WO2007020715A1 - 二酸化炭素回収及び燃焼装置 - Google Patents

二酸化炭素回収及び燃焼装置 Download PDF

Info

Publication number
WO2007020715A1
WO2007020715A1 PCT/JP2005/020712 JP2005020712W WO2007020715A1 WO 2007020715 A1 WO2007020715 A1 WO 2007020715A1 JP 2005020712 W JP2005020712 W JP 2005020712W WO 2007020715 A1 WO2007020715 A1 WO 2007020715A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
fluid
rotating
combustion
Prior art date
Application number
PCT/JP2005/020712
Other languages
English (en)
French (fr)
Inventor
Toshihiro Abe
Original Assignee
Toshihiro Abe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshihiro Abe filed Critical Toshihiro Abe
Priority to JP2007530904A priority Critical patent/JPWO2007020715A1/ja
Publication of WO2007020715A1 publication Critical patent/WO2007020715A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to carbon dioxide that liquefies and recovers carbon dioxide (CO 2, carbon dioxide) in the atmosphere, etc.
  • the present invention relates to a carbon dioxide recovery and combustion device including a recovery device and a combustion device capable of completely burning waste and the like at a high temperature.
  • This combustion apparatus is supplied with a fluid in which water is mixed with a combustion product such as waste, and thermally decomposes the water in the fluid to burn the combustion product, and also includes a gas containing carbon dioxide after combustion. Is exhausted. Then, the gas exhausted from the combustion apparatus is separated into various gases such as hydrogen and carbon dioxide by a centrifugal separator.
  • This carbon dioxide recovery apparatus supplies air to a container together with liquid nitrogen, and heat-exchanges carbon dioxide and liquid nitrogen in the container to liquefy and store carbon dioxide. .
  • Patent Document 1 International Publication No. 2005Z033582 Pamphlet
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-82419
  • the centrifuge separates it from other gases and collects the carbon dioxide, but the carbon dioxide is not necessarily selected. There is a problem that the recovery efficiency of carbon dioxide and carbon dioxide that cannot be recovered efficiently is inferior.
  • the above carbon dioxide recovery device recovers only carbon dioxide in the atmosphere. Therefore, there was a problem that its use was limited.
  • the present invention has been made in view of the above-described problems.
  • the gas exhausted from the combustion apparatus is liquefied by a diacid / carbon recovery apparatus and selectively recovered, and then the carbon dioxide is recovered.
  • the purpose is to provide carbon dioxide recovery and combustion equipment with improved carbon recovery efficiency.
  • the carbon dioxide recovery and combustion apparatus of the present invention supplies a gas containing carbon dioxide or carbon dioxide into a container, and a liquid in the container.
  • the body was supplied with nitrogen, and heat was exchanged between the carbon dioxide and liquid nitrogen in the vessel to liquefy the carbon dioxide, and the combustion product was mixed with water.
  • a fluid is supplied, the water in the fluid is pyrolyzed to burn the combustion product, and the gas containing the carbon dioxide after the combustion is exhausted, and at least the carbon dioxide in the gas is removed.
  • a combustor that feeds into the container of the carbon dioxide collecting device.
  • the heat of the combustor power exhausted gas is exchanged between the carbon dioxide and liquid nitrogen, and the carbon dioxide is selectively recovered by liquid. be able to. Therefore, diacid carbon can be efficiently recovered.
  • the carbon dioxide recovery apparatus is configured to be able to take out the liquid carbonic acid carbon from the bottom cover and to be rotatable with respect to the container.
  • the gas is sucked and carbon dioxide is separated and compressed and gathered on the outer peripheral side by centrifugal force, and the separated and compressed and gathered carbon dioxide together with liquid nitrogen is supplied to the container from a plurality of jet nozzles provided on the outer circumference.
  • the liquid nitrogen spray A configuration equipped with a liquid nitrogen supply part for supplying liquid nitrogen.
  • the rotating body when recovering the liquefied carbon dioxide, the rotating body is always rotated by the rotation driving means, the liquid nitrogen supply unit force liquid nitrogen is supplied to the liquid nitrogen spraying unit, and the liquid nitrogen spraying unit supplies the liquid Nitrogen spouts into the rotating body. And this rotating body As these gases are taken in, the combustor power diacid carbon is delivered. These gases are centrifugally compressed in the rotating body, so that carbon dioxide is separated and compressed and collected on the outer peripheral side of the rotating body. Unnecessary gas in the rotating body is exhausted from the gas exhaust section to the outside of the rotating body.
  • the carbon dioxide that has been compressed and collected on the outer peripheral side of the rotating body is injected into the container from a plurality of injection ports provided on the outer periphery of the rotating body together with the liquid nitrogen ejected from the outlet of the liquid nitrogen spraying portion.
  • the carbon dioxide and liquid nitrogen is performed in the container, and the carbon dioxide is liquid and flows down to the bottom of the container.
  • carbon dioxide is separated and compressed and collected on the outer peripheral side of the rotating body, and only the compressed and concentrated carbon dioxide is liquefied, so that a small amount of carbon dioxide in the air and carbon dioxide from the combustion device are liquefied. Carbon is liquefied selectively and efficiently.
  • the rotating body includes a cylinder in which the gas suction unit is formed at one end in the rotation axis direction and the gas exhaust unit is formed at the other end in the rotation axis direction.
  • the rotating body driving means has a wall portion on the outside of the rotating body and is provided so as to be rotatable with respect to the container and the rotating body, and is provided on the other end side in the rotation axis direction.
  • the rotational force of the cylindrical body to the rotational force of the cylindrical body A rotating force transmission mechanism linked to the heating body, a warming fluid spraying section for spreading the warming fluid between the rotating body and the cylindrical body, and a warming fluid for supplying the warming fluid to the warming fluid spraying section
  • the gas is heated in the other flow path that passes through the gas discharge port of the cylindrical body to generate
  • diacid carbon is recovered by the diacid carbon recovery apparatus, the following is performed.
  • the liquid nitrogen from the liquid nitrogen spraying part cools the gas in the one channel in the rotating body.
  • the gas in the one flow path is cooled by liquid nitrogen and descends.
  • the gas that flows out from the gas exhaust section and flows into the cylindrical body from the gas inflow section heats up with the warming fluid from the warming fluid spray section, and rises.
  • the gas rising in the other flow path acts on the moving blades when the gas discharge rocker also appears, rotates the cylindrical body, and is jetted toward the stationary blades.
  • the cylindrical body also rotates due to the repulsive force of this injection.
  • the carbon dioxide recovery and combustion apparatus of the present invention includes a support shaft that supports the rotating body and is inserted into the rotating body, and is provided on the support shaft.
  • a fixed wing that generates a vortex in the gas passing through the path, and a movable wing that is provided on the inner wall of the rotating body and that rotates the rotating body by receiving the vortexed gas from the fixed wing.
  • the gas in the one channel is swirled by the fixed blade, and the rotating body is further rotated by stopping against the gas force movable blade that has become the swirl.
  • the rotating body since the rotating force can be imparted to the rotating body even by the movable blades that are only driven by the rotating force from the cylindrical body, the rotating body can be efficiently rotated, the rotating body can be rotated faster, and carbon dioxide can be reduced. It can be centrifugally compressed well.
  • the carbon dioxide recovery and combustion apparatus of the present invention has a configuration in which a duct for leading the gas to the outside is provided in the outer shell in order to use the gas discharged from the gas discharge port force. .
  • the exhausted gas can be easily derived to the outside.
  • the carbon dioxide recovery and combustion apparatus of the present invention has a configuration in which cooling means is provided for injecting water and cooling the gas that passes through the outer shell and reaches the duct.
  • the combustion apparatus is configured to supply a fluid mixed with water to the combustion product in a state where the supply of air is cut off.
  • a combustion chamber body Surrounding the combustion chamber body, a combustion chamber body that pyrolyzes water to burn the combustion product and exhausts the gas after combustion, a fluid supply unit that supplies the fluid to the combustion chamber body, An outer chamber body rotatably supporting the combustion chamber body; and combustion chamber body driving means for rotating the combustion chamber body, wherein the combustion chamber body communicates with the combustion chamber body below the combustion chamber body.
  • a lower opening for introducing an animal is provided, an upper opening communicating with the combustion chamber body and discharging exhaust gas is provided at an upper portion of the combustion chamber body, the combustion chamber body having an outer cylinder and an inner cylinder, and the combustion chamber
  • the inner cylinder of the body is pressed against the outer cylinder by the centrifugal force of the combustion chamber body to form the inner wall of the combustion chamber body
  • the combustion chamber body driving means is composed of a heat-resistant fluid, and includes a power transmission mechanism that links the cylindrical body and transmits the power of the rotational force of the cylindrical body to the combustion chamber body.
  • the heating fluid supply unit includes A heated fluid circulation line that collects the heated fluid dispersed in the cylindrical body and circulates the heated fluid to the heated fluid distribution unit, and the heated fluid circulation line on the route of the heated fluid circulation line A heating fluid heating section for heating a heating fluid flowing through the heating fluid, and the heating fluid heating section heat exchanges heat between the gas exhausted from the combustion device and the heating fluid It has a structure with exchanges.
  • the heated fluid is heated using the waste heat of the gas generated when the combustion product is combusted in the combustion device and then exhausted. Therefore, the heating device for heating the heated fluid Compared to the case where the is provided separately, energy can be used effectively.
  • the heat exchanger is rotatably supported by the tower and the tower, and a gas medium for heat exchange is provided at one end in the axial direction.
  • a rotating inner cylinder having a supply port formed and a medium outlet formed at the other end, and provided rotatably with respect to the tower and the rotating inner cylinder.
  • a rotating outer cylinder that seals the medium, and a supply flow of the rotating inner cylinder and a one-way flow through the inside of the rotating inner cylinder to the discharge port.
  • a discharge passage for the path and the rotating inner cylinder, and the other flow path extending from the outer side of the rotating inner cylinder to the supply port is formed, and a medium flowing into the supply port is received on one end side of the rotating inner cylinder.
  • a rotating blade that applies a rotational force to the rotating inner cylinder, and a medium is guided to the inner surface of one end of the rotating outer cylinder on the moving blade.
  • Guide wings for applying a rotational force to the rotating outer cylinder are provided, and the heated fluid is supplied from the other end side in the axial direction along the axial direction of the rotating inner cylinder at the wall portion of the rotating inner cylinder
  • a large number of cooling pipes that circulate toward one end side and cool the medium passing through the one flow path are arranged in a row, and are wall portions of the rotating outer cylindrical body along the axial direction of the rotating outer cylindrical body.
  • the gas is circulated from one end to the other end in the axial direction, and a plurality of heating pipes for heating the medium passing through the other flow path are arranged in a row so as to pass through the one flow path and the other flow path. Further, a temperature difference is applied to the medium to generate convection of the medium, and the rotative inner cylinder and the rotating outer cylinder are rotated by the convection of the medium to obtain power.
  • the carbon dioxide recovery and combustion apparatus of the present invention has a configuration in which a part of the exhausted gas is used as the heating fluid.
  • the gas in the other channel can be efficiently heated.
  • the gas exhausted from the combustion apparatus is heat-exchanged with liquid nitrogen in the container of the diacid / carbon recovery apparatus, and is selectively converted to liquid.
  • the carbon dioxide can be efficiently recovered.
  • FIG. 1 is a view showing a carbon dioxide recovery and combustion apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a system diagram showing the flow of various fluids and the like of the carbon dioxide recovery device of the carbon dioxide recovery and combustion device according to the first embodiment of the present invention.
  • FIG. 3 is a view showing a carbon dioxide recovery device of a carbon dioxide recovery and combustion apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a view showing a combustion apparatus of carbon dioxide recovery and combustion apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a view showing a carbon dioxide recovery and combustion apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a system diagram showing the flow of various fluids and the like of the carbon dioxide recovery device of the carbon dioxide recovery and combustion device according to the second embodiment of the present invention.
  • FIG. 7 is a view showing a gas heated fluid heat exchanger of the carbon dioxide recovery and combustion apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a view showing a modified example of the gas heated fluid heat exchanger of the carbon dioxide recovery and combustion apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a view showing a modification of the gas heated fluid heat exchanger of the carbon dioxide recovery and combustion apparatus according to the second embodiment of the present invention, and is a view showing a cross section along line AA in FIG. .
  • FIG. 10 Gas heating for carbon dioxide recovery and combustion apparatus according to the second embodiment of the present invention
  • FIG. 9 is a view showing a modification of the fluid heat exchanger, and is a view showing a cross section taken along line BB in FIG.
  • FIG. 11 is a view showing a carbon dioxide recovery and combustion apparatus according to a third embodiment of the present invention.
  • FIG. 12 is a system diagram showing the flow of various fluids and the like of the carbon dioxide recovery device of the carbon dioxide recovery and combustion device according to the third embodiment of the present invention.
  • FIG. 13 is a view showing a carbon dioxide recovery device of a carbon dioxide recovery and combustion apparatus according to a third embodiment of the present invention.
  • FIG. 14 is a view showing a carbon dioxide recovery device of a carbon dioxide recovery and combustion device according to a fourth embodiment of the present invention.
  • FIG. 15 is a view showing a carbon dioxide recovery device of a carbon dioxide recovery device of a carbon dioxide recovery and combustion device according to a fourth embodiment of the present invention.
  • FIG. 16 is a view showing a gas heating fluid heat exchanger of the carbon dioxide recovery device of the carbon dioxide recovery and combustion device according to the fourth embodiment of the present invention.
  • Carbon dioxide storage tank Carbon dioxide extraction pipe
  • Carbon dioxide return pipe a Carbon dioxide injection port Liquid nitrogen injection pipe Rotating body
  • Heating fluid spraying section Heating fluid supply section Heating fluid circulation line Heating fluid heating section Heating fluid recovery port Receiver
  • Heating fluid suction pump One side support shaft Communication tube
  • FIGS. 1 and 2 show a carbon dioxide recovery and combustion apparatus according to the first embodiment of the present invention.
  • This carbon dioxide recovery and combustion apparatus includes a carbon dioxide recovery apparatus 1 and a combustion apparatus 2.
  • the carbon dioxide recovery device 1 supplies a carbon dioxide or a gas containing carbon dioxide into the container 10 and also supplies liquid nitrogen into the container 10, and the carbon dioxide and the liquid in the container 10. Heat exchange with nitrogen is performed to liquefy diacid carbon.
  • the combustion apparatus 2 is supplied with a fluid in which water is mixed with the combustion product, and the water in the fluid is supplied. Pyrolyze the product to burn the combustion products and exhaust the gas containing carbon dioxide after combustion.
  • the carbon dioxide recovery device 1 is covered with an outer shell 5 and is provided so as to be able to take out liquefied carbon dioxide from the bottom, and to be rotatable with respect to the container 10.
  • the separated and compressed carbon dioxide together with liquid nitrogen is supplied from a plurality of outlets 30 provided on the outer periphery to the container 10.
  • a hollow rotating body 20 that liquefies carbon dioxide by causing heat exchange between carbon dioxide and liquid nitrogen in the container 10 and rotating body driving means for rotating the rotating body 20 40, a gas suction part 22 provided in the rotating body 20 for sucking gas, a gas exhaust part 23 provided in the rotating body 20 for exhausting unnecessary gas, and a rotating body 20 provided in the rotating body 20
  • Liquid nitrogen spray unit 100 that sprays liquid nitrogen and liquid nitrogen spray unit 100 Nitrogen a configuration equipped with a liquid nitrogen supply unit 110 for supplying.
  • the outer shell 5 includes a substantially conical roof 6 that covers the upper side of the carbon dioxide recovery device 1 and a cylindrical tower body 7 that covers the side surface of the roof 6.
  • the outer shell 5 has an air intake port 8 a at the eaves of the roof 6 in the attic of the roof 6 and a gas passage 8 communicating with the gas suction part 22.
  • the container 10 is composed of a hollow bowl 11 that covers the other end of a cylindrical body 41 to be described later, and the carbon dioxide carbon is liquefied inside the bowl 11.
  • the upper inner periphery of the rod-like body 11 is formed as an inlet 12 through which the carbon dioxide and liquid nitrogen ejected from the jet port 30 of the rotating body 20 enter the inside of the rod-like body 11.
  • a diacid / carbon suction pipe 14 for collecting the liquid diacid / carbon is connected to the rod-shaped body 11.
  • the carbon dioxide suction pipe 14 includes a diacid / carbon suction pump 13 that sucks liquid diacid / carbon in the path, and stores the sucked liquid / carbonic acid / carbon. It is connected to an acid carbon storage tank 15. Further, the carbon dioxide suction pump 13 is provided with a diacid / carbon extraction pipe 16 for extracting liquid / carbonic acid / carbon. From the diacid / carbon storage tank 15, a diacid / carbon return pipe 17 for returning the diacid / carbon is provided inside the rod 11.
  • the carbon dioxide return pipe 17 is provided with a carbon dioxide injection port 17a for injecting carbon dioxide on a blade 41a provided at the lower part of the cylindrical body 41. ing.
  • the carbon dioxide storage tank 15 is preliminarily filled with carbon dioxide from the carbon dioxide extraction pipe 16 in advance, and is injected into the cylindrical shape by the injection from the carbon dioxide injection port 17a. Body 41 rotates.
  • a liquid nitrogen injection pipe 18 for injecting liquid nitrogen to the diacid carbon and liquid nitrogen ejected from the ejection port 30 of the rotating body 20 is provided inside and above the bowl-shaped body 11. ing.
  • the liquid nitrogen injection pipe 18 is connected to a nitrogen circulation pipe 111 described later.
  • the other end side support shaft 101 that supports the other end of the rotating body 20 and the cylindrical body 41 is provided inside the bottom of the bowl-shaped body 11.
  • the other end side support shaft 101 reaches the inside of the rotating body 20 and also functions as the liquid nitrogen spraying unit 100.
  • the rotator 20 is formed in a cylindrical shape in which a gas suction part 22 is formed at one end in the rotation axis direction and a gas exhaust part 23 is formed at the other end in the rotation axis direction.
  • the rotating body 20 includes a cylinder 21, and the opening on the one end side in the rotation axis direction of the cylinder 21 is a gas suction part 22.
  • the rotating body 20 includes a bottom wall having a plane perpendicular to the rotation axis direction, and a basin body 24 having an opening on one end side in the axial direction of the rotator 20, and a bottom wall of the basin body 24. And a ring body 25 provided in parallel and above the outer periphery of the basin body 24.
  • the plurality of spouts 30 are provided between the outer edge of the basin body 24 and the outer edge of the ring body 25 around the rotation axis of the rotating body 20 and along these outer edges.
  • the opening of the bonnet 24 formed between the outer surface of the cylinder 21 and the inner periphery of the ring body 25 is a gas exhaust part 23.
  • a water discharge hole 21a is formed on the upper side of the gas exhaust part 23 of the cylindrical body 21, and the rotation of the hydraulic rotary body 20 that has been cooled in the cylindrical body 21 to become liquid from the water discharge hole 21a. It is discharged to the outside of the cylindrical body 21 by centrifugal force.
  • a plurality of water discharge holes 21 a are arranged along the circumference of the cylindrical body 21.
  • a plurality of blades 26 are arranged inside the basin body 24 around the axis of the rotating body 20, and the plurality of blades 26 are gas that extends from the cylindrical body 21 to the gas exhaust unit 23. Centrifuge.
  • a tubular rotating body rotating shaft 27 is provided which is inserted into the other end side supporting shaft 101 described later.
  • the rotating body rotating shaft 27 passes through a top plate 32 of a table-like body 31 provided at the bottom of the bowl-shaped body 11 and is rotatably supported by a bearing 34 provided on the top plate 32.
  • the trapezoid 31 includes a top plate 32 and a cylindrical side wall 33.
  • the side wall 33 is fixed to the bottom of the bowl 11.
  • the bearing 34 is formed on the other end side in the axial direction, and has a tubular portion 36 passing through the top plate 32 of the trapezoidal body 31, and a tubular portion formed on the one end side in the axial direction and thicker than the tubular portion 36. And a disc-shaped projecting piece 38 which is interposed between the tubular portion 36 and the thick portion 37 and protrudes outward from the outer periphery of the thick portion 37 in the axial direction.
  • the rotary body drive means 40 includes a cylindrical body 41, a moving blade 50, a stationary blade 55, a rotational force transmission mechanism 60, a warming fluid spraying portion 80, and a warming fluid supply portion 85.
  • the cylindrical body 41 has a wall portion on the outside of the rotating body 20 and is provided so as to be rotatable with respect to the container 10 and the rotating body 20.
  • the cylindrical body 41 is provided on the other end side in the rotation axis direction, and is provided on the gas inflow portion 42 into which the gas from the gas exhaust portion 23 of the rotation body 20 flows, and one end side in the rotation axis direction. It has a gas outlet 43 for discharging the expanded gas to the outside.
  • the rotor blade 50 is provided in the gas discharge port 43 and rotates the cylindrical body 41 by receiving the gas discharged from the gas discharge port 43.
  • the stationary blade 55 is provided in the outer shell 5 that covers the container 10 and the cylindrical body 41 and receives the gas discharged from the gas discharge port 43.
  • the rotational force transmission mechanism 60 links the rotational force of the cylindrical body 41 with the rotational force of the rotating body 20. Further, the warming fluid spraying unit 80 sprays the warming fluid between the rotating body 20 and the cylindrical body 41. Further, the warming fluid supply unit 85 supplies the warming fluid to the warming fluid spraying unit 80.
  • the rotating body driving means 40 cools the gas in one flow path R1 from the gas suction part 22 of the rotating body 20 to the gas exhausting part 23 through the inside of the rotating body 20, and In the other flow path R2 from the gas exhaust part 23 through the outside of the rotating body 20 to the gas discharge port 43 of the cylindrical body 41, heat the gas to generate a gas flow! /,
  • the center of the cylindrical body 41 is provided coaxially with the rotary body 20, and the other end in the rotational axis direction is It is inserted inside the opening side of the body 11.
  • the cylindrical body 41 is provided on one end side in the axial direction, and the gas in the other flow path R2 stops and guides the gas to the outer side in the rotation axis direction, and on the other end side in the axial direction.
  • a bottom wall 45 that is provided and closes the opening on the other end side of the cylindrical body 41 is provided.
  • a hole 46 through which the rotating body 20 is rotatably inserted is formed in the center of the guide plate body 44. The hole 46 and the rotating body 20 are sealed so as to be rotatable via a seal member 47.
  • the outer peripheral edge of the guide plate body 44 is formed to bend toward the other end side in the rotation axis direction.
  • a bearing 34 that pivotally supports the rotating body rotating shaft 27 is provided through the center of the bottom wall of the cylindrical body 41.
  • the bottom wall of the cylindrical body 41 is rotatably mounted on the projecting piece 38 and is rotatably supported by the thick portion 37 of the bearing 34.
  • the moving blade 50 is configured by a plurality of blades 51 arranged in a plurality of rows around the rotation axis inside the guide plate body 44.
  • the stationary blades 55 are composed of blades 56 arranged in a plurality of rows around the rotation axis on the inner peripheral surface of the tower body 7.
  • the rotational force transmission mechanism 60 is coaxial with the first driving gear 61 provided on the rotating body rotating shaft 27, the first driven gear 62 meshed with the first driving gear 61, and the shaft of the first driven gear 62.
  • a first drive shaft 63 provided on the outer surface of the bottom wall 45 of the tubular body 41, a second drive gear 64 meshed with the second drive gear 64, and a second drive gear.
  • a second shaft 66 provided coaxially with the shaft of 65 and a first transmission 67 formed of a gear box for interlocking the first shaft 63 with the second shaft 66 are provided.
  • the first driving gear 61 and the first driven gear 62 are provided inside the trapezoid 31.
  • the second driving gear 64 and the second driven gear 65 are provided outside the base body 31.
  • the first shaft 63 and the second shaft 66 are provided so as to penetrate the side wall 33 and the bowl-like body 11 of the table-like body 31, and are rotatably supported by these via bearings.
  • lubricating oil is stored in the rod-like body 11. Lubricating oil also flows into the inside of the trapezoid 31 from the hole provided in the side wall 33, and this lubricating oil causes the first driving gear 61 and the first slave The moving gear 62 is lubricated, and the second driving gear 64 and the second driven gear 65 are lubricated. Further, the rotational force of the first transmission 67 is transmitted through a gear belt 68 by a diacid carbon suction pump 1
  • the output shaft of the first transmission 67 is connected to the second transmission 69.
  • a generator 70 is connected to 69.
  • the generator 70 includes a first transmission 67 and a second transmission.
  • water is used as the heating fluid.
  • the heated fluid spraying portion 80 is formed in a cylindrical shape having a wall portion on the outer side of the rotating body 20, and includes a cylindrical member 81 in which a plurality of heated fluid ejection ports 30 are formed on the outer periphery. A space between the tubular member 81 and the tubular body 21 of the rotating body 20 is formed with a space through which the heated fluid from the heated fluid supply unit 85 flows.
  • the heating fluid supply unit 85 includes a heating fluid circulation pipe 86 and a heating fluid heating unit 87.
  • the heated fluid circulation pipe 86 collects the heated fluid sprayed in the tubular body 41 and circulates it to the warmed fluid sprayer 80.
  • the warming fluid warming unit 87 warms the warming fluid that flows through the warming fluid circulation pipe 86 on the warming fluid circulation pipe 86.
  • the warming fluid circulation pipe 86 is provided with a warming fluid suction pump 89 on the path, and the warming fluid suction pump 89 is provided with a warming fluid recovery port provided in the tubular body 41. Aspirate water from 88.
  • a receiving body 88a that receives the heated fluid sprayed from the heated fluid spraying section 80 and flowing down the inside of the cylindrical body 41 is provided on the lower side 88 of the heated fluid recovery port.
  • the heated fluid circulation conduit 86 protrudes from one end of the cylindrical body 21, and is provided inside the one side support shaft 91 rotatably provided on the roof 6 of the outer shell 5, and the one side support shaft 91. And a communication tube 92 communicating with the space inside the cylinder member 81.
  • the one-side support shaft 91 is rotatably supported by a one-side support shaft bearing 91a provided on the roof 6 of the outer shell 5.
  • a plurality of communication pipes 92 are provided radially from the one side support shaft 91.
  • the other end side support shaft 101 is rotatably supported on the lower surface of the one side support shaft 91 of the communication pipe 92.
  • An end side support shaft bearing 10 la is provided.
  • the heated fluid suction pump 89 is connected to the first transmission 67 and can operate using the rotational force of the tubular body 41 as power.
  • the heating fluid heating unit 87 is provided at a plurality of locations, and one of them is constituted by a heat exchanger 87a that exchanges heat with the heating fluid using, for example, sunlight or geothermal heat.
  • the other heating fluid heating unit 87 will be described later.
  • the heating fluid circulation pipe 86 is provided with a roof cooling section 93 passing through the inside of the double-structure roof 6 on the path.
  • the roof cooling unit 93 also functions as a heating fluid heating unit 87 that absorbs sunlight and heats the heating fluid inside. Further, the roof cooling section 93 cools the air on the surface side of the roof 6 and generates a downdraft from the top of the roof 6 toward the eaves. Energy saving is achieved by the heating fluid heating unit 87.
  • the heated fluid circulation conduit 86 is connected to a water outlet 94 having a water outlet 94a.
  • the water flowing through the heated fluid circulation pipe 86 is sprayed on the condensation filter 9 provided in the gas passage 8 from the water outlet 94a.
  • the water outlet pipe 94 is branched and connected to the upstream side of the heat exchange 87a and the downstream side of the heat exchange 87a in the heated fluid circulation pipe 86. Then, in the water outlet pipe 94, the water that has been cooled by exchanging heat in the other flow path R2 and the water that has been heat-exchanged by the heat exchanger 87a are mixed to form hot water at an appropriate temperature. Then, this hot water is sprayed onto the condensation filter 9 from the water outlet 94a.
  • the liquid nitrogen spray unit 100 is configured by the other end side support shaft 101.
  • the other end-side support shaft 101 is formed in a tubular shape, and a liquid nitrogen spraying port is formed on the outer peripheral surface so as to communicate from the inside to the outside and from which the liquid nitrogen inside is ejected to the outside.
  • the liquid nitrogen supply unit 110 is installed on the nitrogen circulation line 111 for collecting the vaporized nitrogen inside the rod 11 and circulating it to the liquid nitrogen spraying part 100, and the nitrogen circulation line 111.
  • the compressor 112 is provided with a compressor 112 that collects and compresses the vaporized nitrogen inside the rod-like body 11, and a condenser 113 that cools and compresses the nitrogen compressed by the compressor 112.
  • the compressor 112 is composed of a gaseous nitrogen suction pump.
  • the gaseous nitrogen suction pump is connected to the first transmission 67 and operates using the rotational force of the tubular body 41 as power.
  • the condenser 113 is a heated flow provided on the path of the heated fluid circulation pipe 86 upstream of the heat exchanger 87a. It exchanges heat with water stored in the body storage tank 95 and functions as a heating fluid heating unit 87.
  • a nitrogen cooling device 114 that cools the nitrogen flowing through the nitrogen circulation pipe 111 is provided on the nitrogen circulation pipe 111.
  • an air cooler such as a heat sink and a cooling fan, a water cooler cooled with water, or the like is used. The cooling by the nitrogen cooling device 114 reduces the load on the compressor 112 and improves the power generation output.
  • the nitrogen circulation pipe 111 is connected to a liquid nitrogen circulation pipe 115 that supplies liquid nitrogen in the nitrogen circulation pipe 111 to the gas passage 8.
  • Liquid nitrogen flow line 115 is a gas passage
  • a liquid nitrogen outlet 115a for ejecting liquid nitrogen is formed.
  • the nitrogen circulation line 111 passes through the nitrogen diacid-carbon heat exchanger 116 which exchanges heat with carbon dioxide on the path of the carbon dioxide return pipe 17, and nitrogen is again returned to the nitrogen circulation line 111.
  • a nitrogen circuit 117 is provided to return to
  • the liquid nitrogen-carbon is heat-exchanged with the liquid nitrogen and heated to become a gas, while the liquid nitrogen is further cooled to form a nitrogen circulation line 111. Returned to
  • the other end side support shaft 101 is provided with a fixed wing 120 for generating a vortex in the gas passing through the one flow path R1 in the rotator 20, and the vortex is generated on the inner wall of the rotator 20 by the fixed wing 120.
  • a movable wing 125 is provided that receives the gas and rotates the rotating body 20.
  • the combustion apparatus 2 supplies the fluid mixed with water to the combustion product in a state where the supply of air is shut off, and removes the water in the fluid.
  • the combustion chamber body 200 Surrounding the combustion chamber body 200, the combustion chamber body 200 that pyrolyzes and burns the combustion products and exhausts the gas after combustion, the fluid supply section 280 that supplies the fluid to the combustion chamber body 200, and An outer chamber body 210 that supports the combustion chamber body 200 so as to be rotationally driven, and combustion chamber body driving means 230 that rotationally drives the combustion chamber body 200 are provided.
  • the combustion chamber body 200 is provided with a lower opening 201 that communicates with the combustion chamber body 200 and introduces a fluid, and an upper opening 20 that communicates with the combustion chamber body 200 and discharges exhaust gas. 2 is provided.
  • the combustion chamber body 200 has an outer cylinder 203 and an inner cylinder 204, and the inner cylinder 204 of the combustion chamber body 200 is pressed against the outer cylinder 203 side by the centrifugal force of the combustion chamber body 200 and combusted. It consists of a heat-resistant fluid that forms the inner wall of the chamber body 200.
  • the outer cylinder 203 is made of, for example, tungsten (melting point: 3407 ° C.), and the inner cylinder 204 is made of ceramics, for example, sac random (melting point: 2432 ° C.).
  • the ceramic forming the inner cylinder 204 is melted by the combustion of the combustion product and is pressed against the outer cylinder 203 side by centrifugal force to form the inner cylinder 204 of the combustion chamber body 200.
  • the ceramic is dissolved, the high temperature due to combustion is cut off and transmitted to the outer cylinder 203, and the heat resistance of the combustion chamber body 200 is improved.
  • This ceramic is charged as particles from the upper cylinder 205 before the combustion apparatus 2 is operated, and melts during operation of the combustion apparatus 2 to form the inner cylinder 204.
  • the temperature in the combustion chamber body 200 is, for example, 1000 ° C to 7000 ° C during combustion.
  • water is thermally decomposed into oxygen and hydrogen.
  • Combustion chamber body 200 is formed in a capsule shape, and a lower opening 201 is provided in the lower portion of combustion chamber body 200 to introduce fluid into the combustion chamber body 200, and the combustion chamber body 200 is disposed above the combustion chamber body 200.
  • An upper opening 202 communicating with the body 200 and exhausting exhaust is provided.
  • An upper cylindrical body 205 is connected to the upper opening 202.
  • a lower cylindrical body 206 is connected to the lower opening 201.
  • a gas exhaust port 2007 connected to the upper opening 202 is formed at the base end portion of the upper cylindrical body 205.
  • the outer chamber body 210 is formed in a capsule shape.
  • the outer chamber body 210 is provided with an upper side bearing 211 that pivotally supports the upper cylindrical body 205 and a lower side bearing 212 that pivotally supports the lower cylindrical body 206.
  • an exhaust space 213 that guides exhaust from the gas exhaust port 207 to a gas exhaust pipe 300 described later is formed in the upper portion of the outer chamber body 210.
  • Combustion chamber body drive means 230 is provided below outer chamber body 210.
  • the combustion chamber body driving means 230 includes a power transmission mechanism 231 that is linked to the cylindrical body 41 and transmits power from the rotational force of the cylindrical body 41 to the combustion chamber body 200.
  • the power transmission mechanism 231 includes a gear device 232 that rotates the combustion chamber body 200 by rotationally driving the lower cylindrical body 206.
  • the gear device 232 is connected to the second transmission 69, and a third shaft 233 capable of transmitting the rotational force of the cylindrical body 41 via the first transmission 67 and the second transmission 69, and the third shaft 233.
  • a third driven gear 235 that meshes with the third driving gear 234 and is provided on the lower cylindrical body 206.
  • the third shaft 233 is rotatably supported by the outer chamber body 210 via a bearing 236.
  • a transparent glass 240 facing the opening of the upper cylindrical body 205 is provided on the ceiling of the outer chamber body 210, and is generated inside the combustion chamber body 200 through the glass 240.
  • Light is extracted.
  • light extracted from the glass 240 is mainly used as a laser beam.
  • a detection sensor for detecting the temperature of light extracted from the glass 240 is provided on the ceiling. As this detection sensor, a temperature sensor or a photoelectric tube sensor is used.
  • ash discharged from the lower opening 201 of the combustion chamber body 200 is discharged to the outside of the outer chamber body 210.
  • a funnel-shaped discharge passage 251 is provided.
  • a space between the outer chamber body 210 and the intermediate partition wall 250 serves as a cooling fluid passage 252 through which a cooling fluid (cooling water in the embodiment) that cools the discharge passage portion 251 passes.
  • An inlet 253 through which a cooling fluid flows is provided at the lower part of the outer chamber body 210.
  • the inflow port 253 is connected to a cooling fluid supply unit 255 that supplies a cooling fluid to the cooling fluid passage 252.
  • the cooling fluid supply unit 255 temporarily stores the cooling fluid storage tank 256 in which water from tap water or the like is stored, the high-pressure pump 257 that sucks the cooling fluid in the cooling fluid storage tank 256, and the cooling fluid from the high-pressure pump 257.
  • a cooling fluid temporary storage tank 258 to be stored and an inflow pipe 259 connecting the cooling fluid temporary storage tank 258 and the inlet 253 are provided.
  • a cooling fluid outflow pipe 260 through which the cooling fluid flows out is provided at the lower part of the outer chamber body 210.
  • the cooling fluid outflow pipe 260 is branched into a cooling fluid injection pipe 261 for injecting water from the cooling fluid injection opening 261a provided on the inner side of the outer chamber body 210 to the glass 240, and a cooling fluid injection pipe 2 61.
  • a glass cooling pipe 262 that passes through the inside of the glass 240.
  • the cooling fluid outflow pipe 260 is connected to a hot water storage tank 263 in which water warmed by light from the combustion chamber body 200 in the glass 240 is stored on the downstream side of the glass cooling pipe 262.
  • the hot water storage tank 263 is provided with a hot water outlet pipe 263a connected to the cooling fluid storage tank 256. It has been.
  • reference numeral 264 denotes a check valve that prevents the cooling fluid from flowing backward
  • reference numeral 265 denotes a flow rate adjusting valve that adjusts the flow rate of the cooling fluid flowing into the cooling fluid passage 252.
  • the intermediate partition wall 250 is provided with a plurality of ejection holes 250a through which the cooling fluid flowing through the cooling fluid passage 252 is ejected.
  • the cooling fluid ejected from the ejection holes 250a is sprayed toward the combustion chamber body 200, cools the outer cylinder 203 of the combustion chamber body 200, and flows down the outer side of the outer cylinder 203.
  • the sulphided cooling fluid is discharged from the discharge passage portion 251 together with ash to the outside of the outer chamber body 210, while the water evaporated by the heat of the combustion chamber body 200 is discharged from the gas exhaust port 207. Is done.
  • the cooling fluid mixed with the ash is centrifuged by the water separator 267 and taken out.
  • the moisture separator 267 is provided outside the outer chamber body 210, and separates moisture from the ash discharged from the discharge passage portion 251 by, for example, centrifugation.
  • the water separator 267 is connected to a high pressure pump 257 via a pipe line 268, and water separated by the water separator 267 is sucked by the high pressure pump 257 via the pipe line 268.
  • the present combustion apparatus 2 is provided with an oxygen supplier 270 that supplies oxygen into the combustion chamber body 200.
  • the oxygen supply device 270 includes an oxygen injection pipe that injects oxygen from the lower opening 201 of the combustion chamber body 200.
  • a hydrogen supplier 271 for supplying hydrogen into the combustion chamber body 200 is provided.
  • the hydrogen supplier 271 includes a hydrogen injection pipe that injects hydrogen from the lower opening 201 of the combustion chamber body 200.
  • the oxygen supply device 270 and the hydrogen supply device 271 operate, for example, at the time of starting the apparatus or in order to stabilize the thermal power.
  • an ignition device 272 for igniting the combustion product supplied to the combustion chamber body 200 is provided.
  • the ignition device 272 is composed of a spark plug provided in the vicinity of the lower opening 201 of the combustion chamber body 200.
  • the fluid supply unit 280 includes a plurality of fluid storage tanks 281a, 281b, 2 81c divided by type, and a fluid that sucks the fluid from the bottom of each of the fluid storage tanks 281a, 281b, 281c.
  • a fluid ejector 284 to be ejected.
  • the fluid storage tank is a first fluid storage tank 281a in which plastic, old tires, livestock manure, etc. are placed as combustion products, and waste oil that has PCB power as combustion products.
  • These fluid storage tanks 281a, 281b, and 281c have openings at the top where the combustibles are charged, and store the fluids charged from the opening. Then, water is supplied by the water supply units 285a, 285b, 285c for supplying water into the fluid storage tanks 281a, 28 lb, 281c, and the combustion product and the hydraulic fluid storage towers 281a, 281b, 281c are framed. It is mixed by the mixers 286a, 286b, and 286c to become a fluid consisting of combustion products and water.
  • a first spiral tube 287 is disposed from the lower part to the upper part.
  • the first spiral tube 287 is provided in the heated fluid circulation pipeline 86 in parallel with the heated fluid reservoir 95, and heat-exchanges with the heated fluid cooled in the other channel R2 to cool the fluid. Furthermore, it also functions as a warming fluid warming unit 87 that warms the warming fluid.
  • An electromagnetic valve 287a for adjusting the flow rate of the heated fluid flowing through the first spiral tube 287 is provided at a branch point branched from the heated fluid storage tank 95 upstream of the first spiral tube 287.
  • the water supply unit 285a for supplying water to the first fluid storage tank 28 la collects water flowing down from the dew condensation filter 9 and supplies it to the first fluid storage tank 281a;
  • the water supply pipe 288b to which water branched from the hot water storage tank 263 and a water circulation pipe 305 described later is supplied also serves as a force.
  • the water supply pipes 288a and 288b are provided with valves for adjusting the flow rate of the water flowing inside.
  • the mixer 286a provided in the first fluid storage tank 281a is connected to the third transmission 289 provided on the third shaft 233, and operates using the rotational force of the cylindrical body 41 as power.
  • the mixer 286a operates in a state where the power from the third transmission 289 is variable based on the temperature detected by the temperature detection sensor provided in the first fluid storage tank 281a.
  • the second spiral tube 294 is disposed so that the lower force also extends over the upper part.
  • the second spiral pipe 294 is provided on the path of the gas exhaust pipe 300 described later, heats the gas flowing through the gas exhaust pipe 300, heats the fluid, and cools the gas.
  • the water supply unit 285b for supplying water to the second fluid storage tank 281b includes a hot water storage tank 263 and a water supply pipe 288c to which water branched from a water distribution pipe 305 described later is supplied.
  • the water supply pipe 288c is provided with a valve for adjusting the flow rate of the water flowing inside.
  • the mixer 286b provided in the second fluid storage tank 281b is connected to the fourth transmission 290 provided on the third shaft 233, and operates using the rotational force of the cylindrical body 41 as power.
  • the mixer 286b operates in a state where the power from the fourth transmission 290 is variable based on the temperature detected by the temperature detection sensor provided in the second fluid storage tank 28 lb.
  • the cooling fluid outflow pipe 260 is provided on a path upstream of the cooling fluid ejection pipe, and extends from the lower part to the upper part of the third fluid storage tank 281c.
  • a third spiral tube 295 is provided.
  • the fluid in the third fluid reservoir 281c and the cooling fluid are heat-exchanged to cool the fluid.
  • a water supply unit 285c for supplying water to the third fluid storage tank 281c is provided on the downstream side of the third spiral pipe 295 of the cooling fluid outflow pipe 260, and the cooling fluid is supplied to the third fluid storage tank 281c as water. It consists of a water supply pipe 296.
  • the water supply pipe 296 is provided with a valve for adjusting the flow rate of water flowing inside.
  • the mixer 286c provided in the third fluid storage tank 281c is connected to the second transmission 69 and operates with the rotational force of the tubular body 41 as power.
  • the mixer 286c operates in a state where the power from the second transmission 69 is variable based on the temperature detected by the temperature detection sensor provided in the third fluid storage tank 281c.
  • the fluid suction pump 282 is connected to a connection pipe 292 that is branched into three, and the connection pipe 292 is connected to each of the fluid storage tanks 281a, 281b, and 281c.
  • the branch pipes of the connecting pipe 292 are provided with the force of NOREV 292a, 292b, 292c to adjust the flow rate so that the ratio of each combusted substance contained in the fluid in the pipe after joining can be adjusted. Yes.
  • Each of the nonrebs 292 a, 292 b, and 292 c is controlled in its opening degree based on a temperature detection sensor that detects the temperature of light emitted from the glass 240, so that the combustion chamber body 200 is within a durable range.
  • the temperature in the combustion chamber body 200 is controlled.
  • the ranking of the energy of the combustibles put in each fluid storage tank 281a, 281b, 281c is the combustion order of the first fluid storage tank 281a. Combustion in the second fluid storage tank 28 lb. Combustion in the third fluid storage tank 28 lc.
  • the fluid ejecting body 284 is inserted into the lower cylindrical body 206, and is formed in a tubular shape with a fluid ejecting port 284a formed at the tip.
  • a drill 284 b is formed on the outer periphery of the fluid ejector 284. By this drill 284b, the ash that is generated by burning in the combustion chamber body 200 and reaches the lower cylindrical body 206 is scraped out to the discharge passage side.
  • the combustion apparatus 2 is provided with a gas exhaust pipe 300 that is connected to an exhaust space 213 provided in the upper portion of the outer chamber body 210 and through which gas exhausted from the gas exhaust port 207 passes.
  • the gas exhaust pipe 300 is provided with a centrifuge 301 on its path.
  • the centrifuge 301 separates into hydrogen, carbon dioxide, other gases such as ozone, and water vapor.
  • the centrifuge 301 is connected to the gas circulation pipe 304 and the water circulation pipe 305.
  • the hydrogen flow pipe 302, the carbon dioxide flow pipe 303, and other gases through which hydrogen flows flow through the gas flow pipe 304 and the hydraulic water flow pipe 305 in which water vapor is liquefied.
  • the hydrogen that has flowed through the hydrogen circulation pipe 302 passes through the gas passage 8 in the attic of the carbon dioxide recovery device 1 and is then compressed by the hydrogen compressor 352.
  • the hydrogen compressor 352 is connected to the high-pressure pump 257 by a pipe line, and is sucked by the high-pressure pump 257 through the hydraulic line generated by the hydrogen compressor 352.
  • the hydrogen flow pipe 302 is formed in an annular shape with the rotation axis as the central axis. Then, liquid nitrogen from the liquid nitrogen circulation pipe 115 is blown onto the annular portion of the hydrogen circulation pipe 302, and the internal hydrogen is cooled.
  • the diacid-carbon flow pipe 303 supplies diacid-carbon to the gas passage 8.
  • the carbon dioxide flow pipe 303 is formed in a ring shape with the rotation axis as the central axis in the gas passage 8.
  • a carbon dioxide outlet for delivering carbon dioxide is provided on the inner peripheral side of the annular portion.
  • the water circulation pipe 305 is connected to the hot water storage tank 263.
  • Water from the water distribution pipe 305 flows into the hot water storage tank 263, the first fluid storage tank 281a, and the second flow animal storage tank 281b. That is, when there is not enough water on the first fluid storage tank 281a and the second fluid storage tank 281b, the opening of the nozzles of the water supply pipes 288b and 288c increases. Water also flows from the hot water storage tank 263 to the water supply pipe side. In addition, when there is sufficient water on the first fluid storage tank 281a and the second fluid storage tank 281b side, the opening of the nozzles of the water supply pipes 288b and 288c becomes small, and the water in the water distribution pipe 305 It also flows into the hot water storage tank 263 side.
  • the gas exhaust pipe 300 has a gas heating fluid heat exchanger that performs heat exchange with the heating fluid in the heating fluid circulation pipe 86 as a heating fluid heating section 87 on the path. 306 is provided.
  • This gas heating fluid heat exchanger 306 is provided in the heating fluid storage tank 303 connected to the heating fluid circulation line 86 on the upstream side of the heat exchanger 87a and the heating fluid circulation line 86 on the downstream side.
  • a plurality of narrow tubes 308 branched from the gas exhaust pipe 300 are provided.
  • the gas exhaust pipe 300 is provided with a power turbine 308 on the path of the gas exhaust pipe 300 extending from the outer chamber body 210 side to the gas-heating fluid heat exchanger 306.
  • the moving catalyst bin 308 generates electricity by the gas flowing through the gas exhaust pipe 300.
  • a lubricating oil circulation pipe 310 is provided for circulating lubricating oil to the shaft bearing 91a.
  • the lubricating oil circulation pipe 310 is a lubricating oil that sucks the oil inside the rod-like body 11 and sends it to the bearing 236 side on the path between the rod-like body 11 and the bearing 236 that supports the third shaft 233.
  • Oil suction bow I Pump 311 is provided.
  • the lubricating oil arch I pump 31 1 is connected to the third transmission 289 and operates with the rotational force of the tubular body 41 as power.
  • a lubricating oil cooler 312 is provided on the path between the upper bearing 211 and the one-side support shaft 91 to cool the lubricating oil heated by heat generated by rotation at various places.
  • the lubricating oil cooler 312 has a helical tube force arranged from the upper part to the lower part of the cooling fluid storage tank 256.
  • All the pipes are covered with a heat insulating member (not shown) in order to avoid releasing heat energy into the air. All power transmissions and transmissions are designed for efficient rotation speeds.
  • the carbon dioxide recovery device 1 uses a diacid-carbon return tube 17 to store carbon dioxide in advance.
  • the diacid-carbon stored in the distillation tank 15 is vaporized by the nitrogen monoxide-carbon heat exchange l l6, and the vaporized diacid-carbon is injected from the diacid-carbon injection port 17a. To do.
  • the carbon dioxide carbon injected from the carbon dioxide injection port 17a hits the blade 41a provided on the cylindrical body 41, whereby the cylindrical body 41 rotates.
  • the gas in the one channel R1 is cooled by the liquid nitrogen from the liquid nitrogen spray unit 100, and the gas in the other channel R2 is cooled by the heated fluid spray unit 80. Heated.
  • the gas in the one flow path R1 is cooled by liquid nitrogen and descends, and when exhausted from the gas exhaust part 23, the gas is exhausted in a state where a vortex is generated by the blades 26.
  • the gas that flows out from the gas exhaust part 23 and flows into the cylindrical body 41 from the gas inflow part 42 exchanges heat with the warming fluid from the warming fluid spraying part 80 and is heated to rise.
  • the heated fluid cooled by exchanging heat with the gas in the other flow path R2 in the rotated tubular body 41 is pressed against the inner wall of the tubular body 41 by centrifugal force and accumulated. Recovered from the heated fluid recovery port 88 to the heated fluid circulation line 86.
  • the gas in the one flow path R1 is swirled by the fixed blade 120, and the swirled gas is stopped by the movable blade 125 to further rotate the rotating body 20.
  • Rotate That is, since the rotating force is imparted to the rotating body 20 by the movable blade 125 that is only driven by the rotating force from the cylindrical body 41, the rotating body 20 rotates efficiently, and the rotating speed of the rotating body 20 increases. The state of centrifugal compression of acid carbon is improved.
  • the gas sucked into the rotator 20 is sprayed with liquid nitrogen in one flow path R1. It is cooled and carbon dioxide becomes mist.
  • the mist-like gas containing carbon dioxide is centrifugally compressed. Carbon dioxide and liquid nitrogen are separated and compressed and aggregated. Carbon dioxide and liquid nitrogen are injected from the outlet 30 and unnecessary gas in the rotating body 20 is led to the gas exhaust part 23 and exhausted. Is done. Then, the carbon dioxide and liquid nitrogen injected from the outlet 30 into the container 10 are further converted into carbon dioxide in the container 10 by the liquid nitrogen injected from the liquid nitrogen injection pipe 18. Heat exchange with liquid nitrogen
  • the rotating body 20 is rotated by the rotational force of the cylindrical body 41, and the rotating body 20 is also rotated by the gas flow in the one flow path R1 and the other flow path R2.
  • the carbon dioxide can be recovered with almost no power from an external force. Therefore, energy saving can be achieved.
  • the gas passage 8 of the carbon dioxide recovery apparatus 1 the gas passing through the gas passage 8 is cooled by the liquid nitrogen from the liquid nitrogen outlet 115a, and the dew condensation filter 9 is moistened by the water from the water outlet 94a. Then, since the cooled gas passes through the condensation filter 9, the water vapor in the gas becomes liquid and adheres to the condensation filter 9. For this reason, a dry gas with relatively little water vapor is sucked from the gas suction unit 22, so that it becomes difficult for moisture to be contained in carbon dioxide centrifuged by the rotating body 20.
  • the liquid nitrogen supply unit 110 also drives the compressor 112 to send the vaporized nitrogen to the condenser 113, cools the nitrogen by the condenser 113 and liquefies it, and converts the nitrogen that has become liquid by the condenser 113. Cooled with a nitrogen cooling device 114 and supplied to the liquid nitrogen spray unit 100. Liquid nitrogen spray unit 100 Sprays the cooled liquid nitrogen from the liquid nitrogen spraying port of the other support shaft which is the liquid nitrogen spraying part 100.
  • the fluid is put into the fluid reservoir.
  • This fluid is adjusted to an appropriate amount of water by water from the water supply unit and stirred by a mixer. Therefore, the fluid is homogenized and burned smoothly in the combustion chamber body 200. Since the mixer is operated by the rotational force of the cylindrical body 41, energy saving can be achieved as compared with a case where a motor for operating the mixer is separately provided.
  • combustion chamber body 200 is operated by the rotational force of rotating body 20 by motive power transmission mechanism 231 of combustion chamber body driving means 230.
  • oxygen and hydrogen are supplied from the oxygen supply device 270 and the hydrogen supply device 271 into the combustion chamber body 200, and the ignition plug of the ignition device 272 is operated.
  • the temperature rises to a high temperature.
  • ceramic particles are introduced from the upper cylinder 205, the ceramic is dissolved by the combustion of hydrogen and is pressed against the outer cylinder 203 side by centrifugal force to form the inner cylinder 204.
  • the fluid suction pump of the fluid supply unit 280 When the fluid suction pump of the fluid supply unit 280 is operated in this state, the fluid is stored in the first fluid storage tank 281a, the second fluid storage tank 281b, and the third fluid storage tank 281c. The fluid is sucked and stored in the fluid temporary storage tank 283, and is injected from the fluid temporary storage tank 283 into the combustion chamber 200 through the animal injector 284. As a result, water in the fluid is thermally decomposed into oxygen and hydrogen, and the combustion product is combusted by the oxygen and oxygen supplied from the oxygen supplier 270. When combustion reaches a steady state, the oxygen supplier 270 and the hydrogen supplier 271 are stopped. In order to stabilize combustion, the ignition device 272, the oxygen supplier 270, and the hydrogen supplier 271 are actuated in a timely manner.
  • the combustion chamber body 200 In the combustion chamber body 200, rising vortices are generated in a steady state, and the combustion chamber body 200 is at a high temperature and high pressure, and the water in the fluid is thermally decomposed oxygen, which causes the combustion product to It burns almost completely. That is, at this time, in the combustion chamber body 200, the melted ceramic becomes cylindrical due to the centrifugal force generated by the high-speed rotation of the combustion chamber body 200, and infrared rays are reflected on the inner surface of the melted ceramics. Infrared rays are less likely to be emitted, resulting in very high temperatures and almost complete combustion. In the combustion chamber body 200, other gases such as hydrogen, carbon dioxide, water vapor, and excess oxygen are generated. Exhausted. The exhaust is used to drive the power turbine 308 for power generation and the like.
  • the combustion chamber body 200 rotates using the rotational force of the tubular body 41 as power, so that energy saving is achieved as compared with a case where a motor or the like for rotating the combustion chamber body 200 is separately provided. be able to.
  • the fluid contains depleted uranium (uranium 238), and this depleted uranium burns in the combustion chamber body 200, so that the temperature in the combustion chamber body 200 becomes even higher.
  • harmful waste oil such as PCB is also decomposed well.
  • the gas that reaches the gas exhaust pipe 300 from the gas exhaust port 207 passes through the gas-heating fluid heat exchanger 306 on the path of the gas exhaust pipe 300.
  • the gas in the gas exhaust pipe 300 is heat-exchanged with the warming fluid in the warming fluid storage tank, and further passes through the second spiral pipe 294 on the downstream side to waste oil in the second fluid storage tank 281b. And heat exchange is performed to the centrifuge 301.
  • the heating fluid is heated by using the waste heat of the gas generated when the combustion product is burned in the combustion device 2. Compared to the case where a separate heating device for heating the heated fluid is provided, energy can be used effectively.
  • the waste oil which is the fluid inside the second fluid reservoir 281b, is heated and injected from the fluid ejector 284, so that the thermal efficiency is good. Can be burned.
  • the gas is cooled by the gas-heated fluid heat exchanger 306 and the second spiral tube 294, and separated by the gas centrifuge 301 into hydrogen, carbon dioxide and other gases and water for recovery. Is done.
  • the supply of air to the combustion chamber body 200 is interrupted, the supply of nitrogen is almost eliminated, and therefore the generation of nitrogen oxides other than those caused by the combustion products is suppressed.
  • the exhaust gas becomes clean and can be easily recovered.
  • carbon dioxide-dioxide separated by the centrifuge 301 is supplied to the gas passage 8 of the carbon dioxide recovery device 1.
  • the carbon dioxide from the combustion device 2 that has entered the gas passage 8 is liquefied in the vessel 10 of the diacid / carbon capture device 1 together with the carbon dioxide in the air and recovered as diacid / carbon. That is, since the carbon dioxide carbon is selectively recovered, the recovery efficiency is improved. Further, compared with the conventional combustion apparatus, the carbon dioxide can be taken out in a liquid state, so that the handling of carbon dioxide can be variously performed.
  • the ash generated in the combustion chamber body 200 falls below the combustion chamber body 200 and is discharged from the discharge passage portion 251.
  • the discharge passage portion 251 is cooled by the cooling fluid flowing through the cooling fluid passage 252.
  • the ash discharged from the discharge passage 251 reaches the water separator 267, where water is separated from the ash and discharged as sludge.
  • the amount of sludge becomes extremely small compared to the fluid to be treated, and the subsequent treatment becomes easy.
  • the generator 70 generates power using the remainder of the rotational force of the cylindrical body 41 from which power for operating the rotating body 20, the combustion chamber body 200, various pumps, a mixer, and the like has been subtracted. Done. Further, the rotational force of the cylindrical body 41 can be used up, and energy saving can be achieved.
  • FIGS. 5 and 6 show a carbon dioxide recovery and combustion apparatus according to the second embodiment.
  • This carbon dioxide recovery and combustion apparatus differs from that of the first embodiment in the structure of gas heating fluid heat exchange 306.
  • the gas heating fluid heat heat exchanger 306a includes a tower 314 that seals a medium made of a gas for heat exchange (for example, carbon dioxide), and a shaft that is rotatable about the tower 314.
  • a rotating cylinder 317 is provided which has a medium supply port 315 formed at one end in the axial direction and a medium discharge port 316 formed at the other end.
  • the other flow path R4 leading to the supply port 315 through the outside of the cylindrical body 317 is formed.
  • the rotating cylinder 317 receives the medium flowing into the supply cylinder 317 from the rotating cylinder 317 and applies the rotational force to the rotating cylinder 317 and the medium discharged from the discharge outlet 316.
  • the second moving blade 318b that receives the rotation and applies a rotational force to the rotating cylinder 317 is provided.
  • a spiral tube 320 is provided that circulates the heated fluid from the other end in the axial direction toward the one end and cools the medium passing through the first flow path R3.
  • a gas is circulated from one end side to the other end side in the axial direction, and the medium passing through the other flow path R4 is heated.
  • the ridge tube 321 is provided.
  • the medium in the one flow path R3 is spirally wound.
  • the medium in the other flow path R4 is cooled by exchanging heat with the heated fluid in the tube 320, and is heated by exchanging heat with the ridge pipe 321 and passes through the one flow path R3 and the other flow path R4.
  • Media convection occurs.
  • the rotating cylinder 317 is rotated by the convection of the medium, and the rotational force of the rotating cylinder 317 is obtained as power through the gear mechanism 327.
  • the generator 328 is driven by this power.
  • This gas-heating fluid heat exchanger 306b is supported by a columnar body 314 and a medium rotatably supported by the columnar body 314 and having a gas force for heat exchange at one end in the axial direction (for example, diacid salt).
  • a rotating inner cylinder 322 having a carbon supply port 315 and a medium outlet 316 formed at the other end, and is provided to be rotatable with respect to the tower 314 and the rotating inner cylinder 322.
  • the section is located between the tower 314 and the rotating inner cylinder 322, and includes a rotating outer cylinder 323 that seals the medium.
  • the gas-warming fluid heat exchanger 306b has a one-side flow path R3 extending from the supply port 315 of the rotating inner cylinder 322 to the discharge port 316 through the inside of the rotating inner cylinder 322 and the rotating inner cylinder. 3
  • the other flow path from the discharge port 316 of 22 through the outside of the rotating inner cylinder 322 to the supply port 315 R 4 is formed.
  • a rotating blade 318 that receives a medium flowing into the supply port 315 and applies a rotational force to the rotating inner cylinder 322 is provided on one end side of the rotating inner cylinder 322, and one end of the rotating outer cylinder 323 is provided.
  • a guide blade 324 that guides the medium to the moving blade 318 and applies a rotational force to the rotating outer cylinder 323 is provided on the inner circumference on the side.
  • the curvature and the blowing direction of the guide blade 324 are set freely according to the temperature difference, the rotational speed, and the internal pressure to improve the efficiency.
  • the heated fluid is circulated from the other end side in the axial direction toward the one end side along the axial direction of the rotating inner cylinder 322, and the medium passing through the flow path R3 is cooled.
  • a number of cooling pipes 325 are lined up. Further, on the wall portion of the rotating outer cylindrical body 323, gas is circulated in the axial direction of the rotating outer cylindrical body 323 toward the one end side in the axial direction, and the medium passing through the other flow path R4 is passed.
  • a large number of heating tubes 326 are arranged in a row.
  • the medium in the one flow path R3 is transferred to the cooling pipe 325.
  • Heating Cools by exchanging heat with the fluid, and the medium in the other flow path R4 is heated by exchanging heat with the gas in the heating pipe 326, and the convection of the medium passing through the one flow path R3 and the other flow path R4 Arise.
  • the rotating inner cylinder 322 and the rotating outer cylinder 323 are rotated by the convection of the medium, and the rotational force of the rotating inner cylinder 322 and the rotating outer cylinder 323 is obtained as power through the gear mechanism 327.
  • this gas heating fluid heat exchanger 306b compared with the above-described gas heating fluid heat exchanger 306a, not only the rotation inner cylinder 322 corresponding to the rotation cylinder 317 but also the rotation outer cylinder 323 Since power is also obtained, power acquisition efficiency can be improved.
  • FIGS. 11 to 13 show a carbon dioxide recovery and combustion apparatus according to the third embodiment.
  • this carbon dioxide recovery and combustion apparatus uses part of the gas exhausted from the combustion apparatus 2 as a heating fluid.
  • the gas exhaust pipe 300 is connected to the one side support shaft 91 via a case 340 that covers one end side in the axial direction of the one side support shaft 91.
  • a blade 330 for generating a vortex flow in the case 340 is provided on one axial end side of the one side support shaft 91. It is.
  • the space between the outer surface of the cylinder 21 and the inner surface of the cylinder member 81 is divided into two axially outer and inner spaces 332, 33 3 by a cylindrical partition 331 provided on the same axis as the rotation shaft. It is separated by.
  • the one side support shaft 91 is connected to two pipe bodies 334 and 335 on the other end side in the axial direction. Among these, the upper tube body 334 communicates with the axially inner space 332 separated by the partition 331. In addition, the lower pipe body 335 communicates with an axially outer space 333 separated by a partition 331.
  • a gas delivery line 336 for sending the gas in the space 332 is provided in the vicinity of the upper portion of the jet outlet 30 from the space inside the axial direction separated by the partition 331. It has been. Further, the gas flowing into the space outside in the axial direction separated by the partition 331 is also sprayed toward the tubular body 41 by the heated fluid spraying loca provided on the surface of the tubular member 81.
  • a hydrogen suction pipe 350 having a plurality of hydrogen suction ports capable of sucking hydrogen is provided on the shaft of the one side support shaft 91.
  • the hydrogen suction pipe 350 is connected to a hydrogen storage tank 351 that stores the sucked hydrogen, and a hydrogen compressor 352 is provided on the path, and the hydrogen suction rocker is also sucked by the operation of the hydrogen compressor 352.
  • a part of the hydrogen suction pipe 350 passes through the gas passage 8 in the attic.
  • the hydrogen suction pipe 350 is formed in an annular shape around the rotation axis in the gas passage 8, and liquid nitrogen from the liquid nitrogen circulation pipe 115 is blown onto the annular portion to cool the internal hydrogen.
  • the hydrogen suction pipe 350 is provided with a hydrogen supply pipe 353 connected to the fluid primary storage tank 283 closer to the hydrogen storage tank 351 than the annular portion. This hydrogen supply pipe 353 supplies hydrogen to the primary animal reservoir 283.
  • a warming fluid supply pipe 86a is provided instead of the warming fluid circulation pipe 86. Unlike the warming fluid circulation conduit 86, the warming fluid supply conduit 86 a is connected to the warm water reservoir 263 on the downstream side of the warming fluid reservoir 95.
  • the gas exhausted from the combustion device 2 passes through the gas exhaust pipe 300 and reaches the carbon dioxide collecting device 1 side, becomes a vortex in the case 340, and flows into the one side support shaft 91.
  • the gas having a low specific gravity is separated into the inner side in the axial direction of the one-side support shaft 91 and the gas having a higher specific gravity is separated into the outer side in the axial direction by centrifugal force.
  • hydrogen having a low specific gravity is distributed on the axis of the one-side support shaft 91 and is sucked from the hydrogen suction pipe 350.
  • a gas containing a large amount of carbon dioxide having a high specific gravity comes to be distributed on the outer side in the rotational axis direction, and mainly flows into the upper tube provided on the other axial end side of the one side support shaft 91.
  • the centrifugal force caused by the rotation of the rotating body 20 only the carbon dioxide is compressed and gathered in the space, and only carbon dioxide is injected into the container 10 through the gas delivery line.
  • the gas reaches the gas exhaust port from the gas inflow portion 42 through the other flow path R2.
  • the carbon dioxide from the combustion device 2 sprayed in the container 10 is liquefied and recovered in the container 10 together with the carbon dioxide injected from the injection port 30 in the same manner as described above.
  • FIG. 14 shows a carbon dioxide recovery and combustion apparatus according to the fourth embodiment.
  • this carbon dioxide recovery and combustion apparatus is different from that of the third embodiment in order to use the gas discharged from the gas outlet 43 in the outer wall 5 of the carbon dioxide recovery apparatus 1.
  • a duct 150 leading out is provided.
  • the duct 150 is provided in the lower part of the outer shell 5. In this way, the exhausted gas can be easily led out.
  • cooling means 155 is provided for injecting water into the gas passing through the outer shell 5 and reaching the duct 150 to cool it. In this way, it is possible to prevent problems caused when high-temperature gas is led out.
  • the cooling means 155 is connected to the heated fluid circulation conduit 86 downstream of the heated fluid suction pump 89 and upstream of the heated fluid reservoir 95 via an electromagnetic valve 156. , Outer The heating fluid injection port 157 is provided on the inner wall of this. The heated fluid ejection port 157 ejects the heated fluid from the electromagnetic valve 156 to the cylindrical body 41 side.
  • the warming fluid ejected from the warming fluid ejection port 157 is recovered at the warming fluid recovery port 88 of the warming fluid circulation line 86.
  • the warming fluid recovery port 88 flows through the inside of the cylindrical body 41 and flows out of the cylindrical body 41 from the calorie warm fluid recovery port 88 and is injected from the warming fluid injection port 157 into a cylindrical shape.
  • An opening 88b is formed on the inner side and the upper side so that the heated fluid flowing down the outside of the body 41 can be collected.
  • the warming fluid ejection port 157 can eject the warming fluid to the cylindrical body 41 side in a timely manner by opening and closing the electromagnetic valve 156.
  • the gas led out from the duct 150 is used for heating or cooling a room, for example.
  • a drain pipe 160 for draining the heated fluid flowing in the heated fluid circulation pipe 86 is provided on the upstream side of the heat exchanger 87a of the heated fluid circulation pipe 86. It has been.
  • the drain pipe 160 is connected to the hot water storage tank 263, the cooling fluid storage tank 256, and the warming fluid outlet port 161, and when there is excess warming fluid flowing through the warming fluid circulation line 86, the draining pipe 160 is drained. The water flowing inside is extracted from the pipe 160. Then, the water as the heating fluid is supplied from the drain pipe 160 to the hot water storage tank 263 and the cooling fluid storage tank 256, or is taken out from the heating fluid outlet 161 through the drain pipe 160. Or
  • the structure of the gas-heating fluid heat exchanger 306c is different from the carbon dioxide recovery and combustion apparatus described above.
  • the gas-heating fluid heat exchanger 306c is supplied with the diacid-carbon supplementation in which the gas-heating fluid heat exchanger 306c is supplemented with the diacid-carbon from the diacid-carbon storage tank 15.
  • Tube 3 80 is connected.
  • a branch pipe 362 branched to return to the pipe line 361 on the upstream side of the hot fluid heat exchanger 306c is provided.
  • the branch pipe 362 is provided with, for example, a heater 363 that exchanges heat between room air and a heated fluid flowing through the branch pipe 362 so that the humidity of the room can be adjusted.
  • Figure 364 is a branch pipe pump.
  • an upper end side partition wall 370 is provided in the vicinity of the upper end inside the rotating outer cylinder 323. Between the upper end side partition wall 370 and the upper end inner wall of the rotating outer cylinder, a primary chamber 371 into which the gas in the gas exhaust pipe 300 flows is connected to the gas exhaust pipe 300 on the combustion apparatus 2 side. In the primary chamber 371, the heating pipe 326 is connected to the upper end side partition wall 370 through the upper end of the heating pipe 326.
  • a lower end side partition wall 372 is provided in the vicinity of the lower end inside the rotating outer cylinder 323.
  • a secondary chamber 373 into which the gas from the heating tube 326 flows is formed between the lower end side partition wall 372 and the lower end inner wall of the rotating outer cylinder.
  • the lower end side of the heating tube 326 is connected to the lower end side partition wall 372 so as to penetrate therethrough.
  • the secondary chamber 373 communicates with the space in the tower 314.
  • the gas flowing through the heating pipe 326 is discharged from the gas exhaust pipe 300 on the centrifuge 301 side connected to the lower part of the tower 314 to the outside of the tower 314.
  • a rubber packing 324 that is in contact with the periphery of the heating tube 326 and absorbs the hearing contraction of the heating tube 326 is provided.
  • primary chamber fins 375 that receive gas flowing into the primary chamber 371 and apply a rotational force to the rotating outer cylinder 323 are provided.
  • secondary chamber fins 376 that receive a gas flowing into the secondary chamber 373 and apply a rotational force to the rotating outer cylinder 323.
  • the gear mechanism 327 of the gas-heating fluid heat exchange ⁇ 306c is housed in a gear box 377 in which lubricating oil is stored.
  • the gear box 377 is connected to a pipe line 310 a connected to the lubricating oil circulation pipe 310, and the lubricating oil inside the lubricating oil circulation pipe 310 circulates.
  • the gas from the duct 150 can be used for room heating and the like, and energy saving can be achieved.
  • the heated fluid that has been cooled and exchanged with liquid nitrogen in the tubular body 41 by the electromagnetic valve 156 and has flowed into the heated fluid circulation pipe 86 reaches the heated fluid injection port 157, and this heated It is ejected from the fluid ejection port 157. Then, heat exchange is performed between the jetted heated fluid and the gas passing through the outer shell 5 and reaching the dirt 150, and the gas passing through the outer shell 5 and reaching the duct 150 is cooled. Thereby, the gas led out from the duct 150 can be used for cooling the room and the like, and energy saving can be achieved.
  • a heated fluid flows through the branch pipe 362
  • a part of the heated fluid heated by exchanging heat with the gas in the gas heated fluid heat exchanger 306c is heated by the heater 363 with the air in the room. Exchanges can be made, rooms can be heated, and energy can be saved.
  • the power turbine 308 may be linked to the generator 70, or the design may be changed as appropriate.
  • a detour pipe that branches from the nitrogen circulation pipe 111 and returns to the nitrogen circulation pipe 111 is provided downstream of the nitrogen suction pump as the compressor 112 in the nitrogen circulation pipe 111.
  • a heat exchanger may be provided in which the detour pipe passes through the top of a mountain at a certain altitude and the heat is exchanged with gas near the summit. In this case, since the heat exchange between the nitrogen sucked and compressed by the nitrogen suction pump and the air having a relatively low temperature near the summit can be performed, liquefaction of nitrogen is promoted.
  • bypass pipe that branches from the nitrogen circulation pipe 111 to the nitrogen circulation pipe 111 downstream of the nitrogen suction pump that is the compressor 112 and returns to the nitrogen circulation pipe 111 again. It is also possible to pass through a seawater storage tank that is provided by pumping deep water through this separate bypass pipe. In this case, since the heat exchange can be performed between the nitrogen sucked and compressed by the nitrogen suction pump and the deep water having a relatively low temperature, the liquefaction of nitrogen is promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 二酸化炭素回収及び燃焼装置は、容器10内に二酸化炭素若しくは二酸化炭素を含む気体を供給するとともに、容器10内に液体窒素を供給し、容器10内で二酸化炭素と液体窒素との熱交換を行なわせて、二酸化炭素を液化させる二酸化炭素回収装置1と、燃焼物に水が混合された流動物が供給され、流動物中の水を熱分解して燃焼物を燃焼させるとともに、燃焼後の二酸化炭素を含むガスを排気し、該ガス中の少なくとも二酸化炭素を二酸化炭素回収装置1の容器10内に送給する燃焼装置2とを備えた構成とした。

Description

明 細 書
二酸化炭素回収及び燃焼装置
技術分野
[0001] 本発明は、大気等の二酸化炭素 (CO ,炭酸ガス)を液化して回収する二酸化炭素
2
回収装置と廃棄物等を高温下で完全燃焼できる燃焼装置とを備えた二酸化炭素回 収及び燃焼装置に関する。
背景技術
[0002] 従来、廃棄物等を高温下で完全燃焼できる燃焼装置としては、本願出願人の研究 に係るものがあり、例えば、特許文献 1 (国際公開第 2005Z033582号パンフレット) に記載されたものが知られて 、る。
この燃焼装置は、廃棄物等の燃焼物に水が混合された流動物が供給され、該流動 物中の水を熱分解して燃焼物を燃焼させるとともに、燃焼後の二酸化炭素を含むガ スを排気するものである。そして、燃焼装置力も排気されたガスは、遠心分離器で水 素,二酸ィ匕炭素等の各種ガスに分離される。
[0003] 一方、本願出願人の研究に係るもののなかに二酸ィ匕炭素を取り出す二酸ィ匕炭素 回収装置がある(特開 2005— 82419号公報)。
この二酸ィ匕炭素回収装置は、大気を容器内に液体窒素とともに供給し、該容器内 で二酸化炭素と液体窒素との熱交換を行なわせて二酸化炭素を液化させて保存す るものである。
[0004] 特許文献 1:国際公開第 2005Z033582号パンフレット
特許文献 2:特開 2005— 82419号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上記の燃焼装置にあっては、遠心分離器で、他の気体と分離して二 酸ィ匕炭素を回収してはいるが、必ずしも二酸ィ匕炭素を選択的に回収することが確実 でなぐ二酸ィ匕炭素の回収効率が劣るという問題がある。
一方、上記の二酸化炭素回収装置は、大気中の二酸化炭素のみを回収している ので、その利用が限定されるという問題があった。
[0006] 本発明は、上記の問題点に鑑みて為されたもので、燃焼装置カゝら排気されたガス を二酸ィ匕炭素回収装置で液ィ匕して選択的に回収し、二酸化炭素の回収効率を向上 させた二酸化炭素回収及び燃焼装置の提供を目的とする。
課題を解決するための手段
[0007] このような目的を達成するための本発明の二酸ィ匕炭素回収及び燃焼装置は、容器 内に二酸ィ匕炭素若しくは二酸化炭素を含む気体を供給するとともに、該容器内に液 体窒素を供給し、該容器内で二酸ィ匕炭素と液体窒素との熱交換を行なわせて二酸 化炭素を液化させる二酸ィ匕炭素回収装置と、燃焼物に水が混合された流動物が供 給され、該流動物中の水を熱分解して燃焼物を燃焼させるとともに、燃焼後の二酸 化炭素を含むガスを排気し、該ガス中の少なくとも二酸ィ匕炭素を上記二酸ィ匕炭素回 収装置の容器内に送給する燃焼装置とを備えた構成としてある。
これにより、二酸化炭素回収装置の容器内において、燃焼装置力 排気されたガス の二酸ィ匕炭素と液体窒素とを熱交換し、二酸ィ匕炭素を液ィ匕して選択的に回収するこ とができる。そのため、二酸ィ匕炭素を効率的に回収することができる。
[0008] また、本発明の二酸化炭素回収及び燃焼装置は、前記二酸化炭素回収装置が、 液ィ匕ニ酸ィ匕炭素を底部カゝら取り出し可能な容器と、該容器に対して回転可能に設け られ、気体を吸引して遠心力により外周側に二酸化炭素を分離して圧縮集合させる とともに、分離して圧縮集合した前記二酸化炭素を液体窒素とともに外周に設けた複 数の噴出口から前記容器内に噴射させ、前記容器内で二酸化炭素と液体窒素との 熱交換を行なわせて、二酸化炭素を液化させる中空状の回転体と、該回転体を回転 させる回転体駆動手段と、前記回転体に設けられ気体を吸引する気体吸引部と、前 記回転体に設けられ不要な気体を排気する気体排気部と、前記回転体内に設けら れ該回転体内に液体窒素を散布する液体窒素散布部と、該液体窒素散布部に液体 窒素を供給する液体窒素供給部とを備えた構成としてある。
[0009] これにより、液化二酸化炭素を回収するとき、常時、回転駆動手段により回転体が 回転するとともに、液体窒素供給部力 液体窒素が液体窒素散布部に供給され、液 体窒素散布部から液体窒素が回転体内に噴出する。そして、この回転体に、大気か らの気体が取り入れられるとともに、燃焼装置力 二酸ィ匕炭素が送給される。これらの 気体は、回転体内で遠心圧縮されることにより、二酸化炭素が分離して回転体の外 周側に圧縮集合する。また、回転体内の不要な気体は、気体排気部から回転体の外 部に排気される。
そして、回転体の外周側に圧縮集合した二酸ィ匕炭素は、液体窒素散布部の噴出 口から噴出する液体窒素とともに、回転体の外周に設けた複数の噴射口から容器内 に噴射される。この噴射により、容器内で二酸ィ匕炭素と液体窒素との熱交換が行な われ、二酸ィ匕炭素は液ィ匕して容器の底部に流下する。
この場合、二酸化炭素が分離して回転体の外周側に圧縮集合し、この圧縮集合し た二酸ィ匕炭素のみが液化されることによって、空気中の微量の二酸化炭素及び燃焼 装置からの二酸化炭素が、選択的に効率よく液化される。
[0010] また、本発明の二酸化炭素回収及び燃焼装置は、前記回転体が、回転軸方向一 端に前記気体吸引部が形成され、回転軸方向他端に前記気体排気部が形成された 筒状に形成され、前記回転体駆動手段が、前記回転体の外側に壁部を有し、前記 容器及び回転体に対して回転可能に設けられるとともに、回転軸方向他端側に設け られ前記回転体の気体排気部からの気体が流入する気体流入部及び回転軸方向 一端側に設けられ内部から外部に気体を排出する気体排出口を有した筒状体と、前 記気体排出口に設けられ、該気体排出口から排出された気体を受けて前記筒状体 を回転させる動翼と、前記容器及び筒状体を覆う外郭に設けられるとともに、気体排 出口から排出された気体を受ける静翼と、前記筒状体の回転力を前記回転体の回 転力に連係させる回転力伝達機構と、前記回転体と筒状体との間に加温流体を散 布する加温流体散布部と、該加温流体散布部に加温流体を供給する加温流体供給 部とを備え、前記回転体の気体吸引部から該回転体の内部を通って気体排気部に 至る一方流路において気体を冷却し、前記回転体の気体排気部力 該回転体の外 側を通って前記筒状体の気体排出口に至る他方流路において気体を加温して、気 体の流れを生じさせることにより、前記回転体及び筒状体に回転力を付与する構成と してある。
[0011] 二酸ィ匕炭素回収装置で二酸ィ匕炭素を回収する際には、以下のようになる。 液体窒素散布部からの液体窒素により、回転体内では、一方流路の気体が冷却さ れる。この際、一方流路の気体は、液体窒素で冷却されて降下する。一方、気体排 気部から流出し気体流入部から筒状体内に流入した気体は、加温流体散布部から の加温流体と熱交換して加温されて上昇する。
そして、他方流路を上昇する気体は、気体排出ロカもでる際に、動翼に作用し、筒 状体を回転させるとともに、静翼に向力つて噴射される。この噴射による反発力によつ ても筒状体が回転する。
[0012] これにより、一方流路及び他方流路の気体の流れによって回転した筒状体の回転 力が、回転力伝達機構を介して、回転体に伝達される。そのため、モータ等を用いて 回転体を回転させる場合と比較すると、外部力 の動力を殆ど用いることなく二酸ィ匕 炭素を回収することができ、省エネルギ化を図ることができる。
[0013] また、本発明の二酸化炭素回収及び燃焼装置は、前記回転体を軸支するとともに 該回転体の内部に挿通される支軸と、前記支軸に設けられ、前記回転体内の一方 流路を通る気体に渦流を発生させる固定翼と、前記回転体の内壁に設けられ、前記 固定翼により渦流となった気体を受けて前記回転体を回転させる可動翼とを備えた 構成としてある。
これにより、一方流路において、一方流路の気体が固定翼により渦流となるとともに 、この渦流となった気体力 可動翼に衝止して回転体をさらに回転させる。そのため、 筒状体からの回転力だけでなぐ可動翼によっても回転体に回転力を付与できるの で、回転体を効率的に回転させることができ、回転体の回転も速くなり、二酸化炭素 を良好に遠心圧縮することができる。
[0014] また、本発明の二酸化炭素回収及び燃焼装置は、前記外郭に、前記気体排出口 力 排出される気体を用いるために、該気体を外部に導出するダクトを設けた構成と してある。
これにより、排出される気体を、外部に容易に導出することができる。
[0015] また、本発明の二酸化炭素回収及び燃焼装置は、前記外郭を通り前記ダクトに至 る気体に対して、水を噴射して冷却する冷却手段を設けた構成としてある。
これにより、高温の気体が外部に導出されるといった不具合を防止することができる [0016] また、本発明の二酸化炭素回収及び燃焼装置は、前記燃焼装置が、空気の供給 が遮断された状態で、燃焼物に水の混合された流動物が供給され、該流動物中の 水を熱分解して燃焼物を燃焼させ、燃焼後のガスを排気する燃焼室体と、前記流動 物を前記燃焼室体に供給する流動物供給部と、前記燃焼室体を囲繞するとともに、 該燃焼室体を回転駆動可能に支持する外側室体と、前記燃焼室体を回転駆動させ る燃焼室体駆動手段とを備え、前記燃焼室体の下部に、該燃焼室体内に連通し流 動物を導入する下部開口を設け、前記燃焼室体の上部に、前記燃焼室体に連通し 排気を排出する上部開口を設け、前記燃焼室体が外筒と内筒を有し、前記燃焼室 体の内筒が、前記燃焼室体の遠心力で外筒側に押しつけられ燃焼室体の内壁を形 成する耐熱流体からなり、前記燃焼室体駆動手段が、前記筒状体に連係して該筒状 体の回転力力 の動力を前記燃焼室体に伝達する動力伝達機構を備えた構成とし てある。
[0017] これによれば、燃焼室体内において、空気の供給が遮断された状態で、燃焼物に 水の混合された流動物が供給され、流動物中の水が酸素と水素に熱分解され、この 酸素によって燃焼物がほぼ完全燃焼する。また、燃焼室体の高速回転による遠心力 によって耐熱流体が内筒を形成し、この溶解した耐熱流体の円筒内面で赤外線が反 射し合い、燃焼室体内は非常に高温になる。そのため、燃焼室体内では、上昇渦が 生じ、燃焼室体内は高温高圧となり、流動物中の水が熱分解されることにより発生し た酸素によって、燃焼物が確実にほぼ完全燃焼する。
この場合、燃焼室への空気の供給が遮断されているので、窒素の供給がほとんど なくなる。そのため、燃焼物に起因するもの以外の窒素酸ィ匕物の生成が抑制される。 その結果、排気ガスがクリーンとなり、二酸化炭素回収装置においても純度の高い二 酸ィ匕炭素を得ることができる。
また、この際、燃焼室体は、筒状体の回転力を動力として回転するので、燃焼室体 を回転させるモータ等を別途設けた場合と比較すると、省エネルギ化を図ることがで きる。
[0018] また、本発明の二酸化炭素回収及び燃焼装置は、前記加温流体供給部が、前記 筒状体内に散布された加温流体を回収して前記加温流体散布部に循環させる加温 流体循環管路と、前記加温流体循環管路の経路上において、該加温流体循環管路 を流通する加温流体を加温する加温流体加温部とを備え、前記加温流体加温部が 、前記燃焼装置から排気されたガスと前記加温流体との間で熱交換する熱交 を 備えた構成としてある。
これにより、燃焼装置にて燃焼物を燃焼した後、排気された際に生じたガスの廃熱 を利用して、加温流体が加温されるので、加温流体を加温する加温装置を別途設け た場合と比較すると、エネルギを有効利用することができる。
また、本発明の二酸化炭素回収及び燃焼装置は、前記熱交換器が、塔状体と、前 記塔状体に回転可能に軸支され、軸方向一端に熱交換用の気体力 なる媒体の供 給口が形成され、他端に媒体の排出口が形成された回転内筒体と、前記塔状体及 び回転内筒体に対して回転可能に設けられ、壁部が前記塔状体と回転内筒体との 間に位置するとともに、前記媒体を密封する回転外筒体とを備え、前記回転内筒体 の供給ロカ 該回転内筒体の内部を通って排出口に至る一方流路及び前記回転 内筒体の排出ロカ 該回転内筒体の外側を通って供給口に至る他方流路を形成し 、前記回転内筒体の一端側に、前記供給口に流入する媒体を受けて該回転内筒体 に回転力を付与する動翼を設け、前記回転外筒体の一端側の内周に、前記動翼に 媒体を導くとともに前記回転外筒体に回転力を付与するガイド翼を設け、前記回転 内筒体の壁部であって該回転内筒体の軸方向に沿って、前記加温流体を軸方向他 端側から一端側に向けて流通させ、前記一方流路を通る媒体を冷却する多数の冷 却管を列設し、前記回転外筒体の壁部であって該回転外筒体の軸方向に沿って、 前記ガスを軸方向一端側から他端側に向けて流通させ、前記他方流路を通る媒体 を加温する多数の加温管を列設し、前記一方流路及び他方流路を通るように、媒体 に温度差を付与して媒体の対流を発生させ、該媒体の対流によって、前記回転内筒 体及び回転外筒体を回転させて動力を得る構成としてある。
これにより、ガスと加温流体との熱交換時に、動力が得られる。そのため、例えば、 この動力を用いて発電機で発電するようにすれば、省エネルギ化を図ることができる [0020] また、本発明の二酸化炭素回収及び燃焼装置は、前記加温流体として、前記燃焼 装置力も排気されたガスの一部を用いた構成としてある。
これによれば、加温流体として、燃焼装置力 排気された温度の高いガスの一部を そのまま用いるので、他方流路の気体の加温を効率的に行なうことができる。
発明の効果
[0021] 本発明の二酸化炭素回収及び燃焼装置によれば、燃焼装置から排気されたガスを 、二酸ィ匕炭素回収装置の容器内で液体窒素と熱交換し、液ィ匕して選択的に回収す ることができ、二酸ィ匕炭素を効率的に回収することができる。
図面の簡単な説明
[0022] [図 1]本発明の第一実施形態に係る二酸化炭素回収及び燃焼装置を示す図である
[図 2]本発明の第一実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素回 収装置の各種流体等の流れを示す系統図である。
[図 3]本発明の第一実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素回 収装置を示す図である。
[図 4]本発明の第一実施形態に係る二酸化炭素回収及び燃焼装置の燃焼装置を示 す図である。
[図 5]本発明の第二実施形態に係る二酸化炭素回収及び燃焼装置を示す図である
[図 6]本発明の第二実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素回 収装置の各種流体等の流れを示す系統図である。
[図 7]本発明の第二実施形態に係る二酸化炭素回収及び燃焼装置のガス 加温流 体熱交換器を示す図である。
[図 8]本発明の第二実施形態に係る二酸化炭素回収及び燃焼装置のガス 加温流 体熱交換器の変形例を示す図である。
[図 9]本発明の第二実施形態に係る二酸化炭素回収及び燃焼装置のガス 加温流 体熱交換器の変形例を示す図であり、図 8中 A— A線断面を示す図である。
[図 10]本発明の第二実施形態に係る二酸化炭素回収及び燃焼装置のガス 加温 流体熱交換器の変形例を示す図であり、図 8中 B— B線断面を示す図である。
[図 11]本発明の第三実施形態に係る二酸化炭素回収及び燃焼装置を示す図である
[図 12]本発明の第三実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素 回収装置の各種流体等の流れを示す系統図である。
[図 13]本発明の第三実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素 回収装置を示す図である。
[図 14]本発明の第四実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素 回収装置を示す図である。
[図 15]本発明の第四実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素 回収装置の二酸化炭素回収装置を示す図である。
[図 16]本発明の第四実施形態に係る二酸化炭素回収及び燃焼装置の二酸化炭素 回収装置のガス 加温流体熱交換器を示す図である。
符号の説明
1 二酸化炭素回収装置
2 燃焼装置
5 外郭
6 屋根
7 塔体
8 気体通路
8a 空気取り入れ口
9 結露フィルタ
10 容器
11 椀状体
12 入り口
13 二酸化炭素吸引ポンプ
14 二酸化炭素吸引パイプ
15 二酸化炭素貯留タンク 二酸化炭素取出パイプ 二酸化炭素回帰管a 二酸化炭素噴射口 液体窒素噴射管 回転体
筒体
a 水排出孔
気体吸引部 気体排気部 盆状体
リング体
羽根
回転体回転軸 噴出口
台状体
天板
側壁
軸受け
一般部
肉厚部
突片
回転体駆動手段 筒状体
気体流入部
気体排出口 案内板体
底壁
孔 シール部材 動翼
羽根
静翼
羽根
回転力伝達機構 第 1原動ギア 第 1従動ギア 第 1シャフト 第 2原動ギア 第 2従動ギア 第 2シャフト 第 1変速機 ギア
第 2変速機 発電機
加温流体散布部 加温流体供給部 加温流体循環管路 加温流体加温部 加温流体回収口 受け体
加温流体吸引ポンプ 一方側支軸 連通管体
屋根冷却部 水吹出管 95 加温流体貯留槽
100 液体窒素散布部
101 他端側支軸
101a 他端側支軸軸受
110 液体窒素散布部
111 窒素循環管路
112 圧縮機
113 凝縮器
114 窒素冷却装置
115 液体窒素流通管路
115a 液体窒素吹き出し口
116 窒素一二酸化炭素熱交換器
117 窒素周回管路
120 固定翼
125 可動翼
200 燃焼室体
201 下部開口
202 上部開口
203 外筒
204 内筒
205 上部筒体
206 下部筒体
207 ガス排気口
210 外側室体
211 上部側軸受
212 下部側軸受
213 排気空間
230 燃焼室体駆動手段 231 動力伝達機構
232 ギア装置
233 第 3シャフト
234 第 3原動ギア
235 第 3従動ギア
240 ガラス
250 中間仕切壁
251 排出通路
252 冷却流体通路
253 流入口
255 冷却流体供給部
256 冷却流体貯留槽
257 高圧ポンプ
258 冷却流体一時貯留槽
259 流入管
260 冷却流体流出管
261 冷却流体噴射管
261a L 冷却流体噴射口
262 ガラス冷却管
263 温水貯留槽
264 逆止弁
265 流量調整バノレブ
267 水分分離器
268 管路
270 酸素供給器
271 水素供給器
272 着火装置
280 流動物供給部 281a 第 1流動物貯留槽
281b 第 2流動物貯留槽
281c 第 3流動物貯留槽
282 流動物吸引ポンプ
283 流動物一次貯留槽
284 流動物噴射体
285a, 285b, 285c 水供給部
286a, 286b, 286c ミキサ
287 第 1螺旋状管
287a 電磁バルブ
288a, 288b 水供給管
289 第 3変速機
290 第 4変速機
291 第 5変速機
292 接続管
294 第 2螺旋状管
295 第 3螺旋状管
300 ガス排気管
301 遠心分離器
302 水素流通管
303 二酸化炭素流通管
304 ガス流通管
305 水流通管
306, 306a, 306b, 306c ガス—カロ温流体熱交翻 310 潤滑オイル循環管路
314 塔状体
315 供給口
316 排出口 317 回転筒体
318 動翼
318a 第 1動翼
319b 第 2動翼
320 螺旋状管
321 凸条
322 回転内筒体
323 回転外筒体
324 ガイド翼
325 冷却管
326 加温管
327 ギヤ機構
328 発電機
R1 一方流路
R2 他方流路
R3 一方流路
R4 他方流路
発明を実施するための最良の形態
[0024] 以下、添付図面に基づいて、本発明の実施形態に係る二酸化炭素回収及び燃焼 装置について詳細に説明する。
[0025] 図 1及び図 2には、本発明の第一実施形態に係る二酸化炭素回収及び燃焼装置 を示している。
この二酸化炭素回収及び燃焼装置は、二酸化炭素回収装置 1と、燃焼装置 2とを 備えている。
二酸化炭素回収装置 1は、容器 10内に二酸ィ匕炭素若しくは二酸ィ匕炭素を含む気 体を供給するとともに、容器 10内に液体窒素を供給し、容器 10内で二酸化炭素と液 体窒素との熱交換を行なわせて二酸ィ匕炭素を液化させる。
また、燃焼装置 2は、燃焼物に水が混合された流動物が供給され、流動物中の水 を熱分解して燃焼物を燃焼させるとともに、燃焼後の二酸ィ匕炭素を含むガスを排気し
、ガス中の少なくとも二酸ィ匕炭素を二酸ィ匕炭素回収装置 1の容器 10内に送給する。
[0026] 詳しくは、図 3に示すように、二酸化炭素回収装置 1は、外郭 5で覆われ、液化二酸 化炭素を底部から取り出し可能な容器 10と、容器 10に対して回転可能に設けられ、 気体を吸引して遠心力により外周側に二酸化炭素を分離して圧縮集合させるととも に、分離して圧縮集合した二酸化炭素を液体窒素とともに外周に設けた複数の噴出 口 30から容器 10内に噴射させ、容器 10内で二酸ィ匕炭素と液体窒素との熱交換を行 なわせて、二酸化炭素を液化させる中空状の回転体 20と、回転体 20を回転させる 回転体駆動手段 40と、回転体 20に設けられ気体を吸引する気体吸引部 22と、回転 体 20に設けられ不要な気体を排気する気体排気部 23と、回転体 20内に設けられ回 転体 20内に液体窒素を散布する液体窒素散布部 100と、液体窒素散布部 100に液 体窒素を供給する液体窒素供給部 110とを備えた構成としてある。
[0027] 外郭 5は、二酸化炭素回収装置 1の上方を覆うほぼ円錐形状の屋根 6と、その側面 を覆う円筒形状の塔体 7とから構成されている。外郭 5は、屋根 6の屋根裏に、屋根 6 の軒先に空気取り入れ口 8aを有し、気体吸引部 22に連通する気体通路 8が設けら れている。
容器 10は、後述の筒状体 41の他端を覆う中空状の椀状体 11で構成され、二酸ィ匕 炭素は椀状体 11の内部で液化される。そして、椀状体 11の上側内周は、回転体 20 の噴出口 30から噴出した二酸ィ匕炭素及び液体窒素が椀状体 11の内部に入り込む 入り口 12として形成されている。
[0028] また、椀状体 11には、液ィ匕した二酸ィ匕炭素を回収する二酸ィ匕炭素吸引パイプ 14 が接続されている。二酸化炭素吸引パイプ 14は、その経路上に液ィ匕した二酸ィ匕炭 素を吸引する二酸ィ匕炭素吸引ポンプ 13を備え、吸引した液ィ匕ニ酸ィ匕炭素を貯留す る二酸ィ匕炭素貯留タンク 15と接続されている。また、二酸化炭素吸引ポンプ 13には 、液ィ匕ニ酸ィ匕炭素を取り出すための二酸ィ匕炭素取出パイプ 16が設けられている。 二酸ィ匕炭素貯留タンク 15からは、椀状体 11の内部に二酸ィ匕炭素を回帰させる二 酸ィ匕炭素回帰管 17が設けられている。二酸化炭素回帰管 17には、筒状体 41の下 部に設けた羽根 41aに、二酸化炭素を噴射する二酸化炭素噴射口 17aが設けられ ている。
尚、本装置の始動時には、予め、二酸ィ匕炭素貯留タンク 15に、二酸化炭素が二酸 化炭素取出パイプ 16から逆に充填され、上記の二酸化炭素噴射口 17aからの噴射 によって、筒状体 41が回転する。
[0029] 椀状体 11の内部であってその上部に、回転体 20の噴出口 30から噴出した二酸ィ匕 炭素及び液体窒素に、さらに液体窒素を噴射する液体窒素噴射管 18が設けられて いる。液体窒素噴射管 18は、後述の窒素循環管路 111と接続されている。椀状体 1 1の底部内側に、回転体 20及び筒状体 41の他端を軸支する他端側支軸 101が設 けられている。
他端側支軸 101は、回転体 20の内部に至るとともに、液体窒素散布部 100としても 機能する。
[0030] 回転体 20は、回転軸方向一端に気体吸引部 22が形成され、回転軸方向他端に 気体排気部 23が形成された筒状に形成されている。
詳しくは、回転体 20は、筒体 21を備えており、この筒体 21の回転軸方向一端側の 開口は、気体吸引部 22である。また、回転体 20は、回転軸方向に直交する平面を 有した底壁を備えるとともに、回転体 20の軸方向一端側に開口を有した盆状体 24と 、盆状体 24の底壁に平行にかつ盆状体 24の外周上方に設けられるリング体 25とを 備えている。
複数の噴出口 30は、盆状体 24の外側縁とリング体 25の外側縁との間に、回転体 2 0の回転軸を中心に、これらの外側縁に沿って設けられている。
筒体 21の外側面とリング体 25の内周縁との間に形成された盆状体 24の開口は、 気体排気部 23である。
また、筒体 21の気体排気部 23の上側には、水排出孔 21aが形成されており、この 水排出孔 21aから、筒体 21内で冷やされて液体となった水力 回転体 20の回転によ る遠心力で筒体 21の外部に排出される。複数の水排出孔 21aが、筒体 21の円周に 沿って列設されている。
[0031] また、盆状体 24の内部には、複数の羽根 26が回転体 20の軸を中心に列設されて おり、複数の羽根 26が、筒体 21から気体排気部 23に至る気体を遠心圧縮する。 盆状体 24の底壁外側には、後述の他端側支軸 101に挿通される管状の回転体回 転軸 27が設けられている。この回転体回転軸 27は、椀状体 11の底部に設けられた 台状体 31の天板 32を貫通するとともに、この天板 32に設けた軸受け 34に回転可能 に軸支されている。
台状体 31は、天板 32と円筒状の側壁 33とからなる。側壁 33は、椀状体 11の底部 に固定されている。
軸受け 34は、軸方向他端側に形成され、台状体 31の天板 32に貫通する管状部 3 6と、軸方向一端側に形成され、管状部 36よりも肉厚に形成された管状の肉厚部 37 と、管状部 36と肉厚部 37の間に介在し、肉厚部 37の外周から軸方向外側に突設さ れた円盤状の突片 38とを備えている。
[0032] 回転体駆動手段 40は、筒状体 41,動翼 50,静翼 55,回転力伝達機構 60,加温 流体散布部 80及び加温流体供給部 85を備えている。
筒状体 41は、回転体 20の外側に壁部を有しており、容器 10及び回転体 20に対し て回転可能に設けられている。また、筒状体 41は、回転軸方向他端側に設けられる とともに、回転体 20の気体排気部 23からの気体が流入する気体流入部 42と、回転 軸方向一端側に設けられ、内部で膨張した気体を外部に排出する気体排出口 43を 有している。
動翼 50は、気体排出口 43に設けられ、気体排出口 43から排出された気体を受け て筒状体 41を回転させる。静翼 55は、容器 10及び筒状体 41を覆う外郭 5に設けら れ、気体排出口 43から排出された気体を受ける。
回転力伝達機構 60は、筒状体 41の回転力を回転体 20の回転力に連係させる。ま た、加温流体散布部 80は、回転体 20と筒状体 41との間に加温流体を散布する。さ らに、加温流体供給部 85は、加温流体散布部 80に加温流体を供給する。
[0033] そして、回転体駆動手段 40は、回転体 20の気体吸引部 22から回転体 20の内部 を通って気体排気部 23に至る一方流路 R1において、気体を冷却し、回転体 20の気 体排気部 23から回転体 20の外側を通って筒状体 41の気体排出口 43に至る他方流 路 R2にお 、て、気体を加温して気体の流れを生じさせて!/、る。
[0034] 筒状体 41は、その中心が回転体 20と同軸に設けられ、回転軸方向他端部が、椀 状体 11の開口側の内側に挿通されている。また、筒状体 41は、軸方向一端側に設 けられ、他方流路 R2の気体が衝止するとともに回転軸方向外側にこの気体を案内 する案内板体 44と、軸方向他端側に設けられ、筒状体 41の他端側開口を閉塞する 底壁 45を備えている。案内板体 44の中央に、回転体 20が回転可能に挿通される孔 46が形成されている。この孔 46と回転体 20は、シール部材 47を介して回転可能に シールされている。
また、案内板体 44は、その外周縁部が回転軸方向他端側に湾曲して形成されて いる。
[0035] また、筒状体 41の底壁の中央に、回転体回転軸 27を軸支する軸受け 34が、貫通 して設けられている。そして、筒状体 41の底壁は、突片 38に回転可能に載置され、 軸受け 34の肉厚部 37に回転可能に軸支されている。
[0036] 動翼 50は、案内板体 44の内部に、回転軸を中心に複数列設された羽根 51で構 成されている。静翼 55は、塔体 7の内周面に回転軸を中心に複数列設された羽根 5 6で構成されている。これにより、回転体 20内での気体の強制及び冷却圧縮と、回転 体 20外での気体の加温膨張とにより、動翼 50及び静翼 55を介して強力な筒状体 4 1の回転力が得られ、後述の発電機 70の発電が可能となる。
[0037] 回転力伝達機構 60は、回転体回転軸 27に設けられた第 1原動ギア 61と、第 1原動 ギア 61に嚙合する第 1従動ギア 62と、第 1従動ギア 62の軸と同軸に設けられる第 1 シャフト 63と、筒状体 41の底壁 45の外側面に設けられる第 2原動ギア 64と、第 2原 動ギア 64に嚙合する第 2従動ギア 65と、第 2従動ギア 65の軸と同軸に設けられる第 2シャフト 66と、第 1シャフト 63を第 2シャフト 66に連動させるギアボックスからなる第 1 変速機 67とを備えている。
[0038] 第 1原動ギア 61及び第 1従動ギア 62は、台状体 31の内部に設けられている。第 2 原動ギア 64及び第 2従動ギア 65は、台状体 31の外部に設けられている。また、第 1 シャフト 63及び第 2シャフト 66は、台状体 31の側壁 33及び椀状体 11を貫通して設 けられるとともに、これらに軸受けを介して回転可能に軸支されている。
また、椀状体 11には、潤滑オイルが溜められる。潤滑オイルは、側壁 33に設けた 孔から台状体 31の内部にも流入し、この潤滑オイルにより、第 1原動ギア 61と第 1従 動ギア 62とを潤滑するとともに、第 2原動ギア 64と第 2従動ギア 65とを潤滑する。 さらに、第 1変速機 67の回転力は、ギアベルト 68を介して二酸ィ匕炭素吸引ポンプ 1
3が接続され、この二酸ィ匕炭素吸引ポンプ 13および筒状体 41の回転力を二酸ィ匕炭 素吸引ポンプ 13の動力としても利用されている。
また、第 1変速機 67の出力軸は、第 2変速機 69に接続されている。この第 2変速機
69には、発電機 70が接続されている。発電機 70は、第 1変速機 67及び第 2変速機
69を介して筒状体 41の回転力を動力として駆動される。
[0039] この実施形態に係る二酸化炭素回収及び燃焼装置においては、加温流体として、 水が用いられる。
加温流体散布部 80は、回転体 20の外側に壁部を有した筒状に形成されるとともに 、外周に複数の加温流体噴出口 30が形成される筒部材 81を備えている。この筒部 材 81と回転体 20の筒体 21との間の空間には、加温流体供給部 85からの加温流体 が流される空間が形成される。
加温流体供給部 85は、加温流体循環管路 86と加温流体加温部 87を備えて ヽる。 加温流体循環管路 86は、筒状体 41内に散布された加温流体を回収して加温流体 散布部 80に循環させる。また、加温流体加温部 87は、加温流体循環管路 86の経路 上において加温流体循環管路 86を流通する加温流体を加温する。
[0040] 加温流体循環管路 86は、その経路上に加温流体吸引ポンプ 89を備えており、こ の加温流体吸引ポンプ 89は、筒状体 41に設けられた加温流体回収口 88から水を 吸引する。また、加温流体回収口の下側 88には、加温流体散布部 80から散布され 、筒状体 41の内側を流下した加温流体を受ける受け体 88aが設けられている。
[0041] 加温流体循環管路 86は、筒体 21の一端側に突設され、外郭 5の屋根 6に回転可 能に設けられる一方側支軸 91の内部と、この一方側支軸 91の内部及び筒部材 81 の内側の空間を連通する連通管体 92を備えている。
一方側支軸 91は、外郭 5の屋根 6に設けた一方側支軸軸受 91aに、回転可能に軸 支されている。
複数の連通管体 92が、一方側支軸 91から放射状に設けられている。また、連通管 体 92の一方側支軸 91の下側面には、他端側支軸 101が回転可能に軸支される他 端側支軸軸受 10 laが設けられている。
[0042] 加温流体吸引ポンプ 89は、第 1変速機 67と接続され、筒状体 41の回転力を動力 として作動することができる。
加温流体加温部 87は、複数箇所に設けられ、そのうちの 1つは、例えば、太陽光 や地熱等を利用して加温流体と熱交換させる熱交換機 87aで構成されている。その 他の加温流体加温部 87については、後述する。
また、加温流体循環管路 86は、その経路上に、二重構造の屋根 6の内部を通過す る屋根冷却部 93が設けられている。この屋根冷却部 93は、太陽光を吸収して内部 の加温流体を加温する加温流体加温部 87としても機能する。また、屋根冷却部 93 は、屋根 6の表面側の空気を冷却して、屋根 6の頂部から軒下に向かう下降気流を 発生させる。加温流体加温部 87によって、省エネ化が図られる。
[0043] また、加温流体循環管路 86は、水吹出口 94aを有した水吹出管 94と接続されてい る。加温流体循環管路 86を流れる水は、水吹出口 94aから気体通路 8に設けられた 結露フィルタ 9に吹きかけられる。水吹出管 94は、加温流体循環管路 86における熱 交 87aの上流側及び熱交 87aの下流側に分岐して接続されている。そして 、水吹出管 94において、他方流路 R2で熱交換して冷えた水と、熱交換機 87aで熱 交換されて湯となった水とが混合され、適度な温度の湯となる。そして、この湯は、水 吹出口 94aから結露フィルタ 9に吹きかけられる。
[0044] 液体窒素散布部 100は、他端側支軸 101で構成されている。他端側支軸 101は、 管状に形成され、外周面に、内部から外部に連通し内部の液体窒素が外部に噴出 する液体窒素散布口が形成されて ヽる。
また、液体窒素供給部 110は、椀状体 11の内部の気化した窒素を回収して液体窒 素散布部 100に循環させる窒素循環管路 111と、窒素循環管路 111の経路上に設 けられ椀状体 11の内部の気化した窒素を回収して圧縮する圧縮機 112と、圧縮機 1 12で圧縮した窒素を冷却して液ィ匕する凝縮器 113とを備えて 、る。
[0045] 圧縮機 112は、気体窒素吸引ポンプで構成されている。気体窒素吸引ポンプは、 第 1変速機 67と接続され、筒状体 41の回転力を動力として作動する。凝縮器 113は 、熱交換機 87aよりも上流側の加温流体循環管路 86の経路上に設けられた加温流 体貯留槽 95に溜められた水と熱交換し、加温流体加温部 87としても機能する。 また、窒素循環管路 111の経路上には、窒素循環管路 111を流れる窒素を冷却す る窒素冷却装置 114が設けられている。窒素冷却装置 114としては、例えば、図示し てないが、ヒートシンク及び冷却ファン等の空冷器や、水を用いて冷却される水冷器 等が用いられる。この窒素冷却装置 114による冷却によって、圧縮機 112に対する負 荷が軽減され、発電出力が向上する。
また、窒素循環管路 111は、窒素循環管路 111内の液体窒素を気体通路 8に供給 する液体窒素流通管路 115と接続されている。液体窒素流通管路 115は、気体通路
8内において、液体窒素を噴出する液体窒素吹き出し口 115aが形成されている。
[0046] また、窒素循環管路 111には、二酸化炭素回帰管 17の経路上の二酸化炭素と熱 交換する窒素 二酸ィ匕炭素熱交換器 116を通って、窒素が再び窒素循環管路 111 に戻るための窒素周回管路 117が設けられて 、る。
窒素 二酸ィ匕炭素熱交 16にお 、て、液ィ匕ニ酸ィ匕炭素が液体窒素と熱交換 し温められて気体となる一方、液体窒素はさらに冷却されて、窒素循環管路 111に 戻される。
また、他端側支軸 101には、回転体 20内の一方流路 R1を通る気体に渦流を発生 させる固定翼 120が設けられ、回転体 20の内壁には、固定翼 120により渦流となつ た気体を受けて回転体 20を回転させる可動翼 125が設けられている。
[0047] また、図 1及び図 4に示すように、燃焼装置 2は、空気の供給が遮断された状態で、 燃焼物に水の混合された流動物が供給され、流動物中の水を熱分解して燃焼物を 燃焼させて、燃焼後のガスを排気する燃焼室体 200と、流動物を燃焼室体 200に供 給する流動物供給部 280と、燃焼室体 200を囲繞するとともに燃焼室体 200を回転 駆動可能に支持する外側室体 210と、燃焼室体 200を回転駆動させる燃焼室体駆 動手段 230とを備えている。
[0048] 燃焼室体 200は、その下部に燃焼室体 200内に連通し流動物を導入する下部開 口 201が設けられ、その上部に燃焼室体 200に連通し排気を排出する上部開口 20 2が設けられている。また、燃焼室体 200は、外筒 203と内筒 204を有しており、燃焼 室体 200の内筒 204が、燃焼室体 200の遠心力で外筒 203側に押し付けられ燃焼 室体 200の内壁を形成する耐熱流体からなっている。
詳しくは、外筒 203は、例えばタングステン (融点 3407°C)で形成されており、内筒 204は、セラミックス、例えばサクランダム(融点 2432°C)で形成されている。ここで、 内筒 204を形成するセラミックスは、燃焼物の燃焼により溶解して、遠心力で外筒 20 3側に押し付けられて燃焼室体 200の内筒 204を形成する。セラミックスが溶解する ことにより、燃焼による高温は遮断され外筒 203に伝えられに《なり、燃焼室体 200 の耐熱性が向上する。尚、このセラミックスは、燃焼装置 2の運転前に上部筒体 205 から粒子として投入され燃焼装置 2の運転中に溶解して内筒 204を形成する。燃焼 室体 200内の温度は、燃焼時には、例えば、 1000°C〜7000°Cになる。これにより、 水が酸素と水素に熱分解される。また、中心では、光の交差点ができれるので約 700 00°Cになりうる。そのため、劣化ウラン等の核廃棄物も処理しうる。
[0049] 燃焼室体 200はカプセル状に形成され、燃焼室体 200の下部に燃焼室体 200内 に連通し流動物を導入する下部開口 201が設けられ、燃焼室体 200の上部に燃焼 室体 200に連通し排気を排出する上部開口 202が設けられている。上部開口 202に は上部筒体 205が連設されている。また、下部開口 201には下部筒体 206が連設さ れている。そして、上部筒体 205の基端部に、上部開口 202に連通するガス排気口 2 07が形成されている。
[0050] また、外側室体 210は、カプセル状に形成されている。この外側室体 210には、上 部筒体 205を軸支する上部側軸受 211と、下部筒体 206を軸支する下部側軸受 21 2が設けられている。また、外側室体 210の上部には、ガス排気口 207からの排気を 後述のガス排気管 300に導く排気空間 213が形成されている。
[0051] 燃焼室体駆動手段 230は、外側室体 210の下側に設けられている。また、燃焼室 体駆動手段 230は、筒状体 41に連係して筒状体 41の回転力からの動力を燃焼室 体 200に伝達する動力伝達機構 231を備えている。動力伝達機構 231は、下部筒 体 206を回転駆動することにより燃焼室体 200を回転させるギア装置 232を備えてい る。
このギア装置 232は、第 2変速機 69と接続され、第 1変速機 67及び第 2変速機 69 を介して筒状体 41の回転力を伝達可能な第 3シャフト 233と、第 3シャフト 233に設け られた第 3原動ギア 234と、第 3原動ギア 234に嚙合するとともに下部筒体 206に設 けられた第 3従動ギア 235とを備えている。第 3シャフト 233は、軸受け 236を介して 外側室体 210に回転可能に軸支されている。
[0052] また、外側室体 210の天井には、上部筒体 205の開口に対畤した透明なガラス 24 0が設けられており、このガラス 240を介して、燃焼室体 200内部で発生する光が取り 出される。例えば、ガラス 240から取り出された光は、主にレーザ光線として利用する 。また、図示してないが、天井には、ガラス 240から取り出された光の温度を検知する 検知センサが設けられている。この検知センサは、温度センサまたは光電管センサが 用いられる。
[0053] さらに、外側室体 210と燃焼室体 200の間に設けた中間仕切壁 250の下部には、 燃焼室体 200の下部開口 201から排出された灰分を外側室体 210の外側に排出す るロート状の排出通路部 251が設けられている。そして、外側室体 210と中間仕切壁 250との間の空間は、排出通路部 251を冷却する冷却流体 (実施の形態では冷却 水)が通る冷却流体通路 252としてある。外側室体 210の下部には、冷却流体が流 入する流入口 253が設けられている。流入口 253は、冷却流体通路 252に冷却流体 を供給する冷却流体供給部 255と接続されて ヽる。
冷却流体供給部 255は、水道水等からの水が溜められる冷却流体貯留槽 256と、 冷却流体貯留槽 256の冷却流体を吸引する高圧ポンプ 257と、高圧ポンプ 257から の冷却流体を一時的に貯留する冷却流体一時貯留槽 258と、冷却流体一時貯留槽 258及び流入口 253を接続する流入管 259とを備えて 、る。
[0054] また、外側室体 210の下部には、冷却流体が流出する冷却流体流出管 260が設け られている。冷却流体流出管 260は、外側室体 210の内部側に設けた冷却流体噴 射口 261aからガラス 240に水を噴射する冷却流体噴射管 261と、冷却流体噴射管 2 61に分岐して設けられ、ガラス 240の内部を通過するガラス冷却管 262とを備えてい る。冷却流体流出管 260は、ガラス冷却管 262の下流側において、ガラス 240内で 燃焼室体 200からの光により温められた水が溜められる温水貯留槽 263と接続され ている。
温水貯留槽 263には、冷却流体貯留槽 256と接続される温水流出管 263aが設け られている。
[0055] 図中、 264は、冷却流体が逆流するのを防ぐ逆止弁, 265は、冷却流体通路 252 に流入する冷却流体の流量を調整する流量調整弁である。
また、中間仕切壁 250には、冷却流体通路 252を流れる冷却流体が噴出する複数 の噴出孔 250aが設けられている。噴出孔 250aから噴出した冷却流体は、燃焼室体 200に向けて吹きかけられ、燃焼室体 200の外筒 203を冷却するとともに外筒 203の 外側を流下する。この硫化する冷却流体は、排出通路部 251から灰分とともに外側 室体 210の外部に排出される、一方、燃焼室体 200の熱により蒸発して気体となった 水は、ガス排気口 207から排出される。
そして、灰分に混ざった冷却流体は、水分分離器 267で遠心分離されて取り出さ れる。この水分分離器 267は、外側室体 210の外側に設けられ、排出通路部 251か ら排出された灰分から水分を、例えば遠心分離により分離する。また、水分分離器 2 67は、管路 268を介して高圧ポンプ 257に接続されており、この水分分離器 267で 分離された水が管路 268を介して高圧ポンプ 257で吸引される。
[0056] また、本燃焼装置 2には、燃焼室体 200内に酸素を供給する酸素供給器 270が設 けられている。酸素供給器 270は、燃焼室体 200の下部開口 201から酸素を噴射す る酸素噴射管を備えている。また、燃焼室体 200内に水素を供給する水素供給器 27 1が設けられている。水素供給器 271は、燃焼室体 200の下部開口 201から水素を 噴射する水素噴射管を備えている。酸素供給器 270及び水素供給器 271は、例え ば、本装置の始動時あるいは火力安定のために適時に作動する。
また、実施の形態では、燃焼室体 200に供給された燃焼物に着火させる着火装置 272が備えられている。着火装置 272は、燃焼室体 200の下部開口 201の近傍に設 けられた点火プラグで構成されて 、る。
[0057] 流動物供給部 280は、種類毎に分けられた複数の流動物貯留槽 281a, 281b, 2 81cと、各流動物貯留槽 281a, 281b, 281cの下部から流動物を吸引する流動物 吸引ポンプ 282と、この流動物吸引ポンプ 282で吸引された流動物を一時的に貯留 する流動物一時貯留槽 283と、流動物一時貯留槽 283に貯留された流動物を燃焼 室体 200内に噴射する流動物噴射体 284とを備えている。 流動物貯留槽は、本実施形態においては、燃焼物としてプラスチックや古タイヤあ るいは家畜の糞尿等が入れられる第 1流動物貯留槽 281aと、燃焼物として PCB等 力もなる廃油が入れられる第 2流動物貯留槽 281bと、燃焼物として劣化ウラン (ゥラ ン 238)が入れられる第 3流動物貯留槽 281cの 3つを有している。
[0058] これらの流動物貯留槽 281a, 281b, 281cは、上部に燃焼物が投入される開口を 有し、この開口カゝら投入された流動物を貯留する。そして、流動物貯留槽 281a, 28 lb, 281c内に水を供給する水供給部 285a, 285b, 285cにより水が供給され、燃 焼物と水力 流動物貯留楼 281a, 281b, 281c内を携枠するミキサ 286a, 286b, 2 86cにより混ぜられて、燃焼物と水とからなる流動物になる。
[0059] 第 1流動物貯留槽 281a内には、その下部から上部に亘つて第 1螺旋状管 287が 配設されている。第 1螺旋状管 287は、加温流体貯留槽 95と並列に、加温流体循環 管路 86に設けられ、他方流路 R2で冷やされた加温流体と熱交換させて流動物を冷 却させる、さらに、加温流体を加温する加温流体加温部 87としても機能する。この第 1螺旋状管 287の上流側の加温流体貯留槽 95から分岐する分岐点には、第 1螺旋 状管 287を流れる加温流体の流量を調整する電磁バルブ 287aが設けられている。 また、第 1流動物貯留槽 28 laに水を供給する水供給部 285aは、結露フィルタ 9か ら流下した水を集水して第 1流動物貯留槽 281aに供給する水供給管 288aと、温水 貯留槽 263及び後述の水流通管 305から分岐した水が供給される水供給管 288bと 力もなる。水供給管 288a, 288bには、内部を流れる水の流量を調整するバルブが 設けられている。
第 1流動物貯留槽 281aに設けられたミキサ 286aは、第 3シャフト 233上に設けられ た第 3変速機 289と連結され、筒状体 41の回転力を動力として作動する。そして、こ のミキサ 286aは、第 1流動物貯留槽 281aに設けた温度検知センサが検知した温度 に基づいて、第 3変速機 289からの動力が可変する状態で作動する。
[0060] 第 2流動物貯留槽 281b内には、その下部力も上部に亘つて第 2螺旋状管 294が 配設されている。第 2螺旋状管 294は、後述のガス排気管 300の経路上に設けられ、 ガス排気管 300を流れるガスと熱交換して流動物が加温されるとともに、ガスを冷却 する。 また、第 2流動物貯留槽 281bに水を供給する水供給部 285bは、温水貯留槽 263 及び後述の水流通管 305から分岐した水が供給される水供給管 288cからなつてい る。この水供給管 288cには、内部を流れる水の流量を調整するバルブが設けられて いる。
第 2流動物貯留槽 281bに設けられたミキサ 286bは、第 3シャフト 233上に設けら れた第 4変速機 290と連結され、筒状体 41の回転力を動力として作動する。そして、 このミキサ 286bは、第 2流動物貯留槽 28 lbに設けた温度検知センサが検知した温 度に基づいて、第 4変速機 290からの動力が可変する状態で作動する。
[0061] さらに、第 3流動物貯留槽 281c内においては、冷却流体流出管 260の冷却流体 噴出管よりも上流側の経路上に設けられ、第 3流動物貯留槽 281cの下部から上部 に亘つて配設される第 3螺旋状管 295が設けられている。第 3螺旋状管 295は、第 3 流動物貯留槽 281c内の流動物と冷却流体とが熱交換して流動物が冷却される。 第 3流動物貯留槽 281cに水を供給する水供給部 285cは、冷却流体流出管 260 の第 3螺旋状管 295の下流側に設けられ、冷却流体を第 3流動物貯留槽 281cに水 として供給する水供給管 296からなつている。この水供給管 296には、内部を流れる 水の流量を調整するバルブが設けられて 、る。
第 3流動物貯留槽 281cに設けられたミキサ 286cは、第 2変速機 69と連結され、筒 状体 41の回転力を動力として作動する。そして、このミキサ 286cは、第 3流動物貯留 槽 281cに設けた温度検知センサが検知した温度に基づいて、第 2変速機 69からの 動力が可変する状態で作動する。
[0062] 流動物吸引ポンプ 282は、 3つに分岐した接続管 292と接続されており、接続管 29 2は、各流動物貯留槽 281a, 281b, 281cと接続されている。この接続管 292の分 岐した管には、合流した後の管内の流動物に含まれる各燃焼物の比が調整可能な ように、流量を調整するノ ノレブ 292a, 292b, 292c力設けられている。各ノ ノレブ 292 a, 292b, 292cは、ガラス 240から放出される光の温度を検知する温度検知センサ に基づいて、その開度が制御され、これにより、燃焼室体 200が耐久可能な範囲内 に、燃焼室体 200内の温度が制御される。各流動物貯留槽 281a, 281b, 281cに 入れられた燃焼物のエネルギの順位は、第 1流動物貯留槽 281aに入れられた燃焼 物く第 2流動物貯留槽 28 lbに入れられた燃焼物く第 3流動物貯留槽 28 lcに入れ られた燃焼物となっている。
[0063] 流動物噴射体 284は、下部筒体 206に挿入されるとともに、先端に流動物噴射口 2 84aが形成された管状に形成されている。流動物噴射体 284の外周には、ドリル 284 bが形成されている。このドリル 284bによって、燃焼室体 200内で燃焼されることによ り生じ下部筒体 206に至った灰分が、排出通路側にかき出される。
[0064] また、この燃焼装置 2には、外側室体 210の上部に設けた排気空間 213と接続され 、ガス排気口 207から排気されるガスが通るガス排気管 300が設けられている。ガス 排気管 300は、その経路上に遠心分離器 301が設けられている。
遠心分離器 301は、水素,二酸化炭素,オゾン等のその他のガス及び水蒸気等に 分離する。遠心分離器 301は、ガス流通管 304及び水流通管 305と接続されている 。水素が流れる水素流通管 302,二酸化炭素流通管 303,その他のガスが、ガス流 通管 304を流れ、水蒸気が液ィ匕した水力 水流通管 305を流れる。
[0065] 水素流通管 302を流れた水素は、二酸化炭素回収装置 1の屋根裏の気体通路 8を 通った後、水素コンプレッサ 352によって圧縮される。水素コンプレッサ 352は、管路 により高圧ポンプ 257と接続され、この水素コンプレッサ 352で発生した水力 管路を 介して高圧ポンプ 257で吸引される。
気体通路 8において、水素流通管 302は、回転軸を中心軸とする環状に形成され ている。そして、水素流通管 302の環状の部分に、液体窒素流通管路 115からの液 体窒素が吹きかけられて、内部の水素が冷却される。
また、二酸ィ匕炭素流通管 303は、気体通路 8内に二酸ィ匕炭素を供給している。詳し くは、二酸ィ匕炭素流通管 303は、気体通路 8内において、回転軸を中心軸とする環 状に形成されている。そして、この環状部分の内周側に二酸ィ匕炭素を送出する二酸 化炭素送出口が設けられて 、る。
[0066] 水流通管 305は、温水貯留槽 263と接続されている。
水流通管 305からの水は、温水貯留槽 263,第 1流動物貯留槽 281a及び第 2流 動物貯留槽 281bに流入する。即ち、第 1流動物貯留槽 281a及び第 2流動物貯留 槽 281b側に水が足りない場合、水供給管 288b, 288cのノ レブの開度が大きくなり 、温水貯留槽 263からも水が水供給管側に流れ込む。また、第 1流動物貯留槽 281a 及び第 2流動物貯留槽 281b側に水が十分ある場合、水供給管 288b, 288cのノ レ ブの開度が小さくなり、水流通管 305の水は、温水貯留槽 263側にも流れ込む。
[0067] また、ガス排気管 300は、その経路上に、加温流体加温部 87として、加温流体循 環管路 86の加温流体と熱交換を行なわせるガス 加温流体熱交換器 306が設けら れている。このガス 加温流体熱交換器 306は、熱交換機 87aの上流側の加温流体 循環管路 86及び下流側の加温流体循環管路 86と接続される加温流体貯留タンク 3 07内に設けられ、ガス排気管 300から分岐する複数の細管 308を備えている。
また、このガス排気管 300は、外側室体 210側カゝらガス—加温流体熱交換器 306 に至るガス排気管 300の径路上に、動力タービン 308が設けられている。この動カタ 一ビン 308は、ガス排気管 300中を流れるガスにより発電する。
[0068] また、本発明の二酸化炭素回収及び燃焼装置には、椀状体 11,第 3シャフト 233を 軸支する軸受 236,ギア装置 232,下部側軸受 212,上部側軸受 211及び一方側 支軸軸受 91aに潤滑オイルを循環して供給する潤滑オイル循環管路 310が設けられ ている。この潤滑オイル循環管路 310は、椀状体 11及び第 3シャフト 233を軸支する 軸受 236の間の経路上において、椀状体 11の内部のオイルを吸引して軸受 236側 に送出する潤滑オイル吸弓 Iポンプ 311が設けられて 、る。潤滑オイル吸弓 Iポンプ 31 1は、第 3変速機 289と接続され、筒状体 41の回転力を動力として作動する。
また、上部側軸受 211と一方側支軸 91との間の経路上に、各所での回転によって 生じた熱により加温された潤滑オイルを冷却する潤滑オイル冷却器 312が設けられ ている。この潤滑オイル冷却器 312は、冷却流体貯留槽 256の内部の上部から下部 に亘つて配設された螺旋管力 なって 、る。
尚、全ての配管は熱エネルギーの空中放出を避けるため、図示してないが、保温 部材により被覆されている。また、全ての動力伝達装置及び変速機は、効率の良い 回転数に設計されている。
[0069] 従って、この実施形態に係る二酸化炭素回収及び燃焼装置により二酸化炭素を回 収しつつ廃棄物を燃焼させる場合には、以下のようになる。
二酸化炭素回収装置 1は、二酸ィ匕炭素回帰管 17を用いて、予め、二酸化炭素貯 留タンク 15に溜めた二酸ィ匕炭素を窒素一二酸ィ匕炭素熱交 l l6で気化させ、さ らに、この気化した二酸ィ匕炭素を二酸ィ匕炭素噴射口 17aから噴射する。この際、二酸 化炭素噴射口 17aから噴射された二酸ィ匕炭素は、筒状体 41に設けた羽根 41aに当 たり、これにより、筒状体 41が回転する。
[0070] 次に、二酸化炭素回収装置 1は、液体窒素散布部 100からの液体窒素により、一 方流路 R1の気体が冷却され、加温流体散布部 80により、他方流路 R2の気体が加 温される。この際、一方流路 R1の気体は、液体窒素で冷やされて降下し、気体排気 部 23から排出される際に、羽根 26によって渦流が発生した状態で排気される。 また、気体排気部 23から流出され気体流入部 42から筒状体 41内に流入した気体 は、加温流体散布部 80からの加温流体と熱交換し、加温されて上昇する。そして、 他方流路 R2を上昇する気体が案内板体 44に衝止して気体排出口 43から出る際、 この気体は、動翼 50の羽根 26に衝止し、筒状体 41を回転させるとともに、静翼 55に 噴射される。この噴射による反発力によっても筒状体 41が回転する。
この際、回転した筒状体 41内において、他方流路 R2の気体と熱交換して冷却され た加温流体は、遠心力で加温流体は筒状体 41の内壁に押し付けられて溜まり、加 温流体回収口 88から加温流体循環管路 86に回収される。
[0071] また、この際、一方流路 R1においては、一方流路 R1の気体が固定翼 120により渦 流となり、この渦流となった気体が可動翼 125に衝止して回転体 20をさらに回転させ る。すなわち、筒状体 41からの回転力だけでなぐ可動翼 125によっても回転体 20 に回転力が付与されるので、回転体 20が効率よく回転し、回転体 20の回転速度が 速くなり、二酸ィ匕炭素の遠心圧縮の状態が良好になる。
そして、筒状体 41の回転が安定すると、二酸化炭素噴射口 17aからの二酸化炭素 の噴射が停止する。
[0072] 筒状体 41が回転すると、回転力伝達機構 60により筒状体 41に連係された回転体 20も回転する。回転体 20が回転すると、回転体 20の盆状体 24に設けた複数の羽根 26により回転体 20に吸引力が作用し、気体通路 8に臨む気体吸弓 I部 22から気体通 路 8の空気及び二酸化炭素流通管 303からの二酸化炭素が取り入れられる。
[0073] 回転体 20内に吸引された気体は、一方流路 R1において、液体窒素が散布されて 冷やされ二酸化炭素が霧状になる。そして、さらに一方流路 R1を進んで回転体 20 の他端側の盆状体 24内にいたると、この霧状になった二酸化炭素を含む気体は遠 心圧縮され、これにより、外周側に二酸化炭素と液体窒素とが分離して圧縮集合し、 二酸ィ匕炭素及び液体窒素が噴出口 30から噴射されるとともに、回転体 20内の不要 な気体は気体排気部 23に導かれて排気される。そして、噴出口 30から噴射されて容 器 10内に至った二酸ィ匕炭素及び液体窒素は、さらに、液体窒素噴射管 18から噴射 される液体窒素により、容器 10内で二酸ィ匕炭素と液体窒素との熱交換が行なわれる
[0074] この熱交換により、二酸化炭素の液化が進み、液ィ匕した二酸ィ匕炭素は、容器 10を 流下して容器 10の底部力も液ィ匕ニ酸ィ匕炭素吸引ポンプ 13で吸引され、液体窒素は 、気化して窒素吸引ポンプで吸引される。これにより、回転体 20の外周側に二酸ィ匕 炭素が分離して圧縮集合し、この圧縮集合した二酸化炭素のみが、液化されるので 、空気中の微量の二酸化炭素が選択的に効率よく液化される。容器 10内で液化さ れ容器 10の液化二酸化炭素は、二酸ィ匕炭素吸引ポンプ 13により吸引されて取り出 され、二酸ィ匕炭素貯留タンク 15に収納される。
[0075] また、この際、筒状体 41の回転力により、回転体 20が回転し、し力も、一方流路 R1 及び他方流路 R2の気体の流れによっても、回転体 20が回転するので、モータ等を 用いて回転体 20を回転させる場合と比較して、外部力もの動力を殆ど用いることなく 二酸ィ匕炭素を回収することができる。そのため、省エネルギ化を図ることができる。 また、二酸ィ匕炭素回収装置 1の気体通路 8において、液体窒素吹出し口 115aから の液体窒素により気体通路 8を通る気体が冷やされ、水吹出口 94aからの水により結 露フィルタ 9が湿らされ、この結露フィルタ 9に冷やされた気体が通過していくので、 気体中の水蒸気が液ィ匕して結露フィルタ 9に付着する。そのため、気体吸引部 22か らは、水蒸気が比較的少ない乾いた気体が吸引され、これにより、回転体 20で遠心 分離される二酸化炭素中に水分が含まれにくくなる。
また、液体窒素供給部 110は、圧縮機 112が駆動して気化した窒素を凝縮器 113 に送り、凝縮器 113で窒素を冷却して液ィ匕し、凝縮器 113で液体となった窒素を窒 素冷却装置 114で冷却し、液体窒素散布部 100に供給する。液体窒素散布部 100 は、冷却された液体窒素を液体窒素散布部 100である他方側支軸の液体窒素散布 口から散布する。
[0076] 一方、燃焼装置 2は、流動物貯留槽内に流動物が投入される。この流動物は、水 供給部からの水により適正な水分量に調整され、ミキサにより攪拌される。そのため、 流動物は、均質化され、燃焼室体 200で円滑に燃焼する。ミキサは、筒状体 41の回 転力により作動するので、ミキサを作動させるモータを別途設けた場合と比較すると、 省エネルギ化を図ることができる。
[0077] また、燃焼室体 200は、燃焼室体駆動手段 230の動力伝達機構 231により、回転 体 20の回転力を動力として作動する。燃焼室体 200は、回転した状態で、酸素供給 器 270及び水素供給器 271から酸素及び水素が燃焼室体 200内に供給され、着火 装置 272の点火プラグが作動し、酸素による水素の燃焼によって、高温に温度上昇 する。そして、セラミック粒子を上部筒体 205から投入すると、セラミックスは、水素の 燃焼により溶解し、遠心力で外筒 203側に押し付けられて内筒 204を形成する。
[0078] この状態で、流動物供給部 280の流動物吸引ポンプを作動させると、第 1流動物貯 留槽 281a,第 2流動物貯留槽 281b及び第 3流動物貯留槽 281cに貯留された流動 物が、吸引され流動物一時貯留槽 283に溜められ、流動物一時貯留槽 283から流 動物噴射体 284を介して燃焼室体 200内に噴射される。これにより、流動物中の水 が酸素と水素に熱分解させられ、この酸素及び酸素供給器 270から供給される酸素 により、燃焼物が燃焼する。そして、燃焼が定常状態になると、酸素供給器 270及び 水素供給器 271が停止する。尚、燃焼の安定ィ匕のために、適時に着火装置 272,酸 素供給器 270及び水素供給器 271を作動させる。
[0079] 燃焼室体 200内では、定常状態において上昇渦が発生し、燃焼室体 200内は高 温高圧下となり、流動物中の水が熱分解した酸素となり、この酸素によって、燃焼物 は、ほぼ完全燃焼する。即ち、このとき、燃焼室体 200内では、燃焼室体 200の高速 回転による遠心力によって、溶解セラミックスが円筒状となり、この溶解したセラミック スの円筒内面で赤外線が反射し合い、ガス排気口 207に赤外線がさらに出にくくなる ために、非常に高温になり、ほぼ完全燃焼が行われる。燃焼室体 200内では、水素, 二酸化炭素,水蒸気,余分な酸素などその他のガスが生成され、ガス排気管 300か ら排気される。そして、この排気により、動力タービン 308が駆動し発電等の用に供さ れる。
[0080] この際、燃焼室体 200は、筒状体 41の回転力を動力として回転するので、燃焼室 体 200を回転させるモータ等を別途設けた場合と比較して、省エネルギ化を図ること ができる。
また、流動物が、劣化ウラン (ウラン 238)を含んでおり、燃焼室体 200内でこの劣化 ウランが燃焼するので、燃焼室体 200内がより一層高温になる。また、燃焼室体 200 内は、高温になるので、 PCB等の有害な廃油もよく分解される。
また、ガス排気口 207からガス排気管 300に至ったガスは、ガス排気管 300の経路 上のガス—加温流体熱交換器 306を通る。ここで、ガス排気管 300中のガスは、加温 流体貯留タンク内の加温流体と熱交換され、さらに下流の第 2螺旋状管 294を通って 、第 2流動物貯留槽 281b内の廃油と熱交換され、遠心分離器 301に至る。
[0081] この際、ガス 加温流体熱交換器 306においては、加温流体は、燃焼装置 2にて 燃焼物を燃焼した際に生じたガスの廃熱を利用して加温させられるので、加温流体 を加温する加温装置を別途設けた場合と比較すると、エネルギを有効利用すること ができる。
また、下流のガス排気管 300においては、第 2流動物貯留槽 281bの内部の流動 物である廃油が加温されて、流動物噴射体 284から噴射されるので、熱効率が良ぐ それだけ確実に燃焼させることができる。
[0082] また、燃焼室体 200内の燃焼によって外筒 203が高温になっても、冷却流体が燃 焼室体 200の外筒 203に噴射されて、外筒 203を冷却するので、外筒 203が溶解す る事態を防止できる。
一方、ガス—加温流体熱交換器 306及び第 2螺旋状管 294により、ガスは冷却され て、ガス遠心分離器 301により、水素や二酸ィ匕炭素その他のガス及び水に分離して 回収される。この場合、燃焼室体 200への空気の供給が遮断されているので、窒素 の供給がほとんどなくなり、そのため、燃焼物に起因するもの以外の窒素酸化物の生 成が抑制される。その結果、排気ガスがクリーンになり、またその回収も容易に行わ れる。 [0083] また、燃焼室体 200からのガスのうち、遠心分離器 301で分離された二酸ィ匕炭素は 、二酸化炭素回収装置 1の気体通路 8に供給される。
気体通路 8に入った燃焼装置 2からの二酸化炭素は、上記の大気中の二酸化炭素 とともに、二酸ィ匕炭素回収装置 1の容器 10で液化されて二酸ィ匕炭素として回収され る。すなわち、より一層、二酸ィ匕炭素が選択的に回収されるので、回収効率が向上す る。また、従来の燃焼装置と比較すると、液ィ匕した状態で二酸ィ匕炭素を取り出すこと ができるので、二酸化炭素の取り扱 、を多様ィ匕できる。
[0084] また、燃焼室体 200内で発生した灰分は、燃焼室体 200の下に落下し、排出通路 部 251から排出される。この過程で、排出通路部 251は、冷却流体通路 252を流れ る冷却流体によって冷却される。
排出通路部 251から排出された灰分は、水分分離器 267に至り、灰分から水分が 分離され、汚泥となって排出される。この場合、汚泥の量は、処理する流動物に比較 して極めて少ないものになり、その後の処理が容易なものとなる。
[0085] また、発電機 70は、筒状体 41の回転力のうち、回転体 20,燃焼室体 200,各種ポ ンプ及びミキサ等を作動させる動力が差し引かれた残りを動力として、発電が行なわ れる。また、筒状体 41の回転力を使い切ることができ、省エネルギ化を図ることができ る。
[0086] 次に、図 5及び図 6には、第二実施形態に係る二酸化炭素回収及び燃焼装置を示 している。
この二酸化炭素回収及び燃焼装置は、上記第一実施形態のものとは、ガス 加温 流体熱交^^ 306の構造が異なって 、る。
図 7に示すように、ガス 加温流体熱熱交換器 306aは、熱交換用の気体 (例えば 、二酸化炭素)からなる媒体を密封する塔状体 314と、塔状体 314に回転可能に軸 支され、軸方向一端に媒体の供給口 315が形成され、他端に媒体の排出口 316が 形成された回転筒体 317を備えている。これにより、熱交翻306&には、回転筒体 3 17の供給口 315から回転筒体 317の内部を通って排出口 316に至る一方流路 R3 及び回転筒体 317の排出口 316から回転筒体 317の外側を通って供給口 315に至 る他方流路 R4が形成される。 [0087] さらに、回転筒体 317は、回転筒体 317に供給口 315に流入する媒体を受けて回 転筒体 317に回転力を付与する第 1動翼 318a及び排出口 316から排出する媒体を 受けて回転筒体 317に回転力を付与する第 2動翼 318bを備えている。また、回転筒 体 317内には、加温流体を軸方向他端側から一端側に向けて流通させ、一方流路 R 3を通る媒体を冷却する螺旋状管 320が設けられている。さらに、塔状体 314の壁部 には、ガスを軸方向一端側から他端側に向けて流通させ、他方流路 R4を通る媒体を 加温する、螺旋状管 320と逆向きの螺旋状の凸条管 321が設けられている。
[0088] このガス—加温流体熱交換器 306aに、ガス排気管 300からのガス及び加温流体 循環管路 86の加温流体が送給されると、一方流路 R3の媒体は、螺旋状管 320の加 温流体と熱交換して冷却されるとともに、他方流路 R4の媒体は、凸条管 321と熱交 換して加温され、一方流路 R3及び他方流路 R4を通る媒体の対流が生じる。そして、 媒体の対流により回転筒体 317が回転し、ギヤ機構 327を介して、回転筒体 317の 回転力を動力として得る。この動力によって、発電機 328が駆動される。
これにより、ガスと加温流体との熱交換時に動力を得て発電でき、それだけ、省エネ ルギ化を図ることができる。
その他の構成,作用,効果は上記第一実施形態のものと同様である。
[0089] また、図 8乃至図 10には、第二実施形態に係る二酸化炭素回収及び燃焼装置の 熱交換器の応用例を示している。尚、ガス 加温流体熱交換器 306aと同様のもの には同一の符号を付して 、る。
このガス-加温流体熱交換器 306bは、塔状体 314と、塔状体 314に回転可能に 軸支され、軸方向一端に熱交換用の気体力もなる媒体 (例えば、二酸ィ匕炭素)の供 給口 315が形成され、他端に媒体の排出口 316が形成された回転内筒体 322と、塔 状体 314及び回転内筒体 322に対して回転可能に設けられ、壁部が塔状体 314と 回転内筒体 322との間に位置するとともに、媒体を密封する回転外筒体 323とを備 えている。
これにより、ガス—加温流体熱交換器 306bには、回転内筒体 322の供給口 315か ら回転内筒体 322の内部を通って排出口 316に至る一方流路 R3及び回転内筒体 3 22の排出口 316から回転内筒体 322の外側を通って供給口 315に至る他方流路 R 4が形成される。
[0090] 回転内筒体 322の一端側には、供給口 315に流入する媒体を受けて回転内筒体 3 22に回転力を付与する動翼 318が設けられ、回転外筒体 323の一端側の内周には 、動翼 318に媒体を導くとともに、回転外筒体 323に回転力を付与するガイド翼 324 が設けられている。尚、このガイド翼 324の曲率及び吹出し方向は、温度差,回転数 ,内圧に合わせて、設計上自在に設定して効率を向上させている。
回転内筒体 322の壁部には、回転内筒体 322の軸方向に沿って加温流体を軸方 向他端側から一端側に向けて流通させ、一方流路 R3を通る媒体を冷却する多数の 冷却管 325が列設されている。また、回転外筒体 323の壁部には、回転外筒体 323 の軸方向に沿って、ガスを軸方向一端側力 他端側に向けて流通させ、他方流路 R 4を通る媒体を加温する多数の加温管 326が列設されている。
このガス—加温流体熱交換器 306bに、ガス排気管 300からのガス及び加温流体 循環管路 86の加温流体が送給されると、一方流路 R3の媒体は、冷却管 325の加温 流体と熱交換して冷却されるとともに、他方流路 R4の媒体が加温管 326のガスと熱 交換して加温され、一方流路 R3及び他方流路 R4を通る媒体の対流が生じる。そし て、媒体の対流により回転内筒体 322及び回転外筒体 323が回転し、ギヤ機構 327 を介して、回転内筒体 322及び回転外筒体 323の回転力を動力として得る。
このガス 加温流体熱交換器 306bによれば、上記のガス 加温流体熱交換器 30 6aと比較すると、回転筒体 317に相当する回転内筒体 322だけでなく回転外筒体 3 23からも動力を得ているので、動力の取得効率を向上させることができる。
その他の構成,作用,効果は上記第一実施形態のものと同様である。
[0091] 次にまた、図 11乃至図 13には、第三実施形態に係る二酸化炭素回収及び燃焼装 置を示している。
この二酸化炭素回収及び燃焼装置は、上記のものと異なり、加温流体として、燃焼 装置 2から排気されたガスの一部を用いて 、る。
[0092] 詳しくは、二酸化炭素回収装置 1は、一方側支軸 91に、一方側支軸 91の軸方向 一端側を覆うケース 340を介して、ガス排気管 300が接続されている。また、一方側 支軸 91の軸方向一端側には、ケース 340内に渦流を発生させる羽根 330が設けら れている。さらに、筒体 21の外側面と筒部材 81内側面との間の空間は、回転軸と同 軸に設けられた筒状の仕切 331により、軸方向外側及び内側の 2つの空間 332, 33 3に隔てられている。そして、一方側支軸 91は、軸方向他端側において、上下に 2つ の管体 334, 335が接続されている。このうち、上側の管体 334は、仕切 331で隔て られた軸方向内側の空間 332に連通している。また、下側の管体 335は、仕切 331 で隔てられた軸方向外側の空間 333に連通している。
また、回転体 20の回転軸方向他端側には、仕切 331で隔てられた軸方向内側の 空間から噴出口 30の上部近傍に、空間 332内の気体を送出する気体送出管路 336 が設けられている。さらに、仕切 331で隔てられた軸方向外側の空間に流入した気 体は、筒部材 81の表面に設けられた加温流体散布ロカも筒状体 41に向けて散布さ れる。
[0093] さらに、一方側支軸 91の軸上には、水素を吸引可能な水素吸引口を複数有した水 素吸引管 350が設けられている。水素吸引管 350は、吸引した水素を貯留する水素 貯留タンク 351と接続されるとともに、その経路上に水素コンプレッサ 352が設けられ 、水素コンプレッサ 352の作動により水素吸引ロカも水素が吸引される。また、水素 吸引管 350は、その一部が屋根裏の気体通路 8と通過している。水素吸引管 350は 、気体通路 8において、回転軸を中心に環状に形成されており、この環状部分に、液 体窒素流通管路 115からの液体窒素が吹きかけられて、内部の水素が冷却される。 また、水素吸引管 350は、環状部分よりも水素貯留タンク 351側に、流動物一次貯 留槽 283と接続する水素供給管 353が設けられている。この水素供給管 353は、流 動物一次貯留槽 283に水素を供給する。
[0094] また、加温流体循環管路 86の代わりに、加温流体送給管路 86aが設けられて 、る 。加温流体送給管路 86aは、加温流体貯留槽 95よりも下流側が加温流体循環管路 86と異なり、温水貯留槽 263と接続されている。
その他の構成は上記の実施形態のものと同様である。
[0095] この二酸化炭素回収及び燃焼装置を作動させる場合には、上記と同様にして行う。
そして、燃焼装置 2から排気されたガスは、ガス排気管 300を通って二酸ィ匕炭素回 収装置 1側に至り、ケース 340内で渦流になって一方側支軸 91内に流入する。 渦流となったガスは、遠心力により比重の軽いものは、一方側支軸 91の軸方向内 側に、比重の重いものは軸方向外側に分離する。そして、比重の軽い水素は、一方 側支軸 91の軸に分布するようになり、水素吸引管 350から吸引される。
[0096] また、比重の重い二酸化炭素を多く含む気体は、回転軸方向外側に分布するよう になり、主に一方側支軸 91の軸方向他端側に設けた上側の管体に流入し、回転体 20の回転による遠心力により空間内で二酸ィ匕炭素のみが圧縮集合し、二酸化炭素 のみが気体送出管路カも容器 10内に向けて噴射し、二酸ィ匕炭素以外の気体は、気 体流入部 42から他方流路 R2を通って気体排気口に至る。容器 10内に散布された 燃焼装置 2からの二酸化炭素は、上記と同様に、噴出口 30から噴射された二酸化炭 素とともに容器 10内で液ィ匕されて回収される。
[0097] また、水蒸気等の比較的比重の軽いその他のガスは、回転軸方向内側に分布する ようになり、下側の管体に流入し、加温流体として、加温流体散布口から他方流路 R 2の気体に散布される。そして、他方流体の気体と熱交換されて水蒸気は液化し、加 温流体回収口 88から回収され、温水貯留槽 263に貯留される。
加温流体として、燃焼装置 2から排気された温度の高いガスの一部をそのまま用い るので、他方流路 R2の気体は、効率よく加温される。
[0098] 次に、図 14には、第四実施形態に係る二酸化炭素回収及び燃焼装置を示してい る。
図 15にも示すように、この二酸化炭素回収及び燃焼装置は、上記第三実施形態の ものと異なり、二酸化炭素回収装置 1の外郭 5に、気体排出口 43から排出される気体 を用いるために、外部に導出するダクト 150を設けている。ダクト 150は、外郭 5の下 部に設けられている。このようにすると、排出される気体を、外部に容易に導出するこ とがでさる。
また、上記外郭 5を通り上記ダクト 150に至る気体に対して、水を噴射して冷却する 冷却手段 155を設けている。このようにすると、高温の気体が外部に導出されるとい つた不具合を防止することができる。
[0099] 冷却手段 155は、加温流体吸引ポンプ 89よりも下流側であって加温流体貯留槽 9 5よりも上流側の加温流体循環管路 86に、電磁バルブ 156を介して接続され、外郭 の内壁に設けられる加温流体噴射口 157を備えている。この加温流体噴射口 157は 、電磁バルブ 156からの加温流体を筒状体 41側に噴射する。
加温流体噴射口 157から噴射された加温流体は、加温流体循環管路 86の加温流 体回収口 88で回収される。加温流体回収口 88は、筒状体 41の内部を流下してカロ 温流体回収口 88から筒状体 41の外部に流出した加温流体及び加温流体噴射口 1 57から噴射され筒状体 41の外側を流下してくる加温流体を回収可能なように、その 開口 88bが内側側及び上側に亘つて形成されている。この加温流体噴射口 157は、 電磁バルブ 156の開閉により、適時に筒状体 41側に加温流体を噴射することができ る。
また、ダクト 150から導出された気体は、例えば、部屋の暖房または冷房等に用い られる。
[0100] 次にまた、加温流体循環管路 86の熱交換器 87aよりも上流側には、加温流体循環 管路 86を流れる加温流体を水抜きするための水抜き管 160が設けられている。水抜 き管 160は、温水貯留槽 263,冷却流体貯留槽 256及び加温流体取出し口 161と に接続され、加温流体循環管路 86を流れる加温流体が余分にあるときは、この水抜 き管 160から内部の流れる水が抜き取られる。そして、水抜き管 160から、加温流体 である水が、温水貯留槽 263、冷却流体貯留槽 256に供給されたり、水抜き管 160 を介して、加温流体取出し口 161から外部に取り出されたりする。
[0101] また、図 16に示すように、上記の二酸化炭素回収及び燃焼装置とは、ガス—加温 流体熱交^^ 306cの構造が異なって 、る。
すなわち、ガス—加温流体熱交換器 306cは、このガス—加温流体熱交換器 306c 内に二酸ィ匕炭素貯留タンク 15からの二酸ィ匕炭素が補充される二酸ィ匕炭素補充管 3 80が接続されている。
[0102] また、加温流体循環管路 86に接続されるガス-加温流体熱交換器 306cの下流側 の管路 360には、管路 360を流れる加温流体の一部がガス—加温流体熱交換器 30 6cの上流側の管路 361に回帰するように分岐した分岐管 362が設けられている。こ の分岐管 362には、例えば、部屋の空気と分岐管 362を流れる加温流体との熱交換 を行なう暖房器具 363が介装され、部屋の湿度調整を行なえるようになつている。図 中、 364は、分岐管のポンプである。
さらに、回転外筒体 323内部の上端近傍には、上端側隔壁 370が設けられている 。この上端側隔壁 370と回転外筒体の上端内壁との間には、燃焼装置 2側のガス排 気管 300と接続され、ガス排気管 300のガスが流入する一次室 371が形成される。 一次室 371には、上端側隔壁 370に加温管 326の上端が貫通して加温管 326が接 続される。
また、回転外筒体 323内部の下端近傍には、下端側隔壁 372が設けられている。 この下端側隔壁 372と回転外筒体の下端内壁との間には、加温管 326からのガスが 流入する二次室 373が形成される。二次室 373には、下端側隔壁 372に加温管 326 の下端側が貫通して接続される。また、二次室 373は、塔状体 314内の空間に連通 している。そして、この加温管 326を流れるガスは、塔状体 314の下部に接続された 遠心分離器 301側のガス排気管 300から塔状体 314の外部に排出される。
[0103] また、加温管 326の上端と回転外筒体 323の上端側の内壁の間、及び、加温管 32 6の下端と回転外筒体 323の下端側の内壁の間には、加温管 326の周縁に弹接し、 加温管 326の傍聴収縮を吸収するゴム製のパッキン 324が設けてある。
また、一次室 371内には、一次室 371に流入するガスを受けて回転外筒体 323に 回転力を付与する一次室フィン 375が設けられている。また、二次室 373内には、二 次室 373に流入するガスを受けて回転外筒体 323に回転力を付与する二次室フィン 376力設けられている。
[0104] さらに、ガス—加温流体熱交 ^^306cのギヤ機構 327は、潤滑オイルが溜められ るギヤボックス 377に収納されている。このギヤボックス 377には、潤滑オイル循環管 路 310に接続される管路 310aが接続され、潤滑オイル循環管路 310の内部の潤滑 オイルが循環する。
その他の構成は上記のものと同様である。
[0105] この二酸ィ匕炭素回収及び燃焼装置を作動させる場合には、上記と同様にして行う。
この際、二酸化炭素回収装置 1の作動中に空気取り入れ口 8aからの外気に含まれ る水分等が、回転体 20内で窒素と熱交換して液体となり、加温流体である水に混じ るので、加温流体である水が増加する。 この増加した加温流体である水は、水抜き管 160を介し、温水貯留槽 263,冷却流 体貯留槽 256に供給されたり、水取出し口 161から排出されるので、加温流体である 水が循環する経路上に過多になるといった不具合は回避される。すなわち、加温流 体循環管路 86を流れる加温流体をほぼ定量にすることができ、加温流体加温部 87 によって、加温流体を効率よく加温したり、加温流体によって、他方流路 R2の気体を 効率よく加温することができる。
[0106] また、ダクト 150からは、加温流体と熱交換し、暖力べなった気体が導出される。これ により、ダクト 150からの気体を、部屋の暖房等に用いるようにでき、省エネルギ化を 図ることができる。
また、電磁バルブ 156により、筒状体 41内で液体窒素と熱交換して冷却され加温 流体循環管路 86内に流入した加温流体が、加温流体噴射口 157に至り、この加温 流体噴射口 157から噴射される。そして、この噴射された加温流体と、外郭 5を通りダ タト 150に至る気体との間で熱交換が行なわれ、この外郭 5を通りダクト 150に至る気 体が冷却される。これにより、ダクト 150から導出された気体を、部屋の冷房等に用い ることができ、省エネルギ化を図ることができる。
また、分岐管 362に加温流体が流されると、ガス 加温流体熱交換器 306cでガス と熱交換して加温された加温流体の一部は、暖房器具 363により部屋の空気と熱交 換を行なうことができ、部屋などを暖房することができ、省エネルギ化を図ることができ る。
[0107] また、媒体である二酸化炭素が外筒回転体 20から漏れ出ても、二酸化炭素補充管 380から二酸ィ匕炭素貯留タンク 15の二酸ィ匕炭素を補充することができ、外筒回転体 20内の二酸ィヒ炭素をほぼ一定量にすることができるので、ガス 加温流体熱交 306cによって、ガスと加温流体とを効率的に熱交換させることができる。
その他の作用,効果は上記のものと同様である。
[0108] 尚、発電機 70に、動力タービン 308を連動させてもよぐ適宜設計変更しても差し 支えない。
また、窒素循環管路 111に、圧縮機 112である窒素吸引ポンプよりも下流側に、窒 素循環管路 111から分岐して再び窒素循環管路 111に戻る迂回管路を設け、この 迂回管路を、標高のある程度高い山の山頂を通過させるとともに、迂回管路に山頂 付近の気体と熱交換する熱交換器を設けてもよい。この場合、窒素吸引ポンプで吸 引されて圧縮された窒素と山頂付近の比較的温度の低い空気との間で熱交換する ことができるので、窒素の液化が促進される。
さらに、窒素循環管路 111に、圧縮機 112である窒素吸引ポンプよりも下流側にお V、て、窒素循環管路 111から分岐して再び窒素循環管路 111に戻る別の迂回管路 を設け、この別の迂回管路を深層水を汲み上げて溜められた海水貯留槽を通過させ てもよい。この場合、窒素吸引ポンプで吸引されて圧縮された窒素と比較的温度の 低い深層水との間で熱交換することができるので、窒素の液化が促進される。

Claims

請求の範囲
[1] 容器内に二酸化炭素若しくは二酸化炭素を含む気体を供給するとともに、該容器 内に液体窒素を供給し、該容器内で二酸化炭素と液体窒素との熱交換を行なわせ て二酸化炭素を液化させる二酸化炭素回収装置と、
燃焼物に水が混合された流動物が供給され、該流動物中の水を熱分解して燃焼 物を燃焼させるとともに、燃焼後の二酸ィ匕炭素を含むガスを排気し、該ガス中の少な くとも二酸化炭素を上記二酸化炭素回収装置の容器内に送給する燃焼装置と を備えたことを特徴とする二酸化炭素回収及び燃焼装置。
[2] 前記二酸化炭素回収装置が、
液ィ匕ニ酸ィ匕炭素を底部から取り出し可能な容器と、
該容器に対して回転可能に設けられ、気体を吸引して遠心力により外周側に二酸 化炭素を分離して圧縮集合させるとともに、分離して圧縮集合した前記二酸化炭素 を液体窒素とともに外周に設けた複数の噴出ロカ 前記容器内に噴射させ、前記容 器内で二酸ィ匕炭素と液体窒素との熱交換を行なわせて、二酸化炭素を液化させる 中空状の回転体と、
該回転体を回転させる回転体駆動手段と、
前記回転体に設けられ気体を吸引する気体吸引部と、
前記回転体に設けられ不要な気体を排気する気体排気部と、
前記回転体内に設けられ該回転体内に液体窒素を散布する液体窒素散布部と、 該液体窒素散布部に液体窒素を供給する液体窒素供給部と
を備えたことを特徴とする請求項 1記載の二酸化炭素回収及び燃焼装置。
[3] 前記回転体が、回転軸方向一端に前記気体吸引部が形成され、回転軸方向他端 に前記気体排気部が形成された筒状に形成され、
前記回転体駆動手段が、前記回転体の外側に壁部を有し、前記容器及び回転体 に対して回転可能に設けられるとともに、回転軸方向他端側に設けられ前記回転体 の気体排気部力 の気体が流入する気体流入部及び回転軸方向一端側に設けら れ内部から外部に気体を排出する気体排出口を有した筒状体と、前記気体排出口 に設けられ、該気体排出口から排出された気体を受けて前記筒状体を回転させる動 翼と、前記容器及び筒状体を覆う外郭に設けられるとともに、気体排出口から排出さ れた気体を受ける静翼と、前記筒状体の回転力を前記回転体の回転力に連係させ る回転力伝達機構と、前記回転体と筒状体との間に加温流体を散布する加温流体 散布部と、該加温流体散布部に加温流体を供給する加温流体供給部とを備え、 前記回転体の気体吸引部力 該回転体の内部を通って気体排気部に至る一方流 路にお 1、て気体を冷却し、前記回転体の気体排気部力 該回転体の外側を通って 前記筒状体の気体排出口に至る他方流路において気体を加温して、気体の流れを 生じさせることにより、前記回転体及び筒状体に回転力を付与する
ことを特徴とする請求項 2記載の二酸化炭素回収及び燃焼装置。
[4] 前記回転体を軸支するとともに該回転体の内部に挿通される支軸と、前記支軸に 設けられ、前記回転体内の一方流路を通る気体に渦流を発生させる固定翼と、前記 回転体の内壁に設けられ、前記固定翼により渦流となった気体を受けて前記回転体 を回転させる可動翼とを備えたことを特徴とする請求項 3記載の二酸ィ匕炭素回収及 び燃焼装置。
[5] 前記外郭に、前記気体排出ロカ 排出される気体を用いるために、該気体を外部 に導出するダクトを設けたことを特徴とする請求項 3または 4記載の二酸化炭素及び 燃焼装置。
[6] 前記外郭を通り前記ダクトに至る気体に対して、水を噴射して冷却する冷却手段を 設けたことを特徴とする請求項 5記載の二酸ィ匕炭素及び燃焼装置。
[7] 前記燃焼装置が、
空気の供給が遮断された状態で、燃焼物に水の混合された流動物が供給され、該 流動物中の水を熱分解して燃焼物を燃焼させ、燃焼後のガスを排気する燃焼室体と 前記流動物を前記燃焼室体に供給する流動物供給部と、
前記燃焼室体を囲繞するとともに、該燃焼室体を回転駆動可能に支持する外側室 体と、
前記燃焼室体を回転駆動させる燃焼室体駆動手段と
を備え、 前記燃焼室体の下部に、該燃焼室体内に連通し流動物を導入する下部開口を設 け、前記燃焼室体の上部に、前記燃焼室体に連通し排気を排出する上部開口を設 け、前記燃焼室体が外筒と内筒を有し、前記燃焼室体の内筒が、前記燃焼室体の 遠心力で外筒側に押しつけられ燃焼室体の内壁を形成する耐熱流体からなり、 前記燃焼室体駆動手段が、前記筒状体に連係して該筒状体の回転力からの動力 を前記燃焼室体に伝達する動力伝達機構を備えたことを特徴とする請求項 3, 4, 5 または 6記載の二酸化炭素回収及び燃焼装置。
[8] 前記加温流体供給部が、
前記筒状体内に散布された加温流体を回収して前記加温流体散布部に循環させ る加温流体循環管路と、
前記加温流体循環管路の経路上にお!、て、該加温流体循環管路を流通する加温 流体を加温する加温流体加温部と
を備え、
前記加温流体加温部が、前記燃焼装置から排気されたガスと前記加温流体との間 で熱交換する熱交 を備えたことを特徴とする請求項 7記載の二酸ィ匕炭素回収及 び燃焼装置。
[9] 前記熱交換器が、
塔状体と、
前記塔状体に回転可能に軸支され、軸方向一端に熱交換用の気体力 なる媒体 の供給口が形成され、他端に媒体の排出口が形成された回転内筒体と、
前記塔状体及び回転内筒体に対して回転可能に設けられ、壁部が前記塔状体と 回転内筒体との間に位置するとともに、前記媒体を密封する回転外筒体と
を備え、
前記回転内筒体の供給ロカ 該回転内筒体の内部を通って排出口に至る一方流 路及び前記回転内筒体の排出口から該回転内筒体の外側を通って供給口に至る 他方流路を形成し、
前記回転内筒体の一端側に、前記供給口に流入する媒体を受けて該回転内筒体 に回転力を付与する動翼を設け、前記回転外筒体の一端側の内周に、前記動翼に 媒体を導くとともに前記回転外筒体に回転力を付与するガイド翼を設け、 前記回転内筒体の壁部であって該回転内筒体の軸方向に沿って、前記加温流体 を軸方向他端側から一端側に向けて流通させ、前記一方流路を通る媒体を冷却す る多数の冷却管を列設し、
前記回転外筒体の壁部であって該回転外筒体の軸方向に沿って、前記ガスを軸 方向一端側から他端側に向けて流通させ、前記他方流路を通る媒体を加温する多 数の加温管を列設し、
前記一方流路及び他方流路を通るように、媒体に温度差を付与して媒体の対流を 発生させ、該媒体の対流によって、前記回転内筒体及び回転外筒体を回転させて 動力を得ることを特徴とする請求項 8記載の二酸化炭素回収及び燃焼装置。
前記加温流体として、前記燃焼装置カゝら排気されたガスの一部を用いたことを特徴 とする請求項 3, 4, 5, 6, 7, 8または 9記載の二酸化炭素回収及び燃焼装置。
PCT/JP2005/020712 2005-08-12 2005-11-11 二酸化炭素回収及び燃焼装置 WO2007020715A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007530904A JPWO2007020715A1 (ja) 2005-08-12 2005-11-11 二酸化炭素回収及び燃焼装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005235054 2005-08-12
JP2005-235054 2005-08-12

Publications (1)

Publication Number Publication Date
WO2007020715A1 true WO2007020715A1 (ja) 2007-02-22

Family

ID=37757386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020712 WO2007020715A1 (ja) 2005-08-12 2005-11-11 二酸化炭素回収及び燃焼装置

Country Status (3)

Country Link
JP (1) JPWO2007020715A1 (ja)
CN (1) CN101238065A (ja)
WO (1) WO2007020715A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094959B2 (ja) * 2008-03-06 2012-12-12 株式会社Ihi 酸素燃焼ボイラの二酸化炭素供給方法及び二酸化炭素供給設備
JP5479949B2 (ja) * 2009-04-08 2014-04-23 株式会社東芝 測定装置、測定方法、及び二酸化炭素回収システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082419A (ja) * 2003-09-05 2005-03-31 Toshihiro Abe 二酸化炭素の液化方法及び二酸化炭素回収装置
WO2005033582A1 (ja) * 2003-10-01 2005-04-14 Toshihiro Abe 燃焼装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082419A (ja) * 2003-09-05 2005-03-31 Toshihiro Abe 二酸化炭素の液化方法及び二酸化炭素回収装置
WO2005033582A1 (ja) * 2003-10-01 2005-04-14 Toshihiro Abe 燃焼装置

Also Published As

Publication number Publication date
JPWO2007020715A1 (ja) 2009-02-19
CN101238065A (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
CN105593492B (zh) 用于燃料喷嘴的系统和方法
JP5334849B2 (ja) ガス流からco2を分離するための方法、該方法を実施するためのco2分離装置、co2分離装置に用いられるスワールノズルならびに該co2分離装置の使用
US9523537B2 (en) Desiccant based chilling system
JP2011508139A (ja) 気化性液体供給装置を採用するガスタービン・システム及び方法
CN107548433A (zh) 用于具有排气再循环的燃气涡轮发动机中高体积氧化剂流的系统和方法
JP6132491B2 (ja) 二酸化炭素を処理するためのシステムおよび方法
CN108817064A (zh) 一种空心蛟龙叶片式的土壤修复设备及其方法
JP2007144266A (ja) 浄水装置
ES2964852T3 (es) Un sistema de captura de dióxido de carbono y un método de uso de dicho sistema
CN103061834A (zh) 板式双介质热力循环发动机
WO2007020715A1 (ja) 二酸化炭素回収及び燃焼装置
CN108180632A (zh) 一种用于热媒水系统的冷凝管及其方法
JP4152894B2 (ja) 回転式内燃機関
CN201991616U (zh) 超燃双工质汽轮机
CN102341509A (zh) 高炉煤气利用过程中从高炉煤气分离回收二氧化碳的方法
JP4832118B2 (ja) 燃焼装置
CN210165406U (zh) 用于除渣机的冷却装置及除渣机
CN106014638A (zh) 高湿量空气利用燃气轮机系统及其废气处理系统
CN208269415U (zh) 一种锅炉用冷凝系统
CN107035533B (zh) 基于plc的多功能燃气轮机燃料控制装置
US4031697A (en) Combination steam-gas generator engine
WO2005033582A1 (ja) 燃焼装置
BR112020026709A2 (pt) Método e dispositivo para converter energia térmica
KR101727408B1 (ko) 가스터빈장치
RU2238415C2 (ru) Парогазотурбинная установка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580051295.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007530904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805909

Country of ref document: EP

Kind code of ref document: A1