WO2007019943A1 - Elektronischer schaltkreis und verfahren zum einspeisen von elektrischer energie in einen wechselstrom-elektroofen - Google Patents
Elektronischer schaltkreis und verfahren zum einspeisen von elektrischer energie in einen wechselstrom-elektroofen Download PDFInfo
- Publication number
- WO2007019943A1 WO2007019943A1 PCT/EP2006/007247 EP2006007247W WO2007019943A1 WO 2007019943 A1 WO2007019943 A1 WO 2007019943A1 EP 2006007247 W EP2006007247 W EP 2006007247W WO 2007019943 A1 WO2007019943 A1 WO 2007019943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- current
- electric furnace
- electronic circuit
- power controller
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000012423 maintenance Methods 0.000 claims description 3
- 239000002893 slag Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 101100069818 Caenorhabditis elegans gur-3 gene Proteins 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/18—Heating by arc discharge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/005—Electrical diagrams
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/22—Furnaces without an endless core
- H05B6/30—Arrangements for remelting or zone melting
Definitions
- the invention relates to an electronic circuit and a method for feeding at least one electrode of an AC electric furnace, in particular for melting metal with energy.
- the invention is applicable to electric furnaces for the production of non-ferrous metals, iron alloys, process slags, steel and slag cleaning.
- the electric furnaces can be designed as electric reduction ovens, as electric low shaft ovens or as electric arc furnaces.
- Such an electronic circuit for feeding an AC electric furnace is known from German patent application DE 2 034 874.
- the disclosed there electronic circuit is connected between a power grid and the at least one electrode of the electric furnace. It comprises a series connection consisting of an on / off switch for the electric furnace, a transformer for providing a supply voltage for the electric furnace from the power grid and an alternating current controller connected between the transformer and the electrode for controlling the current through the electrode.
- An alternating current controller typically consists of two antiparallel-connected thyristors and realizes the current control in the form of a phase control.
- the thyristors which realize the power part of the current controller, are typically designed for the entire working range of the electric furnace, that is to say a very large current range.
- High-performance ovens which are operated with high supply voltages, are usually required due to the high thyristor blocking voltages very expensive series of thyristors.
- high blocking-voltage thyristors typically can not switch large currents; For switching large currents, as they can certainly occur under certain operating conditions, in particular in a resistance operation, the electric furnace, therefore, many individual thyristors or whole AC power controllers must be connected in parallel. This is the only way to achieve the high electrode currents required for at least individual operating states. In order to ensure reliable operation of the electric furnace in all operating states, in particular also at high electrode currents, traditionally expensive and complex converter circuits are therefore required.
- the present invention seeks to develop a known electronic circuit and a method for feeding electrical energy into an AC electric furnace constructively simple and inexpensive to the effect that operation of the electric furnace in all operating conditions, especially at high Electrode currents, easily possible.
- an electronic circuit for feeding an AC electric furnace is characterized by a current measuring device for measuring the amount of current flowing through the electrode, a bypass circuit breaker which is connected in parallel to the AC divider, and a control device for opening or closing of the bypass switch as dictated by the amount of current flowing through the electrode.
- the mentioned characterizing features are very simple and thus inexpensive to implement. In their claimed configuration, they advantageously enable bridging of the AC power actuator in the event of imminent danger Overload, that is during operating conditions of the electric furnace, which require a particularly large electrode current.
- these operating conditions such as a resistance operation with immersed electrodes and no arc content, no special control of the electrode current through the AC power controller; its function is then dispensable and is then bridged as claimed.
- the bypass switch is opened according to the invention, with the result that the electrode current is then passed through the AC power controller and can be controlled by this.
- the amount of current through the electrode during operation with arc is less than during a resistance operation without arc.
- the inventive provision of the bypass switch, the electronic circuit is adapted to different operating conditions of the electric furnace, as they arise due to metallurgical requirements, very simple and inexpensive.
- the above object is further achieved by a claimed method for feeding electrical energy into an AC electric furnace or in the electrode thereof.
- the advantages of this method correspond to the advantages mentioned above with respect to the claimed electronic circuit.
- FIG. 1 shows the electronic circuit according to the invention
- FIG. 2 shows a typical voltage-current-power diagram U-I-P diagram for an electroreduction furnace
- Figure 3 shows a cross section through the electrode and melt in an electric furnace and an associated electrical equivalent circuit diagram for this portion of the electrode current
- Figure 4 shows the diagram of Figure 2 with additionally marked different operating ranges of the electric furnace and drawn current threshold
- the electrodes Roden 11 interconnected for energy input into the furnace vessel 12 in pairs.
- the electrodes are usually connected in a knapsack circuit in order to reduce the reactance of the high-current line.
- the Knappsackscrien but also a star connection of the electrodes is possible.
- FIG. 1 shows the electronic circuit according to the invention for feeding electrical energy into an electric furnace.
- FIG. 1 shows a single-phase representation; corresponding circuits could be provided for further phases.
- the power supply for the electric furnace usually takes place from a medium-voltage network 1.
- the electronic circuit comprises a furnace transformer 6, which with its primary side the medium-voltage network 1, hereinafter also called power network, and facing with its secondary side of the electrode 11.
- the electronic circuit comprises a first series circuit comprising a voltage measuring device 2, a furnace circuit breaker 3 for switching on or off the electric furnace, a current measuring device 4, optionally a star / delta switch for selectively switching the primary winding of the open-transformer in a star or delta connection and an overvoltage protection 13.
- the Ste ⁇ v / delta switch allows a shift of the rated voltage range of the furnace transformer 6 by, for example, the factor 1, 73 up or down.
- the electronic circuit essentially comprises a second series circuit consisting of a first circuit breaker 10a, an alternating current controller 8 and a second circuit breaker 10b.
- the circuit breakers 10a and 10b allow for closed high-current circuit breaker 9 an electrical separation or an expansion of the AC power controller 8, for example For maintenance, without the furnace operation, in particular the resistance operation with immersed electrodes and without arc portion should be interrupted for it.
- the AC power controller 8 allows control of the electrode current in the form of a phase control.
- the electronic circuit has been supplemented by a bypass switch 9 which is connected in parallel with the alternating current controller 8 and optionally also in parallel with the first and second circuit breakers 10a and 10b and which is controlled by a control device 14.
- the controller 14 may be implemented in the form of a stored program controller, a process control system, or other computerized system.
- FIG. 2 shows a typical voltage-current-power diagram U-I-P diagram for a 6-electrode electroreduction furnace.
- effective power lines 100 as a function of the secondary current, plotted on the ordinate axis, and the secondary voltages, plotted on the abscissa axis, are shown.
- the family of curves 200 identifies the furnace resistance.
- the short-circuit impedance of the electric furnace is symbolized here by the characteristic 300.
- characteristic curves 4a and 4b show the maximum permissible current through the electrode as a function of the secondary voltage for the primary-side star connection of the transformer windings 4a and for the primary-side delta connection the transformers of the transformer windings 4b.
- Characteristic curve 500 illustrates the maximum rated current of the AC converter 8 according to the invention, that is to say the current threshold value.
- an electric furnace can typically be divided into essentially the following metallurgical operating states:
- the energy required for the process is generated by resistance heating of the slag.
- the electrodes 11 are clearly submerged in the slag, the immersion depth is dependent inter alia on the electrode diameter; However, it is usually about 200 mm.
- electric current is passed through the slag, converting electrical energy into Joule heat due to the electrical resistance of the slag, which promotes a metallurgical endothermic reaction, for example, reduction and melting.
- the resistance operation with immersed electrodes and without arc portion is characterized by high electrode currents and relatively low secondary voltages, which are well below 1000 V.
- the electric furnace can therefore also be operated conventionally, that is without current control. Therefore, it is recommended during this operation, the bypass switch. 9 close and so to bridge the AC power 8. In this way, the power semiconductors, typically thyristors, in the AC power controller 8 are protected from excessive currents.
- the majority of the energy required for this operation of the electric furnace is generated by resistance heating of the slag. Electric current is passed through the slag, converting the electric energy into Joule heat through the resistance of the slag. The Joule heat thereby promotes a metallurgical endothermic reaction, for example reduction and melting. An additional smaller energy input can be effected by an arc occurring in the lower region of the electrodes or below them. This is possible with only minimally immersed electrodes or at an electrode position directly above the slag bath. For this mode of operation usually relatively large currents and comparatively low voltages are required; see Figure 4, area b). However, the voltages in this mode are significantly higher than with immersed electrodes. Specifically, the secondary voltages are typically in the range around 1000 V for furnaces of around 30 to 50 MW output.
- FIG. 3 also shows an electrical equivalent circuit diagram for the electrical path through the electrode 11, the arc L, the slag S and the molten metal 15.
- the ohmic resistance of the electrode 11 and the molten metal 15 can be assumed to be zero. There then remain for the electrode current an ohmic resistance R L due to the arc L and an ohmic resistance Rs through the slag S.
- the voltages are usually above 1000 V.
- the entire required electrode current is guided and regulated via the alternating current controller 8.
- the high-current circuit breaker 9 is opened here.
- the transition between modes b) and c) is fluent. Basically, only when increasing the power by increasing the secondary voltage of the transformer 6, with increasing proportion of the arc L at the energy input, see Figure 3, and falls below the threshold current 300 for the electrode current of the bypass breaker 9 is opened and the first and second Disconnector 10a, 10b are closed. In this way, the AC controller is then switched on and serves to optimize the energy input. Conversely, the AC power 8 must with a reduction in the energy input through the arc, with a reduction in the secondary voltage and with increasing electrode current, that is, in principle, when the current threshold value is exceeded by the electrode current, again in time to be taken out of the electrical circuit.
- the current threshold 300 for opening the bypass switch 9 is identical to the current threshold for closing the bypass switch. However, different current threshold values, for example combined in a hysteresis, are also conceivable for the two processes.
- FIG. 4 shows, analogously to FIG. 2, an example of the dimensioning of the electronic circuit according to the invention for introducing energy into an electric furnace with 6 electrodes for a FeNi process with 129 MVA.
- the characteristic curve 300 here also characterizes the maximum current through the alternating current controller 8 and thus the current threshold value for switching over the bypass isolating switch 9.
- the alternating current controller 8 is closed at electrode currents above this threshold value, whereby the alternating current controller is then electrically relieved.
- This has the advantage that the AC power controller 8 overall and in particular its power semiconductor can be dimensioned considerably smaller, whereby a simple and inexpensive solution is possible.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Discharge Heating (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Control Of Electrical Variables (AREA)
- Control Of Voltage And Current In General (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Emergency Protection Circuit Devices (AREA)
- General Induction Heating (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502006001904T DE502006001904D1 (de) | 2005-08-15 | 2006-07-24 | Elektronischer schaltkreis und verfahren zum einspeisen von elektrischer energie in einen wechselstrom-elektroofen |
JP2007543867A JP4729582B2 (ja) | 2005-08-15 | 2006-07-24 | 交流電気炉内に電気エネルギーを供給する電子式スイッチングの方法 |
US11/665,435 US8665924B2 (en) | 2005-08-15 | 2006-07-24 | Electronic circuit and method of supplying electricity |
CN2006800014703A CN101091416B (zh) | 2005-08-15 | 2006-07-24 | 用于将电能馈入交流电炉中的电子开关电路和方法 |
EP06776359A EP1915889B1 (de) | 2005-08-15 | 2006-07-24 | Elektronischer schaltkreis und verfahren zum einspeisen von elektrischer energie in einen wechselstrom-elektroofen |
CA2583481A CA2583481C (en) | 2005-08-15 | 2006-07-24 | Electronic circuit and method for feeding electric power to a alternating-current electric-arc furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005038702.0 | 2005-08-15 | ||
DE102005038702A DE102005038702A1 (de) | 2005-08-15 | 2005-08-15 | Elektronischer Schaltkreis und Verfahren zum Einspeisen von elektrischer Energie in einen Wechselstrom-Elektroofen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007019943A1 true WO2007019943A1 (de) | 2007-02-22 |
Family
ID=37622201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/007247 WO2007019943A1 (de) | 2005-08-15 | 2006-07-24 | Elektronischer schaltkreis und verfahren zum einspeisen von elektrischer energie in einen wechselstrom-elektroofen |
Country Status (14)
Country | Link |
---|---|
US (1) | US8665924B2 (de) |
EP (1) | EP1915889B1 (de) |
JP (1) | JP4729582B2 (de) |
KR (1) | KR100848863B1 (de) |
CN (1) | CN101091416B (de) |
AT (1) | ATE412333T1 (de) |
CA (1) | CA2583481C (de) |
DE (2) | DE102005038702A1 (de) |
ES (1) | ES2314935T3 (de) |
RU (1) | RU2331991C1 (de) |
TW (1) | TWI413455B (de) |
UA (1) | UA86999C2 (de) |
WO (1) | WO2007019943A1 (de) |
ZA (1) | ZA200701679B (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101778329B1 (ko) | 2010-04-26 | 2017-09-26 | 해치 리미티드 | 야금로 내의 차지 뱅크 레벨 측정 |
WO2012033254A1 (en) * | 2010-09-10 | 2012-03-15 | Samsung Sdi Co., Ltd. | Energy storage system and controlling method of the same |
DE102014206008A1 (de) * | 2014-03-31 | 2015-10-01 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur dynamischen Einstellung eines Elektrolichtbogenofens |
WO2019084674A1 (en) * | 2017-10-31 | 2019-05-09 | Hatch Ltd. | Line control circuit configuration |
EP3758446A1 (de) * | 2019-06-27 | 2020-12-30 | ABB Schweiz AG | Lichtbogenofenstromversorgung mit wandlerschaltung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE972422C (de) * | 1955-09-28 | 1959-07-16 | Siemens Ag | Einrichtung zur Minderung der Stromschwankungen bei Lichtbogenoefen |
DE2034874A1 (de) * | 1970-07-07 | 1972-01-20 | Licentia Gmbh | Anordnung zur Speisung eines Lichtbo genofens |
EP0429774A1 (de) * | 1989-11-30 | 1991-06-05 | DANIELI & C. OFFICINE MECCANICHE S.p.A. | Mit gesteuertem Gleichstrom gespeister Gleichstromlichtbogenofen und Verfahren zum Speisen eines Gleichstromlichtbogenofens mit gesteuertem Strom |
EP0589544A2 (de) * | 1992-09-23 | 1994-03-30 | MANNESMANN Aktiengesellschaft | Dreiphasige Lichtbogenofenanlage mit Drossel |
WO2002063927A2 (en) * | 2001-02-08 | 2002-08-15 | Hatch Ltd. | Power control system for ac electric arc furnace |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531463B2 (de) * | 1972-04-26 | 1978-01-19 | ||
JPS5345932B2 (de) * | 1973-04-19 | 1978-12-09 | ||
JPS59115211A (ja) * | 1982-12-22 | 1984-07-03 | 凸版印刷株式会社 | 結束装置 |
JP2665868B2 (ja) * | 1992-12-28 | 1997-10-22 | 株式会社三社電機製作所 | 電気炉用電源装置 |
US5991327A (en) * | 1995-10-26 | 1999-11-23 | Inverpower Controls Ltd. | Smart predictive line controller for AC and DC electric arc furnaces |
JPH10311681A (ja) | 1997-05-14 | 1998-11-24 | Nkk Corp | 複式直流アーク溶解炉 |
JPH1198683A (ja) * | 1997-09-20 | 1999-04-09 | Sca:Kk | 負荷電流制御装置 |
KR100540187B1 (ko) * | 1999-12-23 | 2006-01-12 | 재단법인 포항산업과학연구원 | 리액터와 트라이액으로 이루어진 가변임피던스회로를 갖는교류전기로 |
JP2004334623A (ja) * | 2003-05-09 | 2004-11-25 | Hakko Electric Mach Works Co Ltd | 温度制御装置 |
-
2005
- 2005-08-15 DE DE102005038702A patent/DE102005038702A1/de not_active Withdrawn
-
2006
- 2006-07-20 TW TW095126467A patent/TWI413455B/zh not_active IP Right Cessation
- 2006-07-24 WO PCT/EP2006/007247 patent/WO2007019943A1/de active Application Filing
- 2006-07-24 CN CN2006800014703A patent/CN101091416B/zh active Active
- 2006-07-24 UA UAA200705126A patent/UA86999C2/uk unknown
- 2006-07-24 AT AT06776359T patent/ATE412333T1/de active
- 2006-07-24 RU RU2007114727/09A patent/RU2331991C1/ru not_active IP Right Cessation
- 2006-07-24 JP JP2007543867A patent/JP4729582B2/ja active Active
- 2006-07-24 EP EP06776359A patent/EP1915889B1/de active Active
- 2006-07-24 CA CA2583481A patent/CA2583481C/en active Active
- 2006-07-24 US US11/665,435 patent/US8665924B2/en active Active
- 2006-07-24 ES ES06776359T patent/ES2314935T3/es active Active
- 2006-07-24 KR KR1020077006349A patent/KR100848863B1/ko active IP Right Grant
- 2006-07-24 DE DE502006001904T patent/DE502006001904D1/de active Active
-
2007
- 2007-02-26 ZA ZA200701679A patent/ZA200701679B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE972422C (de) * | 1955-09-28 | 1959-07-16 | Siemens Ag | Einrichtung zur Minderung der Stromschwankungen bei Lichtbogenoefen |
DE2034874A1 (de) * | 1970-07-07 | 1972-01-20 | Licentia Gmbh | Anordnung zur Speisung eines Lichtbo genofens |
EP0429774A1 (de) * | 1989-11-30 | 1991-06-05 | DANIELI & C. OFFICINE MECCANICHE S.p.A. | Mit gesteuertem Gleichstrom gespeister Gleichstromlichtbogenofen und Verfahren zum Speisen eines Gleichstromlichtbogenofens mit gesteuertem Strom |
EP0589544A2 (de) * | 1992-09-23 | 1994-03-30 | MANNESMANN Aktiengesellschaft | Dreiphasige Lichtbogenofenanlage mit Drossel |
WO2002063927A2 (en) * | 2001-02-08 | 2002-08-15 | Hatch Ltd. | Power control system for ac electric arc furnace |
Also Published As
Publication number | Publication date |
---|---|
EP1915889A1 (de) | 2008-04-30 |
JP2008522375A (ja) | 2008-06-26 |
US20080123714A1 (en) | 2008-05-29 |
ATE412333T1 (de) | 2008-11-15 |
TW200711541A (en) | 2007-03-16 |
ES2314935T3 (es) | 2009-03-16 |
TWI413455B (zh) | 2013-10-21 |
UA86999C2 (uk) | 2009-06-10 |
US8665924B2 (en) | 2014-03-04 |
KR100848863B1 (ko) | 2008-07-29 |
CA2583481C (en) | 2011-06-07 |
CN101091416B (zh) | 2010-07-21 |
RU2331991C1 (ru) | 2008-08-20 |
CA2583481A1 (en) | 2007-02-22 |
CN101091416A (zh) | 2007-12-19 |
JP4729582B2 (ja) | 2011-07-20 |
KR20070088525A (ko) | 2007-08-29 |
DE102005038702A1 (de) | 2007-02-22 |
EP1915889B1 (de) | 2008-10-22 |
ZA200701679B (en) | 2008-04-30 |
DE502006001904D1 (de) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3120451B1 (de) | Stromversorgung einer nichtlinearen last mit multilevel-matrixumrichtern | |
EP1808049A1 (de) | Steuervorrichtung für wechselstrom-reduktionsöfen | |
EP2732521B1 (de) | Gleichspannungs-leitungsschutzschalter | |
DE10058028A1 (de) | Phasensteuerungs-Schaltervorrichtung | |
DE2936279C3 (de) | Leistungsschaltervorrichtung | |
EP1915889B1 (de) | Elektronischer schaltkreis und verfahren zum einspeisen von elektrischer energie in einen wechselstrom-elektroofen | |
EP3138649B1 (de) | Vorrichtung und verfahren zum kondensatorentladeschweissen | |
DE2901263A1 (de) | Regelung einer hgue-(hochspannungs- gleichstrom-uebertragungs-)-kurzkupplung | |
DE102011005905A1 (de) | Schalter für eine Übertragungsstrecke für Hochspannungs-Gleichstrom | |
DE102018218439A1 (de) | Leitungssteuerschaltungskonfiguration | |
DE2205076A1 (de) | Anordnung in den querverbindungen phasengetrennter metallischer kapselungen von isoliergasgefuellten hochspannungsleitungen | |
DE2531639C3 (de) | Schutzeinrichtung für ein Induktionsheizgerät | |
EP0571643A1 (de) | Verfahren und Vorrichtung zur symmetrischen Aussteuerung einer gesteuerten Serienkompensationsanlage | |
DE3035508C2 (de) | Verfahren und Vorrichtung zur Stromversorgung und Leistungsregelung eines Elektroreduktionsofens mit verdecktem Lichtbogen | |
WO2017085330A1 (de) | Energieversorgungssystem für einen elektroofen | |
DE3508323A1 (de) | Einrichtung zur speisung einer oder mehrerer elektroden eines ein- oder mehrphasigen elektrothermischen ofens | |
WO1999025050A1 (de) | Strombegrenzereinrichtung für schaltnetze | |
DE102022105169A1 (de) | Energieversorgungseinrichtung für einen Ofen, System für die Versorgung eines Elektrolichtbogenofens oder eines Reduktionsofens mit elektrischer Energie, Elektrolichtbogenofen, Reduktionsofen und Betriebsverfahren | |
EP1911329A1 (de) | Transformatorsystem für elektrische lichtbogenöfen mit drei elektroden | |
DE2856304C2 (de) | Steuereinrichtung zur automatischen Regelung des Heizstroms eines Gießgerätes für Dentalgüsse | |
DE2925054C2 (de) | Stromversorgungseinrichtung für Lichtbogenöfen | |
EP4398474A1 (de) | Elektrische anordnung | |
DE2536638C3 (de) | Schaltvorrichtung zur Eliminierung oder zumindest Dämpfung des "inrush"-Effektes (Stoßstrom-Effektes) | |
DE102012109844B4 (de) | Vorrichtung und Verfahren zur Regelung eines Lichtbogenofens in der Anfangsphase eines Schmelzprozesses | |
DE716744C (de) | Durch Sicherungen abschaltbare elektrische Anlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2006776359 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077006349 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2583481 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11665435 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007114727 Country of ref document: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007543867 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680001470.3 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2006776359 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11665435 Country of ref document: US |