用い、且つそれをX−X方向に偏心させたときの多光束発生手段10の入射面10a上の光強度分布とX−X断面の光強度分布の説明図である。
【0066】
図15,図16に示すように光束調整手段703を変位させることによって多光束発生手段10の入射面10a上の光強度分布を種々と調整している。
【0067】
図14に示す光束調整手段704は4重極照明を形成するための光束調整手段の外径であり、入射面側の凹の、出射面側に凸の4角錐面形状を有するプリズム部材より成っている。
【0068】
これによりハエの目10の入射面10aには例えば図17,図18に示す斜線部分にのみ光束が入射する。
【0069】
図17は光束調整手段704を用いたときの多光束発生手段10の入射面10a上の光強度分布とA−A′断面の光強度分布の説明図、図18は光束調整手段704を図中のAA′方向に偏心させたときの多光束発生手段10の光入射面10aの光強度分布とA−A′断面の光強度分布の説明図である。
【0070】
図17,図18に示すように光束調整手段704を変位させることによって多光束発生手段10の入射面10aの光強度分布を種々と調整している。
【0071】
本実施形態では以上のように種々な光束調整手段を用いて任意の照明系を形成すると共に、それを光軸と直交する面内で変位させることによって基板14面上のテレセントリック性を調整している。
【0072】
図19は本発明の実施形態4の一部分の要部概略図である。図19は図12の実施形態3のプリズム体より成る光束調整手段(703,704)の代わりに2つの回折光学素子705a,705bより成る光束調整手段(705)を用いて変形照明を行うと共にそれらを変位させて基板14面上のテレセントリック性を調整している点が異なっているだけであり、その他の構成は略同様である。
【0073】
図19は光束調整手段705の光軸Laを含んだ断面での概略図と、その一部の拡大図を示している。光束調整手段705のブレーズド形状は図中の拡大図に示したとおりである。即ち回折光学素子705aは垂直に光が入射した場合、光軸Laと反対方向に光を回折させる作用を有している。
【0074】
一方、回折光学素子705bは垂直に光が入射した場合、光軸La側に光を回折させる作用を有している。光束調整手段705が例えば輪帯照明を形成する光束調整手段であるとすると、回折光学素子の位相分布は図20に示すように光軸を中心とした同心円状のパターンから構成される回折光学素子となる。
【0075】
また、光束調整手段705が4重極照明を形成する光束調整手段であるとすると、回折光学素子705a,705bの位相分布は図21に示すように、直線状のパターンを隣接するパターンと直交するように配置した回折光学素子となる。
【0076】
本実施形態ではこれらの回折光学素子でハエの目10へ入射する光束の分布を調整することで各種変形照明を効率よく形成している。そして光束調整手段705を光軸と直交する面内で変位させて基板14面上でのテレセントリック性を調整している。
【0077】
図22は本発明の実施形態5の一部分の要部概略図である。本実施形態は図11の実施形態2におけるテレセン調整手段701,702と図12の実施形態3における光束調整手段703,704のうちから1つの部材を選択して光路中に配置する構成より成っている。
【0078】
尚、本実施形態において平行平面板より成るテレセン調整手段を1つ設けて検出器15からの信号に基づいて駆動手段で回動させるようにしても良い。
【0079】
又テレセン調整手段の平行平板の光路長と変形照明用の光束調整手段のプリズムの光路長を略等しくするのが良く、これによれば光束混合手段6の出射面6bを多光束発生手段10へ投影する際の倍率が大きく異ならないので好ましい。
【0080】
次に上記説明した投影露光装置を利用した半導体デバイスの製造方法の実施形態を説明する。
【0081】
図23は半導体デバイス(ICやLSI等の半導体チップ、或いは液晶パネルやCCD等)の製造のフローを示す。
【0082】
ステップ1(回路設計)では半導体デバイスの回路設計を行なう。ステップ2(マスク製作)では設計した回路パターンを形成したマスクを製作する。
【0083】
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、前記用意したマスクとウエハを用いてリソグラフィ技術によってウエハ上に実際の回路を形成する。
【0084】
次のステップ5(組立)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。
【0085】
ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行なう。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
【0086】
図24は上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を形成する。
【0087】
ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに感光剤を塗布する。ステップ16(露光)では前記説明した露光装置によってマスクの回路パターンをウエハに焼付露光する。
【0088】
ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングがすんで不要となったレジストを取り除く。これらのステップを繰り返し行なうことによってウエハ上に多重に回路パターンが形成される。
【0089】
本実施形態の製造方法を用いれば、従来は製造が難しかった高集積度の半導体デバイスを容易に製造することができる。
【0090】
【発明の効果】
本発明によれば以上のように、基板上における光束のテレセントリック性のずれを適切に設定したテレセン調整手段を用いて補正することにより、高解像度のパターンが容易に得られる投影露光装置及びそれを用いたデバイスの製造方法を達成することができる。
【0091】
特に照明系や投影系の組立時に発生する幾何光学的な要因から生ずるテレセントリック性のずれ、また誘電体多層膜の非対称な透過率むらから生ずるテレセントリック性のずれ、又この2つの複合から成る基板上でのテレセントリック性のずれを多光束発生手段の入射面に入射する光束の重心をテレセン調整手段で移動させることで、基板上でのテレセントリック性を良好な状態に保ち、高解像度のパターンが容易に形成することができる投影露光装置及びそれを用いたデバイスの製造方法を達成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1の概略図
【図2】基板上でのテレセンが理想的な状態の光学系の説明図
【図3】投影系の組立誤差によりテレセンが崩れた状態を表す説明図
【図4】投影系の内部透過率の非対称性によりテレセンが崩れた状態を表す説明図
【図5】照明系の組立誤差によりテレセンが崩れた状態を表す説明図
【図6】照明系の内部透過率の非対称性によりテレセンが崩れた状態を表す説明図
【図7】テレセン調整手段が機能していない状態を表す説明図
【図8】図7の状態のときの多光束発生手段の入射面での強度分布を表す説明図
【図9】テレセン調整手段が機能している状態を表す説明図
【図10】図9の状態のときの多光束発生手段の入射面での強度分布を表す説明図
【図11】本発明の実施形態2の概略図
【図12】本発明の実施形態3の概略図
【図13】図12の一部分の説明図
【図14】図12の一部分の説明図
【図15】光束調整手段703を使用し、テレセン調整手段をしていない場合の多光束発生手段の入射面での強度分布を表す説明図
【図16】光束調整手段703を使用し、テレセン調整手段をしている場合の多光束発生手段の入射面での強度分布を表す説明図
【図17】光束調整手段704を使用し、テレセン調整手段をしていない場合の多光束発生手段の入射面での強度分布を表す説明図
【図18】光束調整手段704を使用し、テレセン調整手段をしている場合の多光束発生手段の入射面での強度分布を表す説明図
【図19】本発明の実施形態4の概略図
【図20】回折光学素子の位相分布の説明図
【図21】回折光学素子の位相分布の説明図
【図22】本発明の実施形態5の概略図
【図23】本発明に係るデバイスの製造方法のフローチャート
【図24】本発明に係るデバイスの製造方法のフローチャート
【図25】図1の一部分の説明図
【図26】従来の照明装置の要部概略図
【符号の説明】
1 レーザ
2 干渉性低減手段
3 ビーム整形手段
4 光束振動抑制手段
5 集光光学系
6 光束混合手段
7 テレセン調整手段
8 駆動機構
9 結像系(ズーム)
10 多光束発生手段
11 照射手段
12 被照射面(レチクル)
13 投影光学系
14 基板(ウエハ)
15 検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a projection exposure apparatus and a method for manufacturing a device using the same. More specifically, in a device for manufacturing a device such as a semiconductor element, a high resolving power can be easily obtained by appropriately illuminating a reticle surface and a wafer surface. For example, the present invention is suitable for a projection exposure apparatus of a step-and-repeat method or a step-and-scan method.
[0002]
[Prior art]
Generally, a projection exposure apparatus for manufacturing a device such as a semiconductor element is strongly required to remove illuminance unevenness on a mask surface (reticle surface) or a wafer surface in order to achieve high resolution. The present applicant has proposed this demand and an illumination device for improving the light collection efficiency, for example, in Japanese Patent Application Laid-Open No. Hei.
[0003]
FIG. 26 is a schematic view of a main part of a lighting device proposed in the publication. In FIG. 1, reference numeral 1 denotes a light source, which comprises an ultra-high pressure mercury lamp or the like. M1 is a condensing means composed of an elliptical mirror or the like, and the light source 1 is arranged near the first focal point of the elliptical mirror M1. Reference numeral 6 denotes a light beam mixing means, which is formed of an optical pipe having a predetermined shape, and the incident surface 6a of the optical pipe 6 is arranged near the second focal point of the elliptical mirror M1.
[0004]
Reference numeral 9 denotes a condensing lens, and reference numeral 10 denotes a fly's eye, which is a multi-beam generating means. The condensing lens 9 is arranged so that the exit end 6b of the optical pipe 6 and the incident surface 10a of the fly's eye 10 have a substantially conjugate relationship. You have set. At this time, the optical constants of the condenser lens 9 are determined so that the exit end 6b is imaged at a desired magnification on the incident surface 10a.
[0005]
Reference numeral 11 denotes an irradiating unit having a configuration including a condenser lens, and irradiates an irradiated surface 12 on which a mask, a reticle surface, and the like are set, using a light beam from an emission surface 10b of the fly's eye 10.
[0006]
At this time, the focal point (rear focal point) of the element lens constituting the fly's eye 10 is made substantially equal to the front focal point of the condenser means 11, and the irradiated surface 12 and the rear focal point of the condenser means 11 are focused. And a Koehler illumination system for making approximately the same. The optical pipe, which is the light beam mixing means 6, forms multiple imaginary or real light-condensing points from one light beam by using multiple reflection by the inner surface.
[0007]
In FIG. 26, a reticle is arranged on the irradiated surface 12 using an illumination device, and the pattern is projected and exposed on a wafer surface by a projection optical system.
[0008]
[Problems to be solved by the invention]
In recent years, a projection exposure apparatus for manufacturing a highly integrated semiconductor device such as an VLSI has a uniform illuminance distribution required when a circuit pattern is printed and a telecentricity of a luminous flux on a wafer (substrate). High things are required.
[0009]
In general, when the telecentricity of the light beam is lost at this time, the resolving power is greatly reduced. Causes of the deviation of the telecentricity of the light beam on the image plane (wafer plane) include, for example,
(A-1) Geometric optical deviation due to an assembly error occurring during the production of the projection system.
[0010]
(A-2) The one caused by the shift of the center of gravity of the light quantity due to the nonuniformity of the transmittance of the dielectric multilayer film of the optical element of the projection system.
[0011]
(A-3) An error caused by an assembly error occurring during the manufacture of the illumination system, or a geometric optical deviation due to a movement error of the movable part such as a change in σ or a change in the illumination mode.
[0012]
(A-4) The one caused by the shift of the center of gravity of the light quantity due to the non-uniformity of the transmittance of the dielectric multilayer film of the optical element of the illumination system.
Etc.
[0013]
In the present invention, a high-resolution pattern can be easily formed by correcting the deviation of the telecentricity of the light beam on the substrate caused by the above-mentioned causes (A-1) to (A-4) by using a telecentric adjustment means appropriately set. And a method of manufacturing a device using the same.
[0014]
A projection exposure apparatus according to a first aspect of the present invention includes a condensing optical system for condensing a light beam from a light source, a light beam mixing means for mixing and emitting a light beam from the light condensing optical system, Multi-beam generating means for generating a number of partial light beams using the emitted light beam, irradiating means for irradiating the irradiated surface with the light beams from the multi-beam generating device superimposed, and an object surface disposed on the irradiated surface A projection optical system having a projection optical system for projecting and exposing the pattern on the substrate,
A zoom optical system between the light beam mixing means and the multi-beam generating means, which substantially conjugates an exit surface of the light beam mixing means and an incident surface of the multi-beam generating means; and a light beam from the light beam mixing means. Telecentric adjustment means for guiding the light to the zoom optical system,
The telecentric adjustment means is composed of an optical member having a concave conical surface on the incident surface side and a convex conical surface on the emission surface side, and converts the light intensity distribution on the incident surface of the multi-beam generating means into a ring shape, and has an optical axis and It is provided movably in a vertical plane,
The telecentricity is adjusted on the substrate by displacing the light quantity distribution on the incident surface of the multi-beam generating means by the telecentric adjustment means.
[0015]
The invention of claim 2The projection exposure apparatus includes a condensing optical system that condenses a light beam from a light source, a light beam mixing unit that mixes and emits the light beam from the light condensing optical system, and a plurality of light beams that are emitted from the light beam mixing unit. A multi-beam generating means for generating a partial light beam, an irradiating means for irradiating the illuminated surface with the luminous flux from the multi-beam generating device superimposed, and a pattern on the object surface arranged on the illuminated surface being formed on the substrate. A projection optical system having a projection optical system for projecting and exposing
A zoom optical system between the light beam mixing means and the multi-beam generating means, which substantially conjugates an exit surface of the light beam mixing means and an incident surface of the multi-beam generating means; and a light beam from the light beam mixing means. Telecentric adjustment means for guiding the light to the zoom optical system,
The telecentric adjustment means is composed of an optical member having a polygonal pyramid surface with a concave surface on the incident surface side and a convex surface on the output surface side, and a portion where the light intensity distribution on the incident surface of the multi-beam generating means has a strong intensity discretely exists. And is provided so as to be movable in a plane perpendicular to the optical axis,
The telecentric adjustment means adjusts the telecentricity on the substrate by displacing the light quantity distribution on the incident surface of the multi-beam generating means.It is characterized by having.
[0016]
Claim3The projection exposure apparatus according to the invention includes a condensing optical system that condenses the light beam from the light source, a light beam mixing unit that mixes and emits the light beam from the light condensing optical system, and a light beam output from the light beam mixing unit. Multi-beam generating means for generating a large number of partial light beams using the same, irradiating means for irradiating the illuminated surface with the luminous flux from the multi-beam generating means superimposed, and a pattern on an object surface arranged on the illuminated surface A projection optical system having a projection optical system for projecting and exposing on a substrate,
Between the light beam mixing means and the multi-beam generation means,A zoom optical system that substantially conjugates an exit surface of the light beam mixing means and an incidence surface of the multi-beam generation device; and a telecentric adjustment device that guides a light beam from the light beam mixing device to the zoom optical system. And
The telecentric adjustment means has two diffractive optical elements having an annular phase distribution, converts the light intensity distribution on the incident surface of the multi-beam generating means into an annular shape, The optical element is integrally provided so as to be movable in a plane perpendicular to the optical axis,
By the telecentric adjustment means,It is characterized in that the amount of light distribution on the incident surface of the multi-beam generating means is displaced to adjust the telecentricity on the substrate.
[0017]
Claim4The projection exposure apparatus according to the invention includes a condensing optical system that condenses the light beam from the light source, a light beam mixing unit that mixes and emits the light beam from the light condensing optical system, and a light beam output from the light beam mixing unit. Multi-beam generating means for generating a large number of partial light beams using the same, irradiating means for irradiating the illuminated surface with the luminous flux from the multi-beam generating means superimposed, and a pattern on an object surface arranged on the illuminated surface A projection optical system having a projection optical system for projecting and exposing on a substrate,
Between the light beam mixing means and the multi-beam generation means,A zoom optical system that substantially conjugates an exit surface of the light beam mixing means and an incidence surface of the multi-beam generation device; and a telecentric adjustment device that guides a light beam from the light beam mixing device to the zoom optical system. And
The telecentric adjustment means has two diffractive optical elements, the diffractive optical elements are divided into a number of areas, and each area is formed from a linear pattern. The diffraction directions of the light beams are different from each other, and the light intensity distribution on the incident surface of the multi-beam generating means is converted so that a portion having a high intensity exists discretely, and the two diffractive optical elements are integrally formed. It is provided so as to be movable in a plane perpendicular to the optical axis,
By the telecentric adjustment means,It is characterized in that the amount of light distribution on the incident surface of the multi-beam generating means is displaced to adjust the telecentricity on the substrate.
[0018]
Claim5The projection exposure apparatus according to the invention includes a condensing optical system that condenses the light beam from the light source, a light beam mixing unit that mixes and emits the light beam from the light condensing optical system, and a light beam output from the light beam mixing unit. Multi-beam generating means for generating a large number of partial light beams using the same, irradiating means for irradiating the illuminated surface with the luminous flux from the multi-beam generating means superimposed, and a pattern on an object surface arranged on the illuminated surface A projection optical system having a projection optical system for projecting and exposing on a substrate,
Between the light beam mixing means and the multi-beam generation means,An optical member having a conical surface having a convex incident surface side and a convex exit surface side,
The optical member converts the light intensity distribution on the incident surface of the multi-beam generating means into an annular shape, and is provided movably in a plane perpendicular to the optical axis,
With the optical member,The telecentricity on the substrate is adjusted by displacing the light quantity distribution on the incident surface of the multi-beam generating means.
[0019]
Claim6The projection exposure apparatus according to the invention includes a condensing optical system that condenses the light beam from the light source, a light beam mixing unit that mixes and emits the light beam from the light condensing optical system, and a light beam output from the light beam mixing unit. Multi-beam generating means for generating a large number of partial light beams using the same, irradiating means for irradiating the illuminated surface with the luminous flux from the multi-beam generating means superimposed, and a pattern on an object surface arranged on the illuminated surface A projection optical system having a projection optical system for projecting and exposing on a substrate,
Between the light beam mixing means and the multi-beam generation means,The incident surface side is a concave surface, the output surface side has an optical member having a polygonal pyramid surface of a convex surface,
The optical member is provided such that the light intensity distribution on the incident surface of the multi-beam generating means converts such that a portion having a high intensity is discretely present, and is movably provided in a plane perpendicular to the optical axis,
With the optical member,The telecentricity on the substrate is adjusted by displacing the light quantity distribution on the incident surface of the multi-beam generating means.
[0020]
Claim7The projection exposure apparatus according to the invention includes a condensing optical system that condenses the light beam from the light source, a light beam mixing unit that mixes and emits the light beam from the light condensing optical system, and a light beam output from the light beam mixing unit. Multi-beam generating means for generating a large number of partial light beams using the same, irradiating means for irradiating the illuminated surface with the luminous flux from the multi-beam generating means superimposed, and a pattern on an object surface arranged on the illuminated surface A projection optical system having a projection optical system for projecting and exposing on a substrate,
Between the light beam mixing means and the multi-beam generation means,It has two diffractive optical elements having an annular phase distribution,
The two diffractive optical elements convert the light intensity distribution on the incident surface of the multi-beam generating means into an annular shape, and the two diffractive optical elements move integrally in a plane perpendicular to the optical axis. Provided as possible,
Due to the two diffractive optical elements,It is characterized in that the amount of light distribution on the incident surface of the multi-beam generating means is displaced to adjust the telecentricity on the substrate.
[0021]
In the projection exposure apparatus according to the present invention, there is provided a condensing optical system for condensing a light beam from a light source, a light beam mixing means for mixing and emitting a light beam from the light condensing optical system; Multi-beam generating means for generating a number of partial light beams using the emitted light beam, irradiating means for irradiating the illuminated surface with the light beams from the multi-beam generating device superimposed, and an object surface arranged on the illuminated surface A projection optical system having a projection optical system for projecting and exposing the pattern on the substrate,
It has two diffractive optical elements between the light beam mixing means and the multi-beam generating means,
The two diffractive optical elements are area-divided into a number of areas, each area is formed from a linear pattern, and the diffraction direction of the light flux in each area is different. The light intensity distribution on the incident surface is converted so that a portion with high intensity exists discretely, and the two diffractive optical elements are integrally provided so as to be movable in a plane perpendicular to the optical axis. And
The two diffractive optical elements are used to adjust the telecentricity on the substrate by displacing the light quantity distribution on the incident surface of the multi-beam generating means.It is characterized by doing.
[0022]
According to a ninth aspect of the invention, there is provided a projection exposure apparatus comprising: a condensing optical system for condensing a light beam from a light source; a light beam mixing means for mixing and emitting a light beam from the light condensing optical system; Multi-beam generating means for generating a number of partial light beams using the emitted light beam, irradiating means for irradiating the irradiated surface with the light beams from the multi-beam generating device superimposed, and an object surface disposed on the irradiated surface A projection optical system having a projection optical system for projecting and exposing the pattern on the substrate,
By providing a plurality of telecentric adjustment means in a turret type, and selecting and arranging one of the plurality of telecentric adjustment means in an optical path between the light beam mixing means and the multi-beam generating means, Adjust the telecentricity on the substrate by displacing the light quantity distribution on the incident surface of the multi-beam generating meansIt is characterized by doing.
[0023]
According to a tenth aspect of the present invention, in the ninth aspect, the telecentric adjustment means has a plurality of parallel flat plates having different inclinations.
According to an eleventh aspect, in the tenth aspect, the telecentric adjustment means exchanges the plurality of parallel flat plates in response to a change in σ.
According to a twelfth aspect of the present invention, in the invention of any one of the first to fourth aspects, the adjustment amount of the telecentric adjustment means is automatically controlled based on a result from a detector for detecting telecentricity on the substrate. It is characterized by.
According to a thirteenth aspect, in the fifth or sixth aspect, the adjustment amount of the optical member is automatically controlled based on a result from a detector that detects telecentricity on the substrate.
According to a fourteenth aspect, in the seventh or eighth aspect, an adjustment amount of the two diffractive optical elements is automatically controlled based on a result from a detector that detects telecentricity on the substrate. I have.
[0024]
According to a fifteenth aspect of the present invention, there is provided a method of manufacturing a device, comprising projecting a pattern on a reticle surface onto a wafer surface by using the projection exposure apparatus according to any one of the first to fourteenth aspects, and developing the wafer after exposing. It is characterized in that devices are manufactured through processing steps.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic view of a main part of a first embodiment of the present invention. This figure shows a case where the present invention is applied to a step & repeat type or step & scan type projection exposure apparatus for manufacturing devices such as semiconductor chips such as LSI and VLSI, CCDs, magnetic sensors, liquid crystal elements, and the like.
[0027]
In FIG. 1, reference numeral 1 denotes a laser light source such as an ArF excimer laser or a KrF excimer laser. Reference numeral 2 denotes an incoherent optical system (coherence reducing means) for making the coherent laser beam from the light source 1 incoherent and preventing speckles from being generated on the wafer 14. Reference numeral 3 denotes a light from the incoherent optical system 2. A beam shaping optical system (beam shaping optical system) 4 for shaping a light beam into a desired beam shape is an optical element 4 for preserving an emission angle, and an optical function that makes the emission angle constant regardless of the state of the incident light beam. have.
[0028]
Reference numeral 5 denotes a condensing optical system which condenses a light beam from the optical element 4 and guides the light beam to an incident surface 6a of an optical pipe (light beam mixing means) 6. The light beam mixing means 6 mixes the light beams from the condensing optical system 5 to form a uniform illuminance distribution on the exit surface 6b.
[0029]
Numeral 7 denotes a telecentric adjusting means, which is composed of a parallel plane plate, displaces the light intensity distribution of the light beam from the exit surface 6b of the light beam mixing means 6, guides the light to the imaging system 9, and14The telecentricity of the light beam (on-axis light beam) is adjusted.
[0030]
Numeral 8 denotes a driving unit which changes the inclination of the telecentric adjustment unit 7 with respect to the optical axis (for example, the optical axis of the imaging system) to shift the center of gravity of the light intensity distribution on the incident surface 10a of the multi-beam generating unit 10 described later. Let me.
[0031]
Reference numeral 9 denotes a zoom optical system (imaging system), which projects a light beam from the light beam mixing means 6 onto the incident surface 10a of the multi-beam light generation means 10 at various magnifications.
[0032]
The multi-beam generating means 10 is formed of a fly-eye lens, and forms a plurality of secondary light source images on its exit surface 10b.
[0033]
Reference numeral 11 denotes irradiation means including a condenser lens and the like, which collects light beams from the respective microlenses of the multi-beam generation means 10 and superimposes and uniformly irradiates an irradiated surface 12 of a mask or a reticle (hereinafter referred to as a "reticle"). Lighting.
[0034]
Reference numeral 13 denotes a projection optical system, which is composed of an emission telecentric system and reduces and projects a pattern on the reticle 12 surface onto a wafer (substrate) 14 surface. Reference numeral 15 denotes a detector, which detects the center of gravity of the incident light beam or the light amount distribution to detect telecentricity on the surface of the substrate 14.
[0035]
The optical element 4 for preserving the emission angle in FIG. 1 includes, for example, an aperture (aperture) 21 and a lens system 22 as shown in FIG. Then, even if the incident light beam is slightly fluctuated from the light beam 27 (optical axis 27aa) to the light beam 28 (optical axis 28a) in a direction perpendicular to the optical axis, for example, the emission angle 29a of the light beam emitted therefrom is constant. It has certain optical properties.
[0036]
Further, as shown in FIG. 25B, the optical element 4 for preserving the emission angle may be constituted by a fly-eye lens composed of a plurality of microlenses 23. In this case, the emission angle 29b of the light beam is determined by the fly angle. It is determined by the shape of the eye lens 23. Also in this case, even if the optical axis of the incident light beam fluctuates slightly and the light beam 27 (optical axis 27a) or the light beam 28 enters in the state of (optical axis 28a), the exit angle 29b of the emitted light beam is constant. ing.
[0037]
Next, the cause of the deviation of the telecentricity on the substrate 14 in the present embodiment will be described.
[0038]
FIGS. 2 to 6 are explanatory views showing the cause of the shift of the so-called telecentricity, that is, the shift of the principal ray from the vertical on the image plane in the projection exposure apparatus according to the present invention.
[0039]
2 to 6 show components from the multi-beam generating means (fly's eye) 10 to the wafer (substrate) 14 in FIG.
[0040]
FIG. 2 is an explanatory diagram showing the fly eye 10 and subsequent parts and the projection system 13 of the illumination system in which the elements 1101 and 1301 are configured in an ideal state. There is no assembly error, there is no non-uniformity of the transmittance of the dielectric multilayer film deposited on each optical element, the telecentricity on the substrate 14 is good, and the chief ray 201 enters the substrate 14 vertically. I have.
[0041]
FIG. 3 shows a case where the optical member 1301 in the projection system 13 is eccentric due to an assembly error or the like. The light beam emitted from the projection system 13 is eccentrically emitted as shown by a broken line (geometric optical deviation). Therefore, the light beam center of gravity 301 is not perpendicular to the substrate 14 but is incident with an inclination.
[0042]
FIG. 4 shows a case where an optical element 1302 having a nonuniform transmittance of the dielectric multilayer film is provided in the projection system 13. There is no other geometrical optical beam shift. The optical element 1302 shows a model of a factor of poor transmittance.
[0043]
As a result, as shown by the broken line in the figure, the light beam emitted from the projection system 13 has a small upper part of the optical axis and a large lower part (the light amount is indicated by the number of broken lines). Therefore, the light quantity centroid 401 is not perpendicular to the substrate 14 but is incident with an inclination.
[0044]
When the numerical aperture on the light exit side of the illumination system 11 is Ni and the numerical aperture on the light incident side of the projection system 13 is Np, the ratio σ is
σ = Ni / Np
Is represented by
[0045]
The adjustment of σ at this time is to change the magnification of the imaging system 9 that forms the exit end face 6b of the light beam mixing means (optical pipe) 6 substantially conjugately on the incident surface 10a of the multi-beam generation means (fly's eye) 10. In the system performed in (1), geometrical displacement occurs due to the lateral displacement (parallel eccentricity) of the moving lens in the magnification change operation (zoom system). As a result, the center of the multi-beam generating unit 10 and the light flux incident thereon The center of gravity may shift.
[0046]
FIG. 5 shows an element in which the optical member 1101 in the irradiation unit 11 is decentered due to an assembly error or a lateral shift (eccentricity) in the above-described magnification polarization operation. As a result, when the light beam emitted from the irradiation means 11 irradiates the irradiated surface (reticle) 12, the center of gravity of the light beam is already inclined.
[0047]
The inclination is passed on to the projection system 13, and the beam center of gravity 501 enters the substrate 14 with an inclination. Further, if light flux adjusting means (prisms, diffractive optical elements, etc.) for various illumination modes are exchangeably provided between the light beam mixing means 6 and the imaging system 9 as described later, the position at the time of the exchange operation is provided. There is also a possibility that the center of the multi-beam generating unit 10 and the center of gravity of the light beam incident thereon may be shifted due to an error or a manufacturing error of the light beam adjusting unit itself. Also at this time, the luminous flux centroid enters the substrate 14 with an inclination.
[0048]
If the transmittance of the imaging system 9 for forming an image on the entrance surface 10a of the multi-beam generating means 10 so that the exit end face 6b of the light mixing means 6 becomes substantially conjugate is asymmetric with respect to the optical axis, the multi-beam generating means is used. The center of 10 and the center of the light beam incident thereon are shifted.
[0049]
Also, even if the secondary light source formed on the exit surface 10b of the multi-beam generating means (fly's eye) 10 has a uniform or symmetrical intensity distribution with respect to the optical axis, the irradiating means (condenser, masking imaging lens) If the transmittance of (11) is asymmetric with respect to the optical axis, the telecentricity determined from the center of gravity of the light beam irradiated on the axis of the irradiated surface 12 is shifted.
[0050]
FIG. 6 shows a state in which an optical element 1102 having poor transmittance exists in the irradiation unit 11. Accordingly, as shown by the broken line in the figure, the light flux at the stage of emission from the irradiation means 11 has a smaller upper portion of the optical axis and a larger lower portion (the light amount is represented by the number of broken lines).
[0051]
The non-uniformity of the light amount distribution is passed on to the projection system 13, and the light beam centroid 601 enters the substrate 14 with an inclination.
[0052]
In the present embodiment, the telecentricity deviation on the substrate 14 caused by the factors described above and other various factors is adjusted by moving the telecentric adjustment means 7 composed of a plane parallel plate with respect to the optical axis as shown in FIGS. By tilting, the light intensity distribution on the incident surface 10a of the multi-beam generating means 10 is adjusted and corrected.
[0053]
7 to 10 are explanatory diagrams of the operation of the telecentric adjustment unit 7 in the present embodiment. FIG. 7 shows that the telecentric adjusting means 7 is positioned perpendicular to the optical axis, and the light beam emitted from the light beam mixing means 6 is emitted without being adjusted by the telecentric adjusting means 7 (without receiving any optical action). Is shown.
[0054]
FIG. 8 shows a state in which the light intensity distribution on the entrance surface 10a of the multi-beam generating means 10 is correctly formed without receiving any optical action by the telecentric adjusting means 7 in the state of FIG.
[0055]
FIG. 9 shows a state in which the telecentric adjustment means 7 is tilted with respect to the optical axis and the light flux emitted from the light beam mixing means 6 is adjusted (by the optical action) by the telecentric adjustment means 7 so as to change its size and emit. Is shown.
[0056]
FIG. 10 shows a state in which the light intensity distribution is displaced on the incident surface 10a of the multi-beam generating means 10 as a result of the optical action by the telecentric adjustment means 7 in the state of FIG.
[0057]
In the present embodiment, as described above, the telecentric adjustment means 7 is tilted to correct a shift in telecentricity on the substrate 14 caused by various causes.
[0058]
FIG. 11 is a schematic view of a main part of the second embodiment of the present invention. This embodiment is different from the first embodiment shown in FIG. 1 in that a plurality of telecentric adjustment means 701, 702 # having different inclinations are provided in a turret type, and one of them is selectively arranged in an optical path. The only difference is that the other configurations are substantially the same.
[0059]
In the present embodiment, the σ-variable region is divided into several parts by using an illumination system with a σ adjustment function, and a parallel flat plate having a tilt balanced in advance in each region is exchangeable, and this is replaced by exchanging the plate. ing.
[0060]
For example, the telecentric adjustment means 701 is used as the first area for σ 0.3 to 0.55, and the telecentric adjustment means 702 is used as the second area for σ 0.55 to 0.8.
[0061]
FIG. 12 is a schematic view of a part of a third embodiment of the present invention. FIG. 12 shows each element corresponding to the reticle 12 from the condenser optical system 5 in FIG. This embodiment is different from the first embodiment shown in FIG. 1 in that a plurality of light beam adjusting means 703 and 704 having a function as telecentric adjusting means are provided on the emission side of the light beam mixing means 6 so as to be insertable and removable. The other configurations are substantially the same.
[0062]
In the present embodiment, the light flux distribution from the light beam mixing means 6 is changed by the light flux adjusting means 703 and 704. Thus, the light intensity distribution on the incident surface of the multi-beam generating means 10 is changed, and annular illumination (when the light flux adjusting means 703 in FIG. 13 is used) or quadrupole illumination (light flux adjusting in FIG. (When using the means 704), etc. and displacing them to14The above telecentricity is adjusted.
[0063]
In FIG. 12, a light beam from an emission angle preserving optical element forms a light-converging point by a light-condensing optical system 5 and then enters an incident surface 6a of an optical pipe (light beam mixing means) 6. In the vicinity of the emission end (emission surface) 6b of the optical pipe 6, light flux adjusting means 703 and 704 that are detachable and replaceable by a drive mechanism (not shown) are provided. There are regulations.
[0064]
The light beam adjusting means 703 is composed of a prism member (optical member) having a concave conical surface on the exit surface side, which is concave on the incident surface side, as shown in FIG.
[0065]
FIG. 15 is an explanatory diagram of the light intensity distribution on the incident surface 10a of the multi-beam generating means 10 and the light intensity distribution in the XX section when the light beam adjusting means 703 is used. FIG. 16 is an explanatory diagram of the light intensity distribution on the incident surface 10a of the multi-beam generating means 10 and the light intensity distribution in the XX section when the light beam adjusting means 703 is used and is decentered in the XX direction. is there.
[0066]
As shown in FIGS. 15 and 16, the light intensity distribution on the incident surface 10a of the multiple light beam generating means 10 is variously adjusted by displacing the light beam adjusting means 703.
[0067]
The light beam adjusting means 704 shown in FIG. 14 has the outer diameter of the light beam adjusting means for forming the quadrupole illumination, and is composed of a prism member having a concave pyramid shape on the incident surface side and a convex shape on the emission surface side. ing.
[0068]
As a result, a light beam is incident on the incident surface 10a of the fly's eye 10, for example, only at the hatched portions shown in FIGS.
[0069]
FIG. 17 is an explanatory diagram of the light intensity distribution on the incident surface 10a of the multi-beam generating means 10 and the light intensity distribution of the AA 'section when the light beam adjusting means 704 is used, and FIG. FIG. 4 is an explanatory diagram of a light intensity distribution on a light incident surface 10a of the multi-beam generating means 10 and a light intensity distribution on an AA ′ cross section when decentered in the AA ′ direction.
[0070]
As shown in FIGS. 17 and 18, the light intensity distribution on the incident surface 10a of the multi-beam generating means 10 is variously adjusted by displacing the light beam adjusting means 704.
[0071]
In the present embodiment, an arbitrary illumination system is formed by using various light flux adjusting means as described above, and the telecentricity on the surface of the substrate 14 is adjusted by displacing the illumination system in a plane orthogonal to the optical axis. I have.
[0072]
FIG. 19 is a schematic view of a main part of a part of the fourth embodiment of the present invention. FIG. 19 shows a modified illumination performed by using a light beam adjusting means (705) composed of two diffractive optical elements 705a and 705b instead of the light beam adjusting means (703, 704) composed of the prism body of Embodiment 3 of FIG. Is different only in that the telecentricity on the surface of the substrate 14 is adjusted by displacing, and the other configurations are substantially the same.
[0073]
FIG. 19 shows a schematic diagram of a cross section including the optical axis La of the light beam adjusting means 705 and an enlarged view of a part thereof. The blazed shape of the light beam adjusting means 705 is as shown in the enlarged view in the figure. That is, the diffractive optical element 705a has a function of diffracting light in a direction opposite to the optical axis La when light is incident vertically.
[0074]
On the other hand, the diffractive optical element 705b has a function of diffracting light toward the optical axis La when light is incident vertically. Assuming that the light beam adjusting means 705 is, for example, a light beam adjusting means for forming annular illumination, the phase distribution of the diffractive optical element is a diffractive optical element having a concentric pattern centered on the optical axis as shown in FIG. It becomes.
[0075]
If the light beam adjusting means 705 is a light beam adjusting means for forming quadrupole illumination, the phase distribution of the diffractive optical elements 705a and 705b is such that a linear pattern is orthogonal to an adjacent pattern as shown in FIG. Is a diffractive optical element arranged as described above.
[0076]
In this embodiment, various types of deformed illumination are efficiently formed by adjusting the distribution of the light beam incident on the fly's eye 10 with these diffractive optical elements. Then, the light flux adjusting means 705 is displaced in a plane orthogonal to the optical axis to adjust the telecentricity on the substrate 14 surface.
[0077]
FIG. 22 is a schematic diagram of a main part of a part of the fifth embodiment of the present invention. This embodiment has a configuration in which one member is selected from the telecentric adjustment units 701 and 702 in Embodiment 2 in FIG. 11 and the light flux adjustment units 703 and 704 in Embodiment 3 in FIG. 12 and arranged in the optical path. I have.
[0078]
In the present embodiment, one telecentric adjusting means composed of a plane-parallel plate may be provided, and the driving means may rotate based on a signal from the detector 15.
[0079]
Further, it is preferable that the optical path length of the parallel flat plate of the telecentric adjustment means and the optical path length of the prism of the light flux adjustment means for deformed illumination are made substantially equal, whereby the exit surface 6b of the light flux mixing means 6 is connected to the multi-beam generation means 10. This is preferable because the magnification at the time of projection does not greatly differ.
[0080]
Next, an embodiment of a method of manufacturing a semiconductor device using the above-described projection exposure apparatus will be described.
[0081]
FIG. 23 shows a flow of manufacturing a semiconductor device (a semiconductor chip such as an IC or an LSI, or a liquid crystal panel or a CCD).
[0082]
In step 1 (circuit design), the circuit of the semiconductor device is designed. Step 2 is a process for making a mask on the basis of the circuit pattern design.
[0083]
On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a preprocess, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer.
[0084]
The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). including.
[0085]
In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).
[0086]
FIG. 24 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface.
[0087]
Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. Step 14 (ion implantation) implants ions into the wafer. In step 15 (resist processing), a photosensitive agent is applied to the wafer. Step 16 (exposure) uses the above-described exposure apparatus to print a circuit pattern on the mask onto the wafer by exposure.
[0088]
Step 17 (development) develops the exposed wafer. In step 18 (etching), portions other than the developed resist are removed. In step 19 (resist stripping), the resist which has become unnecessary after the etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
[0089]
By using the manufacturing method of the present embodiment, it is possible to easily manufacture a highly integrated semiconductor device, which has been conventionally difficult to manufacture.
[0090]
【The invention's effect】
According to the present invention, as described above, a projection exposure apparatus and a projection exposure apparatus that can easily obtain a high-resolution pattern by correcting a deviation of the telecentricity of a light beam on a substrate using a telecentric adjustment unit appropriately set are provided. The method of manufacturing the used device can be achieved.
[0091]
In particular, a shift in telecentricity caused by geometrical optical factors that occur during the assembly of the illumination system and the projection system, a shift in telecentricity caused by asymmetric transmittance non-uniformity of the dielectric multilayer film, and a substrate composed of the two. By moving the center of gravity of the light beam incident on the entrance surface of the multi-beam generating means by the telecentric adjustment means, the telecentricity on the substrate can be maintained in a good state, and a high-resolution pattern can be easily formed. A projection exposure apparatus that can be formed and a device manufacturing method using the same can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of Embodiment 1 of the present invention.
FIG. 2 is an explanatory diagram of an optical system in which telecentricity on a substrate is ideal.
FIG. 3 is an explanatory diagram showing a state in which telecentricity is broken due to an assembly error of a projection system.
FIG. 4 is an explanatory diagram showing a state in which telecentricity is broken due to asymmetry of internal transmittance of a projection system.
FIG. 5 is an explanatory diagram showing a state in which telecentricity is broken due to an assembly error of an illumination system.
FIG. 6 is an explanatory diagram showing a state in which telecentricity is collapsed due to asymmetry of the internal transmittance of the illumination system.
FIG. 7 is an explanatory diagram showing a state in which telecentric adjustment means is not functioning.
FIG. 8 is an explanatory diagram showing the intensity distribution on the incident surface of the multi-beam generating means in the state of FIG. 7;
FIG. 9 is an explanatory diagram showing a state in which telecentric adjustment means is functioning.
FIG. 10 is an explanatory diagram showing the intensity distribution on the incident surface of the multi-beam generating means in the state of FIG. 9;
FIG. 11 is a schematic diagram of Embodiment 2 of the present invention.
FIG. 12 is a schematic diagram of Embodiment 3 of the present invention.
FIG. 13 is an explanatory view of a part of FIG. 12;
FIG. 14 is an explanatory view of a part of FIG. 12;
FIG. 15 is an explanatory diagram illustrating an intensity distribution on an incident surface of a multi-beam generating unit when the light beam adjusting unit 703 is used and the telecentric adjusting unit is not used.
FIG. 16 is an explanatory diagram showing an intensity distribution on an incident surface of a multi-beam generating unit when a telecentric adjusting unit is used by using a light beam adjusting unit 703;
FIG. 17 is an explanatory diagram showing the intensity distribution on the incident surface of the multi-beam generating means when the light beam adjusting means 704 is used and the telecentric adjusting means is not used.
FIG. 18 is an explanatory diagram showing an intensity distribution on an incident surface of a multi-beam generating unit when a telecentric adjusting unit is used using the light beam adjusting unit 704;
FIG. 19 is a schematic diagram of Embodiment 4 of the present invention.
FIG. 20 is an explanatory diagram of a phase distribution of a diffractive optical element.
FIG. 21 is an explanatory diagram of a phase distribution of a diffractive optical element.
FIG. 22 is a schematic diagram of Embodiment 5 of the present invention.
FIG. 23 is a flowchart of a device manufacturing method according to the present invention.
FIG. 24 is a flowchart of a device manufacturing method according to the present invention.
FIG. 25 is an explanatory view of a part of FIG. 1;
FIG. 26 is a schematic view of a main part of a conventional lighting device.
[Explanation of symbols]
1 Laser
2 Interference reduction means
3 Beam shaping means
4 Light flux vibration suppression means
5 Condensing optical system
6 Beam mixing means
7 Telecentric adjustment means
8 Drive mechanism
9 Imaging system (zoom)
10 Multi-beam generating means
11 Irradiation means
12 Irradiated surface (reticle)
13 Projection optical system
14 Substrate (wafer)
15 Detector

Claims (15)

光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
テレセン調整手段は、入射面側が凹面で出射面側が凸面の円錐面を持つ光学部材から成り、多光束発生手段の入射面上での光強度分布を輪帯状に変換すると共に、光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
A zoom optical system between the light beam mixing means and the multi-beam generating means, which substantially conjugates an exit surface of the light beam mixing means and an incident surface of the multi-beam generating means; and a light beam from the light beam mixing means. Telecentric adjustment means for guiding the light to the zoom optical system,
The telecentricity adjustment means, together with the incident surface side is made of an optical member emitting surface side with concave has a conical surface convex to convert the light intensity distribution on the entrance surface of the multibeam generation unit to annular, and the optical axis It is provided movably in a vertical plane ,
A projection exposure apparatus , wherein the telecentric adjustment means adjusts telecentricity on the substrate by displacing a light amount distribution on an incident surface of the multi-beam generating means .
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
テレセン調整手段は入射面側が凹面で出射面側が凸面の多角錐面を持つ光学部材から成り、多光束発生手段の入射面上での光強度分布が強度の強い部分が離散的に存在する様に変換すると共に、光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
A zoom optical system between the light beam mixing means and the multi-beam generating means, which substantially conjugates an exit surface of the light beam mixing means and an incident surface of the multi-beam generating means; and a light beam from the light beam mixing means. Telecentric adjustment means for guiding the light to the zoom optical system,
The telecentricity adjustment means comprises an incident surface side from the optical member having an exit surface side pin section of the convex concave, high partial light intensity distribution of intensity on the incident surface of the multibeam generation unit exist discretely And is provided so as to be movable in a plane perpendicular to the optical axis ,
A projection exposure apparatus , wherein the telecentric adjustment means adjusts telecentricity on the substrate by displacing a light amount distribution on an incident surface of the multi-beam generating means .
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
テレセン調整手段は、輪帯状の位相分布を有する回折光学素子を2つ有しており、多光束発生手段の入射面上での光強度分布を輪帯状に変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
A zoom optical system between the light beam mixing means and the multi-beam generating means, which substantially conjugates an exit surface of the light beam mixing means and an incident surface of the multi-beam generating means; and a light beam from the light beam mixing means. Telecentric adjustment means for guiding the light to the zoom optical system,
The telecentricity adjustment means, a diffractive optical element having a phase distribution of the annular has two converts the light intensity distribution on the entrance surface of the multibeam generation unit in annular, the two diffraction The optical element is integrally provided so as to be movable in a plane perpendicular to the optical axis ,
A projection exposure apparatus , wherein the telecentric adjustment means adjusts telecentricity on the substrate by displacing a light amount distribution on an incident surface of the multi-beam generating means .
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
該光束混合手段と該多光束発生手段との間に、該光束混合手段の出射面と該多光束発生手段の入射面とを略共役にするズーム光学系と、該光束混合手段からの光束を該ズーム光学系に導光するテレセン調整手段と、を有し、
テレセン調整手段は回折光学素子を2つ有しており、該回折光学素子は多数の領域に面積分割され、且つ各々の領域は直線状のパターンから形成されており、また各々の領域で光束の回折方向が異なっていて、多光束発生手段の入射面上での光強度分布を、強度の強い部分が離散的に存在するように変換するとともに、2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられており、
該テレセン調整手段により、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
A zoom optical system between the light beam mixing means and the multi-beam generating means, which substantially conjugates an exit surface of the light beam mixing means and an incident surface of the multi-beam generating means; and a light beam from the light beam mixing means. Telecentric adjustment means for guiding the light to the zoom optical system,
The telecentric adjustment means has two diffractive optical elements , the diffractive optical elements are divided into a number of areas, and each area is formed from a linear pattern. have different diffraction direction of the light beam, the light intensity distribution on the entrance surface of the multibeam generation unit, together with portion having strong intensity be converted to exist discretely, the two diffractive optical elements to integrally It is provided so as to be movable in a plane perpendicular to the optical axis ,
A projection exposure apparatus , wherein the telecentric adjustment means adjusts telecentricity on the substrate by displacing a light amount distribution on an incident surface of the multi-beam generating means .
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、入射面側が凹面で出射面側が凸面の円錐面を持つ光学部材を有し、
該光学部材は、前記多光束発生手段の入射面上での光強度分布を輪帯状に変換すると共に、光軸と垂直な面内で移動可能に設けられ、
該光学部材により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
Between the light beam mixing means and the multi-beam light generation means, an optical member having a conical surface with a concave incident surface side and a convex exit surface side,
The optical member converts the light intensity distribution on the incident surface of the multi-beam generating means into an annular shape, and is provided movably in a plane perpendicular to the optical axis,
A projection exposure apparatus, wherein the optical member adjusts telecentricity on the substrate by displacing a light amount distribution on an incident surface of the multi-beam generating means.
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、入射面側が凹面で、出射面側が凸面の多角錐面を持つ光学部材を有し、
該光学部材は、前記多光束発生手段の入射面上での光強度分布が強度の強い部分が離散的に存在する様に変換すると共に、光軸と垂直な面内で移動可能に設けられ、
該光学部材により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
An optical member having a polygonal pyramid surface having a concave incident surface side and a convex exit surface side between the light beam mixing means and the multi-beam generating means,
The optical member is provided such that the light intensity distribution on the incident surface of the multi-beam generating means converts such that a portion having a high intensity is discretely present, and is movably provided in a plane perpendicular to the optical axis,
A projection exposure apparatus, wherein the optical member adjusts telecentricity on the substrate by displacing a light amount distribution on an incident surface of the multi-beam generating means.
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
前記光束混合手段と多光束発生手段との間に、輪帯状の位相分布を有する回折光学素子を2つ有しており、
該2つの回折光学素子は、前記多光束発生手段の入射面上での光強度分布を輪帯状に変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられ、
該2つの回折光学素子により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
Between the light beam mixing means and the multi-beam light generation means, there are two diffractive optical elements having an annular phase distribution,
The two diffractive optical elements convert the light intensity distribution on the incident surface of the multi-beam generating means into an annular shape, and the two diffractive optical elements move integrally in a plane perpendicular to the optical axis. Provided as possible,
A projection exposure apparatus, wherein the two diffractive optical elements are used to adjust a telecentric property on the substrate by displacing a light quantity distribution on an incident surface of the multi-beam generating means.
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した
物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置
において、
前記光束混合手段と多光束発生手段との間に、回折光学素子を2つ有しており、
該2つの回折光学素子は、多数の領域に面積分割され、且つ各々の領域は直線状のパターンから形成されており、また各々の領域で光束の回折方向が異なっていて、前記多光束発生手段の入射面上での光強度分布を、強度の強い部分が離散的に存在するように変換するとともに、該2つの回折光学素子が一体となって光軸と垂直な面内で移動可能に設けられ、
該2つの回折光学素子により、前記多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
It has two diffractive optical elements between the light beam mixing means and the multi-beam light generation means,
The two diffractive optical elements are area-divided into a number of areas, each area is formed from a linear pattern, and the diffraction direction of the light flux in each area is different. The light intensity distribution on the incident surface is converted so that a portion with high intensity exists discretely, and the two diffractive optical elements are integrally provided so as to be movable in a plane perpendicular to the optical axis. And
A projection exposure apparatus, wherein the two diffractive optical elements are used to adjust a telecentric property on the substrate by displacing a light quantity distribution on an incident surface of the multi-beam generating means.
光源からの光束を集光する集光光学系と、該集光光学系からの光束を混合して射出する光束混合手段と、該光束混合手段からの出射光束を用いて多数の部分光束を発生させる多光束発生手段と、該多光束発生手段からの光束を重ね合わせた状態で被照射面を照射する照射手段と、被照射面に配置した物体面上のパターンを基板上に投影露光する投影光学系とを有する投影露光装置において、
複数のテレセン調整手段をターレット式に設け、前記光束混合手段と前記多光束発生手段との間の光路中に、該複数のテレセン調整手段のうちの一つを選択して配置することにより、該多光束発生手段の入射面上の光量分布を変位させて該基板上でのテレセントリック性を調整していることを特徴とする投影露光装置。
A condensing optical system for condensing the light beam from the light source, a light beam mixing means for mixing and emitting the light beam from the light collecting optical system, and generating a number of partial light beams using the light beam emitted from the light beam mixing means. Means for irradiating an illuminated surface in a state where the luminous fluxes from the multi-beam generating means are superimposed, and projection for projecting and exposing a pattern on an object surface arranged on the illuminated surface onto a substrate. A projection exposure apparatus having an optical system,
By providing a plurality of telecentric adjustment means in a turret type, and selecting and arranging one of the plurality of telecentric adjustment means in an optical path between the light beam mixing means and the multi-beam generating means, A projection exposure apparatus, wherein a light quantity distribution on an incident surface of a multi-beam generating means is displaced to adjust telecentricity on the substrate.
前記テレセン調整手段は、複数の傾きの異なる平行平板を有することを特徴とする請求項の投影露光装置。10. The projection exposure apparatus according to claim 9 , wherein the telecentric adjustment unit has a plurality of parallel flat plates having different inclinations. 前記テレセン調整手段は、σの変化に対応して、前記複数の平行平板を交換することを特徴とする請求項10の投影露光装置。11. The projection exposure apparatus according to claim 10 , wherein the telecentric adjustment unit exchanges the plurality of parallel flat plates according to a change in σ. 前記基板上でのテレセントリック性を検出する検出器からの結果に基づき前記テレセン調整手段の調整量を自動制御することを特徴とする請求項1〜4のいずれか1項の投影露光装置。The projection exposure apparatus according to any one of claims 1 to 4, wherein an adjustment amount of the telecentric adjustment unit is automatically controlled based on a result from a detector that detects telecentricity on the substrate. 前記基板上でのテレセントリック性を検出する検出器からの結果に基づき前記光学部材の調整量を自動制御することを特徴とする請求項又はの投影露光装置。Projection exposure apparatus according to claim 5 or 6, characterized in that automatically controlling the adjustment amount of the optical member based on the results from the detector for detecting the telecentricity on the substrate. 前記基板上でのテレセントリック性を検出する検出器からの結果に基づき前記2つの回折光学素子の調整量を自動制御することを特徴とする請求又はの投影露光装置。The projection exposure apparatus according to 7 or 8, characterized in that automatically controlling the adjustment amount of the two diffractive optical elements based on the results from the detector for detecting the telecentricity on the substrate. 請求項1〜14のいずれか1項記載の投影露光装置を用いてレチクル面上のパターンをウエハ面上に投影し、露光した後に該ウエハを現像処理工程を介してデバイスを製造していることを特徴とするデバイスの製造方法。Using the projection exposure apparatus according to any one of claims 1-14 projecting a pattern on the reticle surface on the wafer surface, it has been manufacturing device through a development processing step the wafer after exposure A method for manufacturing a device, comprising:
JP30329798A 1998-10-09 1998-10-09 Projection exposure apparatus and device manufacturing method using the same Expired - Fee Related JP3571935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30329798A JP3571935B2 (en) 1998-10-09 1998-10-09 Projection exposure apparatus and device manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30329798A JP3571935B2 (en) 1998-10-09 1998-10-09 Projection exposure apparatus and device manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2000114163A JP2000114163A (en) 2000-04-21
JP3571935B2 true JP3571935B2 (en) 2004-09-29

Family

ID=17919268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30329798A Expired - Fee Related JP3571935B2 (en) 1998-10-09 1998-10-09 Projection exposure apparatus and device manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3571935B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518170C2 (en) * 2000-06-27 2002-09-03 Micronic Laser Systems Ab Multi-beam pattern generator and scanning method
JP4659223B2 (en) 2001-01-15 2011-03-30 キヤノン株式会社 Illumination apparatus, projection exposure apparatus used therefor, and device manufacturing method
JP5035747B2 (en) 2007-03-16 2012-09-26 株式会社ニコン Optical integrator, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP4950795B2 (en) * 2007-07-30 2012-06-13 キヤノン株式会社 Exposure apparatus, device manufacturing method, and correction method
WO2012089224A1 (en) * 2010-12-28 2012-07-05 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
JP6980443B2 (en) * 2017-07-28 2021-12-15 キヤノン株式会社 Exposure equipment and article manufacturing method

Also Published As

Publication number Publication date
JP2000114163A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP4865270B2 (en) Exposure apparatus and device manufacturing method using the same
JP3232473B2 (en) Projection exposure apparatus and device manufacturing method using the same
US7433447B2 (en) X-ray generator and exposure apparatus
JP3610175B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP3937580B2 (en) Projection exposure apparatus and device manufacturing method using the same
JPH10303123A (en) Projection aligner and manufacture of device using the same
JP3576685B2 (en) Exposure apparatus and device manufacturing method using the same
JP4392879B2 (en) Projection exposure apparatus and device manufacturing method
JP2005310453A (en) Light source device and exposure device having the light source device
JP4474121B2 (en) Exposure equipment
JP3599648B2 (en) Illumination apparatus, projection exposure apparatus, and device manufacturing method using the same
JP4366163B2 (en) Illumination apparatus and exposure apparatus
JP3571935B2 (en) Projection exposure apparatus and device manufacturing method using the same
JP2005302825A (en) Exposure system
JP4838430B2 (en) Exposure apparatus and device manufacturing method
JP2008124308A (en) Exposure method and exposure apparatus, and device manufacturing method using the same
JPH0729816A (en) Projection aligner and fabrication of semiconductor element employing it
JP3571945B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3223646B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same
JPH10106942A (en) Scanning type exposing device and manufacture of semiconductor device using the device
JPH0945607A (en) Illumination device, aligner and manufacture of device
JPH1092729A (en) Illumination device and scanning projection aligner using the same
JP2003100612A (en) Surface position detecting apparatus, method of adjusting the focusing apparatus, surface position detecting method, exposing apparatus and method of manufacturing device
JPH0794403A (en) Lighting device and projection aligner using same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees