WO2010032432A1 - Sintered body containing yttrium oxide, and sputtering target - Google Patents

Sintered body containing yttrium oxide, and sputtering target Download PDF

Info

Publication number
WO2010032432A1
WO2010032432A1 PCT/JP2009/004593 JP2009004593W WO2010032432A1 WO 2010032432 A1 WO2010032432 A1 WO 2010032432A1 JP 2009004593 W JP2009004593 W JP 2009004593W WO 2010032432 A1 WO2010032432 A1 WO 2010032432A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
sintered body
indium
yttrium
body according
Prior art date
Application number
PCT/JP2009/004593
Other languages
French (fr)
Japanese (ja)
Inventor
井上一吉
宇都野太
川嶋浩和
矢野公規
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010529623A priority Critical patent/JPWO2010032432A1/en
Publication of WO2010032432A1 publication Critical patent/WO2010032432A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • FIG. 2 is a chart showing X-ray diffraction results of the sintered body obtained in Example 1.
  • FIG. 3 is a chart showing X-ray diffraction results of the sintered body obtained in Example 2.
  • FIG. 6 is a chart showing X-ray diffraction results of the sintered body obtained in Example 3.
  • FIG. 6 is a chart showing X-ray diffraction results of the sintered body obtained in Example 4.
  • 6 is a chart showing X-ray diffraction results of a sintered body obtained in Example 5.
  • FIG. 7 is a chart showing X-ray diffraction results of a sintered body obtained in Example 6.
  • FIG. 7 is a chart showing X-ray diffraction results of the sintered body obtained in Example 7.
  • yttrium oxide is completely dissolved in indium oxide. Since yttrium oxide is completely dissolved in indium oxide, there is no single yttrium oxide, and the sputtering target obtained from this sintered body can perform stable sputtering and has surface smoothness. Can provide an excellent oxide semiconductor.
  • “completely dissolved” means that yttrium oxide is randomly substituted in the crystal lattice of indium oxide, and the diffraction peak from the Y 2 O 3 crystal is observed by X-ray diffraction. Means not observed.
  • the solid solution state can be obtained as a solid solution ratio when the lattice constant obtained from the obtained X-ray diffraction corresponds to the composition ratio of each metal element.
  • the amount of yttrium oxide dissolved in indium oxide is preferably larger than the amount of yttrium oxide not dissolved.
  • the atomic ratio Y / (In + Y) of indium element and yttrium element is preferably more than 0.0 and less than 0.5.
  • the content ratio Y / (In + Y) of yttrium oxide is expressed by the ratio of the number of moles of metal yttrium to the total number of moles of metal atoms constituting the metal oxide as a raw material. The same applies hereinafter.
  • Y / (In + Y) is 0.5 or more, Y 2 O 3 is detected in addition to InYO 3 , and an oxide semiconductor film excellent in surface smoothness is obtained by abnormal discharge during sputtering. There is a risk of being lost.
  • Y / (In + Y) is 0.005 or more and 0.45 or less, more preferably 0.01 or more and 0.35 or less, and particularly preferably 0.02 or more and 0.3 or less.
  • the content ratio of the metal oxide of positive tetravalent or higher (metal of positive tetravalent or higher) / [In + Y + (metal of positive tetravalent or higher)] is preferably 0.0001 or more and less than 0.005.
  • (positive tetravalent or higher metal) / [In + Y + (positive tetravalent or higher metal)] is less than 0.0001, the amount of positive tetravalent or higher metal oxide is too small, and the effect of reducing bulk resistance is obtained. There is a risk of not being able to.
  • the second sintered body of the present invention contains an oxide of two or more metals selected from the group consisting of indium, tin and zinc and yttrium oxide, and is selected from the group consisting of indium, tin and zinc of yttrium.
  • the atomic ratio [Y / (total of two or more metals) ⁇ 100] with respect to two or more metals is more than 0.0 and 50 atom% or less.
  • the atomic ratio is preferably 0.001 to 40 atomic%, more preferably 2.0 to 15 atomic%.
  • yttrium oxide may be dissolved in indium oxide, may exist as an InYO 3 compound, or both It may exist in the form of With such a configuration, yttrium oxide does not exist alone, and a high-performance oxide semiconductor film excellent in surface smoothness can be obtained without trouble such as abnormal discharge.
  • the sintered body of the third embodiment may further contain a Zn 2 SnO 4 compound.
  • a Zn 2 SnO 4 compound By including the Zn 2 SnO 4 compound, the bulk resistance of the target itself is reduced, and the effect of more stable sputtering can be obtained.
  • any of the above sintered bodies of the present invention preferably contains a positive tetravalent or higher metal element.
  • the content is preferably 100 to 1000 ppm.
  • the bulk resistance can be further reduced by containing a positive tetravalent or higher metal element. When it exceeds 1000 ppm, the obtained oxide semiconductor film may not exhibit normally-off semiconductor characteristics.
  • the positive tetravalent or higher metal element examples include Ti, Zr, Hf, Nb, Ta, W, Ge, Sn, and Ce. Among these, Ce is particularly preferable.
  • the cerium element has an effect of lowering the bulk resistance of the sintered body by being slightly (1000 atomic ppm or less) incorporated into the indium oxide crystal at a sintering temperature of 1200 ° C. or higher.
  • a temperature at which the thin film is crystallized for example, about 250 ° C. to 450 ° C.
  • the amount of cerium incorporated into indium oxide is reduced, and the effect of reducing resistance (the effect of generating carriers) is reduced.
  • the carrier of the obtained crystalline indium oxide film can be controlled, a normally-off oxide semiconductor can be easily obtained.
  • the molded body is sintered at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours to obtain a sintered body.
  • a high-density sintered body may not be obtained.
  • indium oxide or the like may be thermally decomposed.
  • the temperature is preferably 1300 ° C to 1600 ° C, more preferably 1300 ° C to 1550 ° C.
  • the sintering time is preferably 2 to 200 hours. If it is less than 2 hours, the sintering may not be completed, and a high-density sintered body may not be obtained.
  • the heating is too long, which may be disadvantageous economically.
  • it is 5 to 150 hours, more preferably 10 to 100 hours.
  • the metal oxide thin film of the present invention is formed using the above sputtering target. If necessary, an annealing process is performed after film formation.
  • This metal oxide thin film is a semiconductor thin film, and can be used for a channel etch type, etch stopper type, etc. thin film transistor.
  • the lattice constant of the obtained sintered body was determined by the X-ray diffraction method, the density was measured by the Archimedes method, and the conductivity (resistance) of the sintered body was measured by Mitsubishi Oil Chemical Loresta. Is shown in Table 1. Furthermore, charts showing the X-ray diffraction results of this sintered body are shown in FIGS. 1 to 4, respectively.
  • Example 8 Each metal oxide was weighed so as to have the ratio shown in Table 4, and operations were performed in the same manner as in Example 1 except that the sintering conditions shown in Table 4 were used to obtain a sintered body. Furthermore, the chart which shows the X-ray-diffraction result of these sintered compacts is shown in FIG. In the sintered body of Example 8, a peak of In 2 O 3 was observed, and it was found that yttrium oxide was dissolved in indium oxide. In the sintered body of Example 9, peaks of In 2 O 3 and Y 2 Sn 2 O 7 were observed.

Abstract

Provided is a sintered body which is composed of an indium oxide and an yttrium oxide and has a lattice constant between that of InYO3 and that of In2O3.  The sintered body contains the oxide of two or more kinds of metals selected from among a group composed of indium, tin and zinc and the yttrium oxide, and the atom ratio of the yttrium to the two or more kinds of metals selected from among the group composed of indium, tin and zinc exceeds 0.0 but not more than 50 atm%.  The sintered body is composed of the tin oxide and the yttrium oxide and contains an Y2Sn2O7 compound.

Description

酸化イットリウムを含有する焼結体及びスパッタリングターゲットSintered body containing yttrium oxide and sputtering target
 本発明は、酸化インジウム、酸化スズ及び/又は酸化亜鉛に酸化イットリウムを含有する焼結体に関する。 The present invention relates to a sintered body containing yttrium oxide in indium oxide, tin oxide and / or zinc oxide.
 近年、表示装置の発展は目覚ましく、液晶表示装置やEL表示装置等、種々の表示装置がパソコンやワ-プロ等のOA機器へ活発に導入されている。これらの表示装置は、いずれも表示素子を透明導電膜で挟み込んだサンドイッチ構造を有している。 In recent years, the development of display devices has been remarkable, and various display devices such as liquid crystal display devices and EL display devices have been actively introduced into office automation equipment such as personal computers and word processors. Each of these display devices has a sandwich structure in which a display element is sandwiched between transparent conductive films.
 それら表示装置を駆動させるスイッチング素子材料は、現在、シリコン系の半導体膜が主流を占めている。それは、シリコン系薄膜の安定性、加工性の良さの他、スイッチング速度が速い等の良好な特性を有するためである。このシリコン系薄膜は、一般に化学蒸気析出法(CVD)法により作製されている。 Currently, silicon-based semiconductor films dominate the switching element materials that drive these display devices. This is because the silicon-based thin film has good characteristics such as high switching speed as well as good stability and workability. This silicon-based thin film is generally produced by a chemical vapor deposition method (CVD) method.
 しかしながら、シリコン系薄膜は非晶質の場合、スイッチング速度が比較的遅く、高速な動画等を表示しようとする場合に画像を表示できないという難点を有している。また、結晶質のシリコン系薄膜の場合には、スイッチング速度は比較的速いが、結晶化に800℃以上の高温や、レーザーによる加熱等が必要であり、製造に際して多大なエネルギーと多数の工程を要している。また、シリコン系の薄膜は、電圧素子としても性能は優れているものの、電流を流した場合、その特性の経時変化が問題となっている。 However, when the silicon-based thin film is amorphous, the switching speed is relatively slow, and there is a problem that an image cannot be displayed when trying to display a high-speed moving image or the like. In the case of a crystalline silicon-based thin film, the switching speed is relatively fast, but crystallization requires a high temperature of 800 ° C. or higher, heating with a laser, and the like. I need it. In addition, although the silicon-based thin film has excellent performance as a voltage element, a change in the characteristics with time is a problem when a current is passed.
 シリコン系薄膜よりも安定性に優れるとともにITO膜と同等の光透過率を有する透明半導体膜を得るための材料等として好適なターゲット及びその製造方法を提供する方法として、酸化亜鉛と酸化マグネシウムからなる透明半導体薄膜が提案されている(例えば、特許文献1)。 As a method for providing a target suitable as a material for obtaining a transparent semiconductor film that is more stable than a silicon-based thin film and has a light transmittance equivalent to that of an ITO film, and a method for producing the target, it is composed of zinc oxide and magnesium oxide. A transparent semiconductor thin film has been proposed (for example, Patent Document 1).
 しかしながら、これらの酸化インジウムと酸化ガリウム、酸化亜鉛や酸化亜鉛と酸化マグネシウムからなる透明半導体膜は、弱酸でのエッチング性が非常に早い特徴を持っているが、金属薄膜のエッチング液でもエッチングされ、透明半導体膜上の金属薄膜をエッチングする場合に、同時にエッチングされてしまうことがあり、透明半導体膜上の金属薄膜だけを選択的にエッチングする場合には不適であった。 However, these transparent semiconductor films made of indium oxide and gallium oxide, zinc oxide or zinc oxide and magnesium oxide have a very fast etching property with a weak acid, but are etched with an etching solution of a metal thin film, When the metal thin film on the transparent semiconductor film is etched, the metal thin film may be etched at the same time, which is not suitable when only the metal thin film on the transparent semiconductor film is selectively etched.
 また、特許文献2には、酸化インジウム、酸化スズ及び酸化イットリウムを主成分とする薄膜の記載があるが、透明導電膜に関するものであり、酸化物半導体に関する記載はない。 Patent Document 2 describes a thin film mainly composed of indium oxide, tin oxide, and yttrium oxide, but relates to a transparent conductive film, and does not describe an oxide semiconductor.
特開2004-119525号公報JP 2004-119525 A 特開2000-169219号公報JP 2000-169219 A
 本発明の目的は、スパッタリングターゲットとして使用した場合に、安定したスパッタリングを行うことができ、かつ透明性及び表面平滑性に優れた高性能の透明酸化物半導体膜を与える焼結体を提供することである。 An object of the present invention is to provide a sintered body capable of performing stable sputtering when used as a sputtering target and providing a high-performance transparent oxide semiconductor film excellent in transparency and surface smoothness. It is.
 上記目的を達成するため、本発明者らは鋭意研究を行い、酸化インジウム、酸化亜鉛及び/又は酸化スズに酸化イットリウムを含む焼結体は、スパッタリングターゲットに加工した場合、酸化物薄膜を得る際に、安定したスパッタリングを行うことができ、表面平滑性に優れた、高性能の酸化物半導体を与えることを見出し、本発明を完成させた。 In order to achieve the above object, the present inventors have conducted intensive research, and when a sintered body containing yttrium oxide in indium oxide, zinc oxide and / or tin oxide is processed into a sputtering target, an oxide thin film is obtained. In addition, the inventors have found that a high-performance oxide semiconductor that can perform stable sputtering and has excellent surface smoothness is provided, and the present invention has been completed.
 酸化イットリウムは、ITOに添加した場合に基板温度を高温にして成膜した際の薄膜のグレインサイズを小さくし、平坦化膜を得やすいという好ましい点を有する。しかし、その反面、酸化イットリウムは、その絶縁性のために、ターゲット中に単独で存在すると、スパッタリングを行った際に異状放電を生じるという問題点を有している。
 そこで、本発明においては、酸化イットリウムを単独で存在させず、他の金属酸化物成分と混合することで、例えば他の金属酸化物成分中に固溶させて分散させたり、他の金属酸化物との複合酸化物とすることで、酸化イットリウムが単独で存在する場合に問題となる異状放電を抑制することができるようになった。
When yttrium oxide is added to ITO, it has a preferable point that the grain size of the thin film when the film is formed at a high substrate temperature is reduced, and a planarized film is easily obtained. On the other hand, however, yttrium oxide has a problem in that when it exists alone in the target due to its insulating properties, abnormal discharge occurs when sputtering is performed.
Therefore, in the present invention, yttrium oxide does not exist alone, but is mixed with other metal oxide components, for example, dissolved and dispersed in other metal oxide components, or other metal oxides. Thus, the abnormal discharge that becomes a problem when yttrium oxide is present alone can be suppressed.
 本発明によれば、以下の焼結体等が提供される。
1.酸化インジウム及び酸化イットリウムからなり、格子定数が、InYOとInの間にある焼結体。
2.酸化イットリウムが、酸化インジウムに完全固溶している1に記載の焼結体。
3.インジウム元素、イットリウム元素の原子比Y/(In+Y)が、0.0を超え0.5未満である1又は2に記載の焼結体。
4.インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物と酸化イットリウムを含有し、イットリウムの、インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属に対する原子比が、0.0を超え50原子%以下である焼結体。
5.前記原子比が0.001~40原子%である4に記載の焼結体。
6.前記原子比が2.0~15原子%である4に記載の焼結体。
7.前記2種以上の金属が少なくともインジウムを含むとき、酸化イットリウムが固溶した酸化インジウム結晶を含有する4~6のいずれかに記載の焼結体。
8.前記酸化インジウム結晶がビックスバイト構造である7に記載の焼結体。
9.前記酸化インジウム結晶の結晶粒径が10μm未満である7又は8に記載の焼結体。
10.前記酸化インジウム結晶の結晶の格子定数が、InYOとInの間にある7~9のいずれかに記載の焼結体。
11.インジウムが、焼結体を構成する全金属に対し、50~99.9原子%含まれる7~10のいずれかに記載の焼結体。
12.さらに正4価以上の金属元素を含有する1~11のいずれかに記載の焼結体
13.前記正4価以上の金属元素を100~1000ppm含有する12に記載の焼結体
14.酸化インジウム、酸化イットリウム及び酸化スズからなり、酸化イットリウムが、酸化インジウムに固溶されているか、若しくはYSn化合物として含有されている、又は酸化イットリウムの一部が、酸化インジウムに固溶され、かつ残部がYSn化合物として含有されている焼結体。
15.インジウム元素、イットリウム元素、スズ元素の原子比Y/(In+Y+Sn)が、0.02を超え0.5以下である14に記載の焼結体。
16.酸化インジウム、酸化イットリウム及び酸化亜鉛からなり、酸化イットリウムが酸化インジウムに固溶されているか、若しくはInYO化合物として含有されている、又は酸化イットリウムの一部が、酸化インジウムに固溶され、かつ残部がYZn化合物として含有されている焼結体。
17.さらにIn・(ZnO)(ここで、mは2から20の整数)で表される六方晶層状化合物を含む16に記載の焼結体。
18.インジウム元素、イットリウム元素、亜鉛元素の原子比Y/(In+Y+Zn)が、0.0を超え0.5以下である16又は17に記載の焼結体。
19.酸化スズ、酸化イットリウム及び酸化亜鉛からなり、酸化イットリウムが、酸化スズに固溶されているか、若しくはYSn化合物として含有されている、又は酸化イットリウムの一部が、酸化スズに固溶され、かつ残部がYSn化合物として含有されている焼結体。
20.さらにZnSnO化合物を含む19に記載の焼結体。
21.スズ元素、イットリウム元素、亜鉛元素の原子比Y/(Sn+Y+Zn)が、0.01以上0.4以下である19又は20に記載の焼結体。
22.酸化スズ及び酸化イットリウムからなり、YSn化合物を含む焼結体。
23.スズ元素、イットリウム元素の原子比Y/(Sn+Y)が、0.0を超え0.5以下である22に記載の焼結体。
24.インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物と酸化イットリウムの粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する4~11のいずれかに記載の焼結体の製造方法。
25.インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物、酸化イットリウム並びに正四価以上の金属の粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する12又は13に記載の焼結体の製造方法。
26.酸化雰囲気中で焼成する24又は25に記載の焼結体の製造方法。
27.1~23のいずれかに記載の焼結体を用いて作製されるスパッタリングターゲット。
28.27に記載のスパッタリングターゲットを用いて成膜される金属酸化物薄膜。
29.28に記載の金属酸化物薄膜からなる半導体。
30.29に記載の半導体を用いる薄膜トランジスタ。
31.チャンネルエッチ型である30に記載の薄膜トランジスタ。
32.エッチストッパー型である30に記載の薄膜トランジスタ。
33.30~32のいずれかに記載の薄膜トランジスタを備える半導体素子。
According to the present invention, the following sintered bodies and the like are provided.
1. A sintered body made of indium oxide and yttrium oxide and having a lattice constant between InYO 3 and In 2 O 3 .
2. 2. The sintered body according to 1, wherein yttrium oxide is completely dissolved in indium oxide.
3. The sintered body according to 1 or 2, wherein the atomic ratio Y / (In + Y) of the indium element and the yttrium element is more than 0.0 and less than 0.5.
4). It contains an oxide of two or more metals selected from the group consisting of indium, tin and zinc and yttrium oxide, and the atomic ratio of yttrium to two or more metals selected from the group consisting of indium, tin and zinc is Sintered body which exceeds 0.0 and is 50 atomic% or less.
5). The sintered body according to 4, wherein the atomic ratio is 0.001 to 40 atomic%.
6). The sintered body according to 4, wherein the atomic ratio is 2.0 to 15 atomic%.
7). 7. The sintered body according to any one of 4 to 6, containing an indium oxide crystal in which yttrium oxide is dissolved when the two or more metals contain at least indium.
8). 8. The sintered body according to 7, wherein the indium oxide crystal has a bixbyite structure.
9. The sintered body according to 7 or 8, wherein a crystal grain size of the indium oxide crystal is less than 10 μm.
10. The sintered body according to any one of 7 to 9, wherein a lattice constant of the indium oxide crystal is between InYO 3 and In 2 O 3 .
11. The sintered body according to any one of 7 to 10, wherein indium is contained in an amount of 50 to 99.9 atomic% with respect to all metals constituting the sintered body.
12 12. The sintered body according to any one of 1 to 11, further comprising a positive tetravalent or higher-valent metal element. 13. The sintered body according to 12, containing 100 to 1000 ppm of the positive tetravalent or higher metal element. It consists of indium oxide, yttrium oxide, and tin oxide. Yttrium oxide is dissolved in indium oxide or contained as a Y 2 Sn 2 O 7 compound, or a part of yttrium oxide is solidified in indium oxide. It is dissolved, and the sintered body balance is contained as Y 2 Sn 2 O 7 compound.
15. 15. The sintered body according to 14, wherein the atomic ratio Y / (In + Y + Sn) of indium element, yttrium element, and tin element is more than 0.02 and 0.5 or less.
16. It consists of indium oxide, yttrium oxide and zinc oxide, and yttrium oxide is dissolved in indium oxide or contained as an InYO 3 compound, or a part of yttrium oxide is dissolved in indium oxide and the remainder Is a sintered body containing Y 2 Zn 2 O 7 as a compound.
17. Further In 2 O 3 · (ZnO) m ( where, m is an integer of 2 to 20) sintered body according to 16, including a hexagonal layered compound represented by.
18. The sintered body according to 16 or 17, wherein an atomic ratio Y / (In + Y + Zn) of indium element, yttrium element, and zinc element is more than 0.0 and 0.5 or less.
19. It consists of tin oxide, yttrium oxide and zinc oxide, and yttrium oxide is dissolved in tin oxide or contained as a Y 2 Sn 2 O 7 compound, or a part of yttrium oxide is solidified in tin oxide. It is dissolved, and the sintered body balance is contained as Y 2 Sn 2 O 7 compound.
20. Further sintered body according to 19 comprising Zn 2 SnO 4 compound.
21. The sintered body according to 19 or 20, wherein an atomic ratio Y / (Sn + Y + Zn) of tin element, yttrium element, and zinc element is 0.01 or more and 0.4 or less.
22. A sintered body made of tin oxide and yttrium oxide and containing a Y 2 Sn 2 O 7 compound.
23. The sintered body according to 22, wherein the atomic ratio Y / (Sn + Y) of the tin element and the yttrium element is more than 0.0 and 0.5 or less.
24. Any one of 4 to 11 in which two or more kinds of metal oxides selected from the group consisting of indium, tin, and zinc are mixed with yttrium oxide powder and fired at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours. The manufacturing method of the sintered compact described in 2.
25. Two or more kinds of metal oxides selected from the group consisting of indium, tin, and zinc, yttrium oxide, and powders of positive tetravalent or higher metals are mixed and fired at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours. A method for producing a sintered body according to 12 or 13.
26. The method for producing a sintered body according to 24 or 25, wherein the sintered body is fired in an oxidizing atmosphere.
A sputtering target produced using the sintered body according to any one of 27.1 to 23.
A metal oxide thin film formed by using the sputtering target according to 28.27.
A semiconductor comprising the metal oxide thin film according to 29.28.
A thin film transistor using the semiconductor according to 30.29.
31. 31. The thin film transistor according to 30, which is a channel etch type.
32. 31. The thin film transistor according to 30, which is an etch stopper type.
33. A semiconductor device comprising the thin film transistor according to any one of 33.30 to 32.
 本発明によれば、スパッタリングターゲットに加工した場合、酸化物薄膜を得る際に、安定したスパッタリングが行え、表面平滑性に優れた、高性能の酸化物半導体を与える焼結体が提供できる。 According to the present invention, when processed into a sputtering target, it is possible to provide a sintered body that can perform stable sputtering and provide a high-performance oxide semiconductor with excellent surface smoothness when an oxide thin film is obtained.
実施例1で得られた焼結体のX線回折結果を示すチャートである。2 is a chart showing X-ray diffraction results of the sintered body obtained in Example 1. FIG. 実施例2で得られた焼結体のX線回折結果を示すチャートである。3 is a chart showing X-ray diffraction results of the sintered body obtained in Example 2. FIG. 実施例3で得られた焼結体のX線回折結果を示すチャートである。6 is a chart showing X-ray diffraction results of the sintered body obtained in Example 3. FIG. 実施例4で得られた焼結体のX線回折結果を示すチャートである。6 is a chart showing X-ray diffraction results of the sintered body obtained in Example 4. 実施例5で得られた焼結体のX線回折結果を示すチャートである。6 is a chart showing X-ray diffraction results of a sintered body obtained in Example 5. FIG. 実施例6で得られた焼結体のX線回折結果を示すチャートである。7 is a chart showing X-ray diffraction results of a sintered body obtained in Example 6. FIG. 実施例7で得られた焼結体のX線回折結果を示すチャートである。7 is a chart showing X-ray diffraction results of the sintered body obtained in Example 7. FIG. 実施例8で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of the sintered body obtained in Example 8. 実施例9で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of the sintered body obtained in Example 9. 実施例10で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of the sintered body obtained in Example 10. FIG. 実施例11で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of the sintered body obtained in Example 11. FIG. 実施例12で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of the sintered body obtained in Example 12. 実施例13で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of the sintered body obtained in Example 13. 比較例2で得られた焼結体のX線回折結果を示すチャートである。6 is a chart showing X-ray diffraction results of a sintered body obtained in Comparative Example 2. 比較例3で得られた焼結体のX線回折結果を示すチャートである。10 is a chart showing X-ray diffraction results of a sintered body obtained in Comparative Example 3.
 本発明の焼結体は、酸化インジウム、酸化亜鉛及び/又は酸化スズに、酸化イットリウムを含む。
 酸化イットリウムを含む焼結体は、スパッタリングターゲットに加工した場合、酸化物薄膜を得る際に、安定したスパッタリングを行うことができ、表面平滑性に優れた、高性能の酸化物半導体を与える。
 酸化イットリウムは、酸素との結合力が高い。従って、本発明の焼結体からなるスパッタリングターゲットを用いて得られる結晶質薄膜内の酸素欠損が抑制され、薄膜が半導体化しやすい。
 また、酸化イットリウムは、それ自体が耐酸性・耐アルカリ性であるため、得られる薄膜の耐酸性・耐アルカリ性が向上する。
The sintered body of the present invention contains yttrium oxide in indium oxide, zinc oxide and / or tin oxide.
When a sintered body containing yttrium oxide is processed into a sputtering target, it can perform stable sputtering when obtaining an oxide thin film, and provides a high-performance oxide semiconductor excellent in surface smoothness.
Yttrium oxide has a high binding force with oxygen. Therefore, oxygen deficiency in the crystalline thin film obtained by using the sputtering target made of the sintered body of the present invention is suppressed, and the thin film is easily made into a semiconductor.
Moreover, since yttrium oxide itself has acid resistance and alkali resistance, the acid resistance and alkali resistance of the obtained thin film are improved.
 本発明の焼結体が、酸化インジウムを含むとき、酸化イットリウムは、耐還元性が大きいため、酸化インジウムの還元を抑える。このため、本発明の焼結体からなるスパッタリングターゲットを用いるとき、ノジュールの発生が抑制される。
 さらに、酸化イットリウムを添加すると、酸化インジウムの結晶質薄膜の格子定数は大きくなるため、陽イオンの原子間距離が大きくなる。従って、得られる薄膜の内部応力は、引っ張り応力になりやすく、この薄膜を用いたトランジスタの移動度が向上し、S値及び耐久性が向上する。
When the sintered body of the present invention contains indium oxide, yttrium oxide suppresses reduction of indium oxide because it has high reduction resistance. For this reason, when using the sputtering target which consists of a sintered compact of this invention, generation | occurrence | production of a nodule is suppressed.
Further, when yttrium oxide is added, the lattice constant of the crystalline thin film of indium oxide increases, so that the interatomic distance of the cation increases. Therefore, the internal stress of the obtained thin film tends to be tensile stress, the mobility of the transistor using this thin film is improved, and the S value and durability are improved.
 本発明の焼結体が、酸化インジウムを含むとき、酸化イットリウムが固溶した酸化インジウム結晶を含有することが好ましい。この酸化インジウム結晶は好ましくはビックスバイト構造である。ビックスバイト構造は、X線回折測定によりピークを観察することにより確認できる。 When the sintered body of the present invention contains indium oxide, it preferably contains an indium oxide crystal in which yttrium oxide is dissolved. The indium oxide crystal preferably has a bixbyite structure. The bixbite structure can be confirmed by observing a peak by X-ray diffraction measurement.
 好ましくは酸化インジウム結晶の結晶粒径が10μm未満である。結晶が大きくなりすぎるとスパッタリング中に異常放電の原因になったり、スパッタリングターゲット上のノジュールの発生原因になったりする
 結晶粒径は、30μm×30μmの視野で走査型電子顕微鏡にて観察した場合の全視野での結晶の平均値を結晶粒径(長径)とする。また、上記視野で観察した場合に、10μm以上の結晶が存在しなければ、平均粒径は10μm未満になる。
Preferably, the crystal grain size of the indium oxide crystal is less than 10 μm. If the crystal becomes too large, it may cause abnormal discharge during sputtering or cause nodules on the sputtering target. The crystal grain size is the same as that observed with a scanning electron microscope in a 30 μm × 30 μm field of view. The average value of crystals in all fields of view is defined as the crystal grain size (major axis). Further, when observed with the above-mentioned visual field, the average particle diameter is less than 10 μm if there are no crystals of 10 μm or more.
 また、好ましくは、酸化インジウム結晶の格子定数が、InYOとInの間にある。ここで、「格子定数」とは、単位格子の格子軸の長さと定義され、X線回折によって決定することができる。Inの格子定数は10.118Åであり、InYOの格子定数は10.362Åであるから、これらの間の数値が好ましい(10.118Åと10.362Åは含まない)。焼結体の格子定数が、InYOとInの間にあるということは、酸化イットリウムが酸化インジウムに十分に固溶されていることを意味し、異状放電を生じさせる量の単独の酸化イットリウムが焼結体中に存在していない。 Also preferably, the lattice constant of the indium oxide crystal is between InYO 3 and In 2 O 3 . Here, the “lattice constant” is defined as the length of the lattice axis of the unit cell, and can be determined by X-ray diffraction. Since the lattice constant of In 2 O 3 is 10.118 、 and the lattice constant of InYO 3 is 10.362 Å, a numerical value between these is preferable (not including 10.118 Å and 10.362 Å). The fact that the lattice constant of the sintered body is between InYO 3 and In 2 O 3 means that the yttrium oxide is sufficiently dissolved in indium oxide, and an amount of a single substance that causes abnormal discharge is generated. Yttrium oxide is not present in the sintered body.
 好ましくは、インジウムは、焼結体を構成する全金属に対し、50~99.9原子%、さらに好ましくは60~99原子%、特に好ましくは70~98原子%含まれる。この含有量であることにより、得られる酸化物半導体の移動度が大きくなり、安定した薄膜トランジスタが得られる。 Preferably, indium is contained in an amount of 50 to 99.9 atomic%, more preferably 60 to 99 atomic%, and particularly preferably 70 to 98 atomic% with respect to all metals constituting the sintered body. With this content, the mobility of the obtained oxide semiconductor increases, and a stable thin film transistor can be obtained.
 具体的には、本発明の第1の焼結体は、酸化インジウム及び酸化イットリウムからなり、格子定数が、InYOとInの間にある焼結体である。格子定数を上記InYOとInの間とするには、酸化イットリウム(Y)の添加量を制御すればよい。
 焼結体の格子定数が、InYOとInの間にあるということは、酸化イットリウムが酸化インジウムに十分に固溶されていることを意味し、異状放電を生じさせる量の単独の酸化イットリウムが焼結体中に存在していないことを意味している。従って、この焼結体から得られるスパッタリングターゲットは、安定したスパッタリングを行うことができ、かつ、表面平滑性に優れた酸化物半導体を与えることができる。
 尚、酸化イットリウムが「十分に固溶されている」とは、異状放電を生じさせない程度の量の単独の酸化イットリウムが含まれていてもよいことを意味する。
Specifically, the first sintered body of the present invention is a sintered body made of indium oxide and yttrium oxide and having a lattice constant between InYO 3 and In 2 O 3 . In order for the lattice constant to be between InYO 3 and In 2 O 3 , the amount of yttrium oxide (Y 2 O 3 ) added may be controlled.
The fact that the lattice constant of the sintered body is between InYO 3 and In 2 O 3 means that the yttrium oxide is sufficiently dissolved in indium oxide, and an amount of a single substance that causes abnormal discharge is generated. This means that yttrium oxide is not present in the sintered body. Therefore, the sputtering target obtained from this sintered body can perform stable sputtering and can provide an oxide semiconductor excellent in surface smoothness.
Note that the expression “sufficiently solid solution” of yttrium oxide means that a single amount of yttrium oxide may be contained so as not to cause abnormal discharge.
 酸化イットリウムは、酸化インジウムに完全固溶していることが好ましい。
 酸化イットリウムが、酸化インジウムに完全固溶していることにより、単独の酸化イットリウムが存在せず、この焼結体から得られるスパッタリングターゲットは、安定したスパッタリングを行うことができ、かつ、表面平滑性に優れた酸化物半導体を与えることができる。ここで、「完全固溶している」とは、酸化イットリウムが酸化インジウムの結晶格子中にランダムに置換されていることを意味し、X線回折によりYの結晶からの回折ピークが観察されないことを意味する。
 固溶の状態は、得られるX線回折から求められた格子定数が、それぞれの金属元素の組成比に対応している場合に固溶している比率を求めることができる。酸化インジウムに固溶している酸化イットリウムの量は、固溶していない酸化イットリウムの量より多いことが好ましい。
It is preferable that yttrium oxide is completely dissolved in indium oxide.
Since yttrium oxide is completely dissolved in indium oxide, there is no single yttrium oxide, and the sputtering target obtained from this sintered body can perform stable sputtering and has surface smoothness. Can provide an excellent oxide semiconductor. Here, “completely dissolved” means that yttrium oxide is randomly substituted in the crystal lattice of indium oxide, and the diffraction peak from the Y 2 O 3 crystal is observed by X-ray diffraction. Means not observed.
The solid solution state can be obtained as a solid solution ratio when the lattice constant obtained from the obtained X-ray diffraction corresponds to the composition ratio of each metal element. The amount of yttrium oxide dissolved in indium oxide is preferably larger than the amount of yttrium oxide not dissolved.
 インジウム元素、イットリウム元素の原子比Y/(In+Y)は、0.0を超え0.5未満であることが好ましい。ここで、酸化イットリウムの含有割合Y/(In+Y)は、原料となる金属酸化物を構成する金属原子の合計モル数に対する金属イットリウムのモル数の割合で表したものある。以下同様である。
 Y/(In+Y)が0.5以上になると、InYOの他に、Yが検出されるようになり、スパッタ時の異状放電等により表面平滑性に優れた酸化物半導体膜が得られなくなるおそれがある。より好ましくは、Y/(In+Y)が、0.005以上0.45以下、さらに好ましくは、0.01以上0.35以下、特に好ましくは0.02以上0.3以下である。
The atomic ratio Y / (In + Y) of indium element and yttrium element is preferably more than 0.0 and less than 0.5. Here, the content ratio Y / (In + Y) of yttrium oxide is expressed by the ratio of the number of moles of metal yttrium to the total number of moles of metal atoms constituting the metal oxide as a raw material. The same applies hereinafter.
When Y / (In + Y) is 0.5 or more, Y 2 O 3 is detected in addition to InYO 3 , and an oxide semiconductor film excellent in surface smoothness is obtained by abnormal discharge during sputtering. There is a risk of being lost. More preferably, Y / (In + Y) is 0.005 or more and 0.45 or less, more preferably 0.01 or more and 0.35 or less, and particularly preferably 0.02 or more and 0.3 or less.
 焼結体中の金属元素の含有量(原子比)は、ICP(Inductively Coupled Plasma)測定により、各元素の存在量を測定することで求めることができる。 The content (atomic ratio) of the metal element in the sintered body can be determined by measuring the abundance of each element by ICP (Inductively Coupled Plasma) measurement.
 第1の焼結体は、さらに正4価以上の金属酸化物を含むことができる。
 この場合にも、正4価以上の金属酸化物は、酸化インジウムに固溶し、酸化インジウムのみのピークを示すものが好ましい。正4価の金属酸化物を添加することにより、得られる焼結体のバルク抵抗が低下し、これらを用いたスパッタリングターゲットは、より安定したスパッタリングを行うことができ、安定して表面平滑性の高い酸化物半導体膜が得られる。
The first sintered body can further contain a metal oxide having a positive tetravalence or higher.
Also in this case, it is preferable that the positive tetravalent or higher metal oxide is a solid solution in indium oxide and shows a peak of only indium oxide. By adding a positive tetravalent metal oxide, the bulk resistance of the obtained sintered body is reduced, and the sputtering target using these can perform more stable sputtering, and has a stable surface smoothness. A high oxide semiconductor film can be obtained.
 前記正4価以上の金属酸化物は、SnO及び/又はCeOであることが好ましい。
 正4価以上の金属酸化物は、CeOであることがより好ましい。CeOは、採掘量も多く、供給安定性も確保されており、また、毒性も無いからである。
 また、CeOの場合、高温(焼結温度)では、酸化インジウムに取り込まれ、キャリヤーを発生することにより焼結体(ターゲット)のバルク抵抗を低減する効果があり、スパッタ法により薄膜を形成する場合、酸化インジウムに固溶することがなく、キャリヤーを発生しないために、薄膜が半導体化しやすい効果がある。
The positive tetravalent or higher metal oxide is preferably SnO 2 and / or CeO 2 .
More preferably, the positive tetravalent or higher metal oxide is CeO 2 . This is because CeO 2 has a large amount of mining, supply stability is ensured, and there is no toxicity.
In the case of CeO 2 , at a high temperature (sintering temperature), it is taken into indium oxide and has the effect of reducing the bulk resistance of the sintered body (target) by generating carriers, and a thin film is formed by sputtering. In this case, the thin film is not dissolved in indium oxide and carriers are not generated.
 前記正4価以上の金属酸化物の含有割合(正4価以上の金属)/[In+Y+(正4価以上の金属)]は、0.0001以上0.005未満であることが好ましい。
 (正4価以上の金属)/[In+Y+(正4価以上の金属)]が、0.0001未満では、正4価以上の金属酸化物の量が少なすぎてバルク抵抗を低減する効果が得られないおそれがある。
The content ratio of the metal oxide of positive tetravalent or higher (metal of positive tetravalent or higher) / [In + Y + (metal of positive tetravalent or higher)] is preferably 0.0001 or more and less than 0.005.
When (positive tetravalent or higher metal) / [In + Y + (positive tetravalent or higher metal)] is less than 0.0001, the amount of positive tetravalent or higher metal oxide is too small, and the effect of reducing bulk resistance is obtained. There is a risk of not being able to.
 0.005以上であると、添加された正4価以上の金属酸化物の固溶が不十分となる場合があり、X線回折で見た場合に、インジウム酸化物以外の化合物のピークが観測されることがある。このようなインジウム酸化物以外の化合物が存在する焼結体を使用したスパッタリングターゲットを用いると、得られる酸化物半導体を結晶化して使用する場合に、キャリヤーを発生するようになり、半導体化しない場合があるため好ましくない。
 よって、酸化物半導体を結晶化させて使用する場合には、(正4価以上の金属)/[In+Y+(正4価以上の金属)]を、0.0001以上0.005未満にするのが好ましく、より好ましくは、0.0002以上0.002以下、さらに好ましくは、0.0005以上0.001以下である。
If it is 0.005 or more, the added solid tetravalent or higher metal oxide may not be sufficiently dissolved, and when observed by X-ray diffraction, peaks of compounds other than indium oxide are observed. May be. When a sputtering target using a sintered body containing such a compound other than indium oxide is used, carriers are generated when the resulting oxide semiconductor is crystallized and used, and it is not made into a semiconductor. This is not preferable.
Therefore, when an oxide semiconductor is used after being crystallized, (positive tetravalent or higher metal) / [In + Y + (positive tetravalent or higher metal)] is set to 0.0001 or more and less than 0.005. Preferably, it is 0.0002 or more and 0.002 or less, more preferably 0.0005 or more and 0.001 or less.
 一方、得られる酸化物半導体を非晶質のまま使用する場合には、正4価以上の金属酸化物の添加によるキャリヤーの発生はないので、添加量に特別な制限はない。しかしながら、これらの組成範囲では、結晶質の薄膜が得られることが多いため、上記の(正4価以上の金属)/[In+Y+(正4価以上の金属)]を、0.0001以上0.005未満の範囲にするのが好ましい。 On the other hand, when the obtained oxide semiconductor is used in an amorphous state, there is no generation of carriers due to the addition of a positive tetravalent or higher metal oxide, so there is no particular limitation on the amount of addition. However, in these composition ranges, a crystalline thin film is often obtained. Therefore, the above (positive tetravalent or higher metal) / [In + Y + (positive tetravalent or higher metal)] is set to 0.0001 or more and 0.00. A range of less than 005 is preferred.
 本発明の第2の焼結体は、インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物と酸化イットリウムを含有し、イットリウムの、インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属に対する原子比[Y/(2種以上の金属の合計)×100]が、0.0を超え50原子%以下である。原子比は好ましくは0.001~40原子%であり、より好ましくは2.0~15原子%である。 The second sintered body of the present invention contains an oxide of two or more metals selected from the group consisting of indium, tin and zinc and yttrium oxide, and is selected from the group consisting of indium, tin and zinc of yttrium. The atomic ratio [Y / (total of two or more metals) × 100] with respect to two or more metals is more than 0.0 and 50 atom% or less. The atomic ratio is preferably 0.001 to 40 atomic%, more preferably 2.0 to 15 atomic%.
 本発明の第2の焼結体の第1の実施形態は、酸化インジウム、酸化イットリウム及び酸化スズとからなり、酸化イットリウムが、酸化インジウムに固溶されているか、若しくはYSn化合物として含まれている、又は酸化イットリウムの一部が、酸化インジウムに固溶され、かつ残部がYSn化合物として含有されている焼結体である。 First embodiment of the second sintered body of the present invention, indium oxide, consists of a yttrium oxide and tin oxide, yttrium oxide, or is dissolved in indium oxide, or Y 2 Sn 2 O 7 compound Or a part of yttrium oxide is dissolved in indium oxide and the remainder is contained as a Y 2 Sn 2 O 7 compound.
 第1の実施形態の焼結体の場合、酸化イットリウムは、酸化インジウムに固溶されていてもよいし、YSn化合物として存在していてもよいし、さらには両方の形態で存在していてもよい。酸化イットリウムは、このような形態で存在していることにより、酸化イットリウムが単独で存在することが無く、安定してスパッタリングを行うことができる。 In the case of the sintered body of the first embodiment, yttrium oxide may be dissolved in indium oxide, may be present as a Y 2 Sn 2 O 7 compound, or in both forms. May be present. Since yttrium oxide is present in such a form, yttrium oxide does not exist alone, and sputtering can be performed stably.
 第1の実施形態の焼結体は、インジウム元素、イットリウム元素、スズ元素の原子比Y/(In+Y+Sn)が、0.02を超え0.5以下であることが好ましい。
 Y/(In+Y+Sn)が0.02以下では、酸化イットリウムの添加量が少なく、得られる酸化物薄膜が半導体化しない場合がある。0.5を超えると、酸化イットリウムが単独で存在するようになり、異状放電等の原因になるおそれがある。より好ましくは、0.03以上0.4以下であり、さらに好ましくは、0.05以上0.3以下である。
In the sintered body of the first embodiment, the atomic ratio Y / (In + Y + Sn) of indium element, yttrium element, and tin element is preferably more than 0.02 and 0.5 or less.
When Y / (In + Y + Sn) is 0.02 or less, the amount of yttrium oxide added is small, and the resulting oxide thin film may not become a semiconductor. If it exceeds 0.5, yttrium oxide exists alone, which may cause abnormal discharge or the like. More preferably, it is 0.03 or more and 0.4 or less, More preferably, it is 0.05 or more and 0.3 or less.
 酸化スズを含有する第1の実施形態の焼結体をスパッタリングターゲットとして用いる場合、得られる酸化物半導体を結晶化させると、スズがキャリヤーを発生する場合があるが、この場合には、得られる酸化物半導体を非晶質のまま使用することができる。 When the sintered body according to the first embodiment containing tin oxide is used as a sputtering target, tin may generate a carrier when the obtained oxide semiconductor is crystallized. An oxide semiconductor can be used in an amorphous state.
 本発明の第2の焼結体の第2の実施形態は、酸化インジウム、酸化イットリウム及び酸化亜鉛からなり、酸化イットリウムが酸化インジウムに固溶されているか、若しくはInYO化合物として含有されている、又は酸化イットリウムの一部が、酸化インジウムに固溶され、かつ残部がYZn化合物として含有されている焼結体である。 The second embodiment of the second sintered body of the present invention comprises indium oxide, yttrium oxide, and zinc oxide, and yttrium oxide is dissolved in indium oxide or contained as an InYO 3 compound. Alternatively, a sintered body in which a part of yttrium oxide is solid-solved in indium oxide and the remaining part is contained as a Y 2 Zn 2 O 7 compound.
 酸化インジウム、酸化イットリウム及び酸化亜鉛とからなる焼結体の場合には、酸化イットリウムは、酸化インジウムに固溶されていてもよいし、InYO化合物として存在していてもよいし、さらには両方の形態で存在していてもよい。このように構成することにより、酸化イットリウムが単独で存在することがなくなり、異状放電等のトラブルなしに、表面平滑性に優れた高性能の酸化物半導体膜が得られる。 In the case of a sintered body made of indium oxide, yttrium oxide and zinc oxide, yttrium oxide may be dissolved in indium oxide, may exist as an InYO 3 compound, or both It may exist in the form of With such a configuration, yttrium oxide does not exist alone, and a high-performance oxide semiconductor film excellent in surface smoothness can be obtained without trouble such as abnormal discharge.
 第2の実施形態の焼結体は、さらにIn・(ZnO)(ここで、mは2から20の整数)で表される六方晶層状化合物を含有していてもよい。このように構成することにより、ターゲットのバルク抵抗が低減され、より安定したスパッタが行えるようになる。 The sintered body of the second embodiment may further contain a hexagonal layered compound represented by In 2 O 3. (ZnO) m (where m is an integer of 2 to 20). With this configuration, the bulk resistance of the target is reduced, and more stable sputtering can be performed.
 第2の実施形態の焼結体は、インジウム元素、イットリウム元素、亜鉛元素の原子比Y/(In+Y+Zn)が、0.0を超え0.5以下であることが好ましい。
 Y/(In+Y+Zn)が0.5を超えると、酸化イットリウムが単独で存在するようになり、異状放電等の原因になるおそれがある。より好ましくは0.01以上0.4以下であり、さらに好ましくは0.01以上0.35以下である。
In the sintered body of the second embodiment, the atomic ratio Y / (In + Y + Zn) of indium element, yttrium element, and zinc element is preferably more than 0.0 and 0.5 or less.
When Y / (In + Y + Zn) exceeds 0.5, yttrium oxide exists alone, which may cause abnormal discharge or the like. More preferably, it is 0.01 or more and 0.4 or less, More preferably, it is 0.01 or more and 0.35 or less.
 本発明の第2の焼結体の第3の実施形態は、酸化スズ、酸化イットリウム及び酸化亜鉛からなり、酸化イットリウムが、酸化スズに固溶されているか、若しくはYSn化合物として含有されている、又は酸化イットリウムの一部が、酸化スズに固溶され、かつ残部がYSn化合物として含有されている焼結体である。 A third embodiment of the second sintered body of the present invention, tin oxide, made of yttrium oxide and zinc oxide, yttrium oxide, or is dissolved in the tin oxide, or as Y 2 Sn 2 O 7 compound It is a sintered body that is contained or a part of yttrium oxide is solid-dissolved in tin oxide and the remainder is contained as a Y 2 Sn 2 O 7 compound.
 酸化スズ、酸化イットリウム及び酸化亜鉛からなる焼結体の場合には、酸化イットリウムは、酸化スズに固溶されていてもよいし、YSn化合物として含有されていてもよいし、さらには両方の形態で存在していてもよい。このように構成することにより、酸化イットリウムが単独で存在することがなくなり、異状放電等のトラブルなしに、表面平滑性に優れた高性能の酸化物半導体膜が得られる。 In the case of a sintered body made of tin oxide, yttrium oxide and zinc oxide, yttrium oxide may be dissolved in tin oxide or may be contained as a Y 2 Sn 2 O 7 compound. Furthermore, it may exist in both forms. With such a configuration, yttrium oxide does not exist alone, and a high-performance oxide semiconductor film excellent in surface smoothness can be obtained without trouble such as abnormal discharge.
 第3の実施形態の焼結体は、さらにZnSnO化合物を含んでいてもよい。ZnSnO化合物を含むことにより、ターゲット自体のバルク抵抗が低減され、スパッタがより安定する効果が得られる。 The sintered body of the third embodiment may further contain a Zn 2 SnO 4 compound. By including the Zn 2 SnO 4 compound, the bulk resistance of the target itself is reduced, and the effect of more stable sputtering can be obtained.
 第3の実施形態の焼結体は、スズ元素、イットリウム元素、亜鉛元素の原子比Y/(Sn+Y+Zn)が、0.01以上0.4以下であることが好ましい。
 Y/(Sn+Y+Zn)が、0.01未満では、酸化イットリウムの添加量が少なく、得られる酸化物薄膜が半導体化しない場合がある。0.4を超えると、酸化イットリウムが単独で存在するようになり、異状放電等の原因になるおそれがある。より好ましくは0.01以上0.4以下であり、さらに好ましくは0.01以上0.35以下である。
In the sintered body of the third embodiment, the atomic ratio Y / (Sn + Y + Zn) of tin element, yttrium element, and zinc element is preferably 0.01 or more and 0.4 or less.
If Y / (Sn + Y + Zn) is less than 0.01, the amount of yttrium oxide added is small, and the resulting oxide thin film may not be made semiconductor. If it exceeds 0.4, yttrium oxide is present alone, which may cause abnormal discharge or the like. More preferably, it is 0.01 or more and 0.4 or less, More preferably, it is 0.01 or more and 0.35 or less.
 また、本発明の第3の焼結体は、酸化スズ及び酸化イットリウムからなり、YSn化合物を含む。酸化イットリウムは、その絶縁性のために、単独で存在すると、スパッタリングターゲットとして用いた場合に異状放電を起こし、得られる酸化物半導体膜の表面平滑性に悪影響を与える場合がある。酸化イットリウムが、YSn化合物のような形態で焼結体中に十分に固溶されていることにより、スパッタリングターゲットの異状放電が抑えられ、表面平滑性に富む酸化物半導体膜が得られやすくなる。 The third sintered body of the present invention comprises a tin oxide and yttrium oxide, containing Y 2 Sn 2 O 7 compound. If yttrium oxide is present alone due to its insulating properties, it may cause abnormal discharge when used as a sputtering target and adversely affect the surface smoothness of the resulting oxide semiconductor film. Since the yttrium oxide is sufficiently dissolved in the sintered body in the form of the Y 2 Sn 2 O 7 compound, the abnormal discharge of the sputtering target can be suppressed, and the oxide semiconductor film rich in surface smoothness can be obtained. It becomes easy to obtain.
 スズ元素、イットリウム元素の原子比Y/(Sn+Y)が、0.0を超え0.5以下であることが好ましい。
 Y/(Sn+Y)が、0.5を超えると、酸化イットリウムが単独で存在するようになり、異状放電等の原因になるおそれがある。より好ましくは、0.01以上0.4以下であり、さらに好ましくは、0.03以上0.35以下である。
 この焼結体の場合には、結晶化温度が高く、得られる酸化物半導体膜を結晶化させるよりも、非晶質膜の酸化物半導体として使用することが好ましい。
The atomic ratio Y / (Sn + Y) of the tin element and the yttrium element is preferably more than 0.0 and 0.5 or less.
If Y / (Sn + Y) exceeds 0.5, yttrium oxide exists alone, which may cause abnormal discharge or the like. More preferably, they are 0.01 or more and 0.4 or less, More preferably, they are 0.03 or more and 0.35 or less.
In the case of this sintered body, the crystallization temperature is high, and it is preferable to use it as an amorphous oxide semiconductor rather than crystallizing the obtained oxide semiconductor film.
 本発明の上記の焼結体はいずれも、正4価以上の金属元素を含むことが好ましい。含有量は、100~1000ppmが好ましい。正4価以上の金属元素を含有することにより、バルク抵抗をさらに低減できる。1000ppm超の場合、得られる酸化物半導体膜がノーマリーオフの半導体特性を示さなくなる場合がある。 Any of the above sintered bodies of the present invention preferably contains a positive tetravalent or higher metal element. The content is preferably 100 to 1000 ppm. The bulk resistance can be further reduced by containing a positive tetravalent or higher metal element. When it exceeds 1000 ppm, the obtained oxide semiconductor film may not exhibit normally-off semiconductor characteristics.
 正4価以上の金属元素としては、Ti、Zr、Hf、Nb、Ta、W、Ge、Sn又はCeが挙げられる。このなかでも、特に、Ceが好ましい。セリウム元素は、焼結体の焼結温度である1200℃以上において、わずかながら(1000原子ppm以下)酸化インジウム結晶に取り込まれることにより、焼結体のバルク抵抗を下げる効果がある。一方、薄膜を結晶化させる程度の温度(例えば、250℃から450℃程度)では、酸化インジウムに取り込まれるセリウム量が減少し、抵抗を下げる効果(キャリヤーを発生する効果)が小さくなる。このように、得られる結晶性酸化インジウム膜のキャリヤーを制御できるため、ノーマリーオフの酸化物半導体が容易に得られる。 Examples of the positive tetravalent or higher metal element include Ti, Zr, Hf, Nb, Ta, W, Ge, Sn, and Ce. Among these, Ce is particularly preferable. The cerium element has an effect of lowering the bulk resistance of the sintered body by being slightly (1000 atomic ppm or less) incorporated into the indium oxide crystal at a sintering temperature of 1200 ° C. or higher. On the other hand, at a temperature at which the thin film is crystallized (for example, about 250 ° C. to 450 ° C.), the amount of cerium incorporated into indium oxide is reduced, and the effect of reducing resistance (the effect of generating carriers) is reduced. Thus, since the carrier of the obtained crystalline indium oxide film can be controlled, a normally-off oxide semiconductor can be easily obtained.
 本発明による焼結体は、バルク抵抗が低く、スパッタリング法に使用するターゲットとして好適に使用できる。この焼結体を用いたスパッタリングターゲットは、スパッタが安定しており、結晶質酸化インジウム膜を安定して製造できる。また、良好な半導体特性を有する薄膜が得られる。 The sintered body according to the present invention has a low bulk resistance and can be suitably used as a target used in the sputtering method. The sputtering target using this sintered body has stable sputtering, and can produce a crystalline indium oxide film stably. In addition, a thin film having good semiconductor characteristics can be obtained.
 本発明の焼結体は、それぞれの焼結体に対応する原料酸化物(酸化インジウム、酸化スズ、酸化イットリウム、酸化亜鉛)を混合した粉体を1200℃~1600℃の温度にて、2~200時間焼結することで製造できる。
 原料である酸化物は、純度99.99%以上の粉体が好ましい。尚、正4価以上の金属元素を添加する場合、例えば、同金属元素の酸化物等の化合物を添加する。この化合物の純度も99.99%以上であることが好ましい。各原料の純度が99.99%以上であると、不純物量が100原子ppm未満となり好ましい。
The sintered body of the present invention comprises a powder obtained by mixing raw material oxides (indium oxide, tin oxide, yttrium oxide, zinc oxide) corresponding to each sintered body at a temperature of 1200 ° C. to 1600 ° C. It can be manufactured by sintering for 200 hours.
The raw material oxide is preferably a powder having a purity of 99.99% or more. When a metal element having a positive tetravalent or higher value is added, for example, a compound such as an oxide of the metal element is added. The purity of this compound is also preferably 99.99% or higher. When the purity of each raw material is 99.99% or more, the amount of impurities is preferably less than 100 atomic ppm.
 上記原料の混合物を、ビーズミル、ボールミル、遊星ミル等の一般的なミルにより混合、粉砕する。その後、造粒し成形する。成形により、混合物をスパッタリングターゲット等として好適な形状にする。
 成形処理としては、例えば、プレス成形、冷間静水圧、一軸加圧、金型成形、鋳込み成形、射出成形等が挙げられる。尚、成形処理に際しては、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成形助剤を用いてもよい。
The raw material mixture is mixed and pulverized by a general mill such as a bead mill, a ball mill, a planetary mill or the like. Then, granulate and shape | mold. The mixture is shaped into a suitable shape as a sputtering target or the like by molding.
Examples of the molding process include press molding, cold isostatic pressing, uniaxial pressing, mold molding, cast molding, injection molding, and the like. In the molding process, molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.
 成形体を1200℃~1600℃の温度にて、2~200時間焼結して焼結体を得る。
 焼結温度が1200℃未満では、高密度の焼結体が得られない場合があり、1600℃を超えると、酸化インジウム等が熱分解する場合がある。好ましくは1300℃~1600℃、より好ましくは1300℃~1550℃である。
 焼結時間は、2~200時間がよい。2時間未満では、焼結が完了しない場合があり、高密度の焼結体が得られなかったりする場合がある。また、200時間より長いと加熱が長すぎ、経済的に不利となる場合がある。好ましくは、5~150時間、より好ましくは10~100時間である。
The molded body is sintered at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours to obtain a sintered body.
When the sintering temperature is less than 1200 ° C, a high-density sintered body may not be obtained. When the sintering temperature exceeds 1600 ° C, indium oxide or the like may be thermally decomposed. The temperature is preferably 1300 ° C to 1600 ° C, more preferably 1300 ° C to 1550 ° C.
The sintering time is preferably 2 to 200 hours. If it is less than 2 hours, the sintering may not be completed, and a high-density sintered body may not be obtained. Moreover, when it is longer than 200 hours, the heating is too long, which may be disadvantageous economically. Preferably, it is 5 to 150 hours, more preferably 10 to 100 hours.
 焼結は好ましくは酸化雰囲気で行う。酸化雰囲気としては、空気中、酸素気流下又は酸素加圧下でよい。
 得られた焼結体を、切削加工、研磨加工等により、所望の形状とし、バッキングプレートに接合することで、スパッタリングターゲットが得られる。
Sintering is preferably performed in an oxidizing atmosphere. The oxidizing atmosphere may be in air, under an oxygen stream, or under oxygen pressure.
The obtained sintered body is formed into a desired shape by cutting, polishing, or the like, and bonded to a backing plate to obtain a sputtering target.
 本発明の金属酸化物薄膜は、上記のスパッタリングターゲットを用いて成膜する。必要に応じて成膜後にアニール処理を行う。この金属酸化物薄膜は、半導体薄膜であり、チャンネルエッチ型、エッチストッパー型等の薄膜トランジスタに使用できる。 The metal oxide thin film of the present invention is formed using the above sputtering target. If necessary, an annealing process is performed after film formation. This metal oxide thin film is a semiconductor thin film, and can be used for a channel etch type, etch stopper type, etc. thin film transistor.
 次に、実施例及び比較例を示して本発明をさらに具体的に説明する。 Next, the present invention will be described more specifically by showing examples and comparative examples.
実施例1~4
 表1に示す割合となるように酸化インジウム粉末及び酸化イットリウム粉末を秤量し、ポリエチレン製のポットに入れ、乾式ボールミルにより72時間混合し、混合粉末を作製した。
Examples 1 to 4
Indium oxide powder and yttrium oxide powder were weighed so as to have the ratio shown in Table 1, put into a polyethylene pot, and mixed for 72 hours by a dry ball mill to prepare a mixed powder.
 この混合粉末を金型に入れ、300kg/cmの圧力でプレスして成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。次に、この成形体を純酸素流通下の雰囲気焼結炉内に設置して、以下の条件で焼結した。得られた焼結体の密度をアルキメデス法により測定した結果を表1に示す。得られた焼結体のX線回折結果をそれぞれ図1~4に示す。 This mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This compact was subjected to densification treatment with CIP at a pressure of 3 ton / cm 2 . Next, this compact was placed in an atmosphere sintering furnace under pure oxygen flow and sintered under the following conditions. Table 1 shows the result of measuring the density of the obtained sintered body by the Archimedes method. The X-ray diffraction results of the obtained sintered body are shown in FIGS.
(焼結条件)
 昇温速度:約25℃/hrにて昇温し、酸素圧:50mmHO(ゲージ圧)にて、酸素線速:2.7cm/分の流量で酸素を流通しながら、表1に示す焼結温度、焼結時間の条件で焼結を行った。
(Sintering conditions)
Table 1 shows the temperature rising rate at about 25 ° C./hr, oxygen pressure: 50 mmH 2 O (gauge pressure), oxygen linear velocity: 2.7 cm / min. Sintering was performed under the conditions of sintering temperature and sintering time.
 得られた焼結体の格子定数をX線回折法により決定し、密度をアルキメデス法により測定し、また焼結体の導電性を三菱油化製のロレスタにより導電性(抵抗)を測定した結果を表1に示す。さらに、この焼結体のX線回折結果を示すチャートをそれぞれ図1~4に示す。 The lattice constant of the obtained sintered body was determined by the X-ray diffraction method, the density was measured by the Archimedes method, and the conductivity (resistance) of the sintered body was measured by Mitsubishi Oil Chemical Loresta. Is shown in Table 1. Furthermore, charts showing the X-ray diffraction results of this sintered body are shown in FIGS. 1 to 4, respectively.
 Inの格子定数は10.118Åであり、InYOの格子定数は10.362Åである。実施例1~4の焼結体の格子定数はいずれも、それらの間に位置しており、かつ、組成に対して、ほぼ直線的に格子定数が変化していることから、酸化イットリウムが酸化インジウムに完全固溶していることが示された。 The lattice constant of In 2 O 3 is 10.118 、, and the lattice constant of InYO 3 is 10.362 Å. Since all of the lattice constants of the sintered bodies of Examples 1 to 4 are located between them and the lattice constant changes almost linearly with respect to the composition, yttrium oxide is oxidized. It was shown that it was completely dissolved in indium.
 実施例2の組成Y/(In+Y)=0.1に、更に、Ce/(In+Y+Ce)=0.0008となるようにCeOを添加し、同様の操作を行ったところ、格子定数は、10.161、焼結体の相対密度は、98%、焼結体の導電性は、4.2mΩcmであった。これより、Ceの添加により焼結体の導電性がよくなることがわかる。 When CeO 2 was added to the composition Y / (In + Y) = 0.1 of Example 2 and Ce / (In + Y + Ce) = 0.0008 and the same operation was performed, the lattice constant was 10 161, the relative density of the sintered body was 98%, and the conductivity of the sintered body was 4.2 mΩcm. From this, it can be seen that the addition of Ce improves the conductivity of the sintered body.
比較例1
 酸化インジウム粉末及び酸化イットリウム粉末を、In:Y=1:1になるように秤量し、実施例1と同様に操作を行い焼結体を得た。
 比較例1の焼結体では、InYOのピークが観察された。また、比較例1の焼結体の格子定数は、InYOの格子定数である、「(Y0.5In0.5(PDF:25-1172)」10.362Åであった。
Comparative Example 1
Indium oxide powder and yttrium oxide powder were weighed so that In: Y = 1: 1, and the same operation as in Example 1 was performed to obtain a sintered body.
In the sintered body of Comparative Example 1, an InYO 3 peak was observed. Further, the lattice constant of the sintered body of Comparative Example 1 was “(Y 0.5 In 0.5 ) 2 O 3 (PDF: 25-1172)” 10.362 Å which is the lattice constant of InYO 3 . .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例5
 実施例5では、酸化インジウム及び酸化イットリウムの他に、正4価の金属酸化物として酸化スズを用い、表2に示す割合となるように各金属酸化物を秤量し、表2に示す焼結条件を用いた以外は実施例1と同様に操作を行い焼結体を得た。さらに、この焼結体のX線回折結果を示すチャートを図5に示す。
Example 5
In Example 5, in addition to indium oxide and yttrium oxide, tin oxide was used as a positive tetravalent metal oxide, each metal oxide was weighed so as to have the ratio shown in Table 2, and the sintering shown in Table 2 was performed. Except having used conditions, it operated similarly to Example 1 and obtained the sintered compact. Furthermore, the chart which shows the X-ray-diffraction result of this sintered compact is shown in FIG.
 実施例5の焼結体では、X線回折チャートにおいてInのピークとInYOのピークとの間にピークを有し、格子定数は、InとInYOの中間に位置しており、また、InYOのピークが観察され、得られた焼結体のバルク抵抗は、実施例1~4より低減されていることがわかる。 The sintered body of Example 5 has a peak between the peak of In 2 O 3 and the peak of InYO 3 in the X-ray diffraction chart, and the lattice constant is located between In 2 O 3 and InYO 3. In addition, the peak of InYO 3 is observed, and it can be seen that the bulk resistance of the obtained sintered body is reduced as compared with Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例6及び7
 表3に示す割合となるように各金属酸化物を秤量し、表3に示す焼結条件を用いた以外は実施例1と同様に操作を行い焼結体を得た。さらに、これらの焼結体のX線回折結果を示すチャートを図6及び7に示す。
 実施例6及び7の焼結体では、X線回折チャートにおいてYSn及びSnOのピークが観察され、Yのピークは観察されなかった。
Examples 6 and 7
Each metal oxide was weighed so as to have the ratio shown in Table 3, and a sintered body was obtained in the same manner as in Example 1 except that the sintering conditions shown in Table 3 were used. Furthermore, the chart which shows the X-ray-diffraction result of these sintered compacts is shown in FIG.
In the sintered bodies of Examples 6 and 7, Y 2 Sn 2 O 7 and SnO 2 peaks were observed in the X-ray diffraction chart, and no Y 2 O 3 peak was observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例8及び9
 表4に示す割合となるように各金属酸化物を秤量し、表4に示す焼結条件を用いた以外は実施例1と同様に操作を行い焼結体を得た。さらに、これらの焼結体のX線回折結果を示すチャートを図8及び9に示す。
 実施例8の焼結体では、Inのピークが観察され、酸化イットリウムが酸化インジウムに固溶していることがわかった。
 実施例9の焼結体には、In及びYSnのピークが観察された。
Examples 8 and 9
Each metal oxide was weighed so as to have the ratio shown in Table 4, and operations were performed in the same manner as in Example 1 except that the sintering conditions shown in Table 4 were used to obtain a sintered body. Furthermore, the chart which shows the X-ray-diffraction result of these sintered compacts is shown in FIG.
In the sintered body of Example 8, a peak of In 2 O 3 was observed, and it was found that yttrium oxide was dissolved in indium oxide.
In the sintered body of Example 9, peaks of In 2 O 3 and Y 2 Sn 2 O 7 were observed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例10及び11
 表5に示す割合となるように各金属酸化物を秤量し、表5に示す焼結条件を用いた以外は実施例1と同様に操作を行い焼結体を得た。さらに、これらの焼結体のX線回折結果を示すチャートを図10及び11に示す。
 実施例10の焼結体では、In及びInYOのピークが観察された。
 実施例11の焼結体には、InYO及びIn・(ZnO)のピークが観察された。
Examples 10 and 11
Each metal oxide was weighed so as to have the ratio shown in Table 5, and a sintered body was obtained in the same manner as in Example 1 except that the sintering conditions shown in Table 5 were used. Furthermore, the chart which shows the X-ray-diffraction result of these sintered compacts is shown to FIG.
In the sintered body of Example 10, In 2 O 3 and InYO 3 peaks were observed.
In the sintered body of Example 11, peaks of InYO 3 and In 2 O 3. (ZnO) 2 were observed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例12及び13
 表6に示す割合となるように各金属酸化物を秤量し、表6に示す焼結条件を用いた以外は実施例1と同様に操作を行い焼結体を得た。さらに、これらの焼結体のX線回折結果を示すチャートを図12及び13に示す。
 実施例12の焼結体では、YSn及びZnOのピークが観察された。
 実施例13の焼結体では、YSn、ZnO及びZnSnOのピークが観察された。
Examples 12 and 13
Each metal oxide was weighed so that the ratio shown in Table 6 was obtained, and operations were performed in the same manner as in Example 1 except that the sintering conditions shown in Table 6 were used to obtain a sintered body. Furthermore, the chart which shows the X-ray-diffraction result of these sintered compacts is shown in FIG.
In the sintered body of Example 12, peaks of Y 2 Sn 2 O 7 and ZnO were observed.
In the sintered body of Example 13, peaks of Y 2 Sn 2 O 7 , ZnO and Zn 2 SnO 4 were observed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
比較例2及び3
 表7に示す割合となるように各金属酸化物を秤量し、表7に示す焼結条件を用いた以外は実施例1と同様に操作を行い焼結体を得た。さらに、これらの焼結体のX線回折結果を示すチャートを図14及び15に示す。
 比較例2及び3の焼結体には、Y及びZnOのピークが観察された。
Comparative Examples 2 and 3
Each metal oxide was weighed so as to have the ratio shown in Table 7, and operations were performed in the same manner as in Example 1 except that the sintering conditions shown in Table 7 were used to obtain a sintered body. Furthermore, the chart which shows the X-ray-diffraction result of these sintered compacts is shown in FIG.
In the sintered bodies of Comparative Examples 2 and 3, Y 2 O 3 and ZnO peaks were observed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例14
 実施例1で得られた焼結体を切削加工し、直径4インチ厚さ5mmの円板状に加工し、インジウム半田を用いて無酸素銅製のバッキングプレートにボンディングしてターゲットとした。
 このターゲットを以下のスパッタリング条件でスパッタリングを行い、得られた金属酸化物薄膜の評価を行った。
Example 14
The sintered body obtained in Example 1 was cut and processed into a disk shape having a diameter of 4 inches and a thickness of 5 mm, and bonded to a backing plate made of oxygen-free copper using indium solder to obtain a target.
The target was sputtered under the following sputtering conditions, and the obtained metal oxide thin film was evaluated.
(スパッタリング条件)
 先ず、真空槽を5×10-4Paまで真空引きを行い、Arガス流量:10SCCMにて、アルゴンガス圧0.2Paまで調節し、Oガス流量:0.5SCCM、DC電力:100W、基板温度:室温で、膜厚:500Åを成膜した。この薄膜を、300℃、1時間、空気中で加熱処理を行った。
 得られた薄膜の抵抗率は、ACホール測定を実施し、結果を表8に示す。
 次に、得られた薄膜のX線回折により結晶性を評価し、X線回折によりピークが観察されたものを結晶質とし、ピークが観察されないものを非晶質とした。
(Sputtering conditions)
First, the vacuum chamber is evacuated to 5 × 10 −4 Pa, Ar gas flow rate: 10 SCCM, and argon gas pressure is adjusted to 0.2 Pa, O 2 gas flow rate: 0.5 SCCM, DC power: 100 W, substrate A film having a temperature of room temperature and a film thickness of 500 mm was formed. This thin film was heat-treated in air at 300 ° C. for 1 hour.
The resistivity of the obtained thin film was subjected to AC Hall measurement, and the results are shown in Table 8.
Next, the crystallinity of the obtained thin film was evaluated by X-ray diffraction, and the crystalline material was observed for the peak by X-ray diffraction, and the amorphous material was not observed for the peak.
 また、連続して8時間スパッタリングを行い、その際に発生するアーキングの回数を測定した。初期の2時間を除く、残り6時間の間に発生するアーキングが10回以下の場合に異常放電なしとした。アーキングは、エヌエフ回路設計ブロック社製データロガーEZ5840にて測定した。 Further, sputtering was continuously performed for 8 hours, and the number of arcing generated at that time was measured. Absence of abnormal discharge was determined when arcing that occurred during the remaining 6 hours, excluding the initial 2 hours, was 10 times or less. The arcing was measured with a data logger EZ5840 manufactured by NF Circuit Design Block.
比較例4
 比較例2で得られた焼結体を用いた以外は、実施例14と同様にしてターゲットを作製し、スパッタリングを行って、得られた薄膜の評価を行った。結果を表8に示す。
Comparative Example 4
A target was prepared in the same manner as in Example 14 except that the sintered body obtained in Comparative Example 2 was used, and sputtering was performed to evaluate the obtained thin film. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例15
 実施例14で作製したターゲットを用いて、熱酸化膜付きハードドープシリコンウエハー上に、酸素流量0.5SCCMの条件にて、膜厚40nmの非晶質酸化物半導体膜を形成し、その上に、金属マスクを用いてソース・ドレイン電極をL:100μm、W:500μmの形状に形成し、空気中、300℃にて30分の熱処理を行った後に、ケースレイ社製、半導体パラメータ装置にて、特性を計測した。移動度:22cm/V・sec、On・Off比:10、Vth=8であり、優れた半導体特性を示すことが分かった。
Example 15
Using the target prepared in Example 14, an amorphous oxide semiconductor film having a thickness of 40 nm was formed on a hard-doped silicon wafer with a thermal oxide film under the condition of an oxygen flow rate of 0.5 SCCM, and on that After forming a source / drain electrode in a shape of L: 100 μm and W: 500 μm using a metal mask and performing a heat treatment in air at 300 ° C. for 30 minutes, a semiconductor parameter device manufactured by Keithley The characteristics were measured. The mobility was 22 cm 2 / V · sec, the On · Off ratio was 10 6 , and Vth = 8, indicating that excellent semiconductor characteristics were exhibited.
 本発明の焼結体は、各種表示装置を駆動させるスイッチング素子材料となる金属酸化物薄膜を製造するためのスパッタリングターゲットとして特に有用である。
 本発明のスパッタリングターゲットは、安定したスパッタリングを行うことができ、かつ透明性及び表面平滑性に優れた高性能の透明酸化物半導体膜を製造することができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。
The sintered body of the present invention is particularly useful as a sputtering target for producing a metal oxide thin film that serves as a switching element material for driving various display devices.
The sputtering target of the present invention can perform stable sputtering and can produce a high-performance transparent oxide semiconductor film excellent in transparency and surface smoothness.
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (33)

  1.  酸化インジウム及び酸化イットリウムからなり、格子定数が、InYOとInの間にある焼結体。 A sintered body made of indium oxide and yttrium oxide and having a lattice constant between InYO 3 and In 2 O 3 .
  2.  酸化イットリウムが、酸化インジウムに完全固溶している請求項1に記載の焼結体。 The sintered body according to claim 1, wherein yttrium oxide is completely dissolved in indium oxide.
  3.  インジウム元素、イットリウム元素の原子比Y/(In+Y)が、0.0を超え0.5未満である請求項1又は2に記載の焼結体。 The sintered body according to claim 1 or 2, wherein an atomic ratio Y / (In + Y) of indium element and yttrium element is more than 0.0 and less than 0.5.
  4.  インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物と酸化イットリウムを含有し、
     イットリウムの、インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属に対する原子比が、0.0を超え50原子%以下である焼結体。
    Containing two or more metal oxides selected from the group consisting of indium, tin, and zinc and yttrium oxide,
    A sintered body in which an atomic ratio of yttrium to two or more metals selected from the group consisting of indium, tin, and zinc is more than 0.0 and 50 atom% or less.
  5.  前記原子比が0.001~40原子%である請求項4に記載の焼結体。 The sintered body according to claim 4, wherein the atomic ratio is 0.001 to 40 atomic%.
  6.  前記原子比が2.0~15原子%である請求項4に記載の焼結体。 The sintered body according to claim 4, wherein the atomic ratio is 2.0 to 15 atomic%.
  7.  前記2種以上の金属が少なくともインジウムを含むとき、
     酸化イットリウムが固溶した酸化インジウム結晶を含有する請求項4~6のいずれかに記載の焼結体。
    When the two or more metals include at least indium;
    The sintered body according to any one of claims 4 to 6, comprising an indium oxide crystal in which yttrium oxide is dissolved.
  8.  前記酸化インジウム結晶がビックスバイト構造である請求項7に記載の焼結体。 The sintered body according to claim 7, wherein the indium oxide crystal has a bixbyite structure.
  9.  前記酸化インジウム結晶の結晶粒径が10μm未満である請求項7又は8に記載の焼結体。 The sintered body according to claim 7 or 8, wherein a crystal grain size of the indium oxide crystal is less than 10 µm.
  10.  前記酸化インジウム結晶の結晶の格子定数が、InYOとInの間にある請求項7~9のいずれかに記載の焼結体。 The sintered body according to any one of claims 7 to 9, wherein a lattice constant of the crystal of the indium oxide crystal is between InYO 3 and In 2 O 3 .
  11.  インジウムが、焼結体を構成する全金属に対し、50~99.9原子%含まれる請求項7~10のいずれかに記載の焼結体。 The sintered body according to any one of claims 7 to 10, wherein indium is contained in an amount of 50 to 99.9 atomic% with respect to all metals constituting the sintered body.
  12.  さらに正4価以上の金属元素を含有する請求項1~11のいずれかに記載の焼結体 The sintered body according to any one of claims 1 to 11, further comprising a metal element having a positive tetravalent or higher valence.
  13.  前記正4価以上の金属元素を100~1000ppm含有する請求項12に記載の焼結体 The sintered body according to claim 12, containing 100 to 1000 ppm of the metal element having a positive tetravalent or higher valence.
  14.  酸化インジウム、酸化イットリウム及び酸化スズからなり、酸化イットリウムが、酸化インジウムに固溶されているか、若しくはYSn化合物として含有されている、又は酸化イットリウムの一部が、酸化インジウムに固溶され、かつ残部がYSn化合物として含有されている焼結体。 It consists of indium oxide, yttrium oxide, and tin oxide. Yttrium oxide is dissolved in indium oxide or contained as a Y 2 Sn 2 O 7 compound, or a part of yttrium oxide is solidified in indium oxide. It is dissolved, and the sintered body balance is contained as Y 2 Sn 2 O 7 compound.
  15.  インジウム元素、イットリウム元素、スズ元素の原子比Y/(In+Y+Sn)が、0.02を超え0.5以下である請求項14に記載の焼結体。 The sintered body according to claim 14, wherein an atomic ratio Y / (In + Y + Sn) of indium element, yttrium element, and tin element is more than 0.02 and 0.5 or less.
  16.  酸化インジウム、酸化イットリウム及び酸化亜鉛からなり、酸化イットリウムが酸化インジウムに固溶されているか、若しくはInYO化合物として含有されている、又は酸化イットリウムの一部が、酸化インジウムに固溶され、かつ残部がYZn化合物として含有されている焼結体。 It consists of indium oxide, yttrium oxide and zinc oxide, and yttrium oxide is dissolved in indium oxide or contained as an InYO 3 compound, or a part of yttrium oxide is dissolved in indium oxide and the remainder Is a sintered body containing Y 2 Zn 2 O 7 as a compound.
  17.  さらにIn・(ZnO)(ここで、mは2から20の整数)で表される六方晶層状化合物を含む請求項16に記載の焼結体。 The sintered body according to claim 16, further comprising a hexagonal layered compound represented by In 2 O 3. (ZnO) m (where m is an integer of 2 to 20).
  18.  インジウム元素、イットリウム元素、亜鉛元素の原子比Y/(In+Y+Zn)が、0.0を超え0.5以下である請求項16又は17に記載の焼結体。 The sintered body according to claim 16 or 17, wherein an atomic ratio Y / (In + Y + Zn) of indium element, yttrium element, and zinc element is more than 0.0 and 0.5 or less.
  19.  酸化スズ、酸化イットリウム及び酸化亜鉛からなり、酸化イットリウムが、酸化スズに固溶されているか、若しくはYSn化合物として含有されている、又は酸化イットリウムの一部が、酸化スズに固溶され、かつ残部がYSn化合物として含有されている焼結体。 It consists of tin oxide, yttrium oxide and zinc oxide, and yttrium oxide is dissolved in tin oxide or contained as a Y 2 Sn 2 O 7 compound, or a part of yttrium oxide is solidified in tin oxide. It is dissolved, and the sintered body balance is contained as Y 2 Sn 2 O 7 compound.
  20.  さらにZnSnO化合物を含む請求項19に記載の焼結体。 Further sintered body according to claim 19 comprising Zn 2 SnO 4 compound.
  21.  スズ元素、イットリウム元素、亜鉛元素の原子比Y/(Sn+Y+Zn)が、0.01以上0.4以下である請求項19又は20に記載の焼結体。 The sintered body according to claim 19 or 20, wherein an atomic ratio Y / (Sn + Y + Zn) of tin element, yttrium element, and zinc element is 0.01 or more and 0.4 or less.
  22.  酸化スズ及び酸化イットリウムからなり、YSn化合物を含む焼結体。 A sintered body made of tin oxide and yttrium oxide and containing a Y 2 Sn 2 O 7 compound.
  23.  スズ元素、イットリウム元素の原子比Y/(Sn+Y)が、0.0を超え0.5以下である請求項22に記載の焼結体。 The sintered body according to claim 22, wherein the atomic ratio Y / (Sn + Y) of the tin element and the yttrium element is more than 0.0 and 0.5 or less.
  24.  インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物と酸化イットリウムの粉末を混合し、
     1200℃~1600℃の温度にて、2~200時間焼成する請求項4~11のいずれかに記載の焼結体の製造方法。
    Mixing two or more kinds of metal oxides selected from the group consisting of indium, tin, and zinc and yttrium oxide powder,
    The method for producing a sintered body according to any one of claims 4 to 11, wherein firing is performed at a temperature of 1200 to 1600 ° C for 2 to 200 hours.
  25.  インジウム、スズ、亜鉛からなる群から選ばれる2種以上の金属の酸化物、酸化イットリウム並びに正四価以上の金属の粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する請求項12又は13に記載の焼結体の製造方法。 Two or more kinds of metal oxides selected from the group consisting of indium, tin, and zinc, yttrium oxide, and powders of positive tetravalent or higher metals are mixed and fired at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours. The manufacturing method of the sintered compact of Claim 12 or 13.
  26.  酸化雰囲気中で焼成する請求項24又は25に記載の焼結体の製造方法。 The method for producing a sintered body according to claim 24 or 25, wherein firing is performed in an oxidizing atmosphere.
  27.  請求項1~23のいずれかに記載の焼結体を用いて作製されるスパッタリングターゲット。 A sputtering target produced using the sintered body according to any one of claims 1 to 23.
  28.  請求項27に記載のスパッタリングターゲットを用いて成膜される金属酸化物薄膜。 A metal oxide thin film formed using the sputtering target according to claim 27.
  29.  請求項28に記載の金属酸化物薄膜からなる半導体。 A semiconductor comprising the metal oxide thin film according to claim 28.
  30.  請求項29に記載の半導体を用いる薄膜トランジスタ。 A thin film transistor using the semiconductor according to claim 29.
  31.  チャンネルエッチ型である請求項30に記載の薄膜トランジスタ。 The thin film transistor according to claim 30, which is a channel etch type.
  32.  エッチストッパー型である請求項30に記載の薄膜トランジスタ。 The thin film transistor according to claim 30, which is an etch stopper type.
  33.  請求項30~32のいずれかに記載の薄膜トランジスタを備える半導体素子。 A semiconductor element comprising the thin film transistor according to any one of claims 30 to 32.
PCT/JP2009/004593 2008-09-19 2009-09-15 Sintered body containing yttrium oxide, and sputtering target WO2010032432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529623A JPWO2010032432A1 (en) 2008-09-19 2009-09-15 Sintered body containing yttrium oxide and sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241643 2008-09-19
JP2008241643 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032432A1 true WO2010032432A1 (en) 2010-03-25

Family

ID=42039281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004593 WO2010032432A1 (en) 2008-09-19 2009-09-15 Sintered body containing yttrium oxide, and sputtering target

Country Status (3)

Country Link
JP (1) JPWO2010032432A1 (en)
TW (1) TW201024435A (en)
WO (1) WO2010032432A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029407A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Sintered oxide and oxide semiconductor thin film
JP2012051747A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Sintered oxide and oxide semiconductor thin film
WO2012153522A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2o3-zno sputtering target
WO2013084795A1 (en) * 2011-12-07 2013-06-13 東ソー株式会社 Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
WO2017217529A1 (en) * 2016-06-17 2017-12-21 出光興産株式会社 Oxide sintered body and sputtering target
US11078120B2 (en) 2016-04-26 2021-08-03 Idemitsu Kosan Co., Ltd. Oxide sintered body, sputtering target and oxide semiconductor film
CN114163217A (en) * 2021-12-15 2022-03-11 先导薄膜材料(广东)有限公司 Indium oxide tantalum yttrium powder and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209134A (en) * 1996-01-31 1997-08-12 Idemitsu Kosan Co Ltd Target and its production
JP2000169219A (en) * 1998-12-09 2000-06-20 Jiomatetsuku Kk Metal oxide sintered compact and its use
JP2000281431A (en) * 1999-03-30 2000-10-10 Mitsui Mining & Smelting Co Ltd Tin dioxide-based sintered compact, material for thin film formation and electroconductive film
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962071A (en) * 1989-05-01 1990-10-09 Tektronix, Inc. Method of fabricating a sintered body of indium tin oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209134A (en) * 1996-01-31 1997-08-12 Idemitsu Kosan Co Ltd Target and its production
JP2000169219A (en) * 1998-12-09 2000-06-20 Jiomatetsuku Kk Metal oxide sintered compact and its use
JP2000281431A (en) * 1999-03-30 2000-10-10 Mitsui Mining & Smelting Co Ltd Tin dioxide-based sintered compact, material for thin film formation and electroconductive film
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051745A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Sintered oxide and oxide semiconductor thin film
JP2012051747A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Sintered oxide and oxide semiconductor thin film
WO2012029407A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Sintered oxide and oxide semiconductor thin film
JPWO2012153522A1 (en) * 2011-05-10 2014-07-31 出光興産株式会社 In2O3-ZnO-based sputtering target
WO2012153522A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2o3-zno sputtering target
US9418771B2 (en) 2011-12-07 2016-08-16 Tosoh Corporation Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
WO2013084795A1 (en) * 2011-12-07 2013-06-13 東ソー株式会社 Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
US11078120B2 (en) 2016-04-26 2021-08-03 Idemitsu Kosan Co., Ltd. Oxide sintered body, sputtering target and oxide semiconductor film
WO2017217529A1 (en) * 2016-06-17 2017-12-21 出光興産株式会社 Oxide sintered body and sputtering target
KR20190019137A (en) * 2016-06-17 2019-02-26 이데미쓰 고산 가부시키가이샤 Oxide sintered body and sputtering target
JPWO2017217529A1 (en) * 2016-06-17 2019-04-04 出光興産株式会社 Oxide sintered body and sputtering target
KR102353398B1 (en) 2016-06-17 2022-01-19 이데미쓰 고산 가부시키가이샤 Oxide sintered compact and sputtering target
US11328911B2 (en) 2016-06-17 2022-05-10 Idemitsu Kosan Co., Ltd. Oxide sintered body and sputtering target
CN114163217A (en) * 2021-12-15 2022-03-11 先导薄膜材料(广东)有限公司 Indium oxide tantalum yttrium powder and preparation method thereof

Also Published As

Publication number Publication date
TW201024435A (en) 2010-07-01
JPWO2010032432A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4933756B2 (en) Sputtering target
KR101314946B1 (en) Sputtering target, transparent conductive film, and transparent electrode for touch panel
KR102142845B1 (en) Sputtering target
TWI473896B (en) From InGaO 3 (ZnO) crystal phase, and a method for producing the same
WO2010032432A1 (en) Sintered body containing yttrium oxide, and sputtering target
TWI480255B (en) Oxide sintered body and sputtering target
US8664136B2 (en) Indium oxide sintered compact and sputtering target
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
TW201300548A (en) In2O3-SnO2-ZnO sputtering target
JP2007224386A (en) Sintered target for manufacturing transparent conductive film, transparent conductive film manufactured by using the same, and transparent conductive base material
JPWO2016084636A1 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
JP2019038735A (en) Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film
WO2016136479A1 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained therefrom
TWI720188B (en) Oxide sintered body, sputtering target and oxide semiconductor film
KR20160125959A (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
JP6358083B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
JP2007113026A (en) Transparent electrically conductive film and transparent electrically conductive base material comprising the same
KR20160146666A (en) Sintered oxide, sputtering target, and oxide semiconductor thin film obtained using same
CN110741106A (en) Oxide sintered body and sputtering target
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
WO2017150050A1 (en) Oxide sintered body and sputtering target
WO2012029454A1 (en) Sintered oxide and oxide semiconductor thin film
KR101324830B1 (en) Sintered oxide and oxide semiconductor thin film
JP2012031521A (en) Sputtering target and transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529623

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814277

Country of ref document: EP

Kind code of ref document: A1