WO2007017965A1 - 二酸化炭素ガスの地中浸透モニタリング方法 - Google Patents

二酸化炭素ガスの地中浸透モニタリング方法 Download PDF

Info

Publication number
WO2007017965A1
WO2007017965A1 PCT/JP2006/302347 JP2006302347W WO2007017965A1 WO 2007017965 A1 WO2007017965 A1 WO 2007017965A1 JP 2006302347 W JP2006302347 W JP 2006302347W WO 2007017965 A1 WO2007017965 A1 WO 2007017965A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
underground
monitoring
coal seam
Prior art date
Application number
PCT/JP2006/302347
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Koyama
Masao Nako
Hironobu Komaki
Original Assignee
The Kansai Electric Power Co., Inc.
The General Environmental Technos Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Kansai Electric Power Co., Inc., The General Environmental Technos Co., Ltd. filed Critical The Kansai Electric Power Co., Inc.
Priority to CA 2618629 priority Critical patent/CA2618629A1/en
Priority to US11/990,207 priority patent/US20090255670A1/en
Publication of WO2007017965A1 publication Critical patent/WO2007017965A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • the present invention relates to a monitoring method for recovering a hydrocarbon-based gas released by injecting and adsorbing carbon dioxide in a underground coal seam and replacing it with carbon dioxide.
  • the present invention relates to a method for monitoring the penetration of carbon dioxide gas into the ground in order to monitor the behavior of carbon dioxide in the ground and efficiently recover hydrocarbon gases.
  • coal has a gas adsorption action due to its fine void structure, and a large amount of hydrocarbon gas such as methane gas is usually contained in the underground coal seam made of coal.
  • coal has the property of adsorbing several times the amount of methane to diacid carbon, and if the diacid carbon and methane gas contained in the coal are replaced, Global environmental warming One of the greenhouse gases that cause carbon dioxide can be efficiently and stably fixed in carbon, and methane gas, which is clean energy, can be replaced with carbon dioxide. It can be recovered and used effectively.
  • Patent Document 1 A technique for commercially recovering methane gas in a coal seam as fuel gas or raw material gas is already known (for example, Patent Document 1).
  • diacid carbon gas when diacid carbon gas is injected into a well-forced coal bed that is open to the ground surface, for example, diacid carbon, which is about twice the power of methane, is contained in such a coal bed. Because it is adsorbed, carbon dioxide is selectively adsorbed on the surface of the coal, and hydrocarbon gases such as methane gas adsorbed on the coal are released.
  • Coal seams that can be used in this way can be deep coal seams where it is difficult to mine coal or coal seams with low quality and low economic efficiency.
  • Carbon dioxide is a greenhouse gas whose emission regulations have been tightened in recent years. Therefore, it can be said to be an excellent resource recycling technology in that it can be stably fixed and combustible natural gas resources can be used effectively.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-3326
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-309143
  • the conventional geological structure survey method described above is a method developed for exploring oil and coal deposits and is suitable for measuring physical data at a specific point in time. This method is not suitable for investigating changes in data over the long term, and each measurement requires a heavy-duty device and high measurement costs.
  • an object of the present invention is to solve the above-described problems and to provide a relatively simple apparatus that can continuously measure the behavior of carbon dioxide injected into the ground for a long period of time. It should be a method that can be used and monitored at as low a cost as possible.
  • a plurality of wells leading to underground coal seams are provided.
  • multiple inclinometers are installed in the ground above the coal seam between the injection well of dioxygen carbon gas and the production well of hydrocarbon gas.
  • Carbon dioxide gas penetration into the ground consisting of monitoring the penetration status of carbon dioxide gas in the ground corresponding to the production volume of hydrocarbon gas by examining the change in the tilt angle of the position over time It was a monitoring method.
  • the inclination of the inclinometer is considered to have a certain degree of correlation with the amount of infiltration of diacid carbon. It is possible to estimate to a certain extent the power that is flowing, the diffusion rate due to permeation, and the reach of hydrocarbon gases.
  • the inclinometer allows gas such as carbon dioxide above the coal seam. It is preferable to install in the ground shallower than the cap rock layer, which is difficult to pass through.
  • the inclinometer is the above-described carbon dioxide monitoring method for carbon dioxide injection in a coal seam installed in the ground at a depth of 10 to 60 m.
  • this method can examine the change in the inclination angle with time in a relatively shallow ground, and the measurement device can be a relatively small and simple device. There are also advantages to monitoring. Brief Description of Drawings
  • FIG.1 Schematic illustration of the method for monitoring underground penetration of diacid-carbon gas
  • FIG.2 A chart showing the relationship between pressurization conditions for carbon dioxide carbon dioxide and changes in production gas volume over time
  • the embodiment provides two wells that also have press wells 3 and production wells 4 leading to the lower layer 2 of the two coal seams consisting of the main layer 1 and the lower layer 2 existing in the ground.
  • diacid carbon gas is injected from the injection well 3 and fixed to the coal in the lower layer 2, and hydrocarbon gas containing methane gas discharged by replacing the diacid carbon is released.
  • Production well 4 is a method for monitoring the penetration of dioxygen carbon gas into the ground and monitoring the infiltration of dioxide-carbon carbon gas applied in the production system of hydrocarbon gas.
  • the depth of the observation holes drilled at six points is 12m at the points (A, B, C, D), and at the points, F).
  • the distance between A and B is approximately 25m
  • the distance between B and C is approximately 80m
  • the distance between CDs is also approximately 80m.
  • Points E and F are almost the same as points B and C, and only the depth is The arrangement condition is different.
  • the carbon dioxide used in the present invention is a thermal power plant or a factory after consuming a meteorite fuel.
  • the exhaust gas, etc. those obtained by separating and recovering those containing carbon dioxide can be used.
  • High-purity carbon dioxide can be obtained relatively easily by the amine method in which it is absorbed and recovered by an amine such as monoethanolamine.
  • liquid soda carbonate obtained in this way is used, it is pumped from the liquid soda carbonate storage tank 5 via the booster pump 6 and heated by the evaporator 7, and then vaporized and then introduced into the press-fit well 3. To do.
  • the condition for injecting diacid carbon is to inject carbon dioxide at a predetermined pressure and temperature into the diacid carbon injection pipe 8 reaching the coal bed (lower layer 2).
  • the injection conditions vary depending on the depth of the coal seam (lower layer 2). For example, when the depth is 500 m, the injection pressure is lOMPa and the temperature may be about 40 ° C. In this case, the injection pressure becomes supercritical at the injection point at the same level as the injection pressure and temperature, but it is expected to drop to 5 MPa and 30 ° C after several tens of meters from the injection point. At a depth of 1000m, the injection pressure is considered to be 15MPa. Similarly, at a depth of 3000m, the injection pressure may be 35MPa.
  • Such injection of diacid carbon may be performed from a plurality of injection wells 3 at one or more locations.
  • the production well 4 is preferably installed at a sufficient distance to adsorb carbon dioxide sorbed from the injection well 3 into the coal bed. Such a distance is considered to require at least several tens of meters.
  • the production well 4 is separated from the injection well 3 by a predetermined distance of steam in a three-dimensional positional relationship, and is not necessarily separated in a planar direction.
  • inclinometer used in this invention is preferably a highly accurate inclinometer capable angles measured in 10-6 to 10-9 radians, is required to employ a material obtained by limiting the mechanism Absent.
  • a high-precision inclinometer for example, there is an inclinometer in which an electrolyte solution and a container in which bubbles are confined are provided, and in this structure, bubbles are generated depending on the gravitational field. Since the potential field in the X-Y direction of the electrolyte solution field containing bubbles changes when it moves, it is possible to measure the inclination in the X-Y plane by measuring this potential change in two orthogonal directions. Can be adopted. As a commercially available inclinometer, a high-precision inclinometer manufactured by Pinnacle of the United States can also be used.
  • the installation interval and number of inclinometers are not particularly limited.
  • a force of about 30m should be installed with a width of several kilometers (for example, about 1-6km)!

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geophysics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 地中の炭層に二酸化炭素を圧入して吸着させ、これに置換して放出された炭化水素系ガスを回収する際に、地中に圧入される二酸化炭素の挙動を長期的に連続して測定でき、しかも比較的簡単な装置を用いて、可及的に低コストで運用できる二酸化炭素ガスの地中浸透モニタリング方法とすることである。  地中の炭層(本層1、下層2)に通じる圧入井3と生産井4からなる複数の坑井を設け、これら複数の坑井のうち圧入井3から二酸化炭素ガスを圧入して、炭層の石炭に固定された二酸化炭素に置換された炭化水素系ガスを生産井4から回収する際に、圧入井3と生産井4の間における複数の地点(A、B、C、D、E、F)に穿設した観測孔内の底部に高精度の傾斜計を設置し、これらの傾斜計によって所定位置の傾斜角度の経時的変化を調べることにより、地中の二酸化炭素ガスの浸透状況を監視することからなる二酸化炭素ガスの地中浸透モニタリング方法とする。

Description

明 細 書
二酸ィ匕炭素ガスの地中浸透モニタリング方法
技術分野
[0001] この発明は、地中の炭層に二酸ィ匕炭素を圧入して吸着させ、これに置換して放出 された炭化水素系ガスを回収する際のモニタリング方法に関し、特に注入された二酸 化炭素の地中での挙動を監視して効率よく炭化水素系ガスを回収するための二酸 化炭素ガスの地中浸透モニタリング方法に関する。
背景技術
[0002] 一般に、石炭は、その微細な空隙構造によって気体の吸着作用があり、石炭からな る地中の炭層には、通常、メタンガスなどの炭化水素系ガスが多量に包蔵されている
[0003] さらに石炭は、二酸ィ匕炭素に対しては、これをメタンの数倍量も吸着する性質があり 、二酸ィ匕炭素と石炭中に含まれるメタンガス等とを置換すれば、地球環境の温暖化 原因となる温室効果ガスの一つの二酸ィヒ炭素を炭素中に効率よく安定して固定ィ匕で きると共に、クリーンエネルギーであるメタンガスを二酸ィ匕炭素に置換して回収し、こ れを有効に利用することができる。
[0004] 炭層中のメタンガスを燃料ガスまたは原料ガスとして商業的に回収する技術は、既 に知られて 、る(例えば特許文献 1)。
[0005] 因みに、石炭層からメタンガスなどの炭化水素系ガスを回収するには、圧入した二 酸ィ匕炭素ガスで石炭層に保持されている炭化水素系ガスを置換して回収するが、そ の方法は一般的には次のように行なわれる。
[0006] すなわち、地表面に開口した坑井力 石炭層に二酸ィ匕炭素ガスを注入すると、この ような石炭層には、例えばメタンの 2倍力 数倍程度の二酸ィ匕炭素が吸着するので、 石炭の表面には二酸ィ匕炭素が選択的に吸着され、石炭に吸着されていたメタンガス などの炭化水素系ガスが放出される。
[0007] このように二酸ィ匕炭素 メタンなどの置 構を利用し、石炭層中に多量に含まれ るメタンガス等を燃料ガスとして別の坑井から回収して利用できる。 [0008] このように利用できる石炭層は、石炭の採掘が困難な深部炭層や低質で経済性の 低い炭層でもよぐまた二酸化炭素は、近年では排出規制も強化されている温室効 果ガスの一つであるから、これを安定して固定すると共に、これに置換された可燃性 天然ガス資源を有効に利用できる点でも優れた資源のリサイクル技術であるといえる
[0009] ところで、このように二酸ィ匕炭素ガスを地中に固定する際に、炭層で置き換わったメ タンガスを含む可燃性ガスを回収する際、どのような種類と濃度の有益なガスが含ま れて 、るかを調べるために、ラマンプローブとラマン散乱光分析装置を地中に埋設し た中空管の内部に配置し、ガスモニタリングする技術が知られている(特許文献 2)。
[0010] また、一般的な地層や岩盤物性その他の地質構造を調べる手段として、地震探査 、トモグラフィー (弾性波測定、比抵抗測定、電磁波測定)、物理検層(中性子測定、 音波測定、密度測定)などが周知である。
[0011] 特許文献 1 :特開 2004— 3326号公報
特許文献 2:特開 2004— 309143号公報
発明の開示
発明が解決しょうとする課題
[0012] しかし、上記した従来の地質構造の調査方法は、石油'石炭の鉱床を探査するた めに開発された方法であって、特定の時点で物理データを測定するには適当である 力 長期的にデータの変化を何度も調べる場合には適しておらず、毎回の測定には 大掛力りな装置が必要で高額の測定コストが必要であった。
[0013] また、従来のガスモニタリング技術では、地中のガス成分を評価できる力 その結果 得られる情報は、圧入された二酸ィ匕炭素ガスの地中の挙動と対応するものではなぐ 地中の二酸ィ匕炭素ガスの挙動を簡単に知ることはできな力つた。
[0014] そこで、この発明の課題は、上記した問題点を解決して、地中に圧入される二酸ィ匕 炭素の挙動を長期的に連続して測定でき、しかも比較的簡単な装置を用いて、可及 的に低コストでモニタリングできる方法とすることである。
課題を解決するための手段
[0015] 上記の課題を解決するために、この発明では、地中の炭層に通じる複数の坑井を 設け、これら複数の坑井のうち少なくとも 1つの坑井から二酸ィ匕炭素ガスを圧入して 炭層に浸透させ、浸透した二酸化炭素ガスと置換された前記炭層中の炭化水素系 ガスを他の坑井から生産する際、二酸ィヒ炭素ガスの圧入井と炭化水素系ガスの生産 井の間における炭層上方の地中に間隔を開けて複数の傾斜計を設置し、これら傾斜 計によって所定位置の傾斜角度の経時的変化を調べることにより、炭化水素系ガス の生産量に対応する地中の二酸ィ匕炭素ガスの浸透状況を監視することからなる二酸 化炭素ガスの地中浸透モニタリング方法としたのである。
[0016] 上記したように構成されるこの発明の二酸化炭素ガスの地中浸透状況監視方法に よると、地下の炭層に二酸ィ匕炭素が浸透しながら固定されていくとき、拡散する二酸 化炭素が炭層に亀裂を生じさせるので、その上方の地盤には沈降または隆起によつ て微小な傾きが発生する。
[0017] そのため、炭層上方の地中に間隔を開けて設けた複数個の傾斜計を用いて傾斜 角度の経時的変化を調べることにより、二酸ィ匕炭素が炭層内を浸透していくであろう 予想地点の炭層上方に設置されている傾斜計の傾斜角度が順に経時的変化を示し 、その傾斜計が設置されて 、る地下部分にまで二酸ィ匕炭素が確実に浸透したことが 判別できる。
[0018] また、傾斜計の傾きの大きさは、二酸ィ匕炭素の浸透量に対し、ある程度の相関関係 があると考えられ、現在、地中のどの地点まで二酸ィ匕炭素が浸透している力、また浸 透による拡散の速度や炭化水素系ガスの到達する範囲などの挙動がある程度推定 できる。
[0019] 特に、二酸ィ匕炭素の単位時間当りの圧入量または傾斜角度の計測時までの圧入 量と圧入時間を記録しておき、さらに圧入井の位置と、傾斜計が設置されている位置 がわかれば、二酸ィ匕炭素の浸透速度が計算によって推定でき、何時間後に生産井 力も地中ガスが生産できるかを推定することも可能である。
[0020] このような二酸ィヒ炭素ガスの地中浸透状況およびこれに伴う炭化水素系ガスの生 産状況を監視するモニタリング方法では、亀裂による微小な傾斜をできるだけ正確に 計測することが肝要であるので、傾斜計が、 10— 6〜10— 9ラジアン単位で角度測定が可 能な高精度傾斜計である二酸ィ匕炭素ガスの地中浸透モニタリング方法であることが 好ましい。
[0021] また、炭層が隆起するか、または沈降した状況を正確に計測することが正確な状況 監視をするために好ましいことであるため、傾斜計が、炭層上方において二酸化炭 素などのガスを通しにくいキャップロック層より以浅の地中に設置されることが好まし い。
[0022] また、上記同様の理由によって、傾斜計が、深度 10〜60mの地中に設置される前 記の炭層圧入の二酸ィ匕炭素ガスモニタリング方法とすることが好ましい。
発明の効果
[0023] この発明の炭層圧入の二酸ィ匕炭素ガスモニタリング方法は、傾斜計が設置されて いる地下の炭層に二酸ィ匕炭素が拡散する際に亀裂が生じ、その上方の地盤に沈降 または隆起による微小な傾きを発生させる現象を利用し、複数個の傾斜計を用いて 地中での傾斜角度の経時的変化を調べるようにしたので、地中に圧入される二酸ィ匕 炭素の挙動を長期的に連続して簡便に測定できるという利点がある。
[0024] し力も、この方法は、比較的浅い地中での傾斜角度の経時的変化を調べることがで き、測定装置も比較的小型で簡単な装置を用いることができるので、低コストでモニタ リングできると 、う利点もある。 図面の簡単な説明
[0025] [図 1]二酸ィ匕炭素ガスの地中浸透モニタリング方法の概略説明図
[図 2]二酸ィヒ炭素の圧入条件,生産ガス量の経時変化との関係を示す図表
[図 3] A地点の東西方向と南北方向の傾斜の経時変化を示す図表
[図 4]B地点の東西方向と南北方向の傾斜の経時変化を示す図表
[図 5]C地点の東西方向と南北方向の傾斜の経時変化を示す図表
[図 6]D地点の東西方向と南北方向の傾斜の経時変化を示す図表
[図 7]E地点の東西方向と南北方向の傾斜の経時変化を示す図表
[図 8]F地点の東西方向と南北方向の傾斜の経時変化を示す図表
符号の説明
[0026] 1 本層
2 下層 3 圧入井
4 生産井
5 液化炭酸貯槽
6 昇圧ポンプ
7 蒸発器
8 二酸化炭素注入管
9a、 9b 排水タンク
10 気液分離装置
発明を実施するための最良の形態
[0027] この発明の実施形態を以下に添付図面に基づいて説明する。
図 1に示すように、実施形態は、地中に存在する本層 1と下層 2からなる 2つの炭層 のうち下層 2に通じる圧入井 3および生産井 4力もなる 2本の坑井を設け、これらの坑 井のうち圧入井 3から二酸ィ匕炭素ガスを圧入して下層 2内の石炭などに固定させ、二 酸ィ匕炭素と置換されて放出されるメタンガスを含む炭化水素系ガスを生産井 4力 回 収する二酸ィヒ炭素の固定および炭化水素系ガスの生産システムにおいて適用され る二酸ィ匕炭素ガスの地中浸透モニタリング方法である。
[0028] このような生産システムにおいて、二酸ィ匕炭素ガスの圧入井 3と地中ガスの生産井 4 の間における本層 1と下層 2からなる炭層上方の地中には間隔を開けて 6つの地点( A、 B、 C、 D、 E、 F)に穿設した観測孔内の底部に傾斜計を組み入れて設け、圧入 井 3には二酸ィ匕炭素ガスを圧入すると同時に、複数の傾斜計によって傾斜角度の経 時的変化を精密に調べることにより、圧入された二酸ィ匕炭素ガスの地中の挙動、すな わち二酸ィヒ炭素ガスの地中浸透状況およびこれに伴う地中ガスの生産状況を監視 するようにした二酸ィ匕炭素ガスの地中浸透モニタリング方法である。
[0029] なお、 6つの地点(A、 B、 C、 D、 E、 F)に穿設した観測孔の深さは、地点(A、 B、 C 、 D)で 12m、地点 、 F)では 50mに形成し、 A— B間は約 25m、 B— C間は約 80 m、 C D間も約 80m離れており、地点 E、 Fは、地点 B、 Cとほぼ同じ場所で深度の みが異なるという配置条件である。
[0030] この発明に用いる二酸ィ匕炭素は、火力発電所やィ匕石系燃料を消費した後の工場 の排気ガスなどとして二酸ィ匕炭素を含有するものを分離回収したものを用いることが できる。なお、高純度の二酸化炭素は、モノエタノールァミンなどのァミンに吸収させ て回収するァミン法により比較的簡単に得ることができる。
[0031] このように得られた液ィ匕炭酸を用いる場合は、液ィ匕炭酸貯槽 5から昇圧ポンプ 6を 介して圧送すると共に蒸発器 7で加熱し、気化してから圧入井 3に導入する。
[0032] 二酸ィ匕炭素を圧入する条件は、炭層(下層 2)に達する二酸ィ匕炭素注入管 8に所定 の圧力と温度の二酸化炭素を圧入する。圧入条件は、炭層(下層 2)の深さなどによ つて異なるが、例えば深度 500mの場合に、注入圧力は lOMPaで温度は 40°C程度 でよいと考えられる。この場合、注入圧力は、圧入地点では注入圧及び温度と同程 度で超臨界状態になるが、圧入点から数十メートル離れると 5MPaおよび 30°C程度 に低下すると予想される。また、深度 1000mでは、注入圧力は、 15MPaでよいと考 えられる。同様に深度 3000mでは、注入圧力は 35MPaでよいと考えられる。
[0033] このような二酸ィ匕炭素の圧入は、一箇所以上の複数の圧入井 3から行ってもょ 、。
そして、圧入の初期には比較的高い圧力で行なうことにより、炭層を破壊して多数の 割れ目を積極的に形成するようにすることが好ましぐまた必要に応じて砂などを混 入させて割れ目の閉塞を防ぎ、長期間に亙って二酸ィ匕炭素を広 、範囲に浸透させ ることちでさる。
[0034] 生産井 4は、このような圧入井 3から炭層に浸透した二酸ィ匕炭素が吸着されるのに 充分な距離を離して設置することが好ましい。このような距離は、少なくとも数十メート ル必要であると考えられる。なお、生産井 4は、圧入井 3から立体的な位置関係で蒸 気の所定距離だけ離れて 、ればよぐ必ずしも平面的な方向に離す必要はな 、。
[0035] 例えば、炭層の深部に二酸ィ匕炭素を圧入して同一領域の浅部からメタンガスを含 む地中ガスを回収してもよぐ深部から浅部まで傾斜して平面的に延びる炭層である 場合には、深部で二酸ィ匕炭素を圧入して浅部から生産するようにしてもよい。
通常、生産井 4から回収された水蒸気などを含む地中ガスは、定法に従って気液 分離装置 10で液体を分離し、液体成分を排水タンク 9a、 9bに回収すると共に、分取 したメタンガスなどの炭化水素系ガスを得て、必要に応じてさらにガスを精製して利 用施設に配送する。 [0036] この発明に用いる傾斜計は、例えば 10— 6〜10— 9ラジアン単位で角度測定が可能な 高精度傾斜計であることが好ましいが、特にその機構を限定したものを採用する必要 はない。
[0037] そのような高精度傾斜計としては、例えば、傾斜計内に電解質溶液とその内部に気 泡を閉じ込めた容器を設けたものがあり、この構造のものでは気泡が重力場に応じて 移動した際に気泡を含む電解質溶液場の X— Y方向の電位場が変化するため、この 直交する 2方向の電位変化を測定することによって X— Y平面内の傾斜を計測する 機構のものを採用することができる。市販の傾斜計としては、米国ピナクル社製の高 精度傾斜計を使用することもできる。
[0038] 傾斜計の設置間隔と設置数は、特に限定されるものではなぐ利用する地下の炭 層の規模と炭層やその上方の地質学的な地層の性質、圧入井と生産井との距離に 応じ、またその要求される監視精度に合わせて、 30m程度力も数キロメートル (例え ば約 l〜6km)の幅で設置すればよ!、。
実施例 1
[0039] ほぼ図 1に示した石炭層を有する地層構造において、地盤傾斜の実測試験を行な つた。実際の実験地は、北海道の南大夕張炭坑地域であり、圧入井 3と生産井 4との 距離は、 180m離し、また生産井 4は圧入井 3より炭層傾斜の上位の場所に設けた。
[0040] そして、圧入井 3から、図 1に示す二酸ィ匕炭素の圧入条件 (注入圧 (MPa)、注入量
(t) )で圧入を 2004年 11月 9日力ら 2004年 11月 29日まで連続して行な ヽ、このとき 得られた各傾斜計 A、 B、 C、 D、 E、 Fのデータを図 2〜図 8に示した。
[0041] これらの図から明らかなように、二酸化炭素の圧入を始めた A、 B、 C地点の南北方 向の傾斜は、 11月 9日力ら 2〜3日の間に約 1〜2 X 10— 6の変動が南北方向に見られ 、そのあと D地点でも南北方向の傾斜が増大 *減少し変動する傾向が見られた。その 後 11月 20日前後から、生産井からメタンガスを主成分とする炭化水素系ガスの生産 が始まり、その生産量が 100m3/日以上 150m3/日まで増加する傾向が見られた。
[0042] このように圧入井 3からの二酸化炭素ガスの圧入後、 A、 B、 C地点の南北方向の傾 斜が増減した後、さらに 10日前後で生産井からメタンガス等の生産が起ることがわか る。 [0043] なお、 B、 C地点の傾斜角度の変化率は、圧入井に最も近い Aに対比して小さいが 、二酸ィ匕炭素の圧入量を増やすことによって、二酸化炭素量と距離と傾きの関係は 明瞭になると認められるから、測定地点の地質や深度に応じて二酸ィ匕炭素の圧入量 と圧力を加減すればょ 、。このようにして得られたデータを用いてメタンガス等の計画 的な生産を行なうことができるようになる。
[0044] また、キャップロック以深の地下 50mに傾斜計を設置した地点 E、 Fでは、地点 B、 Cと同時期に傾斜計に変動が見られな力つた。
[0045] これにより、炭層上方のキャップロック層より以浅の地中に傾斜計を設置することに よって、鋭敏に傾斜計に二酸化炭素ガス挙動の影響が現れ、より正確な計画生産の ためのモニタリングが可能であることがわかる。

Claims

請求の範囲
[1] 地中の炭層に通じる複数の坑井を設け、これら複数の坑井のうち少なくとも 1つの 坑井から二酸ィヒ炭素ガスを圧入して炭層に浸透させ、浸透した二酸化炭素ガスと置 換された前記炭層中の炭化水素系ガスを他の坑井力 生産する際、二酸化炭素ガ スの圧入井と炭化水素系ガスの生産井の間における炭層上方の地中に間隔を開け て複数の傾斜計を設置し、これら傾斜計によって所定位置の傾斜角度の経時的変 化を調べることにより、炭化水素系ガスの生産量に対応する地中の二酸化炭素ガス の浸透状況を監視することからなる二酸ィ匕炭素ガスの地中浸透モニタリング方法。
[2] 傾斜計が、 10— 6〜10— 9ラジアン単位で角度測定が可能な高精度傾斜計である請求 項 1に記載の二酸ィヒ炭素ガスの地中浸透モニタリング方法。
[3] 傾斜計が、炭層上方のキャップロック層より以浅の地中に設置される請求項 1また は 2に記載の二酸化炭素ガスの地中浸透モニタリング方法。
[4] 傾斜計が、深度 10〜60mの地中に設置される請求項 1または 2に記載の二酸ィ匕炭 素ガスの地中浸透モニタリング方法。
PCT/JP2006/302347 2005-08-10 2006-02-10 二酸化炭素ガスの地中浸透モニタリング方法 WO2007017965A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA 2618629 CA2618629A1 (en) 2005-08-10 2006-02-10 Method of monitoring underground diffusion of carbon dioxide
US11/990,207 US20090255670A1 (en) 2005-08-10 2006-02-10 Method of Monitoring Underground Diffusion of Carbon Dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005232136A JP4739855B2 (ja) 2005-08-10 2005-08-10 二酸化炭素ガスの地中浸透モニタリング方法
JP2005-232136 2005-08-10

Publications (1)

Publication Number Publication Date
WO2007017965A1 true WO2007017965A1 (ja) 2007-02-15

Family

ID=37727159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302347 WO2007017965A1 (ja) 2005-08-10 2006-02-10 二酸化炭素ガスの地中浸透モニタリング方法

Country Status (4)

Country Link
US (1) US20090255670A1 (ja)
JP (1) JP4739855B2 (ja)
CA (1) CA2618629A1 (ja)
WO (1) WO2007017965A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297831A (zh) * 2011-05-23 2011-12-28 山东科技大学 一种煤层渗透率快速气测的试验装置及方法
CN105277657A (zh) * 2014-06-26 2016-01-27 中国石油化工股份有限公司 钻井液有机处理剂吸附性能的测定方法
CN106706474A (zh) * 2017-01-18 2017-05-24 神华集团有限责任公司 气体监测方法及装置
CN110320140A (zh) * 2018-03-30 2019-10-11 中国石油化工股份有限公司 Co2作用下的渗吸实验装置及方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999030B1 (ko) 2010-08-10 2010-12-10 한국지질자원연구원 압력 모니터링에 의한 지중 가스 저장층에서의 가스유출 탐지방법 및 지중 가스 저장시스템
CN102375425A (zh) * 2010-08-17 2012-03-14 淮南矿业(集团)有限责任公司 煤矿安全监控系统
US8656995B2 (en) 2010-09-03 2014-02-25 Landmark Graphics Corporation Detecting and correcting unintended fluid flow between subterranean zones
US8517094B2 (en) 2010-09-03 2013-08-27 Landmark Graphics Corporation Detecting and correcting unintended fluid flow between subterranean zones
CN102720473A (zh) * 2011-03-31 2012-10-10 中联煤层气有限责任公司 开采煤层气的方法
WO2013013721A1 (en) * 2011-07-28 2013-01-31 Statoil Petroleum As Recovery methods for hydrocarbon gas reservoirs
US9188697B2 (en) * 2012-01-04 2015-11-17 Schlumberger Technology Corporation Tracking non-uniform flooding fronts of gas injection in oil reservoirs
CN102587958A (zh) * 2012-03-09 2012-07-18 山西蓝焰煤层气工程研究有限责任公司 一种开采煤层气的方法
CN104345022A (zh) * 2013-07-30 2015-02-11 河南煤业化工集团研究院有限责任公司 一种井下煤层渗透率直接测试方法
CN103760086B (zh) * 2014-01-21 2015-12-09 河南理工大学 注二氧化碳与煤中矿物质反应后渗透率变化实验装置
GB2528581A (en) * 2014-07-21 2016-01-27 Aj Lucas Pty Ltd Improvements to recovery of hydrocarbons
CN104792968B (zh) * 2015-04-14 2016-08-24 河南理工大学 一种模拟钻孔堵塞段疏通试验系统及其试验方法
CN104806205B (zh) * 2015-05-12 2017-04-19 吉林大学 一种陆域天然气水合物开采的方法
CN105804701B (zh) * 2016-03-18 2018-03-23 河南方舟新能源股份有限公司 一种煤层气井间开的自动控制方法
CN107327395B (zh) * 2016-04-29 2019-01-18 中国石油天然气股份有限公司 一种控制煤层气井的排水泵工作周期的方法
US10570718B2 (en) * 2016-11-14 2020-02-25 Halliburton Energy Services, Inc. Capture and recovery exhaust gas from machinery located and operated at a well site
CN106761585A (zh) * 2017-02-25 2017-05-31 太原理工大学 一种废弃采空区煤层气极限抽采方法
CN116641687B (zh) * 2023-05-31 2024-01-26 贵阳学院 利用二氧化碳驱动地下水流动的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173020A (ja) * 1984-09-18 1986-04-15 Takenaka Doboku Co Ltd 地中変位の自動計測装置
JPH06288171A (ja) * 1993-02-03 1994-10-11 Mitsui Mining Co Ltd 炭層メタンの回収及び炭酸ガスの地下固定化処理方法
JP2004003326A (ja) * 2002-04-26 2004-01-08 Hitoshi Koide 非燃焼方式原位置炭層ガス化回収方法及び非燃焼方式地下有機物・化石有機物原位置ガス化回収方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043395A (en) * 1975-03-13 1977-08-23 Continental Oil Company Method for removing methane from coal
WO2001081724A1 (en) * 2000-04-26 2001-11-01 Pinnacle Technologies, Inc. Treatment well tiltmeter system
JP3858844B2 (ja) * 2003-04-02 2006-12-20 日立協和エンジニアリング株式会社 炭酸ガスの地中固定におけるガスモニタリング装置およびガスモニタリング方法
EP1984599B1 (en) * 2006-02-16 2012-03-21 Chevron U.S.A., Inc. Kerogen extraction from subterranean oil shale resources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173020A (ja) * 1984-09-18 1986-04-15 Takenaka Doboku Co Ltd 地中変位の自動計測装置
JPH06288171A (ja) * 1993-02-03 1994-10-11 Mitsui Mining Co Ltd 炭層メタンの回収及び炭酸ガスの地下固定化処理方法
JP2004003326A (ja) * 2002-04-26 2004-01-08 Hitoshi Koide 非燃焼方式原位置炭層ガス化回収方法及び非燃焼方式地下有機物・化石有機物原位置ガス化回収方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297831A (zh) * 2011-05-23 2011-12-28 山东科技大学 一种煤层渗透率快速气测的试验装置及方法
CN105277657A (zh) * 2014-06-26 2016-01-27 中国石油化工股份有限公司 钻井液有机处理剂吸附性能的测定方法
CN106706474A (zh) * 2017-01-18 2017-05-24 神华集团有限责任公司 气体监测方法及装置
CN106706474B (zh) * 2017-01-18 2019-07-16 神华集团有限责任公司 气体监测方法及装置
CN110320140A (zh) * 2018-03-30 2019-10-11 中国石油化工股份有限公司 Co2作用下的渗吸实验装置及方法
CN110320140B (zh) * 2018-03-30 2021-09-14 中国石油化工股份有限公司 Co2作用下的渗吸实验装置及方法

Also Published As

Publication number Publication date
JP4739855B2 (ja) 2011-08-03
US20090255670A1 (en) 2009-10-15
JP2007046339A (ja) 2007-02-22
CA2618629A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4739855B2 (ja) 二酸化炭素ガスの地中浸透モニタリング方法
Zhang et al. A full chain CCS demonstration project in northeast Ordos Basin, China: operational experience and challenges
Klara et al. Integrated collaborative technology development program for CO2 sequestration in geologic formations––United States Department of Energy R&D
Yang et al. Characteristics of CO 2 sequestration in saline aquifers
JP5723988B2 (ja) 圧力モニタリングによる地中ガス保存層からのガス漏れ探知方法
Blunt Carbon dioxide storage
Ruppel Tapping methane hydrates for unconventional natural gas
Sawada et al. Tomakomai CCS demonstration project of Japan, CO2 injection in progress
Plasynski et al. The critical role of monitoring, verification, and accounting for geologic carbon dioxide storage projects
Wilkinson et al. Plumbing the depths: Testing natural tracers of subsurface CO2 origin and migration, Utah
Bachu Geological sequestration of anthropogenic carbon dioxide: applicability and current issues
Fagorite et al. The major techniques, advantages, and pitfalls of various methods used in geological carbon sequestration
Kaldi et al. Geological input to selection and evaluation of CO2 geosequestration sites
JP2008095394A (ja) γ線スペクトロメトリーを用いた二酸化炭素の地中浸透モニタリング方法
Myer Global status of geologic CO2 storage technology development
Fischer et al. Monitoring crustal CO 2 flow: methods and their applications to the mofettes in West Bohemia
Koperna Jr et al. CO2-ECBM/storage activities at the San Juan Basin's pump Canyon test site
Holloway Storage capacity and containment issues for carbon dioxide capture and geological storage on the UK continental shelf
Kim et al. Carbon geological storage: Coupled processes, engineering and monitoring
Lei et al. Preliminary numerical modeling of CO2 geological storage in the huangcaoxia gas reservoir in the Eastern Sichuan Basin, China
Mat Razali et al. Critical rate analysis for CO2 injection in depleted gas field, Sarawak Basin, offshore East Malaysia
Meckel et al. Continuous pressure monitoring for large volume CO2 injections
JP2009236874A (ja) 二酸化炭素の地中浸透モニタリング方法
Riley Geological storage of carbon dioxide
WO2024042850A1 (ja) 二酸化炭素の地中貯留方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11990207

Country of ref document: US

Ref document number: 2618629

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713490

Country of ref document: EP

Kind code of ref document: A1