WO2005103320A1 - Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film - Google Patents

Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film Download PDF

Info

Publication number
WO2005103320A1
WO2005103320A1 PCT/JP2005/002903 JP2005002903W WO2005103320A1 WO 2005103320 A1 WO2005103320 A1 WO 2005103320A1 JP 2005002903 W JP2005002903 W JP 2005002903W WO 2005103320 A1 WO2005103320 A1 WO 2005103320A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
conductive film
transparent conductive
sputtering target
per unit
Prior art date
Application number
PCT/JP2005/002903
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Inoue
Masato Matsubara
Shigekazu Tomai
Yukio Shimane
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to KR1020067021853A priority Critical patent/KR101168447B1/en
Publication of WO2005103320A1 publication Critical patent/WO2005103320A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Definitions

  • the present invention relates to an electrode substrate for driving liquid crystal and an electrode substrate for EL, and more particularly, to a transparent conductive film constituting a transparent electrode used for these electrode substrates. Further, the present invention relates to a sputtering target used for manufacturing the transparent conductive film.
  • ITO Indium Tin Oxide
  • aqua regia a mixture of nitric acid and hydrochloric acid
  • a strong acid causes problems. May be a problem. That is, in a liquid crystal display device using a TFT (Thin Film Transistor) as a constituent element, a thin metal wire may be used as a gate line or a source-drain line (or an electrode). In this case, when the ITO film is etched, there may be a problem that the wiring material is disconnected or thinned due to aqua regia.
  • TFT Thin Film Transistor
  • amorphous ITO is formed by making hydrogen or water exist in a sputtering gas during film formation, and the formed amorphous ITO is etched with a weak acid.
  • ITO itself is crystalline
  • etching is performed with a weak acid, there may be a problem that an etching residue is generated.
  • hydrogen or water is scattered in the sputtering gas at the time of film formation, projections called nodules are generated on the ITO sputtering target, which may cause abnormal discharge.
  • a target containing a hexagonal layered compound represented by 23 m-1 20) is disclosed. According to this target, a transparent conductive film having higher moisture resistance than the ITO film and having the same conductivity and light transmittance as the IT film can be obtained.
  • Patent Document 2 discloses that the value of ⁇ ⁇ ( ⁇ + ⁇ ), which is the atomic ratio of the zinc element and the indium element in the amorphous oxide, is less than 0.2-0.9.
  • a color filter for a liquid crystal display comprising a transparent electrode for driving a liquid crystal, wherein
  • a color filter for a liquid crystal display which does not easily cause cracks or peeling, is disclosed.
  • Patent Document 3 discloses a conductive transparent substrate containing In and Zn and having a value of InZ (In + Zn) of 0.8-0.9, wherein A conductive transparent substrate excellent in thermal stability of resistance is disclosed.
  • Patent Documents 13 to 13 disclose that a target free of nodules can be obtained and that a transparent conductive material having excellent etching properties and having the same specific resistance as ITO. There is also a patent document showing that a film can be obtained.
  • Patent Document 1 JP 06-234565 A
  • Patent Document 2 JP-A-07-120612
  • Patent Document 3 Japanese Patent Application Laid-Open No. 07-235219
  • Patent Document 4 Japanese Patent Application Laid-Open No. 08-264022
  • the band gap is not clearly seen, that is, since the band gap is not so large, the light beam on the short wavelength side, particularly, in the 400 to 450 nm region. In some cases, a problem that the transmittance is reduced occurs.
  • Patent Document 4 the refractive index can be controlled and the transparent conductive film with high transparency can be manufactured by adjusting the composition of the pseudo ternary oxide.
  • the sputtering target used for forming the transparent conductive film has a low conductivity, making it difficult to perform sputtering, and since the formed transparent conductive film is crystalline, the etching life is not so high. .
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a target that does not generate nodules during sputtering. Another object of the present invention is to provide an amorphous transparent conductive film which is excellent in etching properties and particularly excellent in transparency in the region of 400 to 450 nm (has high light transmittance in the region of 400 to 450 nm). Is Rukoto.
  • the present invention provides indium oxide, zinc oxide, and
  • Magnesium oxide and a sputtering target.
  • magnesium oxide By further adding magnesium oxide to a sputtering target composed of indium oxide and zinc oxide, the generation of nodules during sputtering can be more effectively suppressed, and a target with less abnormal discharge can be obtained.
  • the present invention provides a method for manufacturing a sputtering target containing indium oxide, zinc oxide, and magnesium oxide, wherein the crystal peak is obtained by observing a crystal peak obtained by X-ray diffraction.
  • General formula In ⁇ (ZnO) consisting of, indium oxide and zinc oxide
  • n is an integer from 3-20.
  • the crystal peak includes a predetermined hexagonal layered compound and In MgO.
  • the predetermined hexagonal layered compound is represented by a general formula In O (ZnO) comprising indium oxide and zinc oxide (where m is 3-2
  • indium oxide, zinc oxide, and a strong hexagonal layered compound include In Z oxide. n ⁇ , In ZnO, In ZnO, etc., whose general formula is In O (ZnO) (where
  • the size of the crystal grains of these composite oxides by EPMA (Electron Probe Microanalysis: X-ray microanalyzer) mapping should be 10 xm or less, preferably 5 zm or less, more preferably 3 ⁇ m or less. Is preferred.
  • the Balta resistance of the sputtering target does not contain the above hexagonal compound composed of indium oxide and suboxide, In Mg ⁇ , and the like.
  • the present invention is characterized in that it includes a hexagonal layered compound composed of indium oxide and zinc oxide, and In MgO composed of indium oxide and magnesium oxide.
  • [In] / ([In] + [Zn] + [Mg]) 0.74-0.94. If the value of [In] / ([In] + [Zn] + [Mg]) is less than 0.74, the Balta resistance of the sputtering target becomes too large, or the The specific resistance may increase. On the other hand, when the value of [In] / ([In] + [Zn] + [Mg]) is more than 0.94, the specific resistance of the formed transparent conductive film becomes large or the transparent conductive film becomes transparent. The conductive film may be crystallized, and residues may be generated during etching.
  • [Zn] Z ([In] + [Zn] + [Mg]) 0. 05-0.25.
  • the value of [Zn] / ([In] + [Zn] + [Mg]) is less than 0.05, the specific resistance of the formed transparent conductive film becomes too large or crystallizes. Sometimes. On the other hand, when the value of [Zn] / ([In] + [Zn] + [Mg]) is more than 0.25, the specific resistance of the formed transparent conductive film may be too large.
  • [Mg] / ([In] + [Zn] + [Mg]) 0.01 ⁇ 0.20. If the value is less than 0.01, the specific resistance of the formed transparent conductive film may be excessively high or may be crystallized, and the transmittance of the transparent conductive film may not increase. is there. On the other hand, when the value of [Mg] / ([In] + [Zn] + [Mg]) is more than 0.25, the specific resistance of the formed transparent conductive film may be too large.
  • the present invention is the sputtering target according to any one of (1) to (4), further comprising a positive tetravalent metal oxide.
  • Positive tetravalent means that the valence of the metal atom in the metal oxide is +4.
  • the Balta resistance of the sputtering target is reduced, and abnormal discharge can be prevented.
  • the positive tetravalent metal oxide may be SnO 2, ZrO, GeO, or CeO.
  • SnO 2, ZrO 2, GeO 2 and CeO can be preferably used.
  • the present invention also selects a group M force consisting of SnO 2, ZrO, GeO, CeO, and GaO force.
  • the sputtering target according to the above (6) further comprising one or more metal oxides.
  • [M] is a metal in one or more metal oxides selected from the group M per unit volume, that is, any one of Sn, Zr, Ge, Ce, and Ga per unit volume.
  • [total metal] is the total metal per unit volume, that is, In, Zn, Mg per unit volume; Represents the total number of atoms of one or more selected metal oxides.
  • the value of [M] / [all metals] is 0.0001 to 0.15, preferably 0.0003 to 0.12, and more preferably 0.0005 to 0.1. .
  • the value of [ ⁇ ] / [all metals] is less than 0.0001, the effect of addition may not be obtained.
  • the value of [ ⁇ ] / [all metals] exceeds 0.15, film formation In some cases, the etching life of the obtained transparent conductive film hardly improves.
  • the present invention is an amorphous transparent conductive film characterized by containing indium oxide, zinc oxide and magnesium oxide.
  • the transparent conductive film contains indium oxide, zinc oxide, and magnesium oxide, a completely amorphous transparent conductive film can be obtained.
  • the transparent conductive film contains magnesium oxide, it is possible to effectively prevent the light transmittance of the transparent conductive film from decreasing in the range of 400 to 450 ⁇ m.
  • [In] / ([In] + [Zn] + [Mg]) 0.74-0.94
  • [Zn] / ([In] + [Zn] + [ Mg]) 0.05-0.25
  • [Mg] / ([In] + [Zn] + [Mg]) 0.01-0.20
  • [In] represents the number of indium atoms per unit volume
  • [Zn] represents the number of zinc atoms per unit volume
  • [Mg] represents the number of magnesium atoms per unit volume. .
  • the transparent conductive film of the present invention Is 0.74-0.94, preferably f-0.7-0.92, more preferably f5-0.75-0.9. If the value of [In] / ([In] + [Zn] + [Mg]) is less than 0.74, the specific resistance of the transparent conductive film may be too large, and [111] 7 ([111 If the value of [+11] + [1 ⁇ ⁇ ]) is more than 0.94, the transparent conductive film may be easily crystallized or the specific resistance may be increased.
  • the value of the transparent conductive film of the present invention, 1 1] 7 ([111 ] + 1 1] + [1 ⁇ ⁇ ]) is 0.05 0 • 25, preferably 0-07-0.25, more preferably 0-08-0.22.
  • the transparent conductive film may be easily crystallized or the specific resistance may be increased.
  • the value of [Zn] / ([In] + [Zn] + [Mg]) is more than 0.25, the specific resistance of the transparent conductive film may become too large.
  • the value of [Mg] / ([In] + [Zn] + [Mg]) is from 0.01 to 0.2, preferably from 0.01 to 0.15. Yes, and more preferably 0.02-0.1.
  • the transmittance of the transparent conductive film does not increase, the crystallization becomes easy, or the ratio increases. Resistance may increase.
  • the value of [Mg] / ([In] + [Zn] + [Mg]) is more than 0.20, the specific resistance of the formed transparent conductive film may be too large. .
  • the transparent conductive film may not be able to obtain desirable transparency, specific resistance, etching property, and the like.
  • the present invention is the amorphous transparent conductive film according to the above (9) or (10), further comprising a positive tetravalent metal oxide.
  • the Balta resistance of the target is reduced, and the transparent conductive film can be formed in a stable discharge state. For this reason, a more stable transparent conductive film can be obtained.
  • the present invention provides the method wherein the metal oxide having a positive valence of four is SnO 2, ZrO, GeO, or CeO.
  • SnO2, ZrO2, GeO2, and CeO can be preferably used.
  • the present invention relates to the group M consisting of SnO 2, ZrO, and GeO, CeO, and GaO forces.
  • [M] is the group M per unit volume.
  • the metal in one or two or more metal oxides selected from the group consisting of Sn, Zr, Ge, Ce, and Ga per unit volume represents the number of one or more atoms, All metals] are the total metals per unit volume, that is, the atoms of In, Zn, Mg, and the metal in one or more metal oxides selected from the group M per unit volume. Indicates the total number.
  • It is preferably 15 and preferably 0.0003 0.12, more preferably 0.0005 and 0.1.
  • the sputtering target of the present invention hardly generates nodules during sputtering.
  • the amorphous transparent conductive film of the present invention hardly generates residues and the like by etching with a weak acid (such as an organic acid), and is excellent in transparency (light transmittance) in a 400 to 450 nm region. .
  • a weak acid such as an organic acid
  • FIG. 1 is a diagram showing physical property parameters of a sputtering target and a transparent conductive film in Example 119 and Comparative Examples 1 and 2.
  • FIG. 2 is a diagram illustrating an X-ray chart of a target 1 according to the first embodiment.
  • MgO powder having an average particle size of 1 ⁇ m or less was weighed at a predetermined ratio, mixed, put into a resin pot, added water, and mixed with a wet ball mill using hard ZrO balls.
  • the mixing time was 20 hours.
  • take out the obtained mixed slurry Then, filtration, drying and granulation were performed.
  • the obtained granules were placed in a molding die and molded by applying a pressure of 3 ton / cm 2 with a cold isostatic press to obtain a molded body.
  • the obtained molded body was sintered as follows. First, in a sintering furnace, the green body is placed, a volume 0. lm 3 per the sintering furnace, at a rate 5 liters Z min, flowing oxygen. In this atmosphere, the compact was sintered at 1470 ° C for 5 hours. At this time, the temperature in the sintering furnace was raised by 1 ° CZ up to 1000 ° C, and by 3 ° CZ between 1000 ° C and 1470 ° C. Thereafter, the flow of oxygen was stopped, and the temperature in the sintering furnace was decreased from 1470 ° C to 1300 ° C at a rate of 10 ° C / min. The volume 0. lm 3 per the sintering furnace, and flowing Ar at a rate 10 l Z component, in this atmosphere, after the molded body was held for 3 hours at 1300 ° C, allowed to cool, A sintered body was obtained.
  • the relative density of the obtained sintered body was determined as follows. First, it was measured by the Archimedes method using water, and the relative density was calculated from the theoretical density. The value was 97%. This relative density is shown in FIG. The theoretical density at this time was calculated from the weight fraction of an oxide of In ⁇ crystal (bixbitite type structure) having no oxygen vacancy and Zn and Mg.
  • [In] represents the number of indium atoms per unit volume in the sintered body
  • [Zn] represents the number of zinc atoms per unit volume in the sintered body
  • [Mg] represents the number of magnesium atoms per unit volume in the sintered body.
  • the sputtered surface of the above sintered body was polished with a cup grindstone, added to a diameter of 100 mm and a thickness of 5 mm, and bonded with a backing plate using an In-based alloy to form a sputtering target 1.
  • the Balta resistance of this sputtering target 1 The resistivity of Target 1 was measured by the four-probe method using Ryoyu Chemical Co., Ltd., and was calculated based on the measured resistivity value. The calculated values of the Balta resistance are shown in Figure 1.
  • the form in which zinc or magnesium is contained in the target 1 is a composite oxide of indium oxide-zinc oxide (for example, In) rather than zinc oxide (ZnO) or dispersed as magnesium oxide (Mg ⁇ ).
  • indium oxide-zinc oxide for example, In
  • ZnO zinc oxide
  • Mg ⁇ magnesium oxide
  • FIG. 2 shows a diagram representing an X-ray chart of the target 1.
  • the vertical axis represents the intensity of the diffracted X-ray
  • the horizontal axis represents the angle of the diffracted X-ray.
  • the hexagonal layered compound composed of indium oxide and zinc oxide may be, for example, In Zn ⁇ , In Zn ⁇ , In ZnO, or the like having a general formula of In O (ZnO) (where m is an integer of 3 to 20).
  • the indium oxide, zinc oxide, and magnesium oxide in the target 1 are, for example, in the form of a hexagonal layered compound composed of indium oxide and suboxide ii, and In Mg ⁇ composed of indium oxide and magnesium oxide. It is preferable that they are dispersed in the form.
  • the Balta resistance of the target 1 does not become too large, and the discharge becomes stable during sputtering.
  • the hexagonal layered compound composed of indium oxide and zinc oxide has a general formula of In ⁇ (ZnO) (where m is 3) such as, for example, InZnO, InZn ⁇ , and InZn ⁇ . 20 of
  • the Balta resistance of the target 1 becomes less than 10 m ⁇ cm, and stable sputtering becomes possible.
  • nodules were generated (Fig. 1).
  • a transparent conductive film la having a thickness of 130 nm was formed on a slide glass at 200 ° C.
  • the specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film la were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film la, no peak was observed and it was found that the film was amorphous.
  • the transparent conductive film la was etched using a weak acid, no residue was generated and residue was generated (Fig. 1).
  • Example 1 As described above, in Example 1, a transparent conductive film la which was amorphous but had an improved light transmittance at 400 to 450 nm was obtained.
  • a sintered body is obtained by mixing, molding, and sintering the above powder in the same manner as in Example 1 except that the mixing ratio of the Mg ⁇ powder having a particle size of lxm or less is different. Obtained.
  • the relative density of the obtained sintered body was determined by the same method as in Example 1 above. The calculated relative densities are shown in Figure 1.
  • indium oxide, zinc oxide, and magnesium oxide in the sputtering target 2 of Example 2 are a hexagonal layered compound having the same form as in Example 1 described above, and In
  • a transparent conductive film 2a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 1 above.
  • the specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 2a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of the transparent conductive film 2a, no peak was observed and it was found that the film was amorphous.
  • the transparent conductive film 2a was etched using a weak acid, no residue was generated and the residue was generated (FIG. 1).
  • a transparent conductive film 2a which is amorphous but has an improved light transmittance at 400 to 450 nm was obtained.
  • the powder was mixed, molded and sintered in the same manner as in Examples 1 and 2 except that the mixing ratio of Mg ⁇ powder having a particle size of lxm or less was different, Got.
  • the relative density of the obtained sintered body was determined by the same method as in Examples 1 and 2. The relative density obtained at this time is shown in FIG.
  • a backing plate was attached to the sputtered surface of this sintered body to produce a sputtering target 3. Further, the Balta resistance of this target 3 was determined in the same manner as in Examples 1 and 2 above. Bulk resistance The values of the anti are shown in FIG. When sputtering was performed using this target 3, nodules were generated (Fig. 1).
  • indium oxide, zinc oxide and magnesium oxide in the sputtering target 3 of Example 3 are formed of a hexagonal layered compound having the same form as in Examples 1 and 2, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
  • a 130 nm-thick transparent conductive film 3a was formed on a slide glass at 200 ° C. in the same manner as in Examples 1 and 2 above.
  • the specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film 3a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 3a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 3a was etched using a weak acid, no residue was generated (FIG. 1).
  • Example 3 As in Examples 1 and 2, a transparent conductive film 3a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained.
  • Example 4 a transparent conductive film 3a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained.
  • a backing plate was attached to the sputtered surface of this sintered body to produce a sputtering target 4. Further, in Example 11 above, The Balta resistance of this target 4 was determined in the same manner as in 3. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 4, nodules were not generated (FIG. 1).
  • indium oxide, zinc oxide, and magnesium oxide in the sputtering target 4 of the fourth embodiment were obtained by mixing a hexagonal layered compound having the same form as that of the above-described embodiment 13 with InMgO, Its presence in morphology was confirmed by X-ray diffraction.
  • a transparent conductive film 4a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 1 above.
  • the specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film 4a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 4a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 4a was etched using a weak acid, no residue was generated (FIG. 1).
  • Example 4 As described above, in Example 4, as in Examples 13 to 13, the transparent conductive film 4a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained.
  • the above powders were mixed at a ratio, molded, and sintered to obtain a sintered body.
  • the relative density of the obtained sintered body was determined by the same method as in Examples 14 to 14 above. The calculated relative densities are shown in Figure 1.
  • the content of Zn, Mg, and Sn in the obtained sintered body was quantitatively analyzed by ICP emission spectrometry in the same manner as in Examples 14 to 14, and the raw material powders were mixed. It was confirmed that the prepared composition was maintained even in the sintered body. At this time, the specific value of the composition ratio in the sintered body confirmed is shown in FIG.
  • M means a group consisting of Sn, Zr, and Ge, and particularly in Fig. 1, M represents any of Sn, Zr, and Ge.
  • M is a unit in the sintered body Represents the number of Sn, Zr, and Ge atoms per volume.
  • a backing plate was bonded to the sputtered surface of this sintered body to produce a sputtering target 5. Further, the Balta resistance of this target 5 was determined in the same manner as in Examples 14 to 14 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 5, nodules were not generated (FIG. 1).
  • indium oxide, zinc oxide, and magnesium oxide in the sputtering target 5 of the present Example 5 were obtained by using a hexagonal layered compound having the same form as that of Example 14 above, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
  • a transparent conductive film 5a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 14 above.
  • the specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 5a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of the transparent conductive film 5a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 5a was etched using a weak acid, no residue was generated (FIG. 1).
  • Example 5 similarly to Examples 14 to 14, a transparent conductive film 5a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
  • Example 5 In the same manner as in Example 5, the above powder was mixed, molded, and sintered to obtain a sintered body.
  • the relative density of the obtained sintered body was determined by the same method as in Examples 115. The calculated relative density is shown in FIG.
  • Example 5 when the contents of Zn, Mg, and Sn in the obtained sintered body were quantitatively analyzed by the ICP emission spectrometry, the charge at the time of mixing the raw material powders was determined. The composition is baked It was confirmed that it was maintained even in the union. At this time, the specific value of the composition ratio in the sintered body confirmed is shown in FIG.
  • a sputtering target 6 was manufactured by bonding a backing plate to the sputtered surface of this sintered body in the same manner as in Example 15 above. Further, the Balta resistance of this target 6 was determined in the same manner as in Examples 115. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 6, nodules were not generated (Fig. 1).
  • indium oxide, zinc oxide and magnesium oxide in the sputtering target 6 of the present Example 6 are composed of a hexagonal layered compound having the same form as in Example 15 above, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
  • a transparent conductive film 6a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 15 above.
  • the specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 6a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 6a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 6a was etched with a weak acid, no residue was generated (FIG. 1).
  • the transparent conductive film 6a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
  • a sputtering target 7 was manufactured by bonding a backing plate to the sputtered surface of this sintered body in the same manner as in Example 16 above. Further, the Balta resistance of this target 7 was determined in the same manner as in Example 16 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 7, nodules were not generated (FIG. 1).
  • indium oxide, zinc oxide and magnesium oxide in the sputtering target 7 of Example 7 are a hexagonal layered compound having the same form as that of Example 16 above, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
  • a 130 nm-thick transparent conductive film 7a was formed on a slide glass at 200 ° C. in the same manner as in Example 16 above.
  • the specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film 7a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of the transparent conductive film 7a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 7a was etched using a weak acid, no residue was generated (FIG. 1).
  • Example 7 As described above, in the present Example 7, as in the case of Example 16 described above, a transparent conductive film 7a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
  • Example 4 except that ZrO powder was mixed at a predetermined ratio, the same composition as in Example 4 above was used.
  • the above powders were mixed at a ratio, molded, and sintered to obtain a sintered body.
  • the relative density of the obtained sintered body was determined by the same method as in Example 17 above. The calculated relative densities are shown in Figure 1.
  • Example 17 Next, in the same manner as in Example 17 above, a backing plate was bonded to the sputtered surface of this sintered body to produce a sputtering target 8. Further, the Balta resistance of this target 8 was determined in the same manner as in Example 17 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 8, nodules were not generated (FIG. 1).
  • indium oxide, zinc oxide and magnesium oxide in the sputtering target 8 of the eighth embodiment are composed of a hexagonal layered compound having the same form as that of the above-mentioned Example 17; InMgO; Its presence in morphology was confirmed by X-ray diffraction.
  • a transparent conductive film 8a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 17 above.
  • the specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 8a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 8a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 8a was etched using a weak acid, no residue was generated (FIG. 1).
  • Example 8 As described above, in Example 8, as in Example 17 described above, a transparent conductive film 8a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
  • Example 8 The same composition as in Example 8 except that GeO powder was mixed instead of ZrO powder.
  • the above powders were mixed at a ratio, molded, and sintered to obtain a sintered body.
  • the relative density of the obtained sintered body was determined by the same method as in Example 18 above. The calculated relative densities are shown in Figure 1.
  • a sputtering target 9 was manufactured by bonding a backing plate to the sputtered surface of this sintered body in the same manner as in Example 18 above. Further, the Balta resistance of this target 9 was determined in the same manner as in Example 18 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 9, nodules were not generated (FIG. 1).
  • indium oxide, zinc oxide and magnesium oxide in the sputtering target 9 of the ninth embodiment correspond to a hexagonal layered compound having the same form as that of the above-mentioned embodiment 18; InMgO; Its presence in morphology was confirmed by X-ray diffraction.
  • a 130 nm-thick transparent conductive film 9a was formed on a slide glass at 200 ° C. in the same manner as in Example 18 above.
  • the specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 9a were measured.
  • the measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 9a, no peak was observed and it was found that the film was amorphous. When this transparent conductive film 9a was etched using a weak acid, no residue was generated (FIG. 1).
  • a transparent conductive film 9a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained.
  • the sputtering target of the present invention is not particularly limited except that it contains three components of indium oxide, zinc oxide, and magnesium oxide at a predetermined ratio. Therefore, for example, it can be manufactured by mixing, molding, and sintering the powder composed of the above three components using a known method.
  • the sputtering target was used. Contains a predetermined ratio of SnO, ZrO, or GeO in addition to the above three components.
  • GaO, CeO, or the like is also preferable to contain GaO, CeO, or the like as a component other than these. Also,
  • GaO When GaO is added to the target, InGaMgO, InGaMgO, InGaMgO,
  • they are dispersed.
  • the sputtering target of Example 10 is different from the above-described Sn-based alloy in addition to the three components of indium oxide, zinc oxide, and magnesium oxide.
  • the sputtering target of the tenth embodiment has the same operation and effect as the sputtering target of the 19th embodiment.
  • a transparent conductive film formed using such a sputtering target also has the same operation and effect as the transparent conductive film of Example 19-19.
  • Example 19 Using a commercially available ITO target, that is, a sputtering target composed of indium oxide and tin oxide, the same treatment and operation as in Example 19 above were performed.
  • the relative density, composition ratio, and Balta resistance of the ITO target were determined in the same manner as in Example 19 above.
  • the obtained relative density, composition ratio, and Balta resistance values are shown in FIG. [X] in FIG. 1 represents the number of Sn or Zn atoms per unit volume in the target.
  • nodules were generated (Fig. 1).
  • a transparent conductive film having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 19 above.
  • the specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film were measured.
  • the measured specific resistance and light transmittance values are shown in FIG.
  • this transparent conductive film When etching was performed using a weak acid, residues were generated (Fig. 1).
  • IZ ⁇ indium monozinc oxide: “IZO” is a registered trademark
  • IZO indium monozinc oxide
  • the relative density, composition ratio, and Balta resistance of the IZ ⁇ target were determined in the same manner as in Example 119 above. The obtained relative density, composition ratio, and Balta resistance values are shown in FIG. When sputtering was performed using this IZ ⁇ target, nodules were generated (Fig. 1).
  • a transparent conductive film having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 19 above.
  • the specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film were measured.
  • the measured specific resistance and light transmittance values are shown in FIG.
  • this transparent conductive film was etched using a weak acid, no residue was generated (FIG. 1).

Abstract

Disclosed is a target which does not form nodules during sputtering. Also disclosed is an amorphous transparent conductive film which has excellent etching properties and excellent transparency especially in the 400-450 nm region. Specifically disclosed is a sputtering target containing indium oxide, zinc oxide and magnesium oxide, which does not form nodules during sputtering. Also specifically disclosed is an amorphous transparent conductive film containing indium oxide, zinc oxide and magnesium oxide, which is excellent in etching properties and has high light transmittance in the 400-450 nm region.

Description

明 細 書  Specification
酸化インジウム一酸化亜鉛一酸化マグネシウム系スパッタリングターゲット 及び透明導電膜  Indium oxide / magnesium oxide / magnesium oxide based sputtering target and transparent conductive film
技術分野  Technical field
[0001] 本発明は、液晶駆動用の電極基板、 EL用の電極基板に関し、特に、これらの電極 基板に用レ、られる透明電極を構成する透明導電膜に関する。また、本発明は、この 透明導電膜を製造するために用いられるスパッタリングターゲットに関する。  The present invention relates to an electrode substrate for driving liquid crystal and an electrode substrate for EL, and more particularly, to a transparent conductive film constituting a transparent electrode used for these electrode substrates. Further, the present invention relates to a sputtering target used for manufacturing the transparent conductive film.
背景技術  Background art
[0002] 従来より、透明導電膜用スパッタリングターゲットとして、 Snをドーピングした材料が 検討されている。特に、 ITO (インジウム'スズ酸化物: Indium Tin Oxide)は広く 用いられている。  [0002] Conventionally, as a sputtering target for a transparent conductive film, a material doped with Sn has been studied. In particular, ITO (Indium Tin Oxide) is widely used.
し力 ながら、 ITOの場合には、その比抵抗を下げるために、結晶化させる必要が ある。そのため、高温で成膜するか、又は、成膜後に所定の加熱処理を行う必要があ つた。  However, in the case of ITO, it is necessary to crystallize to reduce its specific resistance. Therefore, it is necessary to form a film at a high temperature or to perform a predetermined heat treatment after the film is formed.
[0003] また、結晶化した ITO膜のエッチングカ卩ェ時には、強酸である王水(硝酸'塩酸の 混合液)がエッチング液として用いられているが、強酸を使用することによる不具合の 発生力 問題になる場合がある。すなわち、 TFT (Thin Film Transistor:薄膜ト ランジスタ)等を構成要素として使用する液晶表示装置では、ゲート線、ソース'ドレイ ン線 (又は電極)として金属細線を使用することがある。この場合には、 ITO膜のエツ チンダカ卩ェ時に、王水によりこれら配線材料が断線したり、線細りが発生するという問 題が生じる場合があった。  [0003] In addition, when etching the crystallized ITO film, aqua regia (a mixture of nitric acid and hydrochloric acid) is used as an etching solution, but the use of a strong acid causes problems. May be a problem. That is, in a liquid crystal display device using a TFT (Thin Film Transistor) as a constituent element, a thin metal wire may be used as a gate line or a source-drain line (or an electrode). In this case, when the ITO film is etched, there may be a problem that the wiring material is disconnected or thinned due to aqua regia.
[0004] そこで、成膜時に、スパッタガス中に水素や水を存在させることにより、非晶質 ITO を成膜し、成膜された非晶質 ITOを弱酸でエッチングする方法が提案されている。し 力 ながら、 ITO自身は結晶性であるため、弱酸でエッチングを行った場合には、ェ ツチング残渣を発生してしまうことが問題となる場合があった。また、成膜時に、スパッ タガス中に水素又は水を散在させると、 ITOスパッタリングターゲット上に、ノジュール と呼ばれる突起が発生し、異常放電の原因にもなる恐れもあった。 [0005] 一方、一般的に透明導電膜に添加される Sn以外の添加金属として、 Znを添加す るスパッタリングターゲットや導電材料、透明導電膜に関する特許の一例として、次の ような特許文献が開示されている。 [0004] Therefore, a method has been proposed in which amorphous ITO is formed by making hydrogen or water exist in a sputtering gas during film formation, and the formed amorphous ITO is etched with a weak acid. . However, since ITO itself is crystalline, when etching is performed with a weak acid, there may be a problem that an etching residue is generated. In addition, when hydrogen or water is scattered in the sputtering gas at the time of film formation, projections called nodules are generated on the ITO sputtering target, which may cause abnormal discharge. [0005] On the other hand, as an example of a patent relating to a sputtering target, a conductive material, and a transparent conductive film to which Zn is added as an additional metal other than Sn generally added to the transparent conductive film, the following patent documents are disclosed. Have been.
例えば、下記特許文献 1には、 Inと Znを主成分とし、一般式 In O (ZnO) (m= 2  For example, in Patent Document 1 below, In and Zn are used as main components, and the general formula In O (ZnO) (m = 2
2 3 m 一 20)で表される六方晶層状化合物を含むターゲットが開示されている。このターグ ットによれば、 ITO膜よりも耐湿性に優れるとともに、 IT〇膜と同等の導電性および光 透過率を有する透明導電膜が得られる。  A target containing a hexagonal layered compound represented by 23 m-1 20) is disclosed. According to this target, a transparent conductive film having higher moisture resistance than the ITO film and having the same conductivity and light transmittance as the IT film can be obtained.
[0006] また、下記特許文献 2には、非晶質酸化物における亜鉛元素と、インジウム元素と、 の原子比である ΖηΖ (Ζη + Ιη)の値力 0. 2-0. 9未満である液晶駆動用透明電 極を備える液晶ディスプレイ用カラーフィルタであって、上記液晶駆動用透明電極に [0006] Patent Document 2 below discloses that the value of 力 ηΖ (Ζη + Ιη), which is the atomic ratio of the zinc element and the indium element in the amorphous oxide, is less than 0.2-0.9. A color filter for a liquid crystal display comprising a transparent electrode for driving a liquid crystal, wherein
、クラックや剥離が生じにくい液晶ディスプレイ用カラーフィルタが開示されている。 In addition, a color filter for a liquid crystal display, which does not easily cause cracks or peeling, is disclosed.
[0007] また、下記特許文献 3には、 In及び Znを含有し、 InZ (In + Zn)の値が 0. 8-0. 9 である導電性透明基材であって、エッチング特性、比抵抗の熱的安定性に優れた導 電性透明基材が開示されている。 [0007] Patent Document 3 below discloses a conductive transparent substrate containing In and Zn and having a value of InZ (In + Zn) of 0.8-0.9, wherein A conductive transparent substrate excellent in thermal stability of resistance is disclosed.
[0008] さらに、これらの開示された特許文献 1一 3の中には、ノジュールの発生しないター ゲットが得られることや、エッチング性に優れ、且つ、 ITOと同等の比抵抗を有する透 明導電膜が得られること、が示されてレ、る特許文献もある。 [0008] Furthermore, Patent Documents 13 to 13 disclose that a target free of nodules can be obtained and that a transparent conductive material having excellent etching properties and having the same specific resistance as ITO. There is also a patent document showing that a film can be obtained.
[0009] 特許文献 1 :特開平 06 - 234565号公報 Patent Document 1: JP 06-234565 A
特許文献 2:特開平 07— 120612号公報  Patent Document 2: JP-A-07-120612
特許文献 3:特開平 07 - 235219号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 07-235219
特許文献 4:特開平 08— 264022号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 08-264022
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力 ながら、非晶質の透明導電膜では、バンドギャップが明確に出なレ、、すなわ ちバンドギャップがそれほど大きくないので、短波長側、特に 400— 450nm域にお ける光線透過率が低下するという問題が生じる場合があった。 [0010] However, in the case of an amorphous transparent conductive film, the band gap is not clearly seen, that is, since the band gap is not so large, the light beam on the short wavelength side, particularly, in the 400 to 450 nm region. In some cases, a problem that the transmittance is reduced occurs.
[0011] これに対して、上記特許文献 4では、擬 3元系酸化物の組成を調整することにより、 屈折率を制御でき、且つ、透明性の高い透明導電膜を製造している。しかしながら、 この透明導電膜を成膜するために用いるスパッタリングターゲットの導電率が低くスパ ッタリングしにくかったり、成膜された透明導電膜が結晶性であることからエッチング 十生がそれほど高くないという問題があった。 [0011] On the other hand, in Patent Document 4 described above, the refractive index can be controlled and the transparent conductive film with high transparency can be manufactured by adjusting the composition of the pseudo ternary oxide. However, There is a problem that the sputtering target used for forming the transparent conductive film has a low conductivity, making it difficult to perform sputtering, and since the formed transparent conductive film is crystalline, the etching life is not so high. .
[0012] 本発明は、上記課題を解決するためになされたものであり、その目的は、スパッタリ ング時に、ノジュールを発生しないターゲットを提供することである。また、本発明の 他の目的は、エッチング性に優れ、且つ、特に 400 450nm域の透明性に優れた( 400— 450nm域において、高い光線透過率を有する)非晶質透明導電膜を提供す ることである。 [0012] The present invention has been made to solve the above problems, and an object of the present invention is to provide a target that does not generate nodules during sputtering. Another object of the present invention is to provide an amorphous transparent conductive film which is excellent in etching properties and particularly excellent in transparency in the region of 400 to 450 nm (has high light transmittance in the region of 400 to 450 nm). Is Rukoto.
課題を解決するための手段  Means for solving the problem
[0013] スパッタリングターゲットの発明 [0013] Invention of a sputtering target
( 1 )そこで、上記課題を解決するために、本発明は、酸化インジウムと、酸化亜鉛と (1) In order to solve the above problems, the present invention provides indium oxide, zinc oxide,
、酸化マグネシウムと、を含むことを特徴とするスパッタリングターゲットである。 , Magnesium oxide, and a sputtering target.
酸化インジウムと、酸化亜鉛と、からなるスパッタリングターゲットに、さらに、酸化マ グネシゥムを加えることにより、スパッタリング時に生じるノジュール発生をより効果的 に抑え、異常放電の少なレ、ターゲットが得られる。  By further adding magnesium oxide to a sputtering target composed of indium oxide and zinc oxide, the generation of nodules during sputtering can be more effectively suppressed, and a target with less abnormal discharge can be obtained.
[0014] (2)また、本発明は、酸化インジウムと、酸化亜鉛と、酸化マグネシウムと、を含むス パッタリングターゲットにおいて、 X線回折により得られる結晶ピークを観察した場合 に、前記結晶ピークが、酸化インジウム及び酸化亜鉛からなる一般式 In〇 (ZnO) (2) Further, the present invention provides a method for manufacturing a sputtering target containing indium oxide, zinc oxide, and magnesium oxide, wherein the crystal peak is obtained by observing a crystal peak obtained by X-ray diffraction. General formula In〇 (ZnO) consisting of, indium oxide and zinc oxide
2 3 m で表される六方晶層状化合物と、酸化インジウム及び酸化マグネシウムからなる In  23 Hexagonal layered compound represented by 3 m and In composed of indium oxide and magnesium oxide
2 2
MgOと、に由来するピークを含むことを特徴とするスパッタリングターゲットである。こAnd a peak derived from MgO. This
4 Four
こで、 mは 3— 20の整数である。  Where m is an integer from 3-20.
[0015] X線回折によりスパッタリングターゲット表面を測定した結果、得られる結晶ピークを 観察した場合に、この結晶ピークには、所定の六方晶層状化合物と、 In MgOと、に [0015] As a result of measuring the sputtering target surface by X-ray diffraction and observing the obtained crystal peak, the crystal peak includes a predetermined hexagonal layered compound and In MgO.
2 4 由来するピークが含まれていることが必須である。ここで、所定の六方晶層状化合物 とは、酸化インジウム及び酸化亜鉛からなる一般式 In O (ZnO) (ここで、 mは 3— 2  It is essential that peaks derived from 24 are included. Here, the predetermined hexagonal layered compound is represented by a general formula In O (ZnO) comprising indium oxide and zinc oxide (where m is 3-2
2 3 m  2 3 m
0の整数である)で表される六方晶層状化合物のことである。また、上記 In MgOは、  Is an integer of 0). Also, the above In MgO is
2 4 酸化インジウム及び酸化マグネシウムから構成される。  24 Consists of indium oxide and magnesium oxide.
[0016] 酸化インジウムと、酸化亜鉛と、力 なる六方晶層状化合物の具体例としては、 In Z n〇、 In Zn O、 In Zn O、等が挙げられ、その一般式は、 In O (ZnO) (ここで[0016] Specific examples of indium oxide, zinc oxide, and a strong hexagonal layered compound include In Z oxide. n〇, In ZnO, In ZnO, etc., whose general formula is In O (ZnO) (where
3 6 2 4 7 2 5 8 2 3 m mは、 3— 20の整数である。)で表される。また、 EPMA (Electron Probe Microa nalysis : X線マイクロアナライザー)のマッピングによるこれらの複合酸化物の結晶粒 子の大きさは、 10 x m以下、好ましくは 5 z m以下、より好ましくは 3 μ m以下であるこ とが好ましい。 3 6 2 4 7 2 5 8 2 3 mm m is an integer of 3-20. ). The size of the crystal grains of these composite oxides by EPMA (Electron Probe Microanalysis: X-ray microanalyzer) mapping should be 10 xm or less, preferably 5 zm or less, more preferably 3 μm or less. Is preferred.
[0017] スパッタリングターゲットが、酸化インジウムと、酸化亜 と、からなる上記六方晶状 化合物及び In Mg〇等を含まない場合には、スパッタリングターゲットのバルタ抵抗  In the case where the sputtering target does not contain the above hexagonal compound composed of indium oxide and suboxide, In Mg〇, and the like, the Balta resistance of the sputtering target
2 4  twenty four
が、 10m Ω cm超になることがある。このように、バルタ抵抗が 10m Ω cm超になると、 スパッタリング中に異常放電が生じたり、スパッタリングターゲットが割れたりすることが ある。  Can exceed 10 mΩcm. As described above, when the Balta resistance exceeds 10 mΩcm, abnormal discharge may occur during sputtering or the sputtering target may be cracked.
[0018] (3)また、本発明は、酸化インジウム及び酸化亜鉛からなる六方晶層状化合物と、 酸化インジウム及び酸化マグネシウムからなる In MgOと、を含むことを特徴とする  (3) Further, the present invention is characterized in that it includes a hexagonal layered compound composed of indium oxide and zinc oxide, and In MgO composed of indium oxide and magnesium oxide.
2 4  twenty four
上記(1)に記載のスパッタリングターゲットである。  A sputtering target according to the above (1).
[0019] (4)また、本発明は、 [In] / ( [In] + [Zn] + [Mg] ) =0. 74-0. 94であり、 [Zn] / ( [In] + [Zn] + [Mg] ) = 0. 05—0. 25であり、 [Mg] / ( [In] + [Zn] + [Mg] ) =0. 01-0. 20であることを特徴とする上記(1)一(3)のいずれかに記載のスパッタ リングターゲットである。ここで、 [In]は、単位体積当たりのインジウム原子の数を表し 、 [Zn]は、単位体積当たりの亜鉛原子の数を表し、 [Mg]は、単位体積当たりのマグ ネシゥム原子の数を表す。  (4) In the present invention, [In] / ([In] + [Zn] + [Mg]) = 0.74-0.94, and [Zn] / ([In] + [ Zn] + [Mg]) = 0.05-0.25, and [Mg] / ([In] + [Zn] + [Mg]) = 0.01-0.20 The sputtering target according to any one of (1) to (3) above. Here, [In] represents the number of indium atoms per unit volume, [Zn] represents the number of zinc atoms per unit volume, and [Mg] represents the number of magnesium atoms per unit volume. Represent.
[0020] インジウムの組成  [0020] Composition of Indium
本発明のスパッタリングターゲットにおいて、 [In]/ ( [In] + [Zn] + [Mg] ) =0. 7 4-0. 94である。 [In]/ ( [In] + [Zn] + [Mg] )の値が、 0. 74未満である場合には 、スパッタリングターゲットのバルタ抵抗が大きくなりすぎたり、成膜された透明導電膜 の比抵抗が大きくなることがある。一方、 [In]/ ( [In] + [Zn] + [Mg] )の値が、0. 9 4超である場合には、成膜された透明導電膜の比抵抗が大きくなつたり、透明導電膜 が結晶化して、エッチング時に、残渣を発生することがある。  In the sputtering target of the present invention, [In] / ([In] + [Zn] + [Mg]) = 0.74-0.94. If the value of [In] / ([In] + [Zn] + [Mg]) is less than 0.74, the Balta resistance of the sputtering target becomes too large, or the The specific resistance may increase. On the other hand, when the value of [In] / ([In] + [Zn] + [Mg]) is more than 0.94, the specific resistance of the formed transparent conductive film becomes large or the transparent conductive film becomes transparent. The conductive film may be crystallized, and residues may be generated during etching.
[0021] 亜 の組成  [0021] Composition of A
また、本発明のスパッタリングターゲットにおいて、 [Zn]Z( [In] + [Zn] + [Mg] ) = 0. 05-0. 25である。 [Zn] / ( [In] + [Zn] + [Mg] )の値が0· 05未満である場 合には、成膜された透明導電膜の比抵抗が大きくなりすぎたり、結晶化することがあ る。一方、 [Zn] / ( [In] + [Zn] + [Mg] )の値が0· 25超である場合には、成膜され た透明導電膜の比抵抗が大きくなりすぎることがある。 In the sputtering target of the present invention, [Zn] Z ([In] + [Zn] + [Mg]) = 0. 05-0.25. When the value of [Zn] / ([In] + [Zn] + [Mg]) is less than 0.05, the specific resistance of the formed transparent conductive film becomes too large or crystallizes. Sometimes. On the other hand, when the value of [Zn] / ([In] + [Zn] + [Mg]) is more than 0.25, the specific resistance of the formed transparent conductive film may be too large.
[0022] マグネシウムの組成 [0022] Composition of magnesium
また、本発明のスパッタリングターゲットにおいて、 [Mg] / ( [In] + [Zn] + [Mg] ) = 0. 01 -0. 20である。
Figure imgf000006_0001
の値が0. 01未満である場 合には、成膜された透明導電膜の比抵抗が大きくなりすぎたり、結晶化することがあり 、また、透明導電膜の透過率が高くならないことがある。一方、 [Mg] / ( [In] + [Zn] + [Mg] )の値が 0. 25超である場合には、成膜された透明導電膜の比抵抗が大きく なりすぎることがある。
In the sputtering target of the present invention, [Mg] / ([In] + [Zn] + [Mg]) = 0.01−0.20.
Figure imgf000006_0001
If the value is less than 0.01, the specific resistance of the formed transparent conductive film may be excessively high or may be crystallized, and the transmittance of the transparent conductive film may not increase. is there. On the other hand, when the value of [Mg] / ([In] + [Zn] + [Mg]) is more than 0.25, the specific resistance of the formed transparent conductive film may be too large.
[0023] (5)また、本発明は、さらに、正 4価の金属酸化物を含むことを特徴とする上記(1 ) 一(4)のレ、ずれかに記載のスパッタリングターゲットである。  (5) Further, the present invention is the sputtering target according to any one of (1) to (4), further comprising a positive tetravalent metal oxide.
[0024] 正 4価とは、金属酸化物中の金属原子の原子価が、 + 4であることを意味する。正 4 価の金属酸化物を含むことにより、スパッタリングターゲットのバルタ抵抗が下がり、異 常放電を防止することができる。 [0024] Positive tetravalent means that the valence of the metal atom in the metal oxide is +4. By including a positive tetravalent metal oxide, the Balta resistance of the sputtering target is reduced, and abnormal discharge can be prevented.
[0025] (6)また、本発明は、正 4価の前記金属酸化物が、 SnO 、 ZrO、 GeO、 CeOで (6) Further, according to the present invention, the positive tetravalent metal oxide may be SnO 2, ZrO, GeO, or CeO.
2 2 2 2 あることを特徴とする上記(5)に記載のスパッタリングターゲットである。  22. The sputtering target according to the above (5), wherein
[0026] 正 4価の金属酸化物の中でも、 SnO 、 ZrO 、 GeO 、 CeOが好適に使用できる。 [0026] Among positive tetravalent metal oxides, SnO 2, ZrO 2, GeO 2 and CeO can be preferably used.
2 2 2 2  2 2 2 2
[0027] (7)また、本発明は、 SnO 、 ZrO、 GeO、 CeO、及び Ga O力らなる群 M力も選  (7) The present invention also selects a group M force consisting of SnO 2, ZrO, GeO, CeO, and GaO force.
2 2 2 2 2 3  2 2 2 2 2 3
ばれる 1種又は 2種以上の金属酸化物を含むことを特徴とする上記(6)に記載のスパ ッタリングターゲットである。  The sputtering target according to the above (6), further comprising one or more metal oxides.
[0028] (8)また、本発明は、前記群 Mから選ばれる 1種又は 2種以上の前記金属酸化物の 添加量が、 [M]Z [全金属] = 0. 0001—0. 15であることを特徴とする上記(7)に記 載のスパッタリングターゲットである。ここで、 [M]は、単位体積当たりの前記群 Mから 選ばれる 1種又は 2種以上の金属酸化物中の金属、すなわち単位体積当たりの、 Sn 、 Zr、 Ge、 Ce、 Gaのいずれか 1種又は 2種以上の原子の数を表し、 [全金属]は、単 位体積当たりの全金属、すなわち単位体積当たりの、 In、 Zn、 Mgと、前記群 Mから 選ばれる 1種又は 2種以上の金属酸化物中の金属と、の原子の総数を表す。 (8) Further, according to the present invention, the addition amount of one or more metal oxides selected from the group M is [M] Z [all metals] = 0.0001—0.15 The sputtering target according to the above (7), characterized in that: Here, [M] is a metal in one or more metal oxides selected from the group M per unit volume, that is, any one of Sn, Zr, Ge, Ce, and Ga per unit volume. Represents the number of one or more atoms, [total metal] is the total metal per unit volume, that is, In, Zn, Mg per unit volume; Represents the total number of atoms of one or more selected metal oxides.
[0029] スパッタリングターゲットにおいて、 [M]/ [全金属]の値は、 0· 0001— 0.15であ り、好ましく ίま 0.0003— 0. 12であり、より好ましく ίま 0.0005— 0. 1である。 [Μ]/ [全金属]の値が 0.0001未満である場合には、添加効果が出ないことがあり、一方、 [Μ]/ [全金属]の値が 0.15を超える場合には、成膜された透明導電膜のエツチン グ十生がほとんど向上しないことがある。 [0029] In the sputtering target, the value of [M] / [all metals] is 0.0001 to 0.15, preferably 0.0003 to 0.12, and more preferably 0.0005 to 0.1. . When the value of [Μ] / [all metals] is less than 0.0001, the effect of addition may not be obtained. On the other hand, when the value of [Μ] / [all metals] exceeds 0.15, film formation In some cases, the etching life of the obtained transparent conductive film hardly improves.
[0030] 秀3月 B草の 曰月  [0030] Hide March
(9)また、本発明は、酸化インジウムと、酸化亜鉛と、酸化マグネシウムと、を含むこ とを特徴する非晶質透明導電膜である。  (9) Further, the present invention is an amorphous transparent conductive film characterized by containing indium oxide, zinc oxide and magnesium oxide.
[0031] 透明導電膜が、酸化インジウムと、酸化亜鉛と、さらに、酸化マグネシウムと、を含む ことにより、完全に非晶質の透明導電膜が得られる。このように透明導電膜を非晶質 とすることにより、エッチング時に、エッチング残渣をほとんど発生しなくなるのである。 また、透明導電膜が酸化マグネシウムを含むことにより、透明導電膜の 400— 450η m域における光線透過率の低下を効果的に防止できる。  [0031] When the transparent conductive film contains indium oxide, zinc oxide, and magnesium oxide, a completely amorphous transparent conductive film can be obtained. By making the transparent conductive film amorphous as described above, almost no etching residue is generated during etching. Further, when the transparent conductive film contains magnesium oxide, it is possible to effectively prevent the light transmittance of the transparent conductive film from decreasing in the range of 400 to 450 ηm.
[0032] (10)また、本発明は、 [In] /([In] + [Zn] + [Mg]) =0.74-0.94であり、 [Zn ]/([In] + [Zn] + [Mg]) =0.05-0.25であり、 [Mg] / ( [In] + [Zn] + [Mg] ) =0.01-0.20であることを特徴とする上記(9)に記載の非晶質透明導電膜である 。ここで、 [In]は、単位体積当たりのインジウム原子の数を表し、 [Zn]は、単位体積 当たりの亜鉛原子の数を表し、 [Mg]は、単位体積当たりのマグネシウム原子の数を 表す。  (10) In the present invention, [In] / ([In] + [Zn] + [Mg]) = 0.74-0.94, and [Zn] / ([In] + [Zn] + [ Mg]) = 0.05-0.25, and [Mg] / ([In] + [Zn] + [Mg]) = 0.01-0.20, wherein the amorphous transparent conductive material according to the above (9), Is a membrane. Here, [In] represents the number of indium atoms per unit volume, [Zn] represents the number of zinc atoms per unit volume, and [Mg] represents the number of magnesium atoms per unit volume. .
[0033] インジウムの組成  [0033] Composition of Indium
本発明の透明導電膜において、
Figure imgf000007_0001
の値は0.74-0. 94であり、好ましく fま 0.7-0.92であり、より好ましく fま 0.75—0.9である。 [In]/ ([In] + [Zn] + [Mg])の値が、 0.74未満である場合には、透明導電膜の比抵抗 が大きくなりすぎることがあり、 [111]7([111]+ 11]+ [1^§])の値カ 0. 94超である 場合には、透明導電膜が結晶化しやすくなつたり、比抵抗が大きくなることがある。
In the transparent conductive film of the present invention,
Figure imgf000007_0001
Is 0.74-0.94, preferably f-0.7-0.92, more preferably f5-0.75-0.9. If the value of [In] / ([In] + [Zn] + [Mg]) is less than 0.74, the specific resistance of the transparent conductive film may be too large, and [111] 7 ([111 If the value of [+11] + [1 ^ § ]) is more than 0.94, the transparent conductive film may be easily crystallized or the specific resistance may be increased.
[0034] 亜 の組成 [0034] Composition of sub
本発明の透明導電膜において、 11]7([111] + 11]+ [1^§])の値は、0.05 0 • 25であり、好ましく ίま 0· 07-0. 25、より好ましく ίま 0· 08— 0· 22である。 [Ζη]/ ( [In] + [Zn] + [Mg] )の値が、 0. 05未満である場合には、透明導電膜が結晶化し やすくなつたり、比抵抗が大きくなることがある。一方、 [Zn]/ ( [In] + [Zn] + [Mg] )の値が、 0. 25超である場合には、透明導電膜の比抵抗が大きくなりすぎる場合が ある。 The value of the transparent conductive film of the present invention, 1 1] 7 ([111 ] + 1 1] + [1 ^ §]) is 0.05 0 • 25, preferably 0-07-0.25, more preferably 0-08-0.22. When the value of [Ζη] / ([In] + [Zn] + [Mg]) is less than 0.05, the transparent conductive film may be easily crystallized or the specific resistance may be increased. On the other hand, when the value of [Zn] / ([In] + [Zn] + [Mg]) is more than 0.25, the specific resistance of the transparent conductive film may become too large.
[0035] マグネシウムの組成  [0035] Composition of magnesium
本発明の透明導電膜において、 [Mg]/ ( [In] + [Zn] + [Mg] )の値が、 0. 01— 0. 2であり、好ましく fま 0. 01-0. 15であり、より好ましく fま 0. 02-0. 1である。 [Mg ]/ ( [In] + [Zn] + [Mg] )の値が、 0. 01未満である場合には、透明導電膜の透過 率が高くならなかったり、結晶化しやすくなつたり、比抵抗が大きくなることがある。 [M g]/ ( [In] + [Zn] + [Mg] )の値が、 0. 20超である場合にでは、成膜された透明導 電膜の比抵抗が大きくなりすぎることがある。  In the transparent conductive film of the present invention, the value of [Mg] / ([In] + [Zn] + [Mg]) is from 0.01 to 0.2, preferably from 0.01 to 0.15. Yes, and more preferably 0.02-0.1. When the value of [Mg] / ([In] + [Zn] + [Mg]) is less than 0.01, the transmittance of the transparent conductive film does not increase, the crystallization becomes easy, or the ratio increases. Resistance may increase. When the value of [Mg] / ([In] + [Zn] + [Mg]) is more than 0.20, the specific resistance of the formed transparent conductive film may be too large. .
透明導電膜中の In、 Zn、 Mgの含有量が上記範囲内にない場合には、透明導電 膜は、好ましい透明性、比抵抗、エッチング性等を得られない場合がある。  When the contents of In, Zn, and Mg in the transparent conductive film are not within the above ranges, the transparent conductive film may not be able to obtain desirable transparency, specific resistance, etching property, and the like.
[0036] (11)また、本発明は、さらに、正 4価の金属酸化物を含むことを特徴とする上記(9) 又は(10)に記載の非晶質透明導電膜である。  (11) The present invention is the amorphous transparent conductive film according to the above (9) or (10), further comprising a positive tetravalent metal oxide.
[0037] 透明導電膜に、正 4価の金属酸化物を含ませることにより、ターゲットのバルタ抵抗 が低減され、安定した放電状態で透明導電膜を成膜できる。このため、より安定した 透明導電膜が得られる。  [0037] By including a positive tetravalent metal oxide in the transparent conductive film, the Balta resistance of the target is reduced, and the transparent conductive film can be formed in a stable discharge state. For this reason, a more stable transparent conductive film can be obtained.
[0038] (12)また、本発明は、正 4価の前記金属酸化物が、 SnO 、 ZrO、 GeO、 CeOで  (12) Further, the present invention provides the method wherein the metal oxide having a positive valence of four is SnO 2, ZrO, GeO, or CeO.
2 2 2 2 あることを特徴とする上記(11)に記載の非晶質透明導電膜である。  22. An amorphous transparent conductive film according to the above (11), wherein
[0039] 正 4価の金属酸化物の中でも、 SnO 、 ZrO 、 GeO 、 CeOが好適に使用できる。 [0039] Among positive tetravalent metal oxides, SnO2, ZrO2, GeO2, and CeO can be preferably used.
2 2 2 2  2 2 2 2
[0040] (13)また、本発明は、 SnO 、 ZrO、及び GeO、 CeO、及び Ga O力、らなる群 M  (13) Further, the present invention relates to the group M consisting of SnO 2, ZrO, and GeO, CeO, and GaO forces.
2 2 2 2 2 3  2 2 2 2 2 3
力 選ばれる 1種又は 2種以上の金属酸化物を含むことを特徴とする上記(9)又は( 10)に記載の非晶質透明導電膜である。  The amorphous transparent conductive film according to the above (9) or (10), further comprising one or more metal oxides selected from the group consisting of:
[0041] (14)また、本発明は、前記群 Mから選ばれる 1種又は 2種以上の前記金属酸化物 の添加量が、 [M]/ [全金属] =0. 0001 0. 15であることを特徴とする上記(13) に記載の非晶質透明導電膜である。ここで、 [M]は、単位体積当たりの前記群 Mか ら選ばれる 1種又は 2種以上の金属酸化物中の金属、すなわち単位体積当たりの、 S n、 Zr、 Ge、 Ce、 Gaのいずれ力 1種又は 2種以上の原子の数を表し、 [全金属]は、 単位体積当たりの全金属、すなわち単位体積当たりの、 In、 Zn、 Mgと、前記群 Mか ら選ばれる 1種又は 2種以上の金属酸化物中の金属と、の原子の総数を表す。 (14) Further, according to the present invention, the addition amount of one or more metal oxides selected from the group M is [M] / [all metals] = 0.0001 0.15 An amorphous transparent conductive film according to the above (13), wherein Here, [M] is the group M per unit volume. The metal in one or two or more metal oxides selected from the group consisting of Sn, Zr, Ge, Ce, and Ga per unit volume represents the number of one or more atoms, All metals] are the total metals per unit volume, that is, the atoms of In, Zn, Mg, and the metal in one or more metal oxides selected from the group M per unit volume. Indicates the total number.
[0042] 透明導電膜において、 [M]Z [全金属]の値は、 [M]Z [全金属] =0. 0001—0. [0042] In the transparent conductive film, the value of [M] Z [all metals] is [M] Z [all metals] = 0.0001-0.
15であり、好ましく fま 0. 0003 0. 12であり、より好ましく fま 0. 0005 0. 1である。  It is preferably 15 and preferably 0.0003 0.12, more preferably 0.0005 and 0.1.
[M]/ [全金属]の値力 0. 0001未満である場合には、添加効果が出ないことがあ り、 [M]/ [全金属]の値が 0. 15を超える場合には、透明導電膜のエッチング性が ほとんど向上しないことがある。  If the value of [M] / [All metals] is less than 0.0001, the effect of addition may not be obtained. If the value of [M] / [All metals] exceeds 0.15, In some cases, the etching property of the transparent conductive film is hardly improved.
発明の効果  The invention's effect
[0043] 上記の通り、本発明のスパッタリングターゲットは、スパッタリング時に、ノジュールを ほとんど発生しない。  As described above, the sputtering target of the present invention hardly generates nodules during sputtering.
また、本発明の非晶質透明導電膜は、弱酸 (有機酸等)によるエッチングにより、残 渣等がほとんど発生せず、且つ、 400— 450nm域の透明性(光線透過性)に優れて いる。  Further, the amorphous transparent conductive film of the present invention hardly generates residues and the like by etching with a weak acid (such as an organic acid), and is excellent in transparency (light transmittance) in a 400 to 450 nm region. .
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]本実施例 1一 9及び比較例 1、 2におけるスパッタリング用ターゲット及び透明導 電膜の物性パラメータを表す図である。  FIG. 1 is a diagram showing physical property parameters of a sputtering target and a transparent conductive film in Example 119 and Comparative Examples 1 and 2.
[図 2]本実施例 1におけるターゲット 1の X線チャートを表す図である。  FIG. 2 is a diagram illustrating an X-ray chart of a target 1 according to the first embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下、本発明の好適な実施の形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described.
実施例 1  Example 1
[0046] ターゲット 1 [0046] Target 1
平均粒経が 1 μ m以下の In O粉末、平均粒経が 1 μ m以下の ΖηΟ粉末、及び平  In O powder with an average particle size of 1 μm or less, ΖηΟ powder with an average particle size of 1 μm or less,
2 3  twenty three
均粒経が 1 β m以下の MgO粉末を所定の割合で秤量し、混合した後、樹脂製ポット に入れ、さらに水を加えて、硬質 ZrOボールを用いた湿式ボールミル混合を行った  MgO powder having an average particle size of 1 βm or less was weighed at a predetermined ratio, mixed, put into a resin pot, added water, and mixed with a wet ball mill using hard ZrO balls.
2  2
。この時、混合時間は 20時間とした。この混合により、得られた混合スラリーを取り出 し、濾過、乾燥及び造粒を行った。得られた造粒物を成形型に入れ、冷間静水圧プ レスで 3ton/cm2の圧力をかけて成形し、成形体を得た。 . At this time, the mixing time was 20 hours. By this mixing, take out the obtained mixed slurry Then, filtration, drying and granulation were performed. The obtained granules were placed in a molding die and molded by applying a pressure of 3 ton / cm 2 with a cold isostatic press to obtain a molded body.
[0047] 次に、得られた成形体を以下のように焼結した。まず、焼結炉内に、成形体を載置 し、この焼結炉内の容積 0. lm3当たり、 5リットル Z分の割合で、酸素を流入した。こ の雰囲気中で、上記成形体を 1470°Cで 5時間焼結した。この時、焼結炉内の温度 を、 1000°Cまでは 1°CZ分で昇温し、 1000°C— 1470°C間は 3°CZ分で昇温した。 その後、酸素流入を止め、上記焼結炉内の温度を、 1470°Cから 1300°Cへ 10°C /分で降温した。そして、この焼結炉内の容積 0. lm3当たり、 10リットル Z分の割合 で Arを流入し、この雰囲気中で、上記成形体を 1300°Cで 3時間保持した後、放冷し 、焼結体を得た。 Next, the obtained molded body was sintered as follows. First, in a sintering furnace, the green body is placed, a volume 0. lm 3 per the sintering furnace, at a rate 5 liters Z min, flowing oxygen. In this atmosphere, the compact was sintered at 1470 ° C for 5 hours. At this time, the temperature in the sintering furnace was raised by 1 ° CZ up to 1000 ° C, and by 3 ° CZ between 1000 ° C and 1470 ° C. Thereafter, the flow of oxygen was stopped, and the temperature in the sintering furnace was decreased from 1470 ° C to 1300 ° C at a rate of 10 ° C / min. The volume 0. lm 3 per the sintering furnace, and flowing Ar at a rate 10 l Z component, in this atmosphere, after the molded body was held for 3 hours at 1300 ° C, allowed to cool, A sintered body was obtained.
[0048] 得られた焼結体の相対密度は、以下のように求めた。まず、水を用いたアルキメデ ス法により測定し、理論密度から相対密度を算出したところ、その値は、 97%であつ た。この相対密度は図 1に示されている。尚、この際の理論密度は、酸素欠陥のない In〇結晶(ビックスバイト型構造)と、 Znと、 Mgと、の酸化物の重量分率より算出した [0048] The relative density of the obtained sintered body was determined as follows. First, it was measured by the Archimedes method using water, and the relative density was calculated from the theoretical density. The value was 97%. This relative density is shown in FIG. The theoretical density at this time was calculated from the weight fraction of an oxide of In〇 crystal (bixbitite type structure) having no oxygen vacancy and Zn and Mg.
2 3 twenty three
[0049] また、焼結体中の Znと Mgの含有量を ICP (誘導結合プラズマ: Inductively Cou pled Plasma)発光分析法で定量分析したところ、原料粉末を混合する際の仕込み 組成が、焼結体中でも維持されていることが確認できた。この時、確認した焼結体中 の具体的な原子組成比率である [In] / ( [In] + [Zn] + [Mg] )の値と、 [Zn] / ( [In ] + [Zn] + [Mg] )の値と、 [Mg]/ ( [In] + [Zn] + [Mg] )の値と、は図 1に示され ている。 [0049] In addition, when the contents of Zn and Mg in the sintered body were quantitatively analyzed by ICP (Inductively Coupled Plasma) emission spectrometry, the charged composition when mixing the raw material powders was It was confirmed that it was maintained throughout the body. At this time, [In] / ([In] + [Zn] + [Mg]), which is the specific atomic composition ratio in the sintered body, and [Zn] / ([In] + [Zn ] + [Mg]) and the value of [Mg] / ([In] + [Zn] + [Mg]) are shown in Figure 1.
[0050] なお、図 1中の [In]は、焼結体中の単位体積当たりのインジウム原子の数を表し、 [ Zn]は、焼結体中の単位体積当たりの亜鉛原子の数を表し、 [Mg]は、焼結体中の 単位体積当たりのマグネシウム原子の数を表す。  [0050] In FIG. 1, [In] represents the number of indium atoms per unit volume in the sintered body, and [Zn] represents the number of zinc atoms per unit volume in the sintered body. , [Mg] represents the number of magnesium atoms per unit volume in the sintered body.
[0051] 次に、上記焼結体のスパッタ面をカップ砥石で磨き、直径 100mm、厚さ 5mmに加 ェし、 In系合金を用いてバッキングプレートを貼り合わせて、スパッタリング用ターグ ット 1を製造した。このスパッタリング用ターゲット 1のバルタ抵抗は、まず、ロレスタ(三 菱油化製)を用いて、 4探針法により、ターゲット 1の比抵抗を計測し、計測された比 抵抗の値に基づて、計算により求めた。算出されたバルタ抵抗の値は、図 1に示され ている。 Next, the sputtered surface of the above sintered body was polished with a cup grindstone, added to a diameter of 100 mm and a thickness of 5 mm, and bonded with a backing plate using an In-based alloy to form a sputtering target 1. Manufactured. First, the Balta resistance of this sputtering target 1 The resistivity of Target 1 was measured by the four-probe method using Ryoyu Chemical Co., Ltd., and was calculated based on the measured resistivity value. The calculated values of the Balta resistance are shown in Figure 1.
[0052] 亜鉛やマグネシウムがターゲット 1内に含まれる形態は、酸化亜鉛 (ZnO)や、酸化 マグネシウム(Mg〇)として分散しているよりも、酸化インジウム-酸化亜鉛の複合酸 化物(例えば、 In Zn〇、 In Zn〇 、 In Zn〇、 In Zn O、等)として分散してい  [0052] The form in which zinc or magnesium is contained in the target 1 is a composite oxide of indium oxide-zinc oxide (for example, In) rather than zinc oxide (ZnO) or dispersed as magnesium oxide (Mg〇). Zn〇, In Zn〇, In Zn〇, In ZnO, etc.)
2 5 8 2 7 10 2 3 6 2 4 7 ること力 S好ましい。図 2には、ターゲット 1の X線チャートを表す図が示されている。図 2 において、縦軸は回折した X線の強度を表し、横軸は回折した X線の角度を表してい る。尚、酸化インジウム及び酸化亜鉛からなる上記六方晶層状化合物は、例えば、 In Zn〇、 In Zn〇、 In Zn O等、一般式が In O (ZnO) (ここで mは、 3— 20の整 2 5 8 2 7 10 2 3 6 2 4 7 FIG. 2 shows a diagram representing an X-ray chart of the target 1. In FIG. 2, the vertical axis represents the intensity of the diffracted X-ray, and the horizontal axis represents the angle of the diffracted X-ray. The hexagonal layered compound composed of indium oxide and zinc oxide may be, for example, In Zn〇, In Zn〇, In ZnO, or the like having a general formula of In O (ZnO) (where m is an integer of 3 to 20).
2 3 6 2 4 7 2 5 8 2 3 m 2 3 6 2 4 7 2 5 8 2 3 m
数である。)で表されることが好ましい。  Is a number. ) Is preferable.
[0053] 亜鉛原子やマグネシウム原子が、酸化インジウムのインジウムサイトに置換固溶し、 酸化インジウム焼結体中に原子レベルで分散している場合には、ターゲット 1のバル ク抵抗が大きくなりすぎて、スパッタリング時に、放電が安定せず、異常放電を誘発す る恐れがある。  [0053] If zinc and magnesium atoms displace solid solution in the indium site of indium oxide and are dispersed at the atomic level in the indium oxide sintered body, the bulk resistance of the target 1 becomes too large. At the time of sputtering, the discharge is not stabilized, and may cause abnormal discharge.
[0054] ターゲット 1中の酸化インジウム、酸化亜鉛、及び酸化マグネシウムは、例えば、酸 化インジウム及び酸化亜 ii、からなる六方晶層状化合物の形態と、酸化インジウム及 び酸化マグネシウムからなる In Mg〇の形態と、で分散していることが好ましい。この  The indium oxide, zinc oxide, and magnesium oxide in the target 1 are, for example, in the form of a hexagonal layered compound composed of indium oxide and suboxide ii, and In Mg〇 composed of indium oxide and magnesium oxide. It is preferable that they are dispersed in the form. this
2 4  twenty four
ような形態で分散することにより、ターゲット 1のバルタ抵抗が大きくなりすぎず、スパッ タリング時に、放電が安定する。  By dispersing in such a form, the Balta resistance of the target 1 does not become too large, and the discharge becomes stable during sputtering.
[0055] 本実施例 1のターゲット 1における酸化インジウム、酸化亜鉛、及び酸化マグネシゥ ムが、上記六方晶層状化合物と、 In MgOと、レ、う形態で分散していることを、 X線回 [0055] The fact that the indium oxide, zinc oxide, and magnesium oxide in the target 1 of Example 1 were dispersed in the form of the hexagonal layered compound, In MgO, and cysteine was confirmed by an X-ray diffraction.
2 4  twenty four
折により確認した。尚、スパッタリング用ターゲット 1中の酸化インジウム、酸化亜鉛、 及び酸化マグネシウムが分散している上記のような形態は、 X線回折により得られる 結晶ピークに基づき、確認した。  We confirmed by occasion. The above-mentioned form in which indium oxide, zinc oxide and magnesium oxide were dispersed in the sputtering target 1 was confirmed based on a crystal peak obtained by X-ray diffraction.
[0056] なお、酸化インジウム及び酸化亜鉛からなる上記六方晶層状化合物は、例えば、 I n Zn O 、 In Zn〇、 In Zn〇等、一般式が In〇 (ZnO) (ここで mは、 3 20の The hexagonal layered compound composed of indium oxide and zinc oxide has a general formula of In〇 (ZnO) (where m is 3) such as, for example, InZnO, InZn〇, and InZn〇. 20 of
2 3 6 2 4 7 2 5 8 2 3 m 2 3 6 2 4 7 2 5 8 2 3 m
整数である。)で表されることが好ましい。 [0057] このような形態で分散することにより、ターゲット 1のバルタ抵抗力、 10m Ω cm未満 となり、安定したスパッタリングが可能となる。また、このターゲット 1を用いて、スパッタ リングを行つたところ、ノジュールは発生しな力 た(図 1 )。 Is an integer. ) Is preferable. By dispersing in such a form, the Balta resistance of the target 1 becomes less than 10 mΩcm, and stable sputtering becomes possible. When sputtering was performed using this target 1, nodules were generated (Fig. 1).
[0058] 诱明導 la  [0058] 诱 明 lead la
得られたターゲット 1を DCスパッタリング装置に装着した後、 200°Cで、スライドガラ ス上に、 130nmの膜厚の透明導電膜 laを成膜した。成膜した透明導電膜 laの比抵 抗、及び光線透過率 (400nm、 450nm)を測定した。測定された比抵抗、及び光線 透過率の値は、図 1に示されている。また、この透明導電膜 laについて、 X線回折を 測定した結果、ピークは観測されず非晶質であることが判明した。また、この透明導 電膜 laについて、弱酸を用いてエッチングを行ったところ、残渣は発生しな力、つた( 図 1)。  After mounting the obtained target 1 in a DC sputtering apparatus, a transparent conductive film la having a thickness of 130 nm was formed on a slide glass at 200 ° C. The specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film la were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film la, no peak was observed and it was found that the film was amorphous. When the transparent conductive film la was etched using a weak acid, no residue was generated and residue was generated (Fig. 1).
[0059] このように本実施例 1では、非晶質でありながら、 400 450nmにおける光線透過 率が改善された透明導電膜 laが得られた。  [0059] As described above, in Example 1, a transparent conductive film la which was amorphous but had an improved light transmittance at 400 to 450 nm was obtained.
実施例 2  Example 2
[0060] ターゲット 2 [0060] Target 2
平均粒経が 1 a m以下の In O粉末と、平均粒経が 1 μ m以下の Ζη〇粉末と、平均  In O powder with an average particle size of 1 am or less, Ζη〇 powder with an average particle size of 1 μm or less,
2 3  twenty three
粒経が l x m以下の Mg〇粉末と、の混合割合が異なる点を除き、上記実施例 1と同 様の方法で、上記粉末を混合し、成形し、焼結することにより、焼結体を得た。得られ た焼結体の相対密度を、上記実施例 1と同様の方法により求めた。求めた相対密度 は、図 1に示されている。  A sintered body is obtained by mixing, molding, and sintering the above powder in the same manner as in Example 1 except that the mixing ratio of the Mg〇 powder having a particle size of lxm or less is different. Obtained. The relative density of the obtained sintered body was determined by the same method as in Example 1 above. The calculated relative densities are shown in Figure 1.
[0061] また、上記実施例 1と同様に、得られた焼結体中の Znと Mgの含有量を ICP発光分 析法で定量分析したところ、原料粉末を混合する際の仕込み組成が、焼結体中でも 維持されていることが確認できた。この時、確認した焼結体中の具体的な組成比率の 値は、図 1に示されている。  [0061] Further, the content of Zn and Mg in the obtained sintered body was quantitatively analyzed by the ICP emission analysis method in the same manner as in Example 1 above. It was confirmed that it was maintained even in the sintered body. At this time, the specific values of the composition ratios in the sintered body confirmed are shown in FIG.
[0062] 次に、上記実施例 1と同様の方法で、この焼結体のスパッタ面にバッキングプレー トを貼り合わせて、スパッタリング用ターゲット 2を製造した。さらに、上記実施例 1と同 様の方法で、このターゲット 2のバルタ抵抗を求めた。求めたバルタ抵抗の値は、図 1 に示されている。また、このターゲット 2を用いて、スパッタリングを行ったところ、ノジュ ールは発生しなかった(図 1)。 Next, in the same manner as in Example 1 described above, a backing plate was attached to the sputtered surface of this sintered body to produce a sputtering target 2. Further, the Balta resistance of this target 2 was determined in the same manner as in Example 1 above. The calculated values of the Balta resistance are shown in Figure 1. When sputtering was performed using this target 2, No fire occurred (Figure 1).
[0063] また、本実施例 2のスパッタリング用ターゲット 2における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1と同様の形態の六方晶層状化合物と、 In In addition, indium oxide, zinc oxide, and magnesium oxide in the sputtering target 2 of Example 2 are a hexagonal layered compound having the same form as in Example 1 described above, and In
2 2
MgOと、レ、う形態で存在していることを、 X線回折により確認した。 It was confirmed by X-ray diffraction that it was present in the form of MgO and sac.
4  Four
[0064] 诱明導電膜 2a  [0064] Light conductive film 2a
得られたターゲット 2を DCスパッタリング装置に装着した後、上記実施例 1と同様に 、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 2aを成膜した。成膜し た透明導電膜 2aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。測定 した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電膜 2a について、 X線回折を測定した結果、ピークは観測されず非晶質であることが判明し た。また、この透明導電膜 2aについて、弱酸を用いてエッチングを行ったところ、残 渣は発生しな力、つた(図 1)。  After mounting the obtained target 2 in a DC sputtering apparatus, a transparent conductive film 2a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 1 above. The specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 2a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of the transparent conductive film 2a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 2a was etched using a weak acid, no residue was generated and the residue was generated (FIG. 1).
このように本実施例 2においても、上記実施例 1と同様に、非晶質でありながら、 40 0— 450nmにおける光線透過率が改善された透明導電膜 2aが得られた。  As described above, in the second embodiment, as in the first embodiment, a transparent conductive film 2a which is amorphous but has an improved light transmittance at 400 to 450 nm was obtained.
実施例 3  Example 3
[0065] ターゲット 3 [0065] Target 3
平均粒経が 1 a m以下の In O粉末と、平均粒経が 1 μ m以下の Ζη〇粉末と、平均  In O powder with an average particle size of 1 am or less, Ζη〇 powder with an average particle size of 1 μm or less,
2 3  twenty three
粒経が l x m以下の Mg〇粉末と、の混合割合が異なる点を除き、上記実施例 1及び 2と同様の方法で、上記粉末を混合し、成形し、焼結することにより、焼結体を得た。 得られた焼結体の相対密度を、上記実施例 1及び 2と同様の方法により求めた。この 時、求めた相対密度は、図 1に示されている。  The powder was mixed, molded and sintered in the same manner as in Examples 1 and 2 except that the mixing ratio of Mg〇 powder having a particle size of lxm or less was different, Got. The relative density of the obtained sintered body was determined by the same method as in Examples 1 and 2. The relative density obtained at this time is shown in FIG.
[0066] また、上記実施例 1及び 2と同様に、得られた焼結体中の Znと Mgの含有量を ICP 発光分析法で定量分析したところ、原料粉末を混合する際の仕込み組成が、焼結体 中でも維持されていることが確認できた。この時、確認した焼結体中の具体的な組成 比率の値は、図 1に示されている。  [0066] Further, as in Examples 1 and 2, the contents of Zn and Mg in the obtained sintered bodies were quantitatively analyzed by ICP emission spectrometry. However, it was confirmed that it was maintained even in the sintered body. At this time, the specific composition ratio values in the sintered body confirmed are shown in FIG.
[0067] 次に、上記実施例 1及び 2と同様の方法で、この焼結体のスパッタ面にバッキング プレートを貼り合わせて、スパッタリング用ターゲット 3を製造した。さらに、上記実施 例 1及び 2と同様の方法で、このターゲット 3のバルタ抵抗を求めた。求めたバルク抵 抗の値は、図 1に示されている。また、このターゲット 3を用いて、スパッタリングを行つ たところ、ノジュールは発生しな力 た(図 1)。 Next, in the same manner as in Examples 1 and 2, a backing plate was attached to the sputtered surface of this sintered body to produce a sputtering target 3. Further, the Balta resistance of this target 3 was determined in the same manner as in Examples 1 and 2 above. Bulk resistance The values of the anti are shown in FIG. When sputtering was performed using this target 3, nodules were generated (Fig. 1).
[0068] また、本実施例 3のスパッタリング用ターゲット 3における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1及び 2と同様の形態の六方晶層状化合物 と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。 [0068] Further, indium oxide, zinc oxide and magnesium oxide in the sputtering target 3 of Example 3 are formed of a hexagonal layered compound having the same form as in Examples 1 and 2, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0069] 诱明導電膜 3a  [0069] Light conductive film 3a
得られたターゲット 3を DCスパッタリング装置に装着した後、上記実施例 1及び 2と 同様に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 3aを成膜した。 成膜した透明導電膜 3aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した 。測定した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導 電膜 3aについて、 X線回折を測定した結果、ピークは観測されず非晶質であることが 判明した。また、この透明導電膜 3aについて、弱酸を用いてエッチングを行ったとこ ろ、残渣は発生しなかった(図 1)。  After mounting the obtained target 3 in a DC sputtering apparatus, a 130 nm-thick transparent conductive film 3a was formed on a slide glass at 200 ° C. in the same manner as in Examples 1 and 2 above. The specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film 3a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 3a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 3a was etched using a weak acid, no residue was generated (FIG. 1).
このように本実施例 3においても、上記実施例 1及び 2と同様に、非晶質でありなが ら、 400— 450nmにおける光線透過率が改善された透明導電膜 3aが得られた。 実施例 4  Thus, in Example 3, as in Examples 1 and 2, a transparent conductive film 3a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained. Example 4
[0070] ターゲット 4 [0070] Target 4
平均粒経が 1 a m以下の In O粉末と、平均粒経が 1 μ m以下の Ζη〇粉末と、平均  In O powder with an average particle size of 1 am or less, Ζη〇 powder with an average particle size of 1 μm or less,
2 3  twenty three
粒経が l x m以下の Mg〇粉末と、の混合割合が異なる点を除き、上記実施例 1一 3 と同様の方法で、上記粉末を混合し、成形し、焼結することにより、焼結体を得た。得 られた焼結体の相対密度を、上記実施例 1一 3と同様の方法により求めた。求めた相 対密度は、図 1に示されている。  Except that the mixing ratio of Mg で powder having a particle diameter of lxm or less is different, the above powder is mixed, molded and sintered in the same manner as in Example 13 to 13 above to obtain a sintered body. Got. The relative density of the obtained sintered body was determined by the same method as in Examples 13 to 13 above. The calculated relative density is shown in Figure 1.
[0071] また、上記実施例 1一 3と同様に、得られた焼結体中の Znと Mgの含有量を ICP発 光分析法で定量分析したところ、原料粉末を混合する際の仕込み組成が、焼結体中 でも維持されていることが確認できた。この時、確認した焼結体中の具体的な組成比 率の値は、図 1に示されている。  [0071] Further, as in the case of Examples 13 to 13, the contents of Zn and Mg in the obtained sintered body were quantitatively analyzed by ICP emission spectrometry. Was maintained even in the sintered body. At this time, the specific values of the composition ratios in the sintered body confirmed are shown in FIG.
[0072] 次に、上記実施例 1一 3と同様の方法で、この焼結体のスパッタ面にバッキングプレ ートを貼り合わせて、スパッタリング用ターゲット 4を製造した。さらに、上記実施例 1一 3と同様の方法で、このターゲット 4のバルタ抵抗を求めた。求めたバルタ抵抗の値は 、図 1に示されている。また、このターゲット 4を用いて、スパッタリングを行ったところ、 ノジュールは発生しなかった(図 1)。 Next, in the same manner as in Examples 13 to 13, a backing plate was attached to the sputtered surface of this sintered body to produce a sputtering target 4. Further, in Example 11 above, The Balta resistance of this target 4 was determined in the same manner as in 3. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 4, nodules were not generated (FIG. 1).
[0073] また、本実施例 4のスパッタリング用ターゲット 4における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1一 3と同様の形態の六方晶層状化合物と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。 Further, indium oxide, zinc oxide, and magnesium oxide in the sputtering target 4 of the fourth embodiment were obtained by mixing a hexagonal layered compound having the same form as that of the above-described embodiment 13 with InMgO, Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0074] 诱明導 4a  [0074] 诱 明 Guide 4a
得られたターゲット 2を DCスパッタリング装置に装着した後、上記実施例 1と同様に 、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 4aを成膜した。成膜し た透明導電膜 4aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。測定 した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電膜 4a について、 X線回折を測定した結果、ピークは観測されず非晶質であることが判明し た。また、この透明導電膜 4aについて、弱酸を用いてエッチングを行ったところ、残 渣は発生しなかった(図 1)。  After mounting the obtained target 2 on a DC sputtering apparatus, a transparent conductive film 4a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 1 above. The specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film 4a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 4a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 4a was etched using a weak acid, no residue was generated (FIG. 1).
このように本実施例 4においても、上記実施例 1一 3と同様に、非晶質でありながら、 400— 450nmにおける光線透過率が改善された透明導電膜 4aが得られた。  As described above, in Example 4, as in Examples 13 to 13, the transparent conductive film 4a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained.
実施例 5  Example 5
[0075] ターゲット 5 [0075] Target 5
さらに、 SnO粉末を所定の割合で混合した点を除き、上記実施例 1と同様の組成  Further, except that SnO powder was mixed at a predetermined ratio, the same composition as in Example 1 above was used.
2  2
比率で、上記粉末を混合し、成形し、焼結することにより、焼結体を得た。得られた焼 結体の相対密度を、上記実施例 1一 4と同様の方法により求めた。求めた相対密度 は、図 1に示されている。  The above powders were mixed at a ratio, molded, and sintered to obtain a sintered body. The relative density of the obtained sintered body was determined by the same method as in Examples 14 to 14 above. The calculated relative densities are shown in Figure 1.
[0076] また、上記実施例 1一 4と同様の方法で、得られた焼結体中の Zn、 Mg、及び Snの 含有量を ICP発光分析法で定量分析したところ、原料粉末を混合する際の仕込み組 成が、焼結体中でも維持されていることが確認できた。この時、確認した焼結体中の 具体的な組成比率の値は、図 1に示されてレ、る。 Further, the content of Zn, Mg, and Sn in the obtained sintered body was quantitatively analyzed by ICP emission spectrometry in the same manner as in Examples 14 to 14, and the raw material powders were mixed. It was confirmed that the prepared composition was maintained even in the sintered body. At this time, the specific value of the composition ratio in the sintered body confirmed is shown in FIG.
[0077] 尚、本特許において、 Mとは、 Sn、 Zr、及び Geからなる群を意味し、特に図 1中に おいて Mとは、 Sn、 Zr、及び Geのいずれかを表す。また、 [M]は、焼結体中の単位 体積当たりの Sn、 Zr、及び Geの原子の数を表す。 [0077] In the present patent, M means a group consisting of Sn, Zr, and Ge, and particularly in Fig. 1, M represents any of Sn, Zr, and Ge. [M] is a unit in the sintered body Represents the number of Sn, Zr, and Ge atoms per volume.
[0078] 次に、上記実施例 1一 4と同様の方法で、この焼結体のスパッタ面にバッキングプレ ートを貼り合わせて、スパッタリング用ターゲット 5を製造した。さらに、上記実施例 1一 4と同様の方法で、このターゲット 5のバルタ抵抗を求めた。求めたバルタ抵抗の値は 、図 1に示されている。また、このターゲット 5を用いて、スパッタリングを行ったところ、 ノジュールは発生しなかった(図 1)。  Next, in the same manner as in Examples 14 to 14, a backing plate was bonded to the sputtered surface of this sintered body to produce a sputtering target 5. Further, the Balta resistance of this target 5 was determined in the same manner as in Examples 14 to 14 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 5, nodules were not generated (FIG. 1).
[0079] また、本実施例 5のスパッタリング用ターゲット 5における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1一 4と同様の形態の六方晶層状化合物と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。  Further, indium oxide, zinc oxide, and magnesium oxide in the sputtering target 5 of the present Example 5 were obtained by using a hexagonal layered compound having the same form as that of Example 14 above, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0080] 诱明導 5a  [0080] 诱 明 Guide 5a
得られたターゲット 5を DCスパッタリング装置に装着した後、上記実施例 1一 4と同 様に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 5aを成膜した。成 膜した透明導電膜 5aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。 測定した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電 膜 5aについて、 X線回折を測定した結果、ピークは観測されず非晶質であることが判 明した。また、この透明導電膜 5aについて、弱酸を用いてエッチングを行ったところ、 残渣は発生しなかった(図 1)。  After mounting the obtained target 5 in a DC sputtering apparatus, a transparent conductive film 5a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 14 above. The specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 5a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of the transparent conductive film 5a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 5a was etched using a weak acid, no residue was generated (FIG. 1).
このように本実施例 5においても、上記実施例 1一 4と同様に、非晶質でありながら、 400— 450nmにおける光線透過率が改善された透明導電膜 5aが得られた。  Thus, also in Example 5, similarly to Examples 14 to 14, a transparent conductive film 5a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
実施例 6  Example 6
[0081] ターゲット 6 [0081] Target 6
平均粒経が 1 a m以下の In O粉末と、平均粒経が 1 μ m以下の Ζη〇粉末と、平均  In O powder with an average particle size of 1 am or less, Ζη〇 powder with an average particle size of 1 μm or less,
2 3  twenty three
粒経が l x m以下の Mg〇粉末と、 SnO粉末と、の混合割合が異なる点を除き、上記  Except that the mixing ratio of Mg〇 powder with a particle size of l x m or less and SnO powder is different,
2  2
実施例 5と同様の方法で、上記粉末を混合し、成形し、焼結することにより、焼結体を 得た。得られた焼結体の相対密度を、上記実施例 1一 5と同様の方法により求めた。 求めた相対密度は、図 1に示されている。  In the same manner as in Example 5, the above powder was mixed, molded, and sintered to obtain a sintered body. The relative density of the obtained sintered body was determined by the same method as in Examples 115. The calculated relative density is shown in FIG.
[0082] また、上記実施例 5と同様に、得られた焼結体中の Zn、 Mg、及び Snの含有量を I CP発光分析法で定量分析したところ、原料粉末を混合する際の仕込み組成が、焼 結体中でも維持されていることが確認できた。この時、確認した焼結体中の具体的な 組成比率の値は、図 1に示されている。 [0082] Similarly to Example 5, when the contents of Zn, Mg, and Sn in the obtained sintered body were quantitatively analyzed by the ICP emission spectrometry, the charge at the time of mixing the raw material powders was determined. The composition is baked It was confirmed that it was maintained even in the union. At this time, the specific value of the composition ratio in the sintered body confirmed is shown in FIG.
[0083] 次に、上記実施例 1一 5と同様の方法で、この焼結体のスパッタ面にバッキングプレ ートを貼り合わせて、スパッタリング用ターゲット 6を製造した。さらに、上記実施例 1一 5と同様の方法で、このターゲット 6のバルタ抵抗を求めた。求めたバルタ抵抗の値は 、図 1に示されている。また、このターゲット 6を用いて、スパッタリングを行ったところ、 ノジュールは発生しなかった(図 1)。  Next, a sputtering target 6 was manufactured by bonding a backing plate to the sputtered surface of this sintered body in the same manner as in Example 15 above. Further, the Balta resistance of this target 6 was determined in the same manner as in Examples 115. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 6, nodules were not generated (Fig. 1).
[0084] また、本実施例 6のスパッタリング用ターゲット 6における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1一 5と同様の形態の六方晶層状化合物と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。  [0084] Further, indium oxide, zinc oxide and magnesium oxide in the sputtering target 6 of the present Example 6 are composed of a hexagonal layered compound having the same form as in Example 15 above, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0085] 诱明導電膜 6a  [0085] Light conductive film 6a
得られたターゲット 6を DCスパッタリング装置に装着した後、上記実施例 1一 5と同 様に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 6aを成膜した。成 膜した透明導電膜 6aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。 測定した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電 膜 6aについて、 X線回折を測定した結果、ピークは観測されず非晶質であることが判 明した。また、この透明導電膜 6aについて、弱酸を用いてエッチングを行ったところ、 残渣は発生しなかった(図 1)。  After mounting the obtained target 6 in a DC sputtering apparatus, a transparent conductive film 6a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 15 above. The specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 6a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 6a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 6a was etched with a weak acid, no residue was generated (FIG. 1).
このように本実施例 6においても、上記実施例 1一 5と同様に、非晶質でありながら、 400— 450nmにおける光線透過率が改善された透明導電膜 6aが得られた。  Thus, in the present Example 6, as in the case of Examples 15 to 15, the transparent conductive film 6a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
実施例 7  Example 7
[0086] ターゲット 7 [0086] Target 7
平均粒経が 1 a m以下の In O粉末と、平均粒経が 1 μ m以下の Ζη〇粉末と、平均  In O powder with an average particle size of 1 am or less, Ζη〇 powder with an average particle size of 1 μm or less,
2 3  twenty three
粒経が l x m以下の Mg〇粉末と、 SnO粉末と、の混合割合が異なる点を除き、上記  Except that the mixing ratio of Mg〇 powder with a particle size of l x m or less and SnO powder is different,
2  2
実施例 5及び 6と同様の方法で、上記粉末を混合し、成形し、焼結することにより、焼 結体を得た。得られた焼結体の相対密度を、上記実施例 1一 6と同様の方法により求 めた。求めた相対密度は、図 1に示されている。  In the same manner as in Examples 5 and 6, the above powder was mixed, molded, and sintered to obtain a sintered body. The relative density of the obtained sintered body was determined by the same method as in Example 16 above. The calculated relative density is shown in FIG.
[0087] また、上記実施例 5及び 6と同様に、得られた焼結体中の Zn、 Mg、及び Snの含有 量を ICP発光分析法で定量分析したところ、原料粉末を混合する際の仕込み組成が[0087] Similarly to Examples 5 and 6, the content of Zn, Mg, and Sn in the obtained sintered body was determined. The quantity was quantitatively analyzed by ICP emission spectrometry.
、焼結体中でも維持されていることが確認できた。この時、確認した焼結体中の具体 的な組成比率の値は、図 1に示されている。 It could be confirmed that it was maintained even in the sintered body. At this time, the specific values of the composition ratios in the sintered body confirmed are shown in FIG.
[0088] 次に、上記実施例 1一 6と同様の方法で、この焼結体のスパッタ面にバッキングプレ ートを貼り合わせて、スパッタリング用ターゲット 7を製造した。さらに、上記実施例 1一 6と同様の方法で、このターゲット 7のバルタ抵抗を求めた。求めたバルタ抵抗の値は 、図 1に示されている。また、このターゲット 7を用いて、スパッタリングを行ったところ、 ノジュールは発生しなかった(図 1)。  Next, a sputtering target 7 was manufactured by bonding a backing plate to the sputtered surface of this sintered body in the same manner as in Example 16 above. Further, the Balta resistance of this target 7 was determined in the same manner as in Example 16 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 7, nodules were not generated (FIG. 1).
[0089] また、本実施例 7のスパッタリング用ターゲット 7における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1一 6と同様の形態の六方晶層状化合物と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。  [0089] Further, indium oxide, zinc oxide and magnesium oxide in the sputtering target 7 of Example 7 are a hexagonal layered compound having the same form as that of Example 16 above, InMgO, Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0090] 诱明導 7a  [0090] 诱 明 Guide 7a
得られたターゲット 7を DCスパッタリング装置に装着した後、上記実施例 1一 6と同 様に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 7aを成膜した。成 膜した透明導電膜 7aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。 測定した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電 膜 7aについて、 X線回折を測定した結果、ピークは観測されず非晶質であることが判 明した。また、この透明導電膜 7aについて、弱酸を用いてエッチングを行ったところ、 残渣は発生しなかった(図 1)。  After mounting the obtained target 7 in a DC sputtering apparatus, a 130 nm-thick transparent conductive film 7a was formed on a slide glass at 200 ° C. in the same manner as in Example 16 above. The specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film 7a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of the transparent conductive film 7a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 7a was etched using a weak acid, no residue was generated (FIG. 1).
このように本実施例 7においても、上記実施例 1一 6と同様に、非晶質でありながら、 400— 450nmにおける光線透過率が改善された透明導電膜 7aが得られた。  As described above, in the present Example 7, as in the case of Example 16 described above, a transparent conductive film 7a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
実施例 8  Example 8
[0091] ターゲット 8 [0091] Target 8
さらに、 ZrO粉末を所定の割合で混合した点を除き、上記実施例 4と同様の組成  Further, except that ZrO powder was mixed at a predetermined ratio, the same composition as in Example 4 above was used.
2  2
比率で、上記粉末を混合し、成形し、焼結することにより、焼結体を得た。得られた焼 結体の相対密度を、上記実施例 1一 7と同様の方法により求めた。求めた相対密度 は、図 1に示されている。  The above powders were mixed at a ratio, molded, and sintered to obtain a sintered body. The relative density of the obtained sintered body was determined by the same method as in Example 17 above. The calculated relative densities are shown in Figure 1.
[0092] また、上記実施例 1一 7と同様の方法で、得られた焼結体中の Zn、 Mg、及び Zrの 含有量を ICP発光分析法で定量分析したところ、原料粉末を混合する際の仕込み組 成が、焼結体中でも維持されていることが確認できた。この時、確認した焼結体中の 具体的な組成比率の値は、図 1に示されてレ、る。 [0092] Further, in the same manner as in Example 17 above, Zn, Mg, and Zr in the obtained sintered body were obtained. When the content was quantitatively analyzed by ICP emission spectrometry, it was confirmed that the charged composition at the time of mixing the raw material powder was maintained even in the sintered body. At this time, the specific value of the composition ratio in the sintered body confirmed is shown in FIG.
[0093] 次に、上記実施例 1一 7と同様の方法で、この焼結体のスパッタ面にバッキングプレ ートを貼り合わせて、スパッタリング用ターゲット 8を製造した。さらに、上記実施例 1一 7と同様の方法で、このターゲット 8のバルタ抵抗を求めた。求めたバルタ抵抗の値は 、図 1に示されている。また、このターゲット 8を用いて、スパッタリングを行ったところ、 ノジュールは発生しなかった(図 1)。  Next, in the same manner as in Example 17 above, a backing plate was bonded to the sputtered surface of this sintered body to produce a sputtering target 8. Further, the Balta resistance of this target 8 was determined in the same manner as in Example 17 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 8, nodules were not generated (FIG. 1).
[0094] また、本実施例 8のスパッタリング用ターゲット 8における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1一 7と同様の形態の六方晶層状化合物と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。  [0094] Further, indium oxide, zinc oxide and magnesium oxide in the sputtering target 8 of the eighth embodiment are composed of a hexagonal layered compound having the same form as that of the above-mentioned Example 17; InMgO; Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0095] 诱明導 8a  [0095] Guidance 8a
得られたターゲット 8を DCスパッタリング装置に装着した後、上記実施例 1一 7と同 様に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 8aを成膜した。成 膜した透明導電膜 8aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。 測定した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電 膜 8aについて、 X線回折を測定した結果、ピークは観測されず非晶質であることが判 明した。また、この透明導電膜 8aについて、弱酸を用いてエッチングを行ったところ、 残渣は発生しなかった(図 1)。  After mounting the obtained target 8 on a DC sputtering apparatus, a transparent conductive film 8a having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 17 above. The specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 8a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 8a, no peak was observed and it was found that the film was amorphous. When the transparent conductive film 8a was etched using a weak acid, no residue was generated (FIG. 1).
このように本実施例 8においても、上記実施例 1一 7と同様に、非晶質でありながら、 400— 450nmにおける光線透過率が改善された透明導電膜 8aが得られた。  As described above, in Example 8, as in Example 17 described above, a transparent conductive film 8a which was amorphous but had improved light transmittance at 400 to 450 nm was obtained.
実施例 9  Example 9
[0096] ターゲット 9 [0096] Target 9
ZrO粉末の代わりに、 GeO粉末を混合した点を除き、上記実施例 8と同様の組成 The same composition as in Example 8 except that GeO powder was mixed instead of ZrO powder.
2 2 twenty two
比率で、上記粉末を混合し、成形し、焼結することにより、焼結体を得た。得られた焼 結体の相対密度を、上記実施例 1一 8と同様の方法により求めた。求めた相対密度 は、図 1に示されている。  The above powders were mixed at a ratio, molded, and sintered to obtain a sintered body. The relative density of the obtained sintered body was determined by the same method as in Example 18 above. The calculated relative densities are shown in Figure 1.
[0097] また、上記実施例 1一 8と同様の方法で、得られた焼結体中の Zn、 Mg、及び Geの 含有量を ICP発光分析法で定量分析したところ、原料粉末を混合する際の仕込み組 成が、焼結体中でも維持されていることが確認できた。この時、確認した焼結体中の 具体的な組成比率の値は、図 1に示されてレ、る。 [0097] Further, in the same manner as in Example 18 above, Zn, Mg, and Ge in the obtained sintered body were obtained. When the content was quantitatively analyzed by ICP emission spectrometry, it was confirmed that the charged composition at the time of mixing the raw material powder was maintained even in the sintered body. At this time, the specific value of the composition ratio in the sintered body confirmed is shown in FIG.
[0098] 次に、上記実施例 1一 8と同様の方法で、この焼結体のスパッタ面にバッキングプレ ートを貼り合わせて、スパッタリング用ターゲット 9を製造した。さらに、上記実施例 1一 8と同様の方法で、このターゲット 9のバルタ抵抗を求めた。求めたバルタ抵抗の値は 、図 1に示されている。また、このターゲット 9を用いて、スパッタリングを行ったところ、 ノジュールは発生しなかった(図 1)。  Next, a sputtering target 9 was manufactured by bonding a backing plate to the sputtered surface of this sintered body in the same manner as in Example 18 above. Further, the Balta resistance of this target 9 was determined in the same manner as in Example 18 above. The obtained values of the Balta resistance are shown in FIG. When sputtering was performed using this target 9, nodules were not generated (FIG. 1).
[0099] また、本実施例 9のスパッタリング用ターゲット 9における酸化インジウム、酸化亜鉛 、及び酸化マグネシウムが、上記実施例 1一 8と同様の形態の六方晶層状化合物と、 In MgOと、レ、う形態で存在していることを、 X線回折により確認した。  [0099] Further, indium oxide, zinc oxide and magnesium oxide in the sputtering target 9 of the ninth embodiment correspond to a hexagonal layered compound having the same form as that of the above-mentioned embodiment 18; InMgO; Its presence in morphology was confirmed by X-ray diffraction.
2 4  twenty four
[0100] 诱明導 9a  [0100] 诱 明 Guide 9a
得られたターゲット 9を DCスパッタリング装置に装着した後、上記実施例 1一 8と同 様に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜 9aを成膜した。成 膜した透明導電膜 9aの比抵抗、及び光線透過率 (400nm、 450nm)を測定した。 測定した比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電 膜 9aについて、 X線回折を測定した結果、ピークは観測されず非晶質であることが判 明した。また、この透明導電膜 9aについて、弱酸を用いてエッチングを行ったところ、 残渣は発生しなかった(図 1)。  After mounting the obtained target 9 in a DC sputtering apparatus, a 130 nm-thick transparent conductive film 9a was formed on a slide glass at 200 ° C. in the same manner as in Example 18 above. The specific resistance and light transmittance (400 nm, 450 nm) of the formed transparent conductive film 9a were measured. The measured specific resistance and light transmittance values are shown in FIG. Further, as a result of measuring the X-ray diffraction of this transparent conductive film 9a, no peak was observed and it was found that the film was amorphous. When this transparent conductive film 9a was etched using a weak acid, no residue was generated (FIG. 1).
このように本実施例 9においても、上記実施例 1一 8と同様に、非晶質でありながら、 400— 450nmにおける光線透過率が改善された透明導電膜 9aが得られた。  As described above, in the ninth embodiment as well, similar to the above-described first to eighteenth embodiments, a transparent conductive film 9a which was amorphous but improved in light transmittance at 400 to 450 nm was obtained.
実施例 10  Example 10
[0101] 本発明のスパッタリング用ターゲットは、所定の割合で、酸化インジウム、酸化亜鉛 、及び酸化マグネシウム、の 3成分を含有する点以外は、特に制限されない。したが つて、例えば、公知の方法を用いて、上記 3成分からなる粉体を混合し、成形し、焼 結することにより、製造することができる。  [0101] The sputtering target of the present invention is not particularly limited except that it contains three components of indium oxide, zinc oxide, and magnesium oxide at a predetermined ratio. Therefore, for example, it can be manufactured by mixing, molding, and sintering the powder composed of the above three components using a known method.
[0102] なお、本発明の効果を損なわない範囲内であれば、上記 3成分以外の成分を含有 することも好ましい。例えば、上記実施例 5— 9においては、スパッタリング用ターゲッ トが、上記 3成分の他に、 SnO、 ZrO、又は GeO、を所定の割合で含有しているが [0102] It is preferable to include components other than the above three components as long as the effects of the present invention are not impaired. For example, in Examples 5-9 above, the sputtering target was used. Contains a predetermined ratio of SnO, ZrO, or GeO in addition to the above three components.
2 2 2  2 2 2
、これら以外の成分として、 Ga O、又は、 CeO等を含有することも好ましい。また、  It is also preferable to contain GaO, CeO, or the like as a component other than these. Also,
2 3 2  2 3 2
上記 3成分の他に、 SnO  In addition to the above three components, SnO
2、 ZrO  2, ZrO
2、 GeO  2, GeO
2、 Ga O、及び CeO等から選ばれる 2以上 2 3 2  2, 2 or more selected from GaO, CeO, etc. 2 3 2
の成分を同時に含有することも好ましい。  It is also preferable to simultaneously contain the components of
[0103] 尚、ターゲット中に Ga Oを添加した場合、 InGaMgO、 InGaMg Oや、 InGaM [0103] When GaO is added to the target, InGaMgO, InGaMgO, InGaMgO,
2 3 4 2 5  2 3 4 2 5
gZnO、 InGaMgZn〇、 In Ga Zn〇、 InGaZnO、 InGaZn〇、 InGaZn O、 I  gZnO, InGaMgZn〇, In Ga Zn〇, InGaZnO, InGaZn〇, InGaZn O, I
5 2 6 2 2 7 4 2 5 3 6 nGaZn O、 InGaZn O、 InGaZn O、 InGaZn O 、等の複合酸化物の形態で 5 2 6 2 2 7 4 2 5 3 6 In the form of complex oxide such as nGaZnO, InGaZnO, InGaZnO, InGaZnO, etc.
4 7 5 8 6 9 7 10 4 7 5 8 6 9 7 10
分散することが好ましい。  Preferably, they are dispersed.
[0104] 本実施例 10のスパッタリング用ターゲットが、、酸化インジウム、酸化亜鉛、及び酸 化マグネシウム、の 3成分の他に、上記 Sn〇  [0104] The sputtering target of Example 10 is different from the above-described Sn-based alloy in addition to the three components of indium oxide, zinc oxide, and magnesium oxide.
2、 ZrO  2, ZrO
2、 GeO  2, GeO
2、 Ga〇  2, Ga〇
2 3、 CeO等の成  2 3, CeO etc.
2 分を含有する場合においても、本実施例 10のスパッタリング用ターゲットは、上記実 施例 1一 9のスパッタリング用ターゲットと同様の作用効果を奏する。また、このような スパッタリング用ターゲットを用いて、成膜した透明導電膜も、上記実施例 1一 9の透 明導電膜と同様の作用効果を奏する。  Even in the case of containing 2 minutes, the sputtering target of the tenth embodiment has the same operation and effect as the sputtering target of the 19th embodiment. A transparent conductive film formed using such a sputtering target also has the same operation and effect as the transparent conductive film of Example 19-19.
[0105] 『比較例 1』 [Comparative Example 1]
ITOターゲット  ITO target
市販の ITOターゲット、すなわち、酸化インジウム及び酸化スズからなるスパッタリン グ用ターゲットを用レ、て、上記実施例 1一 9と同様の処理 ·操作を行った。  Using a commercially available ITO target, that is, a sputtering target composed of indium oxide and tin oxide, the same treatment and operation as in Example 19 above were performed.
上記実施例 1一 9と同様の方法で、 ITOターゲットの相対密度、組成比率、バルタ 抵抗を求めた。求めた相対密度、組成比率、バルタ抵抗の値は、図 1に示されている 。なお、図 1中の [X]は、ターゲット中の単位体積当たりの Sn又は Znの原子の数を表 す。また、この IT〇ターゲットを用いて、スパッタリングを行ったところ、ノジュールが発 生した(図 1)。  The relative density, composition ratio, and Balta resistance of the ITO target were determined in the same manner as in Example 19 above. The obtained relative density, composition ratio, and Balta resistance values are shown in FIG. [X] in FIG. 1 represents the number of Sn or Zn atoms per unit volume in the target. When sputtering was performed using this IT〇 target, nodules were generated (Fig. 1).
[0106] 诱明導 瞌  [0106] 诱 明 Guide 瞌
この ITOターゲットを DCスパッタリング装置に装着した後、上記実施例 1一 9と同様 に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜を成膜した。成膜し た透明導電膜の比抵抗、及び光線透過率 (400nm、 450nm)を測定した。測定した 比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電膜につい て、弱酸を用いてエッチングを行ったところ、残渣が発生した(図 1)。 After mounting this ITO target in a DC sputtering apparatus, a transparent conductive film having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 19 above. The specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film were measured. The measured specific resistance and light transmittance values are shown in FIG. In addition, this transparent conductive film When etching was performed using a weak acid, residues were generated (Fig. 1).
[0107] このように、比較例 1の透明導電膜について、弱酸を用いてエッチングを行うと、ェ ツチング残渣が発生した。 As described above, when the transparent conductive film of Comparative Example 1 was etched using a weak acid, an etching residue was generated.
[0108] 『比較例 2』 [Comparative Example 2]
IZOターゲット  IZO target
市販の IZ〇 (インジウム一亜鉛酸化物:「IZO」は登録商標)ターゲット、すなわち、酸 化インジウム及び酸化亜 からなるスパッタリング用ターゲットを用いて、上記実施例 Using a commercially available IZ〇 (indium monozinc oxide: “IZO” is a registered trademark) target, that is, a sputtering target composed of indium oxide and suboxide, the above-described example was used.
1一 9と同様の処理.操作を行った。 The same processing and operation as in 1-9 were performed.
上記実施例 1一 9と同様の方法で、 IZ〇ターゲットの相対密度、組成比率、バルタ 抵抗を求めた。求めた相対密度、組成比率、バルタ抵抗の値は、図 1に示されている 。また、この IZ〇ターゲットを用いて、スパッタリングを行ったところ、ノジュールが発生 した(図 1)。  The relative density, composition ratio, and Balta resistance of the IZ〇 target were determined in the same manner as in Example 119 above. The obtained relative density, composition ratio, and Balta resistance values are shown in FIG. When sputtering was performed using this IZ〇 target, nodules were generated (Fig. 1).
[0109] 诱明導電膜 [0109] Light conductive film
この IZOターゲットを DCスパッタリング装置に装着した後、上記実施例 1一 9と同様 に、 200°Cで、スライドガラス上に、 130nmの膜厚の透明導電膜を成膜した。成膜し た透明導電膜の比抵抗、及び光線透過率 (400nm、 450nm)を測定した。測定した 比抵抗、及び光線透過率の値は、図 1に示されている。また、この透明導電膜につい て、弱酸を用いてエッチングを行ったところ、残渣は発生しなかった(図 1)。  After mounting this IZO target in a DC sputtering apparatus, a transparent conductive film having a thickness of 130 nm was formed on a slide glass at 200 ° C. in the same manner as in Example 19 above. The specific resistance and the light transmittance (400 nm, 450 nm) of the formed transparent conductive film were measured. The measured specific resistance and light transmittance values are shown in FIG. When this transparent conductive film was etched using a weak acid, no residue was generated (FIG. 1).
このように、比較例 2の透明導電膜においては、 400nm— 450nmの光線透過率 は、それほど高くならなかった。  Thus, in the transparent conductive film of Comparative Example 2, the light transmittance from 400 nm to 450 nm did not increase so much.

Claims

請求の範囲 The scope of the claims
[1] 酸ィ匕インジウムと、  [1] Indium oxide
酸化亜鉛と、  Zinc oxide,
酸化マグネシウムと、  Magnesium oxide,
を含むことを特徴とするスパッタリングターゲット。  A sputtering target comprising:
[2] 酸化インジウムと、酸化亜鉛と、酸化マグネシウムと、を含むスパッタリングターゲット におレ、て、 X線回折により得られる結晶ピークを観察した場合に、  [2] When a crystal peak obtained by X-ray diffraction was observed on a sputtering target containing indium oxide, zinc oxide, and magnesium oxide,
前記結晶ピークが、  The crystal peak is
酸化インジウム及び酸化亜鉛からなる一般式 In O (ZnO) で表される六方晶層状  Hexagonal layered structure represented by the general formula In O (ZnO) consisting of indium oxide and zinc oxide
2 3 m  2 3 m
化合物と、  A compound;
酸化インジウムと、酸化マグネシウムと、力 なる In Mg〇と、  Indium oxide, magnesium oxide, and powerful In Mg〇
2 4  twenty four
に由来するピークを含むことを特徴とする請求項 1に記載のスパッタリングターゲット。 ここで、 mは 3— 20の整数である。  2. The sputtering target according to claim 1, comprising a peak derived from Where m is an integer from 3-20.
[3] 酸化インジウム及び酸化亜鉛からなる一般式 In O (ZnO) で表される六方晶層状 [3] Hexagonal layered structure represented by the general formula In O (ZnO) consisting of indium oxide and zinc oxide
2 3 m  2 3 m
化合物と、  A compound;
酸化インジウムと、酸化マグネシウムと、力、らなる In Mg〇と、  Indium oxide, magnesium oxide, power, and In Mg〇
2 4  twenty four
を含むことを特徴とする請求項 1に記載のスパッタリングターゲット。ここで、 mは 3— 2 0の整数である。  2. The sputtering target according to claim 1, comprising: Here, m is an integer of 3−20.
[4] [In] / ( [In] + [Zn] + [Mg] ) =0. 74—0. 94であり、 [Zn]/ ( [In] + [Zn] + [ [4] [In] / ([In] + [Zn] + [Mg]) = 0.74—0.94, and [Zn] / ([In] + [Zn] + [
Mg] ) =0. 05—0. 25であり、 [Mg]Z( [In] + [Zn] + [Mg] ) =0. 01—0. 20で あることを特徴とする請求項 1一 3のいずれかに記載のスパッタリングターゲット。ここ で、 [In]は、単位体積当たりのインジウム原子の数を表し、 [Zn]は、単位体積当たり の亜鉛原子の数を表し、 [Mg]は、単位体積当たりのマグネシウム原子の数を表す。 Mg]) = 0.05-0.25, and [Mg] Z ([In] + [Zn] + [Mg]) = 0.01-0.20. 4. The sputtering target according to any one of 3. Here, [In] represents the number of indium atoms per unit volume, [Zn] represents the number of zinc atoms per unit volume, and [Mg] represents the number of magnesium atoms per unit volume. .
[5] さらに、正 4価の金属酸化物を含むことを特徴とする請求頃 1一 4のいずれかに記 載のスパッタリングターゲット。  [5] The sputtering target according to any one of claims 14 to 14, further comprising a positive tetravalent metal oxide.
[6] 正 4価の前記金属酸化物が、 SnO  [6] The positive tetravalent metal oxide is SnO
2、 ZrO  2, ZrO
2、 GeO  2, GeO
2、 CeOであることを特徴とする 2  2, characterized by being CeO 2
請求項 5に記載のスパッタリングターゲット。  A sputtering target according to claim 5.
[7] SnO、 ZrO、 GeO、 CeO、及び Ga O力 なる群 M力 選ばれる 1種又は 2種 以上の金属酸化物を含むことを特徴とする請求項 1一 4に記載のスパッタリングター ゲット。 [7] SnO, ZrO, GeO, CeO, and GaO forces Group M force One or two selected 15. The sputtering target according to claim 14, comprising the above metal oxide.
[8] 前記群 Mから選ばれる 1種又は 2種以上の前記金属酸化物の添加量が、 [M] / [ 全金属] =0. 0001 0. 15であることを特徴とする請求項 7に記載のスパッタリング ターゲット。ここで、 [M]は、単位体積当たりの前記群 Mから選ばれる 1種又は 2種以 上の金属酸化物中の金属、すなわち単位体積当たりの、 Sn、 Zr、 Ge、 Ce、 Gaのい ずれか 1種又は 2種以上の原子の数を表し、 [全金属]は、単位体積当たりの全金属 、すなわち、単位体積当たりの、 In、 Zn、 Mgと、前記群 Mから選ばれる 1種又は 2種 以上の金属酸化物中の金属と、の原子の総数を表す。  [8] The amount of one or more of the metal oxides selected from the group M is [M] / [all metals] = 0.0001 0.15. The sputtering target according to 1. Here, [M] is a metal in one or more metal oxides selected from the group M per unit volume, that is, Sn, Zr, Ge, Ce, Ga per unit volume. Represents the number of one or more atoms, and [total metal] is the total metal per unit volume, that is, In, Zn, Mg, and one selected from the group M per unit volume. Alternatively, it indicates the total number of atoms of a metal in two or more kinds of metal oxides.
[9] 酸ィ匕インジウムと、  [9] Indium oxide
酸化亜鉛と、  Zinc oxide,
酸化マグネシウムと、  Magnesium oxide,
を含むことを特徴する非晶質透明導電膜。  An amorphous transparent conductive film, comprising:
[10] [In] / ( [In] + [Zn] + [Mg] ) =0. 74—0. 94であり、 [Zn]/ ( [In] + [Zn] + [ Mg] ) =0. 05—0. 25であり、 [Mg] / ( [In] + [Zn] + [Mg] ) =0. 01— 0. 20で あることを特徴とする請求項 9に記載の非晶質透明導電膜。ここで、 [In]は、単位体 積当たりのインジウム原子の数を表し、 [Zn]は、単位体積当たりの亜鉛原子の数を 表し、 [Mg]は、単位体積当たりのマグネシウム原子の数を表す。  [10] [In] / ([In] + [Zn] + [Mg]) = 0.74—0.94, and [Zn] / ([In] + [Zn] + [Mg]) = 0 10. The amorphous material according to claim 9, wherein 0.5−0.25, and [Mg] / ([In] + [Zn] + [Mg]) = 0.01-0.20. Transparent conductive film. Here, [In] represents the number of indium atoms per unit volume, [Zn] represents the number of zinc atoms per unit volume, and [Mg] represents the number of magnesium atoms per unit volume. Represent.
[11] さらに、正 4価の金属酸化物を含むことを特徴とする請求頃 9又は 10に記載の非晶 質透明導電膜。  [11] The amorphous transparent conductive film according to claim 9 or 10, further comprising a positive tetravalent metal oxide.
[12] 正 4価の前記金属酸化物が、 SnO、 ZrO、 GeO、 CeOであることを特徴とする  [12] The metal oxide having a quaternary valence of four is SnO, ZrO, GeO, or CeO.
2 2 2 2  2 2 2 2
請求項 11に記載の非晶質透明導電膜。  An amorphous transparent conductive film according to claim 11.
[13] SnO、 ZrO、 GeO、 CeO、及び Ga O力、らなる群 M力、ら選ばれる 1種又は 2種 [13] SnO, ZrO, GeO, CeO, and GaO forces, group M forces, one or two selected from
2 2 2 2 2 3  2 2 2 2 2 3
以上の金属酸化物を含むことを特徴とする請求項 9又は 10に記載の非晶質透明導 電膜。  11. The amorphous transparent conductive film according to claim 9, comprising the above metal oxide.
[14] 前記群 Mから選ばれる 1種又は 2種以上の前記金属酸化物の添加量が、 [M] / [ 全金属] =0. 0001 0. 15であることを特徴とする請求項 13に記載の非晶質透明 導電膜。ここで、 [M]は、単位体積当たりの前記群 Mから選ばれる 1種又は 2種以上 の金属酸化物中の金属、すなわち単位体積当たりの、 Sn、 Zr、 Ge、 Ce、 Gaのいず れか 1種又は 2種以上の原子の数を表し、 [全金属]は、単位体積当たりの全金属、 すなわち単位体積当たりの、 In、 Zn、 Mgと、前記群 Mから選ばれる 1種又は 2種以 上の金属酸化物中の金属と、の原子の総数を表す。 14. The addition amount of one or more metal oxides selected from the group M is [M] / [all metals] = 0.0001 0.15. 3. The amorphous transparent conductive film according to item 1. Here, [M] is one or more selected from the group M per unit volume. Represents the number of atoms of one or more of Sn, Zr, Ge, Ce, and Ga per unit volume in the metal oxide of , That is, the total number of atoms per unit volume of In, Zn, Mg, and one or more metal oxides selected from the group M.
PCT/JP2005/002903 2004-04-21 2005-02-23 Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film WO2005103320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067021853A KR101168447B1 (en) 2004-04-21 2005-02-23 Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004125429A JP4488184B2 (en) 2004-04-21 2004-04-21 Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP2004-125429 2004-04-21

Publications (1)

Publication Number Publication Date
WO2005103320A1 true WO2005103320A1 (en) 2005-11-03

Family

ID=35197011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002903 WO2005103320A1 (en) 2004-04-21 2005-02-23 Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film

Country Status (5)

Country Link
JP (1) JP4488184B2 (en)
KR (1) KR101168447B1 (en)
CN (1) CN100564579C (en)
TW (2) TWI507575B (en)
WO (1) WO2005103320A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065786A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered compact and sputtering target, and method for producing same
WO2013065784A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered compact and sputtering target, and method for producing same
CN103715234A (en) * 2012-09-28 2014-04-09 财团法人工业技术研究院 P-type metal oxide semiconductor material
US9589695B2 (en) 2009-10-06 2017-03-07 Jx Nippon Mining & Metals Corporation Indium oxide transparent conductive film
WO2021090790A1 (en) * 2019-11-08 2021-05-14 出光興産株式会社 Laminate and semiconductor device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488184B2 (en) * 2004-04-21 2010-06-23 出光興産株式会社 Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP5000131B2 (en) * 2005-12-26 2012-08-15 出光興産株式会社 Transparent electrode film and electronic device
JP4816137B2 (en) * 2006-02-24 2011-11-16 住友金属鉱山株式会社 Transparent conductive film and transparent conductive substrate
JP4986118B2 (en) * 2006-06-23 2012-07-25 独立行政法人産業技術総合研究所 Formation method of transparent electrode
JP5105842B2 (en) 2006-12-05 2012-12-26 キヤノン株式会社 Display device using oxide semiconductor and manufacturing method thereof
JP5143410B2 (en) * 2006-12-13 2013-02-13 出光興産株式会社 Manufacturing method of sputtering target
EP2096188B1 (en) 2006-12-13 2014-01-29 Idemitsu Kosan Co., Ltd. Sputtering target
JP5520496B2 (en) * 2008-02-19 2014-06-11 昭和電工株式会社 Manufacturing method of solar cell
CN102046835B (en) * 2008-06-03 2013-01-02 Jx日矿日石金属株式会社 Sputtering target and non-crystalline optical thin film
CN103233204A (en) * 2008-06-06 2013-08-07 出光兴产株式会社 Sputtering target for oxide thin film and method for producing same
CN102131953B (en) * 2008-06-27 2014-07-09 出光兴产株式会社 From InGaO3Sputtering target for oxide semiconductor comprising (ZnO) crystal phase and method for producing same
US8529802B2 (en) 2009-02-13 2013-09-10 Samsung Electronics Co., Ltd. Solution composition and method of forming thin film and method of manufacturing thin film transistor using the solution composition
US8319300B2 (en) 2009-04-09 2012-11-27 Samsung Electronics Co., Ltd. Solution composition for forming oxide thin film and electronic device including the oxide thin film
JP5494082B2 (en) * 2010-03-23 2014-05-14 住友電気工業株式会社 Conductive oxide and method for producing the same
JP5101719B2 (en) 2010-11-05 2012-12-19 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
JP5122670B2 (en) 2010-11-05 2013-01-16 日東電工株式会社 Method for producing transparent conductive film
JP5651095B2 (en) 2010-11-16 2015-01-07 株式会社コベルコ科研 Oxide sintered body and sputtering target
KR20140027241A (en) * 2011-05-10 2014-03-06 이데미쓰 고산 가부시키가이샤 In??o??-zno sputtering target
US9039944B2 (en) 2011-07-06 2015-05-26 Idemitsu Kosan Co., Ltd. Sputtering target
JP5947697B2 (en) * 2012-10-19 2016-07-06 出光興産株式会社 Sputtering target
CN104291792A (en) * 2014-09-28 2015-01-21 桂林电子科技大学 Oxide ceramic target material and preparation method thereof
JP6398624B2 (en) * 2014-11-06 2018-10-03 Tdk株式会社 Transparent conductor and touch panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754132A (en) * 1993-08-11 1995-02-28 Tosoh Corp Ito sintered compact and sputtering target
WO2003008661A1 (en) * 2001-07-17 2003-01-30 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837811B2 (en) * 1998-04-09 2011-12-14 出光興産株式会社 Organic electroluminescence device
EP2610230A2 (en) * 1998-08-31 2013-07-03 Idemitsu Kosan Co., Ltd. Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass, and transparent electroconductive film
KR100744017B1 (en) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
JP2005272946A (en) * 2004-03-25 2005-10-06 Sumitomo Metal Mining Co Ltd Combined sintered target material for dielectric film and method for manufacturing the same
JP4488184B2 (en) * 2004-04-21 2010-06-23 出光興産株式会社 Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754132A (en) * 1993-08-11 1995-02-28 Tosoh Corp Ito sintered compact and sputtering target
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
WO2003008661A1 (en) * 2001-07-17 2003-01-30 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589695B2 (en) 2009-10-06 2017-03-07 Jx Nippon Mining & Metals Corporation Indium oxide transparent conductive film
US10037830B2 (en) 2009-10-06 2018-07-31 Jx Nippon Mining & Metals Corporation Indium oxide transparent conductive film
WO2013065786A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered compact and sputtering target, and method for producing same
WO2013065784A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered compact and sputtering target, and method for producing same
JP2013095656A (en) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk Oxide sintered compact and sputtering target, and method for producing the same
JP2013095655A (en) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk Oxide sintered compact and sputtering target, and method for producing the same
CN103715234A (en) * 2012-09-28 2014-04-09 财团法人工业技术研究院 P-type metal oxide semiconductor material
CN103715234B (en) * 2012-09-28 2016-05-04 财团法人工业技术研究院 P-type metal oxide semiconductor material
WO2021090790A1 (en) * 2019-11-08 2021-05-14 出光興産株式会社 Laminate and semiconductor device

Also Published As

Publication number Publication date
CN101124348A (en) 2008-02-13
KR101168447B1 (en) 2012-07-25
TW200535283A (en) 2005-11-01
TWI394872B (en) 2013-05-01
TWI507575B (en) 2015-11-11
JP4488184B2 (en) 2010-06-23
JP2005307269A (en) 2005-11-04
KR20070006854A (en) 2007-01-11
CN100564579C (en) 2009-12-02
TW201341603A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2005103320A1 (en) Indium oxide/zinc oxide/magnesium oxide sputtering target and transparent conductive film
JP4761868B2 (en) Sputtering target, manufacturing method thereof and transparent conductive film
EP2463256B1 (en) Oxide sinter, method for producing same, target and transparent conductive film
JP5024226B2 (en) Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
WO2007000867A1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
WO2011115177A1 (en) Transparent conductive films
JP2008088544A (en) ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
KR101960233B1 (en) Sputtering target
WO2007000878A1 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP2008088544A5 (en)
WO2010032432A1 (en) Sintered body containing yttrium oxide, and sputtering target
CN106029603B (en) Oxidate sintered body, sputtering target and use oxide semiconductor thin-film obtained from the sputtering target
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
TW201333230A (en) Oxide sintered compact and sputtering target, and method for producing same
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
KR20160127732A (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
JP6146773B2 (en) Oxide sintered body and manufacturing method thereof
JP5000231B2 (en) Gadolinium oxide-containing oxide target
WO2013065785A1 (en) Oxide sintered body, sputtering target, and method for producing same
JP5562000B2 (en) Oxide sintered body and manufacturing method thereof
WO2011108536A1 (en) Aluminum oxide-zinc oxide sputtering target
JP6356290B2 (en) Oxide sintered body and manufacturing method thereof
TW201522689A (en) Sputtering target and method for producing same
JP4960041B2 (en) Neodymium oxide-containing oxide target

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580009752.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067021853

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067021853

Country of ref document: KR

122 Ep: pct application non-entry in european phase