WO2007029495A1 - 被検体の散乱係数の測定方法および測定装置 - Google Patents

被検体の散乱係数の測定方法および測定装置 Download PDF

Info

Publication number
WO2007029495A1
WO2007029495A1 PCT/JP2006/316465 JP2006316465W WO2007029495A1 WO 2007029495 A1 WO2007029495 A1 WO 2007029495A1 JP 2006316465 W JP2006316465 W JP 2006316465W WO 2007029495 A1 WO2007029495 A1 WO 2007029495A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
scalar
value
measurement
subject
Prior art date
Application number
PCT/JP2006/316465
Other languages
English (en)
French (fr)
Inventor
Taichi Mori
Gaku Kamitani
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2006800310641A priority Critical patent/CN101258412B/zh
Priority to JP2007534315A priority patent/JP4941304B2/ja
Priority to EP06782918A priority patent/EP1939637A4/en
Publication of WO2007029495A1 publication Critical patent/WO2007029495A1/ja
Priority to US12/039,892 priority patent/US7592818B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/04Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • G01R27/06Measuring reflection coefficients; Measuring standing-wave ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/04Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant in circuits having distributed constants, e.g. having very long conductors or involving high frequencies

Definitions

  • the present invention relates to a measurement method and a measurement apparatus for vector measurement of a scattering coefficient of a subject (DUT) such as an electronic device.
  • the operating frequency of high-frequency electronic circuits is becoming higher, and the electronic devices used in the circuits have to measure accurate electrical characteristics in the high-frequency region.
  • the reflection coefficient and the transmission coefficient are important.
  • the reflection coefficient is the ratio of the reflected wave reflected from the DUT to the incident wave applied to the DUT.
  • the transfer coefficient is the ratio of the transmitted wave that has passed through the DUT to the incident wave applied to the DUT.
  • a vector network analyzer is generally used for vector measurement of high-frequency characteristics above the millimeter wave band.
  • the VNA applies a measurement signal to the DUT to measure the scattering coefficient (reflection coefficient, transfer coefficient, etc.) row of the DUT, and measures the amplitude ratio and phase difference of the reflected and transmitted waves for each measured signal.
  • the VNA is a measuring instrument that combines a signal source with a vector detector.
  • the conventional VNA is a vector detector, and the most important part is the use of a high-frequency dyne detection method using a PLL (Phase Locked Loop) circuit that also includes a local oscillator and mixer.
  • PLL Phase Locked Loop
  • Non-Patent Document 1 a measurement system for measuring four powers with respect to an incident wave and a reflected wave is constructed to perform power measurement, and from the four power measurement values using the system parameters of the measurement system.
  • a method for deriving the phase difference has been proposed.
  • the phase difference which makes it difficult to measure with high accuracy as the frequency increases, is a basic measurement amount in electromagnetic wave measurement, and the measurement value is almost independent of frequency. It is obtained based on the measurement of the scalar value, and can solve the above-mentioned drawbacks of VNA.
  • VNA drawbacks
  • Patent Document 1 the basic measurement principle is the same as in Non-Patent Document 1, but the power measurement value is increased from four to five, and the amplitude ratio of the incident wave and the reflected wave can be compared. This improves the measurement accuracy.
  • this method when measuring reflection, five powers are measured by five power measuring instruments, so the scale of the whole measuring instrument is further increased and the cost is increased.
  • Non-patent literature 1 G.F.Engen, Hie six-port reflectometer: An alternative network analyzer, "IEEE Trans. Microw. Theory Tech., Vol. MTT— 25, ⁇ .12, ⁇ 1075— 1080, Dec. 1977.
  • Patent Document 1 Japanese Patent No. 3540797
  • a preferred embodiment of the present invention is an object of the measurement method in which the vector measurement of the scattering coefficient of the subject is substantially performed by the scalar measuring instrument, and the scale of the measuring instrument can be reduced and the cost can be reduced. And providing a measuring device.
  • a first preferred embodiment of the present invention is a measurement method for performing vector measurement of a scattering coefficient of a subject, a signal source that applies a signal to the subject, and a reflected wave or transmission of the subject.
  • a scalar measuring device that measures the wave as a scalar value, and the reflected or transmitted wave of the subject.
  • a first step of preparing a measurement system including a superimposition signal system that superimposes at least three different vector signals on overwaves, and a second step of pricing a relational value of the at least three vector signals as a vector value A step of superimposing the at least three vector signals on the reflected wave or transmitted wave of the subject, and measuring each superimposed signal as a scalar value by the scalar measuring device, and the second step, Using the relationship values obtained in the step, at least three scalar values measured in the third step are converted into at least one vector value, and a scattering coefficient of the subject is obtained in a fourth step.
  • a measuring method characterized by comprising:
  • a preferred second embodiment of the present invention is a measurement apparatus that performs vector measurement of a scattering coefficient of a subject, a signal source that applies a signal to the subject, and a reflected wave or transmission of the subject.
  • a superimposed signal system for superimposing at least three different vector signals each having a mutual relation value assigned as a vector value to the wave, and the at least three vectors for the reflected wave or transmitted wave of the subject.
  • a scalar measuring instrument that measures each superimposed signal with a superimposed signal as a scalar value, and at least three scalar values measured by the scalar measuring instrument using the relational values determined by the at least three vector signals.
  • a conversion means for converting the light into a vector value to obtain the scattering coefficient of the subject.
  • the basic concept of the present invention is that when measuring the reflected wave and Z or transmitted wave of the DUT, at least three scalar measurements with different measurement system states are performed, and a vector is obtained from the obtained at least three scalar values.
  • the value, that is, the scattering coefficient is obtained mathematically.
  • a measurement system having a switchable signal path is prepared so that at least three different vector signals can be superimposed on the reflected wave and the Z or transmitted wave.
  • the relational value of each vector signal is preliminarily vectorized.
  • vector signals that can be superimposed include, for example, directional errors and leakage errors, but it is not necessary to price the phase and absolute position of each vector signal.
  • the reflected wave and Z or transmitted wave when the three vector signals are switched to the DUT are subjected to scalar measurement. Can be measured as a scalar value. Relationship between this superimposed scalar measurement and the three vector signals From the above, the reflection coefficient (vector value) or transfer coefficient (vector value) of the DUT can be calculated.
  • a relational value (vector value) assigned to three vector signals and a superimposed signal obtained by superimposing three vector signals on a reflected wave or transmitted wave of a subject are measured as a scalar value.
  • One scattering coefficient (vector value) is obtained from the measured value. This scattering coefficient is obtained as the intersection of three circles with the center corresponding to the relational value priced in the complex plane and the radius corresponding to the measured scalar value. The three circles do not intersect at one point, and multiple intersections may occur.
  • the final dispersion coefficient (vector value) can be obtained by, for example, obtaining the center of gravity of three intersections located within a predetermined circle.
  • a force that requires the relative value of three vector signals (for example, directivity error and leakage error) to be valued in a beta manner is used.
  • a vector measuring device for example, VNA
  • V but it is also possible to derive using only a scalar measuring instrument by following an original calibration procedure as described below.
  • the relationship values for the three vector signals can be priced only once during the manufacture of this measurement device, and the relationship values that have been priced can be used for subsequent DUT measurements. Even if the DUT is changed, there is no need to redo the pricing.
  • the present invention substantially uses a scalar value measurement (power measurement with a power meter or power sensor, voltage measurement with a voltmeter, current measurement with an ammeter), which is a basic and inexpensive measurement almost independent of frequency.
  • a scalar measuring instrument that performs scalar measurement is a measuring instrument that measures only amplitude information (magnitude of amplitude) of power, voltage, or current.
  • an inexpensive measuring instrument can be provided for each device, so that the burden on processes such as setup change can be reduced. .
  • the above-described features have a great effect on ensuring measurement reproducibility for high-frequency measurements in the millimeter wave band or higher where fine adjustment of the measurement system is required.
  • vector error correction can be performed while suppressing an increase in the price of the measurement system.
  • the method of the present invention is based on the load fluctuations that are not achieved by the multiplication type phase detection method using the mixer sambra. Since this is a summing-type phase detection method that uses changes in measured values, there is essentially no limit on the input bandwidth. Therefore, there is a possibility that it can be extended to the frequency domain of light.
  • the reflection coefficient measurement system includes a force bra (directional coupler) in the middle of the measurement signal path connecting the signal source and the DUT, and one of the other signal paths coupled to the measurement signal path by the force bra.
  • a directional error that can be switched to at least three states is attached to the port, and a reflected wave measuring scalar measuring instrument is connected to the other port.
  • the transmission coefficient measurement system connects, in parallel, a signal path having a DUT and a signal path having a leakage error that can be switched to at least three states between a signal source and a scalar measuring instrument for transmitted wave measurement. This makes it easy to configure.
  • the reflection coefficient measurement system and the transfer coefficient measurement system can be combined to form a 1-pass 2-port measurement system.
  • a full 2-port measurement system By switching the signal source with the switch, a full 2-port measurement system, a full 3-port measurement system can be used.
  • a port measurement system can also be configured. In that case, both the reflection coefficient and the scattering coefficient can be measured simultaneously by switching the directivity error and leakage error with the switching means while the DUT is connected to the measurement system.
  • the method of superimposing at least three vector signals on the reflected wave or transmitted wave of the subject has been described.
  • a method of superimposing two vector signals can also be used.
  • the scattering coefficient (vector value) of the subject cannot be uniquely determined.
  • the general characteristic of the scattering coefficient of the subject is known in advance, only one of the two converted vector values can be selected, and the scattering coefficient of the subject can be obtained from that value.
  • the two derived vector values are both If the standard characteristic power of the product does not fall within a certain range (for example, within the non-defective product range), it can be judged as a defective product during mass production selection. Compared to the above example, which requires three scalar measurements, this method requires only two scalar measurements, thus reducing the time taken to derive the scattering coefficient.
  • the scalar value is measured at least three times with different measurement system states.
  • at least three scalar measurement forces also mathematically determine the scattering coefficient.
  • the scalar value measurement which is a basic and inexpensive measurement that is almost independent of frequency, can substantially obtain each scattering coefficient of the reflected wave and Z or transmitted wave in the high frequency region, Thus, there is no problem that the price increases remarkably as the measurement frequency becomes higher, and there is no loss in frequency conversion and lowering of the measurement signal purity as the frequency becomes higher.
  • the scale of the entire measuring apparatus can be reduced and the cost can be reduced.
  • two vector signals are superimposed on the reflected wave and Z or transmitted wave of the DUT, and each superimposed signal is measured as a scalar value by a scalar measuring device.
  • the scalar value is converted into two vector values using the relation value of the two vector signals, and the vector value force of one of them can be obtained.
  • the scattering coefficient of the subject can be obtained, so the number of scalar measurements can be reduced and the measurement time can be reduced. Can be shortened.
  • FIG. 1 is a circuit diagram for measuring a reflection coefficient that is applied to the first embodiment of the present invention.
  • FIG. 2 is an error model diagram of the measurement of reflection loss.
  • FIG. 3 is a diagram illustrating a method for deriving three scalar measurement values and directional error force measurement values.
