WO2007013278A1 - データ通信システム及びデータ送信装置 - Google Patents

データ通信システム及びデータ送信装置 Download PDF

Info

Publication number
WO2007013278A1
WO2007013278A1 PCT/JP2006/313537 JP2006313537W WO2007013278A1 WO 2007013278 A1 WO2007013278 A1 WO 2007013278A1 JP 2006313537 W JP2006313537 W JP 2006313537W WO 2007013278 A1 WO2007013278 A1 WO 2007013278A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
orthogonal
zcz
ofdm
data
Prior art date
Application number
PCT/JP2006/313537
Other languages
English (en)
French (fr)
Inventor
Naoki Suehiro
Original Assignee
Naoki Suehiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoki Suehiro filed Critical Naoki Suehiro
Priority to US11/996,619 priority Critical patent/US20080192621A1/en
Priority to EP06780862A priority patent/EP1909424A1/en
Priority to JP2007528395A priority patent/JPWO2007013278A1/ja
Publication of WO2007013278A1 publication Critical patent/WO2007013278A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0011Complementary

Definitions

  • the present invention relates to a data communication system and data transmission apparatus having an orthogonal transform unit.
  • Orthogonal Frequency Division Multiplexing is used because it is strong in frequency selective flooding, strong in narrow band interference, capable of high frequency utilization, and easy in frequency domain processing.
  • FIG. 1 (A) shows a transmitter 10 including a SZP (serial Z parallel) converter 11, a subcarrier modulator 12, an IDFT (Inverse Discrete Fourier Transform) 13, a pseudo-period converter insert 14, and a transmitter 15. , An oscillator 16 and an antenna 17.
  • the pseudo-periodical insertion part is usually referred to as a guard interval insertion part.
  • Transmission data (for example, a digital information sequence) is converted into parallel signals by an S / P (serial Z parallel) conversion unit 12.
  • the signals converted into parallel signals are subjected to subcarrier modulation in subcarrier modulation section 12 for each predetermined number of bits.
  • the subcarrier modulation scheme is BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16Q AM (Quadrature Amplitude Modulation), or 64 QAM.
  • Figure 4 shows the signal points for 64 QAM.
  • the BPSK, QPSK, 16 QAM or 64 QAM signal from the subcarrier modulation unit 12 is subjected to an inverse DFT (Discrete Fourier Transform). Thereby, the signals of the plurality of individual subcarriers in orthogonal relationship are converted into signals on the time axis.
  • inverse DFT Discrete Fourier Transform
  • a guard interval GI is inserted. Specifically, as shown in FIG. 2, a part of the second half is copied and added to the front of the effective symbol (the period is a symbol period ST), and a part of the first half is added. Make a copy and add it after the valid symbol.
  • the OFDM signal with guard interleave GI inserted is modulated by the transmitter 15 at the transmitter 15 (carrier frequency f) of the output of the oscillator 17 and emitted from the antenna 16.
  • the reception device 20 of FIG. 1 (B) includes an antenna 21, a reception unit 22, an oscillator 26, a pseudo periodicity removal unit 23, a DFT 24 and a PZS (parallel Z series) conversion unit 25.
  • the receiver 20 of FIG. 1 (B) performs the reverse process of the transmitter.
  • the receiver 22 generates an OFDM baseband signal according to the output of the oscillator 26.
  • the pseudo-period removing unit 23 extracts the period (effective symbol ST) of no influence of other symbols from the OFDM baseband signal in which the transmission path delay (for example, multipath) is present.
  • the OFD signal is subjected to DFT operation by DFT 24 and, further, parallel Z serial conversion is performed by the PZS conversion unit 25 to output received data.
  • the present invention aims to provide a data communication system and a data transmission apparatus resistant to noise.
  • a data communication system comprises: an orthogonal transformation unit using an orthogonal matrix of NXN; an OFDM transformation unit; a transmission unit; a reception unit; an inverse OFDM transformation unit;
  • the orthogonal transform unit orthogonally transforms data to be transmitted, and the OFDM transform unit converts the data orthogonally transformed by the orthogonal transform unit into an OFDM baseband signal.
  • the transmitting unit converts the OFDM baseband signal converted by the OFDM converting unit into a high frequency signal and then transmits the signal, and the receiving unit generates a received high frequency signal strength OFDM baseband signal.
  • the inverse OFDM converter performs inverse OFD M conversion on the OFDM baseband signal generated by the receiver, and the inverse orthogonal transformer outputs orthogonal transform output from the inverse OFDM converter. Inverse orthogonal transformation of the received signal.
  • an orthogonal matrix usually refers to real numbers
  • the orthogonal matrix in the present invention includes complex numbers in addition to real numbers. Therefore, the orthogonal matrix in the present invention is used to include utary matrix, Hadamard matrix, and DFT matrix.
  • the data communication system of the present invention is characterized in that a modulation system of subcarriers in the OFDM baseband signal is BPSK, QPSK, 16 QAM or 64 QAM.
  • a data communication system includes: an orthogonal transformation unit using an orthogonal matrix of NXN; a ZCZ transformation unit; a transmission unit; a reception unit; and an inverse ZCZ transformation unit And in the data communication system having the inverse orthogonal transform unit, the orthogonal transform unit performs orthogonal transform on data to be transmitted, and the ZCZ transform unit performs ZCZ baseband processing on the signal orthogonally transformed by the orthogonal transform unit.
  • the signal is converted, and the transmitter converts the ZCZ baseband signal converted by the ZCZ converter into a high frequency high frequency signal and transmits the high frequency signal, and the receiver receives the received high frequency signal power ZCZ.
  • Baseband signals are generated, the inverse ZCZ conversion unit performs inverse ZCZ conversion on the ZCZ baseband signals generated in the reception unit, and the inverse orthogonal transformation unit is subjected to orthogonal transformation to be output from the inverse ZCZ conversion unit.
  • inverse orthogonal transform It features.
  • the data communication system is characterized in that the transformation in the orthogonal transformation unit is a Utary transformation, a Hadamard transformation, or a DFT transformation.
  • the orthogonal transformation unit uses an orthogonal matrix of a plurality of NXNs having N input terminals and N output terminals.
  • the orthogonal transform apparatus and the N adders are provided, and different data are supplied to the input terminal of each orthogonal transform apparatus, and the adder is provided at the corresponding output terminal of the plurality of orthogonal transform apparatuses.
  • the output is added, and the outputs of the N adders are used as the output of the orthogonal transform unit.
  • the data communication system of the present invention converts the data to be transmitted into a binary power ternary value, and then inputs the data to be transmitted to the orthogonal transform unit. It is characterized by force.
  • the data communication system of the present invention is characterized in that a modulation system of subcarriers in the OFDM baseband signal is a ternary QAM system.
  • a data transmission apparatus is a data transmission apparatus including an orthogonal transformation unit using an orthogonal sequence of NXN, an OFDM transformation unit, and a transmission unit.
  • the orthogonal transform unit orthogonally transforms data to be transmitted, the OFDM transform unit transforms the data orthogonally transformed by the orthogonal transform unit into an OFDM baseband signal, and the transmission unit is the OFDM transform unit It is characterized in that the OFDM baseband signal converted by the above is converted to a high frequency signal of high frequency and then transmitted.
  • a data transmission apparatus is a data transmission apparatus including an orthogonal transformation unit using an orthogonal array of NXN, a ZCZ conversion unit, and a transmission unit.
  • the orthogonal transformation unit orthogonally transforms data to be transmitted
  • the ZCZ transformation unit transforms the signal orthogonally transformed by the orthogonal transformation unit into a ZCZ baseband signal
  • the transmission unit is configured to use the ZCZ transformation unit. It is characterized in that the converted ZCZ baseband signal is converted to a high frequency high frequency signal and then transmitted.
  • a data transmission apparatus comprises: an orthogonal transformation unit using orthogonal rows of NXN; an OFDM transformation unit; a ZCZ transformation unit; a transmission unit;
  • the orthogonal transformation unit performs orthogonal transformation on data to be transmitted
  • the OFDM transformation unit performs OFDM base on data orthogonally transformed by the orthogonal transformation unit.
  • a band signal is converted, and the ZCZ conversion unit converts the data orthogonally converted by the orthogonal conversion unit into a ZCZ baseband signal, and the transmission unit converts the OFDM baseband signal or the ZCZ baseband signal into a high frequency signal.
  • the transmission state detection unit detects a transmission state, and the transmission mode switching unit uses an OFDM conversion unit or a ZCZ conversion unit according to the transmission state. Switching.
  • a data communication system and a data transmission apparatus resistant to noise are provided. Can.
  • FIG. 1 is a diagram for explaining a data communication system (part 1).
  • FIG. 3 A diagram for explaining the insertion of a guard interleave (pseudo period ⁇ ).
  • FIG. 4 is a diagram for explaining an 8 ⁇ 8 complex plane.
  • FIG. 5 is a view for explaining the principle of the present invention.
  • FIG. 6 is a diagram for explaining a Hadamard matrix (part 1).
  • FIG. 7 is a diagram for explaining a Hadamard matrix (part 2).
  • FIG. 8 is a diagram for explaining an orthogonal transform unit using a 10th-order Hadamard matrix.
  • FIG. 10 An example of a ZCZ sequence.
  • FIG. 11 is a diagram for explaining a transmitting side in the data communication system.
  • FIG. 12 is a diagram for explaining a receiving side in the data communication system.
  • FIG. 13 is a diagram for explaining a ZCZ conversion unit.
  • FIG. 15 This is a comparison table of multilevel QAM.
  • the system shown in FIG. 5 includes an orthogonal transform unit 31, a signal transform unit (OFDM, ZCZ, etc.) 32, a signal inverse transform unit 33, and an inverse orthogonal transform unit 34.
  • OFDM orthogonal transform unit
  • ZCZ ZCZ
  • inverse orthogonal transform unit 34 an orthogonal transform unit
  • the orthogonal transformation unit 31 is an orthogonal transformation unit using an N ⁇ N orthogonal matrix, and orthogonally transforms transmission data.
  • transformations in this orthogonal transformation unit there are u-ary transformations, Hadamard transformations, or
  • the DFT transform is used.
  • a signal conversion unit (OFDM, ZCZ, etc.) 32 outputs the data orthogonally converted by the orthogonal conversion unit 31 to O.
  • a transmission line a wireless line, a wired line, a LAN or the like can be used.
  • the signal inverse transformation unit 33 inversely transforms the received OFDM signal or ZCZ signal, and outputs an orthogonally transformed signal.
  • the orthogonally transformed signal is inversely transformed by the inverse orthogonal transformation unit 34 to obtain received data.
  • the orthogonal transform unit 31 performs orthogonal transform on transmission data, and then the signal transform unit (O
  • FDM, ZCZ, etc. 32 convert and transmit signals.
  • a transmitted signal is transmitted through a transmission line and is affected by external noise.
  • external noise affects the orthogonally transformed signal. Therefore, since the signal is orthogonally transformed, noise is dispersed and affects the individual transmission data. become.
  • the inverse orthogonal transform unit 34 can reduce the influence of noise by performing inverse transform. This is because the noise applied to the individual transmission data is uncorrelated, so the noise is canceled in the process of being inversely transformed by the inverse direct transformation unit 34.
  • the present invention can provide a data communication system resistant to noise by orthogonally transforming transmission data.
  • orthogonal transform unit an orthogonal transform unit using a 1024 ⁇ 1024 orthogonal matrix is used.
  • orthogonal transform unit using a 1024 ⁇ 1024 orthogonal matrix
  • Hadamard transformation is a kind of orthogonal transformation, and uses a 10-order matrix H (10) having 1 and 1 as its components.
  • T indicates that it is a transposed matrix. same as below.
  • 0 1 1023) is a time signal, Y (y, y, ⁇ ' ⁇ ⁇
  • each data X, X, ⁇ ⁇ ⁇ of input data X is each of output data ⁇
  • the Hadamard matrix H (n) can be represented by a recursion formula as shown in FIG. 7, so that a tenth-order matrix H (10) can be obtained.
  • the tenth-order matrix H (10) is a 1024 ⁇ 1024 orthogonal matrix.
  • the orthogonal transform unit may be implemented similarly to the Hadamard transform, using orthogonal transform and DFT transform, which performs orthogonal transform.
  • a ZCZ sequence is generated from a completely complementary sequence, and a one-dimensional sequence in which the autocorrelation function and the cross correlation function are zero within a certain range is called ZCZ.
  • FIG. 9 shows an example of a perfect complementary sequence of order 8
  • FIG. 10 shows two ZCZ sequences generated from the perfect complementary sequence of order 8 in FIG.
  • the ZCZ sequence is generated from a complete complementary sequence consisting of four sets and four from a complete complementary sequence consisting of 16 sets.
  • the number of “0s” needs to be the same for vector A and vector B, but it may be any number.
  • This ZCZ sequence is a spreading code.
  • signal A and signal B can be used as a spreading sequence.
  • the configuration of the transmitting side in the case where a ZCZ sequence is used as a signal conversion unit will be described with reference to FIG.
  • the configuration of FIG. 11 has a Hadamard transformation unit 41, a PZS transformation unit 42, a ZCZ transformation unit 43, and the like. And a transmission unit 44.
  • Input data ⁇ ( ⁇ , X, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is the 10th-order Hadamard matrix H41
  • the ZCZ conversion unit 43 ZCZ converts the data Y (y, yl, ⁇ 'y) to a ZCZ base
  • vector A functions as a spreading sequence. Therefore, in this case, the receiving side can reproduce the data Y (y, y, ⁇ ⁇ 'y) using the matched filter.
  • the signal (ZCZ baseband signal) ZCZ converted by ZCZ conversion unit 43 is converted into a high frequency signal of high frequency and transmitted by transmission unit 44.
  • the configuration of the receiving side in the case of using a ZCZ sequence as a signal conversion unit will be described with reference to FIG.
  • the configuration of FIG. 12 includes a receiving unit 51, an inverse ZCZ conversion unit 52, an SZP conversion unit 53, an inverse parameter conversion unit 54, and a PZS conversion unit 55.
  • the receiving unit 51 receives the ZCZ-converted signal to generate a ZCZ baseband signal.
  • the ZCZ baseband signal is inverse ZCZ converted by the inverse ZCZ conversion unit 52. Since the inverse ZCZ converted signal is a serial signal, the SZP conversion unit 53 converts it into a parallel signal. Since the signal converted to the parallel signal is a signal obtained by Hadamard transformation, the inverse Hadamard transformation is A conversion unit 54 performs inverse Hadamard transformation. Since the inverse-Hadamard-transformed signal is a parallel signal, the PZS converter 55 converts the signal into a serial signal to obtain received data.
  • FIG. 14 shows an example in which the Hadamard transform unit 71 and the Hadamard transform unit 72 are used.
  • the configuration of FIG. 14 is composed of a Hadamard transform unit 71, a Hadamard transform unit 72, and 1024 adders.
  • orthogonal transformation unit an orthogonal transformation or a DFT transformation may be used, and the number of orthogonal transformation units is not limited to two.
  • 1024 adders add the output of Hadamard transform unit 71 and the corresponding output of Hadamard transform unit 72, and output an output signal as if there were only one Hadamard transform unit. .
  • Hadamard transform unit 71 and Hadamard transform unit 72 do not have an orthogonal relationship, if they are in a rotated relationship, an error correction signal is used as data to be transmitted with a smaller degree of interference. It is possible to receive with less errors.
  • Figure 15 shows the comparison of multilevel QAM.
  • the table is composed of the intersymbol distance, the intersymbol distance converted to power, the number of transmission bits, and the comparison for binary QAM, ternary QAM, quaternary QAM, 16-ary QAM and 64-ary QAM. .
  • the intercode distance between each of binary QAM, ternary QAM, quaternary QAM, 16-ary QAM, and 64-ary QAM is 3a, 2a, a, and 0.5a, where binary QAM is 2a.
  • the distance between the codes converted to power is 4a 2 , 3a 2 , 2a 2 and 0.25a 2 respectively.
  • the magnification based on binary QAM is shown. Let this magnification be R1.
  • the number of transmission bits per digit of binary QAM, ternary QAM, quaternary QAM, 16-ary QAM and 64-value QAM is 1, Log 23, 2, 3, and 4, respectively.
  • the table shows the reciprocal of the scaling factor with reference to binary QAM in parentheses. The reciprocal of this scaling factor is R2.
  • the Table Comparison column shows the ratio of R2 to R1. According to this, three values Q
  • FIG. 16 shows the configuration diagram of the data communication system (Part 1).
  • the system configuration of FIG. 16 includes an orthogonal transformation unit 81 using an orthogonal matrix of NXN, a signal transformation unit 82 which is an OFDM transformation unit or a ZCZ transformation unit, a transmission unit 83, a reception unit 84, an OFDM inverse transformation unit or It is composed of an inverse signal transform unit 85 which is a ZCZ inverse transform unit, and an inverse orthogonal transform unit 86.
  • the orthogonal transformation unit 81 orthogonally transforms data to be transmitted, and the signal conversion unit 82 transforms the data orthogonally transformed by the orthogonal transformation unit into an OFDM baseband signal or a ZCZ baseband signal, and transmits it.
  • the unit converts the OFDM baseband signal or ZCZ baseband signal converted by the signal conversion unit 82 to a high frequency and transmits it, and the receiver 84 receives the received high frequency signal strength OFDM baseband signal or ZCZ base signal.
  • a band signal is generated, and an inverse signal converter 85 inversely converts the OFDM baseband signal or ZCZ base band signal generated in the receiver, and the inverse orthogonal transformer outputs the orthogonal signal output from the inverse signal converter 85. Inverse orthogonal transform the converted signal.
  • Figure 17 shows the configuration of the data communication system (part 2). The difference from Figure 16 is the transmission status The point is that the detection unit 98, the transmission method switching unit 97, and the switching signal detection unit 99 are further provided.
  • the signal conversion unit 92 and the inverse signal conversion unit 95 are provided with an OFDM conversion unit and a ZCZ conversion unit, and are switched to use one of them. .
  • the transmission state detection unit 98 detects the transmission state, and the transmission method switching unit 97 switches the method of the signal conversion unit according to the transmission state.
  • the transmission side switches the method of the signal conversion unit, it transmits that fact to the reception side by a “switching signal” in advance.
  • the “switching signal” is detected to switch the system of the reverse signal conversion unit on the receiving side.
  • OFDM with 64 QAM subcarriers is weak to noise but transmission efficiency is high, while ZCZ transmission is strong to noise but transmission efficiency is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 雑音に強いデータ通信システム及びデータ送信装置を提供することを目的したデータ通信システムであっって、N×Nの直交行列を用いた直交変換部と、信号変換部と、送信部と、受信部と、逆信号変換部と、逆直交変換部とを有するデータ通信システムである。

Description

データ通信システム及びデータ送信装置
技術分野
[0001] 本発明は、直交変換部を有するデータ通信システム及びデータ送信装置に関する 背景技術
[0002] 周波数選択性フ ーデイングに強いこと、狭帯域干渉に強いこと、周波数利用率が 高くできること及び周波数ドメイン処理が容易なことから、 OFDM (Orthogonal Freque ncy Division Multiplex)が利用されている。
[0003] 図 1 (A)は送信装置 10で、 SZP (直列 Z並列)変換部 11、サブキャリア変調部 12 、 IDFT (Inverse Discrete Fourier Transform) 13、擬周期化部揷入部 14、送信部 15 、発振器 16及びアンテナ 17から構成されている。擬周期化部挿入部は、通常、ガー ドインターバル揷入部と言われて 、るものである。
[0004] 送信データ (例えば、ディジタル情報系列)は、 S/P (直列 Z並列)変換部 12で並 列信号に変換される。並列信号に変換された信号は、所定ビット数毎に、サブキヤリ ァ変調部 12でサブキャリア変調される。なお、サブキャリアの変調方式は、 BPSK(Bi nary Phase Shift Keying) , QPSK (Quadrature Phase Shift Keying)、 16Q AM ( Quadrature Amplitude Modulation)又は 64QAMである。図 4に 64QAMの場合の 信号点を示す。
[0005] サブキャリア変調部 12からの BPSK、 QPSK、 16QAM又は 64QAMの信号は、 逆 DFT(Discrete Fourier Transform)される。これにより、直交関係にある複数の個 々のサブキャリアの信号が、時間軸の信号に変換される。
[0006] 次 、で、擬周期化部挿入部 14では、ガードインターバル GIを挿入する。具体的に は、図 2に示すように、後半の一部をコピーして、それを有効シンボル (その期間をシ ンボル期間 STとする。)の前に付加し、更に、前半の一部をコピーして、それを有効 シンボルの後に付加するようする。
[0007] また、図 3に示すように、有効シンボルの後半の一部をコピーして、それを有効シン ボルの前に付加するようにしてもよい。有効シンボルの後半の一部(2GI)をコピーし て、それを有効シンボルの前に付カ卩したものは、図 2と同じである。
[0008] ガードインターノ レ GIが挿入された OFDM信号は、送信部 15で、発振器 17の出 力の搬送波(キャリア周波数 f )を変調して、アンテナ 16から放射される。
[0009] 図 1 (B)の受信装置 20は、アンテナ 21、受信部 22、発振器 26、擬周期化部除去 部 23、 DFT24及び PZS (並列 Z直列)変換部 25から構成されている。
[0010] 図 1 (B)の受信装置 20は、送信装置の逆の処理を行う。受信部 22で、発振器 26の 出力によって、 OFDMベースバンド信号を生成する。擬周期化部除去部 23で、伝 送路の遅延(例えば、マルチパス)が存在する OFDMベースバンド信号から、他のシ ンボルの影響の無 、期間(有効シンボル ST)を抜き出す。
[0011] 次いで、 OFD信号を DFT24で、 DFT演算を行い、更に、 PZS変換部 25で、並 列 Z直列変換を行って、受信データを出力する。
発明の開示
発明が解決しょうとする課題
[0012] しかしながら、 OFDM方式であって、また、特に、サブキャリアの変調方式として 64
QAMを用いた場合は、効率の良い反面、雑音に弱いと言う問題がある。
[0013] 本発明は上記の事情に鑑み、雑音に強いデータ通信システム及びデータ送信装 置を提供することを目的とするものである。
課題を解決するための手段
[0014] 上記目的を達成するために、本発明のデータ通信システムは、 N X Nの直交行列 を用いた直交変換部と、 OFDM変換部と、送信部と、受信部と、逆 OFDM変換部と 、逆直交変換部とを有するデータ通信システムにおいて、前記直交変換部は、送信 するデータを直交変換し、前記 OFDM変換部は、前記直交変換部で直交変換され たデータを OFDMベースバンド信号に変換し、前記送信部は、前記 OFDM変換部 により変換された OFDMベースバンド信号を、高 、周波数に変換した上で送信し、 前記受信部は、受信した高周波信号力 OFDMベースバンド信号を生成し、前記 逆 OFDM変換部は、前記受信部で生成された OFDMベースバンド信号を逆 OFD M変換し、前記逆直交変換部は、前記逆 OFDM変換部力 出力される直交変換さ れた信号を逆直交変換することを特徴とする。
[0015] なお、通常、直交行列と言うと実数を対象とするものであるが、本願発明における直 交行列は、実数以外に、複素数を含む。したがって、本願発明における直交行列は 、ュ-タリ行列、アダマール行列及び DFT行列を含む意味で用いる。
[0016] また、上記目的を達成するために、本発明のデータ通信システムは、前記 OFDM ベースバンド信号におけるサブキャリアの変調方式は、 BPSK、 QPSK、 16QAM又 は 64QAMであることを特徴とする。
[0017] また、上記目的を達成するために、本発明のデータ通信システムは、 N X Nの直交 行列を用いた直交変換部と、 ZCZ変換部と、送信部と、受信部と、逆 ZCZ変換部と、 逆直交変換部とを有するデータ通信システムにおいて、前記直交変換部は、送信す るデータを直交変換し、前記 ZCZ変換部は、前記直交変換部で直交変換された信 号を ZCZベースバンド信号に変換し、前記送信部は、前記 ZCZ変換部により変換さ れた ZCZベースバンド信号を、高い周波数の高周波信号に変換した上で送信し、前 記受信部は、受信した高周波信号力 ZCZベースバンド信号を生成し、前記逆 ZCZ 変換部は、前記受信部で生成された ZCZベースバンド信号を逆 ZCZ変換し、前記 逆直交変換部は、前記逆 ZCZ変換部力 出力される直交変換された信号を逆直交 変換することを特徴とする。
[0018] また、上記目的を達成するために、本発明のデータ通信システムは、前記直交変 換部における変換は、ュ-タリ変換、アダマール変換又は DFT変換であることを特 徴とする。
[0019] また、上記目的を達成するために、本発明のデータ通信システムは、前記直交変 換部は、 N個の入力端子及び N個の出力端子を有する複数の N X Nの直交行列を 用いた直交変換装置及び N個の加算器とから構成され、各直交変換装置の入力端 子には、それぞれ異なるデータが供給され、前記加算器は、前記複数の直交変換装 置の対応する出力端子の出力を加算し、 N個の加算器の出力を、前記直交変換部 の出力とすることを特徴とする。
[0020] また、上記目的を達成するために、本発明のデータ通信システムは、前記送信する データを 2値力 3値に変換した上で、前記送信するデータを前記直交変換部に入 力することを特徴とする。
[0021] また、上記目的を達成するために、本発明のデータ通信システムは、前記 OFDM ベースバンド信号におけるサブキャリアの変調方式は、 3値 QAM方式であることを特 徴とする。
[0022] また、上記目的を達成するために、本発明のデータ送信装置は、 N X Nの直交行 列を用いた直交変換部と、 OFDM変換部と、送信部とを有するデータ送信装置にお いて、前記直交変換部は、送信するデータを直交変換し、前記 OFDM変換部は、 前記直交変換部で直交変換されたデータを OFDMベースバンド信号に変換し、前 記送信部は、前記 OFDM変換部により変換された OFDMベースバンド信号を、高 い周波数の高周波信号に変換した上で送信することを特徴とする。
[0023] また、上記目的を達成するために、本発明のデータ送信装置は、 N X Nの直交行 列を用いた直交変換部と、 ZCZ変換部と、送信部とを有するデータ送信装置におい て、前記直交変換部は、送信するデータを直交変換し、前記 ZCZ変換部は、前記直 交変換部で直交変換された信号を ZCZベースバンド信号に変換し、前記送信部は、 前記 ZCZ変換部により変換された ZCZベースバンド信号を、高い周波数の高周波信 号に変換した上で送信することを特徴とする。
[0024] また、上記目的を達成するために、本発明のデータ送信装置は、 N X Nの直交行 列を用いた直交変換部と、 OFDM変換部と、 ZCZ変換部と、送信部と、伝送状態検 出部と、伝送方式切換部とを有する送信装置において、前記直交変換部は送信する データを直交変換し、前記 OFDM変換部は、前記直交変換部で直交変換されたデ ータを OFDMベースバンド信号に変換し、前記 ZCZ変換部は、前記直交変換部で 直交変換されたデータを ZCZベースバンド信号に変換し、前記送信部は、 OFDM ベースバンド信号又は ZCZベースバンド信号を、高 、周波数の高周波信号に変換し た上で送信し、前記伝送状態検出部は、伝送状態検出し、前記伝送方式切換部は 、伝状態に応じて、 OFDM変換部を用いる力、 ZCZ変換部を用いるかを切り換える ことを特徴とする。
発明の効果
[0025] 本発明により、雑音に強いデータ通信システム及びデータ送信装置を提供すること ができる。
図面の簡単な説明
[図 1]データ通信システム (その 1)を説明するための図である。
圆 2]ガードインターノ レを前後に設けた (擬周期化)場合を説明するための図である
[図 3]ガードインターノ レの挿入 (擬周期ィ匕)を説明するための図である。
[図 4]8 X 8の複素平面を説明するための図である。
[図 5]本発明の原理を説明するための図である。
[図 6]アダマール行列(その 1)を説明するための図である。
[図 7]アダマール行列(その 2)を説明するための図である。
[図 8]10次アダマール行列を用いた直交変換部を説明するための図である。
[図 9]完全相補系列の例である。
[図 10]ZCZ系列の例である。
[図 11]データ通信システムにおける送信側を説明するための図である。
[図 12]データ通信システムにおける受信側を説明するための図である。
[図 13]ZCZ変換部を説明するための図である。
圆 14]複数の直交変換部を用いた場合を説明するための図である。
[図 15]多値 QAMの比較表である。
[図 16]データ通信システム(その 2)
[図 17]データ通信システム(その 3)
符号の説明
31、 81、 91 直交変換部
32、 82、 92 信号変換部
33、 85、 95 信号逆変換部
34、 86、 96 逆直交変換部
41、 71、 72 アダマール変換部
42、 55 PZS変換部
43 ZCZ変換部 44、 83、 93 送信部
51、 84、 94 受信部
52 逆 ZCZ変換部
53 SZP変換部
54 逆アダマール変換部
97 伝送方式切換部
98 伝送状態検出部
99 切り換え信号検出部
発明を実施するための最良の形態
[0028] (本発明の基本原理)
本発明の基本原理について、図 5を用いて説明する。図 5のシステムは、直交変換 部 31、信号変換部 (OFDM、 ZCZ等) 32、信号逆変換部 33及び逆直交変換部 34 から構成されている。
[0029] 直交変換部 31は、 N X Nの直交行列を用いた直交変換部で、送信データを直交 変換する。この直交変換部における変換として、ュ-タリ変換、アダマール変換又は
DFT変換が用いられる。
[0030] 信号変換部 (OFDM, ZCZ等) 32は、直交変換部 31で直交変換されたデータを O
FDM信号又は ZCZ信号に変換して送信する。伝送回線としては、無線回線、有線 回線、 LAN等を用いることができる。
[0031] 信号逆変換部 33は、受信した OFDM信号又は ZCZ信号を逆変換して、直交変換 された信号を出力する。また、直交変換された信号は、逆直交変換部 34で逆変換さ れて、受信データを得る。
[0032] 本発明では、直交変換部 31で、送信データを直交変換した上で、信号変換部 (O
FDM、 ZCZ等) 32で、信号を変換して送信している。
[0033] ところで、一般に、送信された信号は、伝送回線を伝送中で外部雑音の影響を受 ける。し力しながら、本発明では、直交変換部 31で、送信データを直交変換している ので、外部雑音は、直交変換された信号に対して影響を与える。したがって、信号が 直交変換されているので、個々の送信データには、雑音が分散されて影響すること になる。
[0034] その結果、逆直交変換部 34で逆変換することにより、雑音の影響を低減することは できる。なぜなら、個々の送信データに印加された雑音は、無相関であるので、逆直 交変換部 34により、逆変換される過程で、雑音が相殺されるからである。
[0035] このように、本発明は、送信データを直交変換することにより、雑音に強いデータ通 信システムを提供することができる。
(直交変換部)
直交変換部として、 1024X1024の直交行列を用いた直交変換部を用いる。ここ では、アダマール変換を用いた例につ!、て説明する。
[0036] アダマール変換は、直交変換の一種で、 1と 1を成分とする 10次の行列 H (10) を用いる。
[0037] 時系列データ {x} =x、 X、 · · ·χ · · ·を、 1024ビットずつに区切り、区切った信号
0 1 7
群毎に直列 Ζ並列した場合は、 10次のアダマール行列 Η (10)が用いられる。具体 的には、図 8に示すように、並列データである入力データ Χ(χ、 X、 · · ·χ (なお
0 1 1023
、 tは、転置行列であることを示す。以下、同じ。)が、 10次のアダマール行列 H( 10) に供給され、次式に示すようにアダマール変換されて、出力データ Y(y、 y、 · · 'y
0 1 10
23 を得る。
[0038] Y=H(10)X ··· (1)
入力データ Χ(χ、 X、 · · ·χ (y、 y、 · · 'y
0 1 1023 、が出力データ Y
0 1 1023 に変換されて いる。なお、 Χ(χ、χ、 ·'·χ
0 1 1023 )は時間信号であり、 Y(y、y、 ·'·γ
0 1 1023 )は周波数信 号である。
[0039] したがって、入力データ Xの各データ X、 X、 · · ·χ は、出力データ Υのそれぞれ
0 1 1023
のデータ yヽ ヽ…
0 1 1023に影響して 、る。
[0040] なお、アダマール行列は、図 6(A)に示すように、 H(O) = [1]とした場合は、 H(l) 及び H (2)が、図 6 (B)及び図 6 (C)のように示せる。
[0041] 一般的には、アダマール行列 H(n)は、図 7のように漸化式で示せるので、 10次の 行列 H (10)を求めることができる。 10次の行列 H(10)は、 1024X1024の直交行 列である。 [0042] 直交変換部として、アダマール変換以外に、直交変換を行う、ュ-タリ変換及び DF T変換を用いても同様に実施できる。
(信号変換部)
信号変換部として、 ZCZ (zero Correlation Zone Sequence)系列を用いた場合に ついて説明する。
ZCZ系列は、完全相補系列から生成され、自己相関関数と相互相関関数がある範 囲でゼロとなる一次元系列を ZCZという。図 9に位数 8の完全相補系列の例を示し、 図 10に、図 9の位数 8の完全相補系列から生成された二つの ZCZ系列を示す。なお 、 ZCZ系列は、 4つの組から構成される完全相補系列からは二つ、 16つの組から構 成される完全相補系列からは四つ生成される。なお、図 10において、「0」の数は、ベ タトル Aとベクトル Bとで、同じである必要があるものの、いくつでもよい。
[0043] この ZCZ系列は拡散符号となる。
[0044] 図 10に示す信号 Aを信号 Aのマッチドフィルタに印加するとその出力から
000000080000000
の出力が得られ、
信号 Aを信号 Bのマッチドフィルタに印加するとその出力から
000000000000000
の出力が得られ、
図 10に示す信号 Bを信号 Bのマッチドフィルタに印加するとその出力から 000000080000000
の出力が得られ、
信号 Bを信号 Aのマッチドフィルタに印加するとその出力から
000000000000000
が得られる。
[0045] したがって、信号 Aと信号 Bとは、拡散系列として使用できる。
(送信側構成)
図 11に、信号変換部として、 ZCZ系列を用いた場合の送信側の構成について説 明する。図 11の構成は、アダマール変換部 41、 PZS変換部 42、 ZCZ変換部 43及 び送信部 44から構成されて 、る。
[0046] 時系列データ {x} =x、 X、 · · · χ · · ·を、 1024ビットずつに区切り、その 1024ビッ
0 1 7
トの信号である入力データ Χ(χ、 X、 · · ·χ が、 10次のアダマール行列 H41に
0 1 1023
供給され、出力データ Y(y、 y、 · · 'y を得る。
0 1 1023
[0047] この出力データ Y(yヽ ヽ … は、 PZS変換部 42で、直列信号に変換され
0 1 1023
、出力データ Y(yヽ ヽ … )となる。
0 1 1023
[0048] ZCZ変換部 43では、データ Y(y、 yl、 · · 'y )を ZCZ変換して、 ZCZベースバ
0 1023
ンド信号を生成する。具体的には、図 13に示すように、時系列データ Y(y、 y、 · · ·
0 1 y )と、 ZCZ系列 (例えば、ベクトル A) 62とが、論理積回路 61で、論理積演算が
1023
行われる。その結果、論理積回路 61から、 y (ベクトル A)、 y (ベクトル A)、 · · 'y
0 1 1023
(ベクトル A)が出力される。
[0049] なお、出力データ Yのビットのタイムスロット毎に、ベクトル Aとの論理積が行われて いる場合は、ベクトル Aは拡散系列として機能する。したがって、この場合は、受信側 では、マッチドフィルタを用いて、データ Y(y、 y、 · · 'y )を再生することができる
[0050] なお、本発明では、出力データ Yのビットのタイムスロット毎に、ベクトル Aとの論理 積を演算する必要はない。この場合は、受信側では、フィルタ湘関器)を用いて、デ ータ Y(y、 y、 · · 'y )
0 1 1023を再生することができる。
[0051] ZCZ変換部 43で ZCZ変換された信号 (ZCZベースバンド信号)は、送信部 44で、 高 、周波数の高周波信号に変換して送信する
(受信側構成)
図 12に、信号変換部として、 ZCZ系列を用いた場合の受信側の構成について説 明する。図 12の構成は、受信部 51、逆 ZCZ変換部 52、 SZP変換部 53、逆ァダマ ール変換部 54及び PZS変換部 55から構成されている。
[0052] 受信部 51は、 ZCZ変換された信号を受信して、 ZCZベースバンド信号を生成する 。この ZCZベースバンド信号を、逆 ZCZ変換部 52で、逆 ZCZ変換する。逆 ZCZ変換 された信号は直列信号であるので、 SZP変換部 53で、並列信号に変換する。並列 信号に変換された信号は、アダマール変換された信号であるので、逆アダマール変 換部 54で逆アダマール変換する。逆アダマール変換された信号は、並列信号である ので、 PZS変換部 55で、直列信号に変換して、受信データを得る。
(複数の直交変換部を設けた変形例)
図 14に、直交変換部を複数設けた場合について説明する。
[0053] 図 14では、アダマール変換部 71とアダマール変換部 72を用いた例である。図 14 の構成は、アダマール変換部 71、アダマール変換部 72及び 1024個の加算器から 構成されている。
[0054] なお、直交変換部として、ュ-タリ変換又は DFT変換を用いても良 、し、直交変換 部は二つに限ることはない。
[0055] 図のアダマール変換部 71及びアダマール変換部 72は、 1024 X 1024のァダマー ル行列 H (10)を用いて!/、る。アダマール変換部 71に供給される入力データ (X 、 X
10 1
、 · · · χ )とアダマール変換部 72の 1024に供給される入力データ(X 、χ
1 11023 20 21
X
21023 )とは別の入力データである。
[0056] 一方、 1024個の加算器は、アダマール変換部 71の出力とアダマール変換部 72の 対応する出力を加算し、恰も、一つのアダマール変換部が存在するかのような出力 信号を出力する。
[0057] このような構成にした場合であっても、直交変換部を用いているので、図 5と同様に
、雑音に強いデータ通信システムである。
[0058] なお、アダマール変換部 71とアダマール変換部 72とは、直交関係にないものので あっても、回転した関係にあれば、干渉の程度が小さぐ送信するデータとして、誤り 訂正信号を用いることにより、少ない誤りで受信することができる。
(3値QAM)
図 15に、多値 QAMの比較を示す。表は、 2値 QAM、 3値 QAM、 4値 QAM、 16 値 QAM及び 64値 QAMについて、それらの符号間距離、符号間距離を電力に換 算したもの、送信ビット数及び比較から構成されて 、る。
[0059] 2値 QAM、 3値 QAM、 4値 QAM、 16値 QAM及び 64値 QAMのそれぞれの符号 間距離は、 2値 QAMを 2aとすると、 3a、 2a、 a及び 0. 5aとなる。この符号間距 離を電力に換算したものは、それぞれ、 4a2、 3a2、 2a2及び 0. 25a2となる。表には、( )内に、 2値 QAMを基準とした倍率を示している。この倍率を R1とする。
[0060] また、 2値 QAM、 3値 QAM、 4値 QAM、 16値 QAM及び 64値 QAMのそれぞれ の、 1デジット当たりの送信ビット数は、 1、 Log23、 2, 3、及び 4である。表には、()内 に、 2値 QAMを基準とした倍率の逆数を示している。この倍率の逆数を R2とする。
[0061] 表の比較の欄には、 R1に対する R2の比が示されております。これによれば、 3値 Q
AMがノイズに対して、効率の良いことが分力ります。
[0062] そこで、 OFDM方式を用いる場合、サブキャリアを 3値 QAMで変調すると、効率的 な伝送が行われる。
[0063] 図 5において、信号変換部 32の信号変換方式を OFDMで行い、そのサブキャリア を 3値 QAMで変調する場合は、直交変換部 31に入力段階で、 3値としておいた方 が信号処理がスムーズである。したがって、 OFDMにおけるサブキャリアを 3値 QA Mで変調する場合は、直交変換部 31の前段に、 2値力 3値に変換する 2値 · 3値変 換回路を設けて、直交変換部 31には、 3値のデータが入力するようにする。
(データ通信システム構成 (その 1) )
図 16にデータ通信システムの構成図(その 1)を示す。図 16のシステム構成は、 N X Nの直交行列を用いた直交変換部 81と、 OFDM変換部又は ZCZ変換部である 信号変換部 82と、送信部 83と、受信部 84と、 OFDM逆変換部又は ZCZ逆変換部 である逆信号変換部 85と、逆直交変換部 86から構成されて 、る。
[0064] 直交変換部 81は、送信するデータを直交変換し、信号変換部 82は、前記直交変 換部で直交変換されたデータを OFDMベースバンド信号又は ZCZベースバンド信 号に変換し、送信部は、信号変換部 82により変換された OFDMベースバンド信号 又は ZCZベースバンド信号を、高い周波数に変換した上で送信し、受信部 84は、受 信した高周波信号力 OFDMベースバンド信号又は ZCZベースバンド信号を生成 し、逆信号変換部 85は、受信部で生成された OFDMベースバンド信号又は ZCZベ ースバンド信号を逆変換し、前記逆直交変換部は、逆信号変換部 85から出力される 直交変換された信号を逆直交変換する。
(データ通信システム構成 (その 2) )
図 17にデータ通信システムの構成図(その 2)を示す。図 16との違いは、伝送状態 検出部 98と、伝送方式切換部 97及び切り換え信号検出部 99を更に設けた点である
[0065] また、データ通信システム構成 (その 2)では、信号変換部 92及び逆信号変換部 95 は、 OFDM変換部及び ZCZ変換部を備えており、切り換えてその一方の方式のもの を使用する。
[0066] 伝送状態検出部 98は、伝送状態検出し、伝送方式切換部 97は伝送状態に応じて 、信号変換部の方式を切り換える。なお、送信側は、信号変換部の方式を切り換える とき、予め、その旨を「切り換え信号」によって、受信側に伝送する。
[0067] 受信側では、「切り換え信号」を検出して、受信側の逆信号変換部の方式を切り換 える。
[0068] 例えば、サブキャリアが 64QAMの OFDMは、雑音に弱いが伝送効率は高い、一 方、 ZCZ伝送は、雑音に強いが伝送効率は低い。
[0069] そこで、雑音が小さ!/、ときは、サブキャリアが 64QAMの OFDMを用い、雑音が大 きいときは、 ZCZ伝送を用いるように切り換える。
[0070] 以上、発明を実施するための最良の形態について説明を行った力 本発明は、こ の最良の形態で述べた実施の形態に限定されるものではない。本発明の主旨をそこ なわな 、範囲で変更することが可能である。
[0071] また、本願は 2005年 7月 27日に出願した日本国特許出願 2005— 217717号に 基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用 する。

Claims

請求の範囲
[1] N X Nの直交行列を用いた直交変換部と、 OFDM変換部と、送信部と、受信部と、 逆 OFDM変換部と、逆直交変換部とを有するデータ通信システムにお!/、て、 前記直交変換部は、送信するデータを直交変換し、
前記 OFDM変換部は、前記直交変換部で直交変換されたデータを OFDMベー スバンド信号に変換し、
前記送信部は、前記 OFDM変換部により変換された OFDMベースバンド信号を、 高 ヽ周波数に変換した上で送信し、
前記受信部は、受信した高周波信号力 OFDMベースバンド信号を生成し、 前記逆 OFDM変換部は、前記受信部で生成された OFDMベースバンド信号を逆 OFDM変換し、
前記逆直交変換部は、前記逆 OFDM変換部から出力される直交変換された信号 を逆直交変換することを特徴とするデータ通信システム。
[2] 前記 OFDMベースバンド信号におけるサブキャリアの変調方式は、 BPSK、 QPS
K、 16QAM又は 64QAMであることを特徴とする請求項 1記載のデータ通信システ ム。
[3] Ν X Νの直交行列を用いた直交変換部と、 ZCZ変換部と、送信部と、受信部と、逆
ZCZ変換部と、逆直交変換部とを有するデータ通信システムにお 、て、
前記直交変換部は、送信するデータを直交変換し、
前記 ZCZ変換部は、前記直交変換部で直交変換された信号を ZCZベースバンド 信号に変換し、
前記送信部は、前記 ZCZ変換部により変換された ZCZベースバンド信号を、高い 周波数の高周波信号に変換した上で送信し、
前記受信部は、受信した高周波信号力 ZCZベースバンド信号を生成し、 前記逆 ZCZ変換部は、前記受信部で生成された ZCZベースバンド信号を逆 ZCZ 変換し、
前記逆直交変換部は、前記逆 ZCZ変換部力 出力される直交変換された信号を 逆直交変換することを特徴とするデータ通信システム。
[4] 前記直交変換部における変換は、ュ-タリ変換、アダマール変換又は DFT変換で あることを特徴とする請求項 1な 、し 3 、ずれか一項に記載のデータ通信システム。
[5] 前記直交変換部は、 N個の入力端子及び N個の出力端子を有する複数の N X N の直交行列を用いた直交変換装置及び N個の加算器とから構成され、
各直交変換装置の入力端子には、それぞれ異なるデータが供給され、 前記加算器は、前記複数の直交変換装置の対応する出力端子の出力を加算し、 N個の加算器の出力を、前記直交変換部の出力とすることを特徴とする請求項 1な V、し 4 、ずれか一項に記載のデータ通信システム。
[6] 前記送信するデータを 2値から 3値に変換した上で、前記送信するデータを前記直 交変換部に入力することを特徴とする請求項 1、 3、 4、 5の内いずれか一項に記載の データ通信システム。
[7] 前記 OFDMベースバンド信号におけるサブキャリアの変調方式は、 3値 QAM方式 であることを特徴とする請求項 6記載のデータ通信システム。
[8] N X Nの直交行列を用いた直交変換部と、 OFDM変換部と、送信部とを有するデ ータ送信装置において、
前記直交変換部は、送信するデータを直交変換し、
前記 OFDM変換部は、前記直交変換部で直交変換されたデータを OFDMベー スバンド信号に変換し、
前記送信部は、前記 OFDM変換部により変換された OFDMベースバンド信号を、 高い周波数の高周波信号に変換した上で送信することを特徴とするデータ送信装置
[9] N X Nの直交行列を用いた直交変換部と、 ZCZ変換部と、送信部とを有するデータ 送信装置において、
前記直交変換部は、送信するデータを直交変換し、
前記 ZCZ変換部は、前記直交変換部で直交変換された信号を ZCZベースバンド 信号に変換し、
前記送信部は、前記 ZCZ変換部により変換された ZCZベースバンド信号を、高い 周波数の高周波信号に変換した上で送信することを特徴とするデータ送信装置。 N X Nの直交行列を用いた直交変換部と、 OFDM変換部と、 ZCZ変換部と、送信 部と、伝送状態検出部と、伝送方式切換部とを有する送信装置において、
前記直交変換部は送信するデータを直交変換し、
前記 OFDM変換部は、前記直交変換部で直交変換されたデータを OFDMベー スバンド信号に変換し、
前記 ZCZ変換部は、前記直交変換部で直交変換されたデータを ZCZベースバン ド信号に変換し、
前記送信部は、 OFDMベースバンド信号又は ZCZベースバンド信号を、高い周波 数の高周波信号に変換した上で送信し、
前記伝送状態検出部は、伝送状態検出し、
前記伝送方式切換部は、伝状態に応じて、 OFDM変換部を用いるカゝ、 ZCZ変換 部を用いるかを切り換えることを特徴とするデータ送信装置。
PCT/JP2006/313537 2005-07-27 2006-07-07 データ通信システム及びデータ送信装置 WO2007013278A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/996,619 US20080192621A1 (en) 2005-07-27 2006-07-07 Data Communication System and Data Transmitting Apparatus
EP06780862A EP1909424A1 (en) 2005-07-27 2006-07-07 Data communication system and data transmitting apparatus
JP2007528395A JPWO2007013278A1 (ja) 2005-07-27 2006-07-07 データ通信システム及びデータ送信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005217717 2005-07-27
JP2005-217717 2005-07-27

Publications (1)

Publication Number Publication Date
WO2007013278A1 true WO2007013278A1 (ja) 2007-02-01

Family

ID=37683179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313537 WO2007013278A1 (ja) 2005-07-27 2006-07-07 データ通信システム及びデータ送信装置

Country Status (5)

Country Link
US (1) US20080192621A1 (ja)
EP (1) EP1909424A1 (ja)
JP (1) JPWO2007013278A1 (ja)
CN (1) CN101238662A (ja)
WO (1) WO2007013278A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032804A1 (fr) * 2006-09-15 2008-03-20 Naoki Suehiro Procédé d'émission de données, émetteur de données et récepteur de données

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9077386B1 (en) 2010-05-20 2015-07-07 Kandou Labs, S.A. Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
WO2014124450A1 (en) 2013-02-11 2014-08-14 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
WO2014172377A1 (en) 2013-04-16 2014-10-23 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
EP2997704B1 (en) 2013-06-25 2020-12-16 Kandou Labs S.A. Vector signaling with reduced receiver complexity
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
JP6317474B2 (ja) 2014-02-02 2018-04-25 カンドウ ラボズ ソシエテ アノニム 制約isi比を用いる低電力チップ間通信の方法および装置
EP3111607B1 (en) 2014-02-28 2020-04-08 Kandou Labs SA Clock-embedded vector signaling codes
US11240076B2 (en) 2014-05-13 2022-02-01 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9852806B2 (en) 2014-06-20 2017-12-26 Kandou Labs, S.A. System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding
US9112550B1 (en) 2014-06-25 2015-08-18 Kandou Labs, SA Multilevel driver for high speed chip-to-chip communications
EP3138253A4 (en) * 2014-07-10 2018-01-10 Kandou Labs S.A. Vector signaling codes with increased signal to noise characteristics
US9432082B2 (en) * 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
CN106664272B (zh) 2014-07-21 2020-03-27 康杜实验室公司 从多点通信信道接收数据的方法和装置
WO2016019384A1 (en) 2014-08-01 2016-02-04 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
KR102372931B1 (ko) 2015-06-26 2022-03-11 칸도우 랩스 에스에이 고속 통신 시스템
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
WO2017132292A1 (en) 2016-01-25 2017-08-03 Kandou Labs, S.A. Voltage sampler driver with enhanced high-frequency gain
CN115085727A (zh) 2016-04-22 2022-09-20 康杜实验室公司 高性能锁相环
WO2017185070A1 (en) 2016-04-22 2017-10-26 Kandou Labs, S.A. Calibration apparatus and method for sampler with adjustable high frequency gain
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
US10193716B2 (en) 2016-04-28 2019-01-29 Kandou Labs, S.A. Clock data recovery with decision feedback equalization
US10056903B2 (en) 2016-04-28 2018-08-21 Kandou Labs, S.A. Low power multilevel driver
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10372665B2 (en) 2016-10-24 2019-08-06 Kandou Labs, S.A. Multiphase data receiver with distributed DFE
EP3610576B1 (en) 2017-04-14 2022-12-28 Kandou Labs, S.A. Pipelined forward error correction for vector signaling code channel
CN115333530A (zh) 2017-05-22 2022-11-11 康杜实验室公司 多模式数据驱动型时钟恢复方法和装置
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10693587B2 (en) 2017-07-10 2020-06-23 Kandou Labs, S.A. Multi-wire permuted forward error correction
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization
US10467177B2 (en) 2017-12-08 2019-11-05 Kandou Labs, S.A. High speed memory interface
CN116614338A (zh) 2017-12-28 2023-08-18 康杜实验室公司 同步切换多输入解调比较器的方法和装置
US10554380B2 (en) 2018-01-26 2020-02-04 Kandou Labs, S.A. Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation
US11831472B1 (en) 2022-08-30 2023-11-28 Kandou Labs SA Pre-scaler for orthogonal differential vector signalling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047304A1 (fr) * 2000-12-05 2002-06-13 Fujitsu Limited Appareil et procede de transmission de donnees
JP3454407B2 (ja) * 1996-10-14 2003-10-06 株式会社エヌ・ティ・ティ・ドコモ 送受信方法とその装置
JP3589967B2 (ja) * 2000-02-01 2004-11-17 松下電器産業株式会社 マルチキャリア通信装置及びピーク電力抑圧方法
WO2005046074A1 (ja) * 2003-11-06 2005-05-19 Yokohama Tlo Company, Ltd. 通信方法、送信信号形成方法、及び送信信号のデータ構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757767A (en) * 1995-04-18 1998-05-26 Qualcomm Incorporated Method and apparatus for joint transmission of multiple data signals in spread spectrum communication systems
EP0836303B1 (en) * 1996-10-14 2003-02-26 Ntt Mobile Communications Network Inc. Method and apparatus for reduction of peak to average power ratio
US20020150038A1 (en) * 2000-07-10 2002-10-17 Atsushi Sumasu Multi-carrier communication device and peak power suppressing method
JP2003209493A (ja) * 2002-01-11 2003-07-25 Nec Corp 符号分割多元接続通信方式及び方法
JP2003218778A (ja) * 2002-01-24 2003-07-31 Nec Corp 無線送受信装置及び無線通信システム
US7804764B2 (en) * 2005-08-03 2010-09-28 National University Corporation NARA Institute of Science and Technology Transmitter and receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454407B2 (ja) * 1996-10-14 2003-10-06 株式会社エヌ・ティ・ティ・ドコモ 送受信方法とその装置
JP3589967B2 (ja) * 2000-02-01 2004-11-17 松下電器産業株式会社 マルチキャリア通信装置及びピーク電力抑圧方法
WO2002047304A1 (fr) * 2000-12-05 2002-06-13 Fujitsu Limited Appareil et procede de transmission de donnees
WO2005046074A1 (ja) * 2003-11-06 2005-05-19 Yokohama Tlo Company, Ltd. 通信方法、送信信号形成方法、及び送信信号のデータ構造

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HATAYAMA S. ET AL.: "Data Henkan ni yoru Kyotaiiki Kanshoka no OFDM Shingo no Tokusei no Kaizen", 1997 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 1, 13 August 1997 (1997-08-13), pages 328, XP003007610 *
OKADA K. ET AL.: "Data Henkan ni yoru OFDM Shingo no Ayamariritsu Tokusei no Kaizen", ITE TECHNICAL REPORT, vol. 21, no. 12, 20 February 1997 (1997-02-20), pages 85 - 90, XP002989376 *
OWAKI Y. ET AL.: "Trellis Hencho o Mochiita Data Kakusan OFDM ni Kansuru Ichikento", 2001 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION ANONBUNSHU, TSUSHIN 1, 7 March 2001 (2001-03-07), pages 483, XP003007611 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032804A1 (fr) * 2006-09-15 2008-03-20 Naoki Suehiro Procédé d'émission de données, émetteur de données et récepteur de données

Also Published As

Publication number Publication date
US20080192621A1 (en) 2008-08-14
JPWO2007013278A1 (ja) 2009-02-05
EP1909424A1 (en) 2008-04-09
CN101238662A (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
WO2007013278A1 (ja) データ通信システム及びデータ送信装置
JP3778969B2 (ja) スペクトラム拡散コードパルス位置変調のための方法及び装置
US4707839A (en) Spread spectrum correlator for recovering CCSK data from a PN spread MSK waveform
RU2242819C2 (ru) Кодирование множественного доступа с использованием свернутых последовательностей для систем подвижной радиосвязи
EP0599632B1 (en) Apparatus and methods for wireless communications
KR100488431B1 (ko) 정 진폭 이진직교 변조 및 복조장치
JP2526510B2 (ja) 無線デ―タ通信装置
US20050249271A1 (en) Methods and systems for transceiving chaotic signals
RU2004123793A (ru) Высокоскоростная передача в режиме передачи и приема с разнесением
US20080080598A1 (en) Method and apparatus for processing communication using different modulation schemes
CN1881974B (zh) 发送/接收ofdm信号的方法及其移动通信终端
JPH08331095A (ja) 通信システム
EP0992120A1 (en) Wireless communications system for transmitting and receiving data with increased data rates and robustness
KR19990083039A (ko) 확장된 코드 세트를 사용하는 디지털 변조 시스템
RU99114846A (ru) Канал поднесущей, кодируемый фазовым сдвигом
CN115550127A (zh) 基于码移的载波索引多进制混沌调制解调方法与调制解调器
CN100518161C (zh) 用于解调恒幅多码双正交调制信号的改进方法
CN1193228A (zh) 音分多址通信方法
KR20050099906A (ko) 직교주파수분할 다중접속 시스템에서 순환 주파수 패턴에따른 고속 주파수 도약을 위한 송수신장치
KR20030078966A (ko) 부호 분할 다중접속 통신용 시스템
CN1367955A (zh) 信号发生器和解码器
AU761866B2 (en) Frequency shifting circuit and method
USRE41931E1 (en) Receiver module and receiver formed from several cascaded modules
US5546423A (en) Spread spectrum digital transmission system using low-frequency pseudorandom encoding of the wanted information and spectrum spreading and compression method used in a system of this kind
US7242663B2 (en) Multi-channel spread spectrum communications system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027554.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528395

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006780862

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 174/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11996619

Country of ref document: US