KR20080032121A - Sputtering target, method for manufacturing such sputtering target, and transparent conducting film - Google Patents

Sputtering target, method for manufacturing such sputtering target, and transparent conducting film Download PDF

Info

Publication number
KR20080032121A
KR20080032121A KR1020087002030A KR20087002030A KR20080032121A KR 20080032121 A KR20080032121 A KR 20080032121A KR 1020087002030 A KR1020087002030 A KR 1020087002030A KR 20087002030 A KR20087002030 A KR 20087002030A KR 20080032121 A KR20080032121 A KR 20080032121A
Authority
KR
South Korea
Prior art keywords
sputtering target
metal
target
sputtering
oxide
Prior art date
Application number
KR1020087002030A
Other languages
Korean (ko)
Other versions
KR101302332B1 (en
Inventor
고끼 야노
가즈요시 이노우에
노부오 다나까
Original Assignee
이데미쓰 고산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이데미쓰 고산 가부시키가이샤 filed Critical 이데미쓰 고산 가부시키가이샤
Publication of KR20080032121A publication Critical patent/KR20080032121A/en
Application granted granted Critical
Publication of KR101302332B1 publication Critical patent/KR101302332B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a sputtering target containing zinc oxide and tin oxide or a sputtering target containing zinc oxide, tin oxide and indium oxide. A metal or an alloy is dispersed over the entire sputtering target.

Description

스퍼터링 타겟, 그의 제조 방법 및 투명 도전막{SPUTTERING TARGET, METHOD FOR MANUFACTURING SUCH SPUTTERING TARGET, AND TRANSPARENT CONDUCTING FILM}Sputtering target, manufacturing method thereof, and transparent conductive film {SPUTTERING TARGET, METHOD FOR MANUFACTURING SUCH SPUTTERING TARGET, AND TRANSPARENT CONDUCTING FILM}

본 발명은 스퍼터링 타겟, 그의 제조 방법 및 투명 도전막에 관한 것이다. 더욱 상세하게는, 희소 자원인 인듐을 삭감 또는 사용하지 않는 스퍼터링 타겟 등에 관한 것이다. This invention relates to a sputtering target, its manufacturing method, and a transparent conductive film. In more detail, it is related with the sputtering target etc. which do not reduce or use indium which is a scarce resource.

액정 디스플레이(LCD)나 유기 전계 발광(EL) 디스플레이는 표시 성능, 에너지 절약 등의 관점에서, 휴대 전화나 휴대 정보 단말(PDA), 개인용 컴퓨터나 랩탑 개인용 컴퓨터, 텔레비젼 등의 표시기로서 주류를 이루고 있다. 이들 장치에 사용되는 투명 도전막으로는, 인듐·주석 산화물(이하, ITO)막이 주류를 이루고 있다. 그러나, ITO막은 인듐을 대량(통상 90 질량% 정도)으로 이용하고 있다. 인듐은 희소 자원으로 공급이 불안하며, 다소의 독성도 있기 때문에, 투명 전극을 이용한 표시 디바이스의 추가적인 보급에는 인듐의 사용량이 적은 투명 도전막의 개발이 중요하다. Liquid crystal displays (LCDs) and organic electroluminescent (EL) displays are becoming mainstream as indicators for mobile phones, portable personal digital assistants (PDAs), personal computers, laptop personal computers, and televisions from the viewpoint of display performance and energy saving. . As the transparent conductive film used in these devices, an indium tin oxide (hereinafter referred to as ITO) film is the mainstream. However, the ITO film uses indium in large quantities (usually about 90 mass%). Since indium is unstable as a scarce resource and has some toxicity, it is important to develop a transparent conductive film having a low amount of indium for further dissemination of a display device using a transparent electrode.

인듐을 삭감 또는 사용하지 않은 투명 도전막으로서, 산화아연-산화주석을 주성분으로 하는 투명 도전막이 검토되고 있다(예를 들면, 특허 문헌 1 참조). As a transparent conductive film which does not reduce or use indium, the transparent conductive film which has a zinc oxide-tin oxide as a main component is examined (for example, refer patent document 1).

이 투명 도전막으로는 저항이 높고, 저항의 면내 분포가 크다는 등의 문제점 이 있지만, 이들 문제를 해결하기 위한 검토는 이루어지지 않았다.This transparent conductive film has problems such as high resistance and large in-plane distribution of resistance, but no studies have been made to solve these problems.

ITO의 스퍼터링 타겟으로는, 산소량을 일정 이상으로 함으로써 저저항화할 수 있는 것이 공개되어 있다(예를 들면, 특허 문헌 2 참조). As a sputtering target of ITO, the thing which can reduce resistance by making oxygen amount constant or more is disclosed (for example, refer patent document 2).

그러나, 인듐을 삭감한 스퍼터링 타겟의 산소량에 대해서는 검토되지 않았다.However, the oxygen content of the sputtering target which reduced indium was not examined.

또한, 금속 산화물의 부위와 금속의 부위를 포함하는 스퍼터링 타겟이 공개되어 있다(예를 들면, 특허 문헌 3 참조). Moreover, the sputtering target containing the site | part of a metal oxide and the site | part of a metal is disclosed (for example, refer patent document 3).

그러나, 인듐을 삭감한 타겟에 대한 영향은 검토되지 않았다. 또한, 금속 산화물의 부위와 금속의 부위를 포함하는 스퍼터링 타겟은, 금속 산화물 타겟과 금속 타겟이나 금속 와이어를 복합화시킨 것으로, 인듐을 삭감한 타겟에 적용하기에는 타겟 자체의 저항이 높고, 스퍼터링시의 방전이 불안정하며, 스퍼터링 속도가 느리다는 등의 문제가 있었다. However, the influence on the target which cut indium was not examined. In addition, the sputtering target containing the site | part of a metal oxide and the site | part of a metal is a composite of a metal oxide target, a metal target, and a metal wire, and is high in the resistance of a target itself in order to apply to the target which reduced indium, and discharge during sputtering This was unstable, and there was a problem such as a slow sputtering speed.

특허 문헌 1: 일본 특허 공개 (평)8-171824호 공보 Patent Document 1: Japanese Patent Application Laid-Open No. 8-171824

특허 문헌 2: 일본 특허 공개 제2000-256842호 공보 Patent Document 2: Japanese Patent Laid-Open No. 2000-256842

특허 문헌 3: 일본 특허 공개 제2004-030934호 공보Patent Document 3: Japanese Patent Laid-Open No. 2004-030934

본 발명은 상술한 문제를 감안하여 이루어진 것으로, 인듐을 삭감하여도 저저항인 투명 도전막이 얻어지는 스퍼터링 타겟 및 스퍼터링 타겟의 제조 방법을 제공하는 것을 목적으로 한다. This invention is made | formed in view of the above-mentioned problem, and an object of this invention is to provide the sputtering target and the manufacturing method of a sputtering target from which a low conductive transparent conductive film is obtained even if indium is reduced.

본 발명자들은 상기 과제를 극복하기 위해서 예의 검토를 거듭한 결과, 스퍼터링 타겟을 구성하는 금속 원자 및 산소 원자에서, 산소 원자의 수를 금속 원자가 산화물을 구성할 때의 화학양론량보다도 적게 함으로써, 인듐을 삭감하여도 저저항인 투명 도전막이 얻어지는 것을 발견하였다. 또한, 스퍼터링 타겟 중에 산화되지 않은 금속 또는 합금을 분산시킴으로써, 안정적으로 산소량이 적은 타겟을 제조할 수 있고, 타겟의 저항을 저하시킬 수 있다는 것을 발견하여 본 발명을 완성시켰다. MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to overcome the said subject, the present inventors made indium by making the number of oxygen atoms in the metal atom and oxygen atom which comprise a sputtering target less than the stoichiometric amount when a metal atom comprises an oxide. Even if it cuts, it discovered that the transparent conductive film which is low resistance is obtained. In addition, the present invention has been completed by discovering that by dispersing an unoxidized metal or alloy in a sputtering target, a target having a small amount of oxygen can be stably produced and the resistance of the target can be reduced.

본 발명에 따르면, 이하의 스퍼터링 타겟, 그의 제조 방법, 투명 도전막 및 투명 전극이 제공된다. According to this invention, the following sputtering targets, its manufacturing method, a transparent conductive film, and a transparent electrode are provided.

1. 산화아연 및 산화주석, 또는 산화아연, 산화주석 및 산화인듐을 포함하는 스퍼터링 타겟이며, 금속 또는 합금이 스퍼터링 타겟 전체에 분산되어 존재하는 스퍼터링 타겟. 1. A sputtering target comprising zinc oxide and tin oxide or zinc oxide, tin oxide and indium oxide, wherein the metal or alloy is dispersed and present throughout the sputtering target.

2. 상기 1에 있어서, 하기 수학식 1 및 2를 충족시키는 스퍼터링 타겟. 2. The sputtering target according to 1, which satisfies the following equations (1) and (2).

0.65≤MZn/(MZn+MSn)≤0.90.65≤M Zn / (M Zn + M Sn ) ≤0.9

0≤MIn/(MZn+MSn+MIn)≤0.70≤M In / (M Zn + M Sn + M In ) ≤0.7

[식 중, MZn, MSn 및 MIn은 각각 스퍼터링 타겟에서의 Zn, Sn 및 In의 원자수를 나타냄][Wherein, M Zn , M Sn and M In each represent the number of atoms of Zn, Sn and In in the sputtering target]

3. 상기 1 또는 2에 있어서, 추가로 하기 수학식 3을 충족시키는 스퍼터링 타겟. 3. The sputtering target according to 1 or 2 above, which further satisfies Equation 3 below.

Mo/(MZn+MSn×2+MIn×1.5)≤0.99M o / (M Zn + M Sn × 2 + M In × 1.5) ≤0.99

[식 중, MZn, MSn, Mo 및 MIn은 각각 스퍼터링 타겟에서의 Zn, Sn, O 및 In의 원자수를 나타냄][Wherein, M Zn , M Sn , M o, and M In each represent the number of atoms of Zn, Sn, O, and In in the sputtering target]

4. 상기 1 내지 3 중 어느 하나에 있어서, 상기 금속 또는 합금을 0.1 내지 6 질량% 포함하는 스퍼터링 타겟. 4. Sputtering target in any one of said 1-3 containing 0.1-6 mass% of said metal or alloy.

5. 상기 1 내지 4 중 어느 하나에 있어서, 산화인듐·산화아연을 포함하는 육방정상 층상 화합물(In2O3(ZnO)m: m은 3 내지 20의 정수)을 포함하는 스퍼터링 타겟. 5. The sputtering target according to any one of 1 to 4, comprising a hexagonal layered compound containing indium zinc oxide (In 2 O 3 (ZnO) m: m is an integer of 3 to 20).

6. 상기 1 내지 5 중 어느 하나에 있어서, 벌크 저항이 100 mΩcm 미만인 스퍼터링 타겟. 6. The sputtering target according to any one of 1 to 5, wherein the bulk resistance is less than 100 mΩcm.

7. 상기 1 내지 6 중 어느 하나에 있어서, 밀도가 5.3 내지 7.2 g/㎤인 스퍼터링 타겟. 7. The sputtering target according to any one of 1 to 6, wherein the density is 5.3 to 7.2 g / cm 3.

8. 금속 산화물의 분말과 금속의 분말을 혼합하는 공정을 포함하는, 상기 1 내지 7 중 어느 하나에 기재된 스퍼터링 타겟의 제조 방법. 8. The manufacturing method of the sputtering target in any one of said 1-7 containing the process of mixing the powder of metal oxide and the powder of metal.

9. 상기 1 내지 7 중 어느 하나에 기재된 스퍼터링 타겟을 사용하여 제조한 투명 도전막. 9. The transparent conductive film manufactured using the sputtering target in any one of said 1-7.

10. 상기 9에 기재된 투명 도전막을 에칭하여 제조한 투명 전극. 10. The transparent electrode manufactured by etching the transparent conductive film of said 9.

본 발명의 스퍼터링 타겟에 의해서, 인듐을 삭감하여도 저저항인 투명 도전막이 얻어진다. By the sputtering target of this invention, even if indium is reduced, the transparent conductive film which is low resistance is obtained.

[도 1] Zn 금속 분말의 양과 타겟의 벌크 저항의 관계를 나타내는 그래프이다. 1 is a graph showing the relationship between the amount of Zn metal powder and the bulk resistance of a target.

[도 2] Zn 금속 분말의 양과 투명 도전막의 비저항값의 관계를 나타내는 그래프이다. 2 is a graph showing the relationship between the amount of Zn metal powder and the specific resistance value of the transparent conductive film.

<발명을 실시하기 위한 최선의 형태>Best Mode for Carrying Out the Invention

이하, 본 발명의 스퍼터링 타겟을 구체적으로 설명한다. Hereinafter, the sputtering target of this invention is demonstrated concretely.

본 발명의 스퍼터링 타겟은 산화아연 및 산화주석을 적어도 포함하는 산화물중에, 금속 또는 합금이 전체에 분산되어 있는 형태를 갖고 있다. 이에 따라, 인듐을 삭감하여도 저저항인 투명 도전막이 얻어지는 타겟이 된다. 또한, 스퍼터링 타겟 중에 산화되지 않은 금속 또는 합금을 분산시킴으로써, 타겟의 저항을 저하시킬 수 있다. The sputtering target of the present invention has a form in which a metal or an alloy is dispersed throughout in an oxide containing at least zinc oxide and tin oxide. Thereby, even if indium is reduced, it becomes a target from which the transparent conductive film which is low resistance is obtained. In addition, by dispersing an unoxidized metal or alloy in the sputtering target, the resistance of the target can be lowered.

금속 또는 합금으로는, 본 발명의 성능을 손상시키지 않는 범위에서 특별히 제한없이 사용할 수 있다. 타겟의 소결 온도보다 낮은 것이 바람직하고, 통상 융점이 1300 ℃ 이하, 바람직하게는 1000 ℃ 이하, 보다 바람직하게는 800 ℃ 이하, 더욱 바람직하게는 600 ℃ 이하의 금속 또는 합금을 사용한다. 융점이 1300 ℃ 이하이면, 소결시에 용융하고 타겟의 밀도가 높아지기 때문에, 타겟의 저항이 낮아지기 쉽다. As a metal or an alloy, it can use without a restriction | limiting in particular in the range which does not impair the performance of this invention. It is preferable that it is lower than the sintering temperature of a target, and a metal or alloy whose melting | fusing point is 1300 degrees C or less, preferably 1000 degrees C or less, more preferably 800 degrees C or less, still more preferably 600 degrees C or less is used. If melting | fusing point is 1300 degrees C or less, since it melts at the time of sintering and the density of a target will become high, the resistance of a target will fall easily.

또한, 금속 산화물이 도전성을 나타내는 것도 바람직하다. 이러한 것으로서, Zn, Sn, In, Ga, Ge, Cd, Nd, Sm, Ce, Eu, Ag, Au, Al, 및 이들을 주성분으로 하는 합금을 바람직하게 사용할 수 있다. 특히, Zn, Sn 또는 In이 바람직하다. 또한, 이들 금속 또는 합금은 복수개를 혼합하여 사용할 수도 있다. It is also preferable that the metal oxide exhibit conductivity. As such, Zn, Sn, In, Ga, Ge, Cd, Nd, Sm, Ce, Eu, Ag, Au, Al, and alloys containing these as a main component can be preferably used. In particular, Zn, Sn or In is preferable. Moreover, these metal or alloy can also be used in mixture of multiple pieces.

금속 또는 합금은 타겟 중에 500 ㎛ 이하의 응집체가 되어 전체에 분산되어 있는 것이 바람직하다. 더욱 바람직하게는 100 ㎛ 이하, 보다 바람직하게는 10 ㎛ 이하, 특히 바람직하게는 5 ㎛ 이하이다. The metal or alloy is preferably an aggregate of 500 µm or less in the target, and is preferably dispersed throughout. More preferably, it is 100 micrometers or less, More preferably, it is 10 micrometers or less, Especially preferably, it is 5 micrometers or less.

금속 또는 합금이 존재하는 것은 X선 회절의 피크에서 판단할 수 있다. 또한, 분산 상태는 X선 마이크로 분석기(EPMA)의 면 분석에서 금속 원자의 응집부 또는 저산소 부분이 있음으로써 확인할 수 있다. 또한, "전체에 분산되어 있다"란, 임의의 5000 ㎛2의 영역 내에 500 ㎛ 이하의 금속 또는 합금을 1개 이상 확인할 수 있는 상태를 의미한다. The presence of metals or alloys can be determined from the peaks of X-ray diffraction. In addition, the dispersion state can be confirmed by the presence of agglomerates or low oxygen portions of metal atoms in the surface analysis of the X-ray microanalyzer (EPMA). In addition, "disperse | distributed to the whole" means the state which can confirm one or more metal or alloy of 500 micrometers or less in arbitrary 5000 micrometer <2> area | regions.

또한, 금속 또는 합금이 분산되어 있는 형태는 후술하는 제조 방법에 의해 실현할 수 있다. In addition, the form in which a metal or an alloy is disperse | distributed can be implement | achieved by the manufacturing method mentioned later.

스퍼터링 타겟에 점유되는 금속 또는 합금의 함유량은, 바람직하게는 0.1 내지 6 질량%, 보다 바람직하게는 0.2 내지 4 질량%, 특히 바람직하게는 0.3 내지 3 질량%이다. 0.1 질량%보다 적으면 본 발명의 효과가 발현하지 않거나, 또는 화이트 스폿이 발생할 우려가 있고, 6 질량%보다 많으면 산소 부족이 되어 반대로 저항이 증대하거나 투명성이 저하될 우려가 있다. Content of the metal or alloy occupied by a sputtering target becomes like this. Preferably it is 0.1-6 mass%, More preferably, it is 0.2-4 mass%, Especially preferably, it is 0.3-3 mass%. When the amount is less than 0.1% by mass, the effect of the present invention may not be exhibited or white spots may occur. When the amount is more than 6% by mass, oxygen may be insufficient and conversely, the resistance may increase or the transparency may decrease.

스퍼터링 타겟 중에 산화되지 않은 금속 또는 합금이 포함되어 있는지는 X선 회절(XRD)로 확인할 수 있다. X-ray diffraction (XRD) can confirm whether the sputtering target contains an unoxidized metal or alloy.

본 발명의 스퍼터링 타겟은 하기 수학식 1 및 2를 충족시키는 것이 바람직하다. The sputtering target of the present invention preferably satisfies the following equations (1) and (2).