  • FIG. 4 is a Smith chart showing three directional errors that have been priced.
  • FIG. 5 Smith chart of scalar measurement of the superimposed signal of the DUT reflected wave and the reflected wave of the directional error.
  • Fig. 6 is a circuit diagram for measuring a transmission coefficient that is used in the second embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing an example of a one-pass two-port measurement system that combines a reflection measurement system and a transmission measurement system that are useful in the third embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing an example of a full 2-port measurement system that combines a reflection measurement system and a transmission measurement system that are useful in the fourth embodiment of the present invention.
  • FIG. 9 is a Smith chart showing the relationship values of three directional errors measured with a vector measuring instrument.
  • FIG. 10 is a diagram showing DUT scalar measurement values in three cases with different directional errors.
  • FIG. 11 is a diagram showing the measured values (amplitudes) of the DUTs calculated using the method of the present invention.
  • FIG. 12 is a Smith chart showing vector measured values of the DUT calculated using the method of the present invention.
  • FIG. 14 Measurement of DUT using ⁇ and calibrated VNA according to the method of the present invention.
  • FIG. 15 is a diagram showing a method of obtaining a relation value of three directional errors by a scalar measuring device in a complex plane in the fifth embodiment of the present invention.
  • FIG. 16 is a circuit diagram for measuring a reflection coefficient that is relevant to the sixth embodiment of the present invention.
  • FIG. 17 shows a Smith chart in which two vector measurement values of a derived subject and known characteristics are plotted in the sixth embodiment of the present invention.
  • FIG. 18 is a diagram showing an amplitude and Smith chart of a DUT obtained from one measurement value according to the sixth embodiment of the present invention.
  • FIG. 19 is a diagram showing a DUT amplitude and Smith chart obtained from the other measured value of the sixth embodiment of the present invention.
  • FIG. 20 is a diagram showing a known DUT amplitude and Smith chart for selecting a true value according to the sixth embodiment of the present invention.
  • FIG. 1 shows a DUT reflection coefficient measuring apparatus according to a first preferred embodiment of the present invention.
  • the measurement signal generated by the signal source 1 consisting of an oscillator is transferred to the DUT through the measurement signal path 2.
  • a force bra 3 for separating a part of the signal flowing through the signal path 2 is provided.
  • a power meter 5 such as a power meter that measures the reflected wave as a scalar value is connected to the port on the signal source side of the error signal path 4 that is coupled to the measurement signal path 2 by the force bra 3.
  • Three types of directional errors 7a to 7c are connected to the port on the DUT side of path 4 via the directional switch 6.
  • the directivity errors 7a to 7c have different reflection phases, and a relational value (relative vector value) of the directivity error is obtained in advance.
  • FIG. 2 shows an error model of the reflection loss measurement. Where S is the DUT return loss and S
  • 11A 11 is measured return loss, E is directional error, E is reflected frequency response error, E is source
  • E can be reduced from 20dB to about 25dB by making a probe.
  • E S is 35dB to 45dB, which is very small compared to the measured signal level OdB.
  • Equation 2 The error due to E in Equation 2 is calculated from the previously measured scalar measurement value of the DUT.
  • is a vector measurement.
  • the power measuring device 5 measures the power value (scalar value) of the reflected wave in the three states when the direction switching switch 6 is switched.
  • the measured value is the amplitude of the superimposed signal between the reflected wave R1 of the DUT shown in Fig. 1 and the reflected wave R2 of the directional errors 7a to 7c.
  • Equation 3 Since the amplitude of the point added with the directional error is the reflection coefficient scalar measurement value, it is expressed by Equation 3 to Equation 5.
  • Equations 3 to 5 are represented by a radius
  • vector measurement values ( ⁇ , ⁇ ) were obtained by removing the ml m2 m3 directional error from the reflection coefficient scalar measurement values (
  • Figure 4 shows the three directions priced The relationship values (E 1, E 2, E 3) of errors 7a to 7c are shown. As shown, the three vectors (
  • E 1, E 2, E 3) should be separated from each other by more than the measurement error of the power meter 6.
  • the midpoint is 50 when connecting something other than the force non-reflective termination represented by three vectors with 50 ⁇ as the midpoint. Does not become ⁇ . In any case, it is sufficient to quantify the three directional errors.
  • FIG. 5 shows a measured value (scalar value) by the power measuring instrument 5 when the DUT is connected to the measuring apparatus shown in FIG. 1 and the directionality switching switch 6 is switched to the 3 position.
  • S I, r I S
  • , r
  • E the three directional error vectors
  • FIG. 6 shows a DUT transfer coefficient measurement apparatus according to a second preferred embodiment of the present invention.
  • the measurement signal generated by the signal source 1 is branched into the measurement signal path 9 and the error signal path 10 by the power splitter 8.
  • One measurement signal entering measurement signal path 9 is applied to the DUT, and the other measurement signal entering error signal path 10 is applied to one of the three leakage errors 12a to 12c via leakage switching switch 11. .
  • the transmitted wave of the DUT and the transmitted wave of leakage errors 12a to 12c are superimposed, and the superimposed signal is measured as a power value (scalar value) by the power meter 13.
  • Leakage errors 12a to 12c have different phases of transmitted waves, and in advance, a relational value (a relative value of the leakage error) is obtained in advance.
  • the leakage error in each state can be changed without using a VNA. It is possible to obtain the relation value of the vector values. For example, when using a 2-port VNA to obtain the relationship values of three leakage errors, connect the VNA port 1 to the signal source side and the VNA port 2 to the power meter side in Fig. 6, and connect the leakage switch 11 The three measured values of the transfer coefficient when the is switched to the 3 position. Connect the DUT
  • the measurement terminals may be in an OPEN state, or a non-reflective terminal may be connected to each. If the relational values of the three leakage errors that are priced in this way are obtained once when the measuring device is manufactured, these values can be used continuously when measuring the DUT.
  • the power meter 13 measures the power value (scalar value) of the transmitted wave in the three states when the leakage switching switch 11 is switched.
  • the measured value is the amplitude of the superimposed signal between the transmitted wave T1 of the DUT shown in Fig. 6 and the transmitted wave T2 of leakage errors 12a to 12c.
  • m3 I is the measured value (power value) when the leakage switch 11 is switched to the 3 position.
  • one vector measurement value can be obtained from the three scalar measurement values. This value is equivalent to the vector measurement value that the VNA normally detects by the mixer. .
  • Measurement system errors in the DUT vector measurement values derived as described above can be removed by following the normal calibration procedure performed by the VNA, since vector measurement values have been obtained. For example, by performing SOL calibration (a calibration method that uses the calibration standards of Short, Open, and Load), it is possible to eliminate the influence of errors in the measured value force measurement system and obtain the true value of the DUT.
  • SOL calibration a calibration method that uses the calibration standards of Short, Open, and Load
  • FIG. 7 shows an example of a 1-pass 2-port measurement system in which the reflection measurement system shown in FIG. 1 and the transmission measurement system shown in FIG. 6 are combined.
  • the measurement signal generated by the signal source 1 is branched by the power splitter 8, one measurement signal is applied to the DUT, and the other measurement signal is selected from the three leakage errors 12 a to 12 c via the leakage switching switch 11. To be applied.
  • the superimposed signal of the transmitted wave of the DUT and the transmitted wave of leakage errors 12a to 12c is measured by the power meter 13 as a power value (scalar value).
  • a force bra 3 is provided in the middle of the signal path 2 connected to the DUT, and the reflected wave is measured as a power value at the signal source side port of the other signal path connected to the signal path 2 by the coupler 3.
  • a power meter 5 is connected, and three directional errors 7a to 7c are connected to the port on the DUT side via a directional switch 6. The power value is measured by the power meter 5 while switching the directional switch 6 to the 3 position, and the power value is measured by the power meter 13 while the leakage switch 11 is switched to the 3 position. From these measured values, DUT reflection coefficient ⁇ and transmission coefficient T
  • FIG. 8 shows an example of a full 2-port measurement system in which the reflection measurement system shown in FIG. 1 and the transmission measurement system shown in FIG. 6 are combined.
  • the switch 14 is provided in the signal path connected to both ends of the DUT and the direction of the DUT can be changed by the switch 14, the other configurations are the same as in FIG. For this reason, the same reference numerals are used for overlapping theories. I will omit the description.
  • measurement can be performed by changing the direction of the DUT by switching the switching switch 14, and full 2-port measurement is possible.
  • the scalar measurement value is determined using only the amplitude information of the VNA measurement value as the scalar measurement device.
  • an inexpensive power meter or power sensor it is common to use an inexpensive power meter or power sensor as a scalar measuring instrument.
  • a force vector measurement value can be obtained only for amplitude information in this experimental example.
  • Use the same measuring instrument In other words, as long as the same measuring device is used, there is no difference in the measured value of the measuring device, and if the present invention is effective, only the amplitude information can be obtained and the measured value exactly the same as the VNA measured value should be obtained. Therefore, this is intended to prove the effectiveness of the present invention.
  • the measured value to be compared with the measured value using the present invention is the calibrated VNA measured value.
  • Figure 10 shows a DUT scalar with three different directional errors.
  • Figures 11 and 12 show the measured values (amplitudes) and vector measured values after substituting the measured values in Figs. 9 and 10 into Equations 8 and 9.
  • Figure 12 shows that vector measurements with phase information can be obtained from three scalar measurements!
  • the measurement values in FIGS. 11 and 12 also include measurement system errors. Therefore, in order to perform vector error correction, the measurement of the standard device is similarly performed using the measurement system of the present invention, and the measurement shown in FIG. 11 and FIG. 12 is performed. The DUT vector measurement ⁇ was calculated by correcting the values.
  • Figures 13 and 14 show the method according to the present invention.
  • the position of the measured value on the complex plane in the state is, for example, ⁇ and ⁇ in Fig. 15.
  • are the same as in the previous case, so the angle is 0, ⁇ is n2 n3 1 2, and each is the circumference with the center at the origin and radius I ⁇ ⁇ Since it should be above (shown by broken lines, n2 I and I n3 I), each position is determined as shown in the figure.
  • intersection (x, y) of the straight line and the circle is as follows.
  • the coordinates of ⁇ can be obtained by taking (x, y) as the coordinates of ⁇ , radius r as
  • the coordinates of ⁇ can be obtained in the same way as ⁇ .
  • the coordinates of ⁇ can be obtained in the same way as ⁇ .
  • the coordinates of ⁇ can be obtained in the same way as ⁇ .
  • the estimation error E is obtained by the following formula.
  • the relative value of the directional error may be used. Note that it is necessary to perform normal 1-port calibration after obtaining the relationship values of the three directional errors.
  • the VN can be used even when the state of the measuring device changes for some reason. Without using A, the correct three directional error relationship values can be obtained again.
  • the measurement device can be calibrated in the mass production process itself using the measurement device according to the present invention, it is easy to recover when an abnormality occurs.
  • VNA since VNA is not necessary in the first place, vector measurement can be performed even if VNA is not owned. Power! ] VNA is not supported There is also an advantage that vector measurement can be realized even in such a high frequency region.
  • FIG. 16 shows a reflection measurement system when two vector signals are superimposed. The same parts as those in FIG.
  • Equation 1214 the vector value of the reflected signal of the DUT with the directional error removed is derived from (X, y) and (X, y) as shown in Equation 1214.
  • FIG. 18 and FIG. 19 show the results of deriving the amplitude and vector value of the subject sample using Equations 12, 14 and 13, 14, respectively.
  • FIG. 20 shows the characteristics of a known specimen of the same type that has been obtained in advance. If a value close to FIG. 20 is selected from FIG. 18 and FIG. 19, it can be estimated that this is the vector value of the measured specimen. In this case, all the values close to those in Fig. 20 are the values in Fig. 18, that is, the values derived by using Equations 12 and 14. Therefore, Fig. 18 can be estimated as the amplitude and vector value of the specimen. .

Abstract

【課題】被検体の散乱係数のベクトル測定を実質的にスカラ測定器によって実施し、測定器の規模を小さくでき、かつコストを低減できる測定方法および測定装置を提供する。 【解決手段】被検体に信号を印加する信号源1と、被検体の反射波もしくは透過波をスカラ値として測定するスカラ測定器5,13と、被検体の反射波もしくは透過波に対し、予め関係値が値付けされた3つの異なるベクトル信号をそれぞれ重畳する重畳信号系とを備えた測定系を準備する。被検体の反射波もしくは透過波に対し3つのベクトル信号を重畳し、各重畳信号をスカラ測定器5,13によりそれぞれスカラ値として測定する。3つのベクトル信号の値付けされた関係値を用いて、測定された3つのスカラ値を1つのベクトル値に変換し、被検体の散乱係数を得る。

Description

明 細 書
被検体の散乱係数の測定方法および測定装置
技術分野
[0001] 本発明は電子デバイスなどの被検体 (DUT)の散乱係数をベクトル測定するための 測定方法および測定装置に関するものである。
背景技術
[0002] 高周波電子回路の動作周波数がますます高周波化し、回路に用いられる電子デバ イスも高周波領域で正確な電気特性を測定しなければならなくなって 、る。高周波測 定項目のうち、重要なものとして反射係数と伝達係数とがある。反射係数とは、 DUT に印加する入射波に対する DUTから反射してきた反射波の比である。また、伝達係 数とは、 DUTに印加する入射波に対する DUTを透過してきた透過波の比である。こ れらは全てベクトル値 (または複素数量)である。しかし、実使用上はこれらの振幅情 報 (スカラ値)のみが重要なことが多 、。
[0003] DUTの反射波や透過波を測定系で観測した場合、通常はこれらには測定系の誤差 を多く含む。測定系の誤差を観測量力 除去することで DUTの真の特性が得られる 力 これには反射波や透過波をベクトル値として観測(ベクトル測定)することが必要 である。これらの振幅情報 (スカラ値)のみを観測している場合は、測定系の誤差を正 確に取り除くことは不可能である。つまり、実使用上は反射係数や伝達係数の振幅の みが重要であっても、これらを正確に測定するにはベクトル値が必要である。
[0004] ミリ波帯以上の高周波特性のベクトル測定には、ベクトルネットワークアナライザ (VN A)が一般に使用される。 VNAは、 DUTの散乱係数 (反射係数,伝達係数など)行 列を求めるために、 DUTに測定信号を印加し、反射波と透過波それぞれの測定信 号に対する振幅比と位相差を測定する。つまり、 VNAは信号源にベクトル検波器を 組み合わせてなる測定器である。従来の VNAはベクトル検波器の構成として、重要 な部分は局部発振器とミキサカも成る PLL (Phase Locked Loop )回路を用いたへテ 口ダイン検波方式を採用して 、る。
[0005] しかし、 VNAの構成では、測定周波数が高くなるに従って PLL回路の局部発振器と ミキサの段数が増えることなどにより、価格が著しく上昇する問題がある。カロえて、周 波数が高くなるに従って周波数変換時の損失及び測定信号純度の低下を招来し、 高精度測定が困難となる問題もある。
[0006] 非特許文献 1では、入射波及び反射波に対し 4つの電力測定を行う測定系を構築し て電力測定を行 、、測定系のシステムパラメータを用いて前記 4つの電力測定値か ら位相差を導出する方法が提案されている。この方法では、周波数が高くなるに従つ て高精度な測定が困難になる位相差を、電磁波計測において基本測定量であり、か つ計測精度が周波数に殆ど依存しな 、電力値と 、ぅスカラ値の計測を基に求めるも のであり、 VNAにおける前記欠点を解消できる。し力しながら、反射測定を行う際、 4 つの電力を 4つの電力測定器で測定する必要があるため、測定器全体の規模が大き くなり、コストも力かるという問題がある。
[0007] 特許文献 1は、基本的な測定原理は非特許文献 1と同様であるが、電力測定値を 4 つから 5つに増やし、入射波と反射波の振幅比を比較可能とすることで測定精度を 向上させたものである。この方法では、反射測定を行う際、 5つの電力を 5つの電力 測定器で測定するため、測定器全体の規模はさらに大きくなりコストも力かる。
非特干文献 1 : G.F.Engen, Hie six-port reflectometer: An alternative network analy zer," IEEE Trans. Microw. Theory Tech., vol. MTT— 25, ηο.12,ρρ1075— 1080, Dec. 1977.
特許文献 1:特許第 3540797号公報
発明の開示
発明が解決しょうとする課題
[0008] そこで、本発明の好ま 、実施形態の目的は、被検体の散乱係数のベクトル測定を 実質的にスカラ測定器によって実施し、測定器の規模を小さぐかつコストを低減でき る測定方法および測定装置を提供することにある。
課題を解決するための手段
[0009] 本発明の好ましい第 1の実施形態は、被検体の散乱係数のベクトル測定を行う測定 方法において、前記被検体に信号を印加する信号源と、前記被検体の反射波もしく は透過波をスカラ値として測定するスカラ測定器と、前記被検体の反射波もしくは透 過波に対し少なくとも 3つの異なるベクトル信号をそれぞれ重畳する重畳信号系とを 備えた測定系を準備する第 1のステップと、前記少なくとも 3つのベクトル信号の関係 値をベクトル値として値付けする第 2のステップと、前記被検体の反射波もしくは透過 波に対し前記少なくとも 3つのベクトル信号を重畳し、各重畳信号を前記スカラ測定 器によりそれぞれスカラ値として測定する第 3のステップと、前記第 2のステップで得ら れた関係値を用いて、前記第 3のステップで測定された少なくとも 3つのスカラ値を少 なくとも 1つのベクトル値に変換し、被検体の散乱係数を求める第 4のステップと、を 有することを特徴とする測定方法である。
[0010] 本発明の好ましい第 2の実施形態は、被検体の散乱係数のベクトル測定を行う測定 装置において、前記被検体に信号を印加する信号源と、前記被検体の反射波もしく は透過波に対し、互 、の関係値がベクトル値として値付けされた少なくとも 3つの異な るベクトル信号をそれぞれ重畳する重畳信号系と、前記被検体の反射波もしくは透 過波に対し前記少なくとも 3つのベクトル信号を重畳した重畳信号を、それぞれスカ ラ値として測定するスカラ測定器と、前記少なくとも 3つのベクトル信号の値付けされ た関係値を用いて、前記スカラ測定器で測定された少なくとも 3つのスカラ値を少なく とも 1つのベクトル値に変換し、被検体の散乱係数を求める変換手段と、を有すること を特徴とする測定装置である。
[0011] 本発明の基本概念は、 DUTの反射波及び Z又は透過波を測定する際、測定系の 状態が異なる少なくとも 3回のスカラ測定を行い、得られた少なくとも 3つのスカラ値か らベクトル値、つまり散乱係数を数学的に求めるものである。前記測定を実施するた め、少なくとも 3つの異なるベクトル信号を反射波及び Z又は透過波に重畳できるよう に、切替可能な信号経路を持つ測定系を準備する。各ベクトル信号の関係値を予め ベクトル的に値付けしておく。ここで、重畳できるベクトノレ信号としては、例えば方向 性誤差や漏洩誤差があるが、各ベクトル信号の位相や絶対位置を値付けする必要 はなぐその相互関係が分かればよい。次に、前記測定系を用いて、 DUTに対して 3 つのベクトル信号を切り替えた場合の反射波及び Z又は透過波をスカラ測定するこ とにより、 DUTによる反射波及び Z又は透過波とベクトル信号との重畳信号をスカラ 値として測定することができる。この重畳スカラ測定値と 3つのベクトル信号の関係値 とから、 DUTの反射係数 (ベクトル値)または伝達係数 (ベクトル値)を計算で求める ことができる。
[0012] 本発明は、 3つのベクトル信号の値付けされた関係値 (ベクトル値)と、被検体の反射 波もしくは透過波に対し 3つのベクトル信号を重畳した重畳信号をスカラ値として測 定した測定値とから、 1つの散乱係数 (ベクトル値)を求めるものである。この散乱係数 は、複素平面において値付けされた関係値に対応した中心と、測定されたスカラ値 に対応した半径とを持つ 3つの円の交点として得られるが、実際には測定誤差などに よって 3つの円が 1点で交わらず、複数の交点が発生する可能性がある。その場合に は、例えば所定の円内に位置する 3つの交点の重心を求めるなどして、最終的な散 乱係数 (ベクトル値)を求めることができる。
[0013] 本発明では、 3つのベクトル信号 (例えば方向性誤差や漏洩誤差)の関係値をべタト ル的に値付けしておく必要がある力 そのためにベクトル測定器 (例えば VNA)を用
V、てもよ 、し、後述するような独自の校正手順を踏むことによりスカラ測定器のみを用 いて導出することも可能である。 3つのベクトル信号の関係値の値付けは、本測定装 置の製作時に 1回実施するだけでよぐその後の DUTの測定に際しては値付けされ た関係値を用いればよい。 DUTが変更されても、値付けをやり直す必要はない。
[0014] 本発明は、周波数にほとんど依存しない、基本的で安価な測定であるスカラ値測定( パワーメータやパワーセンサによる電力測定、電圧計による電圧測定、電流計による 電流測定)によって、実質的に高周波領域での反射波及び Z又は透過波のベクトル 的な測定値 (散乱係数)が得られることを明らかにしたものである。ここで、スカラ測定 を行うスカラ測定器とは、電力、電圧または電流の振幅情報 (振幅の大きさ)のみを測 定する測定器のことである。多品種 Z少量生産の多い高周波デバイスにおいては、 本発明による安価な測定器であれば、デバイス毎にこれを備えることが可能になるの で、段取り換え等の工程の負担を小さくすることができる。前記の特徴は、測定系の 微妙な調整が要求されるミリ波帯以上の高周波測定にお!、て、測定再現性の確保に 多大な効果をもたらす。また、本発明は基本的に熱測定である電力測定が可能であ る限り、測定システムの価格の上昇を抑えつつベクトル誤差補正が可能である。本発 明の手法は、ミキサゃサンブラによる乗算型の位相検出法ではなぐ負荷変動時の 測定値変化を利用した加算型の位相検出法であるから、本質的に入力帯域幅に限 度がない。そのため、光の周波数領域まで拡張できる可能性がある。
[0015] 被検体の反射波もしくは透過波に対し、少なくとも 3つのベクトル信号を重畳させる際 、少なくとも 3つの方向性誤差または漏洩誤差と、これら誤差を選択的に切り替える方 向性誤差切替手段または漏洩誤差切替手段とを設けることで、 3つの状態を容易に 得ることができる。そして、 3つの状態の測定値を得るために、各状態ごとにスカラ測 定器を準備する必要はなぐ 1台で足りる。そのため、非特許文献 1や特許文献 1のよ うな多数の電力測定器を必要とするシステムとは異なり、測定装置全体の規模を小さ くでき、コストも低減できる。
[0016] 反射係数測定系は、信号源と DUTとを結ぶ測定信号経路の途中に力ブラ (方向性 結合器)を設け、力ブラによって測定信号経路と結合された他の信号経路の一方の ポートに少なくとも 3つの状態に切替可能な方向性誤差を取り付け、他方のポートに 反射波測定用スカラ測定器を接続することで、簡単に構成できる。一方、伝達係数 測定系は、信号源と透過波測定用スカラ測定器との間に、 DUTを有する信号経路と 、少なくとも 3つの状態に切替可能な漏洩誤差を有する信号経路とを並列に接続す ることで、簡単に構成できる。さらに、反射係数測定系と伝達係数測定系とを組み合 わせて、 1パス 2ポート測定系を構成することもできるし、スィッチで信号源を切り替え ることにより、フル 2ポート測定系、フル 3ポート測定系などを構成することもできる。そ の場合、 DUTを測定系に接続した状態のまま、切替手段により方向性誤差および漏 洩誤差を切り替えることにより、反射係数および伝達係数の両方の散乱係数を同時 に測定することができる。
[0017] 上述の説明では、被検体の反射波もしくは透過波に対し、少なくとも 3つのベクトル信 号を重畳させる方法について説明したが、 2つのベクトル信号を重畳させる方法を用 いることも可能である。この場合には、重畳信号であるベクトル信号が 2つしかないた め、基本的にはベクトル値が 2つ導出され、被検体の散乱係数 (ベクトル値)を一意に 求めることができない。しかし、予め被検体の散乱係数の概略特性が既知であれば、 変換された 2つのベクトル値から一方のみを選択できるので、その値から被検体の散 乱係数を求めることができる。また、 2つの導出されたベクトル値が共に被検体試料 の基準特性力もある範囲内(例えば良品範囲内)に入らな力つた場合は、量産選別 時に不良品と判断することができる。この方法では、 3回のスカラ測定を必要とする上 述の例に比べて、 2回のスカラ測定で済むため、散乱係数導出にかかる時間が短縮 される。
発明の好ましい実施形態の効果
[0018] 以上のように、本発明の第 1の実施形態では、 DUTの反射波及び Z又は透過波を 測定する際、測定系の状態が異なる少なくとも 3回のスカラ値測定を行い、得られた 少なくとも 3つのスカラ値測定値力も散乱係数を数学的に求めるものである。すなわ ち、周波数にほとんど依存しない基本的で安価な測定であるスカラ値測定によって、 実質的に高周波領域での反射波及び Z又は透過波の各散乱係数を得ることができ るため、 VNAのように測定周波数が高くなるに従って価格が著しく上昇する問題が なぐかつ周波数が高くなるに従って周波数変換時の損失及び測定信号純度の低 下を招来することもない。また、従来の電力測定器を用いたベクトル測定法に比べて も、スカラ測定器の個数を減らすことができるため、測定装置全体の規模を小さくでき 、コストち低減でさる。
[0019] 本発明の第 2の実施形態では、 DUTの反射波及び Z又は透過波に 2つのベクトル 信号を重畳し、各重畳信号をスカラ測定器によりそれぞれスカラ値として測定し、これ ら 2つのスカラ値を 2つのベクトル信号の関係値を用いて 2つのベクトル値に変換し、 このうちの一方のベクトル値力 被検体の散乱係数を求めることができるので、スカラ 測定回数を少なくでき、測定時間を短縮できる。
図面の簡単な説明
[0020] [図 1]本発明の第 1実施形態に力かる反射係数を測定するための回路図である。
[図 2]反射損失測定の誤差モデル図である。
[図 3]3つのスカラ測定値と方向性誤差力 べ外ル測定値を導出する方法を説明す る図である。
[図 4]値付けされた 3つの方向性誤差を示すスミスチャートである。
[図 5]DUTの反射波と方向性誤差の反射波の重畳信号をスカラ測定したスミスチヤ ートである。 [図 6]本発明の第 2実施形態に力かる伝達係数を測定するための回路図である。
[図 7]本発明の第 3実施形態に力かる反射測定系と伝達測定系とを組み合わせた 1 パス 2ポート測定システムの例を示す回路図である。
[図 8]本発明の第 4実施形態に力かる反射測定系と伝達測定系とを組み合わせたフ ル 2ポート測定システムの例を示す回路図である。
[図 9]ベクトル測定器で測定した 3つの方向性誤差の関係値を示すスミスチャートであ る。
[図 10]方向性誤差が異なる 3つの場合における DUTスカラ測定値を示す図である。
[図 11]本発明方法を用いて計算した DUTのべ外ル測定値 (振幅)を示す図である。
[図 12]本発明方法を用いて計算した DUTのベクトル測定値を示すスミスチャートで ある。
[図 13]本発明方法による DUTの測定値 Γ と校正された VNAを用いた DUTの測
D
定値 Γ との振幅を比較したグラフである。
A
[図 14]本発明方法による DUTの測定値 Γ と校正された VNAを用いた DUTの測
D
定値 Γ とを比較したスミスチャートである。
A
[図 15]本発明の第 5実施形態において、スカラ測定器によって 3つの方向性誤差の 関係値を求める方法を複素平面で表した図である。
[図 16]本発明の第 6実施形態に力かる反射係数を測定するための回路図である。
[図 17]本発明の第 6実施形態において、導出された被検体の 2つのベクトル測定値と 、既知特性とをプロットしたスミスチャートを示す。
[図 18]本発明の第 6実施形態の一方の測定値から求めた DUTの振幅およびスミス チャートを示す図である。
[図 19]本発明の第 6実施形態の他方の測定値から求めた DUTの振幅およびスミス チャートを示す図である。
[図 20]本発明の第 6実施形態の真値を選択するための既知の DUTの振幅およびス ミスチャートを示す図である。
発明を実施するための最良の形態
以下に、本発明の好ましい実施の形態を、図面を参照して説明する。 好ましい実施形態 1
[0022] 図 1は、本発明の好ましい第 1実施形態である DUTの反射係数測定装置を示す。
発振器よりなる信号源 1が発生した測定信号は、測定信号経路 2を通って DUTに印 カロされる。測定信号経路 2の途中には、この信号経路 2を流れる信号の一部を分離 する力ブラ 3が設けられている。力ブラ 3によって測定信号経路 2と結合された誤差信 号経路 4の信号源側のポートには、反射波をスカラ値として測定するパワーメータ等 の電力測定器 5が接続されており、誤差信号経路 4の DUT側のポートには方向性切 替スィッチ 6を介して 3種類の方向性誤差 7a〜7cが接続されて 、る。方向性誤差 7a 〜7cとは、反射の位相が相互に異なるものであり、予めその方向性誤差の関係値( 相対的なベクトル値)を求めておく。
[0023] 図 2は、反射損失測定の誤差モデルを示す。ここで、 S は DUTの反射損失、 S
11A 11 は反射損失の測定値、 E は方向性誤差、 E は反射周波数応答誤差、 E はソース
DF RF SF
マッチ誤差をそれぞれ表わす。図 2の誤差モデルから、被検体の反射損失 S と測
11A 定値 s の関係は次の通りとなる。
11
[数 1]
SUM = EDF + "A (数式1 ) [0024] ここで、多くの DUTにおいて測定すべき反射損失 S は約 15dB〜一 20dB程度
11A
であり、また E はプローブの作り込みにより 20dB〜一 25dB程度まで小さくできる
SF
。従って、 E S は 35dB〜一 45dBと測定信号レベル OdBに比べて非常に小さ
SF 11A
な値になるので、次式のように近似しても差し支えな 、。
[数 2]
(数式 )
[0025] 数式 2中の E による誤差については、予め値付けされた DUTのスカラ測定値から
F
補正係数を求めることにより補正することができる力 方向性誤差 E
DFについては通 常のスカラ測定では補正を行なうことができない。そこで、本発明では、スカラ測定で ありながら方向性誤差 E の補正を行なうベぐ下記の各ステップを実施する。なお、
DF
実際には S 力 E を取り除いた Γ を得ることができれば、 Γ はベクトル測定値
11 DF T T になっているので、通常の誤差除去手順を踏むことにより、 E と E の誤差を取り除く
F SF
ことができる。すなわち、前記の仮定は必ずしも必要なものではなぐ E S が無視
SF 11A できなくとも、本発明を適用することができる。
[0026] 次に、 DUTの反射係数測定方法について説明する。
一方向性誤差の値付け
3つの方向性誤差 7a〜7cの関係値 (E 、E 、E )を求めるために、例えば校
DF1 DF2 DF3
正済みの VNAで実測してもよいし、 VNAで測定を行わなくとも、後述するような独自 の校正手順によって 3つの方向性誤差のベクトル関係値を得ることができる。例えば 2ポート VNAを用いて 3つの方向性誤差の関係値を求める場合には、 VNAにカロえ て無反射終端を準備する。そして、図 1の信号源側に VNAのポート 1を、 DUT側に 無反射終端を、電力測定器側に VNAのポート 2を接続する。この状態で、方向性切 替スィッチ 6を 3位置に切り替えた際の伝達係数の 3つの測定値 S 力 ¾つの方向性
21
誤差の関係値になる。このようにして値付けした 3つの方向性誤差は、一度測定装置 を製造すれば通常は変化しな 、ものであるから、測定装置製造時に値付けすること で、以後この値を継続して使用することが可能であり、したがって当該測定装置を使 用するデバイス量産工程では、 VNAが不要である。
[0027] ースカラ測定
方向性誤差 7a〜7cの値付けを終了した後、図 1に示す測定装置に DUTを接続して 反射測定を行う。すなわち、方向性切替スィッチ 6を切り替えた際の 3状態における 反射波の電力値 (スカラ値)を電力測定器 5により測定する。測定された測定値は、 図 1に示す DUTの反射波 R1と方向性誤差 7a〜7cの反射波 R2との重畳信号の振 幅である。
[0028] ースカラ値からベクトル値への変換
予め値付けされた方向性誤差の 3つのベクトル値 (E 、E 、E )と、前記スカラ
DF1 DF2 DF3
測定により測定された 3つの電力値( I Γ
ml I、 I Γ
m2 I、 I Γ
m3 I )とを用いて、 1つ のベクトル値すなわち DUTの反射係数 Γ に変換する。その変換式の導出につ!ヽ て、以下に説明する c
[0029] ベクトル値の実数部と虚数部をそれぞれ添字 x、 yをつけて表すと、 (E 、 E 、 E
DF1 DF2 ]
)および Γ は以下のようになる。
3 T
E = (E , E )
DF1 DFlx DFly
E = (Ε , Ε )
DF2 DF2x DF2y
E = (Ε , Ε )
DF3 DF3x DF3y
Γ = = ( Γ , Γ )
[0030] それぞれ 3つの方向性誤差 (Ε E 、 E )と、 3つの DUTの反射係数スカラ測
D DF2 DF3
定値( I Γ I、 I Γ I、 I Γ )と、方向性誤差を取り除いたベクトル測定値 Γ m3 Ί の関係式は、ベクトル測定値 Γ の取りうる値を (X, y)と置くと、ベクトル測定値に方
T
向性誤差を足した点の振幅が反射係数スカラ測定値であるため、数式 3〜数式 5で 表される。
[数 3]
+ ( V + E DF\y (数式 3 )
[数 4] rm2| = {x + EDF2x) + ( + EDF2 v J (数式 4 )
[数 5]
DFly (数式 5 )
[0031] 以下に、数式 3〜5を同時に満たすベクトル測定値 Γ が存在するという仮定を基に
T
、この 3つの方程式を満たすベクトル測定値 Γ を導出する。通常の方法でこの 3つ
T
の連立方程式を解くと、 4つの解が得られ、一致する 2つの解がベクトル測定値 Γ と
T
なる。しかし、この方法では 4つの解を得るための計算量が膨大であるため、計算機 の桁落ちなどで誤差を増大しやすい。そのため、以下に説明する幾何学的な方法を 用いベクトル測定値 Γ を導出した。
T
[0032] 数式 3〜5は、図 3に示すように座標(X— E , y— E )を中心とする、半径 | Γ
DFx DFy m
Iの 3つの円とみなすことができる。さらに「数式 3〜5を同時に満たすベクトル測定値 Γ が存在する」という仮定から、この 3つの円における共通の交点が存在し、その交
Τ
点がベクトル測定値 Γ となる。そのため、図 3に示すようにベクトル測定値 Γ は、そ
Τ Τ
れぞれ 2つの円の交点を通る直線 (例えば、数式 3、 4の円の交点を通る直線と、数 式 3、 5の円の交点を通る直線)の方程式を 2つ導出し、その直線の交点を求めること で導出できる。
[0033] 2つの直線の方程式を以下に示す。
(数式 3)—(数式 4)より
[数 6]
| ι | 一 | 2 I = ^x(LDF[x - L DF2x )+ 2y(L DFl v - E DF2y )+ E DFlx + EDF v - EDF2x - EDFly
(数式 6 )
(数式 3)—(数式 5)より
[数 7]
I I - 1 「 = 2x(EDFIX - EDF}X )+ 2y(EDfly― EDFiy )+ EDF 2 + EDFIy 2 - EDF,X Z一 EDF,y 2
(数式 7 )
[0034] 2つの直線の方程式である数式 6, 7から交点の座標(Γ , Γ )を導出すると、数式
Tx Ty
8、数式 9になる。
[数 8]
Γτχ
Figure imgf000013_0001
2— I Γ ml I 2+
Figure imgf000013_0002
Figure imgf000013_0003
EDF2x EDFly + E 3 EDF2y― E EDF2y― E 2 EoF3y― E 3 E
(数式 8 )
[数 9]
- E ― E 2ΓΤχ *、E — E
Figure imgf000013_0004
(数式 9 )
[0035] 以上より、 3つの DUTの反射係数スカラ測定値( | Γ |、 | Γ |、 | Γ | )から ml m2 m3 方向性誤差を取り除いたベクトル測定値(Γ , Γ )を導出できた。
Tx Ty
[0036] 前記説明では、 DUTの反射係数(Γ 、 Γ )を数式を用いて求めた例について説
Tx Ty
明したが、次にスミスチャートを用いて説明する。図 4は、値付けされた 3つの方向性 誤差 7a〜7cの関係値 (E 、E 、E )を示す。図示するように、 3つのベクトル(
DF1 DF2 DF3
E 、E 、E )は電力測定器 6の測定誤差以上に相互に離れているのがよい。
DF1 DF2 DF3
ここでは、値付けの際に DUT側に無反射終端を接続したため、 50 Ωを中点とする 3 つのベクトルで表される力 無反射終端以外のものを接続した場合には、中点は 50 Ωにならない。いずれにしても、 3つの方向性誤差を定量ィ匕すればよい。
[0037] 図 5は、図 1に示す測定装置に DUTを接続し、方向性切替スィッチ 6を 3位置に切り 替えた際の電力測定器 5による測定値 (スカラ値)を示したものである。測定値は、そ の大きさを半径とする 3つの同心円(r= | S I , r= I S | , r= | S | )で 表される。ここで、図 4で求めた 3つの方向性誤差ベクトル (E
DF:
足しながら、図 5で得られたスカラ値を満足するベクトル (S 、
合わせを求める。つまり、図 4で求めた 3つの方向性誤差ベクトルの頂点を結ぶ三角 形と合同で、かつその頂点が 3つの同心円上に位置するベクトルの組み合わせを求 める。図 4の三角形を図 5の三角形に重ね合わせるためのベクトル S が DUTの反
11A
射係数である。
好ましい実施形態 2
[0038] 図 6は、本発明の好ましい第 2実施形態である DUTの伝達係数測定装置を示す。信 号源 1が発生した測定信号は、パワースプリッタ 8によって測定信号経路 9と誤差信 号経路 10とに分岐される。測定信号経路 9に入った一方の測定信号は DUTに印加 され、誤差信号経路 10に入った他方の測定信号は漏洩切替スィッチ 11を介して 3 つの漏洩誤差 12a〜 12cの何れかに印加される。 DUTの透過波と漏洩誤差 12a〜l 2cの透過波は重畳され、重畳信号は電力測定器 13によって電力値 (スカラ値)とし て測定される。漏洩誤差 12a〜12cは、透過波の位相が相互に異なるものであり、予 めその漏洩誤差の関係値湘対的なベクトル値)を求めておく。
[0039] 次に、 DUTの伝達係数測定方法について説明する。
漏洩誤差の値付け
上述の 3つの漏洩誤差 12a〜12cの関係値 (E 、E 、E )を求めるために、例
XF1 XF2 XF3
えば校正済みの VNAで実測してもよいし、 VNAで測定しなくとも、後述するような独 自の校正手順によって漏洩誤差を 3種類に変化させたそれぞれの状態の漏洩誤差 のベクトル値の関係値を得ることができる。例えば 2ポート VNAを用いて 3つの漏洩 誤差の関係値を求める場合には、図 6の信号源側に VNAのポート 1を、電力測定器 側に VNAのポート 2を接続し、漏洩切替スィッチ 11を 3位置に切り替えた際の伝達 係数の 3つの測定値 S 力 ¾つの漏洩誤差の関係値になる。なお、 DUTを接続する
21
測定端子間は OPEN状態としでもよいし、それぞれに無反射終端を接続してもよい。 このようにして値付けした 3つの漏洩誤差の関係値は、測定装置を製造する際に一 度求めておけは、 DUTの測定に際してはこの値を継続して使用することができる。
[0040] ースカラ測定
漏洩誤差 12a〜 12cの値付けを終了した後、図 6に示す測定装置に DUTを接続し て測定を行う。すなわち、漏洩切替スィッチ 11を切り替えた際の 3状態における透過 波の電力値 (スカラ値)を電力測定器 13により測定する。測定された測定値は、図 6 に示す DUTの透過波 T1と漏洩誤差 12a〜 12cの透過波 T2との重畳信号の振幅で ある。
[0041] ースカラ値からベクトル値への変換
予め値付けされた漏洩誤差の 3つのベクトル値と、前記スカラ測定により測定された 3 つの電力値とを用いて、 DUTの伝達係数 T に変換する。伝達係数 T の実数部と
T T
虚数部をそれぞれ添字 x、yをつけて (T 、T )と表すと、変換式は以下の数式で表
Tx Ty
される。
[数 10]
Ττχ = { ExFly*(
+ExF2y*{ \
+ExF3y*( I
I { 2*{ExFlx ExF
Figure imgf000015_0001
3y+ ExF2x ExFly+
(数式 10)
[数 11]
Figure imgf000015_0002
2Ττχ *{EXFIX~
/{2"(ExFly ~ExF2y)} (数式 U) ここで、 | T 、
ml I I T
m2 I、 I T
m3 Iは漏洩切替スィッチ 11を 3位置に切り替えた時 の測定値 (電力値)であり、(E 、E ) , (E 、E ) , (E 、E )は 3つの漏
XFlx XFly XF2x XF2y XF3x XF3y 洩誤差 12a〜12cの関係値 (E 、E 、E )の実数部と虚数部にそれぞれ添字
XF1 XF2 XF3
x、 yをつけて表したものである。
[0042] 以上の計算を行うことで、 3つのスカラ測定値から 1つのベクトル測定値が得られるこ とになり、この値は VNAが通常ミキサによって検出するベクトル測定値と等価な測定 値である。以上のように導出された DUTのベクトル測定値における測定系の誤差は 、ベクトル測定値が得られているため、 VNAで行われる通常の校正の手順を踏むこ とにより取り除くこと力 Sできる。例えば SOL校正(Short, Open, Loadの校正基準を 用いる校正方法)を行うことで、測定値力 測定系の誤差の影響を除去し、 DUTの 真値を得ることができる。
好ましい実施形態 3
[0043] 図 7は図 1に示す反射測定系と図 6の伝達測定系とを組み合わせた 1パス 2ポート測 定システムの例を示す。信号源 1が発生した測定信号は、パワースプリッタ 8によって 分岐され、一方の測定信号は DUTに印加され、他方の測定信号は漏洩切替スイツ チ 11を介して 3つの漏洩誤差 12a〜12cの何れかに印加される。 DUTの透過波と漏 洩誤差 12a〜 12cの透過波との重畳信号は電力測定器 13によって電力値 (スカラ値 )として測定される。 DUTを接続した信号経路 2の途中には力ブラ 3が設けられ、カブ ラ 3によって信号経路 2と結合された他の信号経路の信号源側のポートには、反射波 を電力値として測定する電力測定器 5が接続され、 DUT側のポートには方向性切替 スィッチ 6を介して 3つの方向性誤差 7a〜7cが接続されている。方向性切替スィッチ 6を 3位置に切り替えながら電力測定器 5によって電力値を測定し、漏洩切替スィッチ 11を 3位置に切り替えながら電力測定器 13によって電力値を測定する。これら測定 値から数式 8, 9および数式 10, 11を用いて DUTの反射係数 Γ および伝達係数 T
T
を求めることができる。
T
好ましい実施形態 4
[0044] 図 8は図 1に示す反射測定系と図 6の伝達測定系とを組み合わせたフル 2ポート測定 システムの例を示す。この測定システムでは、 DUTの両端に接続される信号経路に 切替スィッチ 14を設け、これらスィッチ 14によって DUTの向きを変更できるようにな つている点を除き、その他の構成は図 7と同様であるため、同一符号を付して重複説 明を省略する。この実施形態では、切替スィッチ 14の切替により DUTの向きを変え て測定でき、フル 2ポートの測定が可能となる。
[0045] 一実験例
ここで、反射測定における本発明の実験例を示す。ここでは、スカラ測定器として VN A測定値の振幅情報のみを用いてスカラ測定値とすることにする。実際の測定系で は、スカラ測定器は安価なパワーメータやパワーセンサを用いることが一般的である 力 本実験例では振幅情報のみ力 ベクトル測定値が得られるという本発明の特徴 を証明する為、同一の測定器を用いる。つまり、同じ測定器を用いる限り測定器の測 定値の機差などはありえず、本発明が効果を奏すれば、振幅情報のみカゝら VNAの 測定値と全く同じ測定値が得られるはずであるので、これをもって本発明の有効性を 証明しょうとするものである。
[0046] 実験条件を以下に示す。本発明を用いた測定値と比較する測定値は、校正された V NAの測定値とする。
被検体:同軸コネクタ接続の CPW伝送路に表面実装デバイスを接続したもの ベクトル測定器: E8364B(Agilent Technologies)
スカラ測定器: E8364B(Agilent Technologies) (測定値の振幅情報のみ)
周波数範囲: 34GHz〜42GHz
データ数: 801点
IF帯域幅: 100Hz (平均化処理無し)
力プラ: Kaバンド(26.5GHz〜40GHz )導波管 10dBカプラ
方向性誤差: 3つのオフセットショート( g =0、 1/6、 1/3 @ 38GHz )
[0047] 図 9にベクトル測定器で測定した 38GHzにおける 3つの方向性誤差の関係値 (E
DF1
、E 、E )を示す。図 10に方向性誤差が異なる 3つの場合における DUTスカラ
DF2 DF3
測定値を示す。図 11、図 12は図 9、図 10の測定値を数式 8、数式 9に代入し計算し た後の DUTの測定値 (振幅)とベクトル測定値とを示す。図 12では 3つのスカラ測定 値から位相情報を含んだベクトル測定値が得られて ヽることが示されて!/、る。
[0048] 図 11、図 12の測定値は測定系の誤差も含んでいる。そのため、ベクトル誤差補正を 行うために同様に本発明の測定系を用いて標準器の測定を行い、図 11図 12の測定 値を補正して DUTのベクトル測定値 Γ を算出した。図 13、図 14に本発明方法によ
D
る DUTの測定値 Γ と校正された VNAを用いた DUTの測定値 Γ とを比較したグ
D A
ラフを示す。図 13、図 14から明らかなように、両方の測定値はほとんど一致しており、 本発明が正確なベクトル測定方法であることがわかる。
好ましい実施形態 5
[0049] ースカラ測定器によって 3つの方向性誤差の関係値を求める方法
ここで、 VNAを用いずにスカラ測定器によって 3つの方向性誤差の関係値を求める 方法について説明する。まず、それぞれ異なる反射係数を有する 2種類の DUT (そ れぞれ m, n)を図 1に示す測定装置に接続し、それぞれ 3つの方向性誤差の状態に おいて測定する。本手順では、 3つの方向性誤差の相互関係がわかれば十分であり 、位相や絶対位置は問題ではないので、簡単の為、仮に 1つ目の DUT(m)の 1つ目 の方向性誤差状態における測定値は位相が 0° であるとする。この時の複素平面上 での位置は、図 15の Γ の様になる。これに対し、 2つ目及び 3つ目の方向性誤差 ml
状態における測定値の複素平面上での位置は例えば図 15の Γ , Γ の様になる。
m2 m3
ここで、観測値はスカラ値であるから、これら点の実際の位置はわ力 ず、ただ中心 が原点で半径が I Γ
m2 I , I Γ
m3 Iであるような円周上のどこかにこれら点が存在す る答であることのみがわかって 、るに過ぎな、、。そこで、仮に Γ からこれら点への角 ml
度が Θ , Θ であるとする。当然に、 Θ , Θ はこの時点では未知量である。
1 2 1 2
[0050] 次に、 2つ目の DUT(n)の 1つ目の方向性誤差状態における測定値 Γ 力 Γ に nl ml 対して位相が φだけずれているとすると、図 15のようになる。さらに、 Γ に対して、 Γ nl
, Γ は、方向性誤差の相互関係は先の場合と同じであるから角度は 0 , Θ のは n2 n3 1 2 ずであり、かつ、それぞれは中心が原点で半径が I Γ Γ の円周(破線で n2 I , I n3 I 示す)上にあるはずなのであるから、同図の通りそれぞれの位置が決定する。
[0051] さて、仮に θ , θ , φが正しく選ばれていれば、方向性誤差は DUTによらず一定
1 2
である以上、 Γ
ml〜Γ の作る三角形と Γ
m3 nl〜Γ の作る三角形は合同になる。そこで n3
、これら三角形が合同になるように (実際には測定誤差などの影響があるため最も合 同に近くなる様に) θ , θ , Φを選択することで、 3つの方向性誤差の関係値が求
1 2
められる。 [0052] より具体的には、次の様になる。
(X ,y )を通り、勾配が Θの直線は、次式で与えられる。
0 0
sin θ (χ— X — cos Θ (y—y ) = 0
0 0
中心が原点で半径力^である円は次式で与えられる。
2 | 2 2
X +y =r
前記直線と円の交点 (x, y)は次のとおりである。
x = x sin Θ—y cos Θ sin Θ ±cos θ v {r ― ιχ sin Θ — y cos Θ ) }
0 0 0 0
y=y cos2 Θ—x cos Θ sin Θ士 sin Θ V~ {r2— (x sin Θ— y cos Θ ) }
o o o o
[0053] まず、 0 , 0 , φに適当な値を仮定する。
1 2
Γ の座標は、 ( I Γ I , 0)で与えられる。
ml ml
Γ の座標は、 (x ,y )を Γ の座標とし、半径 rを | Γ |とし、勾配 0を 0 として求 m2 0 0 ml m2 1 められる。
Γ の座標は、 Γ と同様に求められる。
m3 m2
Γ の座標は、 ( I Γ I cos , I Γ I sin φ )で与えられる。
ni nl nl
Γ の座標は、 Γ と同様に求められる。
n2 m2
Γ の座標は、 Γ と同様に求められる。
n3 m3
以上得られた座標から、以下の式により推定誤差 Eを求める。
E= I Γ - Γ I 2 + I Γ - Γ I 2
nl ml n2 m2
[0054] 適当な最適化アルゴリズムにより 0 , θ , φを変化させ、前記 Eが最小となる 0 ,
1 2 1 θ , φを求める。こうして得られた 0 , θ , φに対する Γ , Γ , Γ を 3つの方
2 1 2 ml m2 m3 向性誤差の関係値とすればよい。なお、 3つの方向性誤差の関係値を得た後に、通 常の 1ポート校正を行うことが必要である。
[0055] 以上のように VNAを使用せずに、スカラ測定器だけで 3つの方向性誤差の関係値を 得ることができるので、何らかの原因で測定装置の状態が変わった場合等にも、 VN Aを使用せずに再度正しい 3つの方向性誤差の関係値を得ることができる。つまり、 本発明に係る測定装置を使用する量産工程自体で測定装置の校正を行えるため、 異常発生時の復旧などが容易になる。また、そもそも VNAが不要であるので、 VNA を所有していない場合にもベクトル測定が実施できる。力!]えて、 VNAが対応していな いような高周波領域でもベクトル測定を実現できる利点もある。
好ましい実施形態 6
[0056] 図 16は重畳されるベクトル信号が 2つの場合の反射測定系を示す。図 1と同一部分 には同一符号を付して重複説明を省略する。
この実施形態の場合、重畳信号である方向性誤差成分が 2つしかないため、基本的 にはベクトル値が 2つ導出され、 DUTの反射信号のベクトル値を一意に求めることが できない。しかし、量産における選別などでは、設計時及び開発時の DUTの特性か ら推定して正 、と思われる方を選択することによって、 DUTの反射信号のベクトル 値を求めることが可能である。
[0057] 図 16のような反射測定系の場合、 2つの方法性誤差 (E E )を切り替えて、ス
DF1 DF2
カラ測定器により測定された DUTの 2つの電力値( I Γ |
ml I Γ | )は数式 3お
m2
よび数式 4と同様になる。これら電力値から、方向性誤差を取り除いた DUTの反射 信号のベクトル値は、数式 12 14に示すように、(X , y )、(X , y )の 2つが導出
2 2
される。
[数 12] 1 t 一
" flf (EDF2y― EDF]y) + (EDFl y + EDF2y){(EDFl3. - EDr -
(数式 12)
[数 13]
Figure imgf000020_0001
(数式 13 )
[数 14]
4叫- «£0> - EDF2,)2 + (EDFIy― EDFlyf ― (rm, - rm2)2} {(EDFlx― EDF2 2 + (E„Fly - EnF2 f — ( , + Γ„2)2} (数式 14 ) [0058] この場合、各周波数点において、図 17に示すようにスミスチャート上には (x , y ) ,
1 1
(X ,y )の 2つのベクトル測定値がプロットされることになる。量産においては、ほぼ
2 2
同じ特性を持つ被検体の測定を行うのが通例である。その際、被検体の特性が既知 であれば (シミュレーション値でもよい)、今回の測定系を用いても、被検体の 2つの ベクトル値力 被検体と同種の既知特性に近 、ものを選択することで、被検体の特性 を推定することができる。
[0059] ベクトル値の選択方法について、以下に説明する。
図 17において、測定した被検体と同じ特性を持ち、何らかの方法で値が既知である 被検体の特性 (a, b)をプロットする。この例では明らかに (X , y )の方が既知特性(
2 2
a, b)に近いため、(X , y )の値が正しいと推定できる力 実際には以下のような比
2 2
較処理を行うのがよい。すなわち、(a, b)に対する(X , y )の距離 d と , y )の
1 1 1 2 2 距離 d は、次式で表される。
2
[数 15] dx = ( ,一 af + (y, - bf (数式 15 )
[数 16] d2 = yl{x2 - a)2 + {y2 - bf (数式 16 ) d と d とを比較し、値の小さい方のベクトル値、つまり(a, b)に近い方が正しい測定
1 2
値と推定することができる。
[0060] 次に、数式 12〜14を用いて実際にベクトル値の導出を行った実験結果を示す。実 験条件は以下の通りであり、方向性誤差として 2つのオフセットショートを用いた。 被検体試料:同軸コネクタ接続の CPW伝送路に表面実装デバイスを接続したもの ベクトル測定器: E8364B(Agilent Technologies)
スカラ測定器: E8364B(Agilent Technologies) (測定値の振幅情報のみ)
周波数範囲: 34GHz〜42GHz
データ数: 801点
IF帯域幅: 100Hz (平均化処理無し) 力プラ: Kaバンド(26.5GHz〜40GHz )導波管 lOdBカプラ
方向性誤差: 2つのオフセットショート( g =0、 1/6 @38GHz)
[0061] 数式 12, 14及び数式 13, 14を用いて被検体試料の振幅およびベクトル値を導出し た結果を、それぞれ図 18及び図 19に示す。図 20は、予め求められた既知の同種類 の被検体試料の特性である。図 18,図 19のうち図 20に近い値を選択すれば、それ が測定した被検体試料のベクトル値であると推定できる。今回は図 20に近 ヽ値は全 て図 18の値、つまり数式 12, 14を用いて導出した値となっているため、図 18が被検 体試料の振幅およびベクトル値であると推定できる。
[0062] 前記説明では、 2つの方向性誤差を切り替えて DUTの反射係数を測定する例につ いて説明したが、 2つの漏洩誤差を切り替えて DUTの伝達係数を測定することも可 能である。その場合には、例えば図 6における 3つの漏洩誤差 12a〜12cのうちの 2 つを用いればよい。
産業上の利用可能性
[0063] 従来の VNAの構成を用いて反射波及び透過波のベクトル測定をする場合、周波数 が高くなることにより測定システムの価格が著しく上昇しかつ高精度測定が困難とな る力 本発明によれば、ほとんど周波数に依存しない基本的かつ安価な測定である 電力測定によってベクトル測定が実施できる。すなわち、 3つのスカラ測定値のみを 用いて反射波及び透過波のベクトル測定が可能であるので、周波数が高くなつても 電力測定が可能である限り、測定器価格の上昇を抑えつつ、高精度測定を実現する ベクトル誤差補正が可能になるという効果が得られる。よって、従来の VNAが高価な ために特性選別工程のコストが増大するミリ波帯以上の高周波商品において、本発 明を用いた高精度かつ安価な測定器に置き換えることにより、ベクトル測定に関する 大幅なコストダウンが期待できる。また、多品種'少量生産の品種が多いミリ波帯以上 の高周波商品においては、本発明による安価な測定器であれば商品ごとにこれを備 えることが可能になるので、工程の段取換え等の工程の負担を少なくすることができ る。測定系の微妙な調整が要求されるミリ波帯以上の測定工程においては、前記特 徴は商品測定の精度 ·信頼性を確保する効果が大き ヽ。

Claims

請求の範囲
[1] 被検体の散乱係数のベクトル測定を行う測定方法にぉ 、て、
前記被検体に信号を印加する信号源と、前記被検体の反射波もしくは透過波をスカ ラ値として測定するスカラ測定器と、前記被検体の反射波もしくは透過波に対し少な くとも 3つの異なるべ外ル信号をそれぞれ重畳する重畳信号系とを備えた測定系を 準備する第 1のステップと、
前記少なくとも 3つのベクトル信号の関係値をベクトル値として値付けする第 2のステ ップと、
前記被検体の反射波もしくは透過波に対し前記少なくとも 3つのベクトル信号を重畳 し、各重畳信号を前記スカラ測定器によりそれぞれスカラ値として測定する第 3のステ ップと、
前記第 2のステップで得られた関係値を用いて、前記第 3のステップで測定された少 なくとも 3つのスカラ値を少なくとも 1つのベクトル値に変換し、被検体の散乱係数を 求める第 4のステップと、を有することを特徴とする測定方法。
[2] 前記重畳信号系は、前記被検体の反射波に対し重畳される少なくとも 3つの方向性 誤差ベクトル信号を発生する少なくとも 3つの方向性誤差と、これら方向性誤差を切り 替える方向性切替手段とを備え、前記第 3のステップで変換されるベクトル値は反射 係数であることを特徴とする請求項 1に記載の測定方法。
[3] 前記重畳信号系は、前記被検体の透過波に対し重畳される少なくとも 3つの漏洩誤 差ベクトル信号を発生する少なくとも 3つの漏洩誤差と、これら漏洩誤差を切り替える 漏洩切替手段とを備え、前記第 3のステップで変換されるベクトル値は伝達係数であ ることを特徴とする請求項 1に記載の測定方法。
[4] 前記少なくとも 3つのベクトル信号は、前記スカラ測定器の測定精度以上に相互に離 れて 、ることを特徴とする請求項 1な 、し 3の 、ずれか 1項に記載の測定方法。
[5] 被検体の散乱係数のベクトル測定を行う測定装置にお 、て、
前記被検体に信号を印加する信号源と、
前記被検体の反射波もしくは透過波に対し、互いの関係値がベクトル値として値付け された少なくとも 3つの異なるベクトル信号をそれぞれ重畳する重畳信号系と、 前記被検体の反射波もしくは透過波に対し前記少なくとも 3つのベクトル信号を重畳 した重畳信号を、それぞれスカラ値として測定するスカラ測定器と、
前記少なくとも 3つのベクトル信号の値付けされた関係値を用いて、前記スカラ測定 器で測定された少なくとも 3つのスカラ値を少なくとも 1つのベクトル値に変換し、被検 体の散乱係数を求める変換手段と、を有することを特徴とする測定装置。
[6] 前記重畳信号系は、前記被検体の反射波に対し重畳される少なくとも 3つの方向性 誤差ベクトル信号を発生する少なくとも 3つの方向性誤差と、これら方向性誤差を切り 替える方向性誤差切替手段とを備え、前記変換手段が変換するベクトル値は反射係 数であることを特徴とする請求項 5に記載の測定装置。
[7] 前記重畳信号系は、前記被検体の透過波に対し重畳される少なくとも 3つの漏洩誤 差ベクトル信号を発生する少なくとも 3つの漏洩誤差と、これら漏洩誤差を切り替える 漏洩誤差切替手段とを備え、前記変換手段が変換するベクトル値は伝達係数である ことを特徴とする請求項 5に記載の測定装置。
[8] 前記重畳信号系は、前記被検体の反射波に対し重畳される少なくとも 3つの方向性 誤差ベクトル信号を発生する少なくとも 3つの方向性誤差と、これら方向性誤差を切り 替える方向性誤差切替手段と、前記被検体の透過波に対し重畳される少なくとも 3つ の漏洩誤差ベクトル信号を発生する少なくとも 3つの漏洩誤差と、これら漏洩誤差を 切り替える漏洩誤差切替手段とを備え、
前記スカラ測定器は、前記被検体の反射波に対し前記少なくとも 3つの方向性誤差 ベクトル信号を重畳した重畳信号をそれぞれスカラ値として測定する反射波測定用 スカラ測定器と、前記被検体の透過波に対し前記少なくとも 3つの漏洩誤差ベクトル 信号を重畳した重畳信号をそれぞれスカラ値として測定する透過波測定用スカラ測 定器とで構成されることを特徴とする請求項 5に記載の測定装置。
[9] 被検体の散乱係数のベクトル測定を行う測定方法にぉ 、て、
前記被検体に信号を印加する信号源と、前記被検体の反射波もしくは透過波をスカ ラ値として測定するスカラ測定器と、前記被検体の反射波もしくは透過波に対し 2つ の異なるベクトル信号をそれぞれ重畳する重畳信号系とを備えた測定系を準備する 第 1のステップと、 前記 2つのベクトル信号の関係値をベクトル値として値付けする第 2のステップと、 前記被検体の反射波もしくは透過波に対し前記 2つのベクトル信号を重畳し、各重 畳信号を前記スカラ測定器によりそれぞれスカラ値として測定する第 3のステップと、 前記第 2のステップで得られた関係値を用いて、前記第 3のステップで測定された 2 つのスカラ値を 2つのベクトル値に変換し、このうちの一方のベクトル値から被検体の 散乱係数を求める第 4のステップと、を有することを特徴とする測定方法。
被検体の散乱係数のベクトル測定を行う測定装置において、
前記被検体に信号を印加する信号源と、
前記被検体の反射波もしくは透過波に対し、互いの関係値がベクトル値として値付け された 2つの異なるベクトル信号をそれぞれ重畳する重畳信号系と、
前記被検体の反射波もしくは透過波に対し前記 2つのベクトル信号を重畳した重畳 信号を、それぞれスカラ値として測定するスカラ測定器と、
前記 2つのベクトル信号の値付けされた関係値を用いて、前記スカラ測定器で測定さ れた 2つのスカラ値を 2つのベクトル値に変換し、このうちの一方のベクトル値から被 検体の散乱係数を求める変換手段と、を有することを特徴とする測定装置。
PCT/JP2006/316465 2005-09-01 2006-08-23 被検体の散乱係数の測定方法および測定装置 WO2007029495A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800310641A CN101258412B (zh) 2005-09-01 2006-08-23 被检测体的散射系数的测定方法和测定装置
JP2007534315A JP4941304B2 (ja) 2005-09-01 2006-08-23 被検体の散乱係数の測定方法および測定装置
EP06782918A EP1939637A4 (en) 2005-09-01 2006-08-23 METHOD AND DEVICE FOR MEASURING THE STREUKOEFFICIENT OF A SUBJECT
US12/039,892 US7592818B2 (en) 2005-09-01 2008-02-29 Method and apparatus for measuring scattering coefficient of device under test

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-253158 2005-09-01
JP2005253158 2005-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/039,892 Continuation US7592818B2 (en) 2005-09-01 2008-02-29 Method and apparatus for measuring scattering coefficient of device under test

Publications (1)

Publication Number Publication Date
WO2007029495A1 true WO2007029495A1 (ja) 2007-03-15

Family

ID=37835619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316465 WO2007029495A1 (ja) 2005-09-01 2006-08-23 被検体の散乱係数の測定方法および測定装置

Country Status (6)

Country Link
US (1) US7592818B2 (ja)
EP (1) EP1939637A4 (ja)
JP (1) JP4941304B2 (ja)
KR (1) KR100956503B1 (ja)
CN (1) CN101258412B (ja)
WO (1) WO2007029495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211314A (ja) * 2018-06-04 2019-12-12 国立研究開発法人産業技術総合研究所 ベクトルネットワークアナライザを用いた反射係数の測定方法
CN114280156A (zh) * 2021-12-28 2022-04-05 杭州电子科技大学 一种基于激光超声的亚表面裂纹长度和深度测量方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7545150B2 (en) * 2007-02-28 2009-06-09 Agilent Technologies, Inc. Differential vector network analyzer
US7671605B2 (en) * 2008-01-17 2010-03-02 Agilent Technologies, Inc. Large signal scattering functions from orthogonal phase measurements
WO2009098816A1 (ja) * 2008-02-05 2009-08-13 Murata Manufacturing Co., Ltd. 測定誤差の補正方法及び電子部品特性測定装置
CN101821640B (zh) * 2008-12-17 2015-03-11 爱德万测试(新加坡)私人有限公司 用于确定用于检测芯片上的故障的相关值以及确定芯片上的位置的故障概率的方法和装置
GB201219310D0 (en) * 2012-10-26 2012-12-12 Mesuro Ltd Calibration of high frequency signal measurement systems
WO2018109782A1 (en) * 2016-12-13 2018-06-21 Indian Institute Of Technology Bombay Network analyzer for measuring s-parameters of rf device
US11054450B2 (en) * 2019-07-17 2021-07-06 Rohde & Schwarz Gmbh & Co. Kg Method of calibrating a measurement and analyzing device as well as method of measuring a frequency-converting device under test
US11474137B2 (en) * 2020-09-18 2022-10-18 Rohde & Schwarz Gmbh & Co. Kg Test system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758776A (en) 1985-10-08 1988-07-19 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland RF interferometer
JPH07198767A (ja) * 1993-05-24 1995-08-01 Atn Microwave Inc 電子構成方法及び装置
JP2003215183A (ja) * 2002-01-18 2003-07-30 Toshiyuki Yakabe 7ポート型コリレータとその校正方法および7ポート型コリレータを用いたベクトル・ネットワーク・アナライザ装置
JP2004198415A (ja) * 2002-12-16 2004-07-15 Agilent Technol Inc ベクトル・ネットワーク・アナライザによる歪み測定

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521728A (en) * 1982-08-23 1985-06-04 Renato Bosisio Method and a six port network for use in determining complex reflection coefficients of microwave networks
CA1291031C (en) 1985-12-23 1991-10-22 Nikolaas C.J. De Jaeger Method for the detection of specific binding agents and their correspondingbindable substances
GB2196745B (en) * 1986-10-21 1990-05-16 Marconi Instruments Ltd Test arrangement
CN1004173B (zh) * 1987-12-07 1989-05-10 浙江大学 微波吸收材料的复介电常数和复磁导率的测试方法及系统
US5434511A (en) * 1993-05-24 1995-07-18 Atn Microwave, Inc. Electronic microwave calibration device
US5986076A (en) 1994-05-11 1999-11-16 Trustees Of Boston University Photocleavable agents and conjugates for the detection and isolation of biomolecules
US6576460B1 (en) 1999-10-28 2003-06-10 Cornell Research Foundation, Inc. Filtration-detection device and method of use
FR2817620B1 (fr) * 2000-12-04 2003-02-07 Centre Nat Rech Scient Dispositif de caracterisation electromagnetique d'une structure sous test
US6838885B2 (en) * 2003-03-05 2005-01-04 Murata Manufacturing Co., Ltd. Method of correcting measurement error and electronic component characteristic measurement apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758776A (en) 1985-10-08 1988-07-19 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland RF interferometer
JPH07198767A (ja) * 1993-05-24 1995-08-01 Atn Microwave Inc 電子構成方法及び装置
JP2003215183A (ja) * 2002-01-18 2003-07-30 Toshiyuki Yakabe 7ポート型コリレータとその校正方法および7ポート型コリレータを用いたベクトル・ネットワーク・アナライザ装置
JP2004198415A (ja) * 2002-12-16 2004-07-15 Agilent Technol Inc ベクトル・ネットワーク・アナライザによる歪み測定

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAHINE S A: "A low cost efficient reflectometer", PROCEEDINGS OF THE TWENTY-FIRST NATIONAL RADIO SCIENCE CONFERENCE (IEEE CAT. NO.04EX823) IEEE PISCATAWAY, NJ, USA, 2004, pages A1 - 1,A1-5
OLDFIELD L C ET AL.: "A multistate reflectometer", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT USA, vol. IM-34, no. 2, June 1985 (1985-06-01), pages 198 - 201
See also references of EP1939637A4 *
SHIHE LI ET AL.: "The Measurement of Complex Reflection Coefficient by Means of a Five-Port Reflectometer", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 30, no. 4, 1 April 1983 (1983-04-01), pages 321 - 326

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211314A (ja) * 2018-06-04 2019-12-12 国立研究開発法人産業技術総合研究所 ベクトルネットワークアナライザを用いた反射係数の測定方法
CN114280156A (zh) * 2021-12-28 2022-04-05 杭州电子科技大学 一种基于激光超声的亚表面裂纹长度和深度测量方法
CN114280156B (zh) * 2021-12-28 2022-10-21 杭州电子科技大学 一种基于激光超声的亚表面裂纹长度和深度测量方法

Also Published As

Publication number Publication date
JP4941304B2 (ja) 2012-05-30
EP1939637A4 (en) 2011-02-23
EP1939637A1 (en) 2008-07-02
CN101258412B (zh) 2013-02-20
KR100956503B1 (ko) 2010-05-07
CN101258412A (zh) 2008-09-03
US20080211515A1 (en) 2008-09-04
KR20080032223A (ko) 2008-04-14
JPWO2007029495A1 (ja) 2009-03-19
US7592818B2 (en) 2009-09-22

Similar Documents

Publication Publication Date Title
WO2007029495A1 (ja) 被検体の散乱係数の測定方法および測定装置
US7130756B2 (en) Calibration method for carrying out multiport measurements on semiconductor wafers
US8508241B2 (en) Method and device for the calibration of network analyzers using a comb generator
KR102054874B1 (ko) 시험 장치를 교정하기 위한 방법
US7865319B1 (en) Fixture de-embedding method and system for removing test fixture characteristics when calibrating measurement systems
US10042029B2 (en) Calibration of test instrument over extended operating range
US7768271B2 (en) Method for calibration of a vectorial network analyzer having more than two ports
US8126670B2 (en) Method and device for calibrating a network analyzer for measuring at differential connections
US5734268A (en) Calibration and measurment technique and apparatus for same
Liu et al. A new SOLT calibration method for leaky on-wafer measurements using a 10-term error model
JP4124841B2 (ja) ネットワーク・アナライザ、高周波周波数特性測定装置および誤差要因測定方法
US10041986B2 (en) Balanced bridge
US7769555B2 (en) Method for calibration of a vectorial network analyzer
Kang Free-space unknown thru measurement using planar offset short for material characterization
JP7153309B2 (ja) ベクトルネットワークアナライザを用いた反射係数の測定方法
Rolfes et al. LRR-A self-calibration technique for the calibration of vector network analyzers
Schramm et al. A SOLR calibration procedure for the 16-term error model
Stärke et al. A deembedding method for reciprocal three-port devices demonstrated with 200-GHz baluns
CN114079518A (zh) 测量设备
TW583409B (en) Impedance standard substrate and correction method for vector network analyzer
Shimaoka A new method for measuring accurate equivalent source reflection coefficient of three-port devices
Issakov et al. Technique for accurate characterization of baluns using one-port S-parameters measurements
Suto et al. Two-port S-parameter measurement of wide-band balun
RU2673781C1 (ru) Способ калибровки двухканального супергетеродинного приемника в измерителе комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты
JP2018151211A (ja) 高周波インピーダンス測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031064.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007534315

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006782918

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE