WO2007023162A1 - Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid - Google Patents

Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid Download PDF

Info

Publication number
WO2007023162A1
WO2007023162A1 PCT/EP2006/065559 EP2006065559W WO2007023162A1 WO 2007023162 A1 WO2007023162 A1 WO 2007023162A1 EP 2006065559 W EP2006065559 W EP 2006065559W WO 2007023162 A1 WO2007023162 A1 WO 2007023162A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alumina
metals
alpha
carrier
Prior art date
Application number
PCT/EP2006/065559
Other languages
English (en)
French (fr)
Inventor
Olga Schubert
Martin Sesing
Lothar Seidemann
Martin Karches
Thomas Grassler
Martin Sohn
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP06792946A priority Critical patent/EP1919611A1/de
Priority to JP2008527462A priority patent/JP5230422B2/ja
Priority to US12/064,725 priority patent/US7910517B2/en
Priority to BRPI0614960-0A priority patent/BRPI0614960A2/pt
Priority to KR1020087006665A priority patent/KR101296078B1/ko
Publication of WO2007023162A1 publication Critical patent/WO2007023162A1/de
Priority to US12/888,082 priority patent/US8163265B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals

Definitions

  • the invention relates to a mechanically stable catalyst based on alpha-alumina as a carrier.
  • the invention further relates to such a catalyst for the catalytic oxidation of hydrogen chloride with oxygen to chlorine and a method for the catalytic oxidation of hydrogen chloride using the catalyst.
  • EP-A 0 743 277 discloses a process for the preparation of chlorine by catalytic hydrogen chloride oxidation, in which a ruthenium-containing supported catalyst is used. Ruthenium is applied to the support in the form of ruthenium chloride, ruthenium oxychlorides, chloro-ruthenate complexes, ruthenium hydroxide, ruthenium-amine complexes or in the form of further ruthenium complexes.
  • the catalyst may contain as further metals palladium, copper, chromium, vanadium, manganese, alkali, alkaline earth and rare earth metals.
  • ruthenium (III) chloride on alumina is used as catalyst in a process of catalytic hydrogen chloride oxidation.
  • gamma-alumina is used as the alumina carrier.
  • the object of the present invention is to improve the mechanical strength of alumina carriers. It is still the task, catalysts with increased mechanical To provide strength for gas phase reactions, in particular for the catalytic hydrogen chloride oxidation.
  • the object is achieved by a catalyst for gas-phase reactions with high mechanical stability, containing one or more active metals on a support containing alumina as support material, characterized in that the alumina content of the support consists essentially of alpha-alumina.
  • the carrier used according to the invention may contain alpha-alumina in admixture with other carrier materials.
  • Suitable further support materials are, for example, graphite, silicon dioxide, titanium dioxide and zirconium dioxide, preferably titanium dioxide and zirconium oxide, for example in amounts of up to 50% by weight.
  • the carrier consists essentially of alumina, for example at 90 wt .-% and above, more preferably it consists of at least 96 wt .-% of alumina.
  • the alumina content of the carrier consists essentially of alpha-alumina, preferably it consists of at least 90 wt .-%, more preferably at least 98 wt .-% of alpha alumina, based on the total alumina content of the carrier.
  • the phase composition of the carrier can be determined by XRD (X-Ray Diffraction).
  • the catalyst according to the invention is used for carrying out gas-phase reactions at a temperature of above 200.degree. C., preferably above 320.degree. C., more preferably above 350.degree.
  • the reaction temperature is generally not more than 600.degree. C., preferably not more than 500.degree.
  • the catalyst of the invention may contain any active metals and other metals as promoters. These are usually in amounts up to 10 wt .-%, based on the weight of the catalyst, in the catalyst. SoII the catalyst according to the invention in the catalytic hydrogen chloride oxidation (Deacon process) are used, the active metals are selected from the elements of the groups 7 - 1 1 of the Periodic Table of the Elements.
  • Particularly preferred active metals are ruthenium, copper and / or gold.
  • the copper or ruthenium-supported catalysts can be obtained, for example, by impregnating the support material with aqueous solutions of CuCl 2 or RuCl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
  • the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
  • Gold-containing catalysts of the present invention can be obtained by applying gold in the form of the aqueous solution of a soluble gold compound, then drying or drying and calcining.
  • gold is applied to the support as an aqueous solution of AuCl 3 or HAuCl 4 .
  • the ruthenium, copper and / or gold catalysts of the invention for the catalytic hydrogen chloride oxidation may additionally contain compounds of one or more other noble metals selected from palladium, platinum, osmium, iridium, silver or rhenium.
  • the catalysts may also be doped with one or more further metals.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof, furthermore titanium, manganese, molybdenum and tin.
  • alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixture
  • the weights are based on the weight of the metal, even if the metals are usually present in oxidic form on the support.
  • Very particularly preferred active metal is ruthenium, which is generally present in amounts of 0.001 to 10 wt .-%, based on the weight of the catalyst.
  • the catalyst of the invention contains about 1 to 3% by weight, for example about 1, 6 wt .-% ruthenium on alpha-alumina as a carrier and next to no further active metals and promoter metals, wherein ruthenium is present as Ru ⁇ 2 .
  • the catalysts of the invention are obtained by impregnation of the support material with aqueous solutions of salts of the metals.
  • the metals other than gold are usually applied to the support as aqueous solutions of their chlorides, oxychlorides or oxides.
  • the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
  • the catalysts of the invention are also used as fluidized bed catalysts in the form of powder having an average particle size of 10-200 ⁇ m. As fixed bed catalysts, they are generally used in the form of shaped catalyst bodies.
  • the shaped bodies or powders may subsequently at temperatures of 100 to 400 0 C, preferably 100 to 300 ° C, for example under a nitrogen, argon or air atmosphere to be dried and optionally calcined.
  • the shaped bodies or powders are first dried at 100 to 150 ° C and then calcined at 200 to 400 ° C.
  • the oxides are formed from the chlorides, for example RuO 2 or CuO.
  • the invention also provides a process for preparing catalysts by impregnating alpha-alumina as a support with one or more metal salt solutions containing the active metal (s) and optionally one or more promoter metals, drying and calcining the impregnated support.
  • the molding To form shaped catalyst particles can be done before or after impregnation.
  • the catalyst according to the invention can also be used in powder form.
  • Suitable shaped catalyst bodies are any desired forms, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, particular preference being given to rings, cylinders or star strands.
  • the specific surface area of the alpha alumina carrier before the metal salt deposition is generally in the range of 0.1 to 10 m 2 / g.
  • Alpha-alumina can be prepared by heating gamma-alumina to temperatures in excess of 1000 ° C, preferably it is prepared. Generally calcined for 2 to 24 hours.
  • the present invention also provides a process for the catalytic oxidation of hydrogen chloride with oxygen to chlorine on the catalyst according to the invention.
  • a hydrogen chloride stream and an oxygen-containing stream are fed into an oxidation zone and hydrogen chloride is partially oxidized to chlorine in the presence of the catalyst to give a product gas stream containing chlorine, unreacted oxygen, unreacted hydrogen chloride and water vapor.
  • the hydrogen chloride stream which may originate from an isocyanate-producing plant, may contain impurities such as phosgene and carbon monoxide.
  • Typical reaction temperatures are between 150 and 500 ° C, usual reaction pressures are between 1 and 25 bar, for example 4 bar.
  • the reaction temperature is preferably> 300 ° C., more preferably between 350 ° C. and 400 ° C.
  • oxygen in superstoichiometric amounts. For example, a 1.5 to 4-fold excess of oxygen is customary. Since no selectivity losses are to be feared, it may be economically advantageous to work at relatively high pressures and, accordingly, at longer residence times than normal pressure.
  • reactors in which the catalytic hydrogen chloride oxidation according to the invention is carried out are fixed bed or fluidized bed reactors.
  • the hydrogen chloride oxidation can be carried out in one or more stages.
  • the catalyst bed or the catalyst fluidized bed may contain, in addition to the catalyst according to the invention, further suitable catalysts or additional inert material.
  • the catalytic hydrogen chloride oxidation may be adiabatic or preferably isothermal or approximately isothermal, batchwise, preferably continuously or as a fixed or fixed bed process, preferably as a fixed bed process, more preferably in tube bundle reactors at reactor temperatures of 200 to 500 C, preferably 300 to 400 ° C, and a pressure from 1 to 25 bar, preferably 1 to 5 bar, are performed.
  • An embodiment of the fixed-bed method consists in using a structured catalyst bed in which the catalyst activity increases in the direction of flow.
  • Such structuring of the catalyst bed can be carried out by different impregnation of the catalyst support with active material or by different dilution of the catalyst bed with an inert material.
  • rings, cylinders or spheres of titanium dioxide, zirconium dioxide or mixtures thereof, aluminum oxide, steatite, ceramic, glass, graphite or stainless steel can be used as the inert material.
  • the inert material preferably has similar external dimensions as the shaped catalyst bodies.
  • the conversion of hydrogen chloride in a single pass can be limited to 15 to 90%, preferably 40 to 85%. Unreacted hydrogen chloride can be partially or completely recycled to the catalytic hydrogen chloride oxidation after separation.
  • the volume ratio of hydrogen chloride to oxygen at the reactor inlet is generally between 1: 1 and 20: 1, preferably between 1, 5: 1 and 8: 1, more preferably between 1, 5: 1 and 5: 1.
  • the chlorine formed can subsequently be separated off in a customary manner.
  • the separation usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, drying of the resulting, essentially consisting of chlorine and oxygen residual gas stream and the separation of chlorine from the dried Electricity.
  • the invention is further illustrated by the following examples.
  • the attrition test simulates the mechanical stresses to which a fluidized material (e.g., a catalyst) is subjected in a gas / solid fluidized bed and, as a result, provides a rate of attrition (AB) and fines (FA) describing strength behavior.
  • a fluidized material e.g., a catalyst
  • the system is connected to the 4 bar compressed air network. A reducing valve lowers the pressure to 2 bar absolute before the system is started.
  • the deposited solid is weighed after one hour (defined as fines FA) and after 5 hours (defined as attrition AB).
  • a powdery gamma-alumina support of the Fa. Sasol (Puralox ® SCCa 30/170) was first converted into alpha-Al 2 O 3.
  • the carrier consists of particles having a mean particle diameter of about 50 microns.
  • 2000 g of the Puralox ® SCCa 30/170 at 1200-1300 ° C for 5 h were annealed.
  • 1500 g of the resulting support were impregnated with an aqueous RuCl 3 hydrate solution (55.56 g RuCl 3 hydrate corresponding to 41, 8 wt .-% Ru in 480 g of water).
  • the water absorption of the carrier was about 0.38 ml / g.
  • the impregnated support was dried for 6 hours at 120 ° C and then calcined for 2 hours at 350 ° C.
  • the cata- lysator contains about 2% R11O 2 on alpha Al 2 O 3. The most important properties of the catalyst are summarized in Table 1.
  • the gamma-alumina carrier Puralox ® SCCa 30/170 was used directly for catalyst preparation without prior annealing. Approximately 1434 g of the carrier were impregnated with an aqueous RuCl 3 -hydroxide solution (54.1 g of RuCl 3 -hydrate corresponding to 36.5% Ru in 1045 g of water). The water absorption of the carrier was about 0.81 ml / g. The 90% water-impregnated support was dried at 120 ° C for 6 hours and calcined at 350 ° C for 2 hours. The catalyst thus prepared contains about 2% RuO 2 on a gamma Al 2 O 3 . The most important catalyst properties are summarized in Table 1.
  • a Deacon reactor was operated in fluidized bed mode.
  • the Deacon reactor consisted of a tube 4 cm in diameter and 1 m in length, containing 600 g of the catalyst.
  • At 380-400 ° C and 4 bar reactor pressure 200 Nl / h HCl and 100 Nl / h O 2 were fed into the reactor, the HCI conversion was 60-80%.
  • the catalyst properties of the used catalyst are summarized in Table 2.
  • the catalyst according to the invention has a significantly higher mechanical stability compared with a corresponding catalyst on gamma-alumina as support. This is true even for the newly prepared catalyst, but especially for the used catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Katalysator für Gasphasen-Reaktionen mit hoher mechanischer Stabilität, enthaltend ein oder mehrere Aktivmetalle auf einem Träger enthaltend Aluminiumoxid als Trägermaterial, dadurch gekennzeichnet, dass der Aluminiumoxidanteil des Trägers im Wesentlichen aus alpha-Aluminiumoxid besteht. Bevorzugtes Aktivmetall ist Ruthenium, Kupfer und/oder Gold. Besonders bevorzugte erfindungsgemäße Katalysatoren enthalten a) 0,001 bis 10 Gew.-% Ruthenium, Kupfer und/oder Gold, b) 0 bis 5 Gew.-% eines oder mehrerer Erdalkalimetalle, c) 0 bis 5 Gew.-% eines oder mehrerer Alkalimetalle, d) 0 bis 10 Gew.-% eines oder mehrerer Seltenerdmetalle, e) 0 bis 10 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Osmium, Iridium, Silber und Rhenium, jeweils bezogen auf das Gesamtgewicht des Katalysators, auf dem Träger aus alpha- Al2O3. Die Katalysatoren werden bevorzugt in der Chlorwasserstoff-Oxidation (Deacon-Reaktion) eingesetzt.

