WO2007017068A1 - Procede et dispositif permettant de guider un element de machine le long d'une voie de deplacement definie au-dessus de la surface d'une piece - Google Patents

Procede et dispositif permettant de guider un element de machine le long d'une voie de deplacement definie au-dessus de la surface d'une piece Download PDF

Info

Publication number
WO2007017068A1
WO2007017068A1 PCT/EP2006/007130 EP2006007130W WO2007017068A1 WO 2007017068 A1 WO2007017068 A1 WO 2007017068A1 EP 2006007130 W EP2006007130 W EP 2006007130W WO 2007017068 A1 WO2007017068 A1 WO 2007017068A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
values
machine part
workpiece surface
along
Prior art date
Application number
PCT/EP2006/007130
Other languages
German (de)
English (en)
Inventor
Guenter Grupp
Ernst Stumpp
Otto Boucky
Joerg Walther
Original Assignee
Carl Zeiss Industrielle Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Industrielle Messtechnik Gmbh filed Critical Carl Zeiss Industrielle Messtechnik Gmbh
Priority to JP2008525415A priority Critical patent/JP2009504407A/ja
Priority to US11/990,229 priority patent/US20090228136A1/en
Publication of WO2007017068A1 publication Critical patent/WO2007017068A1/fr
Priority to US12/275,735 priority patent/US20090139970A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0229Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being situated alongside the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/127Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using non-mechanical sensing
    • B23Q35/128Sensing by using optical means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36199Laser cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/47Tracing, tracking
    • G05B2219/4719Line detector with laser beam, adjustable optical axis

Definitions

  • the present invention relates to a method for guiding a machine part along a defined movement path over a workpiece surface, wherein the machine part is held along the movement path at a defined distance from the workpiece surface, with the steps:
  • the invention further relates to a device for guiding a machine part along a defined movement path over a workpiece surface, wherein the machine part can be held along the movement path at a defined distance to the workpiece surface, with:
  • the at least one distance sensor which leads the machine part along the movement path with a defined advance, wherein the at least one distance sensor is designed to determine along the movement path a multiplicity of distance values between the distance sensor and the workpiece surface,
  • control unit configured to determine a plurality of control values for setting the defined distance as a function of the first distance values
  • a first drive unit for moving the machine part along the movement path and a second drive unit for repeatedly setting the defined distance by means of the manipulated values.
  • a device which has a welding head which serves to weld two plates together along a joint edge.
  • the welding head is preceded by a distance sensor with a constant flow.
  • the distance sensor is used to determine the profile of the abutting edge and the height of the welding head above the surface of the two plates so that the welding head can be guided exactly over the course of the abutting edge.
  • a control circuit for the welding head includes a delay and correction stage to which the output signals of the leading distance sensor are fed.
  • the distance sensor is controlled via actuators to the desired height and lateral position relative to the abutting edge.
  • the corresponding control signals are delayed by the delay and correction stage forward to the actuators for the welding head passed.
  • the time delay is to ensure that the welding head occupies exactly that position, which had taken the distance sensor earlier by the delay time at each moment. Because the distance sensor maintains a desired position above the bumper due to self-regulation, the torch will follow the desired path.
  • the known approach has the disadvantage that both the distance sensor and the welding head requires drive elements, since the distance sensor is regulated independently of the movement of the welding head.
  • the high number of actuators makes this procedure expensive.
  • the accuracy with which the welding head follows the distance sensor is limited by the tolerances of the individual actuators.
  • the welding head can follow the self-regulation of the distance sensor only insofar as the actuators of the welding torch the actuators correspond to the distance sensor.
  • Particularly complicated and unfavorable is the known procedure, if instead of a welding head with a largely point-shaped area of action on the workpiece surface, a machine part to be performed, which has a linear area of action on the workpiece surface.
  • DE 196 15 069 A1 also discloses an apparatus and a method for guiding a tool over a workpiece surface at a defined distance.
  • two differently sized, superimposed plates are to be welded along the end edge of the smaller plate.
  • the welding head is preceded by a feeler element with which the edge profile is tactilely detected.
  • a control device ensures that the welding head follows the edge course, wherein the altitude of the welding head is tracked over the workpiece surface.
  • the welding head is here rigidly coupled to the distance sensor. Therefore, fewer actuators are needed.
  • the known solution requires a precisely preprogrammed trajectory, since the probe element detects only deviation from such a preprogrammed trajectory.
  • the focus control is accurate only for the probe element, but not for the trailing welding head.
  • DE 32 43 341 Al it is proposed to record a slit image projected onto the workpiece surface with a camera.
  • DE 195 16 376 A1 proposes to evaluate the intensity of a laser-induced plasma with a detector which looks obliquely onto the course of a laser weld seam. All of these proposals require elaborate signal processing for distance determination.
  • This object is achieved according to one aspect of the invention by a method of the type mentioned above, in which the distance values are determined at a plurality of measuring positions which are distributed along the movement path with a first grid spacing and in which the setting values are assigned to a plurality of setting positions which are distributed along the trajectory at a second pitch, the first and the second pitch being different.
  • this object is achieved by a device of the type mentioned, in which the at least one distance sensor is adapted to determine the distance values at a plurality of measuring positions, which are distributed along the movement path with a first grid spacing, and in which the control unit is designed to allocate the control values to a plurality of setting positions along the path of movement with a second Grid spacing are distributed, wherein the first and second grid spacing are different.
  • the new method and the new device thus use at least one leading distance sensor, as is known per se from the aforementioned DE 33 41 964 A1.
  • the new method and the new device are independent of the technology of the distance sensor used.
  • any sensor can be used which is able to provide a signal with which the distance between the machine part and the workpiece surface can be determined. Due to the great variety in the selection of a suitable distance sensor, the new method and the new device can be realized very cheaply.
  • the distance sensors can be quite well protected against interference and damage from the trailing machine part due to the flow. Since the distance sensor does not require "eye contact" to the processing point on the workpiece surface, shielding plates can be used for decoupling.
  • the new method and the new device make it possible to rigidly connect the at least one distance sensor and the machine part.
  • the number of required drive elements compared to the solution of DE 33 41 964 Al can be reduced.
  • tracking errors caused by tolerance deviations in separate drive elements are avoided.
  • the new method and the new device therefore allow cost-effective guidance of the machine part with high accuracy.
  • parallax errors due to the trailing of the machine part can be well corrected or avoided.
  • the new method and the new device have the advantage that the measured value recording (determination of the actual distance) and the setting of the defined nominal distance are decoupled from each other due to the different grid spacings. It is therefore easily possible to measure and mittein several distance values to a parking position.
  • the first grid spacing is smaller than the second grid spacing.
  • the distance values are determined with a higher frequency or density than the setting values for setting the defined distance. This allows a selection, plausibility check and preferably an averaging of the distance values obtained. The control behavior is thereby quiet.
  • the new process and the new This arrangement is less sensitive to stochastic disturbances that affect the measurement of the distance values. Therefore, a particularly high accuracy of the focus control can be achieved with this configuration.
  • the first grid spacing is greater than the second grid spacing.
  • This embodiment allows very high feed rates, and it is particularly preferred when the workpiece surface is very flat. Since in this embodiment more control values are used than measured distance values are available (the density of the control values is higher than the density of the distance values), it is preferable to determine control values without "own" distance value as a function of interpolated distance values In this case, an interpolation using "future” distance values is possible, ie using distance values from a measurement position that later reaches the machine part. Therefore, this embodiment allows for accurate compliance with the defined distance despite the reduced measurement effort.
  • each distance value is assigned to that setting position which is closest to the measurement position of the distance value.
  • extra distance values could be discarded or merely serve for a plausibility check the determination of the control value is received, a smoother and more accurate control behavior is achieved.
  • a plurality of distance values are determined for each setting position.
  • This design also helps to achieve a smoother and more accurate control response since each setpoint depends on multiple distance measurements. Incorrect measurements and / or disturbances in the measurement process are better suppressed.
  • a plurality of distance values are averaged to form a setting position in order to determine the setting value of this setting position.
  • this embodiment is a very simple and effective way to achieve a quiet and accurate control behavior.
  • control values are provided in a rolling memory.
  • the storage positions in the rolling storage correspond to the second grid pitch positions, i. A memory entry is provided for each positioning position.
  • a rolling memory is a very simple and cost-effective way to manage the control values from the flow of at least one distance sensor.
  • this embodiment allows the use of a very small memory with a number of memory locations which is equal to or only slightly larger than the number of memory locations Control values that must be temporarily stored due to the flow of the at least one distance sensor.
  • control values for adjusting the distance are fed to a controller having a progressive control gain.
  • the controller has a non-linear control gain, which increases disproportionately at high control deviations.
  • the controller does not react at low control deviations, i. the control gain is zero below a defined threshold.
  • control process can be accelerated, i.
  • the defined distance is adjusted faster to the desired range at higher control deviations.
  • the introduction of a "blur" at low deviations leads to a quieter behavior.
  • control values are provided in a memory, and at least two control values from different control positions are combined with a FIR filter to determine a filtered control value. It is particularly preferred if the combination with the FIR filter takes place only when the machine part is adjusted, ie during or after the readout of the manipulated variables from the memory. Further, it is preferred if at least one of the manipulated variables used is a "future" manipulated variable, ie a manipulated value to a setting position that has not yet reached the trailing machine part. This embodiment allows a particularly smooth and accurate control behavior.
  • the machine part has a linear area of action on the workpiece surface, which extends transversely to the movement path.
  • This embodiment is directed to a preferred application of the present invention wherein a workpiece surface is scanned and / or heated with a line-shaped band of light.
  • the challenge is to keep not only a point on the workpiece surface in focus, but an extended geometric figure.
  • the distances along the line-shaped effective range must be kept in the focus of the machine part, which is very complicated or even impossible with the previously known approaches.
  • the present invention allows a simple focus control for the linear area of action, as will be illustrated below with reference to a preferred embodiment.
  • at least two distance sensors are provided, which precede the linear area of action each with a defined flow.
  • This embodiment is a particularly simple and cost-effective way to keep the line-shaped area of effect in focus. In particular, it allows the use of simple, punctiform distance sensors.
  • a distance control value and an angle control value are determined and provided by means of the at least two distance sensors in order to guide the linear area of action parallel to the workpiece surface.
  • At least three distance sensors are provided which lead the linear area of action each with a defined lead, wherein each distance sensor provides a distance value, and wherein the distance control value and the angle control value are determined as a function of the at least three distance values.
  • This embodiment allows a very uniform and accurate adjustment of the defined distance over the entire course of the linear action area. She is also very to realize cost, as shown below with reference to a preferred embodiment.
  • Fig. 7 is a schematic representation of an apparatus in which the machine part has a linear area of action on the workpiece surface
  • 8 is a diagram for explaining a preferred embodiment of the invention in a device according to FIG. 7.
  • an embodiment of the new device is designated in its entirety by the reference numeral 10.
  • the device 10 includes a machine part 12 and at least one distance sensor 14, which are arranged here together on a carrier 16.
  • the distance sensor 14 is fixed to the machine part 12 with a lateral offset 18 to the machine part 12.
  • the offset 18 is the lead by which the distance sensor 14 precedes the machine part 12 when the carrier 16 is moved relative to a workpiece.
  • the reference numeral 20 denotes a table on which a workpiece 22 is arranged.
  • the workpiece 22 may be a multi-layered element whose surface is to be heated in a particular manner to bond the near-surface layers together.
  • Such an application is particularly in the production of liquid crystal displays (LCDs).
  • the machine part 12 is a laser which has to be guided at an optimum focus distance to the workpiece surface 23 of the workpiece 22.
  • the table 20 is adjustable in height in this embodiment, which is indicated by a hydraulic cylinder 24 and an arrow 26.
  • the carrier 16 could be adjustable in height.
  • the table 20 is movable in the direction of the arrow 28 in this embodiment, resulting in a relative movement of the Machine part 12 over the workpiece surface 23 results in the opposite direction.
  • the table 20 is therefore provided with a drive 30, which is shown here only schematically.
  • the carrier 16 could be movable parallel to the arrow 28.
  • the arrow 28 thus indicates a general axis of movement of the device 10. This movement axis is also referred to below as Y-axis.
  • the reference numeral 32 denotes a control unit which controls the movements of the table 20.
  • the control unit 32 includes a memory 34, which is formed in this embodiment as a rolling memory.
  • the input circuit 36 serves to receive the distance values or distance signals of the distance sensor 14.
  • the output signal of a sensor 38 is supplied with which the height of the table 20 in the direction of arrow 26 (Z- Axis) can be determined.
  • the input circuit 36 is designed to process the obtained distance and height values in such a way that they are stored at a memory location of the memory 34. can be saved. It is understood that this memory location may include several bytes to accommodate the data.
  • the number of storage locations in the rolling storage 34 corresponds to the number of Y-positions that are resolvable along the movement axis 28 via the feed 18.
  • the control unit 32 has a controller 40, which serves to adjust the height and the feed movement of the table 20.
  • the controller 40 has a non-linear control gain, which is shown with the characteristic curve in Fig. 1. It is preferably a PID controller. However, a PI, PD or P controller can be used. It is also particularly preferred if the controller 40 does not react at very small control deviations. In other words, the controller 40 only begins to correct the control deviation when there is a control deviation that is above a defined threshold value.
  • the scale 42 has a coarser grid 44 and a finer grid 46.
  • the coarser grid 44 indicates here the Y positions, which are resolvable in the direction of movement 28 of the table 20.
  • a control value is determined for each Y-position 48, with which the height of the table 20 and thus the distance 50 between the machine part 12 and the workpiece surface 23 is adjusted.
  • the grid 46 has grid spacings that are smaller than the grid spacings of the grid 44.
  • Each grid point 52 of the grid 46 designates a measuring position at which the distance sensor 14 measures its distance from the workpiece surface 23. These measured values are transmitted as distance values to the control unit 32, and they are not identical with the distance 50 between the machine part 12 and the workpiece surface 23 in all cases, as is apparent from the illustration in FIG.
  • the higher raster density of the first raster 46 may also be a consequence of the distance sensor 14 continuously determining the distance to the workpiece surface 23, the continuous distance values then being preferably converted with an A / D converter to obtain digital distance values.
  • the grid points of the first grid 46 and the second grid 44 coincide.
  • the Y-positions (halftone dots) 48 of the second grid are read in here, for example with the aid of a glass scale, as is known per se in machine tools and coordinate measuring machines. The resolution of the glass scale determines the grid spacing 44 of the second grid.
  • Figs. 2 to 4 show the device 10 in three operating positions, wherein like reference numerals designate the same elements as before.
  • the height of the table 20 is for example 5 ⁇ m in relation to a table zero point (not shown here).
  • the distance sensor 14 measures, for example, a distance value to the workpiece surface 23 of -3 ⁇ m.
  • the value of -3 ⁇ m is related to a zero point (not shown here).
  • the zero points for the table 20 and the distance sensor 14 are selected such that the workpiece surface 23 is in the focus of the machine part 12 when both values are zero.
  • the distance sensor 14 provides, for example, a distance value of 2 microns, the height of the table 20 is here 7 microns.
  • the rows of the table correspond to the memory locations in the rolling memory 34.
  • the table height T (y) and the distance values S (m) are stored in each memory location.
  • This control deviation is supplied to the controller 40 to correct the control deviation.
  • the controller 40 controls the table height so that the control deviation of -2 ⁇ m becomes zero. This process is repeated cyclically for each additional Y position.
  • FIG. 5 shows a preferred embodiment for reading the table heights and distance values into the memory 34.
  • a counter corresponding to grid spacings 46 is set to zero.
  • step 66 the distance value S (m) is read.
  • step 68 the difference ⁇ TS (i) between the read table height T (i) and the distance value S (m) is determined. This difference is stored in memory 34 according to the one shown above Table saved.
  • the table height T (i) is stored to the difference value.
  • an angle determination can take place, which will be explained in more detail below.
  • each Y position is assigned at least one distance value.
  • step 80 first a count variable indicating the Y position of the table 20 is set to zero.
  • step 82 the count variable i is incremented.
  • step 84 the current table height T (i) is read. In the table above, for example, this table height was 6 ⁇ m (see bottom line of the table).
  • the flowchart in Fig. 6 shows a modification of this preferred procedure. In this case, not only the difference ⁇ TS (iV) is fetched from the memory 34. Rather, the corresponding values ⁇ TS (i + lV), ⁇ TS (i + 2-V) of the adjacent Y positions are also read from the memory. Subsequently, all values are combined in a finite impulse response (FIR) filtering to obtain a filtered value ⁇ TS fUt (iV).
  • FIR finite impulse response
  • step 88 the filtered value is then used to determine the control deviation CV.
  • the FIR filtering leads to a quieter control behavior. Since due to the leading distance sensor 14 and "future" Y positions can be included in the filtering, you also get a phase-true FIR filter that allows a particularly high control accuracy.
  • Fig. 7 shows a schematic plan view of the workpiece surface 23 in a preferred embodiment.
  • the machine part 12 is a laser which generates a laser line 98 on the workpiece surface 23, which is to be kept in focus with the aid of the new method over the entire length L.
  • a preferred embodiment is the heating of a workpiece surface which is traversed in the direction of the Y axis under the laser line 98.
  • the laser line 98 is transverse to the direction of movement of the workpiece surface 23. In the illustrated embodiment of FIG. 7, the laser line 98 is oriented orthogonal to the Y axis.
  • the laser line 98 is preceded by three distance sensors 14a, 14b, 14c in the preferred embodiment.
  • the distance sensors 14a, 14b, 14c are arranged side by side and each have the same flow 18 to the machine part 12 and the Laser line 98. With this arrangement, it is possible to determine a rolling motion 100 of the workpiece surface 23 about the Y-axis.
  • the device 10 is preferably designed so that the table 20 can be pivoted about the Y-axis, so that the laser line 98 can be focused on the workpiece surface 23 over the entire length.
  • the adjustment of the workpiece surface 23 about the Y-axis by determining from the distance values of at least two distance sensors 14a, 14b, 14c, a distance control value and an angle control value. This is indicated in the flowchart in FIG. 5 in step 70.
  • the indices "1" and "2" denote the at least two distance measurement values of the at least two distance sensors 14a, 14b, 14c.
  • an angle and a distance offset value can be entered into the control unit 32.
  • the controller 40 takes into account the offset values when setting the table position. By inputting suitable offset values, it is possible to specifically align the laser line 98 out of focus in order, for example, to carry out test series. Entering an angle and offset offset value of zero causes the laser line 98 to be kept in focus over its entire length.
  • the distance and angle control system is overdetermined for three or more distance sensors.
  • the over-determination can be used to advantage when determining a best-fit line that is then used to determine the system deviation.
  • a straight line is shown in Fig. 8 at reference numeral 102.
  • the straight line 102 in this case is a least squares best-fit line between the distance values of the distance sensors 14a, 14b, 14c.
  • the offset 104 of the straight line 102 (the intersection of the straight line 102 with the Z axis) can be used as a control deviation for the distance control.
  • the slope of the line, ie the angle 106, then serves as a deviation for adjusting the table tilt about the Y-axis.
  • controller 40 is limited to the maximum permissible dynamics (maximum acceleration and maximum speed) of the device 10. As a result, damage to the device 10 are avoided at large deviations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Laser Beam Processing (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un élément de machine (12) guidé le long d'une voie de déplacement (28) définie au-dessus de la surface (23) d'une pièce. L'élément de machine (12) est maintenu à un distance (50) définie par rapport à la surface (23) de la pièce. A cet effet, on prend un capteur de distance (14) qui précède l'élément de machine (12) d'une distance (18) définie. On détermine une pluralité de valeurs de distance entre le capteur de distance (14) et la surface (23) de la pièce. En fonction des valeurs de distance, on détermine une pluralité de valeurs de réglage permettant de régler la distance (50) définie. La distance (50) définie est à nouveau réglée à l'aide des valeurs de réglage. Selon un aspect de l'invention, on détermine les valeurs de distance le long d'une voie de déplacement (28) avec une première graduation (46). On détermine les valeurs de réglage le long de la voie de déplacement (28) avec une deuxième graduation (44). La première et la deuxième graduation (46, 44) sont différentes.
PCT/EP2006/007130 2005-08-08 2006-07-20 Procede et dispositif permettant de guider un element de machine le long d'une voie de deplacement definie au-dessus de la surface d'une piece WO2007017068A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008525415A JP2009504407A (ja) 2005-08-08 2006-07-20 加工品表面にわたって機械部品を規定の移動経路に沿って導く方法および構造
US11/990,229 US20090228136A1 (en) 2005-08-08 2006-07-20 Method and Device for Guiding a Machine Part Along a Defined Motion Path Over a Workpiece Surface
US12/275,735 US20090139970A1 (en) 2005-08-08 2008-11-21 Method and arrangement for guiding a machine part along a defined movement path over a workpiece surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005039094.3 2005-08-08
DE102005039094A DE102005039094B4 (de) 2005-08-08 2005-08-08 Verfahren und Vorrichtung zum Führen eines Maschinenteils entlang einer definierten Bewegungsbahn über einer Werkstücksoberfläche

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US99022908A Continuation 2005-08-08 2008-12-29

Publications (1)

Publication Number Publication Date
WO2007017068A1 true WO2007017068A1 (fr) 2007-02-15

Family

ID=37137534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007130 WO2007017068A1 (fr) 2005-08-08 2006-07-20 Procede et dispositif permettant de guider un element de machine le long d'une voie de deplacement definie au-dessus de la surface d'une piece

Country Status (5)

Country Link
US (2) US20090228136A1 (fr)
JP (1) JP2009504407A (fr)
KR (1) KR20080038392A (fr)
DE (1) DE102005039094B4 (fr)
WO (1) WO2007017068A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006447A1 (de) * 2011-03-30 2012-10-04 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Bearbeiten von Werkstücken mittels einer numerisch gesteuerten Werkstückbearbeitungsvorrichtung sowie Werkstückbearbeitungsvorrichtung
WO2012159123A2 (fr) * 2011-05-19 2012-11-22 Alec Rivers Outils à guidage automatique
JP5950439B2 (ja) * 2012-01-30 2016-07-13 ダイハツ工業株式会社 レーザーマーキング装置及びレーザーマーキング方法
EP2852868B1 (fr) 2012-04-26 2021-12-01 Shaper Tools, Inc. Systèmes et procédés permettant de réaliser une tâche sur un matériau, ou permettant de localiser la position d'un dispositif par rapport à la surface du matériau
US11090753B2 (en) * 2013-06-21 2021-08-17 Illinois Tool Works Inc. System and method for determining weld travel speed
CN104741804A (zh) * 2015-04-07 2015-07-01 邬汝源 电池壳激光焊夹具
CN107530878B (zh) 2015-05-13 2021-01-08 整形工具股份有限公司 用于被引导工具的系统、方法和设备
RU2748005C2 (ru) 2016-08-19 2021-05-18 Шапер Тулс, Инк. Системы, способы и устройство для совместного использования данных об изготовлении инструмента и конструктивных данных
KR102551322B1 (ko) * 2017-12-08 2023-07-04 주식회사 탑 엔지니어링 변위센서를 이용한 스크라이브 장치 및 그것의 동작 방법
EP3616862A1 (fr) * 2018-08-27 2020-03-04 Siemens Aktiengesellschaft Guidage d'une tête de coupe relativement à un produit à couper
CN109244477A (zh) * 2018-08-30 2019-01-18 广州倬粤动力新能源有限公司 板栅与极耳用连接方法
CN111933549B (zh) * 2020-07-28 2023-12-22 北京北方华创微电子装备有限公司 半导体加工设备及检测滑片的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341964A1 (de) * 1983-11-21 1985-05-30 Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen Vorrichtung zur automatischen fuehrung von werkzeugen
EP0328694A1 (fr) * 1987-09-02 1989-08-23 Fanuc Ltd. Procede de profilage sans contact
EP0510208A1 (fr) * 1990-11-08 1992-10-28 Fanuc Ltd. Dispositif de commande de numerisation
DE4217292A1 (de) * 1992-05-25 1993-12-02 Weidmueller Interface Kapazitives Abstandsmeßverfahren
US5467003A (en) * 1993-05-12 1995-11-14 Fanuc Ltd. Control method and control apparatus for a robot with sensor

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30075E (en) * 1974-09-04 1979-08-21 United States Steel Corporation Method and apparatus for locating improperly positioned or bent rolls
US4338659A (en) * 1978-12-15 1982-07-06 Fujitsu Fanuc Ltd. Position control system for a closed loop type numerical-controlled machine tool
US4373804A (en) * 1979-04-30 1983-02-15 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
JPS5887603A (ja) * 1981-11-20 1983-05-25 Tokico Ltd 産業用ロボツト
CH666215A5 (de) * 1984-01-13 1988-07-15 Schaudt Maschinenbau Gmbh Verfahren zum einstellen der laengsposition einer werkstueckstuetzeinheit oder eines aehnlichen maschinenelementes einer rundschleifmaschine.
US4821206A (en) * 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
WO1987005849A1 (fr) * 1986-03-25 1987-10-08 Laser Lab Limited Dispositif a tete de travail
USRE34569E (en) * 1986-12-30 1994-03-29 Amada Company, Limited Robotized handling device and sheet metal bending system featuring the same
DE3723466A1 (de) * 1987-07-16 1989-01-26 Barry Controls Gmbh Nachstelleinrichtung zum korrigieren der lage einer maschine
DE3730709A1 (de) * 1987-09-12 1989-03-30 Man Technologie Gmbh Sensorgesteuerter regler zur lagesteuerung eines werkzeugs relativ zu einem werkstueck
US4918284A (en) * 1988-10-14 1990-04-17 Teradyne Laser Systems, Inc. Calibrating laser trimming apparatus
DD286887A5 (de) * 1989-07-05 1991-02-07 Veb Komplette Chemieanlagen Dresden,De Sensor zur beruehrungslosen erfassung des sollabstandes zwischen einer metallischen flaeche beliebiger geometrie und einer sich ueber der flaeche bewegenden einrichtung
EP0415156B1 (fr) * 1989-08-10 1996-07-10 Maschinenfabrik Rieter Ag Procédé et appareil pour commander une ouvreuse des balles
DE9117180U1 (de) * 1991-03-15 1996-09-19 Linde Ag Laserschneidkopf
FR2683336B1 (fr) * 1991-11-06 1996-10-31 Laserdot Dispositif de guidage asservi sur faisceau laser pour une machine de travaux publics.
DE69219101T2 (de) * 1992-02-03 1997-07-24 Matsushita Electric Ind Co Ltd Laserbearbeitungsvorrichtung und Verfahren zum Einstellen der Höhe des Kondensor
US5340962A (en) * 1992-08-14 1994-08-23 Lumonics Corporation Automatic control of laser beam tool positioning
DE19510625A1 (de) * 1995-03-23 1996-09-26 Wacker Siltronic Halbleitermat Drahtsäge und Verfahren zum Abtrennen von Scheiben von einem Werkstück
DE19516376C2 (de) * 1995-05-04 1998-12-03 Blz Gmbh Verfahren und Vorrichtung zur Kontrolle und Regelung der Brennfleckposition bei der Lasermaterialbearbeitung
GB2303091A (en) * 1995-07-10 1997-02-12 Western Atlas Uk Ltd Control of circularly asymmetric machining
DE19634782A1 (de) * 1996-08-28 1998-03-05 Anton Koukal Regelungseinrichtung zur selbsttätigen Konstanthaltung des Abstandes eines Werkzeugs von einem Werkstück
DE19727094C2 (de) * 1997-06-25 2003-10-16 Fraunhofer Ges Forschung Verfahren zur Abstandsmessung zwischen einem Werkzeugendteil einer Manipulatoreinheit und einer mit dem Werkzeugendteil zu bearbeitenden Objektoberfläche oder eines zu manipulierenden Objektes
DE19816442C2 (de) * 1998-04-14 2002-02-28 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Oberflächenstrukturierung von verlegten Fußbodenbelägen
DE29904097U1 (de) * 1999-03-08 1999-05-27 Sam Saechsische Anlagen Und Ma Düse für einen Laserbearbeitungskopf
TW469483B (en) * 1999-04-19 2001-12-21 Applied Materials Inc Method and apparatus for aligning a cassette
US6758640B2 (en) * 2000-10-11 2004-07-06 Fuji Seiko Limited Method and apparatus for controlling movement of cutting blade and workpiece
DE10103177A1 (de) * 2001-01-22 2002-08-01 Balluff Gmbh Gratprüfungs-Sensorvorrichtung
DE10150710A1 (de) * 2001-10-13 2003-04-17 Heller Geb Gmbh Maschf Rotierendes Maschinenelement sowie Verfahren zur Erfassung von Positionswerten von mindestens einem Funktionsträger eines solchen rotierenden Maschinenelementes
DE50205432D1 (de) * 2001-12-13 2006-02-02 Fiessler Elektronik Gmbh & Co Schutzeinrichtung für Maschinen, wie Biegepressen, Schneidemaschinen, Stanzmaschinen oder dergleichen
JP2004114226A (ja) * 2002-09-26 2004-04-15 Mori Seiki Hitech Co Ltd 主軸移動型立形工作機械
JP4210094B2 (ja) * 2002-10-08 2009-01-14 ソニーマニュファクチュアリングシステムズ株式会社 スケール装置
JP2005196242A (ja) * 2003-12-26 2005-07-21 Fanuc Ltd 倣い加工装置
DE102004022484B4 (de) * 2004-05-07 2007-12-20 P.A.L.M. Microlaser Technologies Ag Mikroskoptisch
US7512452B2 (en) * 2005-06-13 2009-03-31 Mauro George E Positioning system for eliminating lost motion effect

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341964A1 (de) * 1983-11-21 1985-05-30 Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen Vorrichtung zur automatischen fuehrung von werkzeugen
EP0328694A1 (fr) * 1987-09-02 1989-08-23 Fanuc Ltd. Procede de profilage sans contact
EP0510208A1 (fr) * 1990-11-08 1992-10-28 Fanuc Ltd. Dispositif de commande de numerisation
DE4217292A1 (de) * 1992-05-25 1993-12-02 Weidmueller Interface Kapazitives Abstandsmeßverfahren
US5467003A (en) * 1993-05-12 1995-11-14 Fanuc Ltd. Control method and control apparatus for a robot with sensor

Also Published As

Publication number Publication date
JP2009504407A (ja) 2009-02-05
DE102005039094A1 (de) 2007-02-15
US20090228136A1 (en) 2009-09-10
DE102005039094B4 (de) 2009-03-19
KR20080038392A (ko) 2008-05-06
US20090139970A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
DE102005039094B4 (de) Verfahren und Vorrichtung zum Führen eines Maschinenteils entlang einer definierten Bewegungsbahn über einer Werkstücksoberfläche
EP0770445B1 (fr) Méthode de contrôle et de positionnement d'un faisceau ou d'un jet pour l'usinage d'une pièce
DE69636740T2 (de) Verfahren zum selbsttätigen mehrlagenschweissen
DE602004010262T2 (de) Verfahren zum bewegen einer mit einer kamera versehenen vorrichtung zu einer zielposition mittels eines steuersytems und steuersystem dafür
DE102005003322B3 (de) Verfahren zum Bestimmen einer Raumkoordinate eines Messpunktes an einem Messobjekt sowie entsprechendes Koordinatenmessgerät
DE102007030395B4 (de) Verfahren und Vorrichtung zum Laserstrahlschweißen eines Werkstücks
EP1099506B1 (fr) Méthode et dispositif de mesure de paramètres d'un procédé d'usinage de matériaux
EP2418040B1 (fr) Procédé de contrôle d'un dispositif de soudure par laser
DE102010005896A1 (de) Laserschweißroboter und -verfahren sowie damit hergestelltes Bauteil
EP1979124A1 (fr) Tete de soudage a faisceau laser
DE19724986C2 (de) Verfahren zum Verschweißen von Werkstücken und Vorrichtung zu dessen Durchführung
EP3349938B1 (fr) Procédé de guidage d'une tête d'usinage le long d'une trace à usiner
EP3186031B1 (fr) Procédé de saignage dans des pièces métalliques au moyen d'un faisceau laser ainsi que machine d'usinage à laser et produit de programme informatique associés
DE4411263C2 (de) Verfahren zur Überprüfung der Führungsgenauigkeit einer Brennschneidmaschine und Anordnung zur Durchführung des Verfahrens
DE10250326A1 (de) Werkzeugmaschine und Verfahren zur Justage der Spindelposition dieser Werkzeugmaschine
DE10312535B4 (de) Verfahren und Vorrichtung zum geometrischen Vermessen eines Materialbandes
EP1117974B1 (fr) Dispositif d'usinage par laser par enlèvement de couches successives avec mémorisation de profondeur de matrice pour un futur contrôle
DE102013101284A1 (de) Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks, Schweißgerät und Verfahren zur Beeinflussung der Bewegung eines Schweißdrahts
WO2004035256A1 (fr) Procede et dispositif pour souder des pieces
DE102022129220B3 (de) Messvorrichtung und Verfahren zur Durchführung von Messungen an einem Werkstück sowie Bearbeitungssystem und Verfahren zur Schweißbearbeitung
DE102020200599A1 (de) Verfahren und Vorrichtung zur Steigerung der Fertigungsgenauigkeit beim pulverbettbasierten Strahlschmelzen mit einem verfahrbaren Bearbeitungskopf
DE102012204207B4 (de) Verfahren zum Laserstrahlschweißen
EP0413102B1 (fr) Procédé et appareil pour positionner un objet et tête de traitement
DE3614092A1 (de) Verfahren und anordnung zum ausmessen von auf druckerzeugnissen mitgedruckten farbmessstreifen
DE102022129218A1 (de) Vorrichtung und Verfahren zur Durchführung von Messungen an einem Werkstück sowie Bearbeitungssystem und Verfahren zur Bearbeitung eines Werkstücks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008525415

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005445

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06762722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11990229

Country of ref document: US