WO2007013137A1 - 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法 - Google Patents

高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法 Download PDF

Info

Publication number
WO2007013137A1
WO2007013137A1 PCT/JP2005/013621 JP2005013621W WO2007013137A1 WO 2007013137 A1 WO2007013137 A1 WO 2007013137A1 JP 2005013621 W JP2005013621 W JP 2005013621W WO 2007013137 A1 WO2007013137 A1 WO 2007013137A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
sintered body
strength
less
mass
Prior art date
Application number
PCT/JP2005/013621
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Kuroda
Satoru Kukino
Tomohiro Fukaya
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to PCT/JP2005/013621 priority Critical patent/WO2007013137A1/ja
Priority to US10/580,152 priority patent/US7553350B2/en
Priority to EP05767185.1A priority patent/EP1775275B1/en
Priority to CA2549839A priority patent/CA2549839C/en
Publication of WO2007013137A1 publication Critical patent/WO2007013137A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/002Tools other than cutting tools

Definitions

  • the present invention relates to a high-strength and high-abrasion resistant diamond sintered body and a method for producing the same, and more specifically, excellent in wear resistance, fracture resistance, impact resistance and thermal conductivity, and a turning tool.
  • the present invention relates to cutting tools typified by frying tools and end mills, wear-resistant tools typified by reinforcing applications for drawing dies, sliding parts and clamping parts of machine tools, and electronic materials such as electrode parts.
  • diamond sintered bodies are used for cutting tools and wear-resistant tools.
  • diamond particles are sintered with a binder of an iron group metal such as Co (cobalt).
  • Co iron group metal
  • a diamond sintered body is disclosed. Since this diamond sintered body is less prone to cleavage due to cleavage, which is a defect of single crystal diamond, cutting tools for cutting non-ferrous metal materials such as A1 (aluminum) -Si (silicon) alloy, etc. Widely used as a material for
  • a diamond sintered body having an average particle diameter of 5 ⁇ m or more and 100 m or less is excellent in wear resistance.
  • Diamond particles with an average particle diameter of less than 5 / zm are excellent in fracture resistance.
  • diamond particles, which are the hard particles that make up a diamond sintered body have a finer and more uniform particle size and are firmly bonded with a high content (high density). As the sintered body, the diamond sintered body tends to have better fracture resistance.
  • Patent Document 1 As a method of strongly bonding diamond particles together, Patent Document 1 described above discloses that the diamond powder is dissolved and reprecipitated to form a direct bond called neck growth between the diamond powders.
  • Japanese Patent Publication No. 58-0332224 Japanese Patent Laid-Open No. 55-047363
  • Patent Document 3 includes A method is disclosed in which diamond particles are bonded to each other through a binding material having a strong force such as carbides of group 4a, 5a, or 6a metals.
  • the former sintered diamond produced by the method of generating neck growth between diamond particles using the Co or WC (tungsten carbide) Co alloy as a binder is the sintered diamond produced by the latter method.
  • a binder that is inferior in hardness and corrosion resistance to diamond particles has a strong skeleton, even after selective wear due to mechanical wear such as rubbing wear or chemical wear such as corrosion. The structure can be maintained. For this reason, the diamond sintered body produced by the latter method is excellent in fracture resistance and wear resistance.
  • the former Co or WC-Co alloy strength binder itself is not only when compared with diamond particles, but also when compared with the ceramic-based binder used in the latter method. Since it is inferior in hardness, it has the weakness of being inferior in mechanical rubbing wear.
  • a diamond sintered body in which a Co alloy is used as a binder and an ultrafine diamond particle having an average particle size of 1 ⁇ m or less is firmly baked while maintaining a homogeneous structure, and Co or If the content of diamond particles can be increased so that the content of the binder that also has WC-Co alloy strength can be reduced as much as possible, an ideal diamond sintered body with excellent fracture resistance and excellent wear resistance can be obtained. Obtainable.
  • Patent Document 1 Japanese Patent Publication No. 39-020483
  • Patent Document 2 Japanese Patent Publication No. 52-012126
  • Patent Document 3 Japanese Patent Publication No. 58-0332224 (Japanese Patent Laid-Open No. 55-047363)
  • Patent Document 4 Japanese Patent Publication No. 61 058432
  • Patent Document 5 Japanese Patent Publication No. 06-006769 (Japanese Patent Laid-Open No. 64-017836)
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-095743
  • the above-mentioned method arranges diamond particles with a low affinity V, hard particles, or does not have a catalyst (dissolution reprecipitation) ability for diamond particles.
  • a catalyst solution reprecipitation
  • the direct bonding between the diamond particles is physically and chemically prevented, and abnormal grain growth of the diamond particles is suppressed.
  • the skeleton formation by the neck growth between diamond particles becomes insufficient.
  • the original mechanical and thermal properties of diamond deteriorated, and the fracture resistance, impact resistance, wear resistance and thermal conductivity of the diamond sintered body were reduced.
  • an object of the present invention is to provide a diamond sintered body excellent in fracture resistance, impact resistance, wear resistance and thermal conductivity, and a method for producing the same.
  • Ti titanium
  • Zr zirconia
  • Hf hafnium
  • V vanadium
  • Nb niobium
  • Ta tantalum
  • Cr chromium
  • Mo mobdenum
  • the average particle size of some or all of at least one element selected from the group consisting of It is added so that it is present as carbides below m and the structure of carbide particles becomes discontinuous.
  • the fine carbide becomes a getter and further dissolves as a carbide in Co to some extent, so that the dissolution and precipitation of carbon alone in Co can be moderated.
  • the diamond particles tend to neck-grow, and a strong skeleton is formed.
  • the diamond content in the diamond sintered body increases.
  • the diamond particles are easily sintered by the element added to the binder. This eliminates the need for conventional tanta- stannoite addition, and improves the wear resistance of the diamond sintered body.
  • carbide particles are discontinuously present. That is, the carbides are not directly joined to each other and have a skeleton structure. This makes it difficult for the presence of carbides to hinder the bonding between diamond particles, so that the bonding between diamond particles can be strengthened.
  • the average particle diameter of 2 ⁇ m or less which is a force that cannot be obtained without abnormal grain growth by the conventional method, is used. Even in the case of fine-grained diamond sintered bodies containing 90% or more by volume of diamond, it was confirmed that the wear resistance and fracture resistance of the sintered body improved as the diamond particle content in the diamond sintered body increased. did.
  • defects in the sintered body and the strength such as fracture resistance and impact resistance of the sintered body have a close relationship.
  • Defects used here are diamond particles with a large diameter in the diamond sintered body, pools of binders such as solvent metals, voids, or bonds between diamond particles (neck growth). (Such as insidious or incompletely coupled areas). The smaller the defects in the diamond sintered body, the higher the strength of the sintered body.
  • the high-strength and high-abrasion resistant diamond sintered body of the present invention made based on these findings is a high-strength material comprising sintered diamond particles having an average particle size of 2 m or less and the remaining binder phase.
  • High wear-resistant diamond sintered body The content of sintered diamond particles in the diamond sintered body is 80 vol% or more and 98 vol% or less.
  • Titanium content in the binder phase is 5 wt% or more but less than 50 mass 0/0 0., zirconium, hafnium, vanadium, niobium, and at least one or more elements selected tantalum, chromium, and from even the group consisting of molybdenum force
  • the binder phase contains cobalt with a content of 50 mass% or more and less than 99.5 mass% in the binder phase.
  • Part or all of at least one element selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, and molybdenum force exists as carbide particles having an average particle size of 0.8 m or less. Yes.
  • the structure of carbide particles is discontinuous, and adjacent diamond particles are bonded to each other.
  • a diamond sintered body In such a diamond sintered body, at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo is added to the binder. . Therefore, even when the diameter of diamond particles used as a raw material is small, abnormal particle growth can be suppressed without adding hard particles. In addition, even when the diameter of diamond particles used as a raw material is increased, by adding the above elements to the binder, high strength and high resistance to excellent fracture resistance, wear resistance, impact resistance and thermal conductivity are achieved. A wearable diamond sintered body can be obtained. In addition, since the amount of the binder added is not as much as before, the wear resistance and the like are not deteriorated. [0020] The reason why the average particle diameter of the sintered diamond particles is 2 ⁇ m or less, preferably 0.8 m or less is to prevent the strength of the diamond sintered body from being reduced due to cleavage of the diamond particles. It is.
  • the reason why the content of sintered diamond particles is 80 vol% or more and less than 98 vol% is as follows. This is because if the content of sintered diamond particles is less than 80% by volume, the strength such as fracture resistance and impact resistance and the wear resistance decrease, and the content of diamond particles exceeds 98% by volume. This is because the effect of the binder cannot be obtained sufficiently and the neck gloss does not progress.
  • the content of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo is 0.5 mass% or more and less than 50 mass%. For the following reasons. This is because when the content of the element is less than 0.5% by weight, the effect of adding the element to suppress abnormal grain growth of the diamond particles becomes small. In addition, if the content of the above element exceeds 50% by weight, the effect of the binder having a catalytic ability to promote neck growth of diamond particles cannot be sufficiently obtained.
  • Ti metal as a starting material is most effective for improving both the bonding strength between diamond particles and suppressing the growth of abnormal grains.
  • Ti is not considered to have a catalytic action to promote neck growth between diamond particles.
  • Ti does not interfere with the catalytic action of Co, and Ti is dissolved when carbon dissolves in the binder. Estimated to be an excess carbon getter.
  • Ti reacts with diamond particles to form carbides, thereby improving the bonding force between the diamond particles and suppressing abnormal grain growth.
  • ultrafine Ti, Zr, Hf there is a method in which at least one element selected from the group consisting of V, Nb, Ta, Cr, and Mo, or ceramic powder that also has carbide power of the above elements is pulverized using a ball mill or the like and mixed with fine diamond powder. is there.
  • metal powder to make the carbide in the sintered body into a fine and discontinuous structure, it is necessary to use ultrafine particles as a starting material. Since ordinary metal materials have ductility, even fine particles with a diameter of several tens of meters cannot be obtained.
  • the sintered body of the present invention it is preferable to use metal particles made of Ti or the like obtained by using an atomizing method capable of obtaining ultrafine metal particles having a particle diameter of several ⁇ m or less.
  • the Co alloy is fine, and it is also preferable to use a nanometer-order ultrafine metal powder obtained by using a titanium redox method combining a reduction of titanium ions and an acid-acid reaction. .
  • the ultra-fine ceramic powder made of carbide of at least one element selected from the group consisting of ultra-fine Ti, Zr, Hf, V, Nb, Ta, Cr, Mo is also used in the present invention.
  • a metal powder rather than a ceramic powder
  • a stronger diamond bond can be obtained by reactive sintering with diamond particles. That is, it is preferable to use chemically active metal particles as a starting material instead of using thermally and chemically stable ceramic particles as a starting material. This is because, when metal powder is used, carbides are produced while reacting with diamond particles characterized by low sinterability, and a strong bond can be formed between diamond particles.
  • Ceramics composed of at least one element selected from the group consisting of ultrafine Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo or carbides thereof are homogeneously and discontinuously contained in the diamond sintered body.
  • a method for disposing the above there is a method in which the surface of the diamond particle powder is coated with the above-mentioned binder by a PVD (Physical Vapor Deposition) method or the like.
  • the binder is discontinuously coated on the diamond particles with a superfine metal of about 10 to: LOOnm, particularly about 10 to 200 nm, which is representative of Ti.
  • LOOnm particularly about 10 to 200 nm
  • At least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo is Ti. Yes, bonded phase It is preferable that the Ti content is 0.5% by mass or more and less than 20% by mass.
  • the high-strength and high-abrasion-resistant diamond sintered body of the present invention is a rectangular plane having a length of 6 mm, a width of 3 mm, and a thickness of 0.35 mm or more and 0.45 mm or less from the diamond sintered body. It is preferable that the bending strength is 2.65 GPa or more, measured on a 4 mm span condition using a specimen cut into a shape.
  • a rectangular planar shape having a length of 6 mm, a width of 3 mm, and a thickness of 0.4 to 0.45 mm from the diamond sintered body.
  • the test piece cut into a shape is sealed in a sealed container with 40 ml of diluted nitric acid with a concentration of 60% or more and less than 65% and hydrofluoric acid mixed with 10 ml of hydrofluoric acid with a concentration of 45-50%. It is preferable that the bending strength measured at 4mm span using this test piece is 1.86GPa or higher after dissolution treatment at 120 ° C or higher and lower than 150 ° C for 3 hours.
  • the (200) diffraction line of titanium carbide has an intensity ratio of 3% or more and less than 50% of the (111) diffraction line of diamond. Is preferred.
  • “intensity of X-ray diffraction line” refers to the height of a peak in an X-ray diffraction pattern using CuKo; line (characteristic X-ray generated by K shell of Cu).
  • the present inventors pay attention to oxygen and oxide adsorbed on the surface of diamond powder as a raw material for producing a diamond sintered body, and remove these to exist in the sintered body. It has been found that the defects to be reduced are reduced and the strength of the diamond sintered body is improved. Therefore, it is preferable that the proportion of oxygen in the diamond sintered body is 0.001% by mass or more and less than 0.15% by mass. The oxygen content of 0.001% or more and less than 0.15% by mass is not possible with the current technology to reduce the oxygen content to less than 0.001% by mass. It is also a force that makes the sintered body have the same strength as before.
  • the diamond sintered body of the present invention can suppress abnormal grain growth, it can be sintered under high pressure and temperature conditions.
  • pressure is 5.5 GPa and temperature is The temperature is generally around 1000 ° C, and the pressure is necessary and sufficient.
  • finer diamond particles can be sintered at a higher content by increasing the sintering conditions.
  • neck sintering can be promoted by sintering at higher pressure.
  • the high-strength and high-abrasion-resistant diamond sintered body of the present invention and the method for producing the same, it is possible to suppress grain growth without using hard particles with low affinity for diamond particles. Direct bonding between particles can be further strengthened. As a result, a high-strength, high-abrasion resistant diamond sintered body excellent in wear resistance, fracture resistance, impact resistance and thermal conductivity can be obtained.
  • FIG. 1 is a photomicrograph showing the structure of Sample 1E of Example 1.
  • FIG. 2 is a photomicrograph showing the structure of Sample 1E when the magnification is higher than that in FIG.
  • FIG. 3 is a photomicrograph showing the structure of Sample 1H of Example 1.
  • FIG. 4 is a photomicrograph showing the structure of Sample 1H when the magnification is higher than in FIG.
  • FIG. 5 is a photomicrograph showing the structure of a sintered diamond body with abnormally grown grains.
  • the average particle diameter of the sintered diamond powder and the sintering in the diamond sintered body The bending strength and flank wear were measured by changing the content of diamond particles and the composition of the binder. Specifically, using a special vacuum furnace that contains a rotary mixing device, the average particle size of the powder is 0.8 m under the conditions of a vacuum of 0.1 lPa, a furnace temperature of 300 ° C, and a rotation speed of 2000 rpm. The dry blending of the diamond powder and the mixed powder of Co metal and Ti metal as the binder was performed.
  • the mixed diamond powder and various binders are filled in a Ta (tantalum) container in contact with a WC—6% Co cemented carbide disk, and pressure is applied using a belt-type ultrahigh pressure device. Sintering was performed by holding for 10 minutes under conditions of 7 GPa to 7.2 GPa and a temperature of 1500 ° C to 1900 ° C. For the sample to which Ti was added, the microstructure of the sintered body surface with the final strength S was observed to determine whether the presence of Ti was continuous or discontinuous. Only the number of diamond grains that grew to 300 m or more during sintering was counted as abnormal grain growth.
  • Sample 1A and ID in which the binder composition was 100% by mass of Co and the average particle diameter of diamond powder was 0.8 ⁇ m, showed abnormal grain growth. A lot of particles were generated, 258 and 231 respectively. In addition, 1C, 1F, and peas with W added to the binder also had a slight but unusual grain growth of 11, 8, and 3, respectively. However, in the samples 18, IE, 1G, II, and 1N, which contain 0.5 mass% or more of Ti in the binder phase and the average particle diameter of the diamond particles is 0.8 111, almost no abnormal grain growth is observed. I helped. Therefore, in Rukoto content of the binder phase is contains Ti of 5 mass 0/0 or 0.5, it is found that abnormal grain growth can be suppressed.
  • the sample IE with the average particle diameter of the diamond powder of 0.8 ⁇ m was compared with the sample 1L with the average particle diameter of the diamond powder of 2.5 ⁇ m.
  • the mosquito is larger than the bending strength of sample 1L. From this, it can be seen that the fracture resistance is improved by setting the average particle size of the diamond particles to 2 m or less.
  • Samples 1B and 1C having a sintered diamond particle content of 78% by volume are compared with Samples 1E and 1F having a sintered diamond particle content of 90% by volume.
  • 1F and 1F have larger bending forces than Samples 1B and 1C.
  • Samples 1E and 1F have less flank wear than Samples 1B and 1C. From this, it can be seen that the fracture resistance and wear resistance are improved by setting the content of sintered diamond particles to 80% volume or more.
  • the binder phase contains 16.1% by mass of Ti, the sample IE sintered under the conditions of pressure 7.2 GPa, temperature 1900 ° C, and 25.6 masses in the binder phase. /. 1 ⁇ includes a pressure 6. 8 GPa, by comparing the sample IF sintered at a temperature of 1800 ° C, anti Orika sample 1E is larger instruments than the transverse rupture strength of the specimen 1F The flank wear of sample 1E is less than the flank wear of sample 1F.
  • the binder phase contains 46.2% by mass of Ti, sample 1G sintered under conditions of pressure 7.0 GPa and temperature 1900 ° C, and 40.
  • Samples IE and 1G of the present invention have higher bending strength and smaller flank wear than the conventional sample 1M.
  • sample 1K with an average particle size of 2 ⁇ m or more shows that no abnormal grain growth has occurred even if Ti is not added.
  • sample 1N with a diamond particle content of 99% by mass has a low bending strength and a large amount of flank wear, indicating that neck growth due to the binder is insufficient.
  • the bending strength and flank wear were measured by changing the average particle size of Ti contained in the binder. Specifically, a diamond powder having an average particle size of 0.8 m and a content of 90% by volume was mixed with a binder containing 75% by mass of Co and 25% by mass of Ti using a ball mill. . Ti having an average particle size of 0.1 / z m, 0.8 / z m, 0.9 / z m, and 1.0 m was used as Ti in the binder. After that, it was sintered by holding for 10 minutes under a pressure of 7.2 GPa and a temperature of 1900 ° C using a bell-type ultra-high pressure device. With respect to the obtained sintered body, the bending strength was measured in the same manner as in Example 1, and the amount of flank wear was measured by conducting a cutting test. The results are shown in Table 2.
  • the flank wear amounts of Samples 2A to 2D are approximately the same, and the flank wear amounts of Samples 2E to 2H are approximately the same.
  • the bending strength of samples 2A and 2B is larger than that of samples 2C and 2D
  • the bending strength of samples 2E and 2F is larger than that of samples 2G and 2H.
  • the number of diamond particles that grew to 300 m or more during sintering was measured.
  • no abnormal grain growth was observed in Samples 2A, 2B, 2E, and 2F.
  • specimens 2C, 2D, 2G, and 2H showed 3, 25, 4, and 25 abnormal grain growth, respectively. From this, it can be seen that when the average particle size of Ti in the binder is 0.8 m or less, there is an effect of suppressing abnormal grain growth, and further, the neck growth is not suppressed, and the fracture resistance is improved.
  • the bending force and flank wear were measured by changing the method of adding Ti to the binder.
  • a diamond powder having an average particle size of 0.8 m and a content of 90% by volume, and a binder containing 75% by mass of Co and 25% by mass of Ti mixed with a ball mill. was prepared as Sample 3A.
  • Sample 3B was prepared with the same composition and diamond powder coated with Ti using an RF (Radio Frequency) sputtering PVD apparatus.
  • CVD Chemical Vapor Deposition
  • Samples 3A to 3C were filled in a Ta (tantalum) container in contact with a WC-6% Co cemented carbide disk, and the pressure was 7.2 GPa using a belt-type ultrahigh pressure device. Sintering was performed by holding at a temperature of 1900 ° C for 10 minutes. With respect to the obtained sintered body, the bending strength was measured in the same manner as in Example 1, and the flank wear amount was measured by performing a cutting test. The results are shown in Table 3.
  • sample 3A with Ti added by mixing using a ball mill was applied to the CVD method.
  • Sample 3B coated with the RF sputtering PVD apparatus showed better performance in both bending strength and flank wear than sample 3C coated with Ti.
  • sample 3A showed a partial prayer of Co and Ti, and was not able to obtain a uniform structure.
  • the average particle size of Ti carbide was 1. O / zm, which was larger than that of the filler.
  • Samples 3B and 3C showed no uniform prayer of Co or Ti, and a uniform structure was obtained.
  • Sample 3C the entire surface of the diamond particles was uniformly coated, so the TiC structure was continuous and the neck growth between the diamond particles was suppressed only by abnormal grain growth.
  • Sample 3B was discontinuous because the Ti coating on the diamond particles was not uniform throughout but was discontinuous, and the average particle size of the Ti powder was maintained at about 0.1 ⁇ m. From this, it was found that the Ti addition method is preferably covering with an RF sputtering PVD apparatus.
  • the average particle size of the carbide is greater than 0.8 m, or if the structure of the carbide itself is continuous, it will cause a decrease in bending strength and an increase in flank wear. .
  • sample 4A was sample 4A
  • sample 3B was sample 4B
  • sample 3C was sample 4C.
  • the bending strength was measured under the condition of 4mm span. The results are shown in Table 4.
  • the ratio of Ti in the binder was changed, and the intensity ratio between the (200) diffraction line of TiC and the (111) diffraction line of diamond in the obtained sintered body was measured.
  • the diamond powder content is 78% by volume
  • the sintered material is 75% by mass Co and 25% by mass Ti
  • sample 5A the diamond powder content is 90% by volume
  • sample 5B which binding material and a Ti of 75 mass 0/0 of Co and 25 wt 0/0, the content of diamond powder 9 0 vol 0/0
  • the sintered material is 50 wt% Co And 5% of Ti containing 50% by mass of Ti!
  • the average particle size of the diamond powder was set to 0. in all samples.
  • the bending strength and the flank wear were measured by changing the amount of oxygen contained in the diamond sintered body.
  • diamond powder having an average particle diameter of 0.8 m and a content of 90% by volume was mixed with a binder containing 75% by mass of Co and 25% by mass of Ti.
  • reduction of the binder and partial graphitization from the surface of the diamond particles were performed by heat treatment in vacuum at temperatures of 1000 ° C., 1100 ° C., and 1250 ° C. for 60 minutes, respectively.
  • it was sintered by holding for 10 minutes under the conditions of a pressure of 7.2 GPa and a temperature of 1900 ° C using a belt-type ultrahigh pressure apparatus.
  • sample 6A the sample heat-treated at a temperature of 1 000 ° C was designated as sample 6A
  • sample 6B the sample heat-treated at a temperature of 1100 ° C was designated as sample 6B
  • sample 6C the sample heat-treated at a temperature of 1250 ° C was designated as sample 6C.
  • the amount of oxygen contained in these samples 6A to 6C was measured by ICP (Inductively Coupled Plasma) analysis. Further, the bending strength of samples 6A to 6C was measured in the same manner as in Example 1. The results are shown in Table 6.
  • the amount of oxygen contained in the diamond sintered body is changed by changing the heat treatment temperature before sintering.
  • the amount of oxygen falls below 0.15% by mass, the bending strength is significantly increased. It has improved. Therefore, by containing oxygen of less than 0.15 mass 0/0, chipping resistance Can be seen to improve.
  • FIG. 1 is a photomicrograph showing the structure of Sample 1E of Example 1.
  • Fig. 2 is a photomicrograph showing the structure of sample 1E when the magnification is higher than in Fig. 1.
  • FIG. 3 is a photomicrograph showing the structure of Sample 1H of Example 1.
  • FIG. 4 is a photomicrograph showing the structure of Sample 1H when the magnification is higher than that in FIG.
  • FIGS. 1 to 4 a plurality of small holes scattered throughout correspond to a portion where the binder phase was formed.
  • the volume of the binder phase in FIGS. 1 and 2 showing the diamond sintered body of the present invention is smaller than the volume of the binder phase in FIGS. 3 and 4 showing the conventional diamond sintered body. From this, it can be seen that the neck growth of diamond particles is inhibited by the binder phase in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明の高強度・高耐摩耗性ダイヤモンド焼結体は、平均粒径が2μm以下の焼結ダイヤモンド粒子と、残部の結合相とを備えた高強度・高耐摩耗性ダイヤモンド焼結体である。ダイヤモンド焼結体中の焼結ダイヤモンド粒子の含有率は80体積%以上98体積%以下である。結合相中の含有率が0.5質量%以上50質量%未満であるチタンなどからなる群より選ばれる少なくとも1種以上の元素と、結合相中の含有率が50質量%以上99.5質量%未満であるコバルトとを結合相は含んでいる。上記元素の一部または全部が平均粒径0.8μm以下の炭化物粒子として存在している。炭化物粒子の組織は不連続であり、隣り合うダイヤモンド粒子同士は互いに結合している。これにより、耐摩耗性、耐欠損性、耐衝撃性および熱伝導性に優れたダイヤモンド焼結体を得ることができる。

Description

明 細 書
高強度 ·高耐摩耗性ダイヤモンド焼結体およびその製造方法
技術分野
[0001] 本発明は、高強度 ·高耐摩耗性ダイヤモンド焼結体およびその製造方法に関し、よ り特定的には耐摩耗性、耐欠損性、耐衝撃性および熱伝導性に優れ、旋削工具、フ ライス工具およびエンドミルなどに代表される切削工具、線引きダイスや工作機械の 摺動部やクランプ部の補強用途に代表される耐摩耗工具、さらには電極部品などの 電子材料用途に関する。
背景技術
[0002] ダイヤモンドは地上に存在する物質の中で最も高硬度な物質であるので、ダイヤモ ンド焼結体は切削工具ゃ耐摩工具に使用されている。たとえば、特公昭 39— 0204 83号公報 (特許文献 1)ゃ特公昭 52— 012126号公報 (特許文献 2)には、ダイヤモ ンド粒子を Co (コバルト)などの鉄族金属の結合材で焼結したダイヤモンド焼結体が 開示されている。このダイヤモンド焼結体は、単結晶ダイヤモンドの欠点であるへき 開性による欠損が生じ難いため、 A1 (アルミニウム)—Si (シリコン)合金などの非鉄金 属材料の切削加工するための切削用工具等の素材として広く用いられている。
[0003] このようなダイヤモンド焼結体にぉ 、て、ダイヤモンド粒子の平均粒径が 5 μ m以上 100 m以下のものは、耐摩耗性に優れている。また、ダイヤモンド粒子の平均粒子 径が 5 /z m未満の微粒のものは、耐欠損性に優れている。一般のセラミクス焼結体と 同様に、ダイヤモンド焼結体を構成している硬質粒子であるダイヤモンド粒子が、より 細かぐ均質な粒子径からなり、高含有率 (高密度)で、強固に結合された焼結体ほ ど、ダイヤモンド焼結体は耐欠損性に優れる傾向にある。
[0004] ダイヤモンド粒子同士を強固に結合させる方法として、前述の特許文献 1には、ダ ィャモンド粉末を溶解再析出させ、ダイヤモンド粉末同士にネックグロースと呼ばれる 直接結合を形成させる Co, Fe (鉄),または Ni (ニッケル)などの鉄族金属に代表さ れる触媒能を有する溶媒金属からなる結合材を用いる方法が開示されて ヽる。また、 特公昭 58— 032224号公報 (特開昭 55— 047363号公報)(特許文献 3)には、周 期律表 4a、 5aまたは 6a族金属の炭化物など力もなる結合材を介して、ダイヤモンド 粒子同士を結合させる方法が開示されている。
[0005] 前者の Coあるいは WC (タングステンカーバイト) Co合金を結合材としてダイヤモ ンド粒子間にネックグロースを生成させる方法により製造されたダイヤモンド焼結体は 、後者の方法により製造されたダイヤモンド焼結体とは異なり、ダイヤモンド粒子よりも 硬度や耐食性に劣る結合材が、擦り摩耗などの機械的な摩耗や腐食などの化学的 な摩耗により選択的に摩耗した後も、ダイヤモンド粒子同士が強固な骨格構造を維 持することができる。このため、後者の方法により製造されたダイヤモンド焼結体は耐 欠損性および耐磨耗性に優れて 、る。
[0006] しかしながら、前者の Coあるいは WC— Co合金力 なる結合材自体は、ダイヤモン ド粒子と比較した場合にはもちろんのこと、後者の方法に使用されているセラミクス系 結合材と比較しても硬度が劣るため、機械的こすり摩耗に劣るという弱点を持ち合わ せている。
[0007] そこで、 Co合金を結合材として平均粒径が 1 μ m以下の超微粒子ダイヤモンド粒 子同士を均質な組織を維持したまま強固に焼き固めたダイヤモンド焼結体であって、 かつ Coあるいは WC— Co合金力もなる結合材の含有量を極力低減できるようダイヤ モンド粒子の含有率を高めることができれば、極めて耐欠損性に優れ、耐摩耗性に ついても優れた理想のダイヤモンド焼結体を得ることができる。
[0008] ところが、 1 μ m以下の超微粒ダイヤモンド粒子と Coある!/、は WC (タングステン力 一バイト) Coなどの鉄族金属を出発原料として焼結を行なうと、超微粒ダイヤモン ド粒子が非常に活性に富んでいるため、焼結時の温度および圧力条件を厳密に制 御しなければダイヤモンド粒子の異常な粒成長が頻繁に起こりやすくなる。また、ネッ タグロースの促進に重要な高温条件にすると、 2 m以下のダイヤモンド粒子を出発 原料として用いた場合には、異常粒成長は不可避であり、異常粒成長部を有する焼 結体は EDM (Electrical Discharge Machining)による切断が不可能になる。ま た、欠陥の生成によりダイヤモンドの機械的強度も低下する。そのため、粒径が 1 m以下でかつ均質な組織を有するダイヤモンド焼結体を歩留まりよく得るのは困難で ある。 [0009] そこで、ダイヤモンド粒子の異常な粒成長を抑制する手法として、ダイヤモンドに近 V、硬度を有する WC, cBN (立方晶窒化ホウ素)、 SiC (炭化ケィ素)などの硬質粒子 をダイヤモンド粒子の粒界に配置することによって異常粒成長を制御する手法が知 られている。このような手法は、たとえば特公昭 61— 058432号公報 (特許文献 4)、 特公平 06— 006769号公報 (特開昭 64— 017836号公報)(特許文献 5)、および 特開 2003— 095743号公報 (特許文献 6)などに開示されて 、る。
特許文献 1:特公昭 39— 020483号公報
特許文献 2:特公昭 52— 012126号公報
特許文献 3 :特公昭 58— 032224号公報 (特開昭 55— 047363号公報) 特許文献 4:特公昭 61 058432号公報
特許文献 5:特公平 06— 006769号公報 (特開昭 64— 017836号公報) 特許文献 6:特開 2003— 095743号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、上記手法は、ダイヤモンド粒子の間にダイヤモンド粒子と親和性の低 V、硬質粒子を配置したり、ダイヤモンド粒子に対する触媒 (溶解再析出)能を有しな V、結合材でダイヤモンド粒子の表面全体を被覆したりすることにより、ダイヤモンド粒 子間の直接結合を物理的かつ化学的に妨げ、ダイヤモンド粒子の異常粒成長を抑 制している。このため、ダイヤモンド粒子同士のネックグロースによる骨格形成が不十 分となる。その結果、ダイヤモンド本来の機械的特性及び熱的特性が劣化し、ダイヤ モンド焼結体の耐欠損性、耐衝撃性、耐摩耗性および熱伝導性が低下するという問 題があった。
[0011] したがって、本発明の目的は、耐欠損性、耐衝撃性、耐摩耗性および熱伝導性に 優れたダイヤモンド焼結体およびその製造方法を提供することを目的とする。
課題を解決するための手段
[0012] 本発明者らは、ダイヤモンド焼結体の耐欠損性ゃ耐摩耗性等を向上させるために 鋭意検討した結果、ダイヤモンド粒子同士の直接接合をより強固なものとすること〖こ より、ダイヤモンド焼結体の耐欠損性ゃ耐衝撃性などの強度、耐摩耗性および熱伝 導性を向上させることが可能であることを見出した。そこで、従来用いられていた硬質 粒子ではなく、 Coある ヽは WC - Co合金からなる結合材と同様にダイヤモンド粒子 に対する触媒 (溶解再析出)作用を有しつつも、結合材中へのダイヤモンド粒子の過 度の溶解を抑制する新しい結合材を用いることにより、異常粒成長を抑制する方法 について検討した。
[0013] その結果、表面積の極めて大きくなる微粒ダイヤモンド粒子を出発原料に用いると 、焼結時には、結合材としての Coにダイヤモンドが急激かつ大量に溶解し、瞬時に 過飽和に達した結合材中の炭素が、熱力学的に安定なダイヤモンドとして析出し、ダ ィャモンド粒子の異常粒成長が起こることが分力つた。このような異常粒成長を防ぐ ために、結合材としての Coに、含有率が 0. 5質量%以上 50質量%未満である Ti (チ タン), Zr (ジルコ-ァ), Hf (ハフニウム), V (バナジウム), Nb (ニオブ), Ta (タンタ ル), Cr (クロム), Mo (モリブデン)力 なる群より選ばれる少なくとも 1種以上の元素 の一部又は全部が平均粒径 0. 8 m以下の炭化物として存在し、かつ炭化物粒子 の組織が不連続となるように添加される。これにより、微粒炭化物がゲッターとなり、さ らに Co中にある程度炭化物としても固溶するため、 Co中への炭素単体の溶解、析 出を緩やかにすることができる。また、上記元素が連続しないように制御することによ り、ダイヤモンド粒子同士がネックグロースしやすくなり、強固な骨格が形成される。ま た、結合材の添加量が少なぐ硬質粒子を添加する必要がないため、ダイヤモンド焼 結体中のダイヤモンドの含有率が増大する。
[0014] また、粗粒のダイヤモンド粉末を使用した焼結体では、結合材中に添加した上記元 素により、ダイヤモンド粒子が焼結しやすくなる。したがって、従来のようなタンダステ ンカーノ《イトの添カ卩が不要となり、ダイヤモンド焼結体の耐摩耗性を向上させることが できる。
[0015] なお、本発明のダイヤモンド焼結体では、炭化物の粒子同士が不連続に存在して いる。すなわち、炭化物の各々が互いに直接接合して骨格構造を有してはいない。 これにより、炭化物の存在がダイヤモンド粒子同士の結合の障害になりにくくなるの で、ダイヤモンド粒子同士の結合を強めることができる。
[0016] また、従来の手法では異常粒成長なしに得ることのできな力つた平均粒径 2 μ m以 下で 90体積%以上のダイヤモンドを含有する微粒ダイヤモンド焼結体においても、 ダイヤモンド焼結体中のダイヤモンド粒子の含有量が大きいほど焼結体の耐摩耗性 および耐欠損性が向上することを確認した。
[0017] また、焼結体中の欠陥の大きさと焼結体の耐欠損性、耐衝撃性などの強度が密接 な関係を有することを見出した。ここでいう欠陥とは、ダイヤモンド焼結体中の径が著 しく大きいダイヤモンド粒子、溶媒金属などの結合材のプール、空隙、またはダイヤ モンド粒子同士の結合 (ネックグロース)が十分でな ヽ (結合して ヽな 、または結合が 不完全である)領域などを 、う。ダイヤモンド焼結体中の欠陥が小さ 、ほど焼結体の 強度は上昇する。
[0018] これらの知見によりなされた本発明の高強度 ·高耐摩耗性ダイヤモンド焼結体は、 平均粒径が 2 m以下の焼結ダイヤモンド粒子と、残部の結合相とを備えた高強度 · 高耐摩耗性ダイヤモンド焼結体である。ダイヤモンド焼結体中の焼結ダイヤモンド粒 子の含有率は 80体積%以上 98体積%以下である。結合相中の含有率が 0. 5質量 %以上 50質量0 /0未満であるチタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、 タンタル、クロム、およびモリブデン力もなる群より選ばれる少なくとも 1種以上の元素 と、結合相中の含有率が 50質量%以上 99. 5質量%未満であるコバルトとを結合相 は含んでいる。チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロ ム、およびモリブデン力もなる群より選ばれる少なくとも 1種以上の元素の一部または 全部が平均粒径 0. 8 m以下の炭化物粒子として存在している。炭化物粒子の組 織は不連続であり、隣り合うダイヤモンド粒子同士は互いに結合している。
[0019] このようなダイヤモンド焼結体においては、結合材中に、 Ti, Zr, Hf, V, Nb, Ta, Cr, Moからなる群より選ばれる少なくとも 1種以上の元素が添加されている。そのた め、原料として用いるダイヤモンド粒子の径が小さい場合にも、硬質粒子を添加しな くても粒子の異常成長を抑制できる。また、原料として用いるダイヤモンド粒子の径が 大きくなつた場合でも、結合材に上記元素を添加することにより、耐欠損性、耐摩耗 性、耐衝撃性および熱伝導性に優れた高強度 ·高耐摩耗性ダイヤモンド焼結体を得 ることができる。また、結合材の添加量は従来より多くなぐダイヤモンドの含有量も従 来より小さくないため、これにより耐摩耗性等が低下することがない。 [0020] 焼結ダイヤモンド粒子の平均粒径を 2 μ m以下、好ましくは 0. 8 m以下としたの は、ダイヤモンド粒子のへき開などにより、ダイヤモンド焼結体の強度が低下すること を抑止するためである。
[0021] 焼結ダイヤモンド粒子の含有率を 80体積%以上 98体積%未満としたのは、以下 の理由による。焼結ダイヤモンド粒子の含有率が 80体積%未満では、耐欠損性およ び耐衝撃性などの強度と、耐摩耗性が低下するためであり、また、ダイヤモンド粒子 の含有率を 98体積%以上とすると、結合材の効果が十分に得られず、ネックグロ一 スが進展しな 、ためである。
[0022] Ti, Zr, Hf, V, Nb, Ta, Cr, Moからなる群より選ばれる少なくとも 1種以上の元 素の含有量を 0. 5質量%以上 50質量%未満としたのは、以下の理由による。上記 元素の含有量が 0. 5重量%未満では、ダイヤモンド粒子の異常な粒成長を抑止す るという上記元素を添加する効果が小さくなるからである。また、上記元素の含有量 が 50重量%を超えるとダイヤモンド粒子のネックグロースを促進するという触媒能を 有する結合材の効果が十分得られな ヽからである。
[0023] 本発明では、 Ti金属を出発材料として用いるのが、ダイヤモンド粒子同士の結合力 向上と、異常粒成長の抑制との両立に最も効果的である。
[0024] 本来 Tiは、ダイヤモンド粒子同士のネックグロースを促進する触媒作用を有すると されていない。しかし、本発明では、ネックグロースの触媒能を有する Co結合材中に Tiを適量添加することにより、 Tiが Coの触媒作用を阻害せずに、炭素が結合材中に 溶解する際に Tiが過剰な炭素のゲッターとなると推定している。また、 Tiがダイヤモン ド粒子と反応して炭化物となることにより、上記のダイヤモンド粒子同士の結合力向 上と、異常粒成長の抑制を達成できるものと推定している。
[0025] ここで、 W (タングステン)についても、 Tiと同様に若干の異常粒成長を抑制する効 果が見られたが、ダイヤモンド粒子径が 1 μ m以下になると、異常粒成長の効果がほ とんど見られなくなった。また、 Wを Tiの替わりに添加すると、ダイヤモンド焼結体中 で Wは WCとして存在するので、 A1 (アルミニウム)金属の切削をした場合には、ダイ ャモンド焼結体の WCに A1が選択的に溶着しやすくなるという欠点も見つ力つた。
[0026] 本発明のダイヤモンド焼結体の具体的な製造方法としては、超微粒の Ti, Zr, Hf, V, Nb, Ta, Cr, Moからなる群より選ばれる少なくとも 1種以上の元素、もしくは上記 元素の炭化物力もなるセラミクス粉末を、ボールミルなどを用いて粉砕し、微粒ダイヤ モンド粉末と混合する方法がある。その際、金属粉末を使用して焼結体中の炭化物 を微粒かつ不連続な存在形態である組織とするためには、超微粒子を出発原料とす る必要がある。通常の金属材料は延性があるために、微粒のものでも数 10 mの粒 径のものし力得ることができない。このため、焼結後に結合材のプールが形成されや すぐこの部分が欠陥となる。そこで、本発明の焼結体を得るためには、粒子径が数 μ m以下の超微粒金属粒子を得られるアトマイズ法を用いて得られた Tiなどよりなる 金属粒子を使用することが好ましい。 Co合金などについても、同様に微粒であること が好ましく、チタンイオンの還元および酸ィ匕反応を組み合わせたチタンレドックス法を 用いて得られたナノメートルオーダーの超微粒金属粉末を用いることも好ま 、。
[0027] 超微粒の Ti, Zr, Hf, V, Nb, Ta, Cr, Moからなる群より選ばれる少なくとも 1種 以上の元素の炭化物からなる超微粒のセラミクス粉末を用いても本発明の焼結体が 得られるが、セラミクス粉末よりも金属粉末を用いた場合の方が、ダイヤモンド粒子と の反応焼結により一層強固なダイヤモンド結合が得られる。すなわち、熱的化学的に 安定なセラミクス粒子を出発原料とせずに、化学的に活性な金属粒子を出発原料と した方が好ましい。これは、金属粉末を用いた場合の方が、難焼結性を特徴とするダ ィャモンド粒子と反応しながら炭化物を生成し、ダイヤモンド粒子との間に強固な結 合が形成できるからである。
[0028] 超微粒の Ti, Zr, Hf, V, Nb, Ta, Cr, Moからなる群より選ばれる少なくとも 1種 以上の元素あるいはその炭化物よりなるセラミクスを均質かつ不連続にダイヤモンド 焼結体中に配置する理想的な方法として、ダイヤモンド粒子粉末の表面に PVD (Ph ysical Vapor Deposition)法などにより上記結合材を被覆する方法がある。特に スパッタ法を用いると、ダイヤモンド粒子上に Tiを代表とする 10〜: LOOnm程度の、特 に 10〜200nm程度の超微粒金属によって結合材が不連続に被覆され、特に耐欠 損性および耐摩耗性などに優れたダイヤモンド焼結体とすることができる。
[0029] 本発明の高強度'高耐摩耗性ダイヤモンド焼結体においては、 Ti, Zr, Hf, V, Nb , Ta, Cr, Moからなる群より選ばれる少なくとも 1種以上の元素は Tiであり、結合相 中の Tiの含有率が 0. 5質量%以上 20質量%未満であることが好ましい。
[0030] 本発明の高強度 ·高耐摩耗性ダイヤモンド焼結体にぉ 、ては、ダイヤモンド焼結体 から、長さ 6mm、幅 3mm、厚さ 0. 35mm以上 0. 45mm以下の長方形の平面形状 に切り出した試験片を用いて 4mmのスパンの条件で測定される抗折カ力 2. 65G Pa以上であることが好まし 、。
[0031] また、本発明の高強度 '高耐摩耗性ダイヤモンド焼結体においては、ダイヤモンド 焼結体から、長さ 6mm、幅 3mm、厚さ 0. 4以上 0. 45mm以下の長方形の平面形 状に切り出した試験片を、密閉容器中で、濃度 60%以上 65%未満の硝酸を 2倍希 釈したもの 40mlと、濃度 45〜50%のフッ化水素酸 10mlを混合したフッ硝酸により、 120°C以上 150°C未満で 3時間の溶解処理を行った後、この試験片を用いて 4mm スパンの条件で測定される抗折カが 1. 86GPa以上であることが好ま 、。
[0032] 本発明の高強度'高耐摩耗性ダイヤモンド焼結体においては、 Ti, Zr, Hf, V, Nb , Ta, Cr, Moからなる群より選ばれる少なくとも 1種以上の元素は Tiであり、かつ結 合相中の Tiの含有率は 1質量%以上 20質量%未満であり、電子線の加速速度 40k V、電流 25mA、回折角度 2 Θ = 20〜80° 、走査速度 0. 1°CZ秒の条件で測定し たダイヤモンド焼結体の X線回折図形において、炭化チタンの(200)回折線がダイ ャモンドの(111)回折線の 3%以上 50%未満の強度比であることが好ましい。ここで 、「X線回折線の強度」とは、 CuK o;線 (Cuの K殻により生じる特性 X線)を用いた X 線回折図形における、ピークの高さをいう。
[0033] また、本発明者らは、ダイヤモンド焼結体を製造する原料となるダイヤモンド粉末の 表面に吸着した酸素や酸化物に着目し、これらを除去することにより、焼結体中に存 在する欠陥を小さくし、ダイヤモンド焼結体の強度を向上させることを見出した。その ため、ダイヤモンド焼結体中での酸素の割合が 0. 001質量%以上 0. 15質量%未 満であることが好ましい。酸素の割合を 0. 001質量%以上 0. 15質量%未満とした のは、 0. 001質量%未満とすることは、現在の技術では不可能であり、 0. 15質量% 以上では、ダイヤモンド焼結体の強度が従来と同様のものとなる力もである。
[0034] また、本発明のダイヤモンド焼結体は、異常粒成長を抑制できるので圧力 ·温度条 件を高くして焼結することも可能となる。従来、工業的には圧力が 5. 5GPaで温度が 1000°C前後であるのが一般的であり、必要十分な圧力とされている。しかし、焼結条 件をより高圧にすることで、微粒のダイヤモンド粒子をより高含有率で焼結することが できる。また、より高圧で焼結することにより、ネックグロースを促進することが可能とな る。
[0035] 本発明の高強度 ·高耐摩耗性ダイヤモンド焼結体の製造方法においては、圧力 5.
7GPa以上 7. 5GPa以下、温度 1500°C以上 1900°C以下の条件で 10分間保持す ることで焼結することが望ましい。圧力が 7. 5GPaより大きくなると、超高圧発生装置 の金型の耐久性を理由として実用的でなくなる。温度を 1900°Cより高くすると、ダイ ャモンド一黒船の平衡線を超え、黒鉛の安定域に入るため、ダイヤモンドの黒鉛ィ匕 が発生する。超高圧発生装置の金型の耐久性と、ダイヤモンド焼結体の性能を考え 合わせると、圧力 6. OGPa以上 7. 2GPa以下、温度 1500°C以上 1900°C以下の条 件で 10分間保持することで焼結することがより好ましい。
発明の効果
[0036] 本発明の高強度 ·高耐摩耗性ダイヤモンド焼結体およびその製造方法によれば、 ダイヤモンド粒子と親和性の低 、硬質粒子を用いることなく粒成長を抑制することが できるので、ダイヤモンド粒子同士の直接接合をより強固にすることができる。その結 果、耐摩耗性、耐欠損性、耐衝撃性および熱伝導性に優れた高強度,高耐摩耗性 ダイヤモンド焼結体を得ることができる。
図面の簡単な説明
[0037] [図 1]実施例 1の試料 1Eの組織を示す顕微鏡写真である。
[図 2]図 1よりも倍率を上げた場合の試料 1Eの組織を示す顕微鏡写真である。
[図 3]実施例 1の試料 1Hの組織を示す顕微鏡写真である。
[図 4]図 3よりも倍率を上げた場合の試料 1Hの組織を示す顕微鏡写真である。
[図 5]異常粒成長したダイヤモンド焼結体の組織を示す顕微鏡写真である。
発明を実施するための最良の形態
[0038] 本発明の実施の形態については、以下の実施例に示す。
(実施例 1)
本実施例では、焼結ダイヤモンド粉末の平均粒径と、ダイヤモンド焼結体中の焼結 ダイヤモンド粒子の含有率と、結合材の組成とをそれぞれ変化させて、抗折力と逃げ 面摩耗量とを測定した。具体的には、回転式の混合装置を内包する特殊真空炉中 装置を用いて、真空度 0. lPa、炉内温度 300°C、回転数 2000rpmの条件で、粉末 平均粒度が 0. 8 mであるダイヤモンド粉末と、結合材として Co金属および Ti金属 の混合粉末との乾式混合を行った。この混合済みのダイヤモンド粉末と各種結合材 を、 WC— 6%Co超硬合金製の円盤に接した状態で Ta (タンタル)製の容器に充填 し、ベルト型超高圧装置を用いて圧力 5. 7GPa〜7. 2GPa、温度 1500°C〜1900 °Cの条件で 10分間保持することで焼結した。 Tiを添加した試料については、出来上 力 Sつた焼結体表面の組織観察を行 、、 Tiの存在形態が連続であるか不連続である かを判断した。焼結時にダイヤモンド粒子の粒径が 300 m以上へと粒成長したもの についてのみ異常粒成長として、その数量を計測した。また、全ての焼結体について 、それぞれ 6 X 3 X 0. 3mmの棒状試験片に加工された後に、スパン距離 4mmの 3 点曲げ試験によって抗折カを測定した。また、主面形状が正三角形の切削用焼結 体チップ (ISO規格: TPGN160304)を作製して切削テストを行ない、逃げ面摩耗量 を測定した。切削テストは、 Siを 16質量%含有の A1 (アルミニウム)合金丸棒を被削 材として用い、切削液を用いて切削速度 800mZmin、切込み深さ 0. 5mm,送り速 度 0. 12mm/rev,切削時間 5minという加工条件で行なった。結果を表 1に示す。 なお、表 1において、本発明のダイヤモンド焼結体は試料 IE, 1Gである。なお、試 料 IE, 1Gについて X線分析を行なったところ、添カロした Tiの一部は TiCとして存在 していることが分力つた。
[表 1]
Figure imgf000013_0001
[0040] 表 1に示すように、結合材の仕込み組成が 100質量%の Coで、ダイヤモンド粉末 の平均粒径が 0. 8 μ mである試料 1Aおよび IDでは、異常な粒成長を示した粒子が それぞれ 258個、 231個と数多く発生した。また、結合材に Wを添カ卩した 1C, 1F,お よびめについても、それぞれ 11個、 8個、および 3個と、僅かではあるが異常な粒成 長が発生した。しかし、結合相中に Tiを 0. 5質量%以上含み、ダイヤモンド粒子の平 均粒径が 0. 8 111でぁる試料18, IE, 1G, II, 1Nでは、異常粒成長はほとんど見 られな力つた。このことから、結合相中の含有率が 0. 5質量0 /0以上の Tiが含まれてい ることで、異常粒成長が抑制できることが分かる。
[0041] また、ダイヤモンド粉末の平均粒径が 0. 8 μ mである試料 IEと、ダイヤモンド粉末 の平均粒径が 2. 5 μ mである試料 1Lとを比較して、試料 1Eの抗折カは試料 1Lの 抗折力よりも大きい。このことから、ダイヤモンド粒子の平均粒径を 2 m以下とするこ とにより、耐欠損性が向上することが分かる。
[0042] また、焼結ダイヤモンド粒子の含有率が 78体積%である試料 1Bおよび 1Cと、焼結 ダイヤモンド粒子の含有率が 90体積%である試料 1Eおよび 1Fとを比較して、試料 1 Eおよび 1Fの抗折カは試料 1Bおよび 1Cの抗折力よりも大きぐ試料 1Eおよび 1Fの 逃げ面摩耗量は試料 1Bおよび 1Cの逃げ面摩耗量よりも少ない。このことから、焼結 ダイヤモンド粒子の含有率を 80%体積以上とすることにより、耐欠損性および耐摩耗 性が向上することが分かる。
[0043] また、結合相中に 16. 1質量%の Tiが含まれており、圧力 7. 2GPa、温度 1900°C の条件で焼結した試料 IEと、結合相中に 25. 6質量。/。の1^が含まれており、圧力 6. 8GPa、温度 1800°Cの条件で焼結した試料 IFとを比較して、試料 1Eの抗折カは試 料 1Fの抗折力よりも大きぐ試料 1Eの逃げ面摩耗量は試料 1Fの逃げ面摩耗量より も少ない。また、結合相中に 46. 2質量%の Tiが含まれており、圧力 7. 0GPa、温度 1900°Cの条件で焼結した試料 1Gと、結合材中に 40.
Figure imgf000014_0001
、圧力 6. 7GPa、温度 1750°Cの条件で焼結した試料 1Hとを比較しても同様である 。結合相中に Tiが含まれていることによって、異常粒成長の抑制ができるため、圧力 や温度といった焼結条件を高く設定することが可能となる。そのため、耐欠損性およ び耐摩耗性を向上することが可能であることがわかる。 [0044] また、本発明の試料 IE, 1Gは、従来品である試料 1Mよりも抗折力が高く逃げ面 摩耗量が小さくなつている。また、平均粒径が 2 μ m以上である試料 1Kは、 Tiを添加 しなくても異常粒成長が発生していないことが分かる。さらに、ダイヤモンド粒子の含 有率が 99質量%である試料 1Nでは、抗折力が低く逃げ面摩耗量が大きいので、結 合材によるネックグロースが不十分であることが分かる。
[0045] (実施例 2)
本実施例では、結合材中に含まれている Tiの平均粒径を変化させて、抗折力と逃 げ面摩耗量とを測定した。具体的には、平均粒径が 0. 8 mであり含有量が 90体積 %であるダイヤモンド粉末と、 75質量%の Coおよび 25質量%の Tiを含む結合材と をボールミルを用いて混合した。結合材中の Tiとしては、平均粒径がそれぞれ 0. 1 /z m, 0. 8 /z m, 0. 9 /z m,および 1. 0 mであるものを用いた。その後、ベル卜型超 高圧装置を用いて圧力 7. 2GPa、温度 1900°Cの条件で 10分間保持することで焼 結した。得られた焼結体につ!、て実施例 1と同様の方法で抗折力の測定および切削 試験実施による逃げ面摩耗量の測定を行った。結果を表 2に示す。
[0046] [表 2]
Figure imgf000016_0001
[0047] 表 2に示すように、試料 2A〜2Dの逃げ面摩耗量はほぼ同程度であり、試料 2E〜 2Hの逃げ面摩耗量はほぼ同程度である。しかし、試料 2A, 2Bの抗折カは試料 2C , 2Dの抗折力よりも大きぐ試料 2E, 2Fの抗折カは試料 2G, 2Hの抗折力よりも大 きい。また、焼結時にダイヤモンド粒子の粒径が 300 m以上へ粒成長したものにつ いてはその数量を計測した。その結果、試料 2A, 2B, 2E, 2Fには異常粒成長は見 られなかった。一方、試料 2C, 2D, 2G, 2Hにはそれぞれ 3個, 25個, 4個, 25個の 異常粒成長が見られた。このことから、結合材中の Tiの平均粒径が 0. 8 m以下で あることにより、異常粒成長の抑制効果があり、さらにネックグロースが抑制されない ため耐欠損性が向上することが分かる。
[0048] (実施例 3)
本実施例では、結合材に添加する Tiの添加方法を変化させて、抗折力と逃げ面摩 耗とを測定した。具体的には、平均粒径が 0. 8 mであり含有量が 90体積%である ダイヤモンド粉末と、 75質量%の Coおよび 25質量%の Tiを含む結合材とをボールミ ルにより混合したものを試料 3Aとして準備した。また、同様の組成を有し、 RF (Radi o Frequency)スパッタリング PVD装置を用いてダイヤモンド粉末に Tiを被覆したも のを試料 3Bとして準備した。また、同様の組織を有し、ダイヤモンド粒子表面全体に 被覆層の厚みが 0. l /z mとなるように、 CVD (Chemical Vapor Deposition)装 置を用いてダイヤモンド粉末に Tiを被覆したものを試料 3Cとして準備した。そして、 試料 3A〜3Cの各々を WC— 6%Co超硬合金製の円盤に接した状態で Ta (タンタ ル)製の容器に充填し、ベルト型超高圧装置を用いて圧力 7. 2GPa、温度 1900°C の条件で 10分間保持することで焼結した。得られた焼結体について実施例 1と同様 の方法で抗折力の測定および切削試験実施による逃げ面摩耗量の測定を行った。 結果を表 3に示す。
[0049] [表 3]
Figure imgf000018_0001
3に示すように、 Tiをボールミルを用いた混合により添カ卩した試料 3A、 CVD法に より Tiを被覆した試料 3Cよりも、 RFスパッタリング PVD装置により被覆した試料 3Bの 方が抗折力、逃げ面摩耗量ともに良好な性能を示した。それぞれの試料の表面を金 属顕微鏡により組織観察したところ、試料 3Aは Coや Tiの偏祈が見られ、均一な組 織が得られていな力つた。また、 Ti炭化物の平均粒径は 1. O /z mと添カ卩時よりも大き くなつていた。試料 3B, 3Cはいずれも Coや Tiの偏祈が見られず、均一な組織が得 られていた。しかし、試料 3Cはダイヤモンド粒子表面全体を均一に被覆しているため TiCの組織は連続しており、異常粒成長だけでなぐダイヤモンド粒子同士のネック グロースも抑制されて 、た。試料 3Bはダイヤモンド粒子への Ti被覆が全体に均一で はなく部分的であるため不連続であり、 Ti粉末の平均粒径 0. 1 μ m程度を維持して いた。このことから、 Tiの添加方法は好ましくは RFスパッタリング PVD装置による被 覆であることが分力つた。また、炭化物の平均粒径が 0. 8 mより大きいか、または炭 化物自身の組織が連続していると、抗折力の低下や逃げ面摩耗量の増大を引き起 こすことが分力つた。
[0051] (実施例 4)
本実施例では、実施例 3の試料 3A〜3Cを溶解処理した場合のそれぞれの抗折カ の変化を調べた。具体的には、実施例 3の試料 3A〜3Cのダイヤモンド焼結体から、 長さ 6mm、幅 3mm、厚さ 0. 4〜0. 45mmの長方形の平面形状に切り出した試験片 を、密閉容器中で、濃度 60%以上 65%未満の硝酸を 2倍希釈したもの 40mlと、濃 度 45〜50%のフッ化水素酸 10mlを混合したフッ硝酸により、 120°C以上 150°C未 満で 3時間の溶解処理を行った。このようにして得られた試験片 (試料)のうち、試料 3 Aであったもの試料 4Aとし、試料 3Bであったものを試料 4Bとし、試料 3Cであったも のを試料 4Cとした。それぞれの試料を用いて 4mmスパンの条件で抗折カを測定し た。結果を表 4に示す。
[0052] [表 4]
Figure imgf000020_0001
4に示すように、 Tiの添加方法が RFスパッタリング PVD装置である試料 4Bの抗 折力は 2. 88GPa力ら 2. 59GPaへわずか 0. 22GPaの減少であった。これに対し、 Tiの添カ卩方法がボールミルによる混合である試料 4Aの抗折カは 2. 59GPa力ら 2. 02GPaへと 0. 57GPaも大幅に減少した。また、 Tiの添カ卩方法が CVDである試料 4 Cの抗折カは 2. 46GPa力ら 1. 98GPaへと 0. 48GPaも大幅に減少した。このことか ら、 Tiの添加方法が RFスパッタリング PVD装置であること、つまり Ti自身の組織が不 連続であることにより、ダイヤモンド粒子同士のネックグロースが進展し、強固な骨格 が形成されて ヽることが分力ゝる。
[0054] (実施例 5)
本実施例では、結合材中の Tiの割合を変化させて、得られた焼結体における TiC の(200)回折線とダイヤモンドの(111)回折線との強度比を測定した。具体的には、 ダイヤモンド粉末の含有量が 78体積%、焼結材が 75質量%の Coと 25質量%の Ti とを含んでいる試料 5Aと、ダイヤモンド粉末の含有量が 90体積%、焼結材が 75質 量0 /0の Coと 25質量0 /0の Tiとを含んでいる試料 5Bと、ダイヤモンド粉末の含有量が 9 0体積0 /0、焼結材が 50質量%の Coと 50質量%の Tiとを含んで!/、る試料 5Cとの 3種 類の試料を作製した。なお、ダイヤモンド粉末の平均粒径はすべての試料において 0. とした。その後、ベルト型超高圧装置を用いて圧力 7. 2GPa、温度 1900°C の条件で 10分間保持することで焼結した。得られた焼結体について、 Cuの K殻によ り生じる特性 X線を用い、 Cuターゲットに照射する電子線の加速速度 40kV、電流 2 5mA、回折角度 2 0 = 20〜80° 、走査速度 0. 1°CZ秒の条件でダイヤモンド焼結 体の X線回折図形の測定を行ない、 TiCの(200)回折線とダイヤモンドの(111)回 折線との強度比を測定した。結果を表 5に示す。なお、表 5において、本発明のダイ ャモンド焼結体は試料 5Bである。
[0055] [表 5]
Figure imgf000022_0001
表 5に示すように、逃げ面摩耗量が最も小さい試料 5Bの X線回折強度比は 40%で あつたが、試料 5Aおよび 5Cについては 50%を超える値であった。これにより、 TiC の強度比が 50%を超えるものについては逃げ面摩耗量が増加する傾向にあることが わかる。また、結合材の組成に Tiを含まない焼結体は、異常粒成長が発生するため 、 TiCの(200)回折線の強度比は、ダイヤモンドの(111)回折線の 0. 01%以上 50 %未満の強度比にあることが好ましいことがわかる。
[0057] (実施例 6)
本実施例では、ダイヤモンド焼結体に含まれる酸素量を変化させて、抗折力と逃げ 面摩耗量とを測定した。具体的には、ダイヤモンドの平均粒径が 0. 8 mであり含有 量が 90体積%であるダイヤモンド粉末と、 75質量%の Coおよび 25質量%の Tiを含 む結合材とを混合した。次に、真空中でそれぞれ 1000°C、 1100°C、および 1250°C の温度で 60分間熱処理することによって結合材の還元とダイヤモンド粒子の表面か らの部分的な黒鉛ィ匕を行なった。その後、ベルト型超高圧装置を用いて圧力 7. 2G Pa、温度 1900°Cの条件で 10分間保持することで焼結した。得られた試料のうち、 1 000°Cの温度で熱処理した試料を試料 6Aとし、 1100°Cの温度で熱処理した試料を 試料 6Bとし、 1250°Cの温度で熱処理した試料を試料 6Cとした。これらの試料 6A〜 6Cに含まれる酸素量を ICP (Inductively Coupled Plasma)分析により測定した 。また、試料 6A〜6Cについて、実施例 1と同様の方法で抗折力の測定を行った。結 果を表 6に示す。
[0058] [表 6]
Figure imgf000024_0001
表 6に示すように、焼結前の熱処理温度を変更することによってダイヤモンド焼結体 に含まれる酸素の量が変化し、酸素の量が 0. 15質量%以下になると抗折力が大幅 に向上している。このことから、 0. 15質量0 /0未満の酸素を含むことにより、耐欠損性 が向上することが分かる。
[0060] (実施例 7)
本実施例では、実施例 1の試料 1E (本発明)および試料 1H (従来例)のダイヤモン ド焼結体を酸処理し、顕微鏡写真を撮影した。図 1は、実施例 1の試料 1Eの組織を 示す顕微鏡写真である。図 2は、図 1よりも倍率を上げた場合の試料 1Eの組織を示 す顕微鏡写真である。図 3は、実施例 1の試料 1Hの組織を示す顕微鏡写真である。 図 4は、図 3よりも倍率を上げた場合の試料 1Hの組織を示す顕微鏡写真である。
[0061] 図 1〜図 4を参照して、全体に点在している小さな複数の穴が結合相であった部分 に相当する。本発明のダイヤモンド焼結体を示す図 1および図 2の結合相の体積は、 従来のダイヤモンド焼結体を示す図 3および図 4の結合相の体積よりも小さくなつて いる。このことから、本発明では、ダイヤモンド粒子のネックグロースが結合相により阻 害されて 、な 、ことが分かる。
[0062] なお、図 5は、異常粒成長したダイヤモンド焼結体の組織を示す顕微鏡写真である 。図 5を参照して、小さな点の部分が異常粒成長したダイヤモンド粒子である。このよ うに異常粒成長したダイヤモンド粒子の粒径は、 300 m以上となっている。従来の ダイヤモンド焼結体では、このような異常粒成長が多数見られていた。この異常粒成 長を本発明では抑止することができる。
[0063] 以上に開示された実施例はすべての点で例示であって制限的なものではないと考 慮されるべきである。本発明の範囲は、以上の実施例ではなぐ請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むも のと意図される。

Claims

請求の範囲
[1] 平均粒径が 2 μ m以下の焼結ダイヤモンド粒子と、残部の結合相とを備えた高強度 •高耐摩耗性ダイヤモンド焼結体であって、
前記ダイヤモンド焼結体中の前記焼結ダイヤモンド粒子の含有率は 80体積%以 上 98体積%以下であり、
前記結合相中の含有率が 0. 5質量%以上 50質量%未満であるチタン、ジルコ- ゥム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、およびモリブデン力 なる群 より選ばれる少なくとも 1種以上の元素と、前記結合相中の含有率が 50質量%以上 9 9. 5質量%未満であるコバルトとを前記結合相は含み、
前記チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、およ びモリブデン力 なる群より選ばれる少なくとも 1種以上の元素の一部または全部が 平均粒径 0. 8 μ m以下の炭化物粒子として存在し、
前記炭化物粒子の組織は不連続であり、
隣り合う前記ダイヤモンド粒子同士は互いに結合していることを特徴とする、高強度 .高耐摩耗性ダイヤモンド焼結体。
[2] 前記チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、およ びモリブデン力 なる群より選ばれる少なくとも 1種以上の元素はチタンであり、前記 結合相中の前記チタンの含有率が 0. 5質量%以上 20質量%未満であることを特徴 とする、請求の範囲第 1項に記載の高強度'高耐摩耗性ダイヤモンド焼結体。
[3] 前記ダイヤモンド焼結体から、長さ 6mm、幅 3mm、厚さ 0. 4mm以上 0. 45mm以 下の長方形の平面形状に切り出した試験片を用いて 4mmスパンの条件で測定され る抗折力が 2. 65GPa以上であることを特徴とする、請求の範囲第 1項に記載の高強 度 ·高耐摩耗性ダイヤモンド焼結体。
[4] 前記ダイヤモンド焼結体から、長さ 6mm、幅 3mm、厚さ 0. 4以上 0. 45mm以下の 長方形の平面形状に切り出した試験片を、密閉容器中で、濃度 60%以上 65%未満 の硝酸を 2倍希釈したもの 40mlと、濃度 45〜50%のフッ化水素酸 10mlを混合したフ ッ硝酸により、 120°C以上 150°C未満で 3時間の溶解処理を行った後、この試験片を 用いて 4mmスパンの条件で測定される抗折力が 1. 86GPa以上であることを特徴と する、請求の範囲第 1項に記載の高強度'高耐摩耗性ダイヤモンド焼結体。
[5] 前記チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、およ びモリブデン力 なる群より選ばれる少なくとも 1種以上の元素はチタンであり、かつ 前記結合相中の前記チタンの含有率は 0. 5質量%以上 20質量%未満であり、電子 線の加速速度 40kV、電流 25mA、回折角度 2 Θ = 20〜80° 、走査速度 0. 1°C/ 秒の条件で測定した前記ダイヤモンド焼結体の X線回折図形にぉ 、て、炭化チタン の(200)回折線がダイヤモンドの(111)回折線の 3%以上 50%未満の強度比であ ることを特徴とする、請求の範囲第 1項に記載の高強度 ·高耐摩耗性ダイヤモンド焼 結体。
[6] 前記ダイヤモンド焼結体は 0. 001質量%以上 0. 15質量%未満の酸素を含むこと を特徴とする、請求の範囲第 1項に記載の高強度 ·高耐摩耗性ダイヤモンド焼結体。
[7] 請求の範囲第 1項に記載の高強度'高耐摩耗性ダイヤモンド焼結体の製造方法で あって、ベルト型超高圧装置を用いて圧力 5. 7GPa以上 7. 5GPa以下、温度 1400 °C以上 1900°C以下の条件で焼結することを特徴とする、高強度'高耐摩耗性ダイヤ モンド焼結体の製造方法。
[8] ベルト型超高圧装置を用いて圧力 6. OGPa以上 7. 2GPa以下、温度 1400°C以上 1900°C以下の条件で焼結することを特徴とする、請求の範囲第 7項に記載の高強 度 ·高耐摩耗性ダイヤモンド焼結体の製造方法。
PCT/JP2005/013621 2005-07-26 2005-07-26 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法 WO2007013137A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2005/013621 WO2007013137A1 (ja) 2005-07-26 2005-07-26 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法
US10/580,152 US7553350B2 (en) 2005-07-26 2005-07-26 High-strength and highly-wear-resistant sintered diamond object and manufacturing method of the same
EP05767185.1A EP1775275B1 (en) 2005-07-26 2005-07-26 High-strength and highly abrasion-resistant sintered diamond product and process for production thereof
CA2549839A CA2549839C (en) 2005-07-26 2005-07-26 High-strength and highly-wear-resistant sintered diamond object and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013621 WO2007013137A1 (ja) 2005-07-26 2005-07-26 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2007013137A1 true WO2007013137A1 (ja) 2007-02-01

Family

ID=37682446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013621 WO2007013137A1 (ja) 2005-07-26 2005-07-26 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法

Country Status (4)

Country Link
US (1) US7553350B2 (ja)
EP (1) EP1775275B1 (ja)
CA (1) CA2549839C (ja)
WO (1) WO2007013137A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517910A (ja) * 2007-02-05 2010-05-27 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 多結晶ダイヤモンド(pcd)材料
GB0815229D0 (en) 2008-08-21 2008-09-24 Element Six Production Pty Ltd Polycrystalline diamond abrasive compact
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
GB0902230D0 (en) 2009-02-11 2009-03-25 Element Six Production Pty Ltd Polycrystalline super-hard element
CN102459802B (zh) 2009-05-20 2014-12-17 史密斯国际股份有限公司 切削元件、用于制造这种切削元件的方法和包含这种切削元件的工具
US8505654B2 (en) 2009-10-09 2013-08-13 Element Six Limited Polycrystalline diamond
GB0917670D0 (en) * 2009-10-09 2009-11-25 Element Six Ltd Polycrystalline diamond composite compact element and tools incorporating same
GB201008093D0 (en) * 2010-05-14 2010-06-30 Element Six Production Pty Ltd Polycrystalline diamond
US9193038B2 (en) 2011-12-09 2015-11-24 Smith International Inc. Method for forming a cutting element and downhole tools incorporating the same
GB2510465A (en) * 2012-12-04 2014-08-06 Element Six Abrasives Sa Super-hard polycrystalline diamond material
GB201305871D0 (en) * 2013-03-31 2013-05-15 Element Six Abrasives Sa Superhard constructions & methods of making same
GB201318640D0 (en) * 2013-10-22 2013-12-04 Element Six Abrasives Sa Superhard constructions & methods of making same
GB201404782D0 (en) * 2014-03-18 2014-04-30 Element Six Abrasives Sa Superhard constructions & methods of making same
CN113059161B (zh) * 2021-03-18 2022-11-01 郑州益奇超硬材料有限公司 一种聚晶金刚石复合片及其制备方法
CN113880082B (zh) * 2021-09-27 2023-11-07 郑州昊诚超硬工具有限公司 一种精密加工用金刚石微粉制备方法
CN114378729B (zh) * 2021-12-26 2023-10-03 赛尔科技(如东)有限公司 一种触摸屏玻璃加工用倒角砂轮及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270258A (ja) * 1985-05-24 1986-11-29 日本碍子株式会社 多結晶ダイアモンド焼結体の製造法
JPH06305833A (ja) * 1993-04-23 1994-11-01 Sumitomo Electric Ind Ltd 高硬度ダイヤモンド焼結体およびその製法
JPH09316587A (ja) * 1996-05-29 1997-12-09 Sumitomo Electric Ind Ltd 高強度微粒ダイヤモンド焼結体およびそれを用いた工具
JPH11240762A (ja) * 1998-02-26 1999-09-07 Sumitomo Electric Ind Ltd 高強度・高耐摩耗性ダイヤモンド焼結体およびそれからなる工具

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212126A (en) 1975-07-16 1977-01-29 Hitachi Chem Co Ltd Process for preparation of methacrylic acid
SU602586A1 (ru) 1975-12-16 1978-04-15 Всесоюзный научно-исследовательский и конструкторско-технологический институт природных алмазов и инструмента Спеченный материал
CA1103042A (en) 1977-05-04 1981-06-16 Akio Hara Sintered compact for use in a cutting tool and a method of producing the same
AU529416B2 (en) * 1978-07-04 1983-06-09 Sumitomo Electric Industries, Ltd. Diamond compact for a wire drawing die
JPS5832224B2 (ja) 1978-09-27 1983-07-12 住友電気工業株式会社 工具用微細結晶焼結体およびその製造方法
US4303442A (en) * 1978-08-26 1981-12-01 Sumitomo Electric Industries, Ltd. Diamond sintered body and the method for producing the same
JPS5832224A (ja) 1981-08-18 1983-02-25 Seiko Epson Corp ビデオテ−プレコ−ダ−ヘツド・シリンダ−ユニツト
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
JPS6158432A (ja) 1984-08-29 1986-03-25 神鋼電機株式会社 交流発電機と静止形インバ−タ電源の切替方法
DE3477207D1 (en) * 1984-11-21 1989-04-20 Sumitomo Electric Industries High hardness sintered compact and process for producing the same
JPS6417836U (ja) 1987-07-22 1989-01-30
AU651210B2 (en) 1991-06-04 1994-07-14 De Beers Industrial Diamond Division (Proprietary) Limited Composite diamond abrasive compact
JPH066769A (ja) 1992-06-23 1994-01-14 Matsushita Electric Ind Co Ltd クローズドキャプションデコーダ装置
CA2163953C (en) * 1994-11-30 1999-05-11 Yasuyuki Kanada Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof
JP2003095743A (ja) 2001-09-21 2003-04-03 Ishizuka Kenkyusho:Kk ダイヤモンド焼結体及びその製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270258A (ja) * 1985-05-24 1986-11-29 日本碍子株式会社 多結晶ダイアモンド焼結体の製造法
JPH06305833A (ja) * 1993-04-23 1994-11-01 Sumitomo Electric Ind Ltd 高硬度ダイヤモンド焼結体およびその製法
JPH09316587A (ja) * 1996-05-29 1997-12-09 Sumitomo Electric Ind Ltd 高強度微粒ダイヤモンド焼結体およびそれを用いた工具
JPH11240762A (ja) * 1998-02-26 1999-09-07 Sumitomo Electric Ind Ltd 高強度・高耐摩耗性ダイヤモンド焼結体およびそれからなる工具

Also Published As

Publication number Publication date
US20080066388A1 (en) 2008-03-20
US7553350B2 (en) 2009-06-30
EP1775275A1 (en) 2007-04-18
EP1775275B1 (en) 2019-05-01
EP1775275A4 (en) 2010-04-14
CA2549839A1 (en) 2007-01-26
CA2549839C (en) 2011-01-25

Similar Documents

Publication Publication Date Title
WO2007013137A1 (ja) 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法
JP4542799B2 (ja) 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法
JP6703757B2 (ja) サーメット、及び切削工具
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
WO1999043630A1 (fr) Corps fritte en diamant a haute resistance et fortement resistant a l'usure et outil comprenant ledit diamant
EP1359130A1 (en) Cubic boron nitride sintered body and cutting tool
WO2018194018A9 (ja) 超硬合金、それを含む切削工具および超硬合金の製造方法
KR20100014777A (ko) 다이아몬드 소결체 및 그 제조 방법
JP2010208942A (ja) 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法
JP2017014084A (ja) 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具
JP4297987B2 (ja) 高強度微粒ダイヤモンド焼結体およびそれを用いた工具
JP2004076049A (ja) 超微粒超硬合金
US20030054940A1 (en) Sintered body
JP2007126326A (ja) ダイヤモンド焼結体
KR100818572B1 (ko) 고강도·고내마모성 다이아몬드 소결체 및 그 제조방법
EP3674429A1 (en) Composite sintered compact
RU2347744C2 (ru) Спеченное алмазное изделие с высокой прочностью и высокой износостойкостью и способ его изготовления
JP7384844B2 (ja) 代替バインダーを用いた超硬合金
JP5008789B2 (ja) 超硬質焼結体
JP4140930B2 (ja) 粒内分散強化wc含有超硬合金およびその製法
JPH07331376A (ja) 非磁性若しくは弱磁性ダイヤモンド焼結体とその製法
JP4413022B2 (ja) 複合酸化物分散焼結合金
JP2005220015A (ja) 高強度・高耐摩耗性ダイヤモンド焼結体およびそれからなる工具ならびに非鉄金属の切削方法
JP2004292865A (ja) 耐欠損性に優れた超硬合金およびその製造方法
JPH10265263A (ja) 高速切削性に優れた切削工具用セラミックス及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2549839

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006116265

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006/03901

Country of ref document: ZA

Ref document number: 200603901

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 10580152

Country of ref document: US

Ref document number: 2005767185

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067011593

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005767185

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10580152

Country of ref document: US