Description

Mechanisch stabiler Katalysator auf Basis von alpha-Aluminiumoxid
Die Erfindung betrifft einen mechanisch stabilen Katalysator auf Basis von alpha- Aluminiumoxid als Träger. Die Erfindung betrifft weiterhin einen derartigen Katalysator für die katalytische Oxidation von Chlorwasserstoff mit Sauerstoff zu Chlor sowie ein Verfahren zur katalytischen Oxidation von Chlorwasserstoff unter Verwendung des Katalysators.
In dem von Deacon 1868 entwickelten Verfahren der katalytischen Chlorwasserstoff- Oxidation wird Chlorwasserstoff mit Sauerstoff in einer exothermen Gleichgewichtsreaktion zu Chlor oxidiert. Durch Überführung von Chlorwasserstoff in Chlor kann die Chlorherstellung von der Natronlaugeherstellung durch Chloralkalielektrolyse entkoppelt werden. Eine solche Entkoppelung ist attraktiv, da weltweit der Chlorbedarf stärker als die Nachfrage nach Natronlauge wächst. Zudem fällt Chlorwasserstoff in großen Mengen beispielsweise bei Phosgenierungsreaktionen, etwa bei der Isocyanatherstellung, als Koppelprodukt an.
In EP-A 0 743 277 ist ein Verfahren zur Herstellung von Chlor durch katalytische Chlor- wasserstoff-Oxidation offenbart, bei dem ein Ruthenium enthaltender Trägerkatalysator eingesetzt wird. Ruthenium wird dabei in Form von Rutheniumchlorid, Rutheniumoxichlori- den, Chlorruthenat-Komplexen, Rutheniumhydroxid, Ruthenium-Amin-Komplexen oder in Form weiterer Ruthenium-Komplexe auf den Träger aufgebracht. Der Katalysator kann als weitere Metalle Palladium, Kupfer, Chrom, Vanadium, Mangan, Alkali-, Erdalkali- und Seltenerdmetalle enthalten.
Gemäß GB 1 ,046,313 wird in einem Verfahren der katalytischen Chlorwasserstoff- Oxidation als Katalysator Ruthenium(lll)chlorid auf Aluminiumoxid eingesetzt.
Üblicherweise wird als Aluminiumoxidträger gamma-Aluminiumoxid eingesetzt.
Nachteilig an den bekannten Verfahren, die mit Katalysatoren auf Basis von gamma- Aluminiumoxid arbeiten, ist die geringe mechanische Festigkeit der Katalysatoren. Diese nimmt während des Einsatzes des Katalysators im Reaktor weiter ab. Die geringe mechanische Festigkeit der Katalysatoren hat einen hohen Abrieb zur Folge. Abrieb und Feinstaubbildung können zur Überlastung von Zyklonen und Filtern bzw. Filterkammern in einem Wirbelbettverfahren führen.
Aufgabe der vorliegenden Erfindung ist es, die mechanische Festigkeit von Aluminiumoxid- Trägern zu verbessern. Aufgabe ist es weiterhin, Katalysatoren mit erhöhter mechanischer Festigkeit für Gasphasenreaktionen, insbesondere für die katalytische Chlorwasserstoff- Oxidation bereitzustellen.
Gelöst wird die Aufgabe durch einen Katalysator für Gasphasen-Reaktionen mit hoher me- chanischer Stabilität, enthaltend ein oder mehrere Aktivmetalle auf einem Träger enthaltend Aluminiumoxid als Trägermaterial, dadurch gekennzeichnet, dass der Aluminiumoxidanteil des Trägers im Wesentlichen aus alpha-Aluminiumoxid besteht.
Es wurde überraschender Weise gefunden, dass es in einem Träger aus gamma- Aluminiumoxid schon bei vergleichsweise niedrigen Temperaturen, wie sie beispielsweise bei der Gasphasen-Oxidation von Chlorwasserstoff zu Chlor herrschen (380 - 400°C), stellenweise zu einer Phasenumwandlung von gamma-Aluminiumoxid in alpha-Aluminiumoxid kommt. Die dabei gebildeten Domänen aus kristallinem alpha-Aluminiumoxid setzen die Festigkeit des Katalysatorformkörpers deutlich herab, was sich auch in deutlich erhöhten Abriebswerten des gebrauchten Katalysators zeigt.
Der erfindungsgemäß eingesetzte Träger kann alpha-Aluminiumoxid im Gemisch mit weiteren Trägermaterialien enthalten. Geeignete weitere Trägermaterialien sind beispielsweise Graphit, Siliziumdioxid, Titandioxid und Zirkondioxid, bevorzugt Titandioxid und Zirkondi- oxid, beispielsweise in Mengen bis zu 50 Gew.-%. Vorzugsweise besteht der Träger im Wesentlichen aus Aluminiumoxid, beispielsweise zu 90 Gew.-% und darüber, besonders bevorzugt besteht er zu mindestens 96 Gew.-% aus Aluminiumoxid. Der Aluminiumoxidanteil des Trägers besteht im Wesentlichen aus alpha-Aluminiumoxid, bevorzugt besteht er zu mindestens 90 Gew.-%, besonders bevorzugt zu mindestens 98 Gew.-% aus alpha- Aluminiumoxid, bezogen auf den gesamten Aluminiumoxidanteil des Trägers. Die Phasenzusammensetzung des Trägers kann mit XRD (X-Ray Diffraction) bestimmt werden.
Im Allgemeinen wird der erfindungsgemäße Katalysator zur Durchführung von Gasphasen- Reaktionen bei einer Temperatur von oberhalb 200°C, bevorzugt oberhalb 320°C, beson- ders bevorzugt oberhalb 350°C eingesetzt. Die Reaktionstemperatur beträgt dabei aber im Allgemeinen nicht mehr als 600°C, vorzugsweise nicht mehr als 500°C.
Als Aktivmetalle kann der erfindungsgemäße Katalysator beliebige Aktivmetalle sowie weitere Metalle als Promotoren enthalten. Diese sind üblicher weise in Mengen bis zu 10 Gew.-%, bezogen auf das Katalysatorgewicht, in dem Katalysator enthalten. SoII der erfindungsgemäße Katalysator in der katalytischen Chlorwasserstoffoxidation (Deacon-Verfahren) eingesetzt werden, so sind die Aktivmetalle ausgewählt sind aus den Elementen der Gruppen 7 - 1 1 des Periodensystems der Elemente.
Besonders bevorzugte Aktivmetalle sind Ruthenium, Kupfer und/oder Gold.
Die Kupfer- bzw. Rutheniumträgerkatalysatoren können beispielsweise durch Tränkung des Trägermaterials mit wässrigen Lösungen von CuCI2 bzw. RuCI3 und gegebenenfalls eines Promotors zur Dotierung, bevorzugt in Form ihrer Chloride, erhalten werden. Die Formgebung des Katalysators kann nach oder bevorzugt vor der Tränkung des Trägermaterials erfolgen.
Gold enthaltende erfindungsgemäße Katalysatoren können durch Aufbringen von Gold in Form der wässrigen Lösung einer löslichen Goldverbindung, anschließendem Trocknen oder Trocknen und Calcinieren erhalten werden. Bevorzugt wird Gold als wässrige Lösung von AuCI3 oder HAuCI4 auf den Träger aufgebracht.
Die Ruthenium, Kupfer und/oder Gold enthaltenden erfindungsgemäßen Katalysatoren für die katalytische Chlorwasserstoff-Oxidation können zusätzlich Verbindungen eines oder mehrerer anderer Edelmetalle, ausgewählt aus Palladium, Platin, Osmium, Iridium, Silber oder Rhenium enthalten. Die Katalysatoren können ferner mit einem oder mehreren weiteren Metallen dotiert sein. Zur Dotierung eignen sich als Promotoren Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium und Calcium, besonders bevorzugt Magnesium, Seltenerdmetalle wie Scandium, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandi- um, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische, ferner Titan, Mangan, Molybdän und Zinn.
Für die Chlorwasserstoff-Oxidation bevorzugte erfindungsgemäße Katalysatoren enthalten
a) 0,001 bis 10 Gew.-%, bevorzugt 1 bis 3 Gew.-% Ruthenium, Kupfer und/oder Gold,
b) 0 bis 5 Gew.-%, bevorzugt 0 bis 3 Gew.-% eines oder mehrerer Erdalkalimetalle,
c) 0 bis 5 Gew.-%, bevorzugt 0 bis 3 Gew.-% eines oder mehrerer Alkalimetalle, - A -
d) 0 bis 10 Gew.-%, bevorzugt 0 bis 3 Gew.-% eines oder mehrerer Seltenerdmetalle,
e) 0 bis 10 Gew.-%, bevorzugt 0 bis 1 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Osmium, Iridium, Silber und Rhenium,
jeweils bezogen auf das Gesamtgewicht des Katalysators. Die Gewichtsangaben beziehen sich auf das Gewicht des Metalls, auch wenn die Metalle in der Regel in oxidischer Form auf dem Träger vorliegen.
Ganz besonders bevorzugtes Aktivmetall ist Ruthenium, das im Allgemeinen in Mengen von 0,001 bis 10 Gew.-%, bezogen auf das Gewicht des Katalysators, enthalten ist. In einer speziellen Ausführungsform enthält der erfindungsgemäße Katalysator ca. 1 - 3 Gew.- %, beispielsweise ca. 1 ,6 Gew.-% Ruthenium auf alpha-Aluminiumoxid als Träger und daneben keine weiteren Aktivmetalle und Promotormetalle, wobei Ruthenium als Ruθ2 vorliegt.
Die erfindungsgemäßen Katalysatoren werden durch Tränkung des Trägermaterials mit wässrigen Lösungen von Salzen der Metalle erhalten. Die von Gold verschiedenen Metalle werden üblicher Weise als wässrige Lösungen ihrer Chloride, Oxichloride oder Oxide auf den Träger aufgebracht. Die Formgebung des Katalysators kann nach oder bevorzugt vor der Tränkung des Trägermaterials erfolgen. Die erfindungsgemäßen Katalysatoren werden auch als Wirbelschichtkatalysatoren in Form von Pulver mit einer mittleren Teilchengröße von 10 - 200 μm eingesetzt. Als Festbettkatalysatoren werden sie im Allgemeinen in Form von Katalysatorformkörpern eingesetzt.
Die Formkörper oder Pulver können anschließend bei Temperaturen von 100 bis 4000C, bevorzugt 100 bis 300°C beispielsweise unter einer Stickstoff-, Argon- oder Luftatmosphäre getrocknet und gegebenenfalls calciniert werden. Bevorzugt werden die Formkörper oder Pulver zunächst bei 100 bis 150°C getrocknet und anschließend bei 200 bis 400°C calciniert. Beim Calcinieren bilden sich aus den Chloriden die Oxide, so beispielsweise RuO2 oder CuO.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von Katalysatoren durch Imprägnieren von alpha-Aluminiumoxid als Träger mit einer oder mehreren Metallsalzlösungen, welche das oder die Aktivmetalle und gegebenenfalls ein- oder mehrere Promotormetalle enthalten, Trocknen und Calcinieren des imprägnierten Trägers. Die Formge- bung zu geformten Katalysatorpartikeln kann vor oder nach dem Imprägnieren erfolgen. Der erfindungsgemäße Katalysator kann auch in Pulverform eingesetzt werden.
Als Katalysatorformkörper eignen sich beliebige Formen, bevorzugt sind Tabletten, Ringe, Zylinder, Sterne, Wagenräder oder Kugeln, besonders bevorzugt sind Ringe, Zylinder oder Sternstränge. Die spezifische Oberfläche des alpha-Aluminiumoxidträgers vor der Metallsalz-Ablagerung liegt im Allgemeinen im Bereich von 0,1 bis 10 m2/g.
Alpha-Aluminiumoxid kann durch Erhitzen von gamma-Aluminiumoxid auf Temperaturen oberhalb von 1000°C hergestellt werden, vorzugsweise wird es so hergestellt. Im Allgemeinen wird 2 - 24 h lang calciniert.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur katalytischen Oxidation von Chlorwasserstoff mit Sauerstoff zu Chlor an dem erfindungsgemäßen Katalysator.
Dazu werden ein Chlorwasserstoffstrom und ein Sauerstoff enthaltender Strom in eine O- xidationszone eingespeist und wird Chlorwasserstoff in Gegenwart des Katalysators teilweise zu Chlor oxidiert, wobei ein Produktgasstrom erhalten wird, der Chlor, nicht umgesetzten Sauerstoff, nicht umgesetzten Chlorwasserstoff und Wasserdampf enthält. Der Chlorwasserstoffstrom, der aus einer Anlage zur Herstellung von Isocyanaten stammen kann, kann Verunreinigungen wie Phosgen und Kohlenmonoxid enthalten.
Übliche Reaktionstemperaturen liegen zwischen 150 und 500°C, übliche Reaktionsdrücke liegen zwischen 1 und 25 bar, beispielsweise 4 bar. Bevorzugt beträgt die Reaktionstempe- ratur > 300°C, besonders bevorzugt liegt sie zwischen 350°C und 400°C. Ferner ist es zweckmäßig, Sauerstoff in überstöchiometrischen Mengen einzusetzen. Üblich ist beispielsweise ein 1 ,5- bis vierfacher Sauerstoff-Überschuss. Da keine Selektivitätsverluste zu befürchten sind, kann es wirtschaftlich vorteilhaft sein, bei relativ hohen Drücken und dementsprechend bei gegenüber Normaldruck längeren Verweilzeiten zu arbeiten.
Übliche Reaktionsapparate, in denen die erfindungsgemäße katalytische Chlorwasserstoff- Oxidation durchgeführt wird, sind Festbett- oder Wirbelbettreaktoren. Die Chlorwasserstoff- Oxidation kann ein- oder mehrstufig durchgeführt werden.
Die Katalysatorschüttung bzw. das Katalysator-Wirbelbett kann neben dem erfindungsgemäßen Katalysator weitere geeignete Katalysatoren oder zusätzliches Inertmaterial enthalten. Die katalytische Chlorwasserstoff-Oxidation kann adiabat oder bevorzugt isotherm oder annähernd isotherm, diskontinuierlich, bevorzugt kontinuierlich als Fließ- oder Festbettverfahren, bevorzugt als Festbettverfahren, besonders bevorzugt in Rohrbündelreaktoren bei Reaktortemperaturen von 200 bis 500 C, vorzugsweise 300 bis 400°C, und einem Druck von 1 bis 25 bar, vorzugsweise 1 bis 5 bar, durchgeführt werden.
Bei der isothermen oder annähernd isothermen Fahrweise können auch mehrere, beispielsweise 2 bis 10, bevorzugt 2 bis 6, besonders bevorzugt 2 bis 5, insbesondere 2 bis 3 in Reihe geschaltete Reaktoren mit zusätzlicher Zwischenkühlung eingesetzt werden. Der Sauerstoff kann entweder vollständig zusammen mit dem Chlorwasserstoff vor dem ersten Reaktor oder über die verschiedenen Reaktoren verteilt zugegeben werden. Diese Reihenschaltung einzelner Reaktoren kann auch in einem Apparat zusammengeführt werden.
Eine Ausführungsform des Festbettverfahrens besteht darin, dass man eine strukturierte Katalysatorschüttung einsetzt, bei der die Katalysatoraktivität in Strömungsrichtung ansteigt. Eine solche Strukturierung der Katalysatorschüttung kann durch unterschiedliche Tränkung des Katalysatorträgers mit Aktivmasse oder durch unterschiedliche Verdünnung der Katalysatorschüttung mit einem Inertmaterial erfolgen. Als Inertmaterial können beispielsweise Ringe, Zylinder oder Kugeln aus Titandioxid, Zirkondioxid oder deren Gemi- sehen, Aluminiumoxid, Steatit, Keramik, Glas, Graphit oder Edelstahl eingesetzt werden. Das Inertmaterial hat bevorzugt ähnliche äußeren Abmessungen wie die Katalysatorformkörper.
Der Umsatz an Chlorwasserstoff im einfachen Durchgang kann auf 15 bis 90 %, bevorzugt 40 bis 85 % begrenzt werden. Nicht umgesetzter Chlorwasserstoff kann nach der Abtrennung teilweise oder vollständig in die katalytische Chlorwasserstoff-Oxidation zurückgeführt werden. Das Volumenverhältnis von Chlorwasserstoff zu Sauerstoff am Reaktoreintritt liegt in der Regel zwischen 1 :1 und 20:1 , bevorzugt zwischen 1 ,5:1 und 8:1 , besonders bevorzugt zwischen 1 ,5:1 und 5:1.
Aus dem bei der katalytischen Chlorwasserstoff-Oxidation erhaltenen Produktgasstrom kann nachfolgend in üblicher Weise das gebildete Chlor abgetrennt werden. Die Abtrennung umfasst üblicher weise mehrere Stufen, nämlich die Abtrennung und gegebenenfalls Rückführung von nicht umgesetztem Chlorwasserstoff aus dem Produktgasstrom der kata- lytischen Chlorwasserstoff-Oxidation, die Trocknung des erhaltenen, im Wesentlichen aus Chlor und Sauerstoff bestehenden Restgasstroms sowie die Abtrennung von Chlor aus dem getrockneten Strom. Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele
Bestimmung von Abrieb und Feinanteil nach Montecatini:
Der Abriebstest simuliert die mechanischen Belastungen, denen ein Wirbelgut (z.B. ein Katalysator) in einer Gas/Feststoff-Wirbelschicht ausgesetzt ist, und liefert als Ergebnis eine Abriebsrate (AB) und einen Feinanteil (FA), die das Festigkeitsverhalten beschreibt.
Die Abriebsapparatur besteht aus einem Düsenboden (Düsen-0 = 0,5 mm), welcher mit einem Glasrohr gas- und feststoffdicht verbunden ist. Oberhalb des Glasrohrs ist ein Stahlrohr mit einer konischen Erweiterung ebenfalls gas- und feststoffdicht fixiert. Die Anlage ist an das 4-bar-Pressluftnetz angeschlossen. Ein Reduzierventil senkt den Druck vor der An- läge auf 2 bar absolut.
In die Anlage werden 60,0 g Katalysator eingefüllt. Die Pressluftmenge beträgt für die Versuchsdurchführung 350 l/h. Die Anlage selbst wird unter atmosphärischen Bedingungen (1 bar, 20°C) betrieben. Durch Partikel/Partikel- und Partikel/Wand-Stöße werden die Parti- kein aufgrund der hohen Gasgeschwindigkeit an der Düse abgerieben bzw. zerkleinert. Der ausgetragene Feststoff gelangt über einen Rohrbogen in eine Hülse aus Filterpapier (Porenweite 10-15 μm) und das gereinigte Gas strömt in das Abluftsystem des Labors.
Der abgeschiedene Feststoff wird nach einer Stunde (definiert als Feinanteil FA) und nach 5 Stunden (definiert als Abrieb AB) gewogen.
Beispiel 1 :
Ein pulverförmiger gamma-Aluminiumoxid-Träger der Fa. Sasol (Puralox® SCCa 30/170) wurde zunächst in alpha-AI2O3 umgewandelt. Der Träger besteht aus Partikeln mit einem mittleren Teilchendurchmesser von ca. 50 μm. Dazu wurden 2000 g des Puralox® SCCa 30/170 bei 1200-1300°C 5 h lang getempert. 1500 g des erhaltenen Trägers wurden mit einer wässrigen RuCl3-Hydrat-Lösung (55,56 g RuCl3-Hydrat entsprechend 41 ,8 Gew.-% Ru in 480 g Wasser) getränkt. Die Wasseraufnahme des Trägers betrug ca. 0,38 ml/g. Nach der Tränkung auf 90% Wasseraufnahme wurde der imprägnierte Träger 6 h lang bei 120°C getrocknet und anschließend 2 h lang bei 350°C kalziniert. Der so hergestellte Kata- lysator enthält ca. 2% R11O2 auf alpha-AI2θ3. Die wichtigsten Eigenschaften des Katalysators sind in Tabelle 1 zusammengefasst.
Vergleichsbeispiel V1 :
Der gamma-Aluminiumoxid-Träger Puralox® SCCa 30/170 wurde ohne vorheriges Tempern direkt zur Katalysatorherstellung eingesetzt. Es wurden ca. 1434 g des Trägers mit einer wässrigen RuCI3-Hydrat-Lösung (54,1 g RuCI3-Hydrat entsprechend 36,5% Ru in 1045 g Wasser) getränkt. Die Wasseraufnahme des Trägers betrug ca. 0,81 ml/g. Der auf 90% Wasseraufnahme imprägnierte Träger wurde 6 h lang bei 120°C getrocknet und 2 h lang bei 350°C kalziniert. Der so hergestellte Katalysator enthält ca. 2% RuO2 auf einem gamma-AI2O3. Die wichtigsten Katalysatoreigenschaften sind in Tabelle 1 zusammengefasst.
Tabelle 1 :
Figure imgf000009_0001
Beispiel 2 und Vergleichsbeispiel 2
Mit den Katalysatoren gemäß Beispielen 1 und Vergleichsbeispiel V1 wurde ein Deacon- Reaktor in Wirbelbettfahrweise betrieben. Der Deacon-Reaktor bestand aus einem Rohr mit einem Durchmesser von 4 cm und einer Länge von 1 m Länge und enthielt 600 g des Katalysators. Bei 380 - 400°C und 4 bar Reaktordruck wurden 200 Nl/h HCl und 100 Nl/h O2 in den Reaktor eingespeist, der HCI-Umsatz lag zwischen 60-80%. Nach einer Be- triebsdauer des Reaktors von 1000 h wurde der Katalysator ausgebaut. Die Katalysatoreigenschaften des gebrauchten Katalysators sind in Tabelle 2 zusammengefasst.
Tabelle 2:
Figure imgf000009_0002
Figure imgf000010_0001
Wie an den Werten für Feinanteil und Abrieb deutlich zu erkennen ist, weist der erfindungsgemäße Katalysator im Vergleich zu einem entsprechenden Katalysator auf gamma- Aluminiumoxid als Träger eine deutlich höhere mechanische Stabilität auf. Dies gilt schon für den neu hergestellten Katalysator, insbesondere aber für den gebrauchten Katalysator.

Claims

Patentansprüche
1. Katalysator für Gasphasen-Reaktionen mit hoher mechanischer Stabilität, enthaltend ein oder mehrere Aktivmetalle auf einem Träger enthaltend Aluminiumoxid als Trä- germaterial, dadurch gekennzeichnet, dass der Aluminiumoxidanteil des Trägers im
Wesentlichen aus alpha-Aluminiumoxid besteht.
2. Katalysator nach Anspruch 1 , dadurch gekennzeichnet, dass das oder die Aktivmetalle ausgewählt sind aus den Elementen der Gruppen 7 - 1 1 des Periodensystems der Elemente.
3. Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Aktivmetall Ruthenium, Kupfer und/oder Gold ist.
4. Katalysator nach einem der Ansprüche 1 bis 3, enthaltend
a) 0,001 bis 10 Gew.-% Ruthenium, Kupfer und/oder Gold, b) 0 bis 5 Gew.-% eines oder mehrerer Erdalkalimetalle, c) 0 bis 5 Gew.-% eines oder mehrerer Alkalimetalle, d) 0 bis 10 Gew.-% eines oder mehrerer Seltenerdmetalle, e) 0 bis 10 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Osmium, Iridium, Silber und Rhenium,
jeweils bezogen auf das Gesamtgewicht des Katalysators.
5. Katalysator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Aktivmetall Ruthenium ist.
6. Verfahren zur Herstellung von Katalysatoren gemäß einem der Ansprüche 1 bis 5 durch Imprägnieren von alpha-Aluminiumoxid als Träger mit einer oder mehreren Metallsalzlösungen, welche das oder die Aktivmetalle und gegebenenfalls ein- oder mehrere Promotormetalle enthalten, Trocknen und Calcinieren des imprägnierten Trägers, wobei gegebenenfalls eine Formgebung zu geformten Katalysatorpartikeln vor oder nach dem Imprägnieren erfolgen kann .
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass alpha-Aluminiumoxid durch Erhitzen von gamma-Aluminiumoxid auf Temperaturen oberhalb von 1000°C hergestellt wird.
8. Verfahren zur katalytischen Oxidation von Chlorwasserstoff mit Sauerstoff zu Chlor an einem Katalysatorbett enthaltend Katalysatorpartikel aus dem Katalysator gemäß einem der Ansprüche 1 bis 5.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Katalysatorbett ein Festbett oder ein Wirbelbett ist.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die katalytische Oxidation bei einer Reaktionstemperatur > 350°C durchgeführt wird.
1 1. Verwendung des Katalysators gemäß einem der Ansprüche 1 bis 5 zur Katalyse von Gasphasen-Reaktionen bei einer Reaktionstemperatur von > 300°C.
PCT/EP2006/065559 2005-08-25 2006-08-22 Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid WO2007023162A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06792946A EP1919611A1 (de) 2005-08-25 2006-08-22 Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid
JP2008527462A JP5230422B2 (ja) 2005-08-25 2006-08-22 機械的に安定なα−酸化アルミニウムに基く触媒
US12/064,725 US7910517B2 (en) 2005-08-25 2006-08-22 Mechanically stable catalyst based on alpha-alumina
BRPI0614960-0A BRPI0614960A2 (pt) 2005-08-25 2006-08-22 catalisador de leito fluidizado para reações em fase gasosa, processos para a produção do mesmo, e para a oxidação catalìtica de cloreto de hidrogênio, e, uso de catalisador
KR1020087006665A KR101296078B1 (ko) 2005-08-25 2006-08-22 알파 알루미나를 주성분으로 하는 기계적으로 안정한 촉매
US12/888,082 US8163265B2 (en) 2005-08-25 2010-09-22 Mechanically stable catalyst based on alpha-alumina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005040286.0 2005-08-25
DE102005040286A DE102005040286A1 (de) 2005-08-25 2005-08-25 Mechanisch stabiler Katalysator auf Basis von alpha-Aluminiumoxid

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/064,725 A-371-Of-International US7910517B2 (en) 2005-08-25 2006-08-22 Mechanically stable catalyst based on alpha-alumina
US12/888,082 Division US8163265B2 (en) 2005-08-25 2010-09-22 Mechanically stable catalyst based on alpha-alumina

Publications (1)

Publication Number Publication Date
WO2007023162A1 true WO2007023162A1 (de) 2007-03-01

Family

ID=37084704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065559 WO2007023162A1 (de) 2005-08-25 2006-08-22 Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid

Country Status (8)

Country Link
US (2) US7910517B2 (de)
EP (1) EP1919611A1 (de)
JP (1) JP5230422B2 (de)
KR (1) KR101296078B1 (de)
CN (1) CN101272852A (de)
BR (1) BRPI0614960A2 (de)
DE (1) DE102005040286A1 (de)
WO (1) WO2007023162A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142604A1 (de) * 2009-06-10 2010-12-16 Basf Se Verfahren zur chlorwasserstoffoxidation an einem katalysator mit geringer oberflächenrauhigkeit
EP2586775A1 (de) 2011-10-28 2013-05-01 Basf Se Verfahren zur Herstellung von cis-Rosenoxid

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659650A4 (de) * 2004-03-30 2008-12-24 Panasonic Corp Sekundärbatterie mit wasserfreiem elektrolyt
DE102008052012A1 (de) * 2008-10-17 2010-04-22 Bayer Materialscience Ag Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
US20100121100A1 (en) * 2008-11-12 2010-05-13 Daniel Travis Shay Supported palladium-gold catalysts and preparation of vinyl acetate therewith
JP5642706B2 (ja) * 2008-12-30 2014-12-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 塩化水素の酸化用のルテニウム及びニッケル含有触媒
EP2384239B1 (de) * 2008-12-30 2012-11-14 Basf Se Verfahren zur regenerierung eines rutheniumoxid enthaltenden katalysators für die chlorwasserstoff-oxidation
KR20110119736A (ko) 2009-02-26 2011-11-02 바스프 에스이 염화수소의 산화를 위한, 루테늄 및 은 및/또는 칼슘을 포함하는 촉매
US8273682B2 (en) * 2009-12-16 2012-09-25 Lyondell Chemical Technology, L.P. Preparation of palladium-gold catalyst
US8329611B2 (en) * 2009-12-16 2012-12-11 Lyondell Chemical Technology, L,P. Titania-containing extrudate
US8507720B2 (en) * 2010-01-29 2013-08-13 Lyondell Chemical Technology, L.P. Titania-alumina supported palladium catalyst
EP2361682A1 (de) 2010-02-23 2011-08-31 Bayer MaterialScience AG Katalysator für die Chlorherstellung
RU2012147249A (ru) 2010-04-07 2014-05-20 Эббви Инк. TNF-α- СВЯЗЫВАЮЩИЕ БЕЛКИ
CN101985103B (zh) * 2010-07-26 2013-03-27 北京大学 一种选择氧化甲醇合成甲酸甲酯的催化剂及其制备方法
DE102011101291B4 (de) 2011-05-10 2014-01-23 Fette Compacting Gmbh Druckeinrichtung für eine Presse und Rundläuferpresse
US20130004395A1 (en) * 2011-06-30 2013-01-03 Uop Llc Processes and apparatuses for oxidizing elemental mercury in flue gas using oxychlorination catalysts
US10159962B2 (en) 2012-01-18 2018-12-25 Intramicron, Inc. Catalysts for oxidative sulfur removal and methods of making and using thereof
WO2013116484A1 (en) 2012-02-01 2013-08-08 Intramicron, Inc. Direct in situ monitoring of adsorbent and catalyst beds
CN104549360B (zh) * 2014-04-01 2017-05-24 上海方纶新材料科技有限公司 一种用于催化氧化氯化氢生产氯气的催化剂
CN106890666B (zh) * 2017-02-09 2019-06-28 西安近代化学研究所 一种氯化氢高效转化制氯气的催化剂
CN106902848B (zh) * 2017-02-09 2019-06-28 西安近代化学研究所 一种氯化氢转化催化剂
CN106861714B (zh) * 2017-02-09 2019-08-27 西安近代化学研究所 一种氯化氢转化制氯气的催化剂
FR3067617B1 (fr) * 2017-06-20 2019-07-19 Arkema France Catalyseur a base d'alumine alpha et procede d'hydrogenation d'une olefine en presence de celui-ci.
CN111252737A (zh) * 2020-01-19 2020-06-09 无锡玖汇科技有限公司 一种用于盐酸原位制氯气的固体反应物
CN113135552B (zh) * 2020-01-19 2023-02-07 中南大学 一种氯化氢催化氧化制氯气的方法
KR20240033278A (ko) * 2021-09-03 2024-03-12 미쓰이 가가쿠 가부시키가이샤 염산 산화 촉매 및 염소의 제조 방법
JPWO2023032917A1 (de) * 2021-09-03 2023-03-09
CN116550321A (zh) * 2023-05-22 2023-08-08 康纳新型材料(杭州)有限公司 一种用于氯化氢氧化制氯气的高分散度钌催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936184A2 (de) * 1998-02-16 1999-08-18 Sumitomo Chemical Company, Limited Verfahren zur Herstellung von Chlor
WO2001010550A1 (en) * 1999-08-05 2001-02-15 Sumitomo Chemical Company, Limited Supported ruthenium oxide catalyst, process for preparing supported ruthenium catalyst and process for producing chlorine
EP1170250A1 (de) * 1999-01-22 2002-01-09 Sumitomo Chemical Company Limited Verfahren zur chlor-herstellung
JP2005179104A (ja) * 2003-12-18 2005-07-07 Sumitomo Chemical Co Ltd 塩素の製造方法
WO2005097715A1 (de) * 2004-03-29 2005-10-20 Basf Aktiengesellschaft Katalysator für die oxidation von wasserstoff, sowie verfahren zur dehydrierung von kohlenwasserstoffen

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854404A (en) * 1955-09-26 1958-09-30 Socony Mobil Oil Co Inc Catalytic reforming with a mixed base catalyst
NL6404460A (de) 1964-04-23 1965-10-25
JPS5610334A (en) * 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
JPS5787839A (en) * 1980-11-20 1982-06-01 Toyota Motor Corp Catalyst of monolithic construction type for purification of waste gas
IT1184114B (it) * 1985-01-18 1987-10-22 Montedison Spa Alfa allumina sotto forma di particelle sferiche,non aggregate,a distribuzione granulometrica ristretta e di dimensioni inferiori a 2 micron,e processo per la sua preparazione
EP0279374B1 (de) * 1987-02-17 1992-01-02 Nippon Shokubai Kagaku Kogyo Co., Ltd Katalysator zur Oxydation von Olefin oder tertiärem Alkohol und Verfahren zu seiner Herstellung
JPS63230504A (ja) * 1987-03-18 1988-09-27 Mitsui Toatsu Chem Inc 塩素の製造方法
US4771029A (en) * 1987-05-18 1988-09-13 W. R. Grace & Co.-Conn Monolith washcoat having optimum pore structure and optimum method of designing the washcoat
DE3735033A1 (de) * 1987-10-16 1989-04-27 Duerrwaechter E Dr Doduco Katalysator und verfahren zu seiner herstellung
US5037794A (en) * 1989-09-12 1991-08-06 The B. F. Goodrich Company Attrition resistant catalyst support
WO1993010885A1 (en) * 1991-11-26 1993-06-10 Engelhard Corporation Oxidation catalyst and method of use
DE4335360A1 (de) * 1993-10-16 1995-04-20 Degussa Aktivierter Metall-Festbettkatalysator nach Raney und Verfahren zu seiner Herstellung
US5661097A (en) * 1994-08-12 1997-08-26 The Dow Chemical Company Supported olefin polymerization catalyst
SG67942A1 (en) * 1995-05-18 1999-10-19 Sumitomo Chem Ind Process for producing chlorine
DE19533486A1 (de) * 1995-09-12 1997-03-13 Basf Ag Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrößenverteilungen und deren Herstellverfahren
US5639436A (en) * 1995-09-21 1997-06-17 University Of Southern California Exothermic two-stage process for catalytic oxidation of hydrogen chloride
US6022823A (en) * 1995-11-07 2000-02-08 Millennium Petrochemicals, Inc. Process for the production of supported palladium-gold catalysts
US5935896A (en) * 1996-05-02 1999-08-10 Basf Aktiengesellschaft Catalyst supports and catalysts for dehydrocyanation reactions and processes for producing them
KR20000016801A (ko) * 1996-06-21 2000-03-25 매기오 로버트 에이 지지 응집체 및 그에 지지된 올레핀 중합화 촉매
DE19734412B4 (de) * 1996-08-08 2008-04-10 Sumitomo Chemical Co. Ltd. Verfahren zur Herstellung von Chlor
DE19634192A1 (de) * 1996-08-23 1998-02-26 Basf Ag Bismut-haltige Katalysatoren
DE19748299A1 (de) * 1996-10-31 1998-05-07 Sumitomo Chemical Co Verfahren zur Herstellung von Chlor
JPH10338502A (ja) * 1996-10-31 1998-12-22 Sumitomo Chem Co Ltd 塩素の製造方法
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
US20020132730A1 (en) * 2001-01-16 2002-09-19 Engelhard Corporation Catalytic metal plate
US20040072686A1 (en) * 1997-05-26 2004-04-15 Jorg Sauer Shaped metal fixed-bed catalyst, and a process for its preparation and its use
DE19721897A1 (de) * 1997-05-26 1998-12-03 Degussa Geformter Metall-Festbettkatalysator, Verfahren zu seiner Herstellung und seine Verwendung
JP3870596B2 (ja) * 1998-02-16 2007-01-17 住友化学株式会社 塩素の製造方法
JPH11292805A (ja) * 1998-04-06 1999-10-26 Mitsui Chem Inc 炭化水素のオキシクロリネーション反応方法
US6071488A (en) * 1998-08-31 2000-06-06 Medalert, Inc. Use of metal oxychlorides for removal of hydrogen chloride from mixed gases
JP3606147B2 (ja) * 1999-01-22 2005-01-05 住友化学株式会社 塩素の製造方法
JP3743482B2 (ja) * 1999-03-11 2006-02-08 信越化学工業株式会社 オルガノハロシラン合成用金属銅触媒及びオルガノハロシランの製造方法並びに金属銅触媒の選定方法
DE19936135A1 (de) * 1999-07-31 2001-02-15 Degussa Festbettkatalysatoren
HU230441B1 (hu) * 2000-01-19 2016-06-28 Sumitomo Chemical Co Eljárás klór elõállítására
ATE258821T1 (de) * 2000-08-16 2004-02-15 Umicore Ag & Co Kg Abgasreinigungskatalysator für motornahen einsatz und verfahren zu seiner herstellung
DE10128205A1 (de) * 2001-06-11 2002-12-12 Basf Ag Ruthenium-Katalysatoren
JP4400042B2 (ja) * 2002-12-05 2010-01-20 住友化学株式会社 担持酸化ルテニウム触媒及び塩素の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936184A2 (de) * 1998-02-16 1999-08-18 Sumitomo Chemical Company, Limited Verfahren zur Herstellung von Chlor
EP1170250A1 (de) * 1999-01-22 2002-01-09 Sumitomo Chemical Company Limited Verfahren zur chlor-herstellung
WO2001010550A1 (en) * 1999-08-05 2001-02-15 Sumitomo Chemical Company, Limited Supported ruthenium oxide catalyst, process for preparing supported ruthenium catalyst and process for producing chlorine
JP2005179104A (ja) * 2003-12-18 2005-07-07 Sumitomo Chemical Co Ltd 塩素の製造方法
WO2005097715A1 (de) * 2004-03-29 2005-10-20 Basf Aktiengesellschaft Katalysator für die oxidation von wasserstoff, sowie verfahren zur dehydrierung von kohlenwasserstoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1919611A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142604A1 (de) * 2009-06-10 2010-12-16 Basf Se Verfahren zur chlorwasserstoffoxidation an einem katalysator mit geringer oberflächenrauhigkeit
EP2586775A1 (de) 2011-10-28 2013-05-01 Basf Se Verfahren zur Herstellung von cis-Rosenoxid
WO2013060805A1 (de) 2011-10-28 2013-05-02 Basf Se Verfahren zur herstellung von cis-rosenoxid

Also Published As

Publication number Publication date
KR20080034213A (ko) 2008-04-18
BRPI0614960A2 (pt) 2013-01-01
US7910517B2 (en) 2011-03-22
US20110014114A1 (en) 2011-01-20
KR101296078B1 (ko) 2013-08-12
CN101272852A (zh) 2008-09-24
JP2009505817A (ja) 2009-02-12
DE102005040286A1 (de) 2007-03-01
EP1919611A1 (de) 2008-05-14
US8163265B2 (en) 2012-04-24
US20080247941A1 (en) 2008-10-09
JP5230422B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
EP1919611A1 (de) Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid
WO2010076262A1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und nickel
EP2384239B1 (de) Verfahren zur regenerierung eines rutheniumoxid enthaltenden katalysators für die chlorwasserstoff-oxidation
EP2178637A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
WO2007134721A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2608879B1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP2257372A2 (de) Verfahren zur regeneration eines mit schwefel in form von schwefelverbindungen vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators
WO2013060628A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP2391740A2 (de) Verfahren zur wiedergewinnung von ruthenium aus gebrauchten rutheniumoxidhaltigen katalysatoren
EP2401072B1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und silber und/oder calcium
EP1546032A1 (de) Katalysator für die katalytische chlorwasserstoff-oxidation
EP2440490A1 (de) Verfahren zur chlorwasserstoffoxidation an einem katalysator mit geringer oberflächenrauhigkeit
EP2177268A1 (de) Ru/MgF2 Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
WO2010133313A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff in gegenwart eines ceroxid-katalysators
EP2608880A2 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
DE102007033113A1 (de) Temperaturstabiler Katalysator für die Chlorwasserstoffgasphasenoxidation
EP2054340A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
WO2007125004A1 (de) Verfahren zur herstellung von katalysatoren für die katalytische chlorwasserstoff-oxidation
WO2017134230A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
DE102007033114A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/002536

Country of ref document: MX

Ref document number: 2008527462

Country of ref document: JP

Ref document number: 900/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12064725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006792946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006792946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087006665

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680035121.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006792946

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0614960

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080225