JP2007031786A - Sputtering target, manufacturing method therefor and transparent electroconductive film - Google Patents

Sputtering target, manufacturing method therefor and transparent electroconductive film Download PDF

Info

Publication number
JP2007031786A
JP2007031786A JP2005217432A JP2005217432A JP2007031786A JP 2007031786 A JP2007031786 A JP 2007031786A JP 2005217432 A JP2005217432 A JP 2005217432A JP 2005217432 A JP2005217432 A JP 2005217432A JP 2007031786 A JP2007031786 A JP 2007031786A
Authority
JP
Japan
Prior art keywords
sputtering target
metal
oxide
target
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005217432A
Other languages
Japanese (ja)
Other versions
JP4761868B2 (en
Inventor
Kiminori Yano
公規 矢野
Kazuyoshi Inoue
一吉 井上
Nobuo Tanaka
信夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005217432A priority Critical patent/JP4761868B2/en
Priority to PCT/JP2006/314550 priority patent/WO2007013387A1/en
Priority to CN2006800269295A priority patent/CN101233258B/en
Priority to KR1020087002030A priority patent/KR101302332B1/en
Priority to TW095127511A priority patent/TWI394852B/en
Publication of JP2007031786A publication Critical patent/JP2007031786A/en
Application granted granted Critical
Publication of JP4761868B2 publication Critical patent/JP4761868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering target which provides a transparent electroconductive film with low electric resistance even though containing a reduced amount of indium, and to provide a method for manufacturing the sputtering target. <P>SOLUTION: The sputtering target includes zinc oxide and stannic oxide, or includes zinc oxide, stannic oxide and indium oxide; and makes a metal or an alloy dispersed in the whole sputtering target. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スパッタリングターゲット、その製造方法及び透明導電膜に関する。さらに詳しくは、希少資源であるインジウムを削減又は使用しないスパッタリングターゲット等に関する。   The present invention relates to a sputtering target, a manufacturing method thereof, and a transparent conductive film. More specifically, the present invention relates to a sputtering target that does not reduce or use indium which is a rare resource.

液晶ディスプレイ(LCD)や有機エレクトロルミネッセンス(EL)ディスプレイは、表示性能、省エネルギー等の点から、携帯電話や携帯情報端末(PDA)、パソコンやラップトップパソコン、テレビ等の表示機として主流を占めるに至っている。これらの装置に使用される透明導電膜としては、インジウム・スズ酸化物(以下、ITO)膜が主流を占めている。しかし、ITO膜はインジウムを大量(通常90質量%程度)に用いている。インジウムは希少資源で供給不安があり、また、多少の毒性もあるため、透明電極を用いた表示デバイスのさらなる普及には、インジウムの使用量が少ない透明導電膜の開発が重要である。   Liquid crystal displays (LCD) and organic electroluminescence (EL) displays occupy the mainstream as display devices for mobile phones, personal digital assistants (PDAs), personal computers, laptop computers, televisions, etc., from the viewpoint of display performance and energy saving. Has reached. As a transparent conductive film used in these devices, an indium tin oxide (hereinafter referred to as ITO) film dominates. However, the ITO film uses a large amount of indium (usually about 90% by mass). Since indium is a scarce resource and is uneasy to supply, and has some toxicity, development of a transparent conductive film with a small amount of indium is important for further spread of display devices using transparent electrodes.

インジウムを削減又は使用していない透明導電膜として、酸化亜鉛−酸化スズを主成分とする透明導電膜が検討されている(例えば、特許文献1参照。)。
この透明導電膜では抵抗が高い、抵抗の面内分布が大きい等の問題点があるものの、これら問題を解決するための検討はなされていなかった。
As a transparent conductive film in which indium is not reduced or used, a transparent conductive film mainly composed of zinc oxide-tin oxide has been studied (for example, see Patent Document 1).
Although this transparent conductive film has problems such as high resistance and large in-plane distribution of resistance, no study has been made to solve these problems.

ITOのスパッタリングターゲットとしては、酸素量を一定以上とすることで低抵抗化できることが公開されている(例えば、特許文献2参照。)。
しかし、インジウムを削減したスパッタリングターゲットの酸素量については検討されていなかった。
As a sputtering target of ITO, it has been disclosed that the resistance can be reduced by setting the oxygen amount to a certain level or more (see, for example, Patent Document 2).
However, the oxygen content of the sputtering target with reduced indium has not been studied.

また、金属酸化物の部位と金属の部位からなるスパッタリングターゲットが公開されている(例えば、特許文献3参照。)。
しかし、インジウムを削減したターゲットへの影響は検討されていなかった。また、金属酸化物の部位と金属の部位からなるスパッタリングターゲットは、金属酸化物ターゲットと金属ターゲットや金属ワイヤーを複合化させたものであり、インジウムを削減したターゲットに適用するにはターゲット自体の抵抗が高く、スパッタ時の放電が安定しない、スパッタ速度が遅い等の問題があった。
特開平8−171824号公報 特開2000−256842号公報 特開2004−030934号公報
Further, a sputtering target composed of a metal oxide portion and a metal portion is disclosed (for example, see Patent Document 3).
However, the influence on the target with reduced indium has not been studied. In addition, a sputtering target consisting of a metal oxide part and a metal part is a composite of a metal oxide target and a metal target or a metal wire. However, the discharge during sputtering is not stable and the sputtering speed is slow.
JP-A-8-171824 JP 2000-256842 A JP 2004030934 A

本発明は上述の問題に鑑みなされたものであり、インジウムを削減しても低抵抗な透明導電膜が得られるスパッタリングターゲット及びスパッタリングターゲットの製造方法を提供することを目的とする。   This invention is made | formed in view of the above-mentioned problem, and it aims at providing the manufacturing method of a sputtering target and a sputtering target with which a low-resistance transparent conductive film is obtained even if indium is reduced.

本発明者らは、上記課題を克服するために鋭意検討を重ねた結果、スパッタリングターゲットを構成する金属原子及び酸素原子において、酸素原子の数を金属原子が酸化物を構成するときの化学量論量よりも少なくすることにより、インジウムを削減しても低抵抗な透明導電膜が得られることを見出した。また、スパッタリングターゲット中に酸化されていない金属又は合金を分散させることにより、安定して酸素量の少ないターゲットを製造できること、及びターゲットの抵抗を低下できることを見出し、本発明を完成させた。   As a result of intensive studies to overcome the above problems, the present inventors have determined that the stoichiometry of the metal atoms and the oxygen atoms constituting the sputtering target is the number of oxygen atoms when the metal atoms constitute the oxide. It has been found that a transparent conductive film having a low resistance can be obtained even if indium is reduced by making the amount less than the amount. Further, the present inventors have completed the present invention by discovering that a non-oxidized metal or alloy can be dispersed in a sputtering target to stably produce a target having a small amount of oxygen and to reduce the resistance of the target.

本発明によれば、以下のスパッタリングターゲット、その製造方法、透明導電膜及び透明電極が提供される。
1.酸化亜鉛及び酸化スズ、又は、酸化亜鉛、酸化スズ及び酸化インジウムを含むスパッタリングターゲットであって、金属又は合金がスパッタリングターゲット全体に分散して存在するスパッタリングターゲット。
2.下記(1)及び(2)を満たす1記載のスパッタリングターゲット。
0.65≦MZn/(MZn+MSn)≦0.9 (1)
0≦MIn/(MZn+MSn+MIn)≦0.7 (2)
[式中、MZn、MSn及びMInは、それぞれスパッタリングターゲットにおけるZn、Sn及びInの原子数を示す。]
3.さらに、下記(3)を満たす1又は2記載のスパッタリングターゲット。
/(MZn+MSn×2+MIn×1.5)≦0.99 (3)
[式中、MZn、MSn、M及びMInは、それぞれスパッタリングターゲットにおけるZn、Sn、O及びInの原子数を示す。]
4.前記金属又は合金を0.1〜6質量%含む1〜3のいずれかに記載のスパッタリングターゲット。
5.酸化インジウム・酸化亜鉛からなる六方晶相層状化合物(In(ZnO)m:mは3から20までの整数)を含む1〜4のいずれかに記載のスパッタリングターゲット。
6.バルク抵抗が100mΩcm未満である1〜5のいずれかに記載のスパッタリングターゲット。
7.密度が5.3〜7.2g/cmである1〜6のいずれかに記載のスパッタリングターゲット。
8.金属酸化物の粉末と金属の粉末を混合する工程を含む1〜7のいずれかに記載のスパタリングターゲットの製造方法。
9.上記1〜7のいずれかに記載のスパッタリングターゲットを使用して作製した透明導電膜。
10.上記9記載の透明導電膜をエッチングして作製した透明電極。
According to this invention, the following sputtering targets, its manufacturing method, a transparent conductive film, and a transparent electrode are provided.
1. A sputtering target containing zinc oxide and tin oxide, or zinc oxide, tin oxide and indium oxide, wherein a metal or an alloy is dispersed throughout the sputtering target.
2. The sputtering target according to 1, which satisfies the following (1) and (2).
0.65 ≦ M Zn / (M Zn + M Sn) ≦ 0.9 (1)
0 ≦ M In / (M Zn + M Sn + M In ) ≦ 0.7 (2)
[ Wherein , M Zn , M Sn and M In represent the number of atoms of Zn, Sn and In in the sputtering target, respectively. ]
3. Furthermore, the sputtering target according to 1 or 2, which satisfies the following (3).
M o / (M Zn + M Sn × 2 + M In × 1.5) ≦ 0.99 (3)
[ Wherein , M Zn , M Sn , Mo and M In represent the number of atoms of Zn, Sn, O and In in the sputtering target, respectively. ]
4). The sputtering target in any one of 1-3 which contains 0.1-6 mass% of said metals or alloys.
5. Hexagonal phase layered compound made of indium oxide-zinc oxide (In 2 O 3 (ZnO) m: m is an integer from 3 to 20) The sputtering target according to any one of 1 to 4, including a.
6). The sputtering target according to any one of 1 to 5, wherein the bulk resistance is less than 100 mΩcm.
7). The sputtering target according to any one of 1 to 6, having a density of 5.3 to 7.2 g / cm 3 .
8). The method for producing a sputtering target according to any one of 1 to 7, comprising a step of mixing a metal oxide powder and a metal powder.
9. The transparent conductive film produced using the sputtering target in any one of said 1-7.
10. 10. A transparent electrode prepared by etching the transparent conductive film according to 9 above.

本発明のスパッタリングターゲットによって、インジウムを削減しても低抵抗な透明導電膜が得られる。   With the sputtering target of the present invention, a transparent conductive film having a low resistance can be obtained even if indium is reduced.

以下、本発明のスパッタリングターゲットを具体的に説明する。
本発明のスパッタリングターゲットは、酸化亜鉛及び酸化スズを少なくとも含む酸化物中に、金属又は合金が全体に分散している形態を有している。これにより、インジウムを削減しても低抵抗な透明導電膜が得られるターゲットとなる。また、スパッタリングターゲット中に酸化されていない金属又は合金を分散させることにより、ターゲットの抵抗を低下できる。
Hereinafter, the sputtering target of the present invention will be specifically described.
The sputtering target of the present invention has a form in which a metal or an alloy is dispersed throughout an oxide containing at least zinc oxide and tin oxide. Thereby, even if indium is reduced, a low-resistance transparent conductive film can be obtained. Moreover, the resistance of a target can be reduced by disperse | distributing the metal or alloy which is not oxidized in a sputtering target.

金属又は合金としては、本発明の性能を損なわない範囲で特に制限なく使用できる。ターゲットの焼結温度より低いものが好ましく、通常、融点が1300℃以下、好ましくは1000℃以下、より好ましくは800℃以下、さらに好ましくは600℃以下の金属又は合金を使用する。融点が1300℃以下であれば、焼結時に溶融しターゲットの密度が高まるため、ターゲットの抵抗が下がりやすい。
また、金属酸化物が導電性を示すものも好ましい。そのようなものとして、Zn、Sn、In、Ga、Ge、Cd、Nd、Sm、Ce、Eu、Ag、Au、Al、及びそれらを主成分とする合金が好ましく使用できる。特に、Zn、Sn又はInが好ましい。尚、これら金属又は合金は、複数を混合して使用してもよい。
As a metal or an alloy, it can use without a restriction | limiting especially in the range which does not impair the performance of this invention. A metal or alloy having a melting point of 1300 ° C. or lower, preferably 1000 ° C. or lower, more preferably 800 ° C. or lower, and even more preferably 600 ° C. or lower is usually used. If the melting point is 1300 ° C. or lower, the target melts at the time of sintering and the density of the target increases, so that the resistance of the target tends to decrease.
Moreover, what a metal oxide shows electroconductivity is also preferable. As such, Zn, Sn, In, Ga, Ge, Cd, Nd, Sm, Ce, Eu, Ag, Au, Al, and alloys containing them as main components can be preferably used. In particular, Zn, Sn, or In is preferable. In addition, you may use these metals or alloys in mixture.

金属又は合金は、ターゲット中に500μm以下の凝集体となって全体に分散していることが好ましい。さらに好ましくは100μm以下、より好ましくは10μm以下、特に好ましくは、5μm以下である。
金属又は合金が存在していることは、X線回折のピークで判断できる。また、分散状態は、X線マイクロアナライザー(EPMA)の面分析で金属原子の凝集部又は低酸素部分があることで確認できる。また、「全体に分散している」とは、任意の5000μm角の領域内に500μm以下の金属又は合金が1個以上確認できる状態を意味する。
尚、金属又は合金が分散している形態は、後述する製造方法により実現できる。
The metal or alloy is preferably dispersed in the target as aggregates of 500 μm or less. More preferably, it is 100 micrometers or less, More preferably, it is 10 micrometers or less, Most preferably, it is 5 micrometers or less.
The presence of the metal or alloy can be judged from the peak of X-ray diffraction. In addition, the dispersion state can be confirmed by the presence of an agglomerated part or a low oxygen part of metal atoms by surface analysis with an X-ray microanalyzer (EPMA). Further, “dispersed throughout” means a state in which one or more metals or alloys of 500 μm or less can be confirmed in an arbitrary 5000 μm square region.
In addition, the form in which the metal or alloy is dispersed can be realized by a manufacturing method described later.

スパッタリングターゲットに占める金属又は合金の含有量は、好ましくは0.1〜6質量%、より好ましくは0.2〜4質量%、特に好ましくは0.3〜3質量%である。0.1質量%より少ないと、本発明の効果が発現しないか、又はホワイトスポットができるおそれがあり、6質量%より多いと、酸素不足となり逆に抵抗が増大したり透明性が低下するおそれがある。
スパッタリングターゲット中に酸化していない金属又は合金が含まれているかは、X線回折(XRD)で確認できる。
The metal or alloy content in the sputtering target is preferably 0.1 to 6% by mass, more preferably 0.2 to 4% by mass, and particularly preferably 0.3 to 3% by mass. If the amount is less than 0.1% by mass, the effect of the present invention may not be exhibited, or white spots may be formed. If the amount is more than 6% by mass, oxygen may be insufficient, and resistance may increase or transparency may decrease. There is.
Whether the sputtering target contains an unoxidized metal or alloy can be confirmed by X-ray diffraction (XRD).

本発明のスパッタリングターゲットは、下記(1)及び(2)を満たすことが好ましい。
0.65≦MZn/(MZn+MSn)≦0.9 (1)
0≦MIn/(MZn+MSn+MIn)≦0.7 (2)
[式中、MZn、MSn及びMInは、それぞれスパッタリングターゲットにおけるZn、Sn及びInの原子数を示す。]
上記式(1)の値[MZn/(MZn+MSn)]は、スパッタリングターゲットにおけるZnとSnの存在比率を規定している。この値が0.65より小さい場合、ターゲットに占めるSn量が多くなりSnOが凝集し、成膜時にチャージして異常放電の原因となるおそれがある。一方、0.9より大きい場合、耐酸性が低下するおそれがある。MZn/(MZn+MSn)は、好ましくは0.7〜0.85、より好ましくは0.7〜0.8である。
The sputtering target of the present invention preferably satisfies the following (1) and (2).
0.65 ≦ M Zn / (M Zn + M Sn ) ≦ 0.9 (1)
0 ≦ M In / (M Zn + M Sn + M In ) ≦ 0.7 (2)
[ Wherein , M Zn , M Sn and M In represent the number of atoms of Zn, Sn and In in the sputtering target, respectively. ]
The value [ MZn / ( MZn + MSn )] of the above formula (1) defines the abundance ratio of Zn and Sn in the sputtering target. When this value is smaller than 0.65, the amount of Sn occupying the target increases and SnO 2 aggregates and may be charged during film formation to cause abnormal discharge. On the other hand, when it is larger than 0.9, the acid resistance may be lowered. M Zn / (M Zn + M Sn ) is preferably 0.7 to 0.85, more preferably 0.7 to 0.8.

式(2)はスパッタリングターゲットにおけるInの量を規定する。本発明の目的を考慮すると、Inの使用量は少ないことが好ましいが、Inを添加することにより、ターゲット及び成膜後の薄膜の抵抗を低下できる。MIn/(MZn+MSn+MIn)は、好ましくは0.05〜0.6、より好ましくは0.1〜0.45、さらに好ましくは0.15〜0.35、特に好ましくは0.25〜0.35である。 Equation (2) defines the amount of In in the sputtering target. In consideration of the object of the present invention, it is preferable that the amount of In used is small, but by adding In, the resistance of the target and the thin film after film formation can be reduced. M In / (M Zn + M Sn + M In ) is preferably 0.05 to 0.6, more preferably 0.1 to 0.45, still more preferably 0.15 to 0.35, and particularly preferably 0.00. 25-0.35.

本発明のスパッタリングターゲットは、さらに、下記(3)を満たすことが好ましい。
/(MZn+MSn×2+MIn×1.5)≦0.99 (3)
[式中、MZn、MSn、M及びMInは、それぞれスパッタリングターゲットにおけるZn、Sn、O及びInの原子数を示す。]
式(3)は、スパッタリングターゲットにおける酸素原子(O)の量を規定する。式(3)の分母は、各金属原子が酸化物(ZnO,SnO,In)を構成した際の酸素原子数を意味する。式(3)の値、即ち、スパッタリングターゲットに含まれる酸素原子の数と、金属原子の全てが酸化物を構成した場合の酸素原子の数との比が0.99以下であれば、Inを削減又は使用しなくとも、低抵抗な透明導電膜が得られるスパッタリングターゲットとなる。尚、式(3)の値は、好ましくは0.8〜0.98、より好ましくは0.9〜0.97である。0.8より小さいと成膜後の導電膜が着色するおそれがある。
The sputtering target of the present invention preferably further satisfies the following (3).
M o / (M Zn + M Sn × 2 + M In × 1.5) ≦ 0.99 (3)
[ Wherein , M Zn , M Sn , Mo and M In represent the number of atoms of Zn, Sn, O and In in the sputtering target, respectively. ]
Equation (3) defines the amount of oxygen atoms (O) in the sputtering target. The denominator of the formula (3) means the number of oxygen atoms when each metal atom forms an oxide (ZnO, SnO 2 , In 2 O 3 ). If the ratio of the value of formula (3), that is, the number of oxygen atoms contained in the sputtering target and the number of oxygen atoms when all of the metal atoms constitute an oxide is 0.99 or less, In Even if it does not reduce or use, it becomes a sputtering target from which a low-resistance transparent conductive film is obtained. In addition, the value of Formula (3) becomes like this. Preferably it is 0.8-0.98, More preferably, it is 0.9-0.97. If it is less than 0.8, the conductive film after film formation may be colored.

このようにターゲット中の酸素の含有量を制御することで、スパッタリング薄膜の低抵抗化が可能となるが、その正確な理由は解明されていない。しかしながら、従来の方法では、Sn及びInよりも比較的軽いZn原子が、逆スパッタや成膜されずに排気されてしまうことで膜中の酸素が過剰になっていたと推定される。   Thus, by controlling the oxygen content in the target, the resistance of the sputtering thin film can be reduced, but the exact reason has not been elucidated. However, in the conventional method, it is presumed that oxygen in the film is excessive because Zn atoms that are lighter than Sn and In are exhausted without reverse sputtering or film formation.

尚、上述した式(1)〜(3)の値は、スパッタリングターゲットをX線マイクロアナライザー(EPMA)を用いて組成分析して得られる、各原子の存在比の値から算出できる。   In addition, the value of Formula (1)-(3) mentioned above is computable from the value of the abundance ratio of each atom obtained by composition-analyzing a sputtering target using an X-ray microanalyzer (EPMA).

本発明のスパッタリングターゲットの製造方法としては、例えば、各金属酸化物の混合粉体に、さらに金属又は合金の粉体を混合し焼結する方法がある。金属粉体を用いることで、ターゲット中の酸素の含有量を容易に制御できる。また、ターゲット自体の抵抗が低下するので、スパッタリング速度が上がり安定したスパッタリングできる。さらに、金属粉体には膜中の酸素欠陥を安定化させ、キャリアを生成させて低抵抗化させる機能もあるものと思われる。
尚、スパッタリング装置の違いや、スパッタ条件による差を調整するため、焼結時にやや酸素不足状態として、スパッタ時に少量の酸化性ガスを導入し調整してもよい。
As a method for producing the sputtering target of the present invention, for example, there is a method in which a mixed powder of each metal oxide is further mixed with a metal or alloy powder and sintered. By using the metal powder, the oxygen content in the target can be easily controlled. Further, since the resistance of the target itself is reduced, the sputtering rate is increased and stable sputtering can be performed. Furthermore, it seems that the metal powder has a function of stabilizing oxygen defects in the film and reducing the resistance by generating carriers.
In order to adjust the difference depending on the sputtering apparatus and the sputtering conditions, a small amount of oxidizing gas may be introduced and adjusted at the time of sputtering in a slightly oxygen-deficient state at the time of sintering.

各金属酸化物の混合粉体に、金属又は合金の粉体を混合し焼結する場合、粉末の粒径は500μm以下、好ましくは100μm以下、より好ましくは10μm以下、特に好ましくは5μm以下である。500μmより大きいと、他の原料粉末と均一に混合されないため、金属又は合金がターゲット中に分散した形態とならなかったり、ターゲットの抵抗が高くなるおそれがある。
尚、粒径は光散乱相当径(JIS R 1629)で測定した値である。
When a metal or alloy powder is mixed with each metal oxide powder and sintered, the particle size of the powder is 500 μm or less, preferably 100 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less. . If it is larger than 500 μm, it is not uniformly mixed with other raw material powders, so that the metal or alloy may not be dispersed in the target or the resistance of the target may be increased.
The particle diameter is a value measured by a light scattering equivalent diameter (JIS R 1629).

本発明においては、上記の各金属酸化物の粉体及び金属粉体の他に、本発明の目的を損なわない範囲で、焼結助剤(イットリア、マグネシア等)、分散剤(ポリアクリル酸アンモニア等)、バインダー、潤滑剤(ステアリン酸エマルジョン等)等を添加してもよい。   In the present invention, in addition to the above metal oxide powders and metal powders, sintering aids (yttria, magnesia, etc.), dispersants (polyammonium acrylate) are within the range not impairing the object of the present invention. Etc.), a binder, a lubricant (such as a stearic acid emulsion) and the like may be added.

本発明のスパッタリングターゲットは、酸化インジウム・酸化亜鉛からなる六方晶相層状化合物(In(ZnO)m:mは3から20までの整数)を含むことが好ましい。これらの構造を含むことで焼結密度が上がり、ターゲットの抵抗が下がりやすくなる。
このような構造は、上記の製造方法にて得ることができる。尚、構造の解析は、X線回折(XRD)で行なう。
The sputtering target of the present invention preferably contains a hexagonal phase layered compound (In 2 O 3 (ZnO) m: m is an integer from 3 to 20) composed of indium oxide and zinc oxide. By including these structures, the sintering density increases and the resistance of the target is likely to decrease.
Such a structure can be obtained by the manufacturing method described above. The structure is analyzed by X-ray diffraction (XRD).

本発明のスパッタリングターゲットは、そのバルク抵抗が0.2〜100mΩcm未満であることが好ましい。この値を満たすことにより、スパッタ時の放電が安定し、スパッタ速度も速くなる。より好ましくは0.4〜20mΩcm以下、特に好ましくは0.6〜10mΩcm以下である。
また、スパッタリングターゲットの密度は、5.3〜7.2g/cmであることが好ましく、さらに6.2〜7.0g/cmであることが好ましく、特に、6.4〜6.8g/cmであることが好ましい。この値を満たすことにより、スパッタ時の放電が安定し成膜速度を向上できる。
The sputtering target of the present invention preferably has a bulk resistance of 0.2 to less than 100 mΩcm. Satisfying this value stabilizes the discharge during sputtering and increases the sputtering rate. More preferably, it is 0.4-20 mΩcm or less, Most preferably, it is 0.6-10 mΩcm or less.
The density of the sputtering target is preferably 5.3~7.2g / cm 3, is preferably further 6.2~7.0g / cm 3, in particular, 6.4~6.8G it is preferably / cm 3. By satisfying this value, the discharge during sputtering can be stabilized and the film formation rate can be improved.

本発明の透明導電膜は、上述した本発明のスパッタリングターゲットを常法によりスパッタ成膜することにより得られる。また、この透明導電膜を、シュウ酸あるいはリン酸を含む混酸等のエッチング液でエッチングすることにより透明電極が得られる。   The transparent conductive film of the present invention can be obtained by sputtering the above-described sputtering target of the present invention by a conventional method. Moreover, a transparent electrode can be obtained by etching this transparent conductive film with an etching solution such as a mixed acid containing oxalic acid or phosphoric acid.

以下、本発明を実施例によってさらに具体的に説明する。尚、粒径は、レーザー回折散乱法で測定した値である。
実施例1
酸化亜鉛粉末(粒径1μm以下)、酸化スズ粉末(粒径0.4μm以下)及び金属亜鉛粉末(粒径5μm以下)を表1に記載の配合比でポリエチレン製のポットに入れ、乾式ボールミルにより72時間混合し、混合粉末を製造した。
この混合粉末を金型に入れ、300kg/cmの圧力でプレスして成形体とした。この成形体を3ton/cmの圧力でCIP(冷間等方圧プレス)成型による緻密化処理を行った。次に、この成形体を純酸素雰囲気焼結炉内に設置して、以下の条件で焼結した。
Hereinafter, the present invention will be described more specifically with reference to examples. The particle diameter is a value measured by a laser diffraction scattering method.
Example 1
Zinc oxide powder (particle size of 1 μm or less), tin oxide powder (particle size of 0.4 μm or less) and metal zinc powder (particle size of 5 μm or less) are put in a polyethylene pot at the blending ratio shown in Table 1 and dried using a dry ball mill. The mixed powder was manufactured by mixing for 72 hours.
This mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This compact was subjected to densification treatment by CIP (cold isostatic pressing) molding at a pressure of 3 ton / cm 2 . Next, this compact was placed in a pure oxygen atmosphere sintering furnace and sintered under the following conditions.

(焼結条件)
焼結温度:1450℃、昇温速度:25℃/Hr、焼結時間:6時間、焼結炉への導入ガス:酸素、導入ガス圧:30mmHO(ゲージ圧)、導入ガス線速:2.6cm/分、仕込み重量/ガス流量:0.4kg・min/L、ガス導入開始温度(昇温時):400℃、ガス導入停止温度(降温時):400℃。
(Sintering conditions)
Sintering temperature: 1450 ° C., heating rate: 25 ° C./Hr, sintering time: 6 hours, introduction gas to the sintering furnace: oxygen, introduction gas pressure: 30 mmH 2 O (gauge pressure), introduction gas linear velocity: 2.6 cm / min, preparation weight / gas flow rate: 0.4 kg · min / L, gas introduction start temperature (at the time of temperature rise): 400 ° C., gas introduction stop temperature (at the time of temperature fall): 400 ° C.

得られた焼結体の密度をアルキメデス法により測定したところ、5.5g/cmであった。
この焼結体の組成分析をX線マイクロアナライザー(EPMA)を用いて行った。その結果、金属原子数の総数に対する酸素原子数比(O/(Zn+Sn+In))は、1.18であった。また、四端子法で測定したターゲットのバルク抵抗は80mΩcmであった。
さらに、X線回折(XRD)でターゲットを解析したところ、Zn金属由来のピークが確認できた。
また、EPMAの面分析により、5000μm角の領域内に5〜50μmの金属原子が凝集し、かつ低酸素である部分が、100個以上分散して存在していることが確認できた。
The density of the sintered body was measured by Archimedes method was 5.5 g / cm 3.
The composition of the sintered body was analyzed using an X-ray microanalyzer (EPMA). As a result, the oxygen atom number ratio (O / (Zn + Sn + In)) to the total number of metal atoms was 1.18. Moreover, the bulk resistance of the target measured by the four probe method was 80 mΩcm.
Furthermore, when the target was analyzed by X-ray diffraction (XRD), a peak derived from Zn metal could be confirmed.
Further, by surface analysis of EPMA, it was confirmed that metal atoms of 5 to 50 μm aggregated in a 5000 μm square region and 100 or more portions having low oxygen were dispersed.

尚、EPMA及びXRDの測定は以下の条件とした。
・EPMA
使用装置:島津製作所製、電子線マイクロアナライザーEPMA−2300
加速電圧:15kV、試料電流:0.05μm、Beam Size:1μm、Area Size:68.4×68.4μm、Step Size:0.2μm×0.2μm、測定元素:Zn,Sn,O、SBSE(反射電子像)
・XRD
使用装置:(株)リガク製、Ultima−III
X線:Cu−Kα線(波長1.5406Å、グラファイトモノメータにて単色化)、2θ−θ反射法にて測定、連続スキャン(1.0°/分)、サンプリング間隔:0.02°、スリット:DS,SS、2/3°、RS:0.6mm
EPMA and XRD were measured under the following conditions.
・ EPMA
Equipment used: Shimadzu Corporation, Electron Beam Microanalyzer EPMA-2300
Acceleration voltage: 15 kV, sample current: 0.05 μm, Beam Size: 1 μm, Area Size: 68.4 × 68.4 μm, Step Size: 0.2 μm × 0.2 μm, measurement elements: Zn, Sn, O, SBSE ( Backscattered electron image)
・ XRD
Equipment used: Rigaku Corporation, Ultimate-III
X-ray: Cu—Kα ray (wavelength 1.5406 mm, monochromatized with graphite monometer), measured by 2θ-θ reflection method, continuous scan (1.0 ° / min), sampling interval: 0.02 °, Slit: DS, SS, 2/3 °, RS: 0.6mm

この焼結体を湿式加工法により、厚さ6mmの焼結体に加工し、インジウム半田を用いて無酸素銅製のバッキングプレートに接合してターゲットとした。
このターゲットを使用して、厚さ0.7mmのガラス基板(Corning社製、#7059)上に透明導電膜をスパッタリングにより形成した。スパッタリング条件は、以下の通りとした。
(スパッタリング条件)
RF電力:110W、ガス圧:0.3Pa、スパッタリングガス:Ar、100%、膜厚:100nm、基板温度:200℃。
This sintered body was processed into a sintered body having a thickness of 6 mm by a wet processing method, and bonded to a backing plate made of oxygen-free copper using indium solder to obtain a target.
Using this target, a transparent conductive film was formed by sputtering on a 0.7 mm thick glass substrate (Corning, # 7059). The sputtering conditions were as follows.
(Sputtering conditions)
RF power: 110 W, gas pressure: 0.3 Pa, sputtering gas: Ar, 100%, film thickness: 100 nm, substrate temperature: 200 ° C.

得られた導電膜の四端子法で測定した比抵抗率は50mΩ・cmであった。また、波長550nmにおける光線透過率は90%であった。尚、透過率は、空気をリファレンスとしてガラス基板込みの透過率として測定した。
スパッタリングターゲットの原料組成、組成分析、スパッタリングの条件、透明導電膜の組成及び性状等を表1に示す。
The specific resistance of the obtained conductive film measured by the four-terminal method was 50 mΩ · cm. The light transmittance at a wavelength of 550 nm was 90%. The transmittance was measured as the transmittance including the glass substrate using air as a reference.
Table 1 shows the raw material composition of the sputtering target, composition analysis, sputtering conditions, the composition and properties of the transparent conductive film, and the like.

Figure 2007031786
Figure 2007031786

実施例2,3:比較例1〜3
原料の組成比を表1に示すように変更した他は、実施例1と同様にターゲットを作製、スパッタ成膜した。
結果を表1に示す。
Examples 2 and 3: Comparative Examples 1 to 3
A target was produced and sputtered in the same manner as in Example 1 except that the composition ratio of the raw materials was changed as shown in Table 1.
The results are shown in Table 1.

評価例
スパッタリングターゲットの原料組成において、Zn金属粉末の量を0〜4wt%で変化させ、その分ZnO粉末の量を調整した他は、実施例3と同様にしてターゲットを作製し、スパッタ成膜した。
得られた透明導電膜について、Zn金属粉末の量とターゲットのバルク抵抗値の関係、及びZn金属粉末の量と透明導電膜の比抵抗値を評価した。それぞれの結果を図1及び図2に示す。
Evaluation Example In the raw material composition of the sputtering target, the target was prepared in the same manner as in Example 3 except that the amount of Zn metal powder was changed from 0 to 4 wt%, and the amount of ZnO powder was adjusted accordingly. did.
About the obtained transparent conductive film, the relationship between the amount of Zn metal powder and the bulk resistance value of the target, and the amount of Zn metal powder and the specific resistance value of the transparent conductive film were evaluated. Each result is shown in FIG.1 and FIG.2.

本発明のスパッタリングターゲットを使用して成膜した透明導電膜は、液晶表示装置、EL表示装置等、種々の表示装置の透明電極として好適に使用できる。   The transparent conductive film formed using the sputtering target of the present invention can be suitably used as a transparent electrode for various display devices such as liquid crystal display devices and EL display devices.

Zn金属粉末の量とターゲットのバルク抵抗の関係を示すグラフである。It is a graph which shows the relationship between the quantity of Zn metal powder, and the bulk resistance of a target. Zn金属粉末の量と透明導電膜の比抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the quantity of Zn metal powder, and the specific resistance value of a transparent conductive film.

Claims (10)

酸化亜鉛及び酸化スズ、又は、酸化亜鉛、酸化スズ及び酸化インジウムを含むスパッタリングターゲットであって、金属又は合金がスパッタリングターゲット全体に分散して存在するスパッタリングターゲット。   A sputtering target containing zinc oxide and tin oxide, or zinc oxide, tin oxide and indium oxide, wherein a metal or an alloy is dispersed throughout the sputtering target. 下記(1)及び(2)を満たす請求項1記載のスパッタリングターゲット。
0.65≦MZn/(MZn+MSn)≦0.9 (1)
0≦MIn/(MZn+MSn+MIn)≦0.7 (2)
[式中、MZn、MSn及びMInは、それぞれスパッタリングターゲットにおけるZn、Sn及びInの原子数を示す。]
The sputtering target of Claim 1 which satisfy | fills following (1) and (2).
0.65 ≦ M Zn / (M Zn + M Sn ) ≦ 0.9 (1)
0 ≦ M In / (M Zn + M Sn + M In ) ≦ 0.7 (2)
[ Wherein , M Zn , M Sn and M In represent the number of atoms of Zn, Sn and In in the sputtering target, respectively. ]
さらに、下記(3)を満たす請求項1又は2記載のスパッタリングターゲット。
/(MZn+MSn×2+MIn×1.5)≦0.99 (3)
[式中、MZn、MSn、M及びMInは、それぞれスパッタリングターゲットにおけるZn、Sn、O及びInの原子数を示す。]
Furthermore, the sputtering target of Claim 1 or 2 which satisfy | fills following (3).
M o / (M Zn + M Sn × 2 + M In × 1.5) ≦ 0.99 (3)
[ Wherein , M Zn , M Sn , Mo and M In represent the number of atoms of Zn, Sn, O and In in the sputtering target, respectively. ]
前記金属又は合金を0.1〜6質量%含む請求項1〜3のいずれかに記載のスパッタリングターゲット。   The sputtering target in any one of Claims 1-3 containing 0.1-6 mass% of said metals or alloys. 酸化インジウム・酸化亜鉛からなる六方晶相層状化合物(In(ZnO)m:mは3から20までの整数)を含む請求項1〜4のいずれかに記載のスパッタリングターゲット。 Hexagonal phase layered compound made of indium oxide-zinc oxide (In 2 O 3 (ZnO) m: m is an integer from 3 to 20) The sputtering target according to claim 1 comprising a. バルク抵抗が100mΩcm未満である請求項1〜5のいずれかに記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein the bulk resistance is less than 100 mΩcm. 密度が5.3〜7.2g/cmである請求項1〜6のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 6, wherein the density is 5.3 to 7.2 g / cm 3 . 金属酸化物の粉末と金属の粉末を混合する工程を含む請求項1〜7のいずれかに記載のスパタリングターゲットの製造方法。   The method for producing a sputtering target according to claim 1, comprising a step of mixing a metal oxide powder and a metal powder. 請求項1〜7のいずれかに記載のスパッタリングターゲットを使用して作製した透明導電膜。   The transparent conductive film produced using the sputtering target in any one of Claims 1-7. 請求項9記載の透明導電膜をエッチングして作製した透明電極。


A transparent electrode produced by etching the transparent conductive film according to claim 9.


JP2005217432A 2005-07-27 2005-07-27 Sputtering target, manufacturing method thereof and transparent conductive film Expired - Fee Related JP4761868B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005217432A JP4761868B2 (en) 2005-07-27 2005-07-27 Sputtering target, manufacturing method thereof and transparent conductive film
PCT/JP2006/314550 WO2007013387A1 (en) 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film
CN2006800269295A CN101233258B (en) 2005-07-27 2006-07-24 Sputtering target, method for producing same, and transparent conductive film
KR1020087002030A KR101302332B1 (en) 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film
TW095127511A TWI394852B (en) 2005-07-27 2006-07-27 A sputtering target, a method for manufacturing the same, and a transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217432A JP4761868B2 (en) 2005-07-27 2005-07-27 Sputtering target, manufacturing method thereof and transparent conductive film

Publications (2)

Publication Number Publication Date
JP2007031786A true JP2007031786A (en) 2007-02-08
JP4761868B2 JP4761868B2 (en) 2011-08-31

Family

ID=37683284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217432A Expired - Fee Related JP4761868B2 (en) 2005-07-27 2005-07-27 Sputtering target, manufacturing method thereof and transparent conductive film

Country Status (5)

Country Link
JP (1) JP4761868B2 (en)
KR (1) KR101302332B1 (en)
CN (1) CN101233258B (en)
TW (1) TWI394852B (en)
WO (1) WO2007013387A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2012072459A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Sputtering target
JP2012180274A (en) * 2008-12-12 2012-09-20 Idemitsu Kosan Co Ltd Sintered composite oxide, and sputtering target comprising the same
JP2012229490A (en) * 2012-07-12 2012-11-22 Fujifilm Corp Film-forming method
CN103966560A (en) * 2013-01-31 2014-08-06 日东电工株式会社 Method for producing infrared radiation reflecting film
WO2014119668A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Production method for infrared radiation reflecting film
US9058914B2 (en) 2010-11-16 2015-06-16 Kobelco Research Institute, Inc. Oxide sintered compact and sputtering target
EP3115812A4 (en) * 2014-03-03 2017-10-25 Nitto Denko Corporation Infrared reflecting substrate and method for producing same
KR20200029109A (en) * 2018-09-08 2020-03-18 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139860A1 (en) 2007-05-07 2008-11-20 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element
WO2009078329A1 (en) * 2007-12-19 2009-06-25 Hitachi Metals, Ltd. Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode
JP4982423B2 (en) * 2008-04-24 2012-07-25 株式会社日立製作所 Sputter target for forming zinc oxide thin film, display element and solar cell having zinc oxide thin film obtained using the same
CN101775576A (en) * 2009-01-12 2010-07-14 上海广电电子股份有限公司 ZnO-based powder-metal composite sputtering target material and preparation method thereof
TW201112265A (en) * 2009-09-22 2011-04-01 chuan-sheng Lv Method of manufacturing transparent conductive thin films for flexible polymer substrate and transparent conductive thin films
JP4875135B2 (en) * 2009-11-18 2012-02-15 出光興産株式会社 In-Ga-Zn-O-based sputtering target
JP5460619B2 (en) * 2011-01-13 2014-04-02 住友重機械工業株式会社 Target and film forming apparatus provided with the same
JP6212869B2 (en) * 2012-02-06 2017-10-18 三菱マテリアル株式会社 Oxide sputtering target
CN103304220B (en) * 2013-06-04 2014-10-22 信利半导体有限公司 Target material and preparation method thereof as well as display device
JP6159867B1 (en) * 2016-12-22 2017-07-05 Jx金属株式会社 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
JP6859841B2 (en) * 2017-05-12 2021-04-14 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450258A (en) * 1987-08-21 1989-02-27 Sumitomo Metal Mining Co Production of thin film of high-refractive index dielectric material
JPH02115326A (en) * 1988-10-21 1990-04-27 Mitsubishi Metal Corp Manufacture of sintered compact of indium-tin oxide having superior electric conductivity
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JPH1136066A (en) * 1997-07-15 1999-02-09 Nippon Telegr & Teleph Corp <Ntt> Target for sputtering
JP2001262326A (en) * 2000-03-16 2001-09-26 Nikko Materials Co Ltd Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP2004030934A (en) * 2002-06-21 2004-01-29 Idemitsu Kosan Co Ltd Manufacturing method of sputtering target and conductive film using it, transparent conductive film formed by the method
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ289688B6 (en) * 1995-08-31 2002-03-13 Innovative Sputtering Technology Process for producing products based on ITO-alloys
JP3721080B2 (en) * 1999-05-10 2005-11-30 株式会社日鉱マテリアルズ Sputtering target and manufacturing method thereof
JP2001076329A (en) * 1999-09-07 2001-03-23 Fuji Electric Co Ltd Magnetic recording medium and its production
CN1869277B (en) * 2002-08-02 2010-09-29 出光兴产株式会社 Sputtering target, sintered body, conductive film produced using the same, organic EL element, and substrate used for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450258A (en) * 1987-08-21 1989-02-27 Sumitomo Metal Mining Co Production of thin film of high-refractive index dielectric material
JPH02115326A (en) * 1988-10-21 1990-04-27 Mitsubishi Metal Corp Manufacture of sintered compact of indium-tin oxide having superior electric conductivity
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JPH1136066A (en) * 1997-07-15 1999-02-09 Nippon Telegr & Teleph Corp <Ntt> Target for sputtering
JP2001262326A (en) * 2000-03-16 2001-09-26 Nikko Materials Co Ltd Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP2004030934A (en) * 2002-06-21 2004-01-29 Idemitsu Kosan Co Ltd Manufacturing method of sputtering target and conductive film using it, transparent conductive film formed by the method
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349220B2 (en) 2006-03-15 2013-01-08 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film
JP4552950B2 (en) * 2006-03-15 2010-09-29 住友金属鉱山株式会社 Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
US7976738B2 (en) 2006-03-15 2011-07-12 Sumitomo Metal Mining Co., Ltd. Oxide sintered body comprising zinc oxide phase and zinc stannate compound phase
US8551370B2 (en) 2006-03-15 2013-10-08 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2012180274A (en) * 2008-12-12 2012-09-20 Idemitsu Kosan Co Ltd Sintered composite oxide, and sputtering target comprising the same
JP5145513B2 (en) * 2008-12-12 2013-02-20 出光興産株式会社 Composite oxide sintered body and sputtering target comprising the same
US8753548B2 (en) 2008-12-12 2014-06-17 Idemitsu Kosan Co., Ltd. Composite oxide sintered body and sputtering target comprising same
US8871119B2 (en) 2008-12-12 2014-10-28 Idemitsu Kosan Co., Ltd. Composite oxide sintered body and sputtering target comprising same
JP2012072459A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Sputtering target
US9058914B2 (en) 2010-11-16 2015-06-16 Kobelco Research Institute, Inc. Oxide sintered compact and sputtering target
JP2012229490A (en) * 2012-07-12 2012-11-22 Fujifilm Corp Film-forming method
JP2014167162A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
WO2014119668A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Production method for infrared radiation reflecting film
CN103966560A (en) * 2013-01-31 2014-08-06 日东电工株式会社 Method for producing infrared radiation reflecting film
EP2952610A4 (en) * 2013-01-31 2016-09-14 Nitto Denko Corp Production method for infrared radiation reflecting film
EP3115812A4 (en) * 2014-03-03 2017-10-25 Nitto Denko Corporation Infrared reflecting substrate and method for producing same
KR20200029109A (en) * 2018-09-08 2020-03-18 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target
KR102192713B1 (en) 2018-09-08 2020-12-17 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target

Also Published As

Publication number Publication date
KR101302332B1 (en) 2013-08-30
JP4761868B2 (en) 2011-08-31
KR20080032121A (en) 2008-04-14
TW200714724A (en) 2007-04-16
CN101233258B (en) 2010-08-18
CN101233258A (en) 2008-07-30
TWI394852B (en) 2013-05-01
WO2007013387A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4761868B2 (en) Sputtering target, manufacturing method thereof and transparent conductive film
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
KR100957733B1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP5733208B2 (en) Ion plating tablet, manufacturing method thereof, and transparent conductive film
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP6024545B2 (en) Zinc oxide-based sintered body, method for producing the same, and sputtering target
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP2009114538A (en) Target for ion plating for producing zinc oxide-based thin film
JP4960052B2 (en) Ytterbium oxide containing oxide target
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
KR101945083B1 (en) Sintered body, sputtering target comprising sintered body and thin film formed by using spattering target
JP5000231B2 (en) Gadolinium oxide-containing oxide target
JP5063968B2 (en) Erbium oxide-containing oxide target
JP4960041B2 (en) Neodymium oxide-containing oxide target
JP2003301265A (en) Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it
JP4960053B2 (en) Oxide target containing dysprosium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees