WO2007010186A1 - Moteur a pistons opposes avec synchronisation variable - Google Patents

Moteur a pistons opposes avec synchronisation variable Download PDF

Info

Publication number
WO2007010186A1
WO2007010186A1 PCT/GB2006/002474 GB2006002474W WO2007010186A1 WO 2007010186 A1 WO2007010186 A1 WO 2007010186A1 GB 2006002474 W GB2006002474 W GB 2006002474W WO 2007010186 A1 WO2007010186 A1 WO 2007010186A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
motion
internal combustion
pistons
combustion engine
Prior art date
Application number
PCT/GB2006/002474
Other languages
English (en)
Inventor
James William Griffith Turner
Original Assignee
Lotus Cars Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotus Cars Limited filed Critical Lotus Cars Limited
Publication of WO2007010186A1 publication Critical patent/WO2007010186A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • F01B7/14Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on different main shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B69/00Internal-combustion engines convertible into other combustion-engine type, not provided for in F02B11/00; Internal-combustion engines of different types characterised by constructions facilitating use of same main engine-parts in different types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates, to an, internal combustion engine in which a combustion chamber is defined in a cylinder between opposed faces of two pistons reciprocating in the cylinder.
  • the engine operates a two-stroke cycle and port opening timing is variable .
  • Opposed piston engines having two pistons operating in the same bore and defining between them in the bore a combustion chamber (e.g. the Napier Deltic engine) .
  • the configuration has the advantage that heat rejection to a water jacket surrounding the bore is low because the piston surfaces make up a greater proportion of the combustion chamber surface than in an conventional engine having a combustion chamber formed by a single piston .reciprocating in a closed bore. If a screwed-on steel crown is used for each piston then the proportion of surface area cooled by the water jacket is less still.
  • the opposed- piston engine when compared to an engine of the same swept volume having a single piston and poppet valves for the exhaust valves then the opposed- piston engine can run at a higher speed for a given mechanical stress, swept volume and bore-to (individual piston) stroke ratio. Additionally, an opposed-piston engine need be little or no taller than an engine which has poppet valves for exhaust valves because it does not require the cylinder head height.
  • Figure 1 shows an existing opposed-piston engine, in fact one bank of a Napier Deltic (trade mark) engine.
  • the cross-section clearly depicts the mechanical simplicity of the engine. If the crankshafts are in near exact phase then the engine will be perfectly balanced, even if the cranks rotate on the same direction - if they rotate in opposite senses then the any primary force, imbalance arising from a phase-shifting between them can be fully eliminated (for a given phasing) . Nevertheless, the engine does have two significant disadvantages :
  • crankshafts must be linked by a train of gears which each transmit half the engine power (less any power take off from engine auxiliaries) and which are expensive and noisy,- furthermore in simple engines the gear trains fix the port timings relative to each other.
  • the present invention in a first aspect provides an internal combustion engine as claimed in claim 1.
  • Figure 1 is an cutaway illustration of a prior art engine
  • Figure 2 is a schematic cross-sectional illustration of an engine according to a first embodiment of the present invention
  • Figure 3 is a schematic cross-sectional illustration of an engine according to a second embodiment of the present invention
  • Figure 4 is a schematic cross-sectional illustration of an engine according to a third embodiment of the present invention.
  • figure 1 there can be *" seen, an opposed-piston engine 10 with a first piston 11 and a second piston 12 which both reciprocate in the same cylinder 13 and define in the cylinder between their opposed faces a variable volume combustion chamber 14.
  • a fuel injector injects fuel into the combustion chamber via an aperture 15 in the cylinder wall.
  • a spark plug (not shown) will be located in the circumferential cylinder wall in a manner similar to the injector aperture.
  • An exhaust port 16 opens on to the combustion chamber.14 and is opened and closed by the piston 12 during its reciprocation in the cylinder.
  • Intake ports 17 open on to the combustion . chamber 14 and are opened and closed by the piston 11. during its reciprocation in the cylinder.
  • the piston 11 is connected to a crankshaft 18 and the piston 12 is connected to a crankshaft 19.
  • the crankshafts 18 and 19 are both connected to an individual output shaft (not shown) and to each other via a mechanical gear train (again not shown) so that their movement is synchronised.
  • the arrangement does not permit variation of the movement of one piston in relation to the other.
  • Figure 2 shows schematically a first embodiment 50 of opposed-piston engine according to the present invention. It has a first piston 51 and a second piston 52 both reciprocating in a common cylinder 53.
  • a combustion chamber 54 is defined in the cylinder 51 between opposed faces of the pistons 51 and 52.
  • a fuel injector 55 and in an S.I. engine a spark plug 56 are provided to be operable in the combustion chamber 54.
  • the piston 51 opens and closes intake ports 57 as it reciprocates in the cylinder 53.
  • the piston 52 opens and closes exhaust ports 58 as it reciprocates in the cylinder 53.
  • the piston 51 * - is connected by " a connecting rod 59 to a crankshaft 60 and the piston 52 is connected by a connecting rod 61 to a crankshaft 62.
  • crankshafts 60 and 61 are connected to a common output shaft 63 respectively by gear trains 64 and 65.
  • a phasing device 66 (such devices are already well known) is provided between the gear trains 64 and 65 which are interconnected via the phasing device 66.
  • the use of the phasing device 66 permits control of motion of one piston 52 relative to the other piston 51 and so permits variation of timing of opening and closing of the intake and exhaust ports 57,58.
  • the engine will operate in a first operating condition a two-stroke cycle with spark ignition (as an alternative the engine could operate a compression ignition ("Diesel") cycle) . This will include the scavenging of combusted gases from the combustion chamber by the incoming fresh charge.
  • the phasing device 66 enables control of the scavenging process and so control of what residual combusted gases are left in the chamber 54 at the beginning of the compression stroke.
  • HCCI Homogeneous Charge Compression Ignition
  • a mixture of fuel, air and combusted gases is created and compressed and ignited by compression.
  • HCCI Homogeneous Charge Compression Ignition
  • the operation of the phasing device 66 is controlled by an electronic controller 67 having regard to engine operating conditions, e.g. speed, load, temperature, emissions.
  • the phasing device"£6. can be used to " vary the operating mode of the engine (as described above) and to vary the compression ratio of the engine.
  • Figure 3 shows schematically a second embodiment 100 of opposed-piston engine according to the present invention. It has a first piston 101 and a second piston 102 both reciprocating in a common cylinder 103.
  • a combustion chamber 104 is defined in the cylinder 103 between opposed faces of the pistons 101 and 102.
  • a fuel injector 105 and, in the case of an S.I. engine, a spark plug 106 are provided to be operable in the combustion chamber 104.
  • the piston 101 opens and closes intake ports 107 as it reciprocates. in the cylinder 103.
  • the piston 102 opens and closes exhaust, ports 108 as it reciprocates in the cylinder 103.
  • the piston 101 is connected by a connecting rod 109 to a crankshaft 110. and the piston 102 is connected by a connecting rod 111 to a crankshaft 112.
  • the crankshaft 110 is connected to an output shaft 113 by a gear train 114.
  • the crankshaft 112 is connected to an electrical machine 115, which can function both as a generator and as a motor.
  • the machine 112 either is driven by the piston 102 and generates power or drives the piston 102 to compress gas in the combustion chamber 104.
  • the electrical power generated by the machine can be relayed to a motor 116 or to a battery 120, also connected to the motor 116.
  • the motor 116 is connected via gears 117 and 118 to the output shaft 113.
  • the electrical machine 115 provides real time control of rotational position of the crankshaft 112 and hence the position of the piston 102 in the cylinder 107. This allows for control of a phase difference between " the motions of the two pistons 102 and 107.
  • crankshaft 112 need not be parallel to the crankshaft 110 and this can provide packaging advantages.
  • the electrical machine 115 could also be controlled to vary the speed of rotation of the crankshaft 112 within. a single cycle so as to provide e.g. for increased dwell, a feature not possible with a purely mechanical drive train.
  • the operation of the electrical machine 115 is controlled by an electronic controller 119 having regard to engine operating conditions, e.g. speed, load, temperature, emissions.
  • the electrical machine can control the motion of the piston 152 to vary the compression ratio of the engine and to switch the engine between different modes of combustion (e.g. from spark ignition to Homogeneous Charge Compression Ignition and back again or from compression ignition to Homogeneous Charge Compression Ignition and back again) .
  • Figure 4 shows schematically a third embodiment 150 of opposed-piston engine according to the present invention. It has a first piston 151 and a second piston 152 both reciprocating in a common cylinder 153.
  • a combustion chamber 154 is defined in the cylinder 151 between opposed faces of the pistons 151 and 152.
  • a fuel injector 155 and in the case of an S.I. engine, a spark plug 156 are provided to be operable in the combustion chamber 154.
  • the piston 151 opens 5. and closes intake ports 157 a ' s ' it xeciprpcates " in the cylinder 153.
  • the piston 152 " opens and closes exhaust ports 158 as it reciprocates in the cylinder 153.
  • the piston 151 is connected by a connecting rod 159 to a crankshaft 160. and the piston 152 is connected by a connecting rod 161 to a 0 crankshaft 162.
  • the crankshaft 160 is connected to an electrical machine 163 and the crankshaft 162 is connected to an electrical .machine 164.
  • Both of the. electrical machines,. 5 163,164 can function either as a generator or a motor.
  • the machines 163,164, are either., driven by the pistons .152 and 151 and generate power or drive the pistons 151 and 152 to compress gas in the. combustion chamber 154.
  • the electrical power generated by the machines 163 and 164 can be relayed 0 to a motor 166 or to a battery 170 which is also connected to the motor 166.
  • the motor 166 is connected via gears 167 and 168 to an output shaft 163.
  • both machines 163,164 is controlled by an electronic controller 165, having regard to engine operating conditions, e.g. 5 speed, load, temperature, emissions.
  • the controller 165 can vary the motion of the pistons 151 and 152 to change the compression ratio of the engine.
  • the controller 165 can also switch the engine operation between different modes of combustion. For instance, the engine could operate with 0 spark ignition in one mode and with Homogeneous Charge
  • Compression Ignition in another could operate with compression ignition in one mode and with Homogeneous Charge Compression Ignition in another.
  • the engine could be operated in all three modes of spark ignition, compression ignition and Homogeneous Charge Compression Ignition.
  • the electrical machines 163 and 164 provide real time control of rotational position of the crankshafts 160 and 162 and hence the position of the pistons 151 and 152 in the cylinder 153. This allows for control of a phase difference between the motions of the two pistons 151 and 152.
  • the removal (as compared with the figure 2 embodiment) of both trains of gears provides for reduce cost and the arrangement is ideally suited for a 'hybrid electric vehicle" .
  • Counter- rotation of the crankshafts can be provided for if desired for balancing.
  • the crankshaft 160 need not be parallel to the crankshaft. 162 and this, can provide packaging advantages.
  • the electrical machines could also be controlled to vary the speed of rotation of the crankshafts 160. and 162 each within a single cycle so as to provide e.g. for increased dwell, a feature not possible with a purely mechanical drive train.
  • hydraulic machines instead of using electrical machines in the embodiments of figures 3 and 4 it is possible to use hydraulic machines instead, which would either output hydraulic power from the engine or use power from e.g. a hydraulic accumulator to rotate the relevant crankshaft (s) and thereby move the associated piston (s) .
  • Opposed-piston engines are by their very nature low part number and low cost devices. They also are inherently efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

En référence à la figure 1, la présente invention met à disposition un moteur à combustion interne comprenant un cylindre (13) dans lequel une chambre de combustion (14) est définie entre des faces opposées de deux pistons (11, 12) qui font un va-et-vient dans le cylindre (13). Un orifice d'admission (17) et un orifice d'échappement (16) s’ouvrent sur le cylindre (13) et sont ouverts et fermés par les pistons (11, 12) alors qu'ils font un va-et-vient dans le cylindre (13). Un moyen de phasage est mis à disposition pour faire varier le mouvement d'un piston (11) par rapport à l'autre piston (12) et de ce fait modifier la synchronisation d'ouverture et de fermeture des orifices d'admission (17) et d'échappement (16) par les pistons (11, 12).
PCT/GB2006/002474 2005-07-15 2006-07-04 Moteur a pistons opposes avec synchronisation variable WO2007010186A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0514600A GB2428450B (en) 2005-07-15 2005-07-15 Opposed piston engine with variable timing
GB0514600.6 2005-07-15

Publications (1)

Publication Number Publication Date
WO2007010186A1 true WO2007010186A1 (fr) 2007-01-25

Family

ID=34897313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2006/002474 WO2007010186A1 (fr) 2005-07-15 2006-07-04 Moteur a pistons opposes avec synchronisation variable

Country Status (2)

Country Link
GB (1) GB2428450B (fr)
WO (1) WO2007010186A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143998A1 (fr) * 2009-06-10 2010-12-16 Alvare Engine Ab Procédé de commande de moteur
CN102094702A (zh) * 2011-01-26 2011-06-15 杨成元 新型四冲程新配气机构分层双转涡燃烧节能内燃机
CN102155285A (zh) * 2011-01-26 2011-08-17 杨成元 新型四冲程新配气机构四缸分层双转涡燃烧节能内燃机
CN102400784A (zh) * 2011-10-28 2012-04-04 欧益忠 一种双缸四活塞对置式液控发动机
WO2012048301A1 (fr) * 2010-10-08 2012-04-12 Pinnacle Engines, Inc. Systèmes à rapport de compression variable pour moteurs à pistons opposés et autres moteurs à combustion interne, et procédés de fabrication et utilisation associés
CN102425494A (zh) * 2011-12-19 2012-04-25 欧益忠 液控对置活塞式发动机
CN102518513A (zh) * 2011-12-19 2012-06-27 欧益忠 液控移动活塞式发动机
CN102619614A (zh) * 2011-01-26 2012-08-01 杨成元 新型泵压四冲程四缸分层旋涡燃烧节能汽油机
CN102926865A (zh) * 2011-11-05 2013-02-13 摩尔动力(北京)技术股份有限公司 对置活塞滑动缸分置配气发动机
CN102979618A (zh) * 2011-11-19 2013-03-20 摩尔动力(北京)技术股份有限公司 自启动二冲程发动机
CN103382894A (zh) * 2012-05-02 2013-11-06 李德杰 对向活塞结构的内燃发动机
WO2015039829A1 (fr) * 2013-09-19 2015-03-26 Siemens Aktiengesellschaft Procédé permettant de faire fonctionner un dispositif pourvu d'un moteur à pistons opposés et de deux moteurs électriques
EP2984289A1 (fr) * 2013-04-09 2016-02-17 Achates Power, Inc. Mécanisme de variation du calage de vilebrequin sur un moteur à pistons opposés, à deux vilebrequins, commandé par courroie/chaîne
US9316150B2 (en) 2012-07-02 2016-04-19 Pinnacle Engines, Inc. Variable compression ratio diesel engine
US9650951B2 (en) 2010-10-08 2017-05-16 Pinnacle Engines, Inc. Single piston sleeve valve with optional variable compression ratio capability
US9745915B2 (en) 2006-04-18 2017-08-29 Pinnacle Engines, Inc Internal combustion engine
WO2017198569A1 (fr) * 2016-05-17 2017-11-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Dispositif à piston libre
US9849770B2 (en) 2013-05-10 2017-12-26 Achates Power, Inc. Placement of an opposed-piston engine in a heavy-duty truck
US10047976B2 (en) 2011-12-21 2018-08-14 Venus Systems Limited Centrifugal refrigerant vapour compressors
US10260411B2 (en) 2013-08-30 2019-04-16 Newlenoir Limited Piston arrangement and internal combustion engine
US10458323B2 (en) 2011-12-23 2019-10-29 Cox Powertrain Limited Internal combustion engines
US10605081B2 (en) 2016-05-17 2020-03-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free-piston device and method for operating a free-piston device
US10612380B2 (en) 2016-05-17 2020-04-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free piston device and method for operating a free piston device
US10844718B2 (en) 2016-05-17 2020-11-24 DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V. Free piston apparatus
WO2021041092A1 (fr) * 2019-08-29 2021-03-04 Achates Power, Inc. Système d'entