WO2007013224A1 - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
WO2007013224A1
WO2007013224A1 PCT/JP2006/311408 JP2006311408W WO2007013224A1 WO 2007013224 A1 WO2007013224 A1 WO 2007013224A1 JP 2006311408 W JP2006311408 W JP 2006311408W WO 2007013224 A1 WO2007013224 A1 WO 2007013224A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
reception
baseband signal
ofdm
signal
Prior art date
Application number
PCT/JP2006/311408
Other languages
English (en)
French (fr)
Inventor
Shigeki Nakamura
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007528365A priority Critical patent/JP4650844B2/ja
Priority to EP06757115A priority patent/EP1909423A4/en
Publication of WO2007013224A1 publication Critical patent/WO2007013224A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a receiving apparatus that receives an OFDM digital broadcast or the like.
  • Terrestrial digital broadcasting has begun as a new era of broadcasting media, following BS digital broadcasting and 110-degree CS digital broadcasting, especially in terrestrial digital broadcasting that uses terrestrial waves that are easily affected by obstacles.
  • OFDM Orthogonal Frequency Divisin Multiplexing
  • a transmission line coding method that has excellent degradation resistance against fading and the like and can provide various services not only for fixed reception but also for mobile reception. Yes.
  • BST-OFDM Bit Segmented Transmission-OFDM
  • the transmission bandwidth (6 MHz) of each physical channel has a predetermined bandwidth (approximately 430 kHz). It is possible to transmit a total of 13 segments at the same time as a single segment.
  • the transmission line code is set with different transmission parameters for each segment, and multiple layers (up to 3 layers) with different degradation tolerances can be transmitted. It is possible to do.
  • simultaneous broadcasting simultaneous broadcasting (simultaneous broadcasting) for fixed reception and mobile reception can be performed in one physical channel, and various services can be provided.
  • receivers that receive terrestrial digital broadcasts particularly mobile receivers, are known which have a diversity antenna that receives terrestrial digital broadcasts under better reception conditions (See Patent Document 1).
  • FIG. 1 (a) is a block diagram showing the configuration of a conventional general receiving apparatus that employs the same configuration as the receiving apparatus described in FIG. 1 of Patent Document 1, Multiple diversity antennas ⁇ 1 to ⁇ , antenna switching unit 1, tuner units 2a, 2b, analog digital transformations ⁇ 3a, 3b, FFT units 4a, 4b, adder 5, OFDM demodulator 6, MPEG decoder
  • the first receiving system A is composed of the tuner unit 2a, the analog-digital converter 3a, and the FFT unit 4a
  • the second receiving system B is composed of the tuner unit 2b, the analog-digital conversion 3b, and the FFT unit 4b. It has been.
  • the antenna switching unit 1 for example, an antenna that obtains the maximum reception sensitivity is searched, and switching connection to the tuner units 2a and 2b is performed.
  • the tuner units 2a and 2b the local signal of the same frequency fl that should receive the broadcast of the channel number (physical channel) specified by the user etc. is mixed with the received signal input via the antenna switching unit 1. Then, an intermediate frequency signal (IF signal) converted in frequency is generated.
  • IF signals are converted into digital IF signals by analog digital transformations 3a and 3b, and further converted into so-called baseband signals by fast Fourier transform in FFT units 4a and 4b.
  • These baseband signals are added (synthesized) by the adder 5, and the synthesized baseband signal Sadd is demodulated by the OFDM demodulator 6 to obtain a transport stream TS (MPEG-2TS) as demodulated data. Then, it is supplied to the MPEG decoder unit 7 and decoded into a signal such as video or audio of a broadcast program and output.
  • a demultiplexer is provided between the OFDM demodulator 6 and the MP EG decoder 7 to separate the transport stream TS into a bucket and supply it to the MPEG decoder 7. The explanation is omitted.
  • the OFDM frame decoding processor uses the above-described added baseband signal Sadd in the order of segments. After the arrayed baseband signals are synchronized or delayed, the frequency and time dim-leaves are applied, and then the demodulating unit (QPSK, 16QAM) , 64QAM), and then the Dint Reeve in a predetermined bit unit is performed in the Bit Dinter Leave section.
  • the demodulating unit QPSK, 16QAM
  • 64QAM 64QAM
  • the depuncture and Viterbi decoding unit performs error correction decoding processing using a convolutional code (inner code), performs byte deinterleaving in byte units, performs energy despreading, and further performs a Reed-Solomon code (external code).
  • a convolutional code inner code
  • byte deinterleaving in byte units
  • energy despreading performs energy despreading
  • Reed-Solomon code (external code).
  • the above-described transport stream TS is reproduced and supplied to the MPEG decoder unit 7 by performing error correction decoding processing using a code.
  • a receiving apparatus having a conventional diversity antenna having a powerful configuration two tuner units 2a and 2b simultaneously receive broadcasts of the same physical channel, and by simultaneous reception thereof, FFT units 4a and 4b
  • the two baseband signals output from the synthesizer are combined by the adder 5 and then demodulated by the OFDM demodulator 6, which can improve CZN and receive terrestrial digital broadcasting in a better reception state. It is possible to do.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-136471
  • an electronic program guide (EP G) or the like is received by a receiving system A while receiving a broadcast selected by the user, and is individually transmitted from each broadcasting station by the receiving system B during the reception.
  • SI service information
  • a comprehensive electronic program guide for use by the user is created and stored in the storage means in advance, the convenience to the user Can be improved.
  • each station service information (SI) such as the electronic program guide (EPG) described above is distributed as service information of its own station for each broadcasting station, the conventional receiving apparatus shown in FIG. As shown in the figure, when two receiving systems A and B receive only the same physical channel, the receiving system A can receive electronic programs from other broadcasting stations while receiving the broadcast desired by the user.
  • SI service information
  • EPG guidance
  • the OFDM demodulation units 6a and 6b and the MPEG decoder unit are provided in the subsequent stage of each reception system A and B. 7a, 7b If the frequencies fl and f2 of the local oscillation signals are set so that the tuner units 2a and 2b can receive different physical channels, the convenience to the above-described user can be improved. It can be set as the structure which can aim at an improvement.
  • the structure is strong while applying force, it is used for time interleaving to perform time-dinter leave processing to ensure anti-fading performance in the time-dinter leave part shown in Fig. 1 (b).
  • Memory called “symbol buffer”.
  • Two MEMs are required, and memory for time interleaving MEMa and MEMb is provided in each of OFDM demodulator units 6a and 6b as shown in Fig. 1 (c).
  • symbol buffer Two MEMs are required, and memory for time interleaving MEMa and MEMb is provided in each of OFDM demodulator units 6a and 6b as shown in Fig. 1 (c).
  • the interleaving units in the OFDM demodulating units 6a and 6b respectively convert the symbol data of individual segments included in one physical channel for each symbol period. Since it is stored and processed for time-dinter leave, it is necessary to prepare the memory for time interleaving MEMa and MEMb each with a storage capacity of 13 segments, which requires a huge storage capacity. As a result, there is a problem of increasing the size of the device and increasing the number of parts.
  • the present invention has been made in view of such a conventional problem, and is a receiving device having at least two receiving systems, which exhibits a diversity function capable of obtaining a good receiving state, and It is an object to provide a receiving apparatus capable of effectively using the components.
  • the invention according to claim 1 is a receiving apparatus having two receiving systems and OFDM demodulating means corresponding to each receiving system, and a baseband signal generated by the one receiving system, A baseband signal generated by the other receiving system, and a baseband signal generated by the other receiving system, combined with a baseband signal generated by the other receiving system and supplied via the switching means and supplied to the one OFDM demodulating means Switching means for exclusively switching to the adding means or the other OFDM demodulation means, and a storage capacity necessary for performing the time-interleaving process for one physical channel and partial reception segment.
  • the one and the other OFDM demodulating means are set to process time divergence.
  • the switching means generates a base generated by the other receiving system.
  • a band signal is switched and supplied to the adding means side, and the one OFDM demodulator performs time-interleave processing using the shared memory means as a work area, and different physical channels are used in the two receiving systems.
  • the switching means switches and supplies the baseband signal generated by the other reception system to the other OFDM demodulation means side, and the one and the other OFDM demodulation sections share the baseband signal. It is characterized in that the time diverging process is performed using the memory means as a shared work area.
  • FIG. 1 is a block diagram for outlining a configuration of a conventional receiving apparatus.
  • FIG. 2 is a block diagram showing the configuration of the receiving apparatus according to the embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of a receiving apparatus according to an embodiment.
  • FIG. 2 (a) is a block diagram showing the configuration of the receiving apparatus of this embodiment.
  • a receiving device 10 of the present embodiment is a receiving device that receives an OFDM digital broadcast, and includes an antenna switching unit 11 to which a plurality of diversity antennas ⁇ 1 to ⁇ are connected, 1 receiving system RXA, 2nd receiving system RXB, adder 15, switching unit 18, OFDM demodulating units 16a, 16b, MPEG decoder units 17a, 17b, and shared memory MEM! .
  • a demultiplexer is provided between the OFDM demodulator 16a and the MPEG decoder 17a, and a transport stream TSa (described later) reproduced by the OFDM demodulator 16a is separated into packets. It is configured to be supplied to the MPEG decoder 17a and to decode the encoded video and audio data in each packet. For convenience of explanation, it will be described later that is reproduced by the OFDM demodulator 16a.
  • the transport stream TSa is described as being decoded by the MPEG decoder unit 17a.
  • a demultiplexer is also provided between the OFDM demodulator 16b and the MPEG decoder 17b. Then, a transport stream TSb, which will be described later, reproduced by the OFDM demodulator 17b is separated into a bucket and supplied to the MPEG decoder 17b, and the encoded video and audio data in each packet are transmitted.
  • the MPEG decoder unit 17b decodes a transport stream TSb, which will be described later, reproduced by the OF DM demodulation unit 17b.
  • the expression that the MPEG decoder unit 17a decodes the transport stream TSa and the MP EG decoder unit 17b decodes the transport stream TSb is used. I will explain.
  • the first receiving system RXA includes a tuner unit 12a connected to the output terminal of the antenna switching unit 11, an analog-digital converter (ADC) 13a, and an FFT unit 14a.
  • the output end is connected to the OFDM demodulator 16a via the adder 15.
  • the second reception system RXB includes a tuner unit 12b connected to the output terminal of the antenna switching unit 11, an analog-digital converter (ADC) 13b, and an FFT unit 14b.
  • the FFT unit 14b Is connected to the adder 15, and the other output contact Y is connected to the OFDM demodulator 16b.
  • the antenna switching unit 11 searches for the antenna that can obtain the best reception state among the plurality of antennas ⁇ 1 to ⁇ , and switches and connects to the tuner units 12a and 12b.
  • the tuner unit 12a performs frequency conversion by mixing the RF reception signal from the antenna switching unit 11 (the RF reception signal that provides the best reception state) and the local signal of the channel frequency fl.
  • An intermediate frequency signal having a bandwidth corresponding to the physical channel corresponding to the channel frequency fl, that is, an intermediate frequency signal (IF signal) having a bandwidth of 13 segments is output.
  • the ADC 13a analog-digital converts the IF signal into a digital IF signal
  • the FFT unit 14a performs fast Fourier transform on the digital IF signal to generate and output a baseband signal Ba.
  • the tuner unit 12b performs frequency conversion by mixing the above-described RF reception signal that is supplied from the antenna switching unit 11 and obtains the best reception state, and the local oscillation signal having the channel frequency f2.
  • Intermediate frequency signal whose bandwidth is the physical channel corresponding to frequency f2, that is, an intermediate frequency signal (IF signal) having a bandwidth of 13 segments Is output.
  • the ADC 13b converts the IF signal into a digital IF signal
  • the FFT unit 14b performs a fast Fourier transform on the digital IF signal, thereby generating and outputting a baseband signal Bb.
  • an intermediate frequency signal of the same physical channel is output from the tuner units 12a and 12b, and further from the FFT units 14a and 14b. Also output baseband signals Ba and Bb of the same physical channel.
  • channel frequencies fl and f 2 are set to different frequencies
  • intermediate frequency signals of different physical channels are output from the tuner units 12a and 12b, and further from the FFT units 14a and 14b.
  • baseband signals Ba and Bb of different physical channels are output.
  • the switching unit 18 has output contacts X and Y that are exclusively switched. As described above, when the channel frequencies fl and f2 are set to the same frequency, the switching unit 18 is switched to the output contact X side to The baseband signal Bb output from the T unit 14b is transferred to the adder 15 and added (synthesized) with the baseband signal Ba output from the FFT unit 14a.
  • the switching unit 18 switches the baseband signal Bb output from the FFT unit 14b to OFDM by switching to the output contact Y side.
  • the input signal Sb is supplied to the demodulator 16b.
  • the adder 15 is supplied via the baseband signal Ba from the FFT unit 14a and the switching unit 18 from the FFT unit 14b.
  • Baseband signal Bb to be synthesized, and the synthesized baseband signal is supplied to OFDM demodulator 16a as input signal Sa.
  • the switching unit 18 does not transfer the baseband signal Bb of the FFT unit 14b to the adder 15.
  • the band signal Ba from the unit 14a is supplied as an input signal Sa to the OFDM modulation unit 16a.
  • Each of the OFDM demodulation units 16a and 16b has a configuration similar to that shown in Fig. 1 (b).
  • the OFDM demodulator units 16a and 16b are configured to perform operations for the time dintareve processing.
  • a shared memory MEM is provided as a business area.
  • This shared memory MEM is required to perform time-dating leave processing when receiving high-definition television (HDTV) broadcasts transmitted in 13 segments. It consists of channels (storage area for 13 segments) and storage area for 1 segment for partial reception. That is, as shown in FIG. 1 (c), the time interleaving memories MEMa and MEMb are not provided separately.
  • each OFDM demodulator unit 6a and 6b is provided with 13 segments when performing time-dinter leave processing.
  • Time interleaving memories MEMa and MEMb with the capacity to store the minute symbol data were provided separately (in other words, two).
  • the shared memory MEM provided in the OFDM demodulating units 16a and 16b of the present embodiment performs time-interleave processing when receiving an HDTV broadcast transmitted in 13 segments.
  • the first storage area (the storage area for the first segment to the storage for the 13th segment in Fig. 2 (a)) determined to have the minimum storage capacity required to store the 13-segment symbol data required for And a memory area (second memory area) for storing symbol data for one segment for partial reception, and the time interleaving memory MEMa, shown in Fig. 1 (c).
  • the memory capacity is almost half of the total memory capacity of MEMb.
  • the shared memory MEM is shared and used, thereby reducing the storage capacity of the shared memory MEM. It is.
  • the MPEG decoder units 17a and 17b receive the transport streams TSa and TSb reproduced by the OFDM demodulator units 16a and 16b, respectively, decode processing conforming to the MPEG-2 video system, etc., and MPEG- 2 By performing daycode processing conforming to the AAC audio system, etc., each station's service information (SI, video, audio, data, electronic program guide (EPG), etc.) ) Etc., and output as output signals Da and Db.
  • SI service information
  • EPG electronic program guide
  • the tuner units 12a and 12b are the same as those corresponding to the selected channel number (physical channel). Frequency conversion processing is performed based on the local frequency signals of channel frequencies fl and f2, and intermediate frequency signals (IF signals) with the same bandwidth are output to the ADCs 13a and 13b. The same baseband signals Ba and Bb are output from 14b. Further, the switching unit 18 is switched and connected to the output contact X side, and the OFDM demodulating unit 16b and the MPEG decoder unit 17b are stopped.
  • the adder 15 adds (synthesizes) the baseband signal Ba from the FFT unit 14a and the baseband signal Bb supplied from the FFT unit 14b via the switching unit 18, and the synthesized base
  • the band signal Sa is supplied to the OFDM demodulator 16a.
  • the OFDM demodulator 16a When the baseband signal Sa synthesized in this way is input to the OFDM demodulator 16a and supplied to the OFDM demodulator 16a, the OFDM demodulator 16a is similar to that described with reference to Fig. 1 (b). Normal OFDM demodulation processing is performed.
  • the OFDM frame decoding processing unit arranges the baseband signal Sa in the order of the segments, performs synchronous detection or delay detection on the arranged baseband signal, and then performs frequency and time dinterleaving.
  • the dingering is performed in predetermined bit units in the bit dingering unit.
  • the depuncture and Viterbi decoding unit performs error correction decoding processing using a convolutional code (inner code) to perform Neut Dintale in byte units.
  • energy despreading is performed, and error correction processing using a Reed-Solomon code (outer code) is performed to reproduce the transport stream TSa described above and supply it to the MPEG decoder 7a.
  • the OFDM demodulator 16a performs the above-described time-dinter leave process
  • the first memory area of the shared memory MEM is used as a work area and the time-dinter leave process is performed.
  • the OFDM demodulator 16a uses the memory capacity for the first segment of the shared memory MEM for the thirteenth segment. Perform time-dinter leave using the first storage area up to the area. Even if HDTV broadcast programs are transmitted in 13 segments that do not include simple videos, the time is determined using the first storage area from the first segment storage area to the thirteenth segment storage area of the shared memory MEM. Dinter leave processing.
  • the above-described transport stream TSa is decoded by the MPEG decoder 7a, and the contents of the broadcast program transmitted from the broadcasting station such as video, audio, data, electronic program plan (EPG), etc.
  • Each station service information (SI) etc. is reproduced and output as output signal Da.
  • the two tuner units 12a, 12b simultaneously receive broadcasts of the same physical channel, and by the simultaneous reception,
  • the two baseband signals Ba and Bb output from the FFT units 14a and 14b are combined by the adder 15 and demodulated by the power OFDM demodulation 16a, so that the CZN can be improved and improved.
  • Digital terrestrial broadcasting can be received in the reception state.
  • the switching unit 18 When the user selects the channel number of the desired broadcast station and selects to receive with the receiving system RXA, the switching unit 18 is switched to the output contact Y side, and the receiving system RXB is disconnected from the adder 15 and the OFDM demodulating unit 16b. Connected to the side.
  • the receiving systems RXA and RXB may receive different physical channels.
  • the local system signal of the channel frequency fl corresponding to the selected channel number is set in the tuner section 12a of the receiving system RXA, and the tuner section 12b of the receiving system RXB has a channel frequency different from the channel frequency fl.
  • f 2 local oscillator signal is set.
  • the receiving system RXB receives the service information (SI) of each station such as an electronic program guide (EPG) sent individually from each broadcast station, and provides a comprehensive power for use by the user.
  • SI service information
  • EPG electronic program guide
  • the channel frequency f 2 to be received by seeking the radio wave from each broadcast station is sequentially changed to match the channel frequency corresponding to the physical channel of each broadcast station.
  • the channel frequency f2 is set to a frequency for receiving the physical channel of the back program.
  • the tuner unit 12a corresponds to the channel number selected by the user.
  • the frequency conversion processing is performed based on the local frequency signal of the channel frequency fl to be output, and the intermediate frequency signal (IF signal) is output to the ADC 13a.
  • the baseband signal Ba is output from the FFT unit 14a, and the adder 15 is To the OFDM demodulator 16a.
  • the OFDM demodulator 16a performs the same OFDM demodulation processing as described with reference to Fig. 1 (b). And the transport stream TSa is reproduced.
  • the above-described OFDM demodulator 16a works on the first storage area of the shared memory MEM (from the first segment storage area to the thirteenth segment storage area) when performing the time ding interleaving process. In the area, processing of time dinter leave is performed.
  • Fig. 2 (b) HD DTV programs and standard television programs sent by B-layer and C-layer segments among 13 segments! ⁇ Don't do time diverting for simple videos sent by segment A.
  • the tuner unit 12b performs frequency conversion processing based on the local oscillation signal of the channel frequency f2, thereby generating an intermediate frequency signal (IF signal) to Further, the baseband signal Bb is output from the FFT unit 14b and supplied to the OFDM demodulating unit 16b via the switching unit 18.
  • the OFDM demodulator 16b performs the same OFDM demodulation as described with reference to Fig. 1 (b).
  • the transport stream TSb is processed and the transport stream TSb is decoded by the MPEG decoder 7b, and the video, audio, data, etc. that are the contents of the broadcast program sent from the broadcast station are output. Output as signal Db.
  • the OFDM demodulator 16b described above uses the partial reception storage area of the shared memory MEM (the second storage area in Fig. 2 (a)) as a work area when performing the time ding interleaving process. Use this to perform time-dinter leave processing. In other words, as shown in Fig. 2 (b), the time ding is performed on the simple video sent by the segment of the A layer among the 13 segments.
  • the OFDM demodulator 16a uses the first memory area of the shared memory MEM to perform the time ding interleaving process.
  • the OFDM demodulator 16b uses the partial reception storage area of the shared memory MEM as a work area to perform time-interleave processing.
  • the switching unit 18 is switched to the output contact X side, Two receiving systems A and B receive the same physical channel, and two baseband signals Ba and Bb are combined by adder 15 and then demodulated by OFDM demodulation 16a. It is possible to receive terrestrial digital broadcasting with better reception conditions.
  • the switching unit 18 switches to the output contact Y side, so that the baseband signal Ba output from the receiving system A is OFDM demodulated.
  • the unit 16a performs the OFDM demodulation processing
  • the OFDM demodulation unit 16b performs the OFDM demodulation processing on the baseband signal Bb output from the receiving system B
  • the OFDM demodulation units 16a and 16b store the shared memory MEM. Since shared processing is performed for each time divergence, different physical channels are utilized by effectively using the receiving systems A and B. Can be received, and the storage capacity of the shared memory MEM can be reduced.
  • the channel frequencies fl and f2 of the tuner units 12a and 12b are different from each other.
  • the electronic program guide (EPG) ) And other station service information (SI) is received to create a comprehensive electronic program guide to be used by the user, or when the user wants to record!
  • the receiving device 10 of the present embodiment can be applied to other usage patterns in which the channel frequencies f 1 and f 2 of the tuner units 12a and 12b are different from each other.
  • FIG. 3 is a block diagram showing the configuration of the receiving apparatus of the present embodiment, and the same or corresponding parts as those in FIG. 2 (a) are denoted by the same reference numerals.
  • this receiving apparatus 10 includes an antenna switching unit 11 to which a plurality of diversity antennas ANT1 to ANTn are connected, as in the receiving apparatus shown in FIG.
  • a system controller 19 is provided as a control means for controlling the receiving device 10 according to the above.
  • the system controller 19 controls the switching unit 18 with the switching control signal SW and also sets the OFDM demodulation units 16a and 16b with the control signals CNTa and CNTb. Control.
  • the system controller 19 instructs the tuner units 12a and 12b to use the same channel frequency fl and f2 corresponding to the selected channel number (physical channel), and at the same time switches the switching unit 18 with the switching control signal SW. Switch to the output contact X side, stop the operation of the OFDM demodulator 16b with the control signal CNTb, and instruct the OFDM demodulator 16a to perform normal OFDM demodulation processing with the control signal CNTa.
  • the receiving apparatus 10 is set in the “normal reception mode”.
  • the tuner units 12a and 12b perform frequency conversion processing based on the local oscillation signals of the same channel frequencies fl and f2, and the intermediate frequency signal (IF signal) having the same bandwidth is processed.
  • IF signal intermediate frequency signal
  • the adder 15 adds (synthesizes) the baseband signal Ba from the FFT unit 14a and the baseband signal Bb supplied from the FFT unit 14b via the switching unit 18, and the synthesized baseband signal. Sa is supplied to the OFDM demodulator 16a.
  • the OFDM demodulator 16a reproduces the transport stream TSa by performing normal OFDM demodulation processing on the above synthesized baseband signal Sa according to the instruction of the control signal CNTa, and the MPEG decoder 7a By decoding the transport stream TSa, each station's service information (SI) such as video, audio, data, electronic program guide (EPG), etc., which is the content of the broadcast program transmitted by the broadcasting station, is reproduced. And output as output signal Da.
  • SI service information
  • EPG electronic program guide
  • the OFDM demodulator 16a uses the first segment storage area force of the shared memory MEM up to the thirteenth segment storage area as a work area to perform time deinterleave processing.
  • the OFDM demodulator 16a Memory MEM's 1st segment storage area force Uses up to 13th segment storage area to perform time-interleave processing.
  • two tuner units 12a and 12b simultaneously receive broadcasts of the same physical channel, and are output from the FFT units 14a and 14b by the simultaneous reception.
  • CZN can be improved by combining the two baseband signals Ba and Bb with the power calculator 15 and then performing the demodulation processing with the OFDM demodulation 16a, and the output output from the MPEG decoder unit 17a.
  • the signal Da it is possible to view digital terrestrial broadcasting in a better reception state by playing video and audio on a monitor or speaker (not shown).
  • the system controller 19 performs the reception of the reception system RXA every predetermined period T during the normal reception mode in which the two tuner units 12a and 12b described above simultaneously receive broadcasts of the same physical channel.
  • the reception sensitivity (CNR) is detected by examining the level (amplitude) of the intermediate frequency signal (IF signal) output from the tuner 12a. If it is determined that the reception sensitivity is reduced based on the detection result, the reception operation in the normal reception mode is continued, while reception is performed under a high reception condition with a high reception sensitivity.
  • the switching unit 18 is switched to the output contact Y side by the switching control signal SW and at the same time the control signal CNTa is changed to the “switching mode”. Then, after instructing the OFDM demodulation units 16a and 16b by the CNTb, the channel frequency f2 of the tuner unit 12b that sequentially receives and receives the physical channel of each broadcasting station is changed.
  • the system controller 19 sets the switching mode in this way, control for receiving each station service information (SI) such as an electronic program guide (EPG) transmitted individually for each broadcasting station having a different physical channel is performed.
  • SI station service information
  • EPG electronic program guide
  • the OFDM demodulator 16a performs OFDM demodulation using the baseband signal Ba supplied to the reception system RXA as the input signal Sa, and the OFD M demodulator 16b is also supplied with the reception system RXB via the switching unit 18. OFDM demodulation using baseband signal Bb as input signal Sb.
  • the OFDM demodulator 16a performs the time-interleave processing by using the first segment storage area force of the shared memory MEM as the work area.
  • the OFDM demodulator 16b performs a time-interleave process using the partial reception storage area of the shared memory MEM as a work area.
  • the OFDM demodulator 16b is used for partial reception of the time divergence of the simple video sent by the segment of the A layer among the 13 segments in the physical channel for which the receiving system RXb is receiving a seek. This is done using the storage area.
  • the MPEG decoder unit 17b decodes the transport stream TSb reproduced by the OFDM demodulating unit 16b performing OFDM demodulation on the simple video of the A layer, so that each broadcasting station power can be individually transmitted.
  • Each station service information (SI) such as electronic program guide (EPG) is generated and output as an output signal Db, which is supplied to an electronic program guide creation unit (not shown) to create a comprehensive electronic program guide .
  • SI station service information
  • EPG electronic program guide
  • the system controller 19 checks the level (amplitude) of the intermediate frequency signal (IF signal) output from the tuner unit 12a of the receiving system RXA during the above-described switching mode to determine the reception sensitivity (CNR ) Are detected one by one, and when the reception state is judged to be deteriorated, the switching unit 18 is switched to the output contact X side by the switching control signal SW, and the channel frequency f2 of the tuner unit 12b is changed to the channel frequency fl of the tuner unit 12a. And the OFDM signals 16a and 16b are instructed to return to normal reception mode (simultaneous reception mode) by the control signals CNTa and CNTb.
  • CNR reception sensitivity
  • the system controller 19 receives and checks the level (amplitude) of the intermediate frequency signal (IF signal) output from the tuner unit 12a of the reception system RXA.
  • the sensitivity (CNR) is detected step by step and it is determined that a good reception state can be obtained, the mode is switched to the switching mode described above to return to the control for creating the electronic yarn number and table.
  • the same physical channel is received simultaneously by the receiving systems RXA and RXB, and every predetermined period T during the simultaneous reception, If the reception mode deteriorates during the switching mode reception operation to create the electronic program guide, and if the reception state deteriorates during the switching mode reception operation, the same physical system is used by the reception systems RX A and RXB to set a good reception state.
  • the ⁇ ⁇ process is repeated when switching to the reception operation in the switching mode for creating the electronic program guide.
  • the process for creating the latest electronic program guide can be performed in parallel while receiving the broadcast that the user or the like is watching in a favorable reception state.
  • the switching mode for creating the electronic program guide is switched to receive the physical channel of each broadcasting station by the receiving system RXb, so that the two receiving systems RXA and RXB can be used effectively.
  • one shared memory MEM is provided for the OFDM demodulator units 16a and 16b, and in the case of the above-described simultaneous reception (normal reception mode), the OFDM demodulator unit 16a uses the shared memory MEM to generate a time buffer.
  • the OFDM demodulator 16a uses the storage area up to the 13th segment storage area to save time. Since the OFDM demodulator 16b performs the time-interleaving process using the partial reception storage area, the memory capacity of the shared memory MEM for performing the time-interleaving process is performed. Can be greatly reduced. Therefore, it is possible to reduce the size of the receiving device 10 and reduce the number of parts.

Abstract

 2つの受信系統を有効活用し小型化が可能な受信装置を提供する。  ベースバンド信号Baを出力する受信系統RXAとベースバンド信号Bbを出力する受信系統RXBと加算器15と切替部18と、OFDM復調部16a,16bと、OFDM復調部16a,16bが時間デインターリーブの処理を行う際の作業領域として設けられる共有メモリMEMと備える。受信系統RXA,RXBで同一の物理チャンネルを受信する際には、切替部18がベースバンド信号Bbを加算器18側に供給してベースバンド信号Ba,Bbとを合成させ、OFDM復調部16bがその合成されたベースバンド信号Saに対して復調処理を行うと共に、共有メモリMEMを作業領域として時間デインターリーブの処理を行う。受信系統RXA,RXBが互いに異なる物理チャンネルを受信する際には、切替部18がベースバンド信号BbをOFDM復調部16b側に切り替えて供給し、OFDM復調部16a,16bが夫々のベースバンド信号Ba,Bbに対して復調処理を行うと共に、共有メモリMEMを共有の作業領域として時間デインターリーブの処理を行う。

Description

明 細 書
受信装置
技術分野
[0001] 本発明は、 OFDM方式のディジタル放送等を受信する受信装置に関する。
背景技術
[0002] 新時代の放送メディアとして、 BSディジタル放送、 110度 CSディジタル放送に続 ヽ て、地上ディジタル放送が開始され、特に、障害物の影響を受けやすい地上波を利 用する地上ディジタル放送では、フェージング等に対する劣化耐性に優れ、固定受 信のみならず移動受信においても多様なサービスを提供することが可能な伝送路符 号化方式として、 OFDM (Orthogonal Frequency Divisin Multiplexing)方式が採用さ れている。
[0003] また、我が国の地上ディジタル放送は、 ISDB-T (Integrated Services Digital Broad -casting for Terrestrial)方式と呼ばれている。そして、伝送路符号化方式として、 OF DM方式の一種である BST- OFDM (Band Segmented Transmission- OFDM)方式 が採用され、各物理チャンネルの伝送帯域 (6MHz)において、所定帯域幅 (約 430 kHz)を 1セグメントとして合計 13セグメントを同時に伝送することが可能であり、更に 、 1つのセグメント毎に異なる伝送パラメータで伝送路符号ィ匕し、劣化耐性の異なる 複数階層(最大 3階層)の階層伝送を行うことが可能となっている。これにより、例えば 、 1つの物理チャンネルの中で、固定受信向けと移動受信向けの同時放送 (サイマル 放送)等を行うことが可能であり、多様なサービスを提供できるようになつている。
[0004] 一方、地上ディジタル放送を受信する受信装置、特に移動体受信装置では、より良 好な受信状態の下で地上ディジタル放送を受信すベぐダイバーシチアンテナを備 えたものが知られている (特許文献 1参照)。
[0005] 図 1 (a)は、特許文献 1の図 1に記載されている受信装置と同様の構成を採用して いる、従来の一般的な受信装置の構成を表したブロック図であり、複数のダイバーシ チアンテナ ΑΤ1〜ΑΤηと、アンテナ切替部 1と、チューナ部 2a, 2bとアナログデイジ タル変^^ 3a, 3bと FFT部 4a, 4bと、加算器 5、 OFDM復調部 6、 MPEGデコーダ 部 7とを備え、チューナ部 2aとアナログディジタル変 3aと FFT部 4aとによって第 1の受信系統 A、チューナ部 2bとアナログディジタル変翻 3bと FFT部 4bとによって 第 2の受信系統 Bが構成されて 、る。
[0006] アンテナ切替部 1では、例えば最大の受信感度が得られるアンテナが探索され、チ ユーナ部 2a, 2bへの切替え接続が行われる。チューナ部 2a, 2bでは、ユーザ等から 指定されたチャンネル番号 (物理チャンネル)の放送を受信すベぐ同一周波数 flの 局発信号とアンテナ切替部 1を介して入力される受信信号とが混合され、周波数変 換された中間周波信号 (IF信号)が生成される。これらの IF信号は、アナログディジタ ル変^^ 3a, 3bでディジタル IF信号に変換され、更に FFT部 4a, 4bにおいて高速 フーリエ変換されることで、いわゆるベースバンド信号に変換される。これらのベース バンド信号は加算器 5で加算 (合成)され、その合成されたベースバンド信号 Saddが OFDM復調部 6で復調されることで、復調データとしてのトランスポートストリーム TS ( MPEG-2TS)となって MPEGデコーダ部 7に供給され、放送番組の映像や音声等 の信号にデコードされて出力される。なお、実際の回路では、 OFDM復調部 6と MP EGデコーダ部 7の間には、トランスポートストリーム TSをバケツトに分離して MPEG デコーダ部 7に供給するデマルチプレクサが設けられている力 説明の便宜上、省略 して説明した。
[0007] ここで、図 1 (b)を参照して、 OFDM復調部 6の基本機能を述べると、まず、 OFDM フレームデコード処理部が上述の加算されたベースバンド信号 Saddをセグメントの順 番に配列して出力し、その配列されたベースバンド信号を同期検波若しくは遅延検 波した後、周波数ディンターリーブと時間ディンターリーブを施し、続いて、デマツビ ング部で所定の変調方式 (QPSK、 16QAM、 64QAM)に準拠した復調処理を施 した後、ビットディンターリーブ部で所定ビット単位でのディンターリーブを施す。次に 、デパンクチヤ及びビタビ復号部で畳み込み符号(内符号)による誤り訂正復号処理 を施して、バイト単位でのバイトディンターリーブを行った後、エネルギー逆拡散を行 つて、更にリードソロモン符号 (外符号)による誤り訂正復号処理を施すことで、上述 のトランスポートストリーム TSを再生し、 MPEGデコーダ部 7に供給するようになって いる。 [0008] 力かる構成を有する従来のダイバーシチアンテナを備えた受信装置によれば、 2系 統のチューナ部 2a, 2bで同じ物理チャンネルの放送を同時受信し、その同時受信 によって FFT部 4a, 4bから出力される 2つのベースバンド信号を加算器 5で合成して から OFDM復調部 6で復調処理を行うことから、 CZNの向上を図ることができ、より 良好な受信状態で地上ディジタル放送を受信することが可能となっている。
[0009] 特許文献 1 :特開 2005— 136471号公報
発明の開示
発明が解決しょうとする課題
[0010] ところで、上記従来の受信装置では、別個の物理チャンネルの放送を受信すること が可能な 2つの受信系統 A, Bで同一の物理チャンネルの放送を受信し、 FFT部 4a , 4bの出力を加算器 5で合成して力も復調することとしている。このため、従来の受信 装置は、 2つの受信系統 A, Bを有しているにもかかわらず、 1つの物理チャンネルの 放送しか受信することができず、構成要素を有効に活用して 、な 、と 、う側面を有し ていた。
[0011] 例えば、ユーザの選局した放送を受信系統 Aで受信し、その受信中に受信系統 B で、各放送局から個別に送られてくる電子番組案内(Electronic Program Guide :EP G)等の各局サービス情報(Service Information: SI)を受信して、ユーザの利用に供 するための総合的な電子番組表を作成して記憶手段に予め保存する等の処理を行 えば、ユーザに対する利便性の向上を図ることが可能となる。しかし、上述の電子番 組案内 (EPG)等の各局サービス情報 (SI)は、放送局毎に自局のサービス情報とし て配信されることから、図 1 (a)に示した従来の受信装置のように、 2つの受信系統 A , Bで同一の 1つの物理チャンネルだけを受信する構成となっていると、受信系統 A でユーザの所望する放送を受信中に、他の放送局の電子番組案内(EPG)等の各 局サービス情報 (SI)を受信系統 Bで受信して、総合的な電子番組表を作成すること ができない。こうしたことから、従来の受信装置の構成では、構成要素を有効に活用 して!/、な 、と!/、う側面を有して!/、た。
[0012] そこで、 2つの受信系統 A, Bを有効活用するために、例えば図 1 (c)に例示するよ うに、各受信系統 A, Bの後段に OFDM復調部 6a, 6bと MPEGデコーダ部 7a, 7b を追加接続して、チューナ部 2a, 2bにおいて互いに異なる物理チャンネルを受信で きるように夫々の局発信号の周波数 fl, f2を設定することとすれば、上記例示したュ 一ザに対する利便性の向上を図ることが可能な構成とすることができる。
[0013] し力しながら、力かる構成とすると、図 1 (b)に示した時間ディンターリーブ部におい て耐フエージング性能を確保するための時間ディンターリーブ処理を行うための時間 インターリーブ用メモリ(「シンボルバッファ」と呼ばれている) MEMが 2系統分必要と なり、図 1 (c)に示すように OFDM復調部 6a, 6bの夫々に時間インターリーブ用メモ リ MEMa, MEMbが設けられることとなるため、膨大なメモリ容量が必要となり、例え ば装置の大型化、部品点数の増加等を招来することとなる。
[0014] つまり、図 1 (c)に示す構成によると、 OFDM復調部 6a, 6b内の夫々インターリー ブ部は、 1つの物理チャンネルに含まれる個々のセグメントのシンボルデータをシン ボル期間分ずつ記憶して、時間ディンターリーブの処理を行うことから、夫々 13セグ メント分の記憶容量を備えた時間インターリーブ用メモリ MEMa, MEMbを予め備え ておく必要があり、膨大な記憶容量が必要となって、装置の大型化、部品点数の増 加等を招来するという問題がある。
[0015] 本発明はこのような従来の問題に鑑みてなされたものであり、少なくとも 2つの受信 系統を有する受信装置であって、良好な受信状態の得られるダイバシティ機能を発 揮し、また、構成要素の有効活用を図ることが可能な受信装置を提供することを目的 とする。
課題を解決するための手段
[0016] 請求項 1に記載の発明は、 2つの受信系統と前記各受信系統に対応する OFDM 復調手段とを有する受信装置であって、前記一方の受信系統で生成されるベースバ ンド信号と、前記他方の受信系統で生成され切替手段を介して供給されるベースバ ンド信号とを合成して前記一方の OFDM復調手段に供給する加算手段と、前記他 方の受信系統で生成されるベースバンド信号を前記加算手段又は前記他方の OFD M復調手段に排他的に切り替えて供給する切替手段と、 1つの物理チャンネルと部 分受信用セグメントについて時間ディンターリーブの処理を行うのに必要な記憶容量 に設定され、前記一方及び他方の OFDM復調手段が時間ディンターリーブの処理 を行う際の作業領域として設けられる共有メモリ手段とを具備し、前記 2つの受信系 統で同一の物理チャンネルを受信する際には、前記切替手段が前記他方の受信系 統で生成されるベースバンド信号を前記加算手段側に切り替えて供給すると共に、 前記一方の OFDM復調部が前記共有メモリ手段を作業領域として時間ディンターリ ーブの処理を行 、、前記 2つの受信系統で互いに異なる物理チャンネルを受信する 際には、前記切替手段が前記他方の受信系統で生成されるベースバンド信号を前 記他方の OFDM復調手段側に切り替えて供給すると共に、前記一方及び他方の O FDM復調部が前記共有メモリ手段を共有の作業領域として時間ディンターリーブの 処理を行うことを特徴とする。
図面の簡単な説明
[0017] [図 1]従来の受信装置構成を概説するためのブロック図である。
[図 2]実施形態の受信装置の構成を表したブロック図である。
[図 3]実施例の受信装置の構成を表したブロック図である。
発明を実施するための最良の形態
[0018] 本発明の好適な実施形態について図 2を参照して説明する。図 2 (a)は本実施形 態の受信装置の構成を表したブロック図である。
[0019] 図 2 (a)において、本実施形態の受信装置 10は、 OFDM方式のディジタル放送を 受信する受信装置であり、複数のダイバーシチアンテナ ΑΝΤ1〜ΑΝΤηが接続され たアンテナ切替部 11と、第 1の受信系統 RXAと、第 2の受信系統 RXBと、加算器 15 、切替部 18、 OFDM復調部 16a, 16b、 MPEGデコーダ部 17a, 17bと、共有メモリ MEMを備えて構成されて!、る。
[0020] なお、実際の回路では、 OFDM復調部 16aと MPEGデコーダ部 17aの間にデマ ルチプレクサが設けられ、 OFDM復調部 16aで再生される後述のトランスポートストリ ーム TSaをパケットに分離して MPEGデコーダ部 17aに供給し、その各パケット内の 、符号化されている映像や音声のデータ等をデコードさせる構成となっているが、説 明の便宜上、 OFDM復調部 16aで再生される後述のトランスポートストリーム TSaを MPEGデコーダ部 17aがデコードするとして説明することとする。
[0021] また、 OFDM復調部 16bと MPEGデコーダ部 17bの間にもデマルチプレクサが設 けられ、 OFDM復調部 17bで再生される後述のトランスポートストリーム TSbをバケツ トに分離して MPEGデコーダ部 17bに供給し、その各パケット内の、符号化されてい る映像や音声のデータ等をデコードさせる構成となっている力 説明の便宜上、 OF DM復調部 17bで再生される後述のトランスポートストリーム TSbを MPEGデコーダ 部 17bがデコードするとして説明することとする。
また、後述の実施例の説明においても、同様に、説明の便宜上、トランスポートスト リーム TSaを MPEGデコーダ部 17aがデコードし、トランスポートストリーム TSbを MP EGデコーダ部 17bがデコードするという表現を用いて説明することとする。
[0022] 第 1の受信系統 RXAは、アンテナ切替部 11の出力端に接続されたチューナ部 12 aと、アナログディジタル変^^ (ADC) 13aと、 FFT部 14aを有し、 FFT部 14aの出 力端が加算器 15を介して OFDM復調部 16aに接続されている。
[0023] また、第 2の受信系統 RXBは、アンテナ切替部 11の出力端に接続されたチューナ 部 12bと、アナログディジタル変^^ (ADC) 13bと、 FFT部 14bを有し、 FFT部 14b の出力端に切替部 18の入力接点が接続され、切替部 18の一方の出力接点 Xが加 算器 15に接続され、他方の出力接点 Yが OFDM復調部 16bに接続されている。
[0024] アンテナ切替部 11は、複数のアンテナ ΑΝΤ1〜ΑΝΤηのうち、最も良好な受信状 態が得られるアンテナを探索して、チューナ部 12a, 12bに切替え接続する。
[0025] チューナ部 12aは、アンテナ切替部 11からの RF受信信号 (最も良好な受信状態が 得られる RF受信信号)とチャンネル周波数 flの局発信号とを混合することによって周 波数変換を行 ヽ、チャンネル周波数 flに対応する物理チャンネルを帯域幅とする中 間周波信号、すなわち 13セグメント分の帯域幅を有する中間周波信号 (IF信号)を 出力する。そして、その IF信号を ADC13aがデジタル IF信号にアナログディジタル 変換し、更に FFT部 14aがそのデジタル IF信号を高速フーリエ変換することにより、 ベースバンド信号 Baを生成して出力する。
[0026] チューナ部 12bは、アンテナ切替部 11から供給される上述の最も良好な受信状態 が得られる RF受信信号とチャンネル周波数 f2の局発信号とを混合することによって 周波数変換を行 ヽ、チャンネル周波数 f 2に対応する物理チャンネルを帯域幅とする 中間周波信号、すなわち 13セグメント分の帯域幅を有する中間周波信号 (IF信号) を出力する。そして、その IF信号を ADC13bがデジタル IF信号にアナログディジタ ル変換し、更に FFT部 14bがそのデジタル IF信号を高速フーリエ変換することにより 、ベースバンド信号 Bbを生成して出力する。
[0027] ここで、上述のチャンネル周波数 fl, f2が同一の周波数に設定されると、チューナ 部 12a, 12bからは、同じ物理チャンネルの中間周波信号が出力され、更に FFT部 1 4a, 14bからも同じ物理チャンネルのベースバンド信号 Ba, Bbが出力される。
[0028] 一方、チャンネル周波数 fl, f 2が互いに異なった周波数に設定されると、チューナ 部 12a, 12bからは、互いに異なった物理チャンネルの中間周波信号が出力され、 更に FFT部 14a, 14bからも互いに異なった物理チャンネルのベースバンド信号 Ba , Bbが出力される。
[0029] 切替部 18は、排他的に切り替える出力接点 X, Yを有し、上述したようにチャンネル 周波数 fl, f2が同一の周波数に設定されると、出力接点 X側に切り替わることで、 FF T部 14bから出力されるベースバンド信号 Bbを加算器 15へ転送して、 FFT部 14aの 出力であるベースバンド信号 Baと加算 (合成)させる。
[0030] 一方、チャンネル周波数 fl, f 2が互いに異なった周波数に設定されると、切替部 1 8は、出力接点 Y側に切り替わることで、 FFT部 14bから出力されるベースバンド信号 Bbを OFDM復調部 16bに対し入力信号 Sbとして供給する。
[0031] 加算器 15は、上述したようにチャンネル周波数 fl, f2が同一の周波数に設定され ると、 FFT部 14aからのベースバンド信号 Baと、 FFT部 14bから切替部 18を介して 供給されるベースバンド信号 Bbとを合成し、その合成したベースバンド信号を OFD M復調部 16aに対し入力信号 Saとして供給する。
[0032] 一方、チャンネル周波数 fl, f 2が互いに異なった周波数に設定されると、切替部 1 8が FFT部 14bのベースバンド信号 Bbを加算器 15へ転送しなくなるため、加算器 15 は FFT部 14aからのデースバンド信号 Baを OFDM変調部 16aに対し入力信号 Saと して供給する。
[0033] OFDM復調部 16a, 16bは、いずれも図 1 (b)に示したのと同様の構成を有してい る。
[0034] ただし、 OFDM復調部 16a, 16bには、時間ディンターリーブの処理を行う際の作 業領域として、共有メモリ MEMが設けられている。
[0035] この共有メモリ MEMは、 13セグメントで伝送されてくる高品質テレビジョン(High D efinition Television: HDTV)放送を受信する場合に、時間ディンターリーブの処理 を行うのに必要となる 1物理チャンネル分(13セグメント分の記憶領域)と、部分受信 用の 1セグメント分の記憶領域とを有して形成されている。つまり、図 1 (c)に示したよ うに 2つの時間インターリーブ用メモリ MEMa, MEMbが別々に設けられた構成とは なっていない。
[0036] つまり、ディジタル放送の ARIB規格では、放送局側が階層伝送を行う際、変調方 式やキャリア数、有効シンボル長等の伝送パラメータを変更することが可能となって おり、これらの伝送パラメータを示すモード 1、モード 2、モード 3のいずれかを選択す ることが可能となっている。そのため、モード 1、モード 2、モード 3のいずれのモードで 階層伝送されてきた物理チャンネルの放送を受信する場合でも、 OFDM復調部が 時間ディンターリーブの処理を行うためには、 1つの物理チャンネルで階層伝送され て来た 13セグメント分のシンボルデータを記憶するための記憶容量が必要である。 そのため、図 1 (c)に示したように 2つの OFDM復調部 6a, 6bが設けられた従来技術 では、各々の OFDM復調部 6a, 6bに、時間ディンターリーブの処理を行う際の 13 セグメント分のシンボルデータを記憶する容量を備えた時間インターリーブ用メモリ M EMa, MEMbが別々に(別言すれば、 2つ)設けられていた。
[0037] これに対し、本実施形態の OFDM復調部 16a, 16bに設けられて共有メモリ MEM は、 13セグメントで伝送されてくる HDTV放送を受信する場合に、時間ディンターリ ーブの処理を行うのに必要となる 13セグメント分のシンボルデータを記憶するための 必要最小限の記憶容量に決められた第 1記憶領域(図 2 (a)中、第 1セグメント用記 憶領域乃至第 13セグメント用記憶領域として示す)と、部分受信用の 1セグメント分の シンボルデータを記憶するための記憶領域 (第 2記憶領域)だけで形成されており、 図 1 (c)に示した時間インターリーブ用メモリ MEMa, MEMbの総記憶容量に比して ほぼ半分程度の記憶容量となって 、る。
[0038] そして、 OFDM復調部 16a, 16bが時間ディンターリーブの処理を行う際、共有メ モリ MEMを共有して利用することにより、共有メモリ MEMの記憶容量の低減が図ら れている。
[0039] MPEGデコーダ部 17a, 17bは、 OFDM復調部 16a, 16bの各々で再生されるトラ ンスポートストリーム TSa, TSbを入力し、 MPEG- 2ビデオ方式等に準拠したデコー ド処理と、 MPEG- 2 AACオーディオ方式等に準拠したデーコード処理を行うことで 、放送局側力 送出されてきた放送番組の内容である映像や音声、データ、電子番 組案内 (EPG)等の各局サービス情報 (SI)等を再生し、出力信号 Da, Dbとして出力 する。
[0040] 次に、力かる構成を有する本実施形態の受信装置の動作例について説明する。
[0041] <局発信号のチャンネル周波数 fl, f 2が同じ場合の動作 >
ユーザが所望の放送局のチャンネル番号を選択し、 2つの受信系統 RXA, RXBで 同時受信するように選択すると、チューナ部 12a, 12b力 その選択されたチャンネル 番号 (物理チャンネル)に対応する同一のチャンネル周波数 fl, f 2の局発信号に基 づいて周波数変換の処理を行って、同じ帯域幅の中間周波信号 (IF信号)を夫々 A DC13a, 13b側へ出力し、更に、 FFT部 14a, 14bから同じベースバンド信号 Ba, B bが出力される。更に、切替部 18が出力接点 X側に切替え接続し、 OFDM復調部 1 6bと MPEGデコーダ部 17bは動作停止の状態となる。
[0042] そして、加算器 15が、 FFT部 14aからのベースバンド信号 Baと、切替部 18を介し て FFT部 14bから供給されるベースバンド信号 Bbとを加算 (合成)し、その合成した ベースバンド信号 Saを OFDM復調部 16aに供給する。
[0043] このように合成されたベースバンド信号 Saが入力信号となって OFDM復調部 16a に供給されると、 OFDM復調部 16aでは、図 1 (b)を参照して説明したのと同様の通 常の OFDM復調処理が行われる。
[0044] つまり、 OFDMフレームデコード処理部がベースバンド信号 Saをセグメントの順番 に配列し、その配列されたベースバンド信号を同期検波若しくは遅延検波した後、周 波数ディンターリーブと時間ディンターリーブを施し、続いて、デマッピング部で所定 の変調方式に準拠した復調処理を施した後、ビットディンターリーブ部で所定ビット 単位でのディンターリーブを施す。次に、デパンクチヤ及びビタビ復号部で畳み込み 符号(内符号)による誤り訂正復号処理を施して、バイト単位でのノイトディンターリ ーブを行った後、エネルギー逆拡散を行って、更にリードソロモン符号 (外符号)によ る誤り訂正処理を施すことで、上述のトランスポートストリーム TSaを再生し、 MPEG デコーダ 7aに供給する。
[0045] ここで、 OFDM復調部 16aが上述の時間ディンターリーブの処理を行う際、共有メ モリ MEMの第 1記憶領域を作業領域に用いて、時間ディンターリーブの処理を行う
[0046] 例えば、図 2 (b)に示すように 13セグメントのうちの中央に位置する部分受信用のセ グメン HA階層のセグメント)によって送られてくる簡易動画と、残余の 12セグメント( B階層や C階層のセグメント)によって送られてくる HDTV放送の番組や標準テレビ ジョン番組を受信した場合には、 OFDM復調部 16aは、共有メモリ MEMの第 1セグ メント用記憶領域力 第 13セグメント用記憶領域までの第 1記憶領域を用いて時間 ディンターリーブの処理を行う。また、簡易動画を含まず 13セグメントで HDTV放送 の番組が伝送されてきた場合にも、共有メモリ MEMの第 1セグメント用記憶領域から 第 13セグメント用記憶領域までの第 1記憶領域を用いて時間ディンターリーブの処 理を行う。
[0047] そして、上述のトランスポートストリーム TSaを、 MPEGデコーダ 7aがデコードし、放 送局側から送出されてきた放送番組の内容である映像や音声、データ、電子番組案 内 (EPG)等の各局サービス情報 (SI)等を再生し、出力信号 Daとして出力する。
[0048] このように、チューナ部 12a, 12bのチャンネル周波数 fl, f 2が同じ場合には、 2系 統のチューナ部 12a, 12bで同じ物理チャンネルの放送を同時受信し、その同時受 信によって FFT部 14a, 14bから出力される 2つのベースバンド信号 Ba, Bbを加算 器 15で合成して力 OFDM復調 16aで復調処理を行うことから、 CZNの向上を図 ることができ、より良好な受信状態で地上ディジタル放送を受信することができる。
[0049] <局発信号のチャンネル周波数 fl, f 2が互いに異なる場合の動作 >
ユーザが所望の放送局のチャンネル番号を選択し、受信系統 RXAで受信するよう に選択すると、切替部 18が出力接点 Y側に切り替わり、受信系統 RXBが加算器 15 から切り離されて OFDM復調部 16b側に接続される。
[0050] このため、受信系統 RXA, RXBは互いに異なる物理チャンネルを受信することが 可能となり、受信系統 RXAのチューナ部 12aには、その選択されたチャンネル番号 に対応するチャンネル周波数 flの局発信号が設定され、受信系統 RXBのチューナ 部 12bは、チャンネル周波数 flとは異なるチャンネル周波数 f 2の局発信号が設定さ れる。
[0051] 例えば、受信系統 RXBで、各放送局から個別に送られてくる電子番組案内(EPG) 等の各局サービス情報 (SI)を受信して、ユーザの利用に供するための総合的な電 子番組表を作成する場合には、各放送局からの電波をシークして受信すベぐチヤ ンネル周波数 f 2は各放送局の物理チャンネルに対応するチャンネル周波数に合わ せて順次に変更され、また、例えばユーザがいわゆる裏番組を録画しょうとすると、チ ヤンネル周波数 f2は裏番組の物理チャンネルを受信するための周波数に設定される
[0052] こうしてチューナ部 12a, 12bに対する局発信号のチャンネル周波数 fl, f2が互い に異なった周波数に設定されると、受信系統 RXAでは、チューナ部 12aがユーザか ら選択されたチャンネル番号に対応するチャンネル周波数 flの局発信号に基づいて 周波数変換の処理を行って、中間周波信号 (IF信号)を ADC13aへ出力し、更に、 FFT部 14aからベースバンド信号 Baが出力され、加算器 15を介して OFDM復調部 16aに供給される。
[0053] そして、ベースバンド信号 Baが入力信号 Saとなって OFDM復調部 16aに供給され ると、 OFDM復調部 16aでは、図 1 (b)を参照して説明したのと同様の OFDM復調 処理が行われてトランスポートストリーム TSaが再生される。
[0054] ここで、上述の OFDM復調部 16aは、時間ディンターリーブの処理を行う際、共有 メモリ MEMの第 1記憶領域 (第 1セグメント用記憶領域から第 13セグメント用記憶領 域)を作業領域にして、時間ディンターリーブの処理を行う。つまり、図 2 (b)に示すよ うに 13セグメントのうちの B階層や C階層のセグメントによって送られてくる HDTV放 送番組や標準テレビジョン番組につ!、ての時間ディンターリーブを行!ヽ、 A階層のセ グメントによって送られてくる簡易動画についての時間ディンターリーブを行わない。
[0055] 一方、受信系統 RXBでは、チューナ部 12bがチャンネル周波数 f 2の局発信号に 基づいて周波数変換の処理を行うことにより、中間周波信号 (IF信号)を生成して A DC13bへ出力し、更に、 FFT部 14bからベースバンド信号 Bbが出力され、切替部 1 8を介して OFDM復調部 16bに供給される。
[0056] そして、ベースバンド信号 Bbが入力信号 Sbとなって OFDM復調部 16bに供給さ れると、 OFDM復調部 16bでは、図 1 (b)を参照して説明したのと同様の OFDM復 調処理が行われてトランスポートストリーム TSbが再生され、そのトランスポートストリ ーム TSbを MPEGデコーダ 7bがデコードし、放送局側から送出されてきた放送番組 の内容である映像や音声、データ等を出力信号 Dbとして出力する。
[0057] ここで、上述の OFDM復調部 16bは、時間ディンターリーブの処理を行う際、共有 メモリ MEMの部分受信用記憶領域 (図 2 (a)中の第 2記憶領域)を作業領域に用い て、時間ディンターリーブの処理を行う。つまり、図 2 (b)に示すように 13セグメントの うちの A階層のセグメントによって送られてくる簡易動画についての時間ディンターリ ーブを行う。
[0058] すなわち、局発信号のチャンネル周波数 fl, f2が互いに異なった周波数に設定さ れた場合には、 OFDM復調部 16aが共有メモリ MEMの第 1記憶領域に用いて時間 ディンターリーブの処理を行うのに対し、 OFDM復調部 16bは共有メモリ MEMの部 分受信用記憶領域を作業領域に用いて時間ディンターリーブの処理を行う。
[0059] 以上説明したように、本実施形態の受信装置 10によれば、チューナ部 12a, 12bの チャンネル周波数 fl, f2が同じ場合には、切替部 18が出力接点 X側に切り替わると 共に、 2つの受信系統 A, Bが同一の物理チャンネルを受信し、 2つのベースバンド 信号 Ba, Bbを加算器 15で合成してから OFDM復調 16aで復調処理を行うので、 C ZNの向上を図ることができ、より良好な受信状態で地上ディジタル放送を受信する ことができる。
[0060] 更に、チューナ部 12a, 12bのチャンネル周波数 fl, f2が互いに異なる場合には、 切替部 18が出力接点 Y側に切り替わることで、受信系統 Aから出力されるベースバ ンド信号 Baを OFDM復調部 16aが OFDM復調の処理を行うと共に、受信系統 Bか ら出力されるベースバンド信号 Bbを OFDM復調部 16bが OFDM復調の処理を行 い、更に、 OFDM復調部 16a, 16bが共有メモリ MEMを共有して夫々時間ディンタ 一リーブの処理を行うので、受信系統 A, Bを有効に活用して異なる物理チャンネル の放送を受信することができると共に、共有メモリ MEMの記憶容量を低減することが できる。
[0061] なお、以上の説明では、チューナ部 12a, 12bのチャンネル周波数 fl, f 2が互いに 異なる場合として、例えば、受信系統 RXBで、各放送局力 個別に送られてくる電子 番組案内 (EPG)等の各局サービス情報 (SI)を受信して、ユーザの利用に供するた めの総合的な電子番組表を作成したり、ユーザが!/ヽゎゆる裏番組を録画しょうとする 場合について説明した力 本実施形態の受信装置 10は、チューナ部 12a, 12bのチ ヤンネル周波数 f 1 , f 2を互 ヽに異ならせる他の使用形態にも適用可能である。
また、 1セグメントで簡易動画が放送されてくる場合の実施形態について説明した 力 将来、複数セグメントで移動体向け等の簡易動画が放送されることとなった場合 でも、共有メモリ MEMの一部記憶領域をその複数セグメントの放送を受信(時間デ インターリーブ)するために割り当てることで、メモリ容量の大幅な低減等を実現するこ とがでさる。
実施例
[0062] 次に、具体的な実施例について図 3を参照して説明する。図 3は、本実施例の受信 装置の構成を表したブロック図であり、図 2 (a)と同一又は相当する部分を同一符号 で示している。
[0063] 図 3において、この受信装置 10は、図 2 (a)に示した受信装置と同様に、複数のダ ィバーシチアンテナ ANT1〜ANTnが接続されたアンテナ切替部 11と、第 1の受信 系統 RXAと、第 2の受信系統 RXBと、加算器 15、切替部 18、 OFDM復調部 16a, 1 6b、 MPEGデコーダ部 17a, 17bと、共有メモリ MEMを有し、更にユーザ等からの 指示に従って受信装置 10を制御する制御手段としてのシステムコントローラ 19が設 けられている。
[0064] システムコントローラ 19は、チューナ部 12a, 12bのチャンネル周波数 fl, f2を設定 する他、切替制御信号 SWによって切替部 18を制御すると共に、制御信号 CNTa, CNTbによって OFDM復調部 16a, 16bを制御する。
[0065] 次に、力かる構成を有する本実施例の受信装置 10の動作について説明する。
[0066] ユーザが操作部(図示略)を操作して所望の放送局のチャンネル番号を選択すると 、システムコントローラ 19が、その選択されたチャンネル番号(物理チャンネル)に対 応する同一のチャンネル周波数 fl, f2をチューナ部 12a, 12bに対して指示すると共 に、切替制御信号 SWによって切替部 18を出力接点 X側へ切り替えさせ、更に、制 御信号 CNTbによって OFDM復調部 16bの動作を停止させ、制御信号 CNTaによ つて OFDM復調部 16aに通常の OFDM復調処理を行わせるための指示をする。
[0067] このようにシステムコントローラ 19によって所定の制御が行われると、受信装置 10は 「通常受信モード」となる。
[0068] そして、通常受信モードでは、チューナ部 12a, 12bが同一のチャンネル周波数 fl , f 2の局発信号に基づいて周波数変換の処理を行って、同じ帯域幅の中間周波信 号(IF信号)を夫々 ADC 13a, 13b側へ出力し、 FFT部 14a, 14bから同じベースバ ンド信号 Ba, Bbが出力される。更に、加算器 15が、 FFT部 14aからのベースバンド 信号 Baと、切替部 18を介して FFT部 14bから供給されるベースバンド信号 Bbとを加 算 (合成)し、その合成したベースバンド信号 Saを OFDM復調部 16aに供給する。そ して、 OFDM復調部 16aが、制御信号 CNTaの指示に従って、上述の合成されたべ ースバンド信号 Saに対して通常の OFDM復調処理を行うことでトランスポートストリー ム TSaを再生し、 MPEGデコーダ 7aがそのトランスポートストリーム TSaをデコードす ることにより、放送局側力 送出されてきた放送番組の内容である映像や音声、デー タ、電子番組案内 (EPG)等の各局サービス情報 (SI)等を再生し、出力信号 Daとし て出力する。
[0069] ここで、通常受信モードの場合、 OFDM復調部 16aが共有メモリ MEMの第 1セグ メント用記憶領域力 第 13セグメント用記憶領域までを作業領域に用いて、時間ディ ンターリーブの処理を行う。例えば、簡易動画を含まず 13セグメントで HDTV放送の 番組が伝送されてきた場合や、簡易動画を含んで 12セグメントで HDTV放送の番組 が伝送されてきた場合等では、 OFDM復調部 16aは、共有メモリ MEMの第 1セグメ ント用記憶領域力 第 13セグメント用記憶領域までを用いて時間ディンターリーブの 処理を行う。
[0070] このように、通常受信モードにおいて、 2系統のチューナ部 12a, 12bで同じ物理チ ヤンネルの放送を同時受信し、その同時受信によって FFT部 14a, 14bから出力され る 2つのベースバンド信号 Ba, Bbを力卩算器 15で合成してから OFDM復調 16aで復 調処理を行うことで、 CZNの向上を図ることができ、 MPEGデコーダ部 17aから出力 される出力信号 Daに基づ 、て、図示しな ヽモニターやスピーカで映像や音声を再生 させることで、より良好な受信状態で地上ディジタル放送を視聴させることができる。
[0071] 更に、システムコントローラ 19は、以上に説明した 2系統のチューナ部 12a, 12bで 同じ物理チャンネルの放送を同時受信させる通常受信モードの間に、所定の周期 T 毎に、受信系統 RXAのチューナ部 12aから出力される中間周波信号 (IF信号)のレ ベル (振幅)等を調べて受信感度 (CNR)を検出する。そして、その検出結果に基づ いて、受信感度が低下していると判断すると、通常受信モードによる受信動作を継続 し、一方、受信感度が高く良好な受信状態の下で受信が行われていると判断すると、 チューナ部 12aのチャンネル周波数 flをそのまま維持すると共に、切替制御信号 S Wによって切替部 18を出力接点 Y側へ切り替えさせると同時に、「切替モード」に変 更させたことを制御信号 CNTa, CNTbによって OFDM復調部 16a, 16bに指示し た後、各放送局の物理チャンネルを順次にシークして受信すベぐチューナ部 12b のチャンネル周波数 f 2を変更して 、く。
[0072] こうしてシステムコントローラ 19が切替モードを設定すると、物理チャンネルの異な る各放送局力 個別に送られてくる電子番組案内 (EPG)等の各局サービス情報 (SI )を受信するための制御を開始することとなり、 OFDM復調部 16aが受信系統 RXA 力 供給されるベースバンド信号 Baを入力信号 Saとして OFDM復調を行 、、 OFD M復調部 16bが受信系統 RXB力も切替部 18を介して供給されるベースバンド信号 Bbを入力信号 Sbとして OFDM復調を行う。
[0073] 更に、切替モードの場合には、 OFDM復調部 16aが共有メモリ MEMの第 1セグメ ント用記憶領域力 第 13セグメント用記憶領域領域を作業領域に用いて時間ディン ターリーブの処理を行うのに対し、 OFDM復調部 16bは、共有メモリ MEMの部分受 信用記憶領域を作業領域に用いて時間ディンターリーブの処理を行う。
[0074] つまり、 OFDM復調部 16bは、受信系統 RXbがシーク受信中の物理チャンネル内 の 13セグメントのうち、 A階層のセグメントによって送られてくる簡易動画についての 時間ディンターリーブを、部分受信用記憶領域を用いて行う。 [0075] そして、 OFDM復調部 16bが A階層の簡易動画について OFDM復調することによ つて再生されるトランスポートストリーム TSbを、 MPEGデコーダ部 17bがデコードす ることにより、各放送局力 個別に送られてくる電子番組案内 (EPG)等の各局サー ビス情報 (SI)を生成して出力信号 Dbとして出力し、図示しない電子番組表作成部 に供給して、総合的な電子番組表を作成させる。
[0076] 更に、システムコントローラ 19は、上述の切替モードの期間中に、受信系統 RXAの チューナ部 12aから出力される中間周波信号 (IF信号)のレベル (振幅)等を調べて 受信感度 (CNR)を逐一検出し、受信状態が劣化すると判断すると、切替制御信号 S Wによって切替部 18を出力接点 X側へ切り替えさせ、更に、チューナ部 12bのチヤ ンネル周波数 f2を、チューナ部 12aのチャンネル周波数 flと同一の周波数に戻すと 共に、制御信号 CNTa, CNTbによって OFDM復調部 16a, 16bに、通常受信モー ド(同時受信のモード)の動作に戻った旨の指示をする。
[0077] そして、システムコントローラ 19は、通常受信モードの動作に戻した後、受信系統 R XAのチューナ部 12aから出力される中間周波信号 (IF信号)のレベル (振幅)等を調 ベて受信感度 (CNR)を逐一検出し、良好な受信状態が得られると判断すると、上述 した切替モードに切り替えて、電子番糸且表を作成する為の制御に戻るようになつてい る。
[0078] このように、本実施例の受信装置 10によれば、基本的に受信系統 RXA, RXBによ つて同一の物理チャンネルを同時受信し、その同時受信中に所定の周期 T毎に、電 子番組表を作成するための切替モードの受信動作に切り替わり、更に、切替モード の受信動作中に受信状態が劣化すると、良好な受信状態を設定すべく受信系統 RX A, RXBによって同一の物理チャンネルを同時受信するように切り替わり、再び良好 な受信状態が得られるようになると、電子番組表を作成するための切替モードの受信 動作に切り替わると ヽぅ処理を繰り返す。
[0079] このため、ユーザ等が視聴中の放送を良好な受信状態の下で受信しながら、最新 の電子番組表を作成するための処理を並列的に行うことができる。
[0080] 更に、基本的に受信系統 RXA, RXBによって同一の物理チャンネルを同時受信 することでより良好な受信状態を確保することとし、一方、良好な受信状態が得られる 期間内に、電子番組表を作成するための切替モードに切り替わって、受信系統 RXb で各放送局の物理チャンネルを受信するので、 2つの受信系統 RXA, RXBを有効 活用することが可能である。
更に、 OFDM復調部 16a, 16bに対して 1つの共有メモリ MEMが設けられ、上述 の同時受信 (通常受信モード)の際には、 OFDM復調部 16aがその共有メモリ ME Mを用いて時間ディンターリーブの処理を行い、一方、上述の電子番組表を作成す る際の切替モードのときには、 OFDM復調部 16aが第 1セグメント用記憶領域力 第 13セグメント用記憶領域までの記憶領域を用いて時間ディンターリーブの処理を行 い、 OFDM復調部 16bが部分受信用記憶領域を用いて時間ディンターリーブの処 理を行うので、時間ディンターリーブの処理を行うための共有メモリ MEMの記憶容 量を大幅に低減することができる。このため、受信装置 10の装置の小型化、部品点 数の低減等を図ることが可能である。

Claims

請求の範囲
[1] 2つの受信系統と前記各受信系統に対応する OFDM復調手段とを有する受信装 置であって、
前記一方の受信系統で生成されるベースバンド信号と、前記他方の受信系統で生 成され切替手段を介して供給されるベースバンド信号とを合成して前記一方の OFD M復調手段に供給する加算手段と、
前記他方の受信系統で生成されるベースバンド信号を前記加算手段又は前記他 方の OFDM復調手段に排他的に切り替えて供給する切替手段と、
1つの物理チャンネルと部分受信用セグメントについて時間ディンターリーブの処 理を行うのに必要な記憶容量に設定され、前記一方又は他方の OFDM復調手段が 時間ディンターリーブの処理を行う際の作業領域として設けられる共有メモリ手段と を具備し、
前記 2つの受信系統で同一の物理チャンネルを受信する際には、前記切替手段が 前記他方の受信系統で生成されるベースバンド信号を前記加算手段側に切り替え て供給すると共に、前記一方の OFDM復調部が前記共有メモリ手段を作業領域とし て時間ディンターリーブの処理を行 、、
前記 2つの受信系統で互いに異なる物理チャンネルを受信する際には、前記切替 手段が前記他方の受信系統で生成されるベースバンド信号を前記他方の OFDM復 調手段側に切り替えて供給すると共に、前記一方及び他方の OFDM復調部が前記 共有メモリ手段を共有の作業領域として時間ディンターリーブの処理を行うこと、 を特徴とする受信装置。
[2] 前記 2つの受信系統で互いに異なる物理チャンネルを受信する際、前記他方の O FDM復調手段は、部分受信用のセグメントについての時間ディンターリーブの処理 を行こと、
を特徴とする受信装置。
[3] 前記 2つの受信系統で互いに異なる物理チャンネルを受信する際、前記他方の受 信系統は、物理チャンネルの異なる各放送局の放送を順次に変更して受信すること を特徴とする請求項 1又は 2に記載の受信装置。
[4] 更に、前記一方の受信系統における受信感度を検出し、前記受信感度が良好と判 断すると、前記 2つの受信系統で互いに異なる物理チャンネルを受信させると共に、 前記他方の受信系統に物理チャンネルの異なる各放送局の放送を順次に変更して 受信させる制御手段を有すること、
を特徴とする請求項 1〜3の何れか 1項に記載の受信装置。
[5] 前記制御手段は、前記他方の受信系統に物理チャンネルの異なる各放送局の放 送を順次に変更して受信させることにより、電子番組表を作成するための受信を行わ せること、
を特徴とする請求項 4に記載の受信装置。
PCT/JP2006/311408 2005-07-27 2006-06-07 受信装置 WO2007013224A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007528365A JP4650844B2 (ja) 2005-07-27 2006-06-07 受信装置
EP06757115A EP1909423A4 (en) 2005-07-27 2006-06-07 RECEIVER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005217760 2005-07-27
JP2005-217760 2005-07-27

Publications (1)

Publication Number Publication Date
WO2007013224A1 true WO2007013224A1 (ja) 2007-02-01

Family

ID=37683129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311408 WO2007013224A1 (ja) 2005-07-27 2006-06-07 受信装置

Country Status (3)

Country Link
EP (1) EP1909423A4 (ja)
JP (1) JP4650844B2 (ja)
WO (1) WO2007013224A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822185B1 (en) * 2013-07-01 2021-06-16 Nxp B.V. A distributed radio system
EP2822186B1 (en) * 2013-07-01 2015-09-23 Nxp B.V. A distributed radio system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201130A (ja) * 1999-01-04 2000-07-18 Jisedai Digital Television Hoso System Kenkyusho:Kk 二周波数網方式とその送信装置
JP2003110536A (ja) * 2001-09-26 2003-04-11 Sanyo Electric Co Ltd デジタル放送受信装置
JP2004242191A (ja) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd 受信方法および装置
JP2005136471A (ja) * 2003-10-28 2005-05-26 Casio Comput Co Ltd ダイバーシティを用いたofdm受信装置、ダイバーシティを用いたofdm受信回路及びダイバーシティを用いたofdm受信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141536A (en) * 1998-06-23 2000-10-31 Visteon Global Technologies, Inc. Diversity radio system with RDS
JP2001044951A (ja) * 1999-08-03 2001-02-16 Toshiba Corp 放送信号復調装置
DE10115053A1 (de) * 2001-03-27 2002-10-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Unterdrückung von Multipath-Störungen bei einem Empfänger für elektromagnetische Wellen
JP4227834B2 (ja) * 2003-05-13 2009-02-18 シャープ株式会社 デジタル受信装置
JP2005117226A (ja) * 2003-10-06 2005-04-28 Alpine Electronics Inc デジタル放送受信装置及びチャネル情報取得方法
JP2005159539A (ja) * 2003-11-21 2005-06-16 Pioneer Electronic Corp 受信機、受信方法、受信制御用プログラム及び記録媒体
JP4229816B2 (ja) * 2003-11-25 2009-02-25 シャープ株式会社 受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201130A (ja) * 1999-01-04 2000-07-18 Jisedai Digital Television Hoso System Kenkyusho:Kk 二周波数網方式とその送信装置
JP2003110536A (ja) * 2001-09-26 2003-04-11 Sanyo Electric Co Ltd デジタル放送受信装置
JP2004242191A (ja) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd 受信方法および装置
JP2005136471A (ja) * 2003-10-28 2005-05-26 Casio Comput Co Ltd ダイバーシティを用いたofdm受信装置、ダイバーシティを用いたofdm受信回路及びダイバーシティを用いたofdm受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1909423A4 *

Also Published As

Publication number Publication date
EP1909423A1 (en) 2008-04-09
JPWO2007013224A1 (ja) 2009-02-05
JP4650844B2 (ja) 2011-03-16
EP1909423A4 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US7916809B2 (en) Digital receiver apparatus
US8259852B2 (en) Method and system for satellite communication
US20070071121A1 (en) Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US8917674B2 (en) Method and system for content-aware mapping/error protection
US8027704B2 (en) Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
JP2006345493A (ja) デジタルマルチメディア放送システムにおける放送データ送受信装置及び方法
US20080092188A1 (en) Method And System For Integrated Cable Modem And DVB-H Receiver And/Or Transmitter
JP2006050613A (ja) デジタル放送受信機においての復調方式選択方法及びその方法を利用するデジタル放送受信機(Methodforselectingmodulationmethodofdigitalbroadcastreceiverandthereceiverthereof)
DK2339772T3 (en) DVB-T2 receiver, reception method and program
JP4329551B2 (ja) デジタル放送受信装置
JP2009021900A (ja) サイマル放送受信装置
JP4650844B2 (ja) 受信装置
JP2006222557A (ja) 受信装置
US8582479B2 (en) Method and system for transmitting and receiving control information in broadcasting communication system
JP3650334B2 (ja) デジタル放送受信装置
US9780959B2 (en) Methods and apparatus for power efficient broadcasting and communication systems
JP3550326B2 (ja) デジタル放送受信機
JP2010028186A (ja) ダイバーシティ受信装置、およびダイバーシティ受信方法
JP4727474B2 (ja) 遅延装置、遅延装置の制御方法、遅延装置の制御プログラムおよび遅延装置の制御プログラムを記録した記録媒体
KR100883101B1 (ko) 디지털 방송수신기의 채널 전환속도 향상 방법 및 장치
JP4703755B2 (ja) 放送受信装置およびその消費電力の低減方法
JP2024020167A (ja) 復調装置、受信装置および復調方法
JP5283466B2 (ja) 受信機
KR100814412B1 (ko) 디지털 멀티미디어 방송 장치 및 이를 이용한 방송 신호수신 방법
JP4257255B2 (ja) デジタル放送受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528365

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006757115

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE