WO2007013387A1 - Sputtering target, method for manufacturing such sputtering target, and transparent conducting film - Google Patents

Sputtering target, method for manufacturing such sputtering target, and transparent conducting film Download PDF

Info

Publication number
WO2007013387A1
WO2007013387A1 PCT/JP2006/314550 JP2006314550W WO2007013387A1 WO 2007013387 A1 WO2007013387 A1 WO 2007013387A1 JP 2006314550 W JP2006314550 W JP 2006314550W WO 2007013387 A1 WO2007013387 A1 WO 2007013387A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
metal
sputtering
target
conductive film
Prior art date
Application number
PCT/JP2006/314550
Other languages
French (fr)
Japanese (ja)
Inventor
Koki Yano
Kazuyoshi Inoue
Nobuo Tanaka
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to CN2006800269295A priority Critical patent/CN101233258B/en
Priority to KR1020087002030A priority patent/KR101302332B1/en
Publication of WO2007013387A1 publication Critical patent/WO2007013387A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes

Definitions

  • the present invention relates to a sputtering target, a method for producing the same, and a transparent conductive film. More specifically, the present invention relates to a sputtering target that does not reduce or use indium, which is a scarce resource. Background art
  • Liquid crystal displays (LCD) and organic-electrical luminescence (EL) displays are used in display devices such as mobile phones, personal digital assistants (PDAs), personal computers, laptop computers, and televisions in terms of display performance and energy saving.
  • PDAs personal digital assistants
  • LCD liquid crystal display
  • EL organic-electrical luminescence
  • ITO indium stannate
  • ITO films use a large amount of indium (usually about 90% by mass). Since indium is a scarce resource and there are concerns about supply, and there is some toxicity, the development of transparent conductive films with a small amount of indium is important for the further spread of display devices using transparent electrodes.
  • a transparent conductive film containing zinc oxide tin monoxide as a main component has been studied as a transparent conductive film by reducing or using indium (for example, see Patent Document 1).
  • the sputtering target consisting of the metal oxide part and metal part force is a metal oxide target. This is a composite of a get, a metal target, and a metal wire. To apply it to a target with reduced indium, the target itself has high resistance, the discharge during sputtering is not stable, the sputtering speed is slow, etc. There was a problem.
  • Patent Document 1 JP-A-8-171824
  • Patent Document 2 JP 2000-256842 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-030934
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sputtering target capable of obtaining a low-resistance transparent conductive film even when indium is reduced, and a method of manufacturing the sputtering target.
  • the present inventors have determined that the number of oxygen atoms in the metal atoms and oxygen atoms that constitute the sputtering target constitutes an oxide. It was found that a transparent conductive film having a low resistance can be obtained even if indium is reduced by making the amount less than the stoichiometric amount. Further, it has been found that by dispersing a metal or an alloy that is oxidized in a sputtering target, a target with a small amount of oxygen can be stably produced, and the resistance of the target can be reduced. Completed.
  • the present invention there are provided the following sputtering target, a production method thereof, a transparent conductive film and a transparent electrode.
  • a transparent electrode prepared by etching the transparent conductive film according to 9 above.
  • FIG. 1 is a graph showing the relationship between the amount of Zn metal powder and the Balta resistance of a target.
  • FIG. 2 is a graph showing the relationship between the amount of Zn metal powder and the specific resistance value of a transparent conductive film.
  • the sputtering target of the present invention has a form in which a metal or an alloy is dispersed as a whole in an oxide containing at least zinc oxide and tin oxide.
  • the resistance of the target can be reduced by dispersing a small metal or alloy that has been oxidized in the sputtering target.
  • the metal or alloy can be used without particular limitation as long as the performance of the present invention is not impaired.
  • a metal or alloy having a melting point of 1300 ° C or lower, preferably 1000 ° C or lower, more preferably 800 ° C or lower, more preferably 600 ° C or lower is preferable. Is used. If the melting point is 1300 ° C or lower, the resistance of the target tends to decrease because it melts during sintering and the density of the target increases.
  • a metal oxide shows electroconductivity is also preferable.
  • Zn, Sn, In, Ga, Ge, Cd, Nd, Sm, Ce, Eu, Ag, Au, Al, and alloys containing them as main components can be preferably used.
  • Zn, Sn, or In is preferable.
  • a plurality of these metals or alloys may be used in combination.
  • the metal or alloy is preferably dispersed in the target as aggregates of 500 m or less. More preferably, it is 100 / z m or less, more preferably 10 / z m or less, and particularly preferably 5 m or less.
  • the presence of a metal or alloy can be judged from the peak of X-ray diffraction.
  • the dispersion state can be confirmed by the presence of an agglomerated part of metal atoms or a low oxygen part by surface analysis with an X-ray microanalyzer (EPMA).
  • EPMA X-ray microanalyzer
  • “Dispersed throughout” means that one or more metals or alloys of 500 ⁇ m or less can be confirmed in an arbitrary 5000 / z m square region.
  • the form in which the metal or alloy is dispersed can be realized by a manufacturing method described later.
  • the content of the metal or alloy in the sputtering target is preferably 0.1 to 6% by mass, more preferably 0.2 to 4% by mass, and particularly preferably 0.3 to 3% by mass. 0.1 If less than 1% by mass, the effect of the present invention may not be exhibited, or white spots may be formed. If more than 6% by mass, oxygen is insufficient and resistance increases or transparency decreases. There is a risk.
  • XRD X-ray diffraction
  • the sputtering target of the present invention preferably satisfies the following (1) and (2).
  • M, M and M represent Zn, Sn and And the number of In atoms.
  • the value [M / (M + M;)] in the above formula (1) is the value of Zn and Sn in the sputtering target.
  • the existence ratio is defined. If this value is less than 0.65, the amount of Sn occupying the target increases and SnO aggregates, which may cause abnormal discharge by charging during film formation.
  • Equation (2) defines the amount of In in the sputtering target. In consideration of the object of the present invention, it is preferable that the amount of In used is small. However, by adding In, the resistance of the target and the thin film after film formation can be reduced. M Z (M + M + M) is preferably 0.05
  • the sputtering target of the present invention preferably further satisfies the following (3).
  • Equation (3) defines the amount of oxygen atoms (O) in the sputtering target.
  • the denominator of equation (3) is the number of oxygen atoms when each metal atom forms an oxide (ZnO, SnO, InO).
  • equation (3) that is, the ratio of the number of oxygen atoms contained in the sputtering target to the number of oxygen atoms when all of the metal atoms form an oxide, is not greater than 0.99. Even if In is not reduced or used, a sputtering target can be obtained in which a transparent conductive film having low resistance can be obtained.
  • the value of the formula (3) is preferably 0.8 to 0.98, more preferably 0.9 to 0.97. If it is smaller than 0.8, the conductive film after film formation may be colored.
  • the values of the above-mentioned formulas (1) to (3) are values of the abundance ratio of each atom obtained by analyzing the composition of the sputtering target using an X-ray microanalyzer (EPMA).
  • EPMA X-ray microanalyzer
  • the difference depending on the sputtering equipment and the sputtering conditions it may be adjusted by introducing a small amount of acidic gas at the time of sputtering in a slightly oxygen-deficient state at the time of sintering.
  • the particle size of the powder is 500 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 10 ⁇ m. Hereinafter, it is particularly preferably 5 m or less. If it is larger than 500 / zm, it will not be uniformly mixed with other raw material powders, so there is a risk that the metal or alloy will be dispersed in the target and the target resistance will increase.
  • the particle diameter is a value measured with a light scattering equivalent diameter (JIS R 1629).
  • sintering aids yttria, magnesia, etc.
  • dispersants polyyesters
  • a binder e.g., a lubricant, emulsion of stearic acid, etc.
  • the sputtering target of the present invention preferably contains a hexagonal phase layered compound (In 2 O 3 (ZnO) m: m is an integer from 3 to 20) that also has indium oxide / acid / zinc strength.
  • the sintered density is increased and the resistance of the target is easily decreased.
  • Such a structure can be obtained by the manufacturing method described above.
  • the structure is analyzed by X-ray diffraction (XRD).
  • the sputtering target of the present invention preferably has a Balta resistance of 0.2 to less than 100 m Q cm. Satisfying this value stabilizes the discharge during sputtering and increases the sputtering rate. More preferably, 0.4 to 20 m Q cm or less, particularly preferably 0.6 to: ⁇ ⁇ cm or less.
  • the density of the sputtering target 5. 3 ⁇ 7. 2gZcm 3 a it is preferred instrument further 6.1 to 7. It especially preferred instrument OgZcm is 3, at 6. 4 ⁇ 6. 8gZcm 3 It is preferable that there is. By satisfying this value, the discharge during sputtering can be stabilized and the film formation rate can be improved.
  • the transparent conductive film of the present invention can be obtained by depositing the above-described sputtering target of the present invention by a conventional method. Further, a transparent electrode can be obtained by etching this transparent conductive film with an etching solution such as mixed acid containing oxalic acid or phosphoric acid.
  • the particle diameter is a value measured by a laser diffraction scattering method.
  • Zinc oxide powder (particle size of 1 m or less), tin oxide powder (particle size of 0.4 m or less) and metallic zinc powder (particle size of 5 ⁇ m or less) in a polyethylene pot at the mixing ratio shown in Table 1.
  • the mixed powder was produced by mixing for 72 hours using a dry ball mill.
  • This mixed powder was put into a mold and pressed at a pressure of 300 kgZcm 2 to obtain a molded body.
  • this compact was placed in a pure oxygen atmosphere sintering furnace and sintered under the following conditions.
  • Weight Z gas flow rate 0.4 kg-min / L, gas introduction start temperature (when the temperature is raised): 400 ° C, gas introduction stop temperature (when the temperature is lowered): 400 ° C.
  • the density of the obtained sintered body was measured by the Archimedes method and found to be 5.5 gZcm 3 .
  • the composition of the sintered body was analyzed using an X-ray microanalyzer (EPMA).
  • EPMA X-ray microanalyzer
  • the ratio of the number of oxygen atoms to the total number of metal atoms was 1.18.
  • the Balta resistance of the target measured by the four probe method was 80 m ⁇ cm.
  • XRD X-ray diffraction
  • EPMA surface analysis confirms that there are more than 100 dispersed portions of 5-50 ⁇ m metal atoms and low oxygen in a 5000 ⁇ m square region. It was.
  • EPMA and XRD were measured under the following conditions.
  • X-ray Cu- ⁇ ⁇ -ray (wavelength 1.5406 ⁇ , monochromatic with graph eye monometer), measured by 2 0- ⁇ reflection method, continuous scan (1.0 ° ⁇ ), sampling interval: 0. 02 °, Slit: DS, SS, 2/3 °, RS: 0.6mm
  • This sintered body was processed into a sintered body having a thickness of 6 mm by a wet processing method, and joined to an oxygen-free copper backing plate using indium solder to obtain a target.
  • a transparent conductive film was formed by sputtering on a 0.7 mm thick glass substrate (Corning, # 7059).
  • the sputtering conditions were as follows.
  • RF power 110 W
  • gas pressure 0.3 Pa
  • sputtering gas Ar
  • 100% film thickness: 100 nm
  • substrate temperature 200 ° C.
  • the specific resistance of the obtained conductive film measured by the four probe method was 50 m ⁇ ⁇ cm.
  • the light transmittance at a wavelength of 550 nm was 90%.
  • the transmittance was measured as the transmittance including the glass substrate using air as a reference.
  • the structure was measured by X-ray diffraction (XRD).
  • the film composition is the value of each metal atom in the total metal atoms contained in the film.
  • a target was prepared and a snotter film was formed in the same manner as in Example 1 except that the composition ratio of the raw materials was changed as shown in Table 1.
  • the amount of Zn metal powder was changed to 0 to 4 wt%, and the amount of ZnO powder was adjusted by that amount. A snow film was formed.
  • the obtained transparent conductive film was evaluated for the relationship between the amount of Zn metal powder and the target resistance value, and the amount of Zn metal powder and the specific resistance value of the transparent conductive film. The results are shown in Figs.
  • the transparent conductive film formed using the sputtering target of the present invention can be suitably used as a transparent electrode for various display devices such as liquid crystal display devices and EL display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a sputtering target containing zinc oxide and tin oxide or a sputtering target containing zinc oxide, tin oxide and indium oxide. A metal or an alloy is dispersed over the entire sputtering target.

Description

明 細 書  Specification
スパッタリングターゲット、その製造方法及び透明導電膜  Sputtering target, manufacturing method thereof and transparent conductive film
技術分野  Technical field
[0001] 本発明は、スパッタリングターゲット、その製造方法及び透明導電膜に関する。さら に詳しくは、希少資源であるインジウムを削減又は使用しないスパッタリングターゲッ ト等に関する。 背景技術  [0001] The present invention relates to a sputtering target, a method for producing the same, and a transparent conductive film. More specifically, the present invention relates to a sputtering target that does not reduce or use indium, which is a scarce resource. Background art
[0002] 液晶ディスプレイ(LCD)や有機エレクト口ルミネッセンス (EL)ディスプレイは、表示 性能、省エネルギー等の点から、携帯電話や携帯情報端末 (PDA)、パソコンゃラッ プトップパソコン、テレビ等の表示機として主流を占めるに至っている。これらの装置 に使用される透明導電膜としては、インジウム'スズ酸ィ匕物(以下、 ITO)膜が主流を 占めている。しかし、 ITO膜はインジウムを大量 (通常 90質量%程度)に用いている。 インジウムは希少資源で供給不安があり、また、多少の毒性もあるため、透明電極を 用いた表示デバイスのさらなる普及には、インジウムの使用量が少ない透明導電膜 の開発が重要である。  [0002] Liquid crystal displays (LCD) and organic-electrical luminescence (EL) displays are used in display devices such as mobile phones, personal digital assistants (PDAs), personal computers, laptop computers, and televisions in terms of display performance and energy saving. As the mainstream. As the transparent conductive film used in these devices, an indium stannate (hereinafter referred to as ITO) film dominates. However, ITO films use a large amount of indium (usually about 90% by mass). Since indium is a scarce resource and there are concerns about supply, and there is some toxicity, the development of transparent conductive films with a small amount of indium is important for the further spread of display devices using transparent electrodes.
[0003] インジウムを削減又は使用して 、な 、透明導電膜として、酸化亜鉛一酸化スズを主 成分とする透明導電膜が検討されている (例えば、特許文献 1参照。 ) o  [0003] A transparent conductive film containing zinc oxide tin monoxide as a main component has been studied as a transparent conductive film by reducing or using indium (for example, see Patent Document 1).
この透明導電膜では抵抗が高い、抵抗の面内分布が大きい等の問題点があるもの の、これら問題を解決するための検討はなされて 、なかった。  Although this transparent conductive film has problems such as high resistance and large in-plane distribution of resistance, no studies have been made to solve these problems.
[0004] ITOのスパッタリングターゲットとしては、酸素量を一定以上とすることで低抵抗ィ匕で きることが公開されている (例えば、特許文献 2参照。 )0 [0004] As the sputtering target ITO, that by the amount of oxygen is constant over kills with low resistance I spoon has been published (e.g., see Patent Document 2.) 0
しかし、インジウムを削減したスパッタリングターゲットの酸素量については検討され ていなかった。  However, the oxygen content of the sputtering target with reduced indium has not been studied.
[0005] また、金属酸ィ匕物の部位と金属の部位力 なるスパッタリングターゲットが公開され ている(例えば、特許文献 3参照。 )0 [0005] Moreover, the sputtering target made of site power site and the metal of the metal Sani匕物have been published (e.g., see Patent Document 3.) 0
しかし、インジウムを削減したターゲットへの影響は検討されていな力つた。また、金 属酸ィ匕物の部位と金属の部位力 なるスパッタリングターゲットは、金属酸化物ター ゲットと金属ターゲットや金属ワイヤーを複合ィ匕させたものであり、インジウムを削減し たターゲットに適用するにはターゲット自体の抵抗が高ぐスパッタ時の放電が安定し ない、スパッタ速度が遅い等の問題があった。 However, the impact on the target with reduced indium has not been studied. In addition, the sputtering target consisting of the metal oxide part and metal part force is a metal oxide target. This is a composite of a get, a metal target, and a metal wire. To apply it to a target with reduced indium, the target itself has high resistance, the discharge during sputtering is not stable, the sputtering speed is slow, etc. There was a problem.
特許文献 1:特開平 8— 171824号公報  Patent Document 1: JP-A-8-171824
特許文献 2:特開 2000 - 256842号公報  Patent Document 2: JP 2000-256842 A
特許文献 3:特開 2004— 030934号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-030934
[0006] 本発明は上述の問題に鑑みなされたものであり、インジウムを削減しても低抵抗な 透明導電膜が得られるスパッタリングターゲット及びスパッタリングターゲットの製造方 法を提供することを目的とする。 [0006] The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sputtering target capable of obtaining a low-resistance transparent conductive film even when indium is reduced, and a method of manufacturing the sputtering target.
発明の開示  Disclosure of the invention
[0007] 本発明者らは、上記課題を克服するために鋭意検討を重ねた結果、スパッタリング ターゲットを構成する金属原子及び酸素原子において、酸素原子の数を金属原子が 酸ィ匕物を構成するときの化学量論量よりも少なくすることにより、インジウムを削減して も低抵抗な透明導電膜が得られることを見出した。また、スパッタリングターゲット中に 酸化されて!ヽな 、金属又は合金を分散させることにより、安定して酸素量の少な ヽタ 一ゲットを製造できること、及びターゲットの抵抗を低下できることを見出し、本発明を 完成させた。  [0007] As a result of intensive studies to overcome the above problems, the present inventors have determined that the number of oxygen atoms in the metal atoms and oxygen atoms that constitute the sputtering target constitutes an oxide. It was found that a transparent conductive film having a low resistance can be obtained even if indium is reduced by making the amount less than the stoichiometric amount. Further, it has been found that by dispersing a metal or an alloy that is oxidized in a sputtering target, a target with a small amount of oxygen can be stably produced, and the resistance of the target can be reduced. Completed.
[0008] 本発明によれば、以下のスパッタリングターゲット、その製造方法、透明導電膜及び 透明電極が提供される。  [0008] According to the present invention, there are provided the following sputtering target, a production method thereof, a transparent conductive film and a transparent electrode.
1.酸化亜鈴及び酸化スズ、又は、酸化亜鈴、酸化スズ及び酸化インジウムを含むス ノ ッタリングターゲットであって、金属又は合金がスパッタリングターゲット全体に分散 して存在するスパッタリングターゲット。  1. A sputtering target containing dumbbell and tin oxide, or a dumbbell, tin oxide and indium oxide, wherein a metal or alloy is dispersed throughout the sputtering target.
2.下記(1)及び(2)を満たす 1記載のスパッタリングターゲット。  2. The sputtering target according to 1, which satisfies the following (1) and (2).
0. 65≤M / {M +M )≤0. 9 (1)  0. 65≤M / (M + M) ≤0.9 (1)
Zn Zn Sn  Zn Zn Sn
0≤M / (M +M +M )≤0. 7 (2)  0≤M / (M + M + M) ≤0.7 (2)
In Zn Sn In  In Zn Sn In
[式中、 M 、 M 及び M は、それぞれスパッタリングターゲットにおける Zn  [Where M, M and M are Zn in the sputtering target, respectively.
Sn In 、 Sn及 Sn In, Sn and
Zn Zn
び Inの原子数を示す。 ]  And the number of In atoms. ]
3.さらに、下記(3)を満たす 1又は 2記載のスパッタリングターゲット。 M / (M +M X 2 + M X I. 5)≤0. 99 (3) 3. Furthermore, the sputtering target according to 1 or 2, which satisfies the following (3). M / (M + MX 2 + MX I. 5) ≤0. 99 (3)
o Zn Sn In  o Zn Sn In
[式中、 M 、 M 、 M及び M は、それぞれスパッタリングターゲットにおける Zn、 S  [Where M, M, M and M are Zn, S in the sputtering target, respectively.
Zn Sn o In  Zn Sn o In
n、 O及び Inの原子数を示す。 ]  Indicates the number of atoms of n, O and In. ]
4.前記金属又は合金を 0. 1〜6質量0 /0含む 1〜3のいずれかに記載のスパッタリン グターゲット。 4. sputter-ring target according to any one of the metal or alloy from 0.1 to 6 mass 0/0 containing 1 to 3.
5.酸化インジウム'酸ィ匕亜鉛力もなる六方晶相層状ィ匕合物 (In O (ZnO) m:mは 3  5. Hexagonal phase layered compound (In O (ZnO) m: m is 3
2 3  twenty three
力 20までの整数)を含む 1〜4のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of 1 to 4, which includes an integer of force up to 20.
6.バルタ抵抗が 100m Ω cm未満である 1〜5のいずれかに記載のスパッタリングタ ーケット。 6. The sputtering ticket according to any one of 1 to 5, wherein the Balta resistance is less than 100 mΩcm.
7.密度が 5. 3〜7. 2gZcm3である 1〜6のいずれかに記載のスパッタリングターゲ ッ卜。 7. The sputtering target according to any one of 1 to 6, wherein the density is 5.3 to 7.2 gZcm 3 .
8.金属酸化物の粉末と金属の粉末を混合する工程を含む 1〜7のいずれかに記載 のスパタリングターゲットの製造方法。  8. The method for producing a sputtering target according to any one of 1 to 7, comprising a step of mixing a metal oxide powder and a metal powder.
9.上記 1〜 7の 、ずれかに記載のスパッタリングターゲットを使用して作製した透明 導電膜。  9. A transparent conductive film produced using the sputtering target according to any one of 1 to 7 above.
10.上記 9記載の透明導電膜をエッチングして作製した透明電極。  10. A transparent electrode prepared by etching the transparent conductive film according to 9 above.
[0009] 本発明のスパッタリングターゲットによって、インジウムを削減しても低抵抗な透明導 電膜が得られる。  [0009] With the sputtering target of the present invention, a transparent conductive film having a low resistance can be obtained even if indium is reduced.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 l]Zn金属粉末の量とターゲットのバルタ抵抗の関係を示すグラフである。 [0010] FIG. 1 is a graph showing the relationship between the amount of Zn metal powder and the Balta resistance of a target.
[図 2]Zn金属粉末の量と透明導電膜の比抵抗値の関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the amount of Zn metal powder and the specific resistance value of a transparent conductive film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明のスパッタリングターゲットを具体的に説明する。 Hereinafter, the sputtering target of the present invention will be specifically described.
本発明のスパッタリングターゲットは、酸化亜鉛及び酸化スズを少なくとも含む酸ィ匕 物中に、金属又は合金が全体に分散している形態を有している。これにより、インジ ゥムを削減しても低抵抗な透明導電膜が得られるターゲットとなる。また、スパッタリン グターゲット中に酸ィ匕されて ヽな ヽ金属又は合金を分散させることにより、ターゲット の抵抗を低下できる。 [0012] 金属又は合金としては、本発明の性能を損なわない範囲で特に制限なく使用でき る。ターゲットの焼結温度より低いものが好ましぐ通常、融点が 1300°C以下、好まし くは 1000°C以下、より好ましくは 800°C以下、さらに好ましくは 600°C以下の金属又 は合金を使用する。融点が 1300°C以下であれば、焼結時に溶融しターゲットの密度 が高まるため、ターゲットの抵抗が下がりやすい。 The sputtering target of the present invention has a form in which a metal or an alloy is dispersed as a whole in an oxide containing at least zinc oxide and tin oxide. As a result, a target with which a low-resistance transparent conductive film can be obtained even if the indium is reduced. Moreover, the resistance of the target can be reduced by dispersing a small metal or alloy that has been oxidized in the sputtering target. [0012] The metal or alloy can be used without particular limitation as long as the performance of the present invention is not impaired. A metal or alloy having a melting point of 1300 ° C or lower, preferably 1000 ° C or lower, more preferably 800 ° C or lower, more preferably 600 ° C or lower is preferable. Is used. If the melting point is 1300 ° C or lower, the resistance of the target tends to decrease because it melts during sintering and the density of the target increases.
また、金属酸化物が導電性を示すものも好ましい。そのようなものとして、 Zn、 Sn、 I n、 Ga、 Ge、 Cd、 Nd、 Sm、 Ce、 Eu、 Ag、 Au、 Al、及びそれらを主成分とする合金 が好ましく使用できる。特に、 Zn、 Sn又は Inが好ましい。尚、これら金属又は合金は 、複数を混合して使用してもよい。  Moreover, what a metal oxide shows electroconductivity is also preferable. As such, Zn, Sn, In, Ga, Ge, Cd, Nd, Sm, Ce, Eu, Ag, Au, Al, and alloys containing them as main components can be preferably used. In particular, Zn, Sn, or In is preferable. A plurality of these metals or alloys may be used in combination.
[0013] 金属又は合金は、ターゲット中に 500 m以下の凝集体となって全体に分散してい ることが好ましい。さらに好ましくは 100 /z m以下、より好ましくは 10 /z m以下、特に好 ましくは、 5 m以下である。  [0013] The metal or alloy is preferably dispersed in the target as aggregates of 500 m or less. More preferably, it is 100 / z m or less, more preferably 10 / z m or less, and particularly preferably 5 m or less.
金属又は合金が存在していることは、 X線回折のピークで判断できる。また、分散状 態は、 X線マイクロアナライザー (EPMA)の面分析で金属原子の凝集部又は低酸 素部分があることで確認できる。また、「全体に分散している」とは、任意の 5000 /z m 角の領域内に 500 μ m以下の金属又は合金が 1個以上確認できる状態を意味する。 尚、金属又は合金が分散している形態は、後述する製造方法により実現できる。  The presence of a metal or alloy can be judged from the peak of X-ray diffraction. In addition, the dispersion state can be confirmed by the presence of an agglomerated part of metal atoms or a low oxygen part by surface analysis with an X-ray microanalyzer (EPMA). “Dispersed throughout” means that one or more metals or alloys of 500 μm or less can be confirmed in an arbitrary 5000 / z m square region. In addition, the form in which the metal or alloy is dispersed can be realized by a manufacturing method described later.
[0014] スパッタリングターゲットに占める金属又は合金の含有量は、好ましくは 0. 1〜6質 量%、より好ましくは 0. 2〜4質量%、特に好ましくは 0. 3〜3質量%である。 0. 1質 量%より少ないと、本発明の効果が発現しないか、又はホワイトスポットができるおそ れがあり、 6質量%より多いと、酸素不足となり逆に抵抗が増大したり透明性が低下す るおそれがある。  [0014] The content of the metal or alloy in the sputtering target is preferably 0.1 to 6% by mass, more preferably 0.2 to 4% by mass, and particularly preferably 0.3 to 3% by mass. 0.1 If less than 1% by mass, the effect of the present invention may not be exhibited, or white spots may be formed. If more than 6% by mass, oxygen is insufficient and resistance increases or transparency decreases. There is a risk.
スパッタリングターゲット中に酸ィ匕して ヽな 、金属又は合金が含まれて 、るかは、 X 線回折 (XRD)で確認できる。  It can be confirmed by X-ray diffraction (XRD) whether or not the sputtering target contains any metal or alloy that is oxidized.
[0015] 本発明のスパッタリングターゲットは、下記(1)及び(2)を満たすことが好ましい。 [0015] The sputtering target of the present invention preferably satisfies the following (1) and (2).
0. 65≤M / {M +M )≤0. 9 (1)  0. 65≤M / (M + M) ≤0.9 (1)
Zn Zn Sn  Zn Zn Sn
0≤M / (M +M +M )≤0. 7 (2)  0≤M / (M + M + M) ≤0.7 (2)
In Zn Sn In  In Zn Sn In
[式中、 M 、 M 及び M は、それぞれスパッタリングターゲットにおける Zn、 Sn及 び Inの原子数を示す。 ] [Wherein M, M and M represent Zn, Sn and And the number of In atoms. ]
上記式(1)の値 [M / (M + M ;) ]は、スパッタリングターゲットにおける Znと Sn  The value [M / (M + M;)] in the above formula (1) is the value of Zn and Sn in the sputtering target.
Zn Zn Sn  Zn Zn Sn
の存在比率を規定している。この値が 0. 65より小さい場合、ターゲットに占める Sn量 が多くなり SnOが凝集し、成膜時にチャージして異常放電の原因となるおそれがあ  The existence ratio is defined. If this value is less than 0.65, the amount of Sn occupying the target increases and SnO aggregates, which may cause abnormal discharge by charging during film formation.
2  2
る。一方、 0. 9より大きい場合、耐酸性が低下するおそれがある。 M  The On the other hand, if it is greater than 0.9, the acid resistance may decrease. M
Zn Z(M + M Zn Sn Zn Z (M + M Zn Sn
) ίま、好ましく ίま 0. 7〜0. 85、より好ましく ίま 0. 7〜0. 8である。 ), preferably 0.75 to 0.85, more preferably 0.75 to 0.8.
[0016] 式(2)はスパッタリングターゲットにおける Inの量を規定する。本発明の目的を考慮 すると、 Inの使用量は少ないことが好ましいが、 Inを添加することにより、ターゲット及 び成膜後の薄膜の抵抗を低下できる。 M Z(M + M + M )は、好ましくは 0. 05 [0016] Equation (2) defines the amount of In in the sputtering target. In consideration of the object of the present invention, it is preferable that the amount of In used is small. However, by adding In, the resistance of the target and the thin film after film formation can be reduced. M Z (M + M + M) is preferably 0.05
In Zn Sn In  In Zn Sn In
〜0. 6、より好ましくは 0. 1〜0. 45、さらに好ましくは 0. 15-0. 35、特に好ましくは 0. 25〜0. 35である。  ˜0.6, more preferably 0.1 to 0.45, even more preferably 0.15 to 0.35, and particularly preferably 0.25 to 0.35.
[0017] 本発明のスパッタリングターゲットは、さらに、下記(3)を満たすことが好ましい。  [0017] The sputtering target of the present invention preferably further satisfies the following (3).
Μ / (Μ + Μ Χ 2 + Μ X I . 5)≤0. 99 (3)  Μ / (Μ + Μ Χ 2 + Μ X I. 5) ≤0. 99 (3)
o Zn Sn In  o Zn Sn In
[式中、 M 、 M 、 M及び M は、それぞれスパッタリングターゲットにおける Zn  [Where M, M, M and M are Zn in the sputtering target, respectively.
Zn Sn o In 、 S n、 O及び Inの原子数を示す。 ]  The numbers of atoms of Zn Sn o In, Sn, O and In are shown. ]
式(3)は、スパッタリングターゲットにおける酸素原子 (O)の量を規定する。式(3)の 分母は、各金属原子が酸ィ匕物 (ZnO, SnO , In O )を構成した際の酸素原子数を  Equation (3) defines the amount of oxygen atoms (O) in the sputtering target. The denominator of equation (3) is the number of oxygen atoms when each metal atom forms an oxide (ZnO, SnO, InO).
2 2 3  2 2 3
意味する。式(3)の値、即ち、スパッタリングターゲットに含まれる酸素原子の数と、金 属原子の全てが酸ィ匕物を構成した場合の酸素原子の数との比が 0. 99以下であれ ば、 Inを削減又は使用しなくとも、低抵抗な透明導電膜が得られるスパッタリングター ゲットとなる。尚、式(3)の値は、好ましくは 0. 8〜0. 98、より好ましくは 0. 9〜0. 97 である。 0. 8より小さいと成膜後の導電膜が着色するおそれがある。  means. If the value of equation (3), that is, the ratio of the number of oxygen atoms contained in the sputtering target to the number of oxygen atoms when all of the metal atoms form an oxide, is not greater than 0.99. Even if In is not reduced or used, a sputtering target can be obtained in which a transparent conductive film having low resistance can be obtained. The value of the formula (3) is preferably 0.8 to 0.98, more preferably 0.9 to 0.97. If it is smaller than 0.8, the conductive film after film formation may be colored.
[0018] このようにターゲット中の酸素の含有量を制御することで、スパッタリング薄膜の低 抵抗ィ匕が可能となるが、その正確な理由は解明されていない。し力しながら、従来の 方法では、 Sn及び Inよりも比較的軽い Zn原子が、逆スパッタゃ成膜されずに排気さ れてしまうことで膜中の酸素が過剰になっていたと推定される。  [0018] By controlling the oxygen content in the target as described above, it becomes possible to reduce the resistance of the sputtering thin film, but the exact reason has not been elucidated. However, in the conventional method, it is presumed that the oxygen in the film was excessive because the Zn atoms, which are relatively lighter than Sn and In, were exhausted without reverse sputtering. .
[0019] 尚、上述した式(1)〜(3)の値は、スパッタリングターゲットを、 X線マイクロアナライ ザ一 (EPMA)を用いて組成分析して得られる、各原子の存在比の値カゝら算出できる [0020] 本発明のスパッタリングターゲットの製造方法としては、例えば、各金属酸化物の混 合粉体に、さらに金属又は合金の粉体を混合し焼結する方法がある。金属粉体を用 いることで、ターゲット中の酸素の含有量を容易に制御できる。また、ターゲット自体 の抵抗が低下するので、スパッタリング速度が上がり安定したスパッタリングできる。さ らに、金属粉体には膜中の酸素欠陥を安定化させ、キャリアを生成させて低抵抗化さ ·¾:る機會ちあるちのと居、われる。 [0019] The values of the above-mentioned formulas (1) to (3) are values of the abundance ratio of each atom obtained by analyzing the composition of the sputtering target using an X-ray microanalyzer (EPMA). We can calculate [0020] As a method for producing the sputtering target of the present invention, for example, there is a method in which a metal or alloy powder is further mixed with a mixed powder of each metal oxide and sintered. By using metal powder, the oxygen content in the target can be easily controlled. In addition, since the resistance of the target itself decreases, the sputtering rate increases and stable sputtering can be performed. In addition, metal powder is known to have a mechanism to stabilize oxygen vacancies in the film and reduce the resistance by generating carriers.
尚、スパッタリング装置の違いや、スパッタ条件による差を調整するため、焼結時に やや酸素不足状態として、スパッタ時に少量の酸ィ匕性ガスを導入し調整してもよ ヽ。  In order to adjust the difference depending on the sputtering equipment and the sputtering conditions, it may be adjusted by introducing a small amount of acidic gas at the time of sputtering in a slightly oxygen-deficient state at the time of sintering.
[0021] 各金属酸化物の混合粉体に、金属又は合金の粉体を混合し焼結する場合、粉末 の粒径は 500 μ m以下、好ましくは 100 μ m以下、より好ましくは 10 μ m以下、特に 好ましくは 5 m以下である。 500 /z mより大きいと、他の原料粉末と均一に混合され ないため、金属又は合金がターゲット中に分散した形態とならな力つたり、ターゲット の抵抗が高くなるおそれがある。  [0021] When a metal or alloy powder is mixed with each metal oxide powder and sintered, the particle size of the powder is 500 μm or less, preferably 100 μm or less, more preferably 10 μm. Hereinafter, it is particularly preferably 5 m or less. If it is larger than 500 / zm, it will not be uniformly mixed with other raw material powders, so there is a risk that the metal or alloy will be dispersed in the target and the target resistance will increase.
尚、粒径は光散乱相当径 (JIS R 1629)で測定した値である。  The particle diameter is a value measured with a light scattering equivalent diameter (JIS R 1629).
[0022] 本発明においては、上記の各金属酸化物の粉体及び金属粉体の他に、本発明の 目的を損なわない範囲で、焼結助剤 (イットリア、マグネシア等)、分散剤 (ポリアクリル 酸アンモニア等)、バインダー、潤滑剤 (ステアリン酸ェマルジヨン等)等を添加しても よい。  [0022] In the present invention, in addition to the above metal oxide powders and metal powders, sintering aids (yttria, magnesia, etc.), dispersants (polyesters) are included within the range not impairing the object of the present invention. Ammonia acrylate, etc.), a binder, a lubricant (eg, emulsion of stearic acid), etc. may be added.
[0023] 本発明のスパッタリングターゲットは、酸化インジウム'酸ィ匕亜鉛力もなる六方晶相 層状化合物(In O (ZnO) m:mは 3から 20までの整数)を含むことが好ましい。これ  The sputtering target of the present invention preferably contains a hexagonal phase layered compound (In 2 O 3 (ZnO) m: m is an integer from 3 to 20) that also has indium oxide / acid / zinc strength. this
2 3  twenty three
らの構造を含むことで焼結密度が上がり、ターゲットの抵抗が下がりやすくなる。 このような構造は、上記の製造方法にて得ることができる。尚、構造の解析は、 X線 回折 (XRD)で行なう。  By including these structures, the sintered density is increased and the resistance of the target is easily decreased. Such a structure can be obtained by the manufacturing method described above. The structure is analyzed by X-ray diffraction (XRD).
[0024] 本発明のスパッタリングターゲットは、そのバルタ抵抗が 0. 2〜100m Q cm未満で あることが好ましい。この値を満たすことにより、スパッタ時の放電が安定し、スパッタ 速度も速くなる。より好ましくは 0. 4〜20m Q cm以下、特に好ましくは 0. 6〜: ίΟπι Ω cm以下である。 また、スパッタリングターゲットの密度は、 5. 3〜7. 2gZcm3であることが好ましぐ さらに 6. 1〜7. OgZcm3であることが好ましぐ特に、 6. 4〜6. 8gZcm3であること が好ましい。この値を満たすことにより、スパッタ時の放電が安定し成膜速度を向上で きる。 The sputtering target of the present invention preferably has a Balta resistance of 0.2 to less than 100 m Q cm. Satisfying this value stabilizes the discharge during sputtering and increases the sputtering rate. More preferably, 0.4 to 20 m Q cm or less, particularly preferably 0.6 to: ίΟπι Ω cm or less. The density of the sputtering target, 5. 3~7. 2gZcm 3 a it is preferred instrument further 6.1 to 7. It especially preferred instrument OgZcm is 3, at 6. 4~6. 8gZcm 3 It is preferable that there is. By satisfying this value, the discharge during sputtering can be stabilized and the film formation rate can be improved.
[0025] 本発明の透明導電膜は、上述した本発明のスパッタリングターゲットを常法によりス ノッタ成膜することにより得られる。また、この透明導電膜を、シユウ酸あるいはリン酸 を含む混酸等のエッチング液でエッチングすることにより透明電極が得られる。  [0025] The transparent conductive film of the present invention can be obtained by depositing the above-described sputtering target of the present invention by a conventional method. Further, a transparent electrode can be obtained by etching this transparent conductive film with an etching solution such as mixed acid containing oxalic acid or phosphoric acid.
[実施例]  [Example]
[0026] 以下、本発明を実施例によってさらに具体的に説明する。尚、粒径は、レーザー回 折散乱法で測定した値である。  [0026] Hereinafter, the present invention will be described more specifically with reference to Examples. The particle diameter is a value measured by a laser diffraction scattering method.
実施例 1  Example 1
酸化亜鉛粉末 (粒径 1 m以下)、酸化スズ粉末 (粒径 0. 4 m以下)及び金属亜 鉛粉末 (粒径 5 μ m以下)を表 1に記載の配合比でポリエチレン製のポットに入れ、乾 式ボールミルにより 72時間混合し、混合粉末を製造した。  Zinc oxide powder (particle size of 1 m or less), tin oxide powder (particle size of 0.4 m or less) and metallic zinc powder (particle size of 5 μm or less) in a polyethylene pot at the mixing ratio shown in Table 1. The mixed powder was produced by mixing for 72 hours using a dry ball mill.
この混合粉末を金型に入れ、 300kgZcm2の圧力でプレスして成形体とした。この 成形体を 3tonZcm2の圧力で CIP (冷間等方圧プレス)成型による緻密化処理を行 つた。次に、この成形体を純酸素雰囲気焼結炉内に設置して、以下の条件で焼結し た。 This mixed powder was put into a mold and pressed at a pressure of 300 kgZcm 2 to obtain a molded body. The pressure CIP (cold isostatic pressing) of the molded body 3TonZcm 2 rows densification process by molding ivy. Next, this compact was placed in a pure oxygen atmosphere sintering furnace and sintered under the following conditions.
[0027] (焼結条件)  [0027] (Sintering conditions)
焼結温度: 1450°C、昇温速度: 25°CZHr、焼結時間: 6時間、焼結炉への導入ガ ス:酸素、導入ガス圧: 30mmH 0 (ゲージ圧)、導入ガス線速: 2. 6cmZ分、仕込  Sintering temperature: 1450 ° C, heating rate: 25 ° C ZHr, sintering time: 6 hours, gas introduced into the sintering furnace: oxygen, introduced gas pressure: 30mmH 0 (gauge pressure), introduced gas linear velocity: 2. Preparation for 6cmZ
2  2
み重量 Zガス流量: 0. 4kg-min/L,ガス導入開始温度(昇温時):400°C、ガス導 入停止温度(降温時):400°C。  Weight Z gas flow rate: 0.4 kg-min / L, gas introduction start temperature (when the temperature is raised): 400 ° C, gas introduction stop temperature (when the temperature is lowered): 400 ° C.
[0028] 得られた焼結体の密度をアルキメデス法により測定したところ、 5. 5gZcm3であつ た。 [0028] The density of the obtained sintered body was measured by the Archimedes method and found to be 5.5 gZcm 3 .
この焼結体の組成分析を X線マイクロアナライザー(EPMA)を用いて行った。その 結果、金属原子数の総数に対する酸素原子数比(OZ (Zn+Sn+In) )は、 1. 18で あった。また、四端子法で測定したターゲットのバルタ抵抗は 80m Ω cmであった。 さらに、 X線回折 (XRD)でターゲットを解析したところ、 Zn金属由来のピークが確 認できた。 The composition of the sintered body was analyzed using an X-ray microanalyzer (EPMA). As a result, the ratio of the number of oxygen atoms to the total number of metal atoms (OZ (Zn + Sn + In)) was 1.18. The Balta resistance of the target measured by the four probe method was 80 mΩcm. Furthermore, when the target was analyzed by X-ray diffraction (XRD), a peak derived from Zn metal could be confirmed.
また、 EPMAの面分析により、 5000 μ m角の領域内に 5〜50 μ mの金属原子が 凝集し、かつ低酸素である部分が、 100個以上分散して存在していることが確認でき た。  In addition, EPMA surface analysis confirms that there are more than 100 dispersed portions of 5-50 μm metal atoms and low oxygen in a 5000 μm square region. It was.
[0029] 尚、 EPMA及び XRDの測定は以下の条件とした。  [0029] EPMA and XRD were measured under the following conditions.
•EPMA  • EPMA
使用装置:島津製作所製、電子線マイクロアナライザー EPMA— 2300 カロ速電圧: 15kV、試料電流: 0. 05 m、: Beam Size: 1 m、 Area Size : 68. Equipment used: Shimadzu Corporation, Electron Beam Microanalyzer EPMA-2300 Caro Fast Voltage: 15kV, Sample Current: 0.05m, Beam Size: 1m, Area Size: 68.
4 X 68. 4 πι、 Step Size : 0. 2 /z m X O. 2 πι、測定元素: Zn, Sn, 0、 SBSE ( 反射電子像) 4 X 68. 4 πι, Step Size: 0.2 / z m X O. 2 πι, Measurement elements: Zn, Sn, 0, SBSE (Backscattered electron image)
•XRD  XRD
使用装置:(株)リガク製、 Ultima— III  Equipment used: Ultima-III, manufactured by Rigaku Corporation
X線: Cu— Κ α線(波長 1. 5406Α、グラフアイトモノメータにて単色化)、 2 0 - Θ 反射法にて測定、連続スキャン(1. 0° Ζ分)、サンプリング間隔: 0. 02° 、スリット: DS, SS、 2/3° 、RS : 0. 6mm  X-ray: Cu-Κ α-ray (wavelength 1.5406Α, monochromatic with graph eye monometer), measured by 2 0-Θ reflection method, continuous scan (1.0 ° Ζ), sampling interval: 0. 02 °, Slit: DS, SS, 2/3 °, RS: 0.6mm
[0030] この焼結体を湿式加工法により、厚さ 6mmの焼結体に加工し、インジウム半田を用 いて無酸素銅製のバッキングプレートに接合してターゲットとした。 [0030] This sintered body was processed into a sintered body having a thickness of 6 mm by a wet processing method, and joined to an oxygen-free copper backing plate using indium solder to obtain a target.
このターゲットを使用して、厚さ 0. 7mmのガラス基板(Corning社製、 # 7059)上 に透明導電膜をスパッタリングにより形成した。スパッタリング条件は、以下の通りとし た。  Using this target, a transparent conductive film was formed by sputtering on a 0.7 mm thick glass substrate (Corning, # 7059). The sputtering conditions were as follows.
(スパッタリング条件)  (Sputtering conditions)
RF電力: 110W、ガス圧: 0. 3Pa、スパッタリングガス: Ar、 100%、膜厚: 100nm、 基板温度: 200°C。  RF power: 110 W, gas pressure: 0.3 Pa, sputtering gas: Ar, 100%, film thickness: 100 nm, substrate temperature: 200 ° C.
[0031] 得られた導電膜の四端子法で測定した比抵抗率は 50m Ω · cmであった。また、波 長 550nmにおける光線透過率は 90%であった。尚、透過率は、空気をリファレンス としてガラス基板込みの透過率として測定した。  [0031] The specific resistance of the obtained conductive film measured by the four probe method was 50 mΩ · cm. The light transmittance at a wavelength of 550 nm was 90%. The transmittance was measured as the transmittance including the glass substrate using air as a reference.
スパッタリングターゲットの原料組成、組成分析、スパッタリングの条件、透明導電膜 Raw material composition of sputtering target, composition analysis, sputtering conditions, transparent conductive film
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0001
Figure imgf000011_0002
構造は X線回折 (XRD) により測定した。  The structure was measured by X-ray diffraction (XRD).
膜組成は、 膜に含まれる全金属原子に占める各金属原子の値である。  The film composition is the value of each metal atom in the total metal atoms contained in the film.
0032 [0033] 実施例 2, 3 :比較例 1〜3 0032 [0033] Examples 2 and 3: Comparative Examples 1 to 3
原料の組成比を表 1に示すように変更した他は、実施例 1と同様にターゲットを作製 、スノッタ成膜した。  A target was prepared and a snotter film was formed in the same manner as in Example 1 except that the composition ratio of the raw materials was changed as shown in Table 1.
結果を表 1に示す。  The results are shown in Table 1.
[0034] 評価例 [0034] Evaluation example
スパッタリングターゲットの原料組成にぉ 、て、 Zn金属粉末の量を 0〜4wt%で変 化させ、その分 ZnO粉末の量を調整した他は、実施例 3と同様にしてターゲットを作 製し、スノッタ成膜した。  According to the raw material composition of the sputtering target, the amount of Zn metal powder was changed to 0 to 4 wt%, and the amount of ZnO powder was adjusted by that amount. A snow film was formed.
得られた透明導電膜にっ 、て、 Zn金属粉末の量とターゲットのノ レク抵抗値の関 係、及び Zn金属粉末の量と透明導電膜の比抵抗値を評価した。それぞれの結果を 図 1及び図 2に示す。  The obtained transparent conductive film was evaluated for the relationship between the amount of Zn metal powder and the target resistance value, and the amount of Zn metal powder and the specific resistance value of the transparent conductive film. The results are shown in Figs.
産業上の利用可能性  Industrial applicability
[0035] 本発明のスパッタリングターゲットを使用して成膜した透明導電膜は、液晶表示装 置、 EL表示装置等、種々の表示装置の透明電極として好適に使用できる。 The transparent conductive film formed using the sputtering target of the present invention can be suitably used as a transparent electrode for various display devices such as liquid crystal display devices and EL display devices.

Claims

請求の範囲 The scope of the claims
[1] 酸化亜鈴及び酸化スズ、又は、酸化亜鈴、酸化スズ及び酸化インジウムを含むスパ ッタリングターゲットであって、金属又は合金がスパッタリングターゲット全体に分散し て存在するスパッタリングターゲット。  [1] A sputtering target including dumbbell and tin oxide, or a dumbbell, tin oxide and indium oxide, wherein a metal or an alloy is dispersed throughout the sputtering target.
[2] 下記(1)及び(2)を満たす請求項 1記載のスパッタリングターゲット。  [2] The sputtering target according to claim 1, wherein the following (1) and (2) are satisfied.
0. 65≤M / {M +M )≤0. 9 (1)  0. 65≤M / (M + M) ≤0.9 (1)
Zn Zn Sn  Zn Zn Sn
0≤M / (M +M +M )≤0. 7 (2)  0≤M / (M + M + M) ≤0.7 (2)
In Zn Sn In  In Zn Sn In
[式中、 M 、 M 及び M は、それぞれスパッタリングターゲットにおける Zn、 Sn及  [Wherein M, M and M represent Zn, Sn and
Zn Sn In  Zn Sn In
び Inの原子数を示す。 ]  And the number of In atoms. ]
[3] さらに、下記(3)を満たす請求項 1又は 2記載のスパッタリングターゲット。 [3] The sputtering target according to claim 1 or 2, further satisfying the following (3).
M / (M +M X 2 + M X I . 5)≤0. 99 (3)  M / (M + M X 2 + M X I. 5) ≤0. 99 (3)
o Zn Sn In  o Zn Sn In
[式中、 M 、 M 、 M及び M は、それぞれスパッタリングターゲットにおける Zn、 S  [Where M, M, M and M are Zn, S in the sputtering target, respectively.
Zn Sn o In  Zn Sn o In
n、 O及び Inの原子数を示す。 ]  Indicates the number of atoms of n, O and In. ]
[4] 前記金属又は合金を 0. 1〜6質量%含む請求項 1〜3のいずれかに記載のスパッ タリングターゲット。 [4] The sputtering target according to any one of [1] to [3], comprising 0.1 to 6% by mass of the metal or alloy.
[5] 酸化インジウム'酸ィ匕亜鉛力もなる六方晶相層状ィ匕合物 (In O (ZnO) m: mは 3か  [5] Hexagonal phase layered compound with indium oxide / acid / zinc strength (In O (ZnO) m: m is 3?
2 3  twenty three
ら 20までの整数)を含む請求項 1〜4のいずれかに記載のスパッタリングターゲット。  The sputtering target according to any one of claims 1 to 4, further comprising an integer up to 20.
[6] バルタ抵抗が 100m Ω cm未満である請求項 1〜5のいずれかに記載のスパッタリン グターゲット。 6. The sputtering target according to any one of claims 1 to 5, wherein the Balta resistance is less than 100 mΩcm.
[7] 密度が 5. 3〜7. 2gZcm3である請求項 1〜6のいずれかに記載のスパッタリングタ ーケット。 [7] The sputtering ticket according to any one of [1] to [6], wherein the density is 5.3 to 7.2 gZcm 3 .
[8] 金属酸化物の粉末と金属の粉末を混合する工程を含む請求項 1〜7のいずれかに 記載のスパタリングターゲットの製造方法。  [8] The method for producing a sputtering target according to any one of [1] to [7], comprising a step of mixing a metal oxide powder and a metal powder.
[9] 請求項 1〜7のいずれかに記載のスパッタリングターゲットを使用して作製した透明 導電膜。 [9] A transparent conductive film produced using the sputtering target according to any one of claims 1 to 7.
[10] 請求項 9記載の透明導電膜をエッチングして作製した透明電極。  10. A transparent electrode produced by etching the transparent conductive film according to claim 9.
PCT/JP2006/314550 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film WO2007013387A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800269295A CN101233258B (en) 2005-07-27 2006-07-24 Sputtering target, method for producing same, and transparent conductive film
KR1020087002030A KR101302332B1 (en) 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-217432 2005-07-27
JP2005217432A JP4761868B2 (en) 2005-07-27 2005-07-27 Sputtering target, manufacturing method thereof and transparent conductive film

Publications (1)

Publication Number Publication Date
WO2007013387A1 true WO2007013387A1 (en) 2007-02-01

Family

ID=37683284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314550 WO2007013387A1 (en) 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film

Country Status (5)

Country Link
JP (1) JP4761868B2 (en)
KR (1) KR101302332B1 (en)
CN (1) CN101233258B (en)
TW (1) TWI394852B (en)
WO (1) WO2007013387A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078329A1 (en) * 2007-12-19 2009-06-25 Hitachi Metals, Ltd. Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode
JP2009263709A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Sputtering target for depositing zinc oxide thin film, and display device and solar cell having zinc oxide thin film obtained by using the target,

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552950B2 (en) 2006-03-15 2010-09-29 住友金属鉱山株式会社 Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
US9249032B2 (en) 2007-05-07 2016-02-02 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element
US8753548B2 (en) 2008-12-12 2014-06-17 Idemitsu Kosan Co., Ltd. Composite oxide sintered body and sputtering target comprising same
CN101775576A (en) * 2009-01-12 2010-07-14 上海广电电子股份有限公司 ZnO-based powder-metal composite sputtering target material and preparation method thereof
TW201112265A (en) * 2009-09-22 2011-04-01 chuan-sheng Lv Method of manufacturing transparent conductive thin films for flexible polymer substrate and transparent conductive thin films
JP4875135B2 (en) * 2009-11-18 2012-02-15 出光興産株式会社 In-Ga-Zn-O-based sputtering target
JP5545448B2 (en) * 2010-09-29 2014-07-09 三菱マテリアル株式会社 Sputtering target
JP5651095B2 (en) 2010-11-16 2015-01-07 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP5460619B2 (en) * 2011-01-13 2014-04-02 住友重機械工業株式会社 Target and film forming apparatus provided with the same
JP6212869B2 (en) * 2012-02-06 2017-10-18 三菱マテリアル株式会社 Oxide sputtering target
JP2012229490A (en) * 2012-07-12 2012-11-22 Fujifilm Corp Film-forming method
JP2014167163A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
JP2014167162A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
CN103304220B (en) * 2013-06-04 2014-10-22 信利半导体有限公司 Target material and preparation method thereof as well as display device
JP6282142B2 (en) * 2014-03-03 2018-02-21 日東電工株式会社 Infrared reflective substrate and manufacturing method thereof
JP6159867B1 (en) * 2016-12-22 2017-07-05 Jx金属株式会社 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
JP6859841B2 (en) * 2017-05-12 2021-04-14 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and its manufacturing method
KR102192713B1 (en) * 2018-09-08 2020-12-17 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076329A (en) * 1999-09-07 2001-03-23 Fuji Electric Co Ltd Magnetic recording medium and its production
JP2004030934A (en) * 2002-06-21 2004-01-29 Idemitsu Kosan Co Ltd Manufacturing method of sputtering target and conductive film using it, transparent conductive film formed by the method
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450258A (en) * 1987-08-21 1989-02-27 Sumitomo Metal Mining Co Production of thin film of high-refractive index dielectric material
JP2570832B2 (en) * 1988-10-21 1997-01-16 三菱マテリアル株式会社 Method for producing sintered body of good conductive indium oxide
DK0871793T3 (en) * 1995-08-31 2002-09-23 Bekaert Sa Nv Process for making articles of indium-tin-oxide (ITO) alloys
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JPH1136066A (en) * 1997-07-15 1999-02-09 Nippon Telegr & Teleph Corp <Ntt> Target for sputtering
KR100603128B1 (en) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 Sputtering target
JP2001262326A (en) * 2000-03-16 2001-09-26 Nikko Materials Co Ltd Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
CN102522509B (en) * 2002-08-02 2016-01-20 出光兴产株式会社 Sputtering target, sintered body, conductive film produced using the same, organic EL element, and substrate used for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076329A (en) * 1999-09-07 2001-03-23 Fuji Electric Co Ltd Magnetic recording medium and its production
JP2004030934A (en) * 2002-06-21 2004-01-29 Idemitsu Kosan Co Ltd Manufacturing method of sputtering target and conductive film using it, transparent conductive film formed by the method
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078329A1 (en) * 2007-12-19 2009-06-25 Hitachi Metals, Ltd. Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode
JP2009263709A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Sputtering target for depositing zinc oxide thin film, and display device and solar cell having zinc oxide thin film obtained by using the target,

Also Published As

Publication number Publication date
KR20080032121A (en) 2008-04-14
JP4761868B2 (en) 2011-08-31
TWI394852B (en) 2013-05-01
CN101233258B (en) 2010-08-18
TW200714724A (en) 2007-04-16
KR101302332B1 (en) 2013-08-30
CN101233258A (en) 2008-07-30
JP2007031786A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
WO2007013387A1 (en) Sputtering target, method for manufacturing such sputtering target, and transparent conducting film
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
JP5733208B2 (en) Ion plating tablet, manufacturing method thereof, and transparent conductive film
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
KR100957733B1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
WO2005103320A1 (en) Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film
JP5561358B2 (en) Transparent conductive film
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP4960052B2 (en) Ytterbium oxide containing oxide target
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP2008115453A (en) Zinc oxide based sputtering target
KR101945083B1 (en) Sintered body, sputtering target comprising sintered body and thin film formed by using spattering target
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP5000231B2 (en) Gadolinium oxide-containing oxide target
JP4960041B2 (en) Neodymium oxide-containing oxide target
JP5063968B2 (en) Erbium oxide-containing oxide target
JP4960053B2 (en) Oxide target containing dysprosium oxide
JP2003301265A (en) Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it
KR20080001034A (en) Mgo vapor deposition material and method for preparation thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026929.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087002030

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781472

Country of ref document: EP

Kind code of ref document: A1