WO2007026609A1 - 高分子固定化パラジウム触媒及びその製法 - Google Patents

高分子固定化パラジウム触媒及びその製法 Download PDF

Info

Publication number
WO2007026609A1
WO2007026609A1 PCT/JP2006/316688 JP2006316688W WO2007026609A1 WO 2007026609 A1 WO2007026609 A1 WO 2007026609A1 JP 2006316688 W JP2006316688 W JP 2006316688W WO 2007026609 A1 WO2007026609 A1 WO 2007026609A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
polymer
group
catalyst
side chain
Prior art date
Application number
PCT/JP2006/316688
Other languages
English (en)
French (fr)
Inventor
Shu Kobayashi
Masaharu Sugiura
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2007026609A1 publication Critical patent/WO2007026609A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C67/347Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • B01J2231/4227Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group with Y= Cl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4261Heck-type, i.e. RY + C=C, in which R is aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0211Metal clusters, i.e. complexes comprising 3 to about 1000 metal atoms with metal-metal bonds to provide one or more all-metal (M)n rings, e.g. Rh4(CO)12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the present invention relates to a method for producing a polymer-immobilized palladium catalyst in which divalent palladium is used as a raw material and zero-valent palladium is immobilized on an aromatic polymer as a nano-sized cluster, and a catalyst produced by the method. And its usage.
  • Non-patent Document 1 Non-patent Document 1
  • Non-Patent Documents 2 to 3 immobilization of palladium on a polymer using a microcapsule method has been developed.
  • palladium was immobilized as a sub-nanometer size cluster by weak coordination with the benzene ring of the styrene polymer, and showed very high catalytic activity.
  • this method has been developed into a polymer-immobilized palladium catalyst with higher stability while maintaining high activity by introducing a method of cross-linking micelles (Non-Patent Documents 4-7, Patent Documents 2 and 3).
  • Palladium was fixed to an aromatic polymer by ligand exchange using 0 4 valent palladium as a raw material. As a result, zero-valent palladium was present in the polymer-immobilized palladium. It exists in a fin-free state, and this is considered to contribute to the high activity as a catalyst together with the small cluster size.
  • Pd Pd
  • Non- Patent Documents 8 to 9 Thiols and surfactants are effective in stabilizing nanosized metal clusters, and quaternary ammonium salts are known to have the effect of dispersing metal catalysts in solution.
  • quaternary ammonium salts By performing microcapsulation using a quaternary ammonium salt, even if palladium (II) acetate, which cannot be fixed by the usual microcapsule method, is used as a raw material, the aromatic polymer is zero-valent. Can be fixed (Non-patent Document 10).
  • Non-patent Document 11 It has been reported that palladium acetate ( ⁇ ) is decomposed and reduced by mild heat treatment in the absence of a reducing agent to produce zero-valent palladium.
  • Patent Document 1 W099 / 41259
  • Patent Document 2 JP 2002-66330 A
  • Patent Document 3 JP 2002-253972
  • Non-patent literature l Uozumi, Y. Topics in Current Chemistry, 242, 77 (2004).
  • Non-Patent Document 2 Akiyama, R. et al. Angew. Chem., Int. Ed. 40, 3469 (2001).
  • Non-Patent Document 3 Akiyama, R. et al. J. Am. Chem. Soc. 125, 3412 (2003).
  • Non-Patent Document 4 Kobayashi, S. et al. Chem. Commun. 2003, 449.
  • Non-Patent Document 5 Okamoto, K. et al. J. Org. Chem. 69, 2871 (2004).
  • Non-Patent Document 6 Okamoto, K. et al. Org. Lett. 6, 1987 (2004).
  • Non-Patent Document 7 Okamoto, K. et al. J. Am. Chem. Soc. 127, 2125 (2005).
  • Non-Patent Document 8 Reetz, M. T. et al. Chem. Commun. 1996, 1921.
  • Non-Patent Document 9 Reetz, M. T. et al. Adv. Mater., 11, 773 (1999).
  • Non-Patent Document 10 Hiroyuki Sugao et al. Abstracts of the 125th Annual Meeting of the Pharmaceutical Society of Japan 4,108 (2005)
  • Non-Patent Document ll Reetz, M. T. et al. Chem. Commun. 2004, 1559.
  • the present invention relates to a polymer-immobilized palladium catalyst in which an inexpensive palladium (II) compound is used as a raw material, and a nanosized noradium cluster is stably supported on an aromatic polymer. And a reaction method using the catalyst.
  • Non-patent Document 11 The present inventors incorporate zero-valent palladium into an aromatic polymer by reducing palladium acetate ( ⁇ ) by heating (Non-patent Document 11) in the presence of an aromatic polymer. We examined whether it was possible.
  • the divalent palladium salt and alkali metal salt are heated in a solution containing the polymer having an aromatic side chain, whereby palladium is reduced and the nanosized palladium cluster is supported on the aromatic polymer.
  • the present invention has been completed.
  • a polymer having an aromatic side chain, a divalent palladium salt, and an alkali metal salt are mixed in a good solvent that dissolves the polymer.
  • this solution is appropriately heated above 60 ° C.
  • palladium (II) is considered to have been reduced to zero valence.
  • a phase-separated state is produced by gradually adding a poor solvent for the polymer to this solution, and this operation enables incorporation of zero-valent palladium as a fine cluster into the polymer.
  • the present invention dissolves or disperses a crosslinkable polymer having an aromatic side chain and a crosslinkable group, a divalent palladium salt, and an alkali metal salt in a solvent that dissolves the crosslinkable polymer. Is heated to 60-200 ° C, and after cooling, a poor solvent is added to the crosslinkable polymer to form a precipitate, and a crosslinking group in the precipitate is subjected to a crosslinking reaction. It is a manufacturing method of a catalyst.
  • the present invention is a polymer-immobilized palladium catalyst produced by this production method, and further, the use of this catalyst as a catalyst in the Heck reaction or the Suzuki-Kajiura coupling reaction.
  • a high molecule having an aromatic side chain, a divalent palladium salt and an alkali metal salt are added at 60 ° C in a good solvent for dissolving the polymer.
  • the polymer-immobilized palladium catalyst is obtained by heating to the above and then gradually adding a poor solvent for the polymer to the solution to cause phase separation.
  • the polymer used in the present invention is required to have an aromatic side chain, and the molecular weight thereof is 5,000 to 300,000, preferably 20,000 to 100,000.
  • the solubility in a solvent increases, and recovery, which is an advantage of a fixed catalyst, makes it difficult to reuse or phase separation may occur when a poor solvent is added.
  • a polymer having a too high molecular weight is difficult to synthesize and dissolve during catalyst preparation.
  • the polymer having an aromatic side chain preferably further has a crosslinking group. That is, by cross-linking the polymer-immobilized palladium obtained by the phase separation operation between the polymers, the solvent resistance is improved and the use in various solvents is possible.
  • the polymer having the aromatic side chain has an aromatic group as a hydrophobic group, it becomes amphiphilic by adding a hydrophilic group, and is high when phase separation is performed by adding a poor solvent. It is possible to form molecular micelles. In many cases, the stability of the palladium cluster fixed in the polymer micelle is improved as compared with the case where the micelle is not formed. Stability can be further improved by crosslinking the polymers after forming the polymer micelles.
  • Examples of the aromatic side chain include an aryl group and an aralkyl group.
  • aryl group examples include those having usually 6 to 10 carbon atoms, preferably 6 carbon atoms, and specific examples include a phenyl group and a naphthyl group.
  • the number of carbons defined in this specification does not include the number of carbons of the substituent that the group has.
  • aralkyl group examples include those having usually 7 to 12 carbon atoms, preferably 7 to 9 carbon atoms, and specific examples include a benzyl group, a phenyl group, and a phenylpropyl group.
  • the aromatic ring in the aryl group and the aralkyl group may have a substituent such as an alkyl group, an aryl group, an aralkyl group, or the like!
  • the alkyl group may have a linear, branched, or cyclic alkyl group, which may be monocyclic or polycyclic, usually having 1 to 1 carbon atoms. 20, preferably 1 to 12, specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl Group, n_pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl Group, isohexyl group, sec-hexyl group, tert-hexyl group, n-heptyl group, isoheptinole group, sec-heptinole group, tert-heptinole group, n-octinole group, sec-octinole group Tert
  • Examples of the aryl group and aralkyl group that the aromatic ring may have include the same aryl groups and aralkyl groups as the aromatic group as described above.
  • aromatic rings may have, and the substituent may be substituted with 1 to 5, preferably 1 to 2 aromatic rings in the aryl group and aralkyl group.
  • a copolymer of a polymerizable monomer containing styrene is preferable as the aromatic polymer.
  • crosslinking group examples include an epoxy group, a carboxyl group, an isocyanate group, a thioisocyanate group, a hydroxyl group, a primary or secondary amino group, and a thiol group.
  • the crosslinking group is preferably an epoxy group, a carboxyl group, an isocyanate group, or a thioisocyanate group, and may further contain a hydroxyl group, a primary or secondary amino group, or a thiol group.
  • These cross-linking groups may be protected in the polymerization of monomers, which may be used alone or in combination, as necessary, or upon reduction of palladium (II) by heating.
  • crosslink between the polymers by adding a cross-linking agent having a plurality of functional groups that bind to the functional groups in the polymer after phase separation.
  • a cross-linking agent having a plurality of functional groups that bind to the functional groups in the polymer after phase separation.
  • examples of this include a combination of an aromatic polymer having a hydroxyl group and ethylene glycol diglycidyl ether as a crosslinking agent.
  • the position of the bridging group in the polymer is not particularly limited, but is bonded to the aromatic ring, directly bonded to the main chain, or bonded to the main chain via a spacer such as a hydrocarbon group. Good.
  • the number of crosslinking groups is a force depending on the molecular weight of the polymer. It is 0.2 to 20% (molar ratio) of the monomer component, preferably 1 to 5%.
  • the crosslinking group is preferably a structure that is stable after the crosslinking reaction and does not inhibit the palladium catalytic reaction.
  • a single crosslinking group having such a property or a combination of crosslinking groups an epoxy group alone or a combination of an epoxy group and a hydroxyl group is preferable. These are crosslinked by heating to form an ether bond. As heating conditions in this case,
  • reaction time is 0.5 to 24 hours, preferably 1 to 5 hours.
  • the reaction temperature is low, crosslinking is insufficient or heating for a long time is required, and when the reaction temperature is high, the polymer chain may be broken or the functional group may be decomposed.
  • crosslinkable polymer a copolymer having a crosslinking group or a hydrophilic group, or a homopolymer composed of a polymer of monomers having both a hydrophobic group and a hydrophilic group may be used.
  • hydrophilic group a hydroxyl group, an ether group, a carboxyl group, an amino group, and an amide group can be used. Also in this case, considering the stability of the functional group and the influence on the catalytic reaction, the most preferred hydrophilic groups are a hydroxyl group and an ether group.
  • the ratio of these hydrophilic groups to hydrophobic groups is appropriately adjusted depending on the type of polymer, for example, homopolymer force copolymer force, random copolymer or block copolymer force. In the case of a copolymer, the ratio of the hydrophilic monomer to the total monomer is 3 to 50%, preferably 5 to 20%.
  • the number of oxygen atoms in the monomer is 1 to 5, preferably 1 to 3.
  • the bonding position of the hydrophilic group It may be bonded to the aromatic ring, directly bonded to the main chain, or bonded to the main chain via a spacer such as a hydrocarbon group, but directly to the main chain. When combined, it is easy to form polymer micelles.
  • the crosslinkable polymer of the present invention may further have a hydrophobic side chain other than the aromatic side chain.
  • hydrophobic side chain other than the aromatic side chain examples include an alkyl group, an alkenyl group, and an alkyl group.
  • the crosslinkable polymer of the present invention may further have a hydrophilic side chain! ,.
  • hydrophilic side chain a relatively short alkyl group, for example, an alkylene group having about 1 to 6 carbon atoms is bound to — ⁇ (R 1 represents —OH or a lower alkoxy group, preferably —OH).
  • R 1 is the same as above, R 2 is a covalent bond or a C 1-6 alkyl o P
  • a xylene group preferably a covalent bond or an alkylene group having 1 to 2 carbon atoms, R 3 and R 4 each independently represents an alkylene group having 2 to 4 carbon atoms, preferably 2; m, n and p are 1 to: an integer of L0, o represents 1 or 2.
  • More preferred hydrophilic side chains include CH (OC H) OH and mono (COOC H) OH.
  • the divalent palladium salt palladium acetate, palladium propionate, palladium trifluoroacetate, palladium chloride, palladium bromide, palladium iodide, palladium cyanide, palladium nitrate, palladium sulfate, palladium oxide, palladium sulfide, Or, para-dimethylacetate, or a mixture thereof, among which palladium acetate and palladium acetate are preferred, with palladium acetate and palladium nitrate being preferred.
  • alkali metal acetates include nitrates or halides of lithium, sodium or potassium, lithium acetate, sodium acetate, potassium acetate and the like, but lithium acetate, sodium acetate or potassium acetate is preferred.
  • Such a crosslinkable polymer, a divalent palladium salt, and an alkali metal salt are dissolved or dispersed in a solvent (good solvent) that dissolves the crosslinkable polymer, followed by heat treatment.
  • a solvent good solvent
  • concentration of palladium salt in a good solution is about 0.01 to 0.2M.
  • concentration of alkali metal acetate in the good solution is about 0.02-0.4M.
  • the conditions for this heat treatment are 60 to 200 ° C, preferably 65 to 80 ° C, 2 to 10 hours, preferably 3 to 5 hours.
  • the heating temperature is 65 ° C or lower, the reduction reaction of palladium may not proceed or slow, and the immobilization of palladium (0) to the polymer will be insufficient.
  • epoxide is used as the cross-linking group, reduction of palladium ( ⁇ ) at 80 ° C or higher causes insolubility due to the cross-linking reaction between high molecules, and noradium is not fixed to the high molecule as a single microcluster.
  • the heating time is short, the reduction is insufficient, and when it is too long, the crosslinking reaction proceeds.
  • Divalent palladium cannot be fixed by the microcapsule method. Point and catalytic power obtained by microcapsule after heat treatment Zero-valent palladium such as tetrakistriphenylphosphine palladium As a result of this heat treatment, divalent palladium is reduced to zero-valent palladium because of its catalytic activity similar to that of a catalyst fixed by the microcapsule method and the similar morphology observed by electron microscopy. (Non-Patent Document 11).
  • this solution or dispersion is cooled to about room temperature, and an appropriate poor solvent is added to cause phase separation, whereby palladium is incorporated into the polymer aggregate or micelle-like aggregate.
  • the method is, for example, a) dissolving in an appropriate polar good solvent and then aggregating with an appropriate polar poor solvent; b) adding an appropriate non-polar solvent after dissolving in the polar good solvent and adding palladium-supported micelles. Form aggregates, and further aggregate with a polar poor solvent, c) dissolve in a suitable nonpolar good solvent, and then aggregate with a suitable nonpolar poor solvent, d) dissolve in a nonpolar good solvent Thereafter, an appropriate polar solvent is added to form a palladium-supported micelle-like aggregate, and further aggregated with a nonpolar poor solvent.
  • the hydrophobic side chain is located in the inner direction and the hydrophilic side chain is located in the outer direction of the formed micelle-like aggregate, and the method in c) and d) Then, the hydrophobic side chain is located in the outward direction of the formed micelle-like aggregate, and the hydrophilic side chain is located in the inward direction.
  • the palladium ultrafine particles are supported by the interaction with the aromatic side chain in each micelle-like aggregate or polymer aggregate.
  • Examples of good polar solvents include tetrahydrofuran (THF), dioxane, acetone, DMF, N-methyl-2-pyrrolidone (NMP), and dimethoxyethane (DME).
  • Nonpolar good solvents include toluene, Cyclohexane, dichloromethane, black mouth form and the like can be used.
  • Examples of polar poor solvents include methanol, ethanol, butanol, propyl alcohol, amyl alcohol, and jetyl ether, and nonpolar poor solvents include hexane, heptane, and octane. Further, these mixed solvents may be used as a good solvent and a poor solvent.
  • the concentration of the polymer in the good solvent is about 1 to 100 mg / ml, and the amount of the palladium compound is the polymer. 0.01 to 0.5 (w / w) with respect to the good solvent and 0.2 to 10 (v / v) with respect to the good solvent.
  • the addition time of the poor solvent is usually 10 minutes to 2 hours.
  • the temperature at the time of phase separation is not particularly limited, but it is usually from 0 ° C to room temperature.
  • the crosslinking reaction can be reacted by heating or ultraviolet irradiation depending on the type of the crosslinkable functional group.
  • the crosslinking reaction is a conventionally known method for crosslinking the linear organic polymer compound to be used.
  • a method using a crosslinking agent a method using a condensing agent
  • a method using a radical polymerization catalyst such as a product or an azo compound
  • a method in which an acid or a base is added and heated
  • a method in which a dehydrating condensing agent such as carpositimide is combined with an appropriate crosslinking agent, and the like.
  • a dehydrating condensing agent such as carpositimide
  • the temperature at which the epoxide and the hydroxyl group are crosslinked by heating as a crosslinking group is usually 80 to 180. C, preferably 110-150. . It is.
  • the reaction time for the heat crosslinking reaction is usually 0.5 to 24 hours, preferably 1 to 5 hours.
  • the polymer-immobilized palladium catalyst thus obtained is considered to have a form in which palladium is supported as ultrafine particles by the interaction with the aromatic ring in the polymer. For example, it exhibits high catalytic activity for the Heck reaction and the Suzuki-Kajiura coupling reaction.
  • the Heck reaction is a reaction in which a substituted olefin is synthesized by cross-coupling a halogenated aryl or a norologene vinyl with a terminal olefin in the presence of a base and using noradium (0) as a catalyst.
  • the Suzuki-Kajiura coupling reaction is a cross-coupling reaction between an organic fluorine compound and a halogenated aryl or halogen butyl, aryl triflate or vinyl triflate using a noradium catalyst in the presence of a base.
  • biaryl compounds, alkylaryl compounds, or substituted olefins can be produced.
  • R 6 represents a hydrogen atom or an alkyl group.
  • R 7 X (where R 7 is Reel group or vinyl group, X is a halogen atom or triflate group (represents (OTD))
  • a biaryl compound, an alkylaryl compound, an alkenylaryl compound, or a Geny compound can be produced.
  • aryl group examples include those having 6 to 10 carbon atoms, preferably 6 carbon atoms, such as a phenyl group and a naphthyl group.
  • the vinyl group may have a substituent as appropriate.
  • the amount of catalyst used is 0.01 to: LOmol%, preferably 0.1 to 5 mol%.
  • Chlorine, bromine and iodine can be used as the halogen of the halogenated aryl or halogenated butyl, but bromine or iodine is particularly preferable.
  • the reaction solvent a mixed solvent of water and an organic solvent can be used.
  • organic solvent hydrocarbons such as toluene are preferable, ethers such as dimethoxyethane (DME) and tetrahydrofuran (THF), and ketones such as acetone.
  • the base to be added is preferably an alkali metal carbonate or phosphate.
  • the reaction temperature is 70 ° C to 150 ° C, preferably around 100 ° C.
  • the reflux temperature is simple in a toluene Z water system.
  • a base such as an arylphosphine ligand and an alkali metal carbonate or phosphate.
  • arylphosphine ligand examples include dimethylphenol phosphine (P (CH) Ph), diphenylphosphinophlocene (dPPf), and triphenyl.
  • the target compound in the post-treatment after the reaction, can be obtained by removing and collecting the polymer-immobilized catalyst by filtration, and extracting, concentrating, and purifying the filtrate.
  • the recovered fixed catalyst can be reused by washing and drying.
  • the reaction mixture was cooled and diluted with jetyl ether, and then the reaction was stopped by slowly adding a saturated aqueous ammonium chloride solution.
  • the organic layer was separated and the aqueous layer was extracted twice with diethyl ether.
  • the desiccant was filtered off and the organic layer was concentrated under reduced pressure to produce a composition obtained by silica gel column chromatography.
  • the copolymer (1X200 mg), sodium acetate (21.7 mg, 0.26 mmol) and palladium nitrate (30.4 mg, 0.13 mmol) were dissolved in tetrahydrofuran (3.0 ml) at room temperature, stirred for 1 hour, and then stirred at 66 ° C for 3 hours. did.
  • the mixture was allowed to cool to room temperature, hexane (20 ml) was slowly added dropwise, and the mixture was allowed to stand at room temperature for 12 hours. The supernatant was removed with decantation, washed several times with hexane, and dried at room temperature under reduced pressure for 24 hours.
  • a catalyst (PIPd) was prepared in the same manner as in Example 1 except that the raw material palladium salt (II) and sodium acetate (additive) were changed, and the immobilization to the polymer was examined. The results are shown in Table 1.
  • PI Pd A (0.025 mmol), odobenzene (56 ⁇ 1, 0.50 mmol), ethyl acrylate (81 ⁇ 1, 0.75 mmol) and potassium carbonate (196 mg, 1.0 mmol) were combined with N-methyl-2-pyrrolidone (NMP, 3 ml). The mixture was stirred at 120 ° C. for 1 hour and then cooled, followed by removal of hexane. The mixture was filtered through a glass filter, and the insoluble material was washed successively with tetrahydrofuran, methylene chloride, and water.
  • NMP N-methyl-2-pyrrolidone
  • the reaction time was extended from 1 hour to 2 hours, and the same reaction as in Example 9 was performed.
  • the results are shown in Table 2.
  • the yield was slightly improved (94%, Table 2).
  • Example 9 The same reaction as in Example 9 was performed using PI Pd C to H instead of PI Pd A. The results are shown in Table 2. The yield of the target product, ethyl acrylate, was found to vary from 31% to quantitative (quant.) Depending on the production method of PI Pd. In any case, no leakage of palladium from the catalyst was observed It was.
  • Example 9 The same reaction as in Example 9 was performed using PI Pd H instead of PI Pd A.
  • the results are shown in Table 2. Although the recovery rate at the time of production of PI Pd H was low (Example 8), the yield of the reaction product when PI Pd H was used was as good as 83%.
  • PI Pd A (0.0025 mmol), 2-bromotoluene (60 // g, 0.50 mmol), phenylboronic acid (9 1.4 mg, 0.75 mmol), tri (o-tolyl) phosphine (8.8 mg, 0.025 mmol) And potassium phosphate (106 mg, 0.5 mmol) were refluxed in a mixed solvent of toluene monohydrate (4/1, 5 ml) under an argon atmosphere for 4 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】  原料として安価なパラジウム(II)化合物を用い、芳香族高分子に0価のナノサイズパラジウムクラスターが安定に担持された、高分子固定化パラジウム触媒を提供する。  【解決手段】 芳香族側鎖を有する高分子を含む溶液中で、2価のパラジウム塩及びアルカリ金属塩を加熱処理することにより、パラジウムが還元され、芳香族高分子にナノサイズパラジウムクラスターを担持することができる。本発明は、芳香族側鎖及び架橋基を有する架橋性高分子、2価のパラジウム塩及びアルカリ金属塩を、当該架橋性高分子を溶解する溶媒中で溶解または分散させ、これを60~200°Cで加熱し、冷却後当該架橋性高分子に対する貧溶媒を加えることにより生じた組成物を析出させ、当該析出物中の架橋基を架橋反応させることから成る高分子固定化パラジウム触媒の製法である。この触媒はHeck反応や鈴木-宮浦カップリング反応おける触媒として有用である。  

Description

明 細 書
高分子固定化パラジウム触媒及びその製法
技術分野
[0001] 本発明は、 2価のパラジウムを原料として、芳香族高分子に 0価のパラジウムをナノ サイズクラスタ一として固定した高分子固定化パラジウム触媒の製法、その製法によ り製造された触媒及びその使用法に関する。
背景技術
[0002] ノラジウムのナノサイズクラスタ一は環境、エネルギー、医療、化学工業などの分野 で重要な役割を担う材料として注目され、これまでに多種多様なナノサイズパラジゥ ムクラスターの製造方法が報告されて 、る。一般に金属クラスタ一はサイズが小さ ヽ ほど、材料としての機能は高いが、不安定で凝集しやすい。また、材料として利用す る場合、ナノサイズクラスターとしての機能を損なわな 、形でのコンポジットィ匕が必要 である。この目的のために、様々な素材がナノサイズパラジウムクラスターの担体とし て検討されているが、有機高分子もその一つである(非特許文献 1、特許文献 1)。有 機高分子にパラジウムクラスターを固定する場合、多くは配位性の官能基を介しての 固定、又は物理的な封入による固定が行われるが、一般に強い固定ィ匕によると微小 クラスターとしての機能が低下し、弱い固定によると、機能は低下しにくいものの担体 力もの解離やクラスター同士の凝集が起こり易い。
[0003] 近年、マイクロカプセルィ匕法を用いたパラジウムの高分子への固定が開発された( 非特許文献 2〜3)。この手法によりパラジウムは、スチレン系高分子のベンゼン環と の弱い配位によってサブナノメートルサイズのクラスタ一として固定され、非常に高い 触媒活性を示した。その後本手法は、架橋ゃミセル化の手法を導入することで高活 性を保持しつつ、より安定性の向上した高分子固定化パラジウム触媒へと発展して いる(非特許文献 4〜7、特許文献 2、 3)。
[0004] マイクロカプセル化法では、テトラキストリフエ-ルホスフィンパラジウム (Pd(PPh ) )な
3 4 ど 0価のパラジウムを原料として、配位子交換によりパラジウムを芳香族高分子に固 定した。その結果、得られた高分子固定化パラジウム中には 0価のパラジウムがホス フィンフリーの状態で存在し、これが小さなクラスターサイズとともに触媒としての高活 性の一因と考えられる。し力しながら、 Pd(PPh )は比較的高価であり、より安価なパラ
3 4
ジゥム原料力 の製造法の確立が望まれて 、る。
チオールや界面活性剤などがナノサイズ金属クラスターの安定ィヒに有効であり、ま た 4級アンモ-ゥム塩には溶液中の金属触媒を分散させる効果があることが知られて いる(非特許文献 8〜9)。 4級アンモ-ゥム塩を用いてマイクロカプセルィ匕を行うことに より、通常のマイクロカプセルィ匕の手法では固定できない酢酸パラジウム(II)を原料と しても、芳香族高分子に 0価のパラジウムを固定できる (非特許文献 10)。
一方、酢酸パラジウム (Π)が還元剤非共存下、温和な熱処理により分解 '還元され て、 0価のパラジウムを生成することが報告されている(非特許文献 11)。
[0005] 特許文献 1 :W099/41259
特許文献 2:特開 2002-66330
特許文献 3:特開 2002-253972
非特許文献 l : Uozumi, Y. Topics in Current Chemistry, 242, 77 (2004).
非特許文献 2 :Akiyama, R.他 Angew. Chem., Int. Ed. 40, 3469 (2001).
非特許文献 3 :Akiyama, R.他 J. Am. Chem. Soc. 125, 3412 (2003).
非特許文献 4: Kobayashi, S.他 Chem. Commun. 2003, 449.
非特許文献 5 : Okamoto, K.他 J. Org. Chem. 69, 2871 (2004).
非特許文献 6 : Okamoto, K.他 Org. Lett. 6, 1987 (2004).
非特許文献 7 : Okamoto, K.他 J. Am. Chem. Soc. 127, 2125 (2005).
非特許文献 8 : Reetz, M. T.他 Chem. Commun. 1996, 1921.
非特許文献 9 : Reetz, M. T.他 Adv. Mater., 11, 773 (1999).
非特許文献 10 :萩尾浩之 他 日本薬学会第 125会年会要旨集 4,108頁(2005) 非特許文献 ll : Reetz, M. T.他 Chem. Commun. 2004, 1559.
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、原料として安価なパラジウム (II)化合物を用い、芳香族高分子にナノサ ィズのノ ラジウムクラスターが安定に担持された、高分子固定化パラジウム触媒、そ の製造方法、及びその触媒を用いた反応方法を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは、酢酸パラジウム (Π)の加熱による還元 (非特許文献 11)を芳香族高 分子の共存下で行うことにより、 0価のパラジウムを芳香族高分子中に取り込むことが 可能ではな 、かと考え検討を行った。
その結果、芳香族側鎖を有する高分子を含む溶液中で、 2価のパラジウム塩及び アルカリ金属塩を加熱処理することにより、パラジウムが還元され、芳香族高分子に ナノサイズパラジウムクラスターを担持することができることを見出し、本発明を完成す るに至った。
[0008] 即ち、まず、芳香族側鎖を有する高分子、 2価のパラジウム塩及びアルカリ金属塩 を、当該高分子を溶解する良溶媒中で混合する。次にこの溶液を 60°C以上で適宜 加熱する。この操作によりパラジウム(II)は 0価に還元されていると考えられる。更に、 この溶液に高分子に対する貧溶媒を徐々に加えることにより相分離状態を生じさせ、 この操作により 0価のパラジウムを微小クラスタ一として高分子中に取り込むことがで きる。
即ち、本発明は、芳香族側鎖及び架橋基を有する架橋性高分子、 2価のパラジゥ ム塩及びアルカリ金属塩を、当該架橋性高分子を溶解する溶媒中で溶解または分 散させ、これを 60〜200°Cに加熱し、冷却後当該架橋性高分子に対する貧溶媒を 加えることにより析出物を生じさせ、当該析出物中の架橋基を架橋反応させることか ら成る高分子固定化パラジウム触媒の製法である。
本発明は、この製法により製造された高分子固定化パラジウム触媒であり、さらにこ の触媒の Heck反応又は鈴木ー宫浦カップリング反応おける触媒としての使用である 発明を実施するための最良の形態
[0009] 本発明の高分子固定化パラジウム触媒の製法においては、芳香族側鎖を有する高 分子、 2価のパラジウム塩及びアルカリ金属塩を、当該高分子を溶解する良溶媒中、 60°C以上に加熱し、その後、この溶液に高分子に対する貧溶媒を徐々に加えて相 分離させることにより高分子固定化パラジウム触媒を得る。 [0010] 本発明で用いられる高分子は、芳香族側鎖を有することを要し、その分子量は 5千 〜30万、好ましくは 2万から 10万である。分子量が小さいと溶剤に対する溶解性が 増し、固定ィ匕触媒としての長所である回収 *再使用が困難となる、或いは貧溶媒を加 えた際に相分離しない場合が生ずる。また、分子量が大きすぎる高分子は、その合 成や触媒調整時の溶解が困難になる。また、当該芳香族側鎖を有する高分子は更 に架橋基を有することが好ましい。即ち、前記の相分離操作により得られた高分子固 定化パラジウムを高分子間で架橋することにより、耐溶剤性を向上し、様々の溶媒中 での使用が可能となる。さらに、当該芳香族側鎖を有する高分子は疎水性基として の芳香族基を有するが、さらに親水性基を付与することにで両親媒性となり、貧溶媒 を加えて相分離させる際に高分子ミセルを形成することが可能である。高分子ミセル 内に固定されたパラジウムクラスタ一は、ミセルを形成していない場合に比べて安定 性が向上する場合が多い。高分子ミセルを形成させた後に高分子間を架橋すること により、さらに安定性を向上させることができる。
[0011] 芳香族側鎖としては、ァリール基及びァラルキル基が挙げられる。
ァリール基としては、通常炭素数 6〜10、好ましくは 6のものが挙げられ、具体的に は、例えば、フエニル基、ナフチル基等が挙げられる。
尚、本明細書に於いて定義されている炭素数はその基が有する置換基の炭素数を 含まないものとする。
ァラルキル基としては、通常炭素数 7〜12、好ましくは 7〜9のものが挙げられ、具 体的には、例えばべンジル基、フエ-ルェチル基、フエ-ルプロピル基等が挙げられ る。
ァリール基及びァラルキル基に於ける芳香環はアルキル基、ァリール基、ァラルキ ル基などの置換基を有して 、てもよ!/、。
[0012] 芳香環が有して 、てもよ 、アルキル基としては、直鎖状でも分枝状でも或いは環状 でもよぐ環状の場合には単環でも多環でもよぐ通常炭素数 1〜20、好ましくは 1〜 12のものが挙げられ、具体的には、例えばメチル基、ェチル基、 n_プロピル基、イソ プロピル基、 n-ブチル基、イソブチル基、 sec-ブチル基、 tert-ブチル基、 n_ペンチル 基、イソペンチル基、 sec-ペンチル基、 tert-ペンチル基、ネオペンチル基、 n-へキシ ル基、イソへキシル基、 sec-へキシル基、 tert-へキシル基、 n-ヘプチル基、イソヘプ チノレ基、 sec-へプチノレ基、 tert-へプチノレ基、 n-ォクチノレ基、 sec-ォクチノレ基、 tert- ォクチル基、ノ-ル基、デシル基、シクロペンチル基、シクロへキシル基等が挙げられ る。
[0013] 芳香環が有していてもよいァリール基及びァラルキル基としては、上記した如き芳 香族基としてのァリール基及びァラルキル基と同様なものが挙げられる。
これら芳香環が有して 、てもよ 、置換基は、ァリール基及びァラルキル基に於ける 芳香環に通常 1〜 5個、好ましくは 1〜 2個置換して 、てもよい。
[0014] 以上の中でも、高分子調整の簡便さ、価格などを考慮すると、この芳香族高分子と して、スチレンを含む重合性モノマーの共重合体が好まし 、。
[0015] 架橋基として、エポキシ基、カルボキシル基、イソシァネート基、チォイソシァネート 基、水酸基、 1級若しくは 2級のアミノ基、チオール基が挙げられる。この架橋基として エポキシ基、カルボキシル基、イソシァネート基、及びチォイソシァネート基が好ましく 、これらに更に、水酸基、 1級若しくは 2級のアミノ基又はチオール基を含んでもよい。 これらの架橋基は必要に応じて単独又は組み合わせて用いてもよぐモノマーの重 合、或 、はパラジウム (II)の加熱による還元の際には保護しておくことも可能である。 さらに、高分子内の官能基と結合する複数の官能基を有する架橋剤を相分離後に 添加して高分子間で架橋することも可能である。この例としては、水酸基を有する芳 香族高分子と架橋剤としてのエチレングリコールジグリシジルエーテルの組み合わせ を挙げられる。
[0016] 高分子中の架橋基の位置に特に制限はなぐ芳香環に結合、主鎖に直接結合、或 いは炭化水素基などのスぺーサーを介して主鎖と結合して 、ても良 、。架橋基の数 は高分子の分子量にもよる力 モノマー成分の 0. 2〜20% (モル比)、好ましくは 1〜 5%である。
[0017] 本高分子固定化パラジウム触媒は様々な触媒反応に用いられる可能性があること から、架橋基は架橋反応後に安定であり、パラジウム触媒反応を阻害しない構造で あることが好ましい。このような性質を有する単独の架橋基、或いは架橋基の組み合 わせとしては、エポキシ基のみ、及びエポキシ基と水酸基の組み合わせが好ましい。 これらは加熱により架橋し、エーテル結合を形成する。この場合の加熱条件としては
、 80〜180°C、好ましくは 110〜150°Cで、反応時間は 0. 5〜24時間、好ましくは 1 〜5時間で実施される。反応温度が低いと架橋が不十分、或いは長時間の加熱が必 要となり、反応温度が高いと高分子鎖の切断や官能基の分解が起こる場合がある。
[0018] また、架橋性高分子として架橋基や親水性基を有するコポリマーや、疎水基と親水 性基とを併せ持つモノマーの重合体からなるホモポリマーを用いてもよい。
親水性基としては、水酸基、エーテル基、カルボキシル基、アミノ基、及びアミド基 を用いることが可能である。この場合も官能基の安定性と触媒反応に対する影響を 考慮すると、最も好ましい親水性基は水酸基及びエーテル基である。これらの親水 性基の疎水性基に対する割合は高分子のタイプ、例えばホモポリマー力コポリマー 力 或いはランダムコポリマーかブロックコポリマー力 などにより適宜調整される。コ ポリマーの場合、総モノマーに対する親水性モノマーの割合は 3〜50%、好ましくは 5〜20%である。ホモポリマーの場合は、モノマー中の酸素原子の数として 1〜5個、 好ましくは 1〜3個である。親水性基の結合位置に特に制限はなぐ芳香環に結合、 主鎖に直接結合、或いは炭化水素基などのスぺーサーを介して主鎖と結合していて も良 、が、主鎖に直接結合した場合がポリマーミセルを形成し易 、。
[0019] 本発明の架橋性高分子は更に芳香族側鎖以外の疎水性側鎖を有してもよい。
芳香族側鎖以外の疎水性側鎖としては、アルキル基、アルケニル基、及びアルキ -ル基が挙げられる。
[0020] 本発明の架橋性高分子は更に親水性側鎖を有してもよ!、。
親水性側鎖としては、比較的短いアルキル基、例えば、炭素数が 1〜6程度のアル キレン基に— ^ (R1は— OH又は低級アルコキシ基、好ましくは— OHを表す。)が結 合したものであってもよいが、 R2 (OR3) R R2 (COOR3) R1又は R2 (COOR m n
3) (OR4) R1 (式中、 R1は上記と同様であり、 R2は共有結合又は炭素数 1〜6のアル ο P
キレン基、好ましくは共有結合又は炭素数 1〜2のアルキレン基を表し、 R3及び R4は それぞれ独立して炭素数 2〜4、好ましくは 2のアルキレン基を表し、 m、 n及び pは 1 〜: L0の整数、 oは 1又は 2を表す。)で表されるものが好ましい。より好ましい親水性側 鎖として、 CH (OC H ) OHや一(COOC H ) OH等が挙げられる。 [0021] 本発明の高分子固定化パラジウム触媒は、上記架橋性高分子と 2価のパラジウム 塩及びアルカリ金属塩とを、当該高分子を溶解する良溶媒中で加熱処理し、その後 高分子に対する貧溶媒を徐々に加えて相分離させ、更に架橋反応に付すことにより 得られる。
[0022] 2価のパラジウム塩として、酢酸パラジウム、プロピオン酸パラジウム、トリフルォロ酢 酸パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、シアン化パラジゥ ム、硝酸パラジウム、硫酸パラジウム、酸化パラジウム、硫化パラジウム、若しくはパラ ジゥムァセチルァセトナート、又はこれらの混合物が挙げられ、この中で酢酸パラジゥ ム及び硝酸パラジウムが好ましぐ酢酸パラジウムがより好ましい。
2価のパラジウム塩として酢酸パラジウムを用いた場合、アルカリ金属を添カ卩しな!/ヽ 場合でもパラジウムは高分子に固定されるが、パラジウムの導入量や導入率は低い。 これに対し、酢酸パラジウムにアルカリ金属塩を併用するとパラジウムの導入率や導 入量が大きく向上する。一方、酢酸パラジウム以外のノ ラジウム塩を用いる場合には 、アルカリ金属の酢酸塩の併用が必須である。
[0023] アルカリ金属の酢酸塩としては、リチウム、ナトリウム又はカリウムの硝酸塩又はハロ ゲン化物、酢酸リチウム、酢酸ナトリウム、酢酸カリウム等が挙げられるが、酢酸リチウ ム、酢酸ナトリウム又は酢酸カリウムが好ましい。
[0024] このような架橋性高分子と 2価のパラジウム塩及びアルカリ金属塩とを、架橋性高分 子を溶解する溶媒 (良溶媒)に溶解又は分散させ、加熱処理する。良溶液中のパラジ ゥム塩の濃度は 0. 01-0. 2M程度である。良溶液中のアルカリ金属の酢酸塩の濃 度は 0. 02-0. 4M程度である。
この加熱処理の条件は、 60〜200°C、好ましくは 65〜80°Cで、 2〜10時間、好ま しくは 3〜5時間である。加熱温度が 65°C以下の場合には、パラジウムの還元反応が 進行しないか遅くなる場合があり、パラジウム (0)の高分子への固定が不十分となる。 架橋基としてエポキシドを用いた場合、 80°C以上でパラジウム (Π)の還元を行うと高 分子間の架橋反応による不溶ィ匕が起こり、 ノラジウムは微小クラスタ一としては高分 子に固定されない。また、加熱時間が短い場合にも還元が不十分となり、長すぎる場 合には架橋反応が進行する。 2価のパラジウムはマイクロカプセルィ匕法では固定できな 、点、及び加熱処理に続 くマイクロカプセルィ匕で得られた触媒力 テトラキストリフエ-ルホスフィンパラジウムな どの 0価のパラジウムを出発原料としてマイクロカプセルィ匕法により固定した触媒と類 似の触媒活性、電子顕微鏡による観察で類似の形態を示す点などから、この加熱処 理の結果、 2価のパラジウムは 0価のパラジウムに還元されるものと考えられる(非特 許文献 11)。
[0025] その後、この溶液又は分散液を室温程度にまで冷却し、適当な貧溶媒を加えて相 分離を起こすことにより、パラジウムはポリマー凝集物又はミセル様集合体に取り込ま れる。
その方法は、例えば、 a)適当な極性の良溶媒に溶解させた後適当な極性の貧溶媒 で凝集させる、 b)極性の良溶媒に溶解した後適当な非極性溶媒を加えてパラジウム 担持ミセル様集合体を形成させ、更に極性の貧溶媒で凝集させる、 c)適当な非極性 の良溶媒に溶解させた後適当な非極性の貧溶媒で凝集させる、 d)非極性の良溶媒 に溶解した後適当な極性溶媒を加えてパラジウム担持ミセル様凝集体を形成させ、 更に非極性の貧溶媒で凝集させる、こと〖こより行われる。この場合、 a)及び b)の方法 では、形成されたミセル様凝集体の内方向に疎水性側鎖が、外方向に親水性側鎖 が位置することになり、 c)及び d)の方法では、形成されたミセル様凝集体の外方向に 疎水性側鎖が内方向に親水性側鎖が位置することになる。この際、パラジウム超微 粒子は夫々のミセル様集合体又はポリマー凝集物に於 、て芳香族側鎖との相互作 用により担持される。
[0026] 極性の良溶媒としては、テトラヒドロフラン (THF)、ジォキサン、アセトン、 DMF、 N —メチルー 2—ピロリドン(NMP)、ジメトキシェタン(DME)など、非極性の良溶媒と してはトルエン、シクロへキサン、ジクロロメタン、クロ口ホルムなどが使用できる。極性 の貧溶媒としてはメタノール、エタノール、ブタノール、プロピルアルコール、アミルァ ルコール、ジェチルエーテルなどがあり、非極性の貧溶媒としてはへキサン、ヘプタ ン、オクタンなどが使用できる。また、良溶媒及び貧溶媒としてこれらの混合溶媒を用 いてもよい。
[0027] 良溶媒中のポリマーの濃度は約 1〜100 mg/ml、パラジウム化合物の量はポリマー に対して 0.01〜0.5(w/w)、貧溶媒の量は良溶媒に対して 0.2〜10(v/v)用いられ、貧 溶媒の添加時間は通常 10分〜 2時間かけて行われる。相分離の際の温度は特に制 限はないが、通常 0°C〜室温で行われる。
[0028] 次に、このような処理の結果生じたパラジウム含有架橋性高分子の架橋基を架橋 反応させる。
架橋反応は、架橋性官能基の種類により、加熱や紫外線照射により反応させること ができる。架橋反応は、これらの方法以外にも、使用する直鎖型有機高分子化合物 を架橋するための従来公知の方法である、例えば架橋剤を用いる方法、縮合剤を用 いる方法、過酸ィ匕物やァゾィ匕合物等のラジカル重合触媒を用いる方法、酸又は塩基 を添加して加熱する方法、例えばカルポジイミド類のような脱水縮合剤と適当な架橋 剤を組み合わせて反応させる方法等に準じても行うことができる。
架橋基としてエポキシドと水酸基とを加熱により架橋させる際の温度は、通常 80〜 180。C、好ましくは110〜150。。でぁる。
加熱架橋反応させる際の反応時間は、通常 0. 5〜24時間、好ましくは 1〜5時間 である。
[0029] このようにして得られた高分子固定化パラジウム触媒は、パラジウムがポリマー中の 芳香環との相互作用により超微粒子として担持された形態を有して 、ると考えられ、 各種の反応、例えば、 Heck反応や鈴木ー宫浦カップリング反応などに対して高い触 媒活性を示す。
Heck反応は、塩基の存在下、ノラジウム (0)を触媒として、ハロゲンィ匕ァリール又は ノ、ロゲンィ匕ビニルを末端ォレフィンとクロスカップリングさせて置換ォレフィンを合成す る反応である。
[0030] 鈴木—宫浦カップリング反応は、塩基の存在下、ノラジウム触媒を用いて、有機ホ ゥ素化合物とハロゲン化ァリール若しくはハロゲンィ匕ビュル又はァリールトリフラート 若しくはビニルトリフラートとをクロスカップリング反応させることによりビアリールイ匕合 物、アルキルァリールイ匕合物又は置換ォレフィン類を製造することができる。
この反応により、例えば、 R¾ (OR6) 若しくは (R5) B (式中、 R5はァリール基、ビ-
2 3
ル基又はアルキル基、 R6は水素原子又はアルキル基を表す。)と R7X(式中、 R7はァ リール基又はビニル基、 Xはハロゲン原子又はトリフラート基 ((OTD )を表す。)とを反
3
応させ、ビアリール化合物、アルキルァリール化合物、アルケニルァリール化合物又 はジェンィ匕合物を製造することができる。
このァリール基としては、通常炭素数 6〜10、好ましくは 6のものが挙げられ、例え ば、フエ-ル基、ナフチル基等が挙げられる。またこのビニル基は適宜置換基を有し ていてもよい。
[0031] この際、使用する触媒量は、 0. 01〜: LOmol%、好ましくは 0. l〜5mol%である。ハロ ゲン化ァリール又はハロゲン化ビュルのハロゲンとしては塩素、臭素、ヨウ素を用いる ことができるが、中でも臭素又はヨウ素が好ましい。反応溶媒としては水と有機溶媒の 混合溶媒を用いることができ、有機溶媒としてはトルエンなどの炭化水素が好ましく、 ジメトキシェタン(DME)、テトラヒドロフラン (THF)などのエーテル類、アセトン等の ケトン類、ァセトニトリル等の-トリル類が好ましぐ必要に応じてエタノールのようなァ ルコールなどを添加することもできる。添加する塩基はアルカリ金属の炭酸塩又はリ ン酸塩などが好適である。反応温度は 70°C〜150°C、好ましくは 100°C前後であり、 例えばトルエン Z水系では還流温度が簡便である。反応時間は基質にも拠るが 1時 間〜 24時間、通常は数時間で反応が終了する。
[0032] この反応においては、ァリルホスフィン配位子及びアルカリ金属の炭酸塩又はリン 酸塩などの塩基を外部添加することを要する。このような配位子として、例えば、ジメ チルフエ-ルホスフィン(P(CH ) Ph)、ジフエ-ルホスフイノフエ口セン(dPPf)、トリフエ
3 2
-ルホスフィン(PPh )、 1, 2—ビス(ジフエ-ルホスフイノ)ェタン(DPPE)、トリフエノキ
3
シホスフィン(P(OPh) )、トリー o—トリルホスフィン、トリ一 m—トリルホスフィン、トリ一 p
3
-トリルホスフィン等が挙げられる。
反応後の後処理は、濾過により高分子固定化触媒を除去 ·回収し、濾液を抽出、濃 縮、及び精製操作により目的物を得ることができる。一方、回収した固定ィ匕触媒は洗 浄'乾燥することにより再使用が可能である。
[0033] 以下、実施例にて本発明を例証するが本発明を限定することを意図するものでは ない。
列 1 過 tert—ブチルアルコールのデカン溶液 (5〜6 M, 12.5 ml)を (50 ml)に希釈し、二酸 化セレン (111 mg, 1.0 mmol),酢酸 (90.1 mg, 1.5 mmol)を加え室温下にて 30分間攪 拌した。次いで 2—フエニルプロペン (6.5 ml, 50 mmol)をカ卩えて 72時間攪拌した後、 反応混合物を減圧濃縮し、粗生成物をシリカゲルカラムクロマトグラフィーによって生 成したところ、 目的とする 3—ヒドロキシ一 2—フエ-ルプロペン (3.98 g, 59 %)を得た。 1H NMR: 1.27 (s, 1H), 4.55 (s, 2H), 5.36 (s, 1H), 5.48 (s, 1H), 7.28-7.40 (m, 3H), 7.42-7.50 (m, 2H).
13C NMR: 65.0, 112.6, 126.0, 127.9, 128.5, 138.4, 147.2.
[0034] 3—ヒドロキシ一 2—フエ-ルプロペン (3.94 g, 29.4 mmol)に s—コリジン (3.84 g, 31.7 mmol)及び塩化リチウム (1.25 g, 29.4 mmol)のジメチルホルムアミド溶液を加え 0°Cに 冷却した。得られた懸濁液にメタンスルホユルクロリド (2.45 ml, 31.7 mmol)をゆっくり 滴下した。反応混合物を 8時間かけて室温まで昇温し、ジェチルエーテルで希釈し た後、水をゆっくり加えて反応を停止した。有機層を分離した後、水層をジェチルェ 一テルで 2回抽出した。有機層を合わせて水、飽和食塩水で順次洗浄し、無水硫酸 ナトリウムで乾燥した。乾燥剤を濾別し有機層を減圧濃縮してえら得た粗生成物をシ リカゲルカラムクロマトグラフィーで生成して 3—クロ口一 2—フエ-ルプロペンを (3.53 g, 79 %)を得た。
JH NMR: 4.50 (s, 2H), 5.49 (s, 1H), 5.60 (s, 1H), 7.30—7.60 (m, 5H).
13C NMR: 46.5, 116.7, 126.1, 128.2, 128.5, 137.6, 143.9.
[0035] 製造例 2
水素化ナトリウム (60 %, 1.82 g, 45.4 mmol)を石油エーテルにて 3回洗浄した後減圧 乾燥した。そこにテトラヒドロフラン (70 ml)をカ卩えた後、氷浴にて冷却した。次いで、テ トラエチレングリコール (8.81 g, 45.4 mmol)のテトラヒドロフラン (10 ml)溶液を攪拌下で ゆっくり加えた。反応混合物を室温で 1時間攪拌した後、製造例 1で得た 3—クロ口— 2—フエ-ルプロペン (3.46 g, 22.7 mmol)のテトラヒドロフラン (10 ml)溶液をカ卩え、さら に 12時間攪拌した。反応混合物を冷却しジェチルエーテルで希釈した後、飽和塩 化アンモ-ゥム水溶液をゆっくり加えて反応を停止した。有機層を分離し、水層をジ ェチルエーテルで 2回抽出した。有機層を合わせて飽和炭酸水素ナトリウム水溶液、 飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別し、有機層 を減圧濃縮して得られた組成性物を、シリカゲルカラムクロマトグラフィーで生成して
、テトラエチレングリコール モノ一 2—フエ-ルー 2—プロべ-ル エーテル (4.52 g, 64 %)を得た。
1H NMR: 2.72 (s, 1H), 3.58—3.74 (m, 16H), 4.42 (s, 2H), 5.34 (d, 1H, J=1.2 Hz), 5. 53 (d, 1H, J=0.5 Hz), 7.25-7.36 (m, 3H), 7.44-7.52 (m, 2H).
13C NMR: 61.7,, 69.2, 70.3, 70.5, 70.6, 72.4, 73.1, 114.4, 126.1, 127.7, 128.3, 138 .7, 144.0.
[0036] 製造例 3
2—フエ-ノレプロペン (22.4 g, 190 mmol)、 N—ブロモスクシンイミド (NBS、 23.7 g, 13 3 mmol)及びブロモベンゼン (76 ml)を混合し、 160°Cのオイルバスで NBSが溶解する まで急速に加熱した。室温まで冷却後、析出物を濾過で除きクロ口ホルムで洗浄した 。濾液を蒸留 (b.p. 80-85 I 3 mmHg)したところ、 3—ブロモ—2—フエ-ルプロペンが 1ーブロモー 2—フエ-ルプロペンとの混合物として得られた(純度 78%、収率 46%)。
XW NMR :4.39 (s, 2H), 5.49 (2, 1H), 5.56 (s, 1H), 7.33—7.51 (m, 5H).
13C NMR: 34.2, 117.2, 126.1, 128.3, 137.6, 144.2.
[0037] 水素化ナトリウム (60 %, 1.6 g, 40 mmol)の DMF(75 ml)懸濁液にグリシドール (7.4 g,
100 mmol)の DMF(5 ml)溶液を 0°Cでゆっくり加えた。次いで上記で得た 3—ブロモ —2—フエ-ルプロペン (78 % purity, 5.05 g, 20 mmol)の DMF(10 ml)溶液をカ卩えた 後、室温で 24時間攪拌した。反応混合物を氷冷しジェチルエーテルで希釈した後、 飽和塩ィ匕アンモ-ゥム水溶液をゆっくりと加えて反応を停止した。有機層を分離後、 水層をジェチルエーテルで 2回抽出し、有機層を合わせて飽和炭酸水素ナトリウム 水溶液、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別 後、溶媒を減圧濃縮し、得られた組生成物をシリカゲルカラムクロマトグラフィーで精 製して 2— [ (2—フエ-ルァリルォキシ)メトキシ]ォキシラン (2.66 g, 70%)を得た。
1H NMR :2.59 (dd, 1H, J=2.7, 5.1Hz), 2.78 (dd, 1H, J=4.2, 5.1 Hz), 3.13—3.17 (m, 1 H), 3.46 (dd, 1H, J=5.8, 11.5 Hz), 3.77 (dd, 1H, J=3.2, 11.5 Hz), 4.41 (ddd, 1H, J= 0.7, 1.2, 12.9 Hz), 4.48 (ddd, 1H, J=0.5, 1.2, 12.9 Hz), 5.34-5.36 (m, 1H), 7.45-7. 48(m, 5H).
13C NMR: 44.3, 50.8, 70.5, 73.2, 114.6,, 126.0, 127.8, 128.4, 138.6, 143.9.
[0038] 製造例 4
製造例 3で得た 2— [ (2—フエ-ルァリルォキシ)メトキシ]ォキシラン(2.85 g, 15 mm ol)、製造例 2で得たテトラエチレンダリコールモノ— 2—フエ-ルー 2—プロべ-ルェ 一テル(4.66 g, 15 mmol)、スチレン(12.5 g, 120 mmol)、 2, 2'—ァゾビス(イソブチロ 二トリル)(172 mg, 1.05 mmol)をクロ口ホルム (19 ml)に溶解し、アルゴン雰囲気下で 4 8時間還流した。反応液を室温まで冷却した後、冷メタノール中にゆっくり滴下した。 沈殿を濾過により集め、少量のテトラヒドロフランに溶解しメタノールに滴下して再沈 殿させた。再び濾過に集めた沈殿をメタノールで洗浄し、室温減圧下で 24時間乾燥 した。コポリマー(1)を白色粉末として得た(12.0 g,収率 60%)。 Mw: 31912。 Mn: 19 468。 Mw/Mn= l. 64 (GPC)。 NMRで測定した結果、得られたコポリマー中の各 モノマー比は 91: 5 :4であった(以下「コポリマー(1)」 t\、う。;)。コポリマー(1)を下式 に示す。
[化 1]
Figure imgf000014_0001
[0039] 実施例 1
コポリマー(1X200 mg)、酢酸ナトリウム (21.7 mg, 0.26 mmol)及び硝酸パラジウム (30 .4 mg, 0.13 mmol)をテトラヒドロフラン (3.0 ml)に室温で溶解し 1時間攪拌後、 66°Cで 3時間攪拌した。室温まで放冷し、へキサン (20 ml)をゆっくりと滴下した後、室温で 12 時間放置した。上澄みをデカンデーシヨンで除き、へキサンで数回洗浄した後、室温 減圧下で 24時間乾燥した。得られた固体を粉砕し、無溶媒条件下 120°Cで 2時間加 熱することにより高分子を架橋させた。テトラヒドロフラン、水で洗浄後、乾燥して高分 子固定化パラジウム (PI Pd)を得た (169 mg) (以下「PI Pd A」という。 )0反応を下式に示 す。
[化 2]
"Pd" (0.13 mmol) t.
Additive coacervation
Copolymer 1 ►
THF hexane
200 mg 66 °C, 3 h cross-linking
PI Pd
1 ) filtration no slolvent 1 ) filtration
2) wash (hexane) 120 °C, 2 h 2) wash (THF,
3) dry water, CH2CI2)
3) dry, 24 h
[0040] 得られた PI Pd Aを TEMで観察した結果、パラジウムは約 1. 5nm径のナノサイズク ラスターとして架橋高分子中に固定されていた。
得られた PI Pd A(26.0 mg)に濃硫酸(1.0 ml)を加え 180°Cで 30分間加熱した。この ものに室温で硝酸 (0.5 ml)をカ卩え、再び 180°Cで 60分間加熱することにより高分子を 分解した。水(10 ml)を加えた後、再度 180°Cに加熱して均一溶液とし、このものを蛍 光 X線分析することによりパラジウム含量を決定した (0.44 mmol / g)。原料パラジウム に対する固定されたパラジウムの回収率は 57%であった。
[0041] 実飾 12〜7
表 1に示すように原料パラジウム塩 (II)と酢酸ナトリウム (添加剤)を変えて、実施例 1 と同様に触媒 (PI Pd)を作製し、高分子への固定化を検討した。結果を表 1に示す。
例 8
原料として酢酸パラジウムを用い、添加剤(酢酸ナトリウム等)を加えずに、実施例 1 と同様に触媒 (PI Pd)を作製し、高分子への固定化を検討した。結果を表 1に示す。
列 1
原料として硝酸パラジウムを用い、添加剤(酢酸ナトリウム等)を加えずに、実施例 1 と同様に触媒 (PI Pd)を作製し、高分子への固定化を検討した。結果を表 1に示す。
[表 1] "Pd" Additive Yield Loading (mmol/g) PIPd 比較例 1 Pd(N03)2 ― 112 mg 0 ― 比較例 2 Pd(OAc)2 ― 189 mg 0.19 (28%)a> A 実施例 2 Pd(N03)2 NaOAc (2 eq.) 169 mg 0.44 (57%)a) B 実施例 3 Pd(N。3)2 NaOAc (1 eq.) 166 mg 0.63 (80%)a) C 実施例 4 Pd(OAc)2 NaN03 (2 eq.) 184 mg 0.34 (48%)a) D 実施例 5 Pd(OAc)2 NaCI (2 eq.) 187 mg 0.31 (45%)a) E 実施例 6 Pd(OAc)2 NaOAc (2 eq.) 165 mg 0.50 (63%)a) F 実施例 7 Pd(N。3)2 KOAc (2 eq.) 177 mg 0.71 (96%)a) G 実施例 8 Pd( 03)2 UOAc (2 eq.) 209 mg 0.41 (66%)a) H a)パラジウムの回収率
[0042] 硝酸パラジウムを用いてアルカリ金属の酢酸塩を添加すると、比較的良好な回収率 でパラジウムは高分子に固定された (実施例 1、 2、 6、 7)。この場合、アルカリ金属の 種類及び添加する量によってパラジウムの回収率に差異が認められた。
原料として酢酸パラジウムを単独で用いた場合、高分子固定化パラジウム(実施例 8、 PI Pd H)は得られた力 パラジウムの回収率は低かった。
原料として酢酸パラジウムを用いた場合、アルカリ金属塩の添カ卩により無添加の場 合 (比較例 1)に比べてパラジウムの回収率が向上した(実施例 3、 4、 5)。添加剤を加 えずに原料として硝酸パラジウムを用いた場合、ノ ラジウムは高分子に全く固定され な力つた (比較例 1)。これは、硝酸パラジウム力も 0価のパラジウムが生成しな力つた ためと考えられる。
[0043] 実施例 9
PI Pd A (0.025 mmol)、ョードベンゼン (56 μ 1, 0.50 mmol)、アクリル酸ェチル (81 μ 1, 0.75 mmol)及び炭酸カリウム (196 mg, 1.0 mmol)に N—メチルー 2—ピロリドン(NMP, 3 ml)をカ卩えた。混合物を 120°Cで 1時間攪拌したのち冷却し、続いてへキサンをカロえ た。ガラスフィルターで濾過し、不溶物をテトラヒドロフラン、塩化メチレン、水で順次 洗浄した。有機層をガスクロマトグラフィー(内部標準物質:ナフタレン)により分析した 結果、トランス桂皮酸ェチルが 92%生成していた。また、水層と有機層を合わせて濃 縮し、残渣をァセトニトリルに溶解して蛍光 X線による分析を行った。その結果、パラ ジゥムは検出されな力つた (検出限界 =0. 94%)ことから、反応中及び後処理中に 高分子からパラジウムは漏出して 、な 、と考えられる(表 2)。本反応 (Heck反応)を下 式に示す。
[化 3]
Figure imgf000017_0001
[0044] 実施例 10
反応時間を 1時間から 2時間に延長して、実施例 9と同様の反応を実施した。結果 を表 2に示す。収率が若干向上した(94%、表 2)。
[0045] 実施例 11〜16
PI Pd Aに代えて PI Pd C〜Hを用いて実施例 9と同様の反応を行った。その結果 を表 2に示す。目的物であるアクリル酸ェチルの収率は PI Pdの製造方法によって 31 %〜定量的(quant.)の間でばらつきが認められた力 いずれの場合も触媒からのパ ラジウムの漏出は認められなかった。
[0046] 実施例 17
PI Pd Aに代えて PI Pd Hを用いて実施例 9と同様の反応を行った。結果を表 2に示 す。 PI Pd Hは製造時の回収率は低力つたが(実施例 8)、 PI Pd Hを用いた場合の反 応生成物の収率は 83%と良好であった。
[表 2]
"Pd" Time/h Yield (%) 実施例 9 PIPd A 1 92% (nd)
実施例 10 PIPd A 2 94% (nd)
実施例 11 PIPd B 1 57% (nd)
実施例 12 PIPd C 1 quant (nd)
実施例 13 PIPd D 1 quant (nd)
実施例 14 PIPd E 1 67% (nd)
実施例 15 PIPd F 1 67% (nd)
実施例 16 PIPd G 1 31% (nd)
実施例 17 PIPd H 83% (nd)
1
[0047] 実施例 18
次に、 PI Pd Aを用いて鈴木—宫浦カップリング反応の検討を行った。反応を下式 に示す。
[化 4]
Figure imgf000018_0001
[0048] PI Pd A (0.0025 mmol)、 2—ブロモトルエン (60 // g, 0.50 mmol)、フエニルボロン酸 (9 1.4 mg, 0.75 mmol)、トリ(o—トリル)ホスフィン (8.8 mg, 0.025 mmol)及びリン酸カリウム (106 mg, 0.5 mmol)をアルゴン雰囲気下、トルエン一水 (4 / 1, 5 ml)の混合溶媒中で 4時間還流した。
室温まで放冷し、続いてへキサンをカ卩え、ガラスフィルターで濾過した。不溶物をテ トラヒドロフラン、水、塩化メチレンで順次洗浄した。濾液を合わせて濃縮し、残渣にァ セトニトリルを加えて 5mlとして蛍光 X線による分析を行った。その結果、ノ ラジウムは 検出されなかった (検出限界 =0. 94%)。このァセトニトリル溶液を再度濃縮し、粗生 成物を調整用シリカゲル薄層クロマトグラフィーにより生成したところ 2—メチルビフエ ニルが得られた (90.4 mg,収率 95%)。 H NMR: 2.26 (s, 3H), 7.21-7.42(m, 9H).
13C NMR: 20.4, 125.7, 126.7, 127.2, 128.8, 129.2, 129.8, 130.3, 135.3, 141.9, 141 .9.
溶剤で洗浄後、乾燥した PI Pd Aを用いて同じ反応を更に 2回繰り返したところ、い ずれも高収率で対応するビアリール化合物が得られ、パラジウムの漏出も認められな かった。結果を表 3に示す。
[表 3]
Yield (%)
Time/h し igand 1st 2nd 3rd 実施例 18 4 P(o-MeOC6H4)3 95% (nd) 93% (nd) 93% (nd) 実施例 19〜24
PI Pdを用いた鈴木—宫浦カップリング反応の基質一般性を検討するために、各種 のハロゲンィ匕ァリールとァリールボロン酸を用いて実施例 18と同様の反応を行った。 結果を表 4に示す。いずれの場合も良好な収率でビアリールイヒ合物が得られ、触媒 力ものパラジウムの漏出は認められな力つた。
[表 4]
Ar1- X + Ar2- B(OH)2 Ar1 - Ar2
Arylhalide Boronic acid Yield (%)
Leaching (%)
Ar1- X Ar2- B(OH)2 Ar1 - Ar2 実施例 19 quant nd
実施例 20 96 nd
実施例 21 quant nd
実施例 22 97 nd
実施例 23 quant nd
Figure imgf000020_0001
実施例 95 nd
Figure imgf000020_0002
a) K3PO4 (2 eq.) was used.
b) 2-(Dicyclohexylphosphino)biphenyl was used as a ligand. Reaction time was 6 h.

Claims

請求の範囲
[I] 芳香族側鎖及び架橋基を有する架橋性高分子、 2価のパラジウム塩及びアルカリ金 属塩を、当該架橋性高分子を溶解する溶媒中で溶解または分散させ、これを 60〜2 00°Cに加熱し、冷却後当該架橋性高分子に対する貧溶媒を加えることにより析出物 を生じさせ、当該析出物中の架橋基を架橋反応させることから成る高分子固定化パ ラジウム触媒の製法。
[2] 前記架橋性高分子が更に親水性側鎖を有する請求項 1に記載の製法。
[3] 前記 2価のパラジウム塩力 酢酸パラジウム、プロピオン酸パラジウム、トリフルォロ酢 酸パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、シアン化パラジゥ ム、硝酸パラジウム、硫酸パラジウム、酸化パラジウム、硫化パラジウム、若しくはパラ ジゥムァセチルァセトナート、又はこれらの混合物である請求項 1〜2のいずれか一 項に記載の製法。
[4] 前記 2価のパラジウム塩力 酢酸パラジウムである請求項 3に記載の製法。
[5] 前記アルカリ金属塩が酢酸リチウム、酢酸ナトリウム又は酢酸カリウムである請求項 1
〜4の 、ずれか一項に記載の製法。
[6] 前記アルカリ金属塩力 リチウム、ナトリウム又はカリウムの硝酸塩又はハロゲンィ匕物 である請求項 1〜4のいずれか一項に記載の製法。
[7] 前記架橋性高分子が更に芳香族側鎖以外の疎水性側鎖を有する請求項 1〜6のい ずれか一項に記載の製法。
[8] 前記架橋性高分子が、エポキシ基、カルボキシル基、イソシァネート基又はチォイソ シァネート基を有する側鎖を含む請求項 1〜7のいずれか一項に記載の製法。
[9] 前記架橋性高分子が、更に、水酸基、 1級若しくは 2級のアミノ基又はチオール基を 含む側鎖を少なくとも一種有する請求項 8に記載の製法。
[10] 前記架橋性高分子が、スチレンを含む重合性モノマーの共重合体である請求項 1〜
9の 、ずれか一項に記載の製法。
[II] 請求項 1〜10のいずれか一項に記載の製法により製造された高分子固定化パラジ ゥム触媒。
[12] 請求項 11に記載の触媒の Heck反応又は鈴木一宮浦カップリング反応おける触媒と しての使用。
PCT/JP2006/316688 2005-08-29 2006-08-25 高分子固定化パラジウム触媒及びその製法 WO2007026609A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247062A JP4904556B2 (ja) 2005-08-29 2005-08-29 高分子固定化パラジウム触媒及びその製法
JP2005-247062 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026609A1 true WO2007026609A1 (ja) 2007-03-08

Family

ID=37808703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316688 WO2007026609A1 (ja) 2005-08-29 2006-08-25 高分子固定化パラジウム触媒及びその製法

Country Status (2)

Country Link
JP (1) JP4904556B2 (ja)
WO (1) WO2007026609A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109331870A (zh) * 2018-10-31 2019-02-15 华南理工大学 木质素-壳聚糖复合物负载钯催化剂及其制备方法与应用
CN116535294A (zh) * 2023-03-22 2023-08-04 成都理工大学 一种含钯高分子胶束水相催化合成联苯类化合物的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815604B2 (ja) * 2007-01-30 2011-11-16 国立大学法人 新潟大学 ビアリール系化合物の製造方法
EP1994983A1 (en) * 2007-05-14 2008-11-26 Almquest AB Catalyst containing covalently bonded formate groups and Pd(0) and process for its obtention
JP5152859B2 (ja) * 2008-09-18 2013-02-27 国立大学法人鳥取大学 ゼオライト−パラジウム複合体、その複合体の製造方法、その複合体を含む触媒、およびその触媒を用いるカップリング化合物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024323A1 (ja) * 2002-09-13 2004-03-25 Wako Pure Chemical Industries, Ltd. パラジウム触媒組成物
JP2004330059A (ja) * 2003-05-07 2004-11-25 Ube Nitto Kasei Co Ltd 金属微粒子担持複合材料の製造方法およびその方法で得られた金属微粒子担持複合材料
JP2005060335A (ja) * 2003-08-19 2005-03-10 Wako Pure Chem Ind Ltd パラジウム触媒組成物を用いた炭素−炭素カップリング方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024323A1 (ja) * 2002-09-13 2004-03-25 Wako Pure Chemical Industries, Ltd. パラジウム触媒組成物
JP2004330059A (ja) * 2003-05-07 2004-11-25 Ube Nitto Kasei Co Ltd 金属微粒子担持複合材料の製造方法およびその方法で得られた金属微粒子担持複合材料
JP2005060335A (ja) * 2003-08-19 2005-03-10 Wako Pure Chem Ind Ltd パラジウム触媒組成物を用いた炭素−炭素カップリング方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAGIO H. ET AL.: "Practical Preparation Method of Polymer-Incarcerated(PI)Palladium Catalysts Using Pd(II) Salts", ORG. LETT., vol. 8, no. 3, 2 February 2006 (2006-02-02), pages 375 - 378, XP003003820 *
REETZ M.T. ET AL.: "Ligand-free Heck reactions using low Pd-loading", CHEM. COMM., 21 July 2004 (2004-07-21), pages 1559 - 1563, XP003003819 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109331870A (zh) * 2018-10-31 2019-02-15 华南理工大学 木质素-壳聚糖复合物负载钯催化剂及其制备方法与应用
CN116535294A (zh) * 2023-03-22 2023-08-04 成都理工大学 一种含钯高分子胶束水相催化合成联苯类化合物的方法
CN116535294B (zh) * 2023-03-22 2024-04-19 成都理工大学 一种含钯高分子胶束水相催化合成联苯类化合物的方法

Also Published As

Publication number Publication date
JP4904556B2 (ja) 2012-03-28
JP2007061669A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
Ghorbani-Choghamarani et al. A new palladium complex supported on magnetic nanoparticles and applied as an catalyst in amination of aryl halides, Heck and Suzuki reactions
CN111995761B (zh) 一种三联吡啶基过渡金属有机聚合物及其制备方法和在二氧化碳光催化还原中的应用
CN106607091B (zh) 微孔聚合物-纳米金属粒子催化剂及其制备方法和应用
CN102909070B (zh) 一种负载型手性催化剂及其制备方法
WO2007026609A1 (ja) 高分子固定化パラジウム触媒及びその製法
CN103288712A (zh) 一种降冰片烯类单体及其聚合物以及制备方法
Patterson et al. Catalytic Y-tailed amphiphilic homopolymers–aqueous nanoreactors for high activity, low loading SCS pincer catalysts
Esmaeilpour et al. Fe 3 O 4@ SiO 2-polymer-imid-Pd magnetic porous nanosphere as magnetically separable catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions
US9175004B2 (en) Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same
CN110183675A (zh) 一种超支化聚硫代酰胺类化合物及其制备方法和应用
Peng et al. A highly efficient and recyclable catalyst—dendrimer supported chiral salen Mn (iii) complexes for asymmetric epoxidation
CN110527005A (zh) 一种超高分子量聚(4-烷氧基苯乙烯)及其制备方法
CN117088919B (zh) 一种噻吩类单体聚合用催化剂及聚噻吩
Li et al. Chiral Polymer-Mediated Pd@ MOF-808 for Efficient Sequential Asymmetric Reaction
JP4568803B2 (ja) 高分子固定化遷移金属触媒の製法
CN115353622B (zh) 一种聚1,5-取代三唑及其制备方法与应用
JP4568802B2 (ja) 高分子固定化白金触媒及びその使用
CN106831583B (zh) N,n-二烷基取代吡唑离子液体、制备方法及其催化合成碳酸丙烯酯的方法
CN103242373B (zh) 一种四氧化三铁纳米粒子固载手性配体及其制备方法与应用
EP4115975A1 (en) Catalyst containing activated carbon on which ruthenium complex is adsorbed, and method for producing reduction product using same
CN116462841A (zh) 一种高分子量刷形聚合物及其制备方法和应用
JP6180717B2 (ja) ヨウ化リチウム水溶液の製造方法及びその利用
CN108855221B (zh) 一种[3-2-(n-乙基苯氨基)乙氧基]锌酞菁/凹凸棒石复合光催化剂的制备方法
CN111790441A (zh) 聚苯胺负载铜铁催化剂材料及其制备方法和应用
CN105175297A (zh) 4-甲酰苯甲酸金刚烷酯缩邻氨基苯硫酚席夫碱镍配合物合成及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796767

Country of ref document: EP

Kind code of ref document: A1