<수학식 1><Equation 1>

0.65≤MZn/(MZn+MSn)≤0.90.65≤M Zn / (M Zn + M Sn ) ≤0.9

<수학식 2><Equation 2>

0≤MIn/(MZn+MSn+MIn)≤0.70≤M In / (M Zn + M Sn + M In ) ≤0.7

[식 중, MZn, MSn 및 MIn은 각각 스퍼터링 타겟에서의 Zn, Sn 및 In의 원자수를 나타냄][Wherein, M Zn , M Sn and M In each represent the number of atoms of Zn, Sn and In in the sputtering target]

상기 수학식 1의 값[MZn/(MZn+MSn)]은 스퍼터링 타겟에서의 Zn과 Sn의 존재 비율을 규정하고 있다. 이 값이 0.65보다 작은 경우, 타겟에 점유되는 Sn 양이 많아져 SnO2가 응집하고, 성막시에 대전되어 이상 방전의 원인이 될 우려가 있다. 한편, 0.9보다 큰 경우, 내산성이 저하될 우려가 있다. MZn/(MZn+MSn)은 바람직하게는 0.7 내지 0.85, 보다 바람직하게는 0.7 내지 0.8이다. The value [M Zn / (M Zn + M Sn )] in the above equation 1 defines the ratio of Zn and Sn in the sputtering target. If this value is smaller than 0.65, the amount of Sn occupied by the target increases, and SnO 2 aggregates, and there is a possibility that it is charged at the time of film formation and causes abnormal discharge. On the other hand, when larger than 0.9, there exists a possibility that acid resistance may fall. M Zn / (M Zn + M Sn ) is preferably 0.7 to 0.85, more preferably 0.7 to 0.8.

수학식 2는 스퍼터링 타겟에서의 In의 양을 규정한다. 본 발명의 목적을 고려하면, In의 사용량은 적은 것이 바람직하지만, In을 첨가함으로써, 타겟 및 성막 후의 박막의 저항을 저하시킬 수 있다. MIn/(MZn+MSn+MIn)은 바람직하게는 0.05 내지 0.6, 보다 바람직하게는 0.1 내지 0.45, 더욱 바람직하게는 0.15 내지 0.35, 특히 바람직하게는 0.25 내지 0.35이다. Equation 2 defines the amount of In in the sputtering target. In consideration of the object of the present invention, the amount of In used is preferably small. However, by adding In, the resistance of the target and the thin film after film formation can be reduced. M In / (M Zn + M Sn + M In ) is preferably 0.05 to 0.6, more preferably 0.1 to 0.45, still more preferably 0.15 to 0.35, particularly preferably 0.25 to 0.35.

본 발명의 스퍼터링 타겟은, 추가로 하기 수학식 3을 충족시키는 것이 바람직하다. It is preferable that the sputtering target of this invention satisfy | fills following formula (3) further.

<수학식 3><Equation 3>

Mo/(MZn+MSn×2+MIn×1.5)≤0.99M o / (M Zn + M Sn × 2 + M In × 1.5) ≤0.99

[식 중, MZn, MSn, Mo 및 MIn은 각각 스퍼터링 타겟에서의 Zn, Sn, O 및 In의 원자수를 나타냄][Wherein, M Zn , M Sn , M o, and M In each represent the number of atoms of Zn, Sn, O, and In in the sputtering target]

수학식 3은 스퍼터링 타겟에서의 산소 원자(O)의 양을 규정한다. 수학식 3의 분모는, 각 금속 원자가 산화물(ZnO, SnO2, In2O3)을 구성했을 때의 산소 원자수를 의미한다. 수학식 3의 값, 즉 스퍼터링 타겟에 포함되는 산소 원자수와, 금속 원자가 모두 산화물을 구성한 경우의 산소 원자수의 비가 0.99 이하이면, In을 삭감 또는 사용하지 않아도 저저항인 투명 도전막이 얻어지는 스퍼터링 타겟이 된다. 또한, 수학식 3의 값은, 바람직하게는 0.8 내지 0.98, 보다 바람직하게는 0.9 내지 0.97이다. 0.8보다 작으면 성막 후의 도전막이 착색될 우려가 있다. Equation 3 defines the amount of oxygen atoms (O) at the sputtering target. The denominator in equation ( 3 ) means the number of oxygen atoms when each metal atom constitutes an oxide (ZnO, SnO 2 , In 2 O 3 ). If the ratio of the value of the expression (3), that is, the number of oxygen atoms contained in the sputtering target and the number of oxygen atoms when the metal atoms constitute oxides is 0.99 or less, a sputtering target from which a low-resistance transparent conductive film can be obtained without reducing or using In Becomes In addition, the value of expression (3) is preferably 0.8 to 0.98, more preferably 0.9 to 0.97. When smaller than 0.8, there exists a possibility that the electrically conductive film after film-forming may color.

이와 같이 타겟 중 산소의 함유량을 제어함으로써, 스퍼터링 박막의 저저항화가 가능해지지만, 그 정확한 이유는 해명되지 않았다. 그러나, 종래의 방법에서는, Sn 및 In보다도 비교적 가벼운 Zn 원자가 역스퍼터링이나 성막되지 않고 배기됨으로써 막 중의 산소가 과잉이 되었던 것으로 추정된다. By controlling the content of oxygen in the target in this way, it is possible to reduce the resistance of the sputtered thin film, but the exact reason is not clear. However, in the conventional method, it is estimated that Zn atoms, which are relatively lighter than Sn and In, are exhausted without reverse sputtering or film formation, resulting in excessive oxygen in the film.

또한, 상술한 수학식 1 내지 3의 값은 스퍼터링 타겟을 X선 마이크로 분석기(EPMA)를 이용하여 조성 분석하여 얻어지는 각 원자의 존재비의 값으로부터 산출할 수 있다.In addition, the value of the said Formula (1)-3 can be computed from the value of the abundance of each atom obtained by carrying out compositional analysis of a sputtering target using an X-ray micro analyzer (EPMA).

본 발명의 스퍼터링 타겟의 제조 방법으로는, 예를 들면 각 금속 산화물의 혼합 분체에, 추가로 금속 또는 합금의 분체를 혼합하고 소결하는 방법이 있다. 금속 분체를 이용함으로써, 타겟 중 산소의 함유량을 용이하게 제어할 수 있다. 또한, 타겟 자체의 저항이 저하되기 때문에, 스퍼터링 속도가 빨라져 안정적인 스퍼터링이 가능하다. 또한, 금속 분체에는 막 중의 산소 결함을 안정화시키고, 캐리어를 생성시켜 저저항화시키는 기능도 있는 것으로 생각된다. As a manufacturing method of the sputtering target of this invention, there exists a method of mixing and sintering the powder of a metal or an alloy further to the mixed powder of each metal oxide, for example. By using metal powder, content of oxygen in a target can be easily controlled. In addition, since the resistance of the target itself is lowered, the sputtering speed is increased to enable stable sputtering. It is also considered that the metal powder also has a function of stabilizing oxygen defects in the film, generating a carrier, and reducing the resistance.

또한, 스퍼터링 장치의 차이나, 스퍼터링 조건에 의한 차이를 조정하기 위해서, 소결시에 약간 산소 부족 상태로서, 스퍼터링시에 소량의 산화성 가스를 도입하여 조정할 수도 있다.In addition, in order to adjust the difference of a sputtering apparatus and the difference by sputtering conditions, it can also adjust by introducing a small amount of oxidizing gas at the time of sputtering as a state of oxygen shortage at the time of sintering.

각 금속 산화물의 혼합 분체에 금속 또는 합금의 분체를 혼합하고 소결하는 경우, 분말의 입경은 500 ㎛ 이하, 바람직하게는 100 ㎛ 이하, 보다 바람직하게는 10 ㎛ 이하, 특히 바람직하게는 5 ㎛ 이하이다. 500 ㎛보다 크면, 다른 원료 분말과 균일하게 혼합되지 않기 때문에, 금속 또는 합금이 타겟 중에 분산된 형태가 되지 않거나, 타겟의 저항이 높아질 우려가 있다. When the metal or alloy powder is mixed and sintered with the mixed powder of each metal oxide, the particle size of the powder is 500 µm or less, preferably 100 µm or less, more preferably 10 µm or less, particularly preferably 5 µm or less. . If it is larger than 500 mu m, since it is not uniformly mixed with other raw material powders, the metal or alloy may not be dispersed in the target, or the resistance of the target may be increased.

또한, 입경은 광 산란 상당 직경(JIS R 1629)으로 측정한 값이다. In addition, a particle diameter is the value measured by the light scattering equivalence diameter (JIS R 1629).

본 발명에서는, 상기한 각 금속 산화물의 분체 및 금속 분체 이외에, 본 발명의 목적을 손상시키지 않는 범위에서, 소결 보조제(이트리아, 마그네시아 등), 분산제(폴리아크릴산암모니아 등), 결합제, 윤활제(스테아르산 에멀전 등) 등을 첨가할 수도 있다. In the present invention, in addition to the above-described powders and metal powders of the respective metal oxides, sintering aids (yttria, magnesia, etc.), dispersing agents (ammonia polyacrylates, etc.), binders, lubricants (stear) within a range that does not impair the object of the present invention. Acid emulsions, etc.) may be added.

본 발명의 스퍼터링 타겟은 산화인듐·산화아연을 포함하는 육방정상 층상 화합물(In2O3(ZnO)m: m은 3 내지 20의 정수)을 포함하는 것이 바람직하다. 이들 구조를 포함함으로써 소결 밀도가 올라가고, 타겟의 저항이 저하되기 쉬워진다. The sputtering target of the present invention is normally hexagonal layered compound comprising indium oxide, zinc oxide: it is preferred to include a (In 2 O 3 (ZnO) m m is an integer from 3 to 20). By including these structures, the sintered density increases and the resistance of the target tends to decrease.

이러한 구조는 상기한 제조 방법으로 얻을 수 있다. 또한, 구조의 해석은 X선 회절(XRD)로 행한다. Such a structure can be obtained by the above-described manufacturing method. The structure is analyzed by X-ray diffraction (XRD).

본 발명의 스퍼터링 타겟은, 그 벌크 저항이 0.2 내지 100 mΩcm 미만인 것이 바람직하다. 이 값을 충족시킴으로써, 스퍼터링시의 방전이 안정적이고, 스퍼터링 속도도 빨라진다. 보다 바람직하게는 0.4 내지 20 mΩcm 이하, 특히 바람직하게는 0.6 내지 10 mΩcm 이하이다. It is preferable that the bulk resistance of the sputtering target of this invention is less than 0.2-100 m (ohm) cm. By satisfying this value, the discharge during sputtering is stable, and the sputtering speed also increases. More preferably, it is 0.4-20 m (ohm) cm or less, Especially preferably, it is 0.6-10 m (ohm) cm or less.

또한, 스퍼터링 타겟의 밀도는 5.3 내지 7.2 g/㎤인 것이 바람직하고, 6.1 내지 7.0 g/㎤인 것이 더욱 바람직하고, 6.4 내지 6.8 g/㎤인 것이 특히 바람직하다. 이 값을 충족시킴으로써, 스퍼터링시의 방전이 안정적이고 성막 속도를 향상시킬 수 있다. In addition, the density of the sputtering target is preferably 5.3 to 7.2 g / cm 3, more preferably 6.1 to 7.0 g / cm 3, and particularly preferably 6.4 to 6.8 g / cm 3. By satisfying this value, the discharge during sputtering is stable and the film formation speed can be improved.

본 발명의 투명 도전막은 상술한 본 발명의 스퍼터링 타겟을 통상법에 의해 스퍼터링 성막함으로써 얻어진다. 또한, 이 투명 도전막을 옥살산 또는 인산을 포함하는 혼합산 등의 에칭액으로 에칭함으로써 투명 전극이 얻어진다. The transparent conductive film of this invention is obtained by sputter-forming film-forming the sputtering target of this invention mentioned above by a conventional method. Moreover, a transparent electrode is obtained by etching this transparent conductive film with etching liquid, such as a mixed acid containing oxalic acid or phosphoric acid.

이하, 본 발명을 실시예에 의해서 더욱 구체적으로 설명한다. 또한, 입경은 레이저 회절 산란법으로 측정한 값이다. Hereinafter, the present invention will be described in more detail with reference to Examples. In addition, a particle diameter is the value measured by the laser diffraction scattering method.

<실시예 1><Example 1>

산화아연 분말(입경 1 ㎛ 이하), 산화주석 분말(입경 0.4 ㎛ 이하) 및 금속 아연 분말(입경 5 ㎛ 이하)을 하기 표 1에 기재된 배합비로 폴리에틸렌제 포트에 넣고, 건식 볼밀에 의해 72 시간 동안 혼합하여, 혼합 분말을 제조하였다. Zinc oxide powder (particle size of 1 μm or less), tin oxide powder (particle size of 0.4 μm or less) and metal zinc powder (particle size of 5 μm or less) were placed in a polyethylene pot at a compounding ratio shown in Table 1 below, and then dried by a dry ball mill for 72 hours. By mixing, a mixed powder was prepared.

이 혼합 분말을 금형에 넣고, 300 kg/㎠의 압력으로 프레스하여 성형체로 하였다. 이 성형체를 3 톤/㎠의 압력으로 CIP(냉간 등방압 프레스) 성형에 의한 치밀화 처리를 행하였다. 이어서, 이 성형체를 순산소 분위기 소결로 내에 설치하고, 이하의 조건으로 소결하였다. This mixed powder was put into a metal mold | die, and it pressed at the pressure of 300 kg / cm <2>, and was made into the molded object. This compact was subjected to densification by CIP (cold isostatic press) molding at a pressure of 3 ton / cm 2. Next, this molded product was installed in a pure oxygen atmosphere sintering furnace and sintered under the following conditions.

(소결 조건)(Sintering condition)

소결 온도: 1450 ℃, 승온 속도: 25 ℃/시간, 소결 시간: 6 시간, 소결로의 도입 가스: 산소, 도입 가스압: 30 mmH2O(게이지압), 도입 가스 선속: 2.6 cm/분, 주입 중량/가스 유량: 0.4 kg·분/ℓ, 가스 도입 개시 온도(승온시): 400 ℃, 가스 도입 정지 온도(강온시): 400 ℃. Sintering temperature: 1450 ° C., Heating rate: 25 ° C./hour, Sintering time: 6 hours, introduction gas of sintering furnace: oxygen, introduction gas pressure: 30 mmH 2 O (gauge pressure), introduction gas flux: 2.6 cm / min, injection Weight / gas flow rate: 0.4 kg · min / l, gas introduction start temperature (at elevated temperature): 400 ° C, gas introduction stop temperature (at low temperature): 400 ° C.

얻어진 소결체의 밀도를 아르키메데스법에 의해 측정한 바, 5.5 g/㎤였다. It was 5.5 g / cm <3> when the density of the obtained sintered compact was measured by the Archimedes method.

이 소결체의 조성 분석을 X선 마이크로 분석기(EPMA)를 이용하여 행하였다. 그 결과, 금속 원자수의 총수에 대한 산소 원자수 비(O/(Zn+Sn+In))는 1.18이었다. 또한, 사단자법으로 측정한 타겟의 벌크 저항은 80 mΩcm였다. The composition analysis of this sintered compact was performed using the X-ray micro analyzer (EPMA). As a result, the oxygen atom number ratio (O / (Zn + Sn + In)) to the total number of metal atoms was 1.18. The bulk resistance of the target measured by the four-terminal method was 80 mΩcm.

또한, X선 회절(XRD)로 타겟을 해석한 바, Zn 금속 유래의 피크를 확인할 수 있었다. Moreover, when the target was analyzed by X-ray diffraction (XRD), the peak derived from Zn metal was confirmed.

또한, EPMA의 면 분석에 의해, 5000 ㎛2의 영역 내에 5 내지 50 ㎛의 금속 원자가 응집하고, 저산소인 부분이 100개 이상 분산하여 존재하고 있는 것을 확인할 수 있었다. In addition, it was confirmed by surface analysis of EPMA that metal atoms of 5 to 50 µm aggregated in the region of 5000 µm 2 , and 100 or more portions of low oxygen were dispersed and present.

또한, EPMA 및 XRD의 측정은 이하의 조건으로 하였다. In addition, the measurement of EPMA and XRD was made into the following conditions.

·EPMA EPMA

사용 장치: 시마즈 세이사꾸쇼제, 전자선 마이크로 분석기 EPMA-2300Device used: Shimadzu Seisakusho, electron beam micro analyzer EPMA-2300

가속 전압: 15 kV, 시료 전류: 0.05 ㎛, 빔 사이즈: 1 ㎛, 면적 사이즈: 68.4×68.4 ㎛, 스텝 사이즈: 0.2 ㎛×0.2 ㎛, 측정 원소: Zn, Sn, O, SBSE(반사 전자상)Acceleration voltage: 15 kV, Sample current: 0.05 μm, Beam size: 1 μm, Area size: 68.4 × 68.4 μm, Step size: 0.2 μm × 0.2 μm, Measuring element: Zn, Sn, O, SBSE (reflective electron image)

·XRD XRD

사용 장치: (주)리가꾸제, 울티마(Ultima)-IIIDevice used: Rigaku Co., Ltd., Ultima-III

X선: Cu-Kα선(파장 1.5406 Å, 흑연 모노미터로 단색화), 2θ-θ 반사법으로 측정, 연속 스캔(1.0°/분), 샘플링 간격: 0.02°, 슬릿: DS, SS, 2/3°, RS: 0.6 mmX-ray: Cu-Kα ray (wavelength 1.5406 Å, monochrome with graphite monometer), measured by 2θ-θ reflection method, continuous scan (1.0 ° / min), sampling interval: 0.02 °, slit: DS, SS, 2/3 °, RS: 0.6 mm

이 소결체를 습식 가공법에 의해, 두께 6 mm의 소결체에 가공하고, 인듐땜납을 이용하여 무산소 구리제 배킹 플레이트에 접합하여 타겟으로 하였다. This sintered compact was processed to the sintered compact of thickness 6mm by the wet processing method, it bonded to the backing plate made of oxygen-free copper using indium solder, and it was set as the target.

이 타겟을 사용하여 두께 0.7 mm의 유리 기판(코닝사 제조, #7059) 상에 투명 도전막을 스퍼터링에 의해 형성하였다. 스퍼터링 조건은 이하와 같이 하였다.Using this target, a transparent conductive film was formed by sputtering on a glass substrate (Corning Corporation, # 7059) having a thickness of 0.7 mm. Sputtering conditions were as follows.

(스퍼터링 조건) (Sputtering condition)

RF 전력: 110 W, 가스압: 0.3 Pa, 스퍼터링 가스: Ar, 100 %, 막 두께: 100 nm, 기판 온도: 200 ℃. RF power: 110 W, gas pressure: 0.3 Pa, sputtering gas: Ar, 100%, film thickness: 100 nm, substrate temperature: 200 deg.

얻어진 도전막의 사단자법으로 측정한 비저항율은 50 mΩ·cm였다. 또한, 파장 550 nm에서의 광선 투과율은 90 %였다. 또한, 투과율은 공기를 기준으로 유리 기판 포함의 투과율로서 측정하였다. The resistivity measured by the four-terminal method of the obtained conductive film was 50 mΩ · cm. Moreover, the light transmittance at wavelength 550 nm was 90%. In addition, the transmittance | permeability was measured as the transmittance | permeability containing a glass substrate based on air.

스퍼터링 타겟의 원료 조성, 조성 분석, 스퍼터링의 조건, 투명 도전막의 조성 및 성상 등을 하기 표 1에 나타낸다.The raw material composition, composition analysis, sputtering conditions, composition and properties of the transparent conductive film of the sputtering target are shown in Table 1 below.

Figure 112008006306018-PCT00001
Figure 112008006306018-PCT00001

<실시예 2, 3: 비교예 1 내지 3><Examples 2 and 3: Comparative Examples 1 to 3>

원료의 조성비를 표 1에 나타낸 바와 같이 변경한 것 이외에는, 실시예 1과 동일하게 타겟을 제조하고, 스퍼터링 성막하였다. Except having changed the composition ratio of the raw material as shown in Table 1, the target was produced like Example 1, and sputtering was formed into a film.

결과를 표 1에 나타낸다. The results are shown in Table 1.

<평가예><Evaluation Example>

스퍼터링 타겟의 원료 조성에서, Zn 금속 분말의 양을 0 내지 4 중량%로 변화시키고, 그만큼 ZnO 분말의 양을 조정한 것 이외에는, 실시예 3과 동일하게 하여 타겟을 제조하고, 스퍼터링 성막하였다. In the raw material composition of the sputtering target, the target was produced in the same manner as in Example 3 except that the amount of the Zn metal powder was changed to 0 to 4% by weight, and the amount of the ZnO powder was adjusted accordingly, and the sputtering film was formed.

얻어진 투명 도전막에 대해서, Zn 금속 분말의 양과 타겟의 벌크 저항값의 관계, 및 Zn 금속 분말의 양과 투명 도전막의 비저항값을 평가하였다. 각각의 결과를 도 1 및 도 2에 도시한다. About the obtained transparent conductive film, the relationship between the quantity of Zn metal powder and the bulk resistance value of a target, and the quantity of Zn metal powder, and the specific resistance value of a transparent conductive film were evaluated. Each result is shown in FIGS. 1 and 2.

본 발명의 스퍼터링 타겟을 사용하여 성막한 투명 도전막은 액정 표시 장치, EL 표시 장치 등, 여러 가지 표시 장치의 투명 전극으로서 바람직하게 사용할 수 있다. The transparent conductive film formed into a film using the sputtering target of this invention can be used suitably as a transparent electrode of various display apparatuses, such as a liquid crystal display device and an EL display device.

Claims (10)

산화아연 및 산화주석, 또는 산화아연, 산화주석 및 산화인듐을 포함하는 스퍼터링 타겟이며, 금속 또는 합금이 스퍼터링 타겟 전체에 분산되어 존재하는 스퍼터링 타겟. A sputtering target comprising zinc oxide and tin oxide or zinc oxide, tin oxide and indium oxide, wherein the metal or alloy is dispersed and present throughout the sputtering target. 제1항에 있어서, 하기 수학식 1 및 2를 충족시키는 스퍼터링 타겟. The sputtering target of claim 1, which satisfies Equations 1 and 2 below. <수학식 1><Equation 1> 0.65≤MZn/(MZn+MSn)≤0.90.65≤M Zn / (M Zn + M Sn ) ≤0.9 <수학식 2><Equation 2> 0≤MIn/(MZn+MSn+MIn)≤0.70≤M In / (M Zn + M Sn + M In ) ≤0.7 [식 중, MZn, MSn 및 MIn은 각각 스퍼터링 타겟에서의 Zn, Sn 및 In의 원자수를 나타냄][Wherein, M Zn , M Sn and M In each represent the number of atoms of Zn, Sn and In in the sputtering target] 제1항 또는 제2항에 있어서, 추가로 하기 수학식 3을 충족시키는 스퍼터링 타겟. The sputtering target according to claim 1 or 2, which further satisfies Equation 3 below. <수학식 3><Equation 3> Mo/(MZn+MSn×2+MIn×1.5)≤0.99M o / (M Zn + M Sn × 2 + M In × 1.5) ≤0.99 [식 중, MZn, MSn, Mo 및 MIn은 각각 스퍼터링 타겟에서의 Zn, Sn, O 및 In의 원자수를 나타냄][Wherein, M Zn , M Sn , M o, and M In each represent the number of atoms of Zn, Sn, O, and In in the sputtering target] 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 금속 또는 합금을 0.1 내지 6 질량% 포함하는 스퍼터링 타겟. The sputtering target according to any one of claims 1 to 3, which comprises 0.1 to 6 mass% of the metal or alloy. 제1항 내지 제4항 중 어느 한 항에 있어서, 산화인듐·산화아연을 포함하는 육방정상 층상 화합물(In2O3(ZnO)m: m은 3 내지 20의 정수)을 포함하는 스퍼터링 타겟. The sputtering target according to any one of claims 1 to 4, comprising a hexagonal layered compound (In 2 O 3 (ZnO) m: m is an integer of 3 to 20) containing indium zinc oxide and zinc oxide. 제1항 내지 제5항 중 어느 한 항에 있어서, 벌크 저항이 100 mΩcm 미만인 스퍼터링 타겟. The sputtering target according to any one of claims 1 to 5, wherein the bulk resistance is less than 100 mΩcm. 제1항 내지 제6항 중 어느 한 항에 있어서, 밀도가 5.3 내지 7.2 g/㎤인 스퍼터링 타겟. The sputtering target according to any one of claims 1 to 6, wherein the density is 5.3 to 7.2 g / cm 3. 금속 산화물의 분말과 금속의 분말을 혼합하는 공정을 포함하는, 제1항 내지 제7항 중 어느 한 항에 기재된 스퍼터링 타겟의 제조 방법. The manufacturing method of the sputtering target in any one of Claims 1-7 containing the process of mixing the powder of metal oxide and the powder of metal. 제1항 내지 제7항 중 어느 한 항에 기재된 스퍼터링 타겟을 사용하여 제조한 투명 도전막. The transparent conductive film manufactured using the sputtering target in any one of Claims 1-7. 제9항에 기재된 투명 도전막을 에칭하여 제조한 투명 전극. The transparent electrode manufactured by etching the transparent conductive film of Claim 9.
KR1020087002030A 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film KR101302332B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005217432A JP4761868B2 (en) 2005-07-27 2005-07-27 Sputtering target, manufacturing method thereof and transparent conductive film
JPJP-P-2005-00217432 2005-07-27
PCT/JP2006/314550 WO2007013387A1 (en) 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film

Publications (2)

Publication Number Publication Date
KR20080032121A true KR20080032121A (en) 2008-04-14
KR101302332B1 KR101302332B1 (en) 2013-08-30

Family

ID=37683284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087002030A KR101302332B1 (en) 2005-07-27 2006-07-24 Sputtering target, method for manufacturing such sputtering target, and transparent conducting film

Country Status (5)

Country Link
JP (1) JP4761868B2 (en)
KR (1) KR101302332B1 (en)
CN (1) CN101233258B (en)
TW (1) TWI394852B (en)
WO (1) WO2007013387A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552950B2 (en) 2006-03-15 2010-09-29 住友金属鉱山株式会社 Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
US9249032B2 (en) 2007-05-07 2016-02-02 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element
WO2009078329A1 (en) * 2007-12-19 2009-06-25 Hitachi Metals, Ltd. Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode
JP4982423B2 (en) * 2008-04-24 2012-07-25 株式会社日立製作所 Sputter target for forming zinc oxide thin film, display element and solar cell having zinc oxide thin film obtained using the same
US8753548B2 (en) 2008-12-12 2014-06-17 Idemitsu Kosan Co., Ltd. Composite oxide sintered body and sputtering target comprising same
CN101775576A (en) * 2009-01-12 2010-07-14 上海广电电子股份有限公司 ZnO-based powder-metal composite sputtering target material and preparation method thereof
TW201112265A (en) * 2009-09-22 2011-04-01 chuan-sheng Lv Method of manufacturing transparent conductive thin films for flexible polymer substrate and transparent conductive thin films
JP4875135B2 (en) * 2009-11-18 2012-02-15 出光興産株式会社 In-Ga-Zn-O-based sputtering target
JP5545448B2 (en) * 2010-09-29 2014-07-09 三菱マテリアル株式会社 Sputtering target
JP5651095B2 (en) 2010-11-16 2015-01-07 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP5460619B2 (en) * 2011-01-13 2014-04-02 住友重機械工業株式会社 Target and film forming apparatus provided with the same
JP6212869B2 (en) * 2012-02-06 2017-10-18 三菱マテリアル株式会社 Oxide sputtering target
JP2012229490A (en) * 2012-07-12 2012-11-22 Fujifilm Corp Film-forming method
JP2014167163A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
JP2014167162A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
CN103304220B (en) * 2013-06-04 2014-10-22 信利半导体有限公司 Target material and preparation method thereof as well as display device
JP6282142B2 (en) * 2014-03-03 2018-02-21 日東電工株式会社 Infrared reflective substrate and manufacturing method thereof
JP6159867B1 (en) * 2016-12-22 2017-07-05 Jx金属株式会社 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
JP6859841B2 (en) * 2017-05-12 2021-04-14 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and its manufacturing method
KR102192713B1 (en) * 2018-09-08 2020-12-17 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450258A (en) * 1987-08-21 1989-02-27 Sumitomo Metal Mining Co Production of thin film of high-refractive index dielectric material
JP2570832B2 (en) * 1988-10-21 1997-01-16 三菱マテリアル株式会社 Method for producing sintered body of good conductive indium oxide
DK0871793T3 (en) * 1995-08-31 2002-09-23 Bekaert Sa Nv Process for making articles of indium-tin-oxide (ITO) alloys
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JPH1136066A (en) * 1997-07-15 1999-02-09 Nippon Telegr & Teleph Corp <Ntt> Target for sputtering
KR100603128B1 (en) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 Sputtering target
JP2001076329A (en) * 1999-09-07 2001-03-23 Fuji Electric Co Ltd Magnetic recording medium and its production
JP2001262326A (en) * 2000-03-16 2001-09-26 Nikko Materials Co Ltd Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP4023728B2 (en) * 2002-06-21 2007-12-19 出光興産株式会社 Sputtering target, method for producing conductive film using the same, and transparent conductive film formed by the method
CN102522509B (en) * 2002-08-02 2016-01-20 出光兴产株式会社 Sputtering target, sintered body, conductive film produced using the same, organic EL element, and substrate used for the same
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display

Also Published As

Publication number Publication date
JP4761868B2 (en) 2011-08-31
TWI394852B (en) 2013-05-01
CN101233258B (en) 2010-08-18
TW200714724A (en) 2007-04-16
KR101302332B1 (en) 2013-08-30
WO2007013387A1 (en) 2007-02-01
CN101233258A (en) 2008-07-30
JP2007031786A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
KR101302332B1 (en) Sputtering target, method for manufacturing such sputtering target, and transparent conducting film
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP4054054B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
KR101155358B1 (en) Composite oxide sinter, process for producing amorphous composite oxide film, amorphous composite oxide film, process for producing crystalline composite oxide film, and crystalline composite oxide film
KR101344633B1 (en) ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
KR20090051170A (en) Lanthanoid-containing oxide target
KR20100012040A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
TW201413014A (en) Sputtering target for forming transparent oxide film and manufacturing method of the same
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP4960052B2 (en) Ytterbium oxide containing oxide target
JP2009132997A (en) VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2010053454A (en) Indium oxide-zinc oxide-magnesium oxide-based sputtering target, and transparent electroconductive film
JP5000231B2 (en) Gadolinium oxide-containing oxide target
KR101945083B1 (en) Sintered body, sputtering target comprising sintered body and thin film formed by using spattering target
JP5063968B2 (en) Erbium oxide-containing oxide target
JP4960041B2 (en) Neodymium oxide-containing oxide target
JP4960053B2 (en) Oxide target containing dysprosium oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee