WO2009150871A1 - Exposure apparatus and device manufacturing method - Google Patents

Exposure apparatus and device manufacturing method Download PDF

Info

Publication number
WO2009150871A1
WO2009150871A1 PCT/JP2009/053632 JP2009053632W WO2009150871A1 WO 2009150871 A1 WO2009150871 A1 WO 2009150871A1 JP 2009053632 W JP2009053632 W JP 2009053632W WO 2009150871 A1 WO2009150871 A1 WO 2009150871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
exposure apparatus
optical
intensity distribution
Prior art date
Application number
PCT/JP2009/053632
Other languages
French (fr)
Japanese (ja)
Inventor
修 谷津
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2009150871A1 publication Critical patent/WO2009150871A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control

Definitions

  • the present invention relates to a technique for illuminating an irradiated surface using a plurality of optical elements each capable of spatially modulating light, and exposing a pattern placed on the irradiated surface onto a substrate.
  • a pattern of a reticle (or photomask) is transferred to a wafer (or glass plate, etc.) via a projection optical system.
  • an exposure apparatus such as a batch exposure type projection exposure apparatus such as a stepper or a scanning exposure type projection exposure apparatus such as a scanning stepper is used.
  • the exposure wavelength has been shortened to increase the resolution, and recently, excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm) is used as exposure light.
  • excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm) is used as exposure light.
  • an F 2 laser wavelength 157 nm
  • the like is also being studied.
  • a reticle pattern (or mask pattern or the like) can be illuminated with an optimal light intensity distribution (intensity distribution) in order to accurately transfer a fine pattern onto a wafer.
  • an optimal light intensity distribution intensity distribution
  • modified illumination for forming an annular or multipolar (for example, dipole or quadrupole) light intensity distribution on the illumination pupil plane of the illumination optical system is performed, and the depth of focus and resolution of the projection optical system are reduced.
  • Improvement technology is attracting attention.
  • As one of the techniques for example, in order to convert a light beam from a light source into a light beam having a ring-shaped or multipolar light intensity distribution on the illumination pupil plane of the illumination optical system, it is arranged in a two-dimensional array.
  • a spatial light modulator having a large number of minute mirror elements is provided, and predetermined light is applied to the illumination pupil plane of the illumination optical system or a plane conjugate with the illumination pupil plane by changing the tilt angle and tilt direction of each mirror element.
  • An exposure apparatus that forms an intensity distribution has been proposed (see, for example, Patent Document 1).
  • the illumination pupil plane of the illumination optical system or a plane conjugate with the illumination pupil plane using a spatial light modulator having a large number of minute mirror elements arranged in a two-dimensional array is formed, and the laser light from the laser light source is wavefront-divided by a plurality of minute mirror elements of the spatial light modulator.
  • the number of wavefront divisions by a spatial light modulator of a type including a plurality of micromirror elements is smaller than the number of wavefront divisions by a typical diffractive optical element, there is a problem that unevenness of pupil intensity distribution occurs.
  • the present invention has been made in view of the above-described problems, and an object thereof is to reduce the influence of unevenness of pupil intensity distribution formed on an illumination pupil plane of an illumination optical system in an exposure apparatus.
  • An exposure apparatus is an exposure apparatus that illuminates a pattern using a plurality of pulse lights from a light source device that supplies pulse light, and exposes a substrate with the plurality of pulse lights that pass through the pattern.
  • a spatial light modulator having a plurality of optical elements that are dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light; and the light that passes through the spatial light modulator
  • a pupil intensity distribution forming optical system that forms a pupil intensity distribution on a predetermined plane based on the optical element driving unit that individually controls and drives the states of the plurality of optical elements.
  • the optical element driving unit changes the state of the plurality of optical elements while the minimum number of pulses of the plurality of pulsed light exposed to each point of the exposed region on the substrate is emitted.
  • the optical element driving unit performs every pulse number smaller than the minimum pulse number (required pulse number) that is the number of pulsed light necessary for exposing each point of the exposed area on the substrate. , Changing the states of the plurality of optical elements.
  • a device manufacturing method includes an exposure step of exposing the pattern onto the substrate using the exposure apparatus according to the present invention, developing the substrate onto which the pattern has been transferred, and a mask having a shape corresponding to the pattern A development step of forming a layer on the surface of the substrate; and a processing step of processing the surface of the substrate through the mask layer.
  • the state of the plurality of optical elements of the spatial light modulator is changed for each number of pulses smaller than the minimum number of pulses, which is the number of pulsed light necessary for exposing a predetermined point in the exposed area. is doing.
  • the predetermined point includes the pulse light when the plurality of optical elements of the spatial light modulator are in the first state, and the pulse when the second state is different from the first state.
  • the light will reach at least.
  • the pupil intensity distribution is averaged over time to reduce (reduce) the influence of the unevenness of the pupil intensity distribution, and exposure can be performed under stable and favorable illumination conditions. It can be carried out.
  • FIG. 1 It is a figure which shows schematic structure of the exposure apparatus of an example of embodiment of this invention.
  • A) is an enlarged perspective view showing a part of the spatial light modulator 13 of FIG. 1
  • (B) is an enlarged perspective view showing a drive mechanism of the mirror element 3 of FIG.
  • A) is a figure which shows the secondary light source at the time of bipolar illumination
  • B) is a figure which shows the light intensity distribution of the cross section in the predetermined one direction of the secondary light source of FIG. 3 (A).
  • A) is a diagram showing the state of the tilt angle of the mirror element of the spatial light modulator 13 in FIG. 1 during dipole illumination
  • (B) is a light flux from the mirror element having a tilt angle distribution different from that in FIG. 4 (A).
  • FIG. 4 The figure which shows the state which performs dipole illumination
  • C is a figure which shows the state which performs dipole illumination with the light beam from the mirror element of inclination-angle distribution different from FIG. 4 (A) and FIG. 4 (B).
  • A) is a diagram showing the light intensity distribution on the illumination pupil plane when the mirror element of the spatial light modulator 13 of FIG. 1 is in the state shown in FIG. 4 (A)
  • (B) is the two in FIG. 5 (A).
  • C) is the light in the illumination pupil plane in case the mirror element of the spatial light modulator 13 of FIG. 1 is in the state shown in FIG.4 (B).
  • FIG. 5D is a diagram showing an intensity distribution
  • FIG. 5D is a diagram showing a light intensity distribution of a cross section in a predetermined direction of the secondary light source of FIG. 5C
  • (F) is a figure which shows the light intensity distribution of the cross section in the predetermined one direction of the secondary light source of FIG.5 (E). It is. It is a figure of the principal part which shows the illumination area
  • (A) is a diagram showing another secondary light source during dipole illumination
  • (B) is a diagram showing a secondary light source during normal illumination
  • (C) is a diagram showing a secondary light source during annular illumination
  • D) is a diagram showing a secondary light source during quadrupole illumination.
  • (A) is a figure which shows the structural example of the illumination optical system using the rod type
  • (B) is a figure which shows the principal part of the structural example of the illumination optical system which does not use a prism. It is a flowchart which shows an example of the process at the time of manufacturing a device using the exposure apparatus of embodiment.
  • ILS ... illumination optical system, R ... reticle, PL ... projection optical system W ... wafer, 3 ... mirror element, 7 ... light source, 9 ... 1/2 wavelength plate 10 DESCRIPTION OF SYMBOLS ... Depolarizer, 12 ... Prism, 13 ... Spatial light modulator 14 ... Relay optical system, 15 ... Fly eye lens, 30 ... Main control system 31 ... Modulation control part, 50 ... Rod type integrator, 100 ... Exposure apparatus
  • FIG. 1 is a view showing a schematic configuration of a scanning exposure type exposure apparatus (projection exposure apparatus) 100 comprising a scanning stepper according to this embodiment.
  • an exposure apparatus 100 illuminates a pattern surface (illuminated surface) of a reticle R (mask) with exposure illumination light (exposure light) IL from an exposure light source 7 that emits pulsed light.
  • ILS reticle stage RST for positioning and moving reticle R
  • projection optical system PL for projecting an image of the pattern of reticle R onto wafer W (photosensitive substrate) arranged on the exposure surface
  • the Z axis is set perpendicular to the guide surface (not shown) of wafer stage WST
  • the Y axis is perpendicular to the paper surface of FIG. 1 in the direction parallel to the paper surface of FIG.
  • the reticle R and the wafer W are scanned in the Y direction (scanning direction) during exposure.
  • an ArF excimer laser light source is used that emits a pulse of approximately linearly polarized laser light having a wavelength of 193 nm and a pulse width of about 50 ns at a frequency of about 4 to 6 kHz.
  • a KrF excimer laser light source that supplies pulsed light with a wavelength of 248 nm
  • an F 2 laser light source that supplies pulsed light with a wavelength of 157 nm, or a light-emitting diode that is pulsed can be used.
  • a solid-state pulse laser light source that generates harmonics of laser light output from a YAG laser or a semiconductor laser, or a solid-state pulse that generates harmonics of light obtained by amplifying the semiconductor laser light with a fiber amplifier.
  • Laser light sources can also be used.
  • the solid-state pulse laser light source can emit laser light with a wavelength of 193 nm (various other wavelengths are possible) and a pulse width of about 1 ns at a frequency of about 1 to 2 MHz.
  • the power source control unit 32 is connected to the light source 7. Then, the main control system 30 of the exposure apparatus 100 supplies a light emission trigger pulse TP instructing the pulse light emission timing and the light amount (pulse energy) to the power supply control unit 32. In synchronization with the light emission trigger pulse TP, the power supply control unit 32 causes the light source 7 to emit pulses at the instructed timing and light quantity.
  • Linearly polarized illumination light IL made up of pulsed laser light having a rectangular and substantially parallel light flux emitted from the light source 7 is incident on a beam expander 8 having a pair of concave and convex lenses and enlarged. .
  • the illumination light IL emitted from the beam expander 8 is a half-wave plate 9 (polarization control member) for rotating the polarization direction of the illumination light IL in a predetermined direction in the illumination optical system ILS having the optical axis AXI.
  • the illumination light IL passes through a polarization optical system including a depolarizer 10 that converts the illumination light IL into random polarization (non-polarization).
  • the depolarizer 10 includes a wedge-shaped first prism 10a made of a birefringent material (for example, quartz) and a second prism 10b made of a material (for example, quartz) that has a complementary shape and does not have birefringence. It is provided so as to be detachable with respect to the illumination optical path. When the depolarizer 10 is inserted into the illumination optical path, the illumination light IL that has passed through the depolarizer 10 is unpolarized.
  • a birefringent material for example, quartz
  • a second prism 10b made of a material that has a complementary shape and does not have birefringence. It is provided so as to be detachable with respect to the illumination optical path.
  • the half-wave plate 9 is provided so as to be rotatable around the optical axis AXI.
  • the half-wave plate 9 is interposed via the half-wave plate 9. It is possible to control the polarization direction of the illumination light IL, and hence the polarization direction of light reaching the irradiated surface or the exposed surface.
  • the rotation of the half-wave plate 9 around the optical axis AXI is controlled by the drive unit 33 in accordance with a command from the main control system 30.
  • the half-wave plate 9 and the depolarizer 10 can be regarded as a polarization control unit.
  • the detailed configuration and operation of the polarization control unit including the half-wave plate 9 and the depolarizer 10 are disclosed in US Patent Publication No. 2006/0055834.
  • the illumination light IL that has passed through the polarization control unit is reflected in the + Y direction by the mirror 11 for bending the optical path, and then, along the optical axis AXI, a prism 12 having an entrance surface 12d and an exit surface 12e perpendicular to the optical axis AXI. Is incident on the incident surface 12d.
  • the prism 12 is made of an optical material such as fluorite (CaF 2 ) or quartz that transmits the illumination light IL.
  • the prism 12 has a first reflecting surface 12a that intersects the incident surface 12d clockwise at about 60 ° about an axis parallel to the X axis, and the first reflecting surface 12a and the XZ plane.
  • the second reflection surface 12b is substantially symmetric with respect to the parallel surface, and the transmission surface 12c is parallel to the XY plane and orthogonal to the incident surface 12d (exit surface 12e).
  • each mirror element 3 can be controlled almost continuously within a predetermined variable range with respect to the angle of inclination of the reflecting surface around an axis parallel to the X axis and the Y axis (two axes orthogonal to each other). As an example, at the center within the variable range, the reflecting surface of each mirror element 3 is substantially parallel to the transmitting surface 12c.
  • FIG. 2A is an enlarged perspective view showing a part of the spatial light modulator 13.
  • the spatial light modulator 13 determines the angles of a large number of mirror elements 3 arranged so as to be in close contact with each other at a constant pitch in the X direction and the Y direction, and the reflection surfaces of the large number of mirror elements 3.
  • the drive part 4 controlled individually is included.
  • the number of arrangements of the mirror elements 3 in the X direction and the Y direction is, for example, thousands.
  • the drive mechanism of the mirror element 3 includes a support substrate 38, a support member 36 that is formed on the support substrate 38 and supports the mirror element 3 in a swingable manner.
  • the mirror element 3 is controlled by controlling the potential difference between the four electrodes 39 and the back surface of the mirror element 3 to control the electrostatic force acting between the electrode 39 and the back surface of the mirror element 3. Can be swung and tilted. Thereby, the inclination angle around two orthogonal axes of the reflection surface of the mirror element 3 supported by the support member 36 can be continuously controlled within a predetermined variable range.
  • a more detailed configuration of the spatial light modulator 13 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-353105.
  • the drive mechanism of the mirror element 3 is not limited to the configuration of the present embodiment, and any other mechanism can be used.
  • the mirror element 3 is a substantially square plane mirror, the shape thereof may be an arbitrary shape such as a rectangle. However, from the viewpoint of light utilization efficiency, a shape that can be arranged without a gap is preferable. Moreover, it is preferable that the interval between the adjacent mirror elements 3 is minimized.
  • the shape of the mirror element 3 is, for example, about 10 ⁇ m square to several tens ⁇ m square. In order to reduce the influence of diffracted light from the peripheral edge of the mirror element 3, the mirror element 3 is made as much as possible. Small is preferable. Moreover, in order to enable fine changes in illumination conditions, the mirror element 3 is preferably as small as possible.
  • the reflecting surface of the mirror element 3 is a flat surface, it can be a concave reflecting surface or a convex reflecting surface.
  • the spatial light modulator 13 for example, Japanese Patent Laid-Open No. 10-503300 and European Patent Publication No. 779530 corresponding thereto, Japanese Patent Application Laid-Open No. 2004-78136, and US Patent No. 6 corresponding thereto. , 900,915, JP-T 2006-524349, and US Pat. No. 7,095,546 corresponding thereto, and JP-A-2006-113437. it can.
  • these spatial light modulators are used in the illumination optical system ILS, the respective light beams through the individual reflecting surfaces of the spatial light modulator are pupil intensity distribution forming optical systems (relay optical system 14) at a predetermined angle. , And a predetermined light intensity distribution according to control signals to a plurality of mirror elements (reflection elements) can be formed on the illumination pupil plane.
  • the main control system 30 supplies the modulation control unit 31 with information on illumination conditions and information on the emission timing of the illumination light IL.
  • the modulation control unit 31 each time the illumination light IL is emitted by a plurality of pulses smaller than the minimum number of pulses, the illumination condition is maintained, and the rotation around the two axes of the many mirror elements 3 is performed.
  • the drive unit 4 is controlled so as to sequentially switch the distribution of the inclination angles to a plurality of states periodically (details will be described later).
  • the spatial light modulator 13 forms a desired pupil intensity distribution in the far field.
  • the illumination light IL incident on the incident surface 12d of the prism 12 in parallel or substantially parallel to the optical axis AXI is totally reflected by the first reflecting surface 12a, and then passes through the transmitting surface 12c to be transmitted to the spatial light modulator 13.
  • the illumination light IL reflected by the large number of mirror elements 3 enters the transmission surface 12c again, is totally reflected by the second reflection surface 12b, and is emitted from the emission surface 12e.
  • the angle of the first reflecting surface 12a with respect to the incident surface 12d is such that the light beam incident perpendicularly to the incident surface 12d is totally reflected by the first reflecting surface 12a and the light beam totally reflected by the first reflecting surface 12a is the transmitting surface. It may be in a range that transmits 12c.
  • the reflection surface of any mirror element 3 is substantially parallel to the transmission surface 12c, the illumination light IL reflected by the mirror element 3 is transmitted through the transmission surface 12c and is reflected by the second reflection surface 12b. After being totally reflected, the light is emitted almost parallel to the optical axis AXI through the emission surface 12e.
  • each mirror element 3 controls the inclination angle of each mirror element 3 around the two axes, the angles of the two directions orthogonal to the optical axis AXI of the illumination light IL reflected from the mirror element 3 and emitted from the prism 12 are controlled. it can.
  • Controlling the angle of the illumination light IL with respect to the optical axis AXI is spatial modulation by each mirror element 3 of the present embodiment, and the angle of the illumination light IL from each mirror element 3 with respect to the optical axis AXI is controlled.
  • the distribution corresponds to one illumination control pattern.
  • the reflection surfaces 12a and 12b of the prism 12 use total reflection
  • a reflection film may be formed on the reflection surfaces 12a and 12b, and the illumination light IL may be reflected by the reflection film.
  • the illumination light IL emitted from the prism 12 enters the fly-eye lens 15 (optical integrator) via the relay optical system 14.
  • the reflecting surface of each mirror element 3 is disposed substantially at the front focal plane of the relay optical system 14, and the incident surface of the fly-eye lens 15 is disposed substantially at the rear focal plane of the relay optical system 14. It is not limited to this arrangement.
  • FIG. 4A shows an optical system from the prism 12 to the fly-eye lens 15 in FIG.
  • the inclination angle of the light beam incident on the relay optical system 14 with respect to the optical axis AXI is ⁇ and the rear focal length of the relay optical system 14 is f, for example, on the incident surface of the fly-eye lens 15.
  • the height h from the optical axis AXI at the position where the light beam is condensed is as shown in the following equation (1).
  • h f ⁇ sin ⁇ (1)
  • the relay optical system 14 determines the illumination light IL reflected by each mirror element 3 on the incident surface of the fly-eye lens 15 that is determined in accordance with two orthogonal angles with respect to the optical axis AXI.
  • An angle / position conversion function for condensing light at positions in the X and Z directions is provided.
  • the illumination light IL incident on the spatial light modulator 13 via the prism 12 is divided with the mirror element 3 as a unit, and is deflected at a predetermined angle in a predetermined direction according to the inclination direction and the inclination angle of each mirror element 3 ( Reflected).
  • the reflected light from each mirror element 3 can be condensed by the prism 12 and the relay optical system 14 at an arbitrary position on the incident surface of the fly-eye lens 15 according to the direction and angle.
  • the illumination light IL incident on the fly-eye lens 15 is two-dimensionally divided by a large number of lens elements, and a light source is formed on the rear focal plane of each lens element.
  • the pupil plane (illumination pupil plane 22) of the illumination optical system ILS which is the rear focal plane of the fly-eye lens 15, has substantially the same intensity distribution as the illumination area formed by the light flux incident on the fly-eye lens 15.
  • a secondary light source is formed, that is, a secondary light source consisting essentially of a surface light source.
  • the light intensity distribution on the incident surface of the fly-eye lens 15 and thus the fly-eye lens are controlled by individually controlling the tilt direction and tilt angle of the reflecting surface of each mirror element 3 of the spatial light modulator 13. It is possible to control the intensity distribution of the secondary light source on the illumination pupil plane 22 at or near the position of the 15 rear focal plane to an almost arbitrary distribution.
  • the secondary light source on the surface 22 has two secondary light sources 24A and 24B in the Z direction (corresponding to the Y direction on the reticle surface) in FIG. 3B (or two in the X direction in FIG. 7A).
  • Next light source 24C, 24D Next light source 24C, 24D.
  • the spatial light modulator 13 converts the secondary light source on the illumination pupil plane 22 into a circular secondary light source 28A for normal illumination in FIG. 7B and an annular illumination secondary light in FIG. 7C.
  • the spatial light modulator 13 can change the interval between the secondary light sources 24A and 24B and / or the individual sizes of the secondary light sources 24A and 24B to arbitrary values in FIG. 3B, for example. It is.
  • the surface on which the secondary light source is formed is conjugate with the aperture stop AS of the projection optical system PL. It can be called the illumination pupil plane 22 of the illumination optical system ILS.
  • the illuminated surface (the surface on which the reticle R is disposed or the surface on which the wafer W is disposed) is an optical Fourier transform surface with respect to the illumination pupil plane 22.
  • the pupil intensity distribution (pupil luminance distribution) is an intensity distribution (luminance distribution) on the illumination pupil plane 22 of the illumination optical system ILS or a plane conjugate with the illumination pupil plane 22.
  • the global luminance distribution formed on the entrance surface of the fly-eye lens 15 and the global luminance distribution (pupil intensity distribution) of the entire secondary light source show a high correlation.
  • the intensity distribution on the incident surface of the lens 15 and the surface conjugate with the incident surface can also be called a pupil intensity distribution.
  • a microlens array or the like can be used.
  • illumination light IL from a secondary light source formed on the illumination pupil plane 22 includes a first relay lens 16, a reticle blind (field stop) 17, a second relay lens 18, an optical path bending mirror 19, and Via the condenser optical system 20, the rectangular illumination area 26 elongated in the X direction on the pattern surface (lower surface) of the reticle R is superimposed and illuminated so as to obtain a uniform illuminance distribution.
  • the illumination optical system ILS includes the optical members from the beam expander 8 to the condenser optical system 20.
  • Each optical member including the spatial light modulator 13 of the illumination optical system ILS is supported by a frame (not shown).
  • a two-dimensional CCD type or CMOS type imaging device having a light receiving surface capable of covering the cross section of the illumination light IL so that it can be inserted into and removed from the optical path of the illumination light IL between the mirror 11 and the prism 12 in FIG.
  • a photoelectric sensor 23 composed of a two-dimensional photodiode array or the like is disposed.
  • the photoelectric sensor 23 is fixed to, for example, a slider (not shown) that is movably supported on the frame, and a detection signal from the photoelectric sensor 23 is supplied to the modulation control unit 31.
  • the modulation control unit 31 causes the illumination light IL to emit light and capture a detection signal of each pixel (each light receiving element) of the photoelectric sensor 23.
  • the intensity distribution in the cross section of the light IL, and consequently the intensity ratio of the illumination light IL incident on each mirror element 3 of the spatial light modulator 13 (for example, the intensity when the intensity of the incident light of the central mirror element 3 is 1). It can be measured. Using this intensity ratio, the setting accuracy of the intensity distribution of the secondary light source on the illumination pupil plane 22 can be improved.
  • the pattern in the illumination area 26 of the reticle R is an exposed area on one shot area of the wafer W coated with a resist (photosensitive material) via a telecentric projection optical system PL on both sides (or one side on the wafer side). 27 is projected at a predetermined projection magnification (for example, 1/4, 1/5, etc.).
  • the reticle R is attracted and held on the reticle stage RST.
  • the reticle stage RST is movable at a constant speed in the Y direction on a guide surface of a reticle base (not shown), and at least in the X direction, the Y direction, and the Z axis. It is mounted so as to be movable in the direction of rotation.
  • the two-dimensional position of reticle stage RST is measured by a laser interferometer (not shown), and based on this measurement information, main control system 30 determines the position of reticle stage RST via a drive system (not shown) such as a linear motor. And control the speed.
  • wafer W is sucked and held on wafer stage WST via a wafer holder (not shown), and wafer stage WST moves stepwise in the X and Y directions on a guide surface (not shown) and is constant in Y direction. It can move at speed.
  • the two-dimensional position on the guide surface of wafer stage WST is measured by a laser interferometer (not shown), and based on this measurement information, main control system 30 passes through a drive system (not shown) such as a linear motor. Controls the position and speed of wafer stage WST.
  • a drive system such as a linear motor. Controls the position and speed of wafer stage WST.
  • an alignment system (not shown) for detecting the position of the alignment mark on the wafer W is also provided.
  • the main control system 30 selects an illumination condition (for example, the intensity distribution of the secondary light source on the illumination pupil plane 22) according to the pattern of the reticle R, and selects the selected illumination condition.
  • an illumination condition for example, the intensity distribution of the secondary light source on the illumination pupil plane 22
  • the modulation control unit 31 individually controls the tilt direction and tilt angle of each mirror element 3 of the spatial light modulator 13 to set the intensity distribution of the secondary light source on the illumination pupil plane 22.
  • the wafer W is moved to the scanning start position by the step movement of the wafer stage WST.
  • pulse light emission of the light source 7 is started, and the wafer W is moved to the exposure area via the wafer stage WST in synchronization with the movement of the reticle R in the Y direction with respect to the illumination area 26 via the reticle stage RST.
  • the projection magnification as a speed ratio in a direction corresponding to 27
  • one shot area of the wafer W is scanned and exposed.
  • the image of the pattern of the reticle R is exposed to all shot regions on the wafer W by the step-and-scan operation that repeats the step movement of the wafer W and the scanning exposure.
  • FIG. 3A is a diagram showing two-pole secondary light sources 24A and 24B that are separated in the Z direction on the illumination pupil plane 22
  • FIG. 3B is a diagram showing the secondary light sources 24A and 24B in the Z direction. It is a figure which shows light intensity distribution of a cross section.
  • 4A, 4 ⁇ / b> B, and 4 ⁇ / b> C are representatively selected from, for example, thousands of mirror elements 3 arranged in the Y direction of the spatial light modulator 13 of FIG. 1.
  • the reflected light from the plurality of mirror elements 3A to 3G is shown.
  • the two corresponding portions of the incident surface of the fly-eye lens 15 shown in FIGS. 4A, 4B, and 4C are almost the same. It is necessary to collect the illumination light IL in the circular areas 25A and 25B.
  • the inclination angles of the mirror elements 3A to 3G of the spatial light modulator 13 are set,
  • the reflected light is condensed on the two regions 25 ⁇ / b> A and 25 ⁇ / b> B on the incident surface of the fly-eye lens 15 via the second reflecting surface 12 b of the prism 12 and the relay optical system 14.
  • two-pole secondary light sources 24A1 and 24B1 are generated in the Z direction shown in FIG.
  • FIG. 5B shows the light intensity distribution in the Z direction of the two-pole secondary light sources 24A1 and 24B1 shown in FIG.
  • the reflected light from these mirrors 3A to 3C is collected in the region 25A in common.
  • the tilt angles of the mirrors 3D to 3G are the same and are symmetric to the mirrors 3A to 3C, the reflected light from the mirrors 3D to 3G is collected in a region 25B that is symmetrical to the region 25A in common.
  • the other mirror elements 3 in the same row of the spatial light modulator 13 and the tilt angles around the two axes of the mirror elements 3 in the other rows the reflected light is condensed on one of the regions 25A and 25B. Is set as follows.
  • the mirror elements 3A to 3G of the spatial light modulator 13 are irradiated as shown in FIG. 4B.
  • the region 25B is irradiated with the illumination light IL from the mirror elements 3A to 3C
  • the region 25A is irradiated with the illumination light IL from the mirror elements 3D to 3G.
  • the combination of the mirror elements 3A to 3G that reflect the illumination light IL condensed on the regions 25A and 25B is different from the state of FIG.
  • two-pole secondary light sources 24A2 and 24B2 are generated in the Z direction shown in FIG.
  • FIG. 5D shows the light intensity distribution in the Z direction of the two-pole secondary light sources 24A2 and 24B2 shown in FIG.
  • the distribution of the inclination angles of the mirror elements 3A to 3G of the spatial light modulator 13 is changed as shown in FIG. Then, the region 25B is irradiated with the illumination light IL from the mirror elements 3A, 3B, 3F, 3G on both sides, and the region 25A is irradiated with the illumination light IL from the central mirror elements 3C to 3E. Also in this case, the combination of the mirror elements 3A to 3G that reflect the illumination light IL condensed on the regions 25A and 25B is different from the state shown in FIGS.
  • FIG. 5F shows the light intensity distribution in the Z direction of the two-pole secondary light sources 24A3 and 24B3 shown in FIG. In this state, m pulses of illumination light IL smaller than the minimum number of pulses are irradiated.
  • the mirror element 3A that reflects the illumination light IL condensed on the regions 25A and 25B corresponding to the secondary light sources 24A and 24B.
  • the distribution of angles (illumination control pattern) of the illumination light IL reflected by the mirror elements 3A to 3G with respect to the optical axis AXI is gradually changed.
  • the distribution of the inclination angles of the mirror elements 3A to 3G is periodically repeated as shown in FIGS. 4 (A), 4 (B), 4 (C),.
  • the light intensity distribution formed on the illumination pupil plane 22 changes as shown in FIG. 5 (B), FIG. 5 (D), FIG. 5 (F),.
  • FIG. 6 shows a state in which the reticle R in FIG. 1 is scanned in the scanning direction SD (here, the ⁇ Y direction) with respect to the illumination area 26.
  • the width of the illumination area 26 in the Y direction is DY
  • the movement amount when an arbitrary point 41 on the pattern surface of the reticle R moves to the position 41A during the pulse emission of the illumination light IL is ⁇ Y.
  • the number of irradiation pulses (number of exposure pulses) N (N is an integer of 2 or more) of the illumination light IL with respect to the point 41 is substantially as shown in the following equation (2).
  • the number N of irradiation pulses is several tens, for example.
  • N DY / ⁇ Y (2)
  • the number M of the illumination control patterns is at least N.
  • the spatial light modulator is sequentially applied to any point 41 on the reticle R in FIG. 6 every time the illumination light IL is irradiated with m pulses while the illumination light IL is irradiated with N pulses in total.
  • the secondary light sources 24A2 and 24B2 shown in FIG. 5 and the secondary light sources 24A3 and 24B3 shown in FIGS. 5E and 5F are sequentially formed on the illumination pupil plane 22. At this time, the intensity distributions of the secondary light sources 24A1, 24B1, 24A2, 24B2, 24A3, 24B3,... Are non-uniform.
  • the integrated light intensity distribution of the secondary light sources is the secondary light sources 24A1, 24B1, secondary light sources 24A2, 24B2, and secondary light sources. 24A3, 24B3,..., So that unevenness in the light intensity distribution of the secondary light source is reduced by the temporal averaging effect. Due to this temporal averaging effect, an arbitrary condition on the reticle R is obtained under illumination conditions equivalent to the case of illumination with the secondary light sources 24A and 24B having the top hat-shaped light intensity distribution shown in FIG. This point 41 is illuminated.
  • the modulation control unit 31 stores information on the combination of the tilt angle distributions of the mirror elements 3A to 3G of the spatial light modulator 13 in the form of, for example, a look-up table for each illumination condition. Therefore, when the illumination control information is supplied from the main control system 30 to the modulation controller 31, the modulation controller 31 distributes the inclination angles of the mirror elements 3A to 3G of the spatial light modulator 13 according to the illumination condition. Read information about combinations. Then, according to the information on the emission timing of the illumination light IL supplied from the main control system 30 (information corresponding to the light emission trigger pulse TP), the mirror elements 3A to 3G of the spatial light modulator 13 every predetermined number of pulses m.
  • the mirror elements 3A to 3G of the spatial light modulator 13 are controlled so as to change the combination of the inclination angle distributions.
  • the predetermined number of pulses m is a number smaller than the minimum number of pulses that is the number of pulse lights necessary for exposing a predetermined point in the exposure area.
  • the influence of the unevenness of the pupil intensity distribution can be reduced.
  • the timing of changing the combination of the tilt angle distributions of the mirror elements 3A to 3G of the spatial light modulator 13 is changed every time the illumination light IL is emitted by m pulses. It does not have to be constant during one scanning exposure, and may change gradually, for example.
  • the modulation control unit 31 reflects the spatial light that reflects the illumination light IL that is condensed on each part of the secondary light source on the illumination pupil plane 22 every time the illumination light IL is emitted by m pulses.
  • the combination of the mirror elements 3 of the modulator 13 is changed to a different combination. As a result, the unevenness of the integrated light intensity distribution of the secondary light source formed on the illumination pupil plane 22 is reduced.
  • the exposure apparatus 100 of FIG. 1 of the present embodiment illuminates a pattern using a plurality of pulsed light from the light source device 7 that supplies pulsed light, and the substrate W is irradiated with the plurality of pulsed light via the pattern.
  • a spatial light modulator 13 having a plurality of optical elements 3 that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light.
  • a pupil intensity distribution forming optical system 14 that forms a pupil intensity distribution on a predetermined surface based on light through the spatial light modulator 13, and an optical element drive that individually controls and drives the states of the plurality of optical elements 3
  • the optical element driving unit (4, 31) has a minimum number of pulses of the plurality of pulsed light exposed to each point of the exposed region on the substrate W. While the light is emitted, the state of the plurality of optical elements 3 is changed.
  • the use efficiency of the illumination light IL is maintained high by individually controlling the angle of the illumination light IL (giving spatial modulation) by the plurality of mirror elements 3 of the spatial light modulator 13.
  • the illumination condition can be controlled by controlling the intensity distribution of the illumination light IL on the entrance surface of the fly-eye lens 15 and, consequently, the light intensity distribution on the illumination pupil plane 22 that is the exit surface of the fly-eye lens 15.
  • the angle of the light from the plurality of mirror elements 3 is switched to a combination of different angles, whereby a spatial light modulator.
  • the effect of uneven pupil intensity distribution is reduced by compensating for the lack of the wavefront division number due to the time division effect.
  • the influence of the unevenness of the pupil intensity distribution is reduced by using a temporal averaging effect by superimposing a plurality of pupil intensity distributions on the illumination pupil plane in a time division manner.
  • the spatial light modulator 13 serves as both the light intensity distribution forming member and the pupil intensity distribution unevenness reducing member, the configuration of the illumination optical system ILS is not complicated. Even when the number of wavefront divisions by the spatial light modulator is sufficient, it is possible to further reduce the influence of the unevenness of the pupil intensity distribution.
  • the illumination pupil plane 22 is a predetermined plane and the intensity distribution of the illumination light IL on the illumination pupil plane 22 is controlled, so that the illumination conditions can be controlled accurately.
  • a plane conjugate with the illumination pupil plane 22 may be a predetermined plane.
  • the surface near the illumination pupil plane 22 or the plane near the conjugate plane with the illumination pupil plane 22 may be regarded as the predetermined plane, and the light intensity distribution on these planes may be controlled.
  • the light intensity distribution on the entrance surface of the fly-eye lens 15 is substantially the same as the light intensity distribution on the exit surface (illumination pupil plane 22). Therefore, the incident surface of the fly-eye lens 15 or a surface in the vicinity thereof can be regarded as a predetermined surface.
  • An optical modulator 13 is used.
  • the utilization efficiency of illumination light IL is high.
  • each mirror element 3 of the spatial light modulator 13 of FIG. 1 Since the reflection surface of each mirror element 3 of the spatial light modulator 13 of FIG. 1 has a variable inclination angle around two orthogonal axes, the reflected light from each mirror element 3 is converted to the prism 12 and the relay. It can be guided to an arbitrary two-dimensional position on the entrance plane of the fly-eye lens 15 and thus on the illumination pupil plane 22 via the optical system 14. Therefore, it is possible to set an arbitrary illumination condition with high accuracy while maintaining the utilization efficiency of the illumination light IL at almost 100%.
  • each mirror element 3 may be controlled only by the inclination angle around at least one axis (for example, an axis parallel to the X axis in FIG. 1).
  • the reflected light from the plurality of mirror elements 3 in each row of the spatial light modulator 13 is converted into a corresponding one row region on the incident surface of the fly-eye lens 15. What is necessary is just to condense to either.
  • the inclination angle of the mirror element 3 corresponding to that row is set so that the reflected light deviates from the incident surface of the fly-eye lens 15. You only have to set it. In this case, the utilization efficiency of the illumination light IL is somewhat reduced, but the control of the spatial light modulator 13 is simplified.
  • a liquid crystal cell including a plurality of pixels (transmission elements) for controlling the amount of transmitted light can be used.
  • controlling the transmittance for light passing through each pixel is spatial modulation.
  • spatial light modulator 13 instead of the spatial light modulator 13, it is also possible to use the above-mentioned spatial light modulator including a plurality of phase elements (variable step elements or the like) for controlling the phase of the passing light.
  • a spatial light modulator including this phase element can be used as a diffractive optical element having a variable diffraction pattern.
  • the illumination optical system ILS of FIG. 1 is disposed in the vicinity of the spatial light modulator 13 and deflects in the direction in which the illumination light IL is incident on the plurality of mirror elements 3 (or on the plurality of mirror elements 3 side).
  • a prism 12 optical member
  • each optical member constituting the illumination optical system ILS can be arranged along the same straight line or a bent line bent 90 ° in the middle, so that the illumination optical system ILS can be easily designed and manufactured.
  • the number of irradiation pulses of the illumination light IL for each point on the reticle surface is N (N is an integer of 2 or more), and the illumination light IL is m pulses (m is 1 or more).
  • N is an integer of 2 or more
  • the illumination light IL is m pulses (m is 1 or more).
  • N is an integer of 2 or more
  • m is 1 or more.
  • a combination of tilt angles of the plurality of mirror elements 3 each time light is emitted, and consequently, an angle distribution (illumination control pattern) of the illumination light IL from the plurality of mirror elements 3 is M patterns defined by the expression (3). It has been switched to.
  • the combination of the tilt angles of the plurality of mirror elements 3 of the spatial light modulator 13 is only set periodically corresponding to one of the M illumination control patterns, and between the minimum number of pulses.
  • the pupil intensity distribution states at are different from each other. Therefore, it is possible to efficiently reduce the cumulative unevenness of the pupil intensity distribution.
  • the number of combinations of the tilt angles of the plurality of mirror elements 3 may be N.
  • the combination of the tilt angles of the plurality of mirror elements 3 is periodically switched to any one of the N combinations, thereby reducing the number of pulses between the minimum number of pulses.
  • the pupil intensity distribution states of are all different. Therefore, the cumulative unevenness of the pupil intensity distribution can be greatly reduced.
  • the illumination optical system ILS of FIG. 1 includes the fly-eye lens 15 (optical integrator) that illuminates the reticle surface with the illumination light IL from the illumination pupil plane 22, the reticle surface The uniformity of the illuminance distribution is improved.
  • a light source 7 for supplying the illumination light IL to the illumination optical system ILS, a power supply control unit 32, and a main control system 30 are provided. Therefore, the pulse emission timing of the light source 7 can be easily controlled with high accuracy.
  • the exposure apparatus 100 of the above embodiment is an exposure apparatus that projects an image of the reticle surface (first surface) onto the upper surface (second surface) of the wafer W, and the reticle surface is pulsed.
  • An illumination optical system ILS that illuminates with illumination light IL
  • a projection optical system PL that forms an image of the reticle surface on the wafer W based on light from the illumination region 26 formed on the reticle surface by the illumination optical system ILS.
  • the reticle is illuminated with the illumination light IL through the secondary light source in which the unevenness of the cumulative pupil intensity distribution is reduced. Therefore, the wafer W is exposed under stable illumination conditions (exposure conditions), and a final device can be manufactured with high accuracy.
  • the exposure apparatus 100 of the above embodiment may be applied to a step-and-repeat type exposure apparatus such as a stepper.
  • wafer stage WST in FIG. 1 only needs to have a function of moving in steps in the X and Y directions.
  • a rod type integrator as an internal reflection type optical integrator may be used.
  • a condensing optical system 51 is added on the reticle R side with respect to the relay optical system 14, and the reflection surface of the spatial light modulator 13 (of the mirror element 3).
  • the rod-type integrator 50 is arranged so that the incident end is positioned near the conjugate plane.
  • a relay optical system for forming an image of the reticle blind 17 (field stop) arranged on the exit end face of the rod integrator 50 or in the vicinity of the exit end face on the pattern surface (reticle surface) of the reticle R.
  • a mirror 19 and a condenser optical system 20 are also configurations of the illumination optical system ILSA.
  • the secondary light source is formed on the pupil plane 22 of the relay optical system 14 and the condensing optical system 51 (the virtual image of the secondary light source is formed in the vicinity of the incident end of the rod integrator 50).
  • the prism 12 is used. However, instead of the prism 12, a mirror having reflecting surfaces 12a and 12b may be installed on the optical path of the illumination light IL. . Further, as shown in FIG. 8B, the prism 12 may be omitted. In the configuration of FIG. 8B, the illumination light IL is irradiated from the oblique direction to the many mirror elements 3 of the spatial light modulator 13, and the illumination light IL reflected by the many mirror elements 3 is applied to the optical axis AXI. Along the relay optical system 14 and supplied to a fly-eye lens (not shown).
  • the spatial light modulator 13 for example, a spatial light modulator which is two-dimensionally arranged and can individually control the height of the reflection surface can be used.
  • a spatial light modulator for example, Japanese Patent Laid-Open No. 6-281869 and US Pat. No. 5,312,513 corresponding thereto, and Japanese Patent Laid-Open No. 2004-520618 and US Pat.
  • the spatial light modulator disclosed in FIG. 1d of Japanese Patent No. 6,885,493 can be used.
  • a two-dimensional height distribution is formed by a plurality of phase elements (optical elements), so that the same action as that of a phase type diffraction grating can be given to incident light.
  • a spatial light modulator having a plurality of reflection surfaces arranged two-dimensionally as described above is disclosed in, for example, JP-T-2006-513442 and US Pat. No. 6,891,655 corresponding thereto. Alternatively, it may be modified in accordance with the disclosure of JP 2005-524112 A and US Patent Publication No. 2005/0095749 corresponding thereto.
  • a device such as a semiconductor device
  • the device performs function / performance design of the device as shown in FIG.
  • a mask pattern (reticle) is manufactured based on this design step 222
  • a substrate (wafer) is manufactured as a substrate of the device 223, and the exposure apparatus 100 (projection exposure apparatus) of the above-described embodiment is used to form a mask pattern.
  • the device manufacturing method includes a step of exposing the wafer W using the exposure apparatus 100 of the above embodiment, and a step of processing the exposed wafer W (step 224).
  • the device manufacturing method is a device manufacturing method including a lithography process, and the exposure apparatus 100 of the above embodiment is used in the lithography process. According to these device manufacturing methods, since the uneven exposure amount is reduced, the device can be manufactured with high accuracy.
  • a wavefront division type micro fly's eye lens having a plurality of minute lens surfaces is used as the optical integrator.
  • an internal reflection type optical integrator typically Specifically, a rod type integrator
  • the condensing lens is arranged on the rear side of the relay optical system 14 so that the front focal position thereof coincides with the rear focal position of the relay optical system 14, and at or near the rear focal position of the condensing lens.
  • the rod-type integrator is arranged so that the incident end is positioned. At this time, the injection end of the rod-type integrator is positioned at the reticle blind 17.
  • a position optically conjugate with the position of the aperture stop AS of the projection optical system PL in the imaging optical systems 18 to 20 downstream of the rod type integrator can be called an illumination pupil plane.
  • this position and a position optically conjugate with this position are also called the illumination pupil plane. Can do.
  • the present invention can also be applied to an immersion type exposure apparatus disclosed in, for example, International Publication No. 99/49504 pamphlet.
  • a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate a method for locally filling the liquid as disclosed in the pamphlet of International Publication No. WO99 / 49504, A method of moving a stage holding a substrate to be exposed as disclosed in Kaihei 6-124873 in a liquid tank, or a predetermined stage on a stage as disclosed in JP-A-10-303114.
  • a method of forming a liquid tank having a depth and holding the substrate therein can be employed.
  • a so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901 and 2007/0146676 can be applied.
  • the illumination optical apparatus of the present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system.
  • the present invention is not limited to the application to the manufacturing process of a semiconductor device.
  • a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( (Micro-electro-mechanical systems), thin film magnetic heads, and various devices (electronic devices) such as DNA chips can be widely applied.
  • CMOS type, CCD, etc. an imaging element
  • MEMS Micro-electro-mechanical systems
  • thin film magnetic heads thin film magnetic heads
  • various devices electros
  • the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The influence of uneven pupil intensity distribution is reduced. An exposure apparatus for illuminating a pattern by using plural pulsed light beams (IL) from a light source apparatus for supplying pulsed light, and exposing a substrate to the plural pulsed light beams incident through the pattern is equipped with plural optical elements (3) which are two-dimensionally arranged and individually controlled. The exposure apparatus is provided with a spatial light modulator (13) for performing spatial light modulation on incident light and emitting the resultant light, a pupil intensity distribution forming optical system (14) for forming a pupil intensity distribution on a predetermined surface on the basis of the light incident through the spatial light modulator (13), and an optical element driving unit (4, 31) for individually controlling and driving the states of the plural optical elements (3). The optical element driving unit (4, 31) changes the states of the plural optical elements (3) during light emission of a minimum number of pulses of the plural pulsed light beams to which respective points of a region to be exposed on a substrate (W) are exposed.

Description

露光装置及びデバイス製造方法Exposure apparatus and device manufacturing method
 本発明は、それぞれ光に空間的な変調を与えることが可能な複数の光学素子を用いて被照射面を照明し、被照射面に配置されるパターンを基板に露光する技術に関する。 The present invention relates to a technique for illuminating an irradiated surface using a plurality of optical elements each capable of spatially modulating light, and exposing a pattern placed on the irradiated surface onto a substrate.
 例えば半導体素子又は液晶表示素子等のデバイス(電子デバイス、マイクロデバイス)を製造するためのリソグラフィ工程中で、レチクル(又はフォトマスク等)のパターンを投影光学系を介してウエハ(又はガラスプレート等)上に転写するために、ステッパ等の一括露光型の投影露光装置、又はスキャニング・ステッパ等の走査露光型の投影露光装置等の露光装置が使用されている。これらの露光装置においては、解像度を高めるために露光波長が短波長化してきており、最近では露光光として、KrF(波長248nm)又はArF(波長193nm)等のエキシマレーザ光が使用されている。また、露光光としてF2レーザ(波長157nm)等の使用も検討されている。 For example, in a lithography process for manufacturing a device (electronic device, microdevice) such as a semiconductor element or a liquid crystal display element, a pattern of a reticle (or photomask) is transferred to a wafer (or glass plate, etc.) via a projection optical system. In order to perform the transfer, an exposure apparatus such as a batch exposure type projection exposure apparatus such as a stepper or a scanning exposure type projection exposure apparatus such as a scanning stepper is used. In these exposure apparatuses, the exposure wavelength has been shortened to increase the resolution, and recently, excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm) is used as exposure light. Further, the use of an F 2 laser (wavelength 157 nm) or the like as exposure light is also being studied.
 また、最近の露光装置の照明光学系においては、微細なパターンをウエハ上に正確に転写するために、レチクルパターン(又はマスクパターン等)を最適な光強度分布(強度分布)で照明することが不可欠である。例えば、照明光学系の照明瞳面において輪帯状や複数極状(例えば、2極状や4極状)の光強度分布を形成するための変形照明を行い、投影光学系の焦点深度や解像力を向上させる技術が注目されている。その技術の一つとして、例えば、光源からの光束を照明光学系の照明瞳面において輪帯状や複数極状の光強度分布を有する光束に変換するために、二次元のアレイ状に配列された多数の微小なミラー要素を有する空間光変調器を備え、ミラー要素のそれぞれの傾斜角及び傾斜方向を変化させることにより照明光学系の照明瞳面又はその照明瞳面と共役な面において所定の光強度分布を形成する露光装置が提案されている(例えば、特許文献1参照)。 In recent illumination optical systems of exposure apparatuses, a reticle pattern (or mask pattern or the like) can be illuminated with an optimal light intensity distribution (intensity distribution) in order to accurately transfer a fine pattern onto a wafer. It is essential. For example, modified illumination for forming an annular or multipolar (for example, dipole or quadrupole) light intensity distribution on the illumination pupil plane of the illumination optical system is performed, and the depth of focus and resolution of the projection optical system are reduced. Improvement technology is attracting attention. As one of the techniques, for example, in order to convert a light beam from a light source into a light beam having a ring-shaped or multipolar light intensity distribution on the illumination pupil plane of the illumination optical system, it is arranged in a two-dimensional array. A spatial light modulator having a large number of minute mirror elements is provided, and predetermined light is applied to the illumination pupil plane of the illumination optical system or a plane conjugate with the illumination pupil plane by changing the tilt angle and tilt direction of each mirror element. An exposure apparatus that forms an intensity distribution has been proposed (see, for example, Patent Document 1).
特開2002-353105号公報JP 2002-353105 A
 ところで、上述の露光装置においては、二次元のアレイ状に配列された多数の微小なミラー要素を有する空間光変調器を用いて照明光学系の照明瞳面又はその照明瞳面と共役な面において所定の光強度分布(以下、「瞳強度分布」という)を形成しており、この空間光変調器の複数の微小ミラー要素によってレーザ光源からのレーザ光を波面分割している。しかしながら、複数の微小ミラー要素を備えるタイプの空間光変調器による波面分割数は、典型的な回折光学素子による波面分割数よりも少ないため、瞳強度分布のむらが発生する問題がある。 By the way, in the above-described exposure apparatus, on the illumination pupil plane of the illumination optical system or a plane conjugate with the illumination pupil plane using a spatial light modulator having a large number of minute mirror elements arranged in a two-dimensional array. A predetermined light intensity distribution (hereinafter referred to as “pupil intensity distribution”) is formed, and the laser light from the laser light source is wavefront-divided by a plurality of minute mirror elements of the spatial light modulator. However, since the number of wavefront divisions by a spatial light modulator of a type including a plurality of micromirror elements is smaller than the number of wavefront divisions by a typical diffractive optical element, there is a problem that unevenness of pupil intensity distribution occurs.
 本発明は、前述の課題に鑑みてなされたものであり、露光装置において照明光学系の照明瞳面に形成される瞳強度分布のむらの影響を軽減することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to reduce the influence of unevenness of pupil intensity distribution formed on an illumination pupil plane of an illumination optical system in an exposure apparatus.
 本発明による露光装置は、パルス光を供給する光源装置からの複数のパルス光を用いてパターンを照明し、該パターンを介した前記複数のパルス光で基板を露光する露光装置であって、二次元的に配列されて個別に制御される複数の光学要素を有し、入射した光に空間的な光変調を付与して射出する空間光変調器と;該空間光変調器を介した光に基づいて所定面に瞳強度分布を形成する瞳強度分布形成光学系と;前記複数の光学要素の状態を個別に制御駆動する光学要素駆動部と;を備える。そして、前記光学要素駆動部は、前記基板上の被露光領域の各点に露光される前記複数のパルス光の最小パルス数が発光される間に、前記複数の光学要素の状態を変化させる。言い換えると、例えば、前記光学要素駆動部は、前記基板上の被露光領域の各点を露光するために必要なパルス光の数である最小パルス数(所要パルス数)よりも小さいパルス数ごとに、前記複数の光学要素の状態を変化させる。 An exposure apparatus according to the present invention is an exposure apparatus that illuminates a pattern using a plurality of pulse lights from a light source device that supplies pulse light, and exposes a substrate with the plurality of pulse lights that pass through the pattern. A spatial light modulator having a plurality of optical elements that are dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light; and the light that passes through the spatial light modulator A pupil intensity distribution forming optical system that forms a pupil intensity distribution on a predetermined plane based on the optical element driving unit that individually controls and drives the states of the plurality of optical elements. Then, the optical element driving unit changes the state of the plurality of optical elements while the minimum number of pulses of the plurality of pulsed light exposed to each point of the exposed region on the substrate is emitted. In other words, for example, the optical element driving unit performs every pulse number smaller than the minimum pulse number (required pulse number) that is the number of pulsed light necessary for exposing each point of the exposed area on the substrate. , Changing the states of the plurality of optical elements.
 本発明によるデバイス製造方法は、本発明にかかる露光装置を用いて、前記パターンを前記基板に露光する露光工程と、前記パターンが転写された前記基板を現像し、前記パターンに対応する形状のマスク層を前記基板の表面に形成する現像工程と、前記マスク層を介して前記基板の表面を加工する加工工程とを含む。 A device manufacturing method according to the present invention includes an exposure step of exposing the pattern onto the substrate using the exposure apparatus according to the present invention, developing the substrate onto which the pattern has been transferred, and a mask having a shape corresponding to the pattern A development step of forming a layer on the surface of the substrate; and a processing step of processing the surface of the substrate through the mask layer.
 本発明によれば、被露光領域の所定の点を露光するために必要なパルス光の数である最小パルス数よりも小さいパルス数ごとに、空間光変調器の複数の光学要素の状態を変更している。言い換えると、上記所定の点には、空間光変調器の複数の光学要素の状態が第1の状態であるときのパルス光と、第1の状態とは異なる第2の状態であるときのパルス光とが少なくとも到達することになる。このため、本発明の露光装置及びデバイス製造方法では、瞳強度分布が経時的に平均化されて瞳強度分布のむらの影響が低減(軽減)され、安定した良好な照明条件のもとで露光を行うことができる。 According to the present invention, the state of the plurality of optical elements of the spatial light modulator is changed for each number of pulses smaller than the minimum number of pulses, which is the number of pulsed light necessary for exposing a predetermined point in the exposed area. is doing. In other words, the predetermined point includes the pulse light when the plurality of optical elements of the spatial light modulator are in the first state, and the pulse when the second state is different from the first state. The light will reach at least. For this reason, in the exposure apparatus and device manufacturing method of the present invention, the pupil intensity distribution is averaged over time to reduce (reduce) the influence of the unevenness of the pupil intensity distribution, and exposure can be performed under stable and favorable illumination conditions. It can be carried out.
本発明の実施形態の一例の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus of an example of embodiment of this invention. (A)は図1の空間光変調器13の一部を示す拡大斜視図、(B)は図1のミラー要素3の駆動機構を示す拡大斜視図である。(A) is an enlarged perspective view showing a part of the spatial light modulator 13 of FIG. 1, and (B) is an enlarged perspective view showing a drive mechanism of the mirror element 3 of FIG. (A)は2極照明時の二次光源を示す図、(B)は図3(A)の二次光源の所定の一方向における断面の光強度分布を示す図である。(A) is a figure which shows the secondary light source at the time of bipolar illumination, (B) is a figure which shows the light intensity distribution of the cross section in the predetermined one direction of the secondary light source of FIG. 3 (A). (A)は2極照明時の図1の空間光変調器13のミラー要素の傾斜角の状態を示す図、(B)は図4(A)と異なる傾斜角分布のミラー要素からの光束で2極照明を行う状態を示す図、(C)は図4(A)及び図4(B)と異なる傾斜角分布のミラー要素からの光束で2極照明を行う状態を示す図である。(A) is a diagram showing the state of the tilt angle of the mirror element of the spatial light modulator 13 in FIG. 1 during dipole illumination, and (B) is a light flux from the mirror element having a tilt angle distribution different from that in FIG. 4 (A). The figure which shows the state which performs dipole illumination, (C) is a figure which shows the state which performs dipole illumination with the light beam from the mirror element of inclination-angle distribution different from FIG. 4 (A) and FIG. 4 (B). (A)は図1の空間光変調器13のミラー要素が図4(A)に示す状態である場合の照明瞳面における光強度分布を示す図、(B)は図5(A)の二次光源の所定の一方向における断面の光強度分布を示す図、(C)は図1の空間光変調器13のミラー要素が図4(B)に示す状態である場合の照明瞳面における光強度分布を示す図、(D)は図5(C)の二次光源の所定の一方向における断面の光強度分布を示す図、(E)は図1の空間光変調器13のミラー要素が図4(C)に示す状態である場合の照明瞳面における光強度分布を示す図、(F)は図5(E)の二次光源の所定の一方向における断面の光強度分布を示す図である。(A) is a diagram showing the light intensity distribution on the illumination pupil plane when the mirror element of the spatial light modulator 13 of FIG. 1 is in the state shown in FIG. 4 (A), and (B) is the two in FIG. 5 (A). The figure which shows the light intensity distribution of the cross section in the predetermined one direction of a next light source, (C) is the light in the illumination pupil plane in case the mirror element of the spatial light modulator 13 of FIG. 1 is in the state shown in FIG.4 (B). FIG. 5D is a diagram showing an intensity distribution, FIG. 5D is a diagram showing a light intensity distribution of a cross section in a predetermined direction of the secondary light source of FIG. 5C, and FIG. The figure which shows the light intensity distribution in the illumination pupil plane in the state shown in FIG.4 (C), (F) is a figure which shows the light intensity distribution of the cross section in the predetermined one direction of the secondary light source of FIG.5 (E). It is. 図1のレチクルRの照明領域26を示す要部の図である。It is a figure of the principal part which shows the illumination area | region 26 of the reticle R of FIG. (A)は2極照明時の別の二次光源を示す図、(B)は通常照明時の二次光源を示す図、(C)は輪帯照明時の二次光源を示す図、(D)は4極照明時の二次光源を示す図である。(A) is a diagram showing another secondary light source during dipole illumination, (B) is a diagram showing a secondary light source during normal illumination, (C) is a diagram showing a secondary light source during annular illumination, D) is a diagram showing a secondary light source during quadrupole illumination. (A)はロッド型インテグレータ50を用いた照明光学系の構成例を示す図、(B)はプリズムを用いない照明光学系の構成例の要部を示す図である。(A) is a figure which shows the structural example of the illumination optical system using the rod type | mold integrator 50, (B) is a figure which shows the principal part of the structural example of the illumination optical system which does not use a prism. 実施形態の露光装置を用いてデバイスを製造する際の工程の一例を示すフローチャートである。It is a flowchart which shows an example of the process at the time of manufacturing a device using the exposure apparatus of embodiment.
符号の説明Explanation of symbols
ILS・・・照明光学系, R・・・レチクル, PL・・・投影光学系
W・・・ウエハ, 3・・・ミラー要素, 7・・・光源, 9・・・1/2波長板
10・・・デポラライザ, 12・・・プリズム, 13・・・空間光変調器
14・・・リレー光学系, 15・・・フライアイレンズ, 30・・・主制御系
31・・・変調制御部, 50・・・ロッド型インテグレータ, 100・・・露光装置
ILS ... illumination optical system, R ... reticle, PL ... projection optical system W ... wafer, 3 ... mirror element, 7 ... light source, 9 ... 1/2 wavelength plate 10 DESCRIPTION OF SYMBOLS ... Depolarizer, 12 ... Prism, 13 ... Spatial light modulator 14 ... Relay optical system, 15 ... Fly eye lens, 30 ... Main control system 31 ... Modulation control part, 50 ... Rod type integrator, 100 ... Exposure apparatus
 以下、本発明の好ましい実施形態の一例につき図1~図7を参照して説明する。 Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施形態のスキャニング・ステッパよりなる走査露光型の露光装置(投影露光装置)100の概略構成を示す図である。図1において、露光装置100は、パルス発光を行う露光用の光源7からの露光用の照明光(露光光)ILでレチクルR(マスク)のパターン面(被照射面)を照明する照明光学系ILSと、レチクルRの位置決め及び移動を行うレチクルステージRSTと、レチクルRのパターンの像を被露光面に配置されるウエハW(感光性基板)上に投影する投影光学系PLと、ウエハWの位置決め及び移動を行うウエハステージWSTと、装置全体の動作を統括制御するコンピュータよりなる主制御系30と、各種制御系等とを備えている。図1において、ウエハステージWSTのガイド面(不図示)に垂直にZ軸を設定し、Z軸に垂直な平面内において図1の紙面に平行な方向にY軸を、図1の紙面に垂直な方向にX軸をそれぞれ設定する。本実施形態では、露光時にレチクルR及びウエハWはY方向(走査方向)に走査される。 FIG. 1 is a view showing a schematic configuration of a scanning exposure type exposure apparatus (projection exposure apparatus) 100 comprising a scanning stepper according to this embodiment. In FIG. 1, an exposure apparatus 100 illuminates a pattern surface (illuminated surface) of a reticle R (mask) with exposure illumination light (exposure light) IL from an exposure light source 7 that emits pulsed light. ILS, reticle stage RST for positioning and moving reticle R, projection optical system PL for projecting an image of the pattern of reticle R onto wafer W (photosensitive substrate) arranged on the exposure surface, It includes a wafer stage WST that performs positioning and movement, a main control system 30 that includes a computer that controls the overall operation of the apparatus, various control systems, and the like. In FIG. 1, the Z axis is set perpendicular to the guide surface (not shown) of wafer stage WST, the Y axis is perpendicular to the paper surface of FIG. 1 in the direction parallel to the paper surface of FIG. Set the X axis in each direction. In the present embodiment, the reticle R and the wafer W are scanned in the Y direction (scanning direction) during exposure.
 図1の光源7としては、波長193nmでパルス幅50ns程度のほぼ直線偏光のレーザ光を4~6kHz程度の周波数でパルス発光するArFエキシマレーザ光源が使用されている。なお、光源7として、波長248nmのパルス光を供給するKrFエキシマレーザ光源、波長157nmのパルス光を供給するF2レーザ光源、又はパルス点灯される発光ダイオード等も使用可能である。さらに、光源7としては、YAGレーザ又は半導体レーザ等から出力されるレーザ光の高調波を生成する固体パルスレーザ光源や、半導体レーザ光をファイバアンプで増幅させた光の高調波を生成する固体パルスレーザ光源も使用できる。固体パルスレーザ光源は、例えば波長193nm(これ以外の種々の波長が可能)でパルス幅1ns程度のレーザ光を1~2MHz程度の周波数でパルス発光可能である。 As the light source 7 in FIG. 1, an ArF excimer laser light source is used that emits a pulse of approximately linearly polarized laser light having a wavelength of 193 nm and a pulse width of about 50 ns at a frequency of about 4 to 6 kHz. As the light source 7, a KrF excimer laser light source that supplies pulsed light with a wavelength of 248 nm, an F 2 laser light source that supplies pulsed light with a wavelength of 157 nm, or a light-emitting diode that is pulsed can be used. Further, as the light source 7, a solid-state pulse laser light source that generates harmonics of laser light output from a YAG laser or a semiconductor laser, or a solid-state pulse that generates harmonics of light obtained by amplifying the semiconductor laser light with a fiber amplifier. Laser light sources can also be used. The solid-state pulse laser light source can emit laser light with a wavelength of 193 nm (various other wavelengths are possible) and a pulse width of about 1 ns at a frequency of about 1 to 2 MHz.
 本実施形態においては、光源7には電源制御部32が連結されている。そして、露光装置100の主制御系30が、パルス発光のタイミング及び光量(パルスエネルギー)を指示する発光トリガパルスTPを電源制御部32に供給する。その発光トリガパルスTPに同期して電源制御部32は、指示されたタイミング及び光量で光源7にパルス発光を行わせる。 In the present embodiment, the power source control unit 32 is connected to the light source 7. Then, the main control system 30 of the exposure apparatus 100 supplies a light emission trigger pulse TP instructing the pulse light emission timing and the light amount (pulse energy) to the power supply control unit 32. In synchronization with the light emission trigger pulse TP, the power supply control unit 32 causes the light source 7 to emit pulses at the instructed timing and light quantity.
 光源7から射出された光束断面の強度分布が矩形でほぼ平行光束のパルスレーザ光よりなる直線偏光の照明光ILは、1対の凹レンズ及び凸レンズを備えるビームエキスパンダ8に入射して拡大される。ビームエキスパンダ8から射出された照明光ILは、光軸AXIを有する照明光学系ILSにおいて、照明光ILの偏光方向を所定の方向に回転させるための1/2波長板9(偏光制御部材)及び照明光ILをランダム偏光(非偏光)に変換するデポラライザ10よりなる偏光光学系を通過する。デポラライザ10は、複屈折性材料(例えば水晶)よりなる楔型の第1プリズム10aと、これと相補型の形状で複屈折性を有しない材料(例えば石英)よりなる第2プリズム10bとから構成されており、照明光路に対して挿脱自在に設けられている。このデポラライザ10が照明光路に挿入されるときには、デポラライザ10を通過した照明光ILは非偏光となる。 Linearly polarized illumination light IL made up of pulsed laser light having a rectangular and substantially parallel light flux emitted from the light source 7 is incident on a beam expander 8 having a pair of concave and convex lenses and enlarged. . The illumination light IL emitted from the beam expander 8 is a half-wave plate 9 (polarization control member) for rotating the polarization direction of the illumination light IL in a predetermined direction in the illumination optical system ILS having the optical axis AXI. The illumination light IL passes through a polarization optical system including a depolarizer 10 that converts the illumination light IL into random polarization (non-polarization). The depolarizer 10 includes a wedge-shaped first prism 10a made of a birefringent material (for example, quartz) and a second prism 10b made of a material (for example, quartz) that has a complementary shape and does not have birefringence. It is provided so as to be detachable with respect to the illumination optical path. When the depolarizer 10 is inserted into the illumination optical path, the illumination light IL that has passed through the depolarizer 10 is unpolarized.
 また、1/2波長板9は光軸AXI回りに回転可能に設けられており、1/2波長板9の光軸AXI回りの方位を制御することによって、1/2波長板9を介した照明光ILの偏光方向、ひいては被照射面又は被露光面に達する光の偏光方向を制御できる。1/2波長板9の光軸AXI回りの回転は、主制御系30からの指令に応じて駆動部33により制御される。 The half-wave plate 9 is provided so as to be rotatable around the optical axis AXI. By controlling the orientation of the half-wave plate 9 around the optical axis AXI, the half-wave plate 9 is interposed via the half-wave plate 9. It is possible to control the polarization direction of the illumination light IL, and hence the polarization direction of light reaching the irradiated surface or the exposed surface. The rotation of the half-wave plate 9 around the optical axis AXI is controlled by the drive unit 33 in accordance with a command from the main control system 30.
 ここで、1/2波長板9及びデポラライザ10は偏光制御ユニットと見なすことができる。1/2波長板9及びデポラライザ10を含む偏光制御ユニットの詳細な構成及びその動作については米国特許公開第2006/0055834号公報に開示されている。 Here, the half-wave plate 9 and the depolarizer 10 can be regarded as a polarization control unit. The detailed configuration and operation of the polarization control unit including the half-wave plate 9 and the depolarizer 10 are disclosed in US Patent Publication No. 2006/0055834.
 偏光制御ユニットを通過した照明光ILは、光路折り曲げ用のミラー11によって+Y方向に反射された後、光軸AXIに沿って、光軸AXIに垂直な入射面12d及び射出面12eを有するプリズム12の入射面12dに入射する。プリズム12は、照明光ILを透過する蛍石(CaF2)又は石英等の光学材料から形成されている。また、プリズム12は、一例として、入射面12dに対してX軸に平行な軸を中心として時計回りにほぼ60°で交差する第1反射面12aと、この第1反射面12aとXZ平面に平行な面に対してほぼ対称な第2反射面12bと、XY平面に平行で入射面12d(射出面12e)に対して直交する透過面12cとを有している。 The illumination light IL that has passed through the polarization control unit is reflected in the + Y direction by the mirror 11 for bending the optical path, and then, along the optical axis AXI, a prism 12 having an entrance surface 12d and an exit surface 12e perpendicular to the optical axis AXI. Is incident on the incident surface 12d. The prism 12 is made of an optical material such as fluorite (CaF 2 ) or quartz that transmits the illumination light IL. In addition, as an example, the prism 12 has a first reflecting surface 12a that intersects the incident surface 12d clockwise at about 60 ° about an axis parallel to the X axis, and the first reflecting surface 12a and the XZ plane. The second reflection surface 12b is substantially symmetric with respect to the parallel surface, and the transmission surface 12c is parallel to the XY plane and orthogonal to the incident surface 12d (exit surface 12e).
 また、プリズム12の近傍に、二次元のアレイ状に配列されたそれぞれ傾斜角が可変の微小なミラーである多数のミラー要素3と、これらのミラー要素3を駆動する駆動部4とを有する空間光変調器13が設置されている。空間光変調器13の多数のミラー要素3は、全体として透過面12cにほぼ平行に、かつ近接して配置されている。また、各ミラー要素3は、それぞれX軸及びY軸に平行な軸(直交する2軸)の回りの反射面の傾斜角が所定の可変範囲内でほぼ連続的に制御可能である。一例として、その可変範囲内の中央においては、各ミラー要素3の反射面は透過面12cにほぼ平行である。 Further, in the vicinity of the prism 12, a space having a large number of mirror elements 3 that are minute mirrors arranged in a two-dimensional array and each having a variable tilt angle, and a drive unit 4 that drives these mirror elements 3. An optical modulator 13 is installed. A large number of mirror elements 3 of the spatial light modulator 13 are disposed substantially parallel to and close to the transmission surface 12c as a whole. In addition, each mirror element 3 can be controlled almost continuously within a predetermined variable range with respect to the angle of inclination of the reflecting surface around an axis parallel to the X axis and the Y axis (two axes orthogonal to each other). As an example, at the center within the variable range, the reflecting surface of each mirror element 3 is substantially parallel to the transmitting surface 12c.
 図2(A)は、空間光変調器13の一部を示す拡大斜視図である。図2(A)において、空間光変調器13は、X方向、Y方向に一定ピッチでほぼ密着するように配列された多数のミラー要素3と、この多数のミラー要素3の反射面の角度を個別に制御する駆動部4とを含んでいる。X方向、Y方向のミラー要素3の配列数は例えば数千である。 FIG. 2A is an enlarged perspective view showing a part of the spatial light modulator 13. In FIG. 2A, the spatial light modulator 13 determines the angles of a large number of mirror elements 3 arranged so as to be in close contact with each other at a constant pitch in the X direction and the Y direction, and the reflection surfaces of the large number of mirror elements 3. The drive part 4 controlled individually is included. The number of arrangements of the mirror elements 3 in the X direction and the Y direction is, for example, thousands.
 図2(B)に示すように、一例として、ミラー要素3の駆動機構は、支持基板38と、当該支持基板38上に形成されてミラー要素3を揺動可能に支持する支柱部材36と、支持基板38上に支柱部材36を取り囲むように形成された4つの電極39とを備えている。この構成例では、4つの電極39とミラー要素3の裏面との間の電位差を制御して、電極39とミラー要素3の裏面との間に作用する静電力を制御することで、ミラー要素3を揺動及び傾斜させることができる。これによって、支持部材36に支持されたミラー要素3の反射面の直交する2軸の回りの傾斜角を所定の可変範囲内で連続的に制御することができる。空間光変調器13のより詳細な構成は、例えば特開2002-353105号公報に開示されている。 As shown in FIG. 2B, as an example, the drive mechanism of the mirror element 3 includes a support substrate 38, a support member 36 that is formed on the support substrate 38 and supports the mirror element 3 in a swingable manner. There are provided four electrodes 39 formed on the support substrate 38 so as to surround the support member 36. In this configuration example, the mirror element 3 is controlled by controlling the potential difference between the four electrodes 39 and the back surface of the mirror element 3 to control the electrostatic force acting between the electrode 39 and the back surface of the mirror element 3. Can be swung and tilted. Thereby, the inclination angle around two orthogonal axes of the reflection surface of the mirror element 3 supported by the support member 36 can be continuously controlled within a predetermined variable range. A more detailed configuration of the spatial light modulator 13 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-353105.
 なお、ミラー要素3の駆動機構は本実施形態の構成には限られず、他の任意の機構を使用できる。さらに、ミラー要素3はほぼ正方形の平面ミラーであるが、その形状は矩形等の任意の形状であってもよい。ただし、光の利用効率の観点からは、隙間無く配列可能な形状が好ましい。また、隣接するミラー要素3の間隔は必要最小限とすることが好ましい。また、現状では、ミラー要素3の形状は例えば10μm角~数十μm角程度であるが、ミラー要素3の周縁部からの回折光の影響を少なくするためには、ミラー要素3は可能な限り小さいことが好ましい。また、照明条件の細かな変更を可能とするために、ミラー要素3は可能な限り小さいことが好ましい。さらに、ミラー要素3の反射面は平面であったが、凹面状の反射面や凸面状の反射面とすることも可能である。 Note that the drive mechanism of the mirror element 3 is not limited to the configuration of the present embodiment, and any other mechanism can be used. Furthermore, although the mirror element 3 is a substantially square plane mirror, the shape thereof may be an arbitrary shape such as a rectangle. However, from the viewpoint of light utilization efficiency, a shape that can be arranged without a gap is preferable. Moreover, it is preferable that the interval between the adjacent mirror elements 3 is minimized. At present, the shape of the mirror element 3 is, for example, about 10 μm square to several tens μm square. In order to reduce the influence of diffracted light from the peripheral edge of the mirror element 3, the mirror element 3 is made as much as possible. Small is preferable. Moreover, in order to enable fine changes in illumination conditions, the mirror element 3 is preferably as small as possible. Furthermore, although the reflecting surface of the mirror element 3 is a flat surface, it can be a concave reflecting surface or a convex reflecting surface.
 なお、上記の空間光変調器13としては、例えば特表平10-503300号公報及びこれに対応する欧州特許公開第779530号公報、特開2004-78136号公報及びこれに対応する米国特許第6,900,915号公報、特表2006-524349号公報及びこれに対応する米国特許第7,095,546号公報、並びに特開2006-113437号公報に開示される空間光変調器を用いることができる。これらの空間光変調器を照明光学系ILSに用いた場合には、空間光変調器の個別の反射面を介したそれぞれの光が所定の角度で瞳強度分布形成光学系(リレー光学系14)に入射し、複数のミラー要素(反射要素)への制御信号に応じた所定の光強度分布を照明瞳面において形成することができる。 As the spatial light modulator 13, for example, Japanese Patent Laid-Open No. 10-503300 and European Patent Publication No. 779530 corresponding thereto, Japanese Patent Application Laid-Open No. 2004-78136, and US Patent No. 6 corresponding thereto. , 900,915, JP-T 2006-524349, and US Pat. No. 7,095,546 corresponding thereto, and JP-A-2006-113437. it can. When these spatial light modulators are used in the illumination optical system ILS, the respective light beams through the individual reflecting surfaces of the spatial light modulator are pupil intensity distribution forming optical systems (relay optical system 14) at a predetermined angle. , And a predetermined light intensity distribution according to control signals to a plurality of mirror elements (reflection elements) can be formed on the illumination pupil plane.
 さて、図1に戻って、主制御系30が変調制御部31に照明条件の情報及び照明光ILの発光タイミングの情報を供給する。変調制御部31では、照明光ILが最小パルス数よりも少ない複数パルスだけ発光される毎に、その照明条件が維持されるという条件のもとで、多数のミラー要素3の2軸の回りの傾斜角の分布を周期的に複数の状態に順次切り替えるように駆動部4を制御する(詳細後述)。ここで、空間光変調器13は、その遠視野に所望の瞳強度分布を形成する。 Now, returning to FIG. 1, the main control system 30 supplies the modulation control unit 31 with information on illumination conditions and information on the emission timing of the illumination light IL. In the modulation control unit 31, each time the illumination light IL is emitted by a plurality of pulses smaller than the minimum number of pulses, the illumination condition is maintained, and the rotation around the two axes of the many mirror elements 3 is performed. The drive unit 4 is controlled so as to sequentially switch the distribution of the inclination angles to a plurality of states periodically (details will be described later). Here, the spatial light modulator 13 forms a desired pupil intensity distribution in the far field.
 この場合、光軸AXIに平行又は略平行にプリズム12の入射面12dに入射した照明光ILは、第1反射面12aで全反射された後、透過面12cを透過して空間光変調器13の多数のミラー要素3に入射する。そして、多数のミラー要素3で反射された照明光ILは、再び透過面12cに入射した後、第2反射面12bで全反射されて射出面12eから射出される。従って、第1反射面12aの入射面12dに対する角度は、入射面12dに垂直に入射した光束が第1反射面12aで全反射するとともに、第1反射面12aで全反射された光束が透過面12cを透過する範囲であればよい。この際には、任意のミラー要素3の反射面が透過面12cにほぼ平行であれば、そのミラー要素3で反射された照明光ILは、透過面12cを透過して第2反射面12bで全反射された後、射出面12eを経て光軸AXIにほぼ平行に射出される。従って、各ミラー要素3の2軸の回りの傾斜角を制御することによって、そのミラー要素3で反射されてプリズム12から射出される照明光ILの光軸AXIに対する直交する2方向の角度を制御できる。このように照明光ILの光軸AXIに対する角度を制御することが、本実施形態の各ミラー要素3による空間的な変調であり、各ミラー要素3からの照明光ILの光軸AXIに対する角度の分布が、一つの照明制御パターンに対応する。 In this case, the illumination light IL incident on the incident surface 12d of the prism 12 in parallel or substantially parallel to the optical axis AXI is totally reflected by the first reflecting surface 12a, and then passes through the transmitting surface 12c to be transmitted to the spatial light modulator 13. Are incident on a number of mirror elements 3. The illumination light IL reflected by the large number of mirror elements 3 enters the transmission surface 12c again, is totally reflected by the second reflection surface 12b, and is emitted from the emission surface 12e. Accordingly, the angle of the first reflecting surface 12a with respect to the incident surface 12d is such that the light beam incident perpendicularly to the incident surface 12d is totally reflected by the first reflecting surface 12a and the light beam totally reflected by the first reflecting surface 12a is the transmitting surface. It may be in a range that transmits 12c. At this time, if the reflection surface of any mirror element 3 is substantially parallel to the transmission surface 12c, the illumination light IL reflected by the mirror element 3 is transmitted through the transmission surface 12c and is reflected by the second reflection surface 12b. After being totally reflected, the light is emitted almost parallel to the optical axis AXI through the emission surface 12e. Therefore, by controlling the inclination angle of each mirror element 3 around the two axes, the angles of the two directions orthogonal to the optical axis AXI of the illumination light IL reflected from the mirror element 3 and emitted from the prism 12 are controlled. it can. Controlling the angle of the illumination light IL with respect to the optical axis AXI is spatial modulation by each mirror element 3 of the present embodiment, and the angle of the illumination light IL from each mirror element 3 with respect to the optical axis AXI is controlled. The distribution corresponds to one illumination control pattern.
 このようにプリズム12の反射面12a,12bは全反射を用いているが、その反射面12a,12bに反射膜を形成して、この反射膜で照明光ILを反射してもよい。そして、プリズム12から射出された照明光ILは、リレー光学系14を介してフライアイレンズ15(オプティカル・インテグレータ)に入射する。ここでは、リレー光学系14のほぼ前側焦点面に各ミラー要素3の反射面が配置され、リレー光学系14のほぼ後側焦点面にフライアイレンズ15の入射面が配置されているが、必ずしもこの配置に限定されない。 Thus, although the reflection surfaces 12a and 12b of the prism 12 use total reflection, a reflection film may be formed on the reflection surfaces 12a and 12b, and the illumination light IL may be reflected by the reflection film. The illumination light IL emitted from the prism 12 enters the fly-eye lens 15 (optical integrator) via the relay optical system 14. Here, the reflecting surface of each mirror element 3 is disposed substantially at the front focal plane of the relay optical system 14, and the incident surface of the fly-eye lens 15 is disposed substantially at the rear focal plane of the relay optical system 14. It is not limited to this arrangement.
 図4(A)は、図1のプリズム12からフライアイレンズ15までの光学系を示す。図4(A)において、リレー光学系14に入射する光束の光軸AXIに対する傾斜角をθ、リレー光学系14の後側焦点距離をfとすると、一例として、フライアイレンズ15の入射面においてその光束が集光される位置の光軸AXIからの高さhは次の式(1)に示すようになる。
h=f・sinθ   (1)
FIG. 4A shows an optical system from the prism 12 to the fly-eye lens 15 in FIG. In FIG. 4A, when the inclination angle of the light beam incident on the relay optical system 14 with respect to the optical axis AXI is θ and the rear focal length of the relay optical system 14 is f, for example, on the incident surface of the fly-eye lens 15. The height h from the optical axis AXI at the position where the light beam is condensed is as shown in the following equation (1).
h = f · sinθ (1)
 従って、図1において、リレー光学系14は、各ミラー要素3によって反射された照明光ILを、その光軸AXIに対する直交する2方向の角度に応じて定まる、フライアイレンズ15の入射面上のX方向及びZ方向の位置に集光する角度・位置変換機能を備えている。 Accordingly, in FIG. 1, the relay optical system 14 determines the illumination light IL reflected by each mirror element 3 on the incident surface of the fly-eye lens 15 that is determined in accordance with two orthogonal angles with respect to the optical axis AXI. An angle / position conversion function for condensing light at positions in the X and Z directions is provided.
 言い換えると、プリズム12を介して空間光変調器13に入射した照明光ILは、ミラー要素3を単位として分割され、各ミラー要素3の傾斜方向及び傾斜角に従い、所定方向に所定角度をもって偏向(反射)される。そして、各ミラー要素3からの反射光は、プリズム12及びリレー光学系14によって、その方向と角度とに応じたフライアイレンズ15の入射面上の任意の位置に集光可能である。 In other words, the illumination light IL incident on the spatial light modulator 13 via the prism 12 is divided with the mirror element 3 as a unit, and is deflected at a predetermined angle in a predetermined direction according to the inclination direction and the inclination angle of each mirror element 3 ( Reflected). The reflected light from each mirror element 3 can be condensed by the prism 12 and the relay optical system 14 at an arbitrary position on the incident surface of the fly-eye lens 15 according to the direction and angle.
 フライアイレンズ15に入射した照明光ILは、多数のレンズエレメントにより二次元的に分割され、各レンズエレメントの後側焦点面にはそれぞれ光源が形成される。こうして、フライアイレンズ15の後側焦点面である照明光学系ILSの瞳面(照明瞳面22)には、フライアイレンズ15への入射光束によって形成される照明領域とほぼ同じ強度分布を有する二次光源、すなわち実質的な面光源からなる二次光源が形成される。本実施形態においては、空間光変調器13の各ミラー要素3の反射面の傾斜方向及び傾斜角を個別に制御することによって、フライアイレンズ15の入射面上の光強度分布、ひいてはフライアイレンズ15の後側焦点面の位置またはその近傍位置の照明瞳面22における二次光源の強度分布をほぼ任意の分布に制御することが可能である。 The illumination light IL incident on the fly-eye lens 15 is two-dimensionally divided by a large number of lens elements, and a light source is formed on the rear focal plane of each lens element. In this way, the pupil plane (illumination pupil plane 22) of the illumination optical system ILS, which is the rear focal plane of the fly-eye lens 15, has substantially the same intensity distribution as the illumination area formed by the light flux incident on the fly-eye lens 15. A secondary light source is formed, that is, a secondary light source consisting essentially of a surface light source. In the present embodiment, the light intensity distribution on the incident surface of the fly-eye lens 15 and thus the fly-eye lens are controlled by individually controlling the tilt direction and tilt angle of the reflecting surface of each mirror element 3 of the spatial light modulator 13. It is possible to control the intensity distribution of the secondary light source on the illumination pupil plane 22 at or near the position of the 15 rear focal plane to an almost arbitrary distribution.
 例えば図1のレチクルRのパターン面(レチクル面)において、Y方向(又はX方向)に解像限界に近いピッチで配列されたライン・アンド・スペースパターンを主に露光する場合には、照明瞳面22における二次光源は図3(B)のZ方向(レチクル面のY方向に対応する)に2極の二次光源24A,24B(又は図7(A)のX方向に2極の二次光源24C,24D)に設定される。同様に、空間光変調器13によって、照明瞳面22上の二次光源を、図7(B)の通常照明用の円形の二次光源28A、図7(C)の輪帯照明用の二次光源28B、及び図7(D)の4極照明用の4極の二次光源24E~24H等の任意の強度分布に設定可能である。さらに、空間光変調器13によって、例えば図3(B)において、二次光源24A,24Bの間隔、及び/又は二次光源24A,24Bの個々の大きさを任意の値に変更することも可能である。 For example, in the case of mainly exposing line and space patterns arranged at a pitch close to the resolution limit in the Y direction (or X direction) on the pattern surface (reticle surface) of the reticle R in FIG. The secondary light source on the surface 22 has two secondary light sources 24A and 24B in the Z direction (corresponding to the Y direction on the reticle surface) in FIG. 3B (or two in the X direction in FIG. 7A). Next light source 24C, 24D). Similarly, the spatial light modulator 13 converts the secondary light source on the illumination pupil plane 22 into a circular secondary light source 28A for normal illumination in FIG. 7B and an annular illumination secondary light in FIG. 7C. It can be set to an arbitrary intensity distribution such as the secondary light source 28B and the quadrupole secondary light sources 24E to 24H for quadrupole illumination shown in FIG. Further, the spatial light modulator 13 can change the interval between the secondary light sources 24A and 24B and / or the individual sizes of the secondary light sources 24A and 24B to arbitrary values in FIG. 3B, for example. It is.
 ここで、本実施形態では、被照射面に配置されるレチクルR(マスク)をケーラー照明しているため、上述の二次光源が形成される面は、投影光学系PLの開口絞りASと共役な面となり、照明光学系ILSの照明瞳面22ということができる。典型的には、照明瞳面22に対して被照射面(レチクルRが配置される面又はウエハWが配置される面)が光学的なフーリエ変換面となる。なお、瞳強度分布(瞳輝度分布)とは、照明光学系ILSの照明瞳面22又はその照明瞳面22と共役な面における強度分布(輝度分布)であるが、フライアイレンズ15による波面分割数が大きい場合には、フライアイレンズ15の入射面に形成される大局的な輝度分布と、二次光源全体の大局的な輝度分布(瞳強度分布)とが高い相関を示すため、フライアイレンズ15の入射面及びその入射面と共役な面における強度分布についても瞳強度分布ということができる。なお、フライアイレンズ15の代わりに、マイクロレンズアレイ等も使用可能である。 In this embodiment, since the reticle R (mask) arranged on the irradiated surface is Koehler illuminated, the surface on which the secondary light source is formed is conjugate with the aperture stop AS of the projection optical system PL. It can be called the illumination pupil plane 22 of the illumination optical system ILS. Typically, the illuminated surface (the surface on which the reticle R is disposed or the surface on which the wafer W is disposed) is an optical Fourier transform surface with respect to the illumination pupil plane 22. The pupil intensity distribution (pupil luminance distribution) is an intensity distribution (luminance distribution) on the illumination pupil plane 22 of the illumination optical system ILS or a plane conjugate with the illumination pupil plane 22. When the number is large, the global luminance distribution formed on the entrance surface of the fly-eye lens 15 and the global luminance distribution (pupil intensity distribution) of the entire secondary light source show a high correlation. The intensity distribution on the incident surface of the lens 15 and the surface conjugate with the incident surface can also be called a pupil intensity distribution. In place of the fly-eye lens 15, a microlens array or the like can be used.
 図1において、照明瞳面22に形成された二次光源からの照明光ILは、第1リレーレンズ16、レチクルブラインド(視野絞り)17、第2リレーレンズ18、光路折り曲げ用のミラー19、及びコンデンサ光学系20を介して、レチクルRのパターン面(下面)のX方向に細長い矩形の照明領域26を均一な照度分布が得られるように重畳して照明する。 In FIG. 1, illumination light IL from a secondary light source formed on the illumination pupil plane 22 includes a first relay lens 16, a reticle blind (field stop) 17, a second relay lens 18, an optical path bending mirror 19, and Via the condenser optical system 20, the rectangular illumination area 26 elongated in the X direction on the pattern surface (lower surface) of the reticle R is superimposed and illuminated so as to obtain a uniform illuminance distribution.
 ビームエキスパンダ8からコンデンサ光学系20までの光学部材を含んで照明光学系ILSが構成されている。照明光学系ILSの空間光変調器13を含む各光学部材は、不図示のフレームに支持されている。 The illumination optical system ILS includes the optical members from the beam expander 8 to the condenser optical system 20. Each optical member including the spatial light modulator 13 of the illumination optical system ILS is supported by a frame (not shown).
 また、図1のミラー11とプリズム12との間の照明光ILの光路に挿脱可能に、照明光ILの断面を覆うことができる受光面を有する2次元のCCD型若しくはCMOS型の撮像素子、又は二次元のフォトダイオードアレイ等よりなる光電センサ23が配置されている。光電センサ23は、例えば上記のフレームに移動可能に支持されたスライダ(不図示)に固定されており、光電センサ23の検出信号は変調制御部31に供給されている。照明光ILの光路に光電センサ23を設置した状態で、照明光ILをパルス発光して、光電センサ23の各画素(各受光素子)の検出信号を取り込むことで、変調制御部31は、照明光ILの断面内の強度分布、ひいては空間光変調器13の各ミラー要素3に入射する照明光ILの強度比(例えば中央のミラー要素3の入射光の強度を1とした場合の強度)を計測できる。この強度比を用いて照明瞳面22の二次光源の強度分布の設定精度を向上させることもできる。 Further, a two-dimensional CCD type or CMOS type imaging device having a light receiving surface capable of covering the cross section of the illumination light IL so that it can be inserted into and removed from the optical path of the illumination light IL between the mirror 11 and the prism 12 in FIG. Alternatively, a photoelectric sensor 23 composed of a two-dimensional photodiode array or the like is disposed. The photoelectric sensor 23 is fixed to, for example, a slider (not shown) that is movably supported on the frame, and a detection signal from the photoelectric sensor 23 is supplied to the modulation control unit 31. In a state where the photoelectric sensor 23 is installed in the optical path of the illumination light IL, the modulation control unit 31 causes the illumination light IL to emit light and capture a detection signal of each pixel (each light receiving element) of the photoelectric sensor 23. The intensity distribution in the cross section of the light IL, and consequently the intensity ratio of the illumination light IL incident on each mirror element 3 of the spatial light modulator 13 (for example, the intensity when the intensity of the incident light of the central mirror element 3 is 1). It can be measured. Using this intensity ratio, the setting accuracy of the intensity distribution of the secondary light source on the illumination pupil plane 22 can be improved.
 レチクルRの照明領域26内のパターンは、両側(又はウエハ側に片側)テレセントリックの投影光学系PLを介して、レジスト(感光材料)が塗布されたウエハWの一つのショット領域上の被露光領域27に所定の投影倍率(例えば1/4,1/5等)で投影される。 The pattern in the illumination area 26 of the reticle R is an exposed area on one shot area of the wafer W coated with a resist (photosensitive material) via a telecentric projection optical system PL on both sides (or one side on the wafer side). 27 is projected at a predetermined projection magnification (for example, 1/4, 1/5, etc.).
 また、レチクルRはレチクルステージRST上に吸着保持され、レチクルステージRSTは、不図示のレチクルベースのガイド面上でY方向に一定速度で移動可能に、かつ少なくともX方向、Y方向、Z軸の回りの回転方向に移動可能に載置されている。レチクルステージRSTの2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系30が、リニアモータ等の駆動系(不図示)を介してレチクルステージRSTの位置及び速度を制御する。 The reticle R is attracted and held on the reticle stage RST. The reticle stage RST is movable at a constant speed in the Y direction on a guide surface of a reticle base (not shown), and at least in the X direction, the Y direction, and the Z axis. It is mounted so as to be movable in the direction of rotation. The two-dimensional position of reticle stage RST is measured by a laser interferometer (not shown), and based on this measurement information, main control system 30 determines the position of reticle stage RST via a drive system (not shown) such as a linear motor. And control the speed.
 一方、ウエハWはウエハホルダ(不図示)を介してウエハステージWST上に吸着保持され、ウエハステージWSTは、不図示のガイド面上でX方向、Y方向にステップ移動を行うとともに、Y方向に一定速度で移動可能である。ウエハステージWSTのガイド面上での2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系30が、リニアモータ等の駆動系(不図示)を介してウエハステージWSTの位置及び速度を制御する。なお、ウエハWのアライメントを行うために、ウエハW上のアライメントマークの位置を検出するアライメント系(不図示)等も備えられている。 On the other hand, wafer W is sucked and held on wafer stage WST via a wafer holder (not shown), and wafer stage WST moves stepwise in the X and Y directions on a guide surface (not shown) and is constant in Y direction. It can move at speed. The two-dimensional position on the guide surface of wafer stage WST is measured by a laser interferometer (not shown), and based on this measurement information, main control system 30 passes through a drive system (not shown) such as a linear motor. Controls the position and speed of wafer stage WST. In order to perform alignment of the wafer W, an alignment system (not shown) for detecting the position of the alignment mark on the wafer W is also provided.
 露光装置100によるウエハWの露光時に、主制御系30は、レチクルRのパターンに応じて照明条件(例えば、照明瞳面22上の二次光源の強度分布)を選択し、選択した照明条件を変調制御部31に設定する。これに応じて変調制御部31は、空間光変調器13の各ミラー要素3の傾斜方向及び傾斜角を個別に制御して、照明瞳面22上の二次光源の強度分布を設定する。続いて、ウエハステージWSTのステップ移動によってウエハWが走査開始位置に移動する。その後、光源7のパルス発光を開始して、レチクルステージRSTを介してレチクルRを照明領域26に対してY方向に移動させるのに同期して、ウエハステージWSTを介してウエハWを被露光領域27に対して対応する方向に投影倍率を速度比として移動させることで、ウエハWの一つのショット領域が走査露光される。このようにウエハWのステップ移動と走査露光とを繰り返すステップ・アンド・スキャン動作によって、ウエハW上の全部のショット領域にレチクルRのパターンの像が露光される。 When the exposure apparatus 100 exposes the wafer W, the main control system 30 selects an illumination condition (for example, the intensity distribution of the secondary light source on the illumination pupil plane 22) according to the pattern of the reticle R, and selects the selected illumination condition. Set in the modulation control unit 31. In response to this, the modulation control unit 31 individually controls the tilt direction and tilt angle of each mirror element 3 of the spatial light modulator 13 to set the intensity distribution of the secondary light source on the illumination pupil plane 22. Subsequently, the wafer W is moved to the scanning start position by the step movement of the wafer stage WST. Thereafter, pulse light emission of the light source 7 is started, and the wafer W is moved to the exposure area via the wafer stage WST in synchronization with the movement of the reticle R in the Y direction with respect to the illumination area 26 via the reticle stage RST. By moving the projection magnification as a speed ratio in a direction corresponding to 27, one shot area of the wafer W is scanned and exposed. In this way, the image of the pattern of the reticle R is exposed to all shot regions on the wafer W by the step-and-scan operation that repeats the step movement of the wafer W and the scanning exposure.
 以下、図1の空間光変調器13の動作につき説明する。具体的には、照明瞳面22上でZ方向に離れた2極の二次光源24A,24Bを生成して、照明条件を2極照明に設定する場合を例に取って、空間光変調器13の動作の一例を説明する。図3(A)は、照明瞳面22上でZ方向に離れた2極の二次光源24A,24Bを示す図であり、図3(B)は、この二次光源24A,24BのZ方向断面の光強度分布を示す図である。 Hereinafter, the operation of the spatial light modulator 13 of FIG. 1 will be described. Specifically, a spatial light modulator is taken by taking, as an example, a case in which two-pole secondary light sources 24A and 24B separated in the Z direction on the illumination pupil plane 22 are generated and the illumination condition is set to two-pole illumination. An example of 13 operations will be described. FIG. 3A is a diagram showing two-pole secondary light sources 24A and 24B that are separated in the Z direction on the illumination pupil plane 22, and FIG. 3B is a diagram showing the secondary light sources 24A and 24B in the Z direction. It is a figure which shows light intensity distribution of a cross section.
 さて、図4(A)、(B)、(C)は、一例として、それぞれ図1の空間光変調器13のY方向に配列された一列の数千個のミラー要素3から代表的に選択された複数個のミラー要素3A~3Gからの反射光を示している。例えば、図3に示す2極の二次光源24A,24Bを形成するためには、図4(A)、(B)、(C)のフライアイレンズ15の入射面の対応する2箇所のほぼ円形の領域25A,25Bに照明光ILを集光する必要がある。 4A, 4 </ b> B, and 4 </ b> C are representatively selected from, for example, thousands of mirror elements 3 arranged in the Y direction of the spatial light modulator 13 of FIG. 1. The reflected light from the plurality of mirror elements 3A to 3G is shown. For example, in order to form the two-pole secondary light sources 24A and 24B shown in FIG. 3, the two corresponding portions of the incident surface of the fly-eye lens 15 shown in FIGS. 4A, 4B, and 4C are almost the same. It is necessary to collect the illumination light IL in the circular areas 25A and 25B.
 先ず、図4(A)に示すように、空間光変調器13の各ミラー要素3A~3Gの傾斜角(実際には2軸の回りの傾斜角、以下同様)を設定して、それらからの反射光をプリズム12の第2反射面12b及びリレー光学系14を介して、フライアイレンズ15の入射面の2つの領域25A,25Bに集光させる。これによって、図5(A)に示すZ方向に2極の二次光源24A1,24B1が生成される。この図5(A)に示した2極の二次光源24A1,24B1のZ方向における光強度分布を図5(B)に示す。 First, as shown in FIG. 4A, the inclination angles of the mirror elements 3A to 3G of the spatial light modulator 13 (actually, inclination angles around two axes, the same applies hereinafter) are set, The reflected light is condensed on the two regions 25 </ b> A and 25 </ b> B on the incident surface of the fly-eye lens 15 via the second reflecting surface 12 b of the prism 12 and the relay optical system 14. As a result, two-pole secondary light sources 24A1 and 24B1 are generated in the Z direction shown in FIG. FIG. 5B shows the light intensity distribution in the Z direction of the two-pole secondary light sources 24A1 and 24B1 shown in FIG.
 図4(A)において、ミラー3A~3Cの傾斜角は同じであるため、これらのミラー3A~3Cからの反射光は共通に領域25Aに集光されている。一方、ミラー3D~3Gの傾斜角は同じで、かつミラー3A~3Cと対称であるため、ミラー3D~3Gからの反射光は共通に領域25Aと対称な領域25Bに集光される。空間光変調器13の同一列内の他のミラー要素3、及び他の列のミラー要素3の2軸の回りの傾斜角も、その反射光が領域25A,25Bのいずれかに集光されるように設定される。 4A, since the inclination angles of the mirrors 3A to 3C are the same, the reflected light from these mirrors 3A to 3C is collected in the region 25A in common. On the other hand, since the tilt angles of the mirrors 3D to 3G are the same and are symmetric to the mirrors 3A to 3C, the reflected light from the mirrors 3D to 3G is collected in a region 25B that is symmetrical to the region 25A in common. As for the other mirror elements 3 in the same row of the spatial light modulator 13 and the tilt angles around the two axes of the mirror elements 3 in the other rows, the reflected light is condensed on one of the regions 25A and 25B. Is set as follows.
 本実施形態では、図4(A)の状態で最小パルス数よりも少ないmパルスの照明光ILを照射した後、図4(B)に示すように空間光変調器13のミラー要素3A~3Gの傾斜角の分布を変更して、ミラー要素3A~3Cからの照明光ILで領域25Bを照射し、ミラー要素3D~3Gからの照明光ILで領域25Aを照射する。この場合には、領域25A,25Bに集光される照明光ILを反射するミラー要素3A~3Gの組み合わせが図4(A)の状態とは異なっている。これによって、図5(C)に示すZ方向に2極の二次光源24A2,24B2が生成される。この図5(C)に示した2極の二次光源24A2,24B2のZ方向における光強度分布を図5(D)に示す。 In this embodiment, after irradiating m pulses of illumination light IL smaller than the minimum number of pulses in the state of FIG. 4A, the mirror elements 3A to 3G of the spatial light modulator 13 are irradiated as shown in FIG. 4B. , The region 25B is irradiated with the illumination light IL from the mirror elements 3A to 3C, and the region 25A is irradiated with the illumination light IL from the mirror elements 3D to 3G. In this case, the combination of the mirror elements 3A to 3G that reflect the illumination light IL condensed on the regions 25A and 25B is different from the state of FIG. As a result, two-pole secondary light sources 24A2 and 24B2 are generated in the Z direction shown in FIG. FIG. 5D shows the light intensity distribution in the Z direction of the two-pole secondary light sources 24A2 and 24B2 shown in FIG.
 そして、この状態で最小パルス数よりも少ないmパルスの照明光ILを照射した後、図4(C)に示すように空間光変調器13のミラー要素3A~3Gの傾斜角の分布を変更して、両側のミラー要素3A,3B,3F,3Gからの照明光ILで領域25Bを照射し、中央のミラー要素3C~3Eからの照明光ILで領域25Aを照射する。この場合にも、領域25A,25Bに集光される照明光ILを反射するミラー要素3A~3Gの組み合わせが図4(A),(C)の状態とは異なっている。これによって、図5(E)に示すZ方向に2極の二次光源24A3,24B3が生成される。この図5(E)に示した2極の二次光源24A3,24B3のZ方向における光強度分布を図5(F)に示す。そして、この状態で最小パルス数よりも少ないmパルスの照明光ILを照射する。 In this state, after irradiating m pulses of illumination light IL smaller than the minimum number of pulses, the distribution of the inclination angles of the mirror elements 3A to 3G of the spatial light modulator 13 is changed as shown in FIG. Then, the region 25B is irradiated with the illumination light IL from the mirror elements 3A, 3B, 3F, 3G on both sides, and the region 25A is irradiated with the illumination light IL from the central mirror elements 3C to 3E. Also in this case, the combination of the mirror elements 3A to 3G that reflect the illumination light IL condensed on the regions 25A and 25B is different from the state shown in FIGS. As a result, two-pole secondary light sources 24A3 and 24B3 are generated in the Z direction shown in FIG. FIG. 5F shows the light intensity distribution in the Z direction of the two-pole secondary light sources 24A3 and 24B3 shown in FIG. In this state, m pulses of illumination light IL smaller than the minimum number of pulses are irradiated.
 このようにして、最小パルス数よりも少ないmパルスの照明光ILを照射する毎に、二次光源24A,24Bに対応する領域25A,25Bに集光される照明光ILを反射するミラー要素3A~3Gの組み合わせ、ひいてはミラー要素3A~3Gで反射された照明光ILの光軸AXIに対する角度の分布(照明制御パターン)を次第に変えていく。そして、所定の組み合わせを全部使用した後、ミラー要素3A~3Gの傾斜角の分布を、再び図4(A)、図4(B)、図4(C)、・・・のように周期的に変化させる。このとき、照明瞳面22上に形成される光強度分布は、図5(B)、図5(D)、図5(F)、・・・のように変化することになる。 In this way, each time the irradiation light IL of m pulses smaller than the minimum number of pulses is irradiated, the mirror element 3A that reflects the illumination light IL condensed on the regions 25A and 25B corresponding to the secondary light sources 24A and 24B. The distribution of angles (illumination control pattern) of the illumination light IL reflected by the mirror elements 3A to 3G with respect to the optical axis AXI is gradually changed. Then, after using all of the predetermined combinations, the distribution of the inclination angles of the mirror elements 3A to 3G is periodically repeated as shown in FIGS. 4 (A), 4 (B), 4 (C),. To change. At this time, the light intensity distribution formed on the illumination pupil plane 22 changes as shown in FIG. 5 (B), FIG. 5 (D), FIG. 5 (F),.
 図6は、図1のレチクルRを照明領域26に対して走査方向SD(ここでは-Y方向)に走査する状態を示す。図6において、照明領域26のY方向の幅をDYとして、レチクルRのパターン面の任意の点41が、照明光ILのパルス発光の間に位置41Aまで移動するときの移動量をδYとする。このとき、点41に対する照明光ILの照射パルス数(露光パルス数)N(Nは2以上の整数)は、ほぼ次の式(2)に示すようになる。この照射パルス数Nは例えば数十である。
N=DY/δY  (2)
FIG. 6 shows a state in which the reticle R in FIG. 1 is scanned in the scanning direction SD (here, the −Y direction) with respect to the illumination area 26. In FIG. 6, the width of the illumination area 26 in the Y direction is DY, and the movement amount when an arbitrary point 41 on the pattern surface of the reticle R moves to the position 41A during the pulse emission of the illumination light IL is δY. . At this time, the number of irradiation pulses (number of exposure pulses) N (N is an integer of 2 or more) of the illumination light IL with respect to the point 41 is substantially as shown in the following equation (2). The number N of irradiation pulses is several tens, for example.
N = DY / δY (2)
 また、図4の空間光変調器13のミラー要素3A~3Gの傾斜角の分布の組み合わせは、照明光ILがmパルス発光される毎に変化するため、ミラー要素3A~3Gの傾斜角の分布の組み合わせに対応する照明制御パターンの個数Mは、次の式(3)に示すように少なくともN/m以上の最小の整数であればよい。
M=N/m以上の最小の整数  (3)
Also, since the combination of the tilt angle distributions of the mirror elements 3A to 3G of the spatial light modulator 13 of FIG. 4 changes every time the illumination light IL is emitted by m pulses, the tilt angle distribution of the mirror elements 3A to 3G is changed. The number M of the illumination control patterns corresponding to the combination may be a minimum integer of at least N / m or more as shown in the following formula (3).
M = smallest integer greater than N / m (3)
 なお、照明光ILが1パルス発光される毎に照明制御パターンを切り替える場合には、その照明制御パターンの個数Mは少なくともNになる。 Note that when the illumination control pattern is switched every time the illumination light IL is emitted by one pulse, the number M of the illumination control patterns is at least N.
 図1の空間光変調器13の各列のミラー要素3の個数は実際には数千であるため、仮にミラー要素3をX方向及びY方向に100個ずつのブロックに分けて、100×100の各ブロック毎にミラー要素3の傾斜方向及び傾斜角をほぼ同じ状態で制御したとしても、ミラー要素3の傾斜方向及び傾斜角の異なる分布の個数(照明制御パターンの個数M)は、ほぼ10000の階乗という膨大な数が可能である。これに対して、m=1であっても、N/mは数十であるため、式(3)の条件は余裕を持って満たすことができる。 Since the number of mirror elements 3 in each column of the spatial light modulator 13 in FIG. 1 is actually thousands, the mirror element 3 is temporarily divided into 100 blocks in the X direction and the Y direction, and 100 × 100. Even if the tilt direction and tilt angle of the mirror element 3 are controlled in substantially the same state for each block, the number of distributions of different tilt directions and tilt angles of the mirror element 3 (the number M of illumination control patterns) is approximately 10,000. A huge number of factorials is possible. On the other hand, even if m = 1, since N / m is several tens, the condition of Equation (3) can be satisfied with a margin.
 この結果、図6のレチクルR上の任意の点41に対しては、照明光ILを全部でNパルス照射する間に、照明光ILがmパルス照射される毎に、順次、空間光変調器13の互いに異なる組み合わせの傾斜角の分布のミラー要素3からの反射光を用いて、図5(A),(B)に示した二次光源24A1,24B1、図5(C),(D)に示した二次光源24A2,24B2、図5(E),(F)に示した二次光源24A3,24B3、・・・を順次照明瞳面22上に形成する。このとき、各二次光源24A1,24B1、24A2,24B2、24A3,24B3、・・・の強度分布はそれぞれ不均一な分布である。 As a result, the spatial light modulator is sequentially applied to any point 41 on the reticle R in FIG. 6 every time the illumination light IL is irradiated with m pulses while the illumination light IL is irradiated with N pulses in total. The secondary light sources 24A1, 24B1 shown in FIGS. 5A and 5B, and FIGS. 5C and 5D using the reflected light from the mirror elements 3 having 13 different combinations of inclination angle distributions. The secondary light sources 24A2 and 24B2 shown in FIG. 5 and the secondary light sources 24A3 and 24B3 shown in FIGS. 5E and 5F are sequentially formed on the illumination pupil plane 22. At this time, the intensity distributions of the secondary light sources 24A1, 24B1, 24A2, 24B2, 24A3, 24B3,... Are non-uniform.
 この結果、例えば、レチクルRの照明領域26内の任意の点41においては、照明光ILがmパルス照射される毎に、その部分に到達する照明光ILに対応する二次光源の光強度分布が、二次光源24A1,24B1、二次光源24A2,24B2、二次光源24A3,24B3、・・・と順次異なる二次光源となる。 As a result, for example, at an arbitrary point 41 in the illumination area 26 of the reticle R, every time the illumination light IL is irradiated with m pulses, the light intensity distribution of the secondary light source corresponding to the illumination light IL reaching that portion. However, secondary light sources 24A1, 24B1, secondary light sources 24A2, 24B2, secondary light sources 24A3, 24B3,.
 従って、レチクルR上の任意の点41に対して照明光ILをNパルス照射した後では、二次光源の積算光強度分布が二次光源24A1,24B1、二次光源24A2,24B2、二次光源24A3,24B3、・・・の積算となるため、時間的な平均化効果によって二次光源の光強度分布のむらが低減される。この時間的な平均化効果によって、図3(B)に示したトップハット状の光強度分布を有する二次光源24A,24Bで照明した場合と等価な照明条件のもとでレチクルR上の任意の点41が照明されることになる。 Therefore, after N pulses of illumination light IL are irradiated to an arbitrary point 41 on the reticle R, the integrated light intensity distribution of the secondary light sources is the secondary light sources 24A1, 24B1, secondary light sources 24A2, 24B2, and secondary light sources. 24A3, 24B3,..., So that unevenness in the light intensity distribution of the secondary light source is reduced by the temporal averaging effect. Due to this temporal averaging effect, an arbitrary condition on the reticle R is obtained under illumination conditions equivalent to the case of illumination with the secondary light sources 24A and 24B having the top hat-shaped light intensity distribution shown in FIG. This point 41 is illuminated.
 ここで、空間光変調器13のミラー要素3A~3Gの傾斜角の分布の組み合わせに関する情報は、照明条件毎に変調制御部31内に例えばルック・アップ・テーブルの形で記憶されている。従って、変調制御部31に主制御系30から照明条件の情報が供給されると、変調制御部31は、その照明条件に応じた空間光変調器13のミラー要素3A~3Gの傾斜角の分布の組み合わせに関する情報を読み出す。そして、主制御系30から供給される照明光ILの発光タイミングの情報(発光トリガパルスTPに対応する情報)に応じて、所定パルス数m毎に、空間光変調器13のミラー要素3A~3Gの傾斜角の分布の組み合わせを変えるように、空間光変調器13のミラー要素3A~3Gを制御する。なお、この所定パルス数mは、被露光領域の所定の点を露光するために必要なパルス光の数である最小パルス数よりも小さい数である。 Here, information on the combination of the tilt angle distributions of the mirror elements 3A to 3G of the spatial light modulator 13 is stored in the modulation control unit 31 in the form of, for example, a look-up table for each illumination condition. Therefore, when the illumination control information is supplied from the main control system 30 to the modulation controller 31, the modulation controller 31 distributes the inclination angles of the mirror elements 3A to 3G of the spatial light modulator 13 according to the illumination condition. Read information about combinations. Then, according to the information on the emission timing of the illumination light IL supplied from the main control system 30 (information corresponding to the light emission trigger pulse TP), the mirror elements 3A to 3G of the spatial light modulator 13 every predetermined number of pulses m. The mirror elements 3A to 3G of the spatial light modulator 13 are controlled so as to change the combination of the inclination angle distributions. The predetermined number of pulses m is a number smaller than the minimum number of pulses that is the number of pulse lights necessary for exposing a predetermined point in the exposure area.
 また、本実施形態では、光源7からの照明光ILの断面内の強度分布が経時的に次第に変化する場合であっても、瞳強度分布のむらの影響を低減することができる。 In the present embodiment, even if the intensity distribution in the cross section of the illumination light IL from the light source 7 gradually changes with time, the influence of the unevenness of the pupil intensity distribution can be reduced.
 なお、上述の実施形態において、空間光変調器13のミラー要素3A~3Gの傾斜角の分布の組み合わせを変更するタイミングを照明光ILがmパルス発光される毎にしたが、その整数mは、1回の走査露光中において一定である必要はなく、例えば次第に変化するものであってもよい。 In the above embodiment, the timing of changing the combination of the tilt angle distributions of the mirror elements 3A to 3G of the spatial light modulator 13 is changed every time the illumination light IL is emitted by m pulses. It does not have to be constant during one scanning exposure, and may change gradually, for example.
 さて、上述の実施形態と同様に、図7(A)のX方向の2極照明、図7(B)の通常照明、図7(C)の輪帯照明、図7(D)の4極照明等を行う場合にも、変調制御部31は、照明光ILがmパルス発光される毎に、照明瞳面22上の二次光源の各部に集光される照明光ILを反射する空間光変調器13のミラー要素3の組み合わせを異なる組み合わせに変化させる。この結果、照明瞳面22上に形成される二次光源の積算的な光強度分布のむらが低減される。 As in the above-described embodiment, the two-pole illumination in the X direction in FIG. 7A, the normal illumination in FIG. 7B, the annular illumination in FIG. 7C, and the four-pole in FIG. Even in the case of performing illumination or the like, the modulation control unit 31 reflects the spatial light that reflects the illumination light IL that is condensed on each part of the secondary light source on the illumination pupil plane 22 every time the illumination light IL is emitted by m pulses. The combination of the mirror elements 3 of the modulator 13 is changed to a different combination. As a result, the unevenness of the integrated light intensity distribution of the secondary light source formed on the illumination pupil plane 22 is reduced.
 本実施形態の作用効果は以下の通りである。 The operational effects of this embodiment are as follows.
 (1)本実施形態の図1の露光装置100は、パルス光を供給する光源装置7からの複数のパルス光を用いてパターンを照明し、このパターンを介した前記複数のパルス光で基板Wを露光する露光装置であって、二次元的に配列されて個別に制御される複数の光学要素3を有し、入射した光に空間的な光変調を付与して射出する空間光変調器13と;この空間光変調器13を介した光に基づいて所定面に瞳強度分布を形成する瞳強度分布形成光学系14と;その複数の光学要素3の状態を個別に制御駆動する光学要素駆動部(4,31)と;を備えている、そして、光学要素駆動部(4,31)は、基板W上の被露光領域の各点に露光される前記複数のパルス光の最小パルス数が発光される間に、その複数の光学要素3の状態を変化させる。 (1) The exposure apparatus 100 of FIG. 1 of the present embodiment illuminates a pattern using a plurality of pulsed light from the light source device 7 that supplies pulsed light, and the substrate W is irradiated with the plurality of pulsed light via the pattern. A spatial light modulator 13 having a plurality of optical elements 3 that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light. A pupil intensity distribution forming optical system 14 that forms a pupil intensity distribution on a predetermined surface based on light through the spatial light modulator 13, and an optical element drive that individually controls and drives the states of the plurality of optical elements 3 And the optical element driving unit (4, 31) has a minimum number of pulses of the plurality of pulsed light exposed to each point of the exposed region on the substrate W. While the light is emitted, the state of the plurality of optical elements 3 is changed.
 本実施形態によれば、空間光変調器13の複数のミラー要素3によって照明光ILの角度を個別に制御する(空間的に変調を与える)ことで、照明光ILの利用効率を高く維持して、フライアイレンズ15の入射面における照明光ILの強度分布、ひいてはフライアイレンズ15の射出面である照明瞳面22における光強度分布を制御して、照明条件を制御できる。また、1回の走査露光中に、最小パルス数の照明光ILが発光される間に、複数のミラー要素3からの光の角度を異なる角度の組み合わせに切り替えていくことによって、空間光変調器による波面分割数が不足する分を時間分割作用により補うことにより、瞳強度分布のむらの影響を低減している。言い換えると、本実施形態では、照明瞳面に複数の瞳強度分布を時分割で重畳させることで時間的な平均化効果を利用して瞳強度分布のむらの影響を軽減している。また、このように、空間光変調器13は、光強度分布形成部材と瞳強度分布むらの軽減部材とを兼用しているため、照明光学系ILSの構成が複雑化しない。なお、空間光変調器による波面分割数が十分な場合であっても、さらに瞳強度分布のむらの影響を低減することができる。 According to this embodiment, the use efficiency of the illumination light IL is maintained high by individually controlling the angle of the illumination light IL (giving spatial modulation) by the plurality of mirror elements 3 of the spatial light modulator 13. Thus, the illumination condition can be controlled by controlling the intensity distribution of the illumination light IL on the entrance surface of the fly-eye lens 15 and, consequently, the light intensity distribution on the illumination pupil plane 22 that is the exit surface of the fly-eye lens 15. In addition, during one scanning exposure, while the illumination light IL with the minimum number of pulses is emitted, the angle of the light from the plurality of mirror elements 3 is switched to a combination of different angles, whereby a spatial light modulator. The effect of uneven pupil intensity distribution is reduced by compensating for the lack of the wavefront division number due to the time division effect. In other words, in the present embodiment, the influence of the unevenness of the pupil intensity distribution is reduced by using a temporal averaging effect by superimposing a plurality of pupil intensity distributions on the illumination pupil plane in a time division manner. Further, as described above, since the spatial light modulator 13 serves as both the light intensity distribution forming member and the pupil intensity distribution unevenness reducing member, the configuration of the illumination optical system ILS is not complicated. Even when the number of wavefront divisions by the spatial light modulator is sufficient, it is possible to further reduce the influence of the unevenness of the pupil intensity distribution.
 (2)また、図1の実施形態では、照明瞳面22を所定面として、照明瞳面22での照明光ILの強度分布を制御しているため、照明条件を正確に制御できる。しかしながら、照明瞳面22と共役な面を所定面としてもよい。さらには、照明瞳面22の近傍の面、又は照明瞳面22との共役面の近傍の面をその所定面とみなして、これらの面での光強度分布を制御してもよい。 (2) In the embodiment of FIG. 1, the illumination pupil plane 22 is a predetermined plane and the intensity distribution of the illumination light IL on the illumination pupil plane 22 is controlled, so that the illumination conditions can be controlled accurately. However, a plane conjugate with the illumination pupil plane 22 may be a predetermined plane. Furthermore, the surface near the illumination pupil plane 22 or the plane near the conjugate plane with the illumination pupil plane 22 may be regarded as the predetermined plane, and the light intensity distribution on these planes may be controlled.
 また、フライアイレンズ15を用いる場合には、フライアイレンズ15の入射面の光強度分布がその射出面(照明瞳面22)の光強度分布とほぼ同様の分布となる。従って、そのフライアイレンズ15の入射面又はこの近傍の面を所定面とみなすことも可能である。 When the fly-eye lens 15 is used, the light intensity distribution on the entrance surface of the fly-eye lens 15 is substantially the same as the light intensity distribution on the exit surface (illumination pupil plane 22). Therefore, the incident surface of the fly-eye lens 15 or a surface in the vicinity thereof can be regarded as a predetermined surface.
 (3)また、図1の実施形態においては、複数の光学要素を含む光学デバイスとして、照明光ILを反射する傾斜角が可変の反射面を含む複数のミラー要素3(反射要素)を備える空間光変調器13が使用されている。このように反射面を用いる場合には照明光ILの利用効率が高い。 (3) Further, in the embodiment of FIG. 1, as an optical device including a plurality of optical elements, a space including a plurality of mirror elements 3 (reflective elements) including a reflective surface having a variable inclination angle that reflects the illumination light IL. An optical modulator 13 is used. Thus, when using a reflective surface, the utilization efficiency of illumination light IL is high.
 (4)また、図1の空間光変調器13の各ミラー要素3の反射面は直交する2軸の回りの傾斜角が可変であるため、各ミラー要素3からの反射光をプリズム12及びリレー光学系14を介してフライアイレンズ15の入射面、ひいては照明瞳面22上の2次元的な任意の位置に導くことができる。従って、照明光ILの利用効率をほぼ100%に維持して、任意の照明条件を高精度に設定できる。 (4) Since the reflection surface of each mirror element 3 of the spatial light modulator 13 of FIG. 1 has a variable inclination angle around two orthogonal axes, the reflected light from each mirror element 3 is converted to the prism 12 and the relay. It can be guided to an arbitrary two-dimensional position on the entrance plane of the fly-eye lens 15 and thus on the illumination pupil plane 22 via the optical system 14. Therefore, it is possible to set an arbitrary illumination condition with high accuracy while maintaining the utilization efficiency of the illumination light IL at almost 100%.
 なお、各ミラー要素3の傾斜角は、少なくとも1軸(例えば図1のX軸に平行な軸)の回りの傾斜角が制御できるだけでもよい。1軸の回りの傾斜角のみが制御できる場合には、空間光変調器13の各列の複数のミラー要素3からの反射光を、フライアイレンズ15の入射面上の対応する1列の領域のいずれかに集光させればよい。また、対応する1列の領域で照明光ILを集光する部分がない場合には、その列に対応するミラー要素3の傾斜角は、反射光がフライアイレンズ15の入射面から外れるように設定すればよい。この場合には、照明光ILの利用効率は多少低下するが、空間光変調器13の制御が簡単になる。 Note that the inclination angle of each mirror element 3 may be controlled only by the inclination angle around at least one axis (for example, an axis parallel to the X axis in FIG. 1). When only the tilt angle around one axis can be controlled, the reflected light from the plurality of mirror elements 3 in each row of the spatial light modulator 13 is converted into a corresponding one row region on the incident surface of the fly-eye lens 15. What is necessary is just to condense to either. Further, when there is no portion that collects the illumination light IL in the corresponding one row region, the inclination angle of the mirror element 3 corresponding to that row is set so that the reflected light deviates from the incident surface of the fly-eye lens 15. You only have to set it. In this case, the utilization efficiency of the illumination light IL is somewhat reduced, but the control of the spatial light modulator 13 is simplified.
 (5)なお、空間光変調器13の代わりに、それぞれ透過光の光量を制御する複数の画素(透過要素)を含む液晶セルを用いることも可能である。この場合には、各画素を通過する光に対する透過率を制御することが空間的な変調となる。 (5) Instead of the spatial light modulator 13, a liquid crystal cell including a plurality of pixels (transmission elements) for controlling the amount of transmitted light can be used. In this case, controlling the transmittance for light passing through each pixel is spatial modulation.
 (6)また、空間光変調器13の代わりに、それぞれ通過光の位相を制御する複数の位相要素(可変段差要素等)を含む上記の空間光変調器を用いることも可能である。この位相要素を含む空間光変調器は、回折パターンが可変の回折光学素子として使用できる。 (6) Instead of the spatial light modulator 13, it is also possible to use the above-mentioned spatial light modulator including a plurality of phase elements (variable step elements or the like) for controlling the phase of the passing light. A spatial light modulator including this phase element can be used as a diffractive optical element having a variable diffraction pattern.
 (7)また、図1の照明光学系ILSは、空間光変調器13の近傍に配置されて、照明光ILを複数のミラー要素3に入射させる方向(又は複数のミラー要素3側)に偏向する第1反射面12a(第1面)と、複数のミラー要素3を介した反射光を被照射面(レチクル面)に入射させる方向に偏向する第2反射面12b(第2面)とを含むプリズム12(光学部材)を備えている。従って、照明光学系ILSを構成する各光学部材を同一の直線、又は途中で90°折れ曲がった折れ線に沿って配置できるため、照明光学系ILSの設計、製造が容易である。 (7) Also, the illumination optical system ILS of FIG. 1 is disposed in the vicinity of the spatial light modulator 13 and deflects in the direction in which the illumination light IL is incident on the plurality of mirror elements 3 (or on the plurality of mirror elements 3 side). A first reflecting surface 12a (first surface) and a second reflecting surface 12b (second surface) for deflecting reflected light through the plurality of mirror elements 3 in a direction to enter the irradiated surface (reticle surface). A prism 12 (optical member) is included. Therefore, each optical member constituting the illumination optical system ILS can be arranged along the same straight line or a bent line bent 90 ° in the middle, so that the illumination optical system ILS can be easily designed and manufactured.
 (8)また、上記の実施形態では、例えば、レチクル面の各点に対する照明光ILの照射パルス数をN(Nは2以上の整数)として、照明光ILがmパルス(mは1以上の整数)発光される毎に、複数のミラー要素3の傾斜角の組み合わせ、ひいては複数のミラー要素3からの照明光ILの角度の分布(照明制御パターン)を式(3)で規定されるM通りに切り替えている。この場合には、空間光変調器13の複数のミラー要素3の傾斜角の組み合わせを、そのM通りの照明制御パターンのいずれかに対応させて周期的に設定するのみで、最小パルス数の間での瞳強度分布の状態が全部異なる状態となる。従って、効率的に瞳強度分布の積算的なむらを低減できる。 (8) Further, in the above embodiment, for example, the number of irradiation pulses of the illumination light IL for each point on the reticle surface is N (N is an integer of 2 or more), and the illumination light IL is m pulses (m is 1 or more). (Integer) A combination of tilt angles of the plurality of mirror elements 3 each time light is emitted, and consequently, an angle distribution (illumination control pattern) of the illumination light IL from the plurality of mirror elements 3 is M patterns defined by the expression (3). It has been switched to. In this case, the combination of the tilt angles of the plurality of mirror elements 3 of the spatial light modulator 13 is only set periodically corresponding to one of the M illumination control patterns, and between the minimum number of pulses. The pupil intensity distribution states at are different from each other. Therefore, it is possible to efficiently reduce the cumulative unevenness of the pupil intensity distribution.
 なお、複数のミラー要素3の傾斜角の組み合わせ(ひいては照明制御パターン)の個数をN通りとしてもよい。この場合には、照明光ILが1パルス発光される毎に、複数のミラー要素3の傾斜角の組み合わせをそのN通りの組み合わせのいずれかに周期的に切り替えることによって、最小パルス数の間での瞳強度分布の状態が全部異なる状態となる。従って、瞳強度分布の積算的なむらを最も大きく低減できる。 Note that the number of combinations of the tilt angles of the plurality of mirror elements 3 (and thus the illumination control pattern) may be N. In this case, every time the illumination light IL is emitted by one pulse, the combination of the tilt angles of the plurality of mirror elements 3 is periodically switched to any one of the N combinations, thereby reducing the number of pulses between the minimum number of pulses. The pupil intensity distribution states of are all different. Therefore, the cumulative unevenness of the pupil intensity distribution can be greatly reduced.
 (9)また、図1の照明光学系ILSは、照明瞳面22からの照明光ILでレチクル面を重畳して照明するフライアイレンズ15(オプティカル・インテグレータ)を備えているため、レチクル面での照度分布の均一性が向上する。 (9) Since the illumination optical system ILS of FIG. 1 includes the fly-eye lens 15 (optical integrator) that illuminates the reticle surface with the illumination light IL from the illumination pupil plane 22, the reticle surface The uniformity of the illuminance distribution is improved.
 (10)また、照明光学系ILSに照明光ILを供給する光源7、電源制御部32及び主制御系30が備えられている。従って、光源7のパルス発光のタイミングを容易に高精度に制御可能である。 (10) Further, a light source 7 for supplying the illumination light IL to the illumination optical system ILS, a power supply control unit 32, and a main control system 30 are provided. Therefore, the pulse emission timing of the light source 7 can be easily controlled with high accuracy.
 (11)また、上記の実施形態の露光装置100は、レチクル面(第1面)の像をウエハWの上面(第2面)に投影する露光装置であって、そのレチクル面をパルス発光される照明光ILで照明する照明光学系ILSと、照明光学系ILSによってレチクル面上に形成される照明領域26からの光に基づいて、レチクル面の像をウエハW上に形成する投影光学系PLとを備えている。この場合、積算的な瞳強度分布のむらが低減された二次光源を介した照明光ILによってレチクルが照明される。従って、ウエハWは安定した照明条件(露光条件)のもとで露光され、最終的なデバイスを高精度に製造できる。 (11) The exposure apparatus 100 of the above embodiment is an exposure apparatus that projects an image of the reticle surface (first surface) onto the upper surface (second surface) of the wafer W, and the reticle surface is pulsed. An illumination optical system ILS that illuminates with illumination light IL, and a projection optical system PL that forms an image of the reticle surface on the wafer W based on light from the illumination region 26 formed on the reticle surface by the illumination optical system ILS. And. In this case, the reticle is illuminated with the illumination light IL through the secondary light source in which the unevenness of the cumulative pupil intensity distribution is reduced. Therefore, the wafer W is exposed under stable illumination conditions (exposure conditions), and a final device can be manufactured with high accuracy.
 次に、上記の実施形態では次のような変形が可能である。 Next, in the above embodiment, the following modifications are possible.
 (1)上記の実施形態の露光装置100をステッパ等のステップ・アンド・リピート方式の露光装置に適用してもよい。この場合には、図1のウエハステージWSTは、X方向、Y方向にステップ移動する機能を備えていればよい。 (1) The exposure apparatus 100 of the above embodiment may be applied to a step-and-repeat type exposure apparatus such as a stepper. In this case, wafer stage WST in FIG. 1 only needs to have a function of moving in steps in the X and Y directions.
 (2)また、図1の波面分割型のインテグレータであるフライアイレンズ15に代えて、内面反射型のオプティカル・インテグレータとしてのロッド型インテグレータを用いることもできる。この場合、図8(A)の照明光学系ILSAで示すように、リレー光学系14よりもレチクルR側に集光光学系51を追加して空間光変調器13の反射面(ミラー要素3の反射面)の共役面を形成し、この共役面近傍に入射端が位置決めされるようにロッド型インテグレータ50を配置する。 (2) In place of the fly-eye lens 15 which is the wavefront division type integrator of FIG. 1, a rod type integrator as an internal reflection type optical integrator may be used. In this case, as shown by the illumination optical system ILSA in FIG. 8A, a condensing optical system 51 is added on the reticle R side with respect to the relay optical system 14, and the reflection surface of the spatial light modulator 13 (of the mirror element 3). The rod-type integrator 50 is arranged so that the incident end is positioned near the conjugate plane.
 また、このロッド型インテグレータ50の射出端面又は射出端面近傍に配置されるレチクルブラインド17(視野絞り)の像をレチクルRのパターン面(レチクル面)上に形成するためのリレー光学系(リレーレンズ18、ミラー19、及びコンデンサ光学系20)を配置する。この他の照明光学系ILSAの構成は、図1の照明光学系ILSと同様である。図8(A)の構成の場合、二次光源はリレー光学系14及び集光光学系51の瞳面22に形成される(二次光源の虚像はロッド型インテグレータ50の入射端近傍に形成される)。 Further, a relay optical system (relay lens 18) for forming an image of the reticle blind 17 (field stop) arranged on the exit end face of the rod integrator 50 or in the vicinity of the exit end face on the pattern surface (reticle surface) of the reticle R. , A mirror 19 and a condenser optical system 20). Other configurations of the illumination optical system ILSA are the same as those of the illumination optical system ILS in FIG. 8A, the secondary light source is formed on the pupil plane 22 of the relay optical system 14 and the condensing optical system 51 (the virtual image of the secondary light source is formed in the vicinity of the incident end of the rod integrator 50). )
 (3)また、図1の照明光学系ILSでは、プリズム12が使用されているが、プリズム12の代わりに、反射面12a及び12bを有するミラーを照明光ILの光路上に設置してもよい。さらに、図8(B)に示すように、プリズム12を省略してもよい。図8(B)の構成では、空間光変調器13の多数のミラー要素3に対して斜め方向から照明光ILを照射し、多数のミラー要素3で反射された照明光ILを光軸AXIに沿ってリレー光学系14を介して不図示のフライアイレンズに供給している。 (3) Also, in the illumination optical system ILS of FIG. 1, the prism 12 is used. However, instead of the prism 12, a mirror having reflecting surfaces 12a and 12b may be installed on the optical path of the illumination light IL. . Further, as shown in FIG. 8B, the prism 12 may be omitted. In the configuration of FIG. 8B, the illumination light IL is irradiated from the oblique direction to the many mirror elements 3 of the spatial light modulator 13, and the illumination light IL reflected by the many mirror elements 3 is applied to the optical axis AXI. Along the relay optical system 14 and supplied to a fly-eye lens (not shown).
 (4)また、空間光変調器13としては、例えば二次元的に配列されて反射面の高さを個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、例えば特開平6-281869号公報及びこれに対応する米国特許第5,312,513号公報、並びに特表2004-520618号公報及びこれに対応する米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、複数の位相要素(光学素子)によって二次元的な高さ分布を形成することで位相型の回折格子と同様の作用を入射光に与えることができる。 (4) Further, as the spatial light modulator 13, for example, a spatial light modulator which is two-dimensionally arranged and can individually control the height of the reflection surface can be used. As such a spatial light modulator, for example, Japanese Patent Laid-Open No. 6-281869 and US Pat. No. 5,312,513 corresponding thereto, and Japanese Patent Laid-Open No. 2004-520618 and US Pat. The spatial light modulator disclosed in FIG. 1d of Japanese Patent No. 6,885,493 can be used. In these spatial light modulators, a two-dimensional height distribution is formed by a plurality of phase elements (optical elements), so that the same action as that of a phase type diffraction grating can be given to incident light.
 (5)なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、例えば特表2006-513442号公報及びこれに対応する米国特許第6,891,655号公報、又は特表2005-524112号公報及びこれに対応する米国特許公開第2005/0095749号公報の開示に従って変形しても良い。 (5) A spatial light modulator having a plurality of reflection surfaces arranged two-dimensionally as described above is disclosed in, for example, JP-T-2006-513442 and US Pat. No. 6,891,655 corresponding thereto. Alternatively, it may be modified in accordance with the disclosure of JP 2005-524112 A and US Patent Publication No. 2005/0095749 corresponding thereto.
 また、上記の実施形態の露光装置を用いて半導体デバイス等のデバイス(電子デバイス、マイクロデバイス)を製造する場合、このデバイスは、図9に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置100(投影露光装置)によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。 Further, when a device (electronic device, microdevice) such as a semiconductor device is manufactured using the exposure apparatus of the above embodiment, the device performs function / performance design of the device as shown in FIG. A mask pattern (reticle) is manufactured based on this design step 222, a substrate (wafer) is manufactured as a substrate of the device 223, and the exposure apparatus 100 (projection exposure apparatus) of the above-described embodiment is used to form a mask pattern. Substrate exposure step, development step of the exposed substrate, substrate processing step 224 including heating (curing) and etching step of the developed substrate, device assembly step (dicing process, bonding process, packaging process, etc.) 225) and inspection step 226 etc. It is concrete.
 言い換えると、上記のデバイスの製造方法は、上記の実施形態の露光装置100を用いてウエハWを露光する工程と、露光されたウエハWを処理する工程(ステップ224)とを含んでいる。 In other words, the device manufacturing method includes a step of exposing the wafer W using the exposure apparatus 100 of the above embodiment, and a step of processing the exposed wafer W (step 224).
 さらに、そのデバイス製造方法は、リソグラフィ工程を含むデバイス製造方法であって、そのリソグラフィ工程において、上記の実施形態の露光装置100を用いている。これらのデバイス製造方法によれば、露光量むらが低減されているため、デバイスを高精度に製造できる。 Furthermore, the device manufacturing method is a device manufacturing method including a lithography process, and the exposure apparatus 100 of the above embodiment is used in the lithography process. According to these device manufacturing methods, since the uneven exposure amount is reduced, the device can be manufactured with high accuracy.
 また、上述の実施形態では、オプティカルインテグレータとして、複数の微小レンズ面を備えた波面分割型のマイクロフライアイレンズ(フライアイレンズ)を用いたが、その代わりに、内面反射型のオプティカルインテグレータ(典型的にはロッド型インテグレータ)を用いても良い。この場合、リレー光学系14の後側にその前側焦点位置がリレー光学系14の後側焦点位置と一致するように集光レンズを配置し、この集光レンズの後側焦点位置またはその近傍に入射端が位置決めされるようにロッド型インテグレータを配置する。このとき、ロッド型インテグレータの射出端がレチクルブラインド17の位置になる。ロッド型インテグレータを用いる場合、このロッド型インテグレータの下流の結像光学系18~20内の、投影光学系PLの開口絞りASの位置と光学的に共役な位置を照明瞳面と呼ぶことができる。また、ロッド型インテグレータの入射面の位置には、照明瞳面の二次光源の虚像が形成されることになるため、この位置およびこの位置と光学的に共役な位置も照明瞳面と呼ぶことができる。 In the above-described embodiment, a wavefront division type micro fly's eye lens (fly eye lens) having a plurality of minute lens surfaces is used as the optical integrator. Instead, an internal reflection type optical integrator (typically Specifically, a rod type integrator) may be used. In this case, the condensing lens is arranged on the rear side of the relay optical system 14 so that the front focal position thereof coincides with the rear focal position of the relay optical system 14, and at or near the rear focal position of the condensing lens. The rod-type integrator is arranged so that the incident end is positioned. At this time, the injection end of the rod-type integrator is positioned at the reticle blind 17. When a rod type integrator is used, a position optically conjugate with the position of the aperture stop AS of the projection optical system PL in the imaging optical systems 18 to 20 downstream of the rod type integrator can be called an illumination pupil plane. . In addition, since a virtual image of the secondary light source of the illumination pupil plane is formed at the position of the entrance surface of the rod integrator, this position and a position optically conjugate with this position are also called the illumination pupil plane. Can do.
 なお、本発明は、例えば国際公開第99/49504号パンフレットなどに開示される液浸型露光装置にも適用できる。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、この国際公開第WO99/49504号パンフレットに開示されているような局所的に液体を満たす手法や、特開平6-124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10-303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。また、上述の実施形態において、米国公開公報第2006/0170901号及び第2007/0146676号に開示されるいわゆる偏光照明方法を適用することも可能である。 The present invention can also be applied to an immersion type exposure apparatus disclosed in, for example, International Publication No. 99/49504 pamphlet. In this case, as a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a method for locally filling the liquid as disclosed in the pamphlet of International Publication No. WO99 / 49504, A method of moving a stage holding a substrate to be exposed as disclosed in Kaihei 6-124873 in a liquid tank, or a predetermined stage on a stage as disclosed in JP-A-10-303114. A method of forming a liquid tank having a depth and holding the substrate therein can be employed. In the above-described embodiment, a so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901 and 2007/0146676 can be applied.
 また、本発明の照明光学装置は、投影光学系を用いないプロキシミティ方式の露光装置等にも適用することができる。 The illumination optical apparatus of the present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system.
 また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Micro-electro-mechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス)の製造プロセスにも広く適用できる。このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。 Further, the present invention is not limited to the application to the manufacturing process of a semiconductor device. For example, a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( (Micro-electro-mechanical systems), thin film magnetic heads, and various devices (electronic devices) such as DNA chips can be widely applied. As described above, the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。また、上記実施形態の各構成要素等は、いずれの組み合わせ等も可能とすることができる。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention. In addition, each component of the above-described embodiment can be any combination.

Claims (12)

  1. パルス光を供給する光源装置からの複数のパルス光を用いてパターンを照明し、該パターンを介した前記複数のパルス光で基板を露光する露光装置であって、
     二次元的に配列されて個別に制御される複数の光学要素を有し、入射した光に空間的な光変調を付与して射出する空間光変調器と;
     該空間光変調器を介した光に基づいて所定面に瞳強度分布を形成する瞳強度分布形成光学系と;
     前記複数の光学要素の状態を個別に制御駆動する光学要素駆動部と;
    を備え、
     前記光学要素駆動部は、前記基板上の被露光領域の各点に露光される前記複数のパルス光の最小パルス数が発光される間に、前記複数の光学要素の状態を変化させることを特徴とする露光装置。
    An exposure apparatus that illuminates a pattern using a plurality of pulsed light from a light source device that supplies pulsed light and exposes a substrate with the plurality of pulsed light via the pattern,
    A spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light;
    A pupil intensity distribution forming optical system that forms a pupil intensity distribution on a predetermined plane based on light passing through the spatial light modulator;
    An optical element driving section for individually controlling and driving the states of the plurality of optical elements;
    With
    The optical element driving unit changes the state of the plurality of optical elements while the minimum number of pulses of the plurality of pulsed light exposed to each point of the exposed region on the substrate is emitted. An exposure apparatus.
  2. 前記光学要素駆動部は、前記最小パルス数が発光される前記間に、前記複数の光学要素の前記状態が複数の状態となるように前記複数の光学要素を制御駆動することを特徴とする請求項1に記載の露光装置。 The optical element driving unit controls and drives the plurality of optical elements so that the state of the plurality of optical elements becomes a plurality of states while the minimum number of pulses is emitted. Item 4. The exposure apparatus according to Item 1.
  3. 前記複数の状態の数は、前記最小パルス数よりも小さい数であることを特徴とする請求項2に記載の露光装置。 The exposure apparatus according to claim 2, wherein the number of the plurality of states is smaller than the minimum pulse number.
  4. 前記光学要素駆動部は、前記所定面に複数の瞳強度分布を時分割で重畳させるように、前記複数の光学要素を制御駆動することを特徴とする請求項2又は3に記載の露光装置。 4. The exposure apparatus according to claim 2, wherein the optical element driving unit controls and drives the plurality of optical elements so that a plurality of pupil intensity distributions are superimposed on the predetermined surface in a time division manner.
  5. 前記複数の光学要素の前記複数の状態に関する情報が記憶された記憶部を備え、
     前記光学要素駆動部は、前記記憶部に記憶された前記情報に基づいて前記複数の光学要素を制御駆動することを特徴とする請求項2乃至4の何れか一項に記載の露光装置。
    A storage unit storing information on the plurality of states of the plurality of optical elements;
    5. The exposure apparatus according to claim 2, wherein the optical element driving unit controls and drives the plurality of optical elements based on the information stored in the storage unit. 6.
  6. 前記複数の光学要素の前記複数の状態のなかのそれぞれの状態では、前記瞳強度分布形成光学系を介して前記所定面に形成される瞳強度分布が不均一な分布であることを特徴とする請求項2乃至5の何れか一項に記載の露光装置。 In each of the plurality of states of the plurality of optical elements, the pupil intensity distribution formed on the predetermined surface via the pupil intensity distribution forming optical system is a non-uniform distribution. The exposure apparatus according to any one of claims 2 to 5.
  7. 前記パターンの像を前記基板上に投影する投影光学系を更に備え、
     前記所定面は、前記投影光学系の射出瞳と光学的に共役な面又は該共役な面と等価な面であることを特徴とする請求項1乃至6の何れか一項に記載の露光装置。
    A projection optical system for projecting an image of the pattern onto the substrate;
    The exposure apparatus according to claim 1, wherein the predetermined surface is a surface optically conjugate with an exit pupil of the projection optical system or a surface equivalent to the conjugate surface. .
  8. 前記空間光変調器と前記パターンとの間の光路中に配置されるオプティカル・インテグレータを備え、
     前記所定面は、前記オプティカル・インテグレータの入射面近傍の位置又は該近傍の位置と光学的に共役な位置に設定されることを特徴とする請求項7に記載の露光装置。
    An optical integrator disposed in an optical path between the spatial light modulator and the pattern,
    8. The exposure apparatus according to claim 7, wherein the predetermined surface is set at a position near the incident surface of the optical integrator or a position optically conjugate with the position near the predetermined surface.
  9. 前記光学要素駆動部は、前記複数の光学要素の個別の姿勢を制御駆動することを特徴とする請求項1乃至8の何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 8, wherein the optical element driving unit controls and drives individual postures of the plurality of optical elements.
  10. 前記複数の光学要素は、複数の反射要素を備え、
     該反射要素は、前記パルス光を反射する傾斜角が可変の反射面を含むことを特徴とする請求項9に記載の露光装置。
    The plurality of optical elements comprises a plurality of reflective elements;
    The exposure apparatus according to claim 9, wherein the reflecting element includes a reflecting surface having a variable inclination angle for reflecting the pulsed light.
  11. 前記被露光領域の前記各点は、前記最小パルス数以上のパルス数で露光されることを特徴とする請求項1乃至10の何れか一項に記載の露光装置。 11. The exposure apparatus according to claim 1, wherein each point of the exposure area is exposed with a pulse number equal to or greater than the minimum pulse number.
  12. 請求項1乃至11の何れか一項に記載の露光装置を用いて、前記パターンを前記基板に露光する露光工程と、
     前記パターンが転写された前記基板を現像し、前記パターンに対応する形状のマスク層を前記基板の表面に形成する現像工程と、
     前記マスク層を介して前記基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。
    An exposure step of exposing the substrate to the pattern using the exposure apparatus according to any one of claims 1 to 11,
    Developing the substrate to which the pattern has been transferred, and forming a mask layer having a shape corresponding to the pattern on the surface of the substrate;
    And a processing step of processing the surface of the substrate through the mask layer.
PCT/JP2009/053632 2008-06-12 2009-02-27 Exposure apparatus and device manufacturing method WO2009150871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12922808P 2008-06-12 2008-06-12
US61/129,228 2008-06-12

Publications (1)

Publication Number Publication Date
WO2009150871A1 true WO2009150871A1 (en) 2009-12-17

Family

ID=41416582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053632 WO2009150871A1 (en) 2008-06-12 2009-02-27 Exposure apparatus and device manufacturing method

Country Status (1)

Country Link
WO (1) WO2009150871A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078070A1 (en) * 2009-12-23 2011-06-30 株式会社ニコン Spatial light modulator unit, illumination optical system, exposure device, and device manufacturing method
WO2011096453A1 (en) * 2010-02-03 2011-08-11 株式会社ニコン Illumination optical device, illumination method, and exposure method and device
WO2012152294A1 (en) * 2011-05-06 2012-11-15 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190969A (en) * 1996-01-10 1997-07-22 Canon Inc Projecting exposure system and manufacture of device using it
JPH113849A (en) * 1997-06-12 1999-01-06 Sony Corp Deformable illumination filter and semiconductor aligner
JP2003260815A (en) * 2002-03-11 2003-09-16 Fuji Photo Film Co Ltd Method of recording image and image recorder
JP2008258605A (en) * 2007-03-30 2008-10-23 Asml Netherlands Bv Lithographic apparatus and method
WO2009060744A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination optical device and exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190969A (en) * 1996-01-10 1997-07-22 Canon Inc Projecting exposure system and manufacture of device using it
JPH113849A (en) * 1997-06-12 1999-01-06 Sony Corp Deformable illumination filter and semiconductor aligner
JP2003260815A (en) * 2002-03-11 2003-09-16 Fuji Photo Film Co Ltd Method of recording image and image recorder
JP2008258605A (en) * 2007-03-30 2008-10-23 Asml Netherlands Bv Lithographic apparatus and method
WO2009060744A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination optical device and exposure device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005764A (en) * 2009-12-23 2015-01-08 株式会社ニコン Spatial light modulation unit, illuminating optical system, exposure device, and device manufacturing method
JP2018112755A (en) * 2009-12-23 2018-07-19 株式会社ニコン Illumination optical device, illumination method, exposure device, exposure method, and method of producing device
JP2017134408A (en) * 2009-12-23 2017-08-03 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and method of producing device
JP2016130859A (en) * 2009-12-23 2016-07-21 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and method of producing device
JP5598733B2 (en) * 2009-12-23 2014-10-01 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2011078070A1 (en) * 2009-12-23 2011-06-30 株式会社ニコン Spatial light modulator unit, illumination optical system, exposure device, and device manufacturing method
US9310604B2 (en) 2010-02-03 2016-04-12 Nikon Corporation Illumination optical device, illumination method, and exposure method and device
TWI514001B (en) * 2010-02-03 2015-12-21 尼康股份有限公司 An illumination optical device, a lighting method, and an exposure method and apparatus
JP5842615B2 (en) * 2010-02-03 2016-01-13 株式会社ニコン Illumination optical apparatus, illumination method, and exposure method and apparatus
WO2011096453A1 (en) * 2010-02-03 2011-08-11 株式会社ニコン Illumination optical device, illumination method, and exposure method and device
US10591824B2 (en) 2010-02-03 2020-03-17 Nikon Corporation Illumination optical device, illumination method, and exposure method and device
TWI463273B (en) * 2011-05-06 2014-12-01 Zeiss Carl Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
US8699121B2 (en) 2011-05-06 2014-04-15 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
WO2012152294A1 (en) * 2011-05-06 2012-11-15 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus

Similar Documents

Publication Publication Date Title
JP5582287B2 (en) Illumination optical apparatus and exposure apparatus
US10261421B2 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
US10222705B2 (en) Spatial light modulator, exposure apparatus, and method for manufacturing device
US8111378B2 (en) Exposure method and apparatus, and device production method
US9310604B2 (en) Illumination optical device, illumination method, and exposure method and device
US9599906B2 (en) Method for driving spatial light modulator, method for forming pattern for exposure, exposure method, and exposure apparatus
JP2007179039A (en) Illumination system
EP2806451B1 (en) Drive method for spatial light modulator, method for generating pattern for exposure, and exposure method and device
WO2009150871A1 (en) Exposure apparatus and device manufacturing method
WO2013094733A1 (en) Measurement method and device, and maintenance method and device
JP2010067866A (en) Exposure method and apparatus, and method for manufacturing device
JP6558529B2 (en) Spatial light modulator and method of using the same, modulation method, exposure method and apparatus, and device manufacturing method
JP2011103465A (en) Lighting optical device, exposure device, and control method
JP2009302460A (en) Exposure method, exposure apparatus, and electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09762302

Country of ref document: EP

Kind code of ref document: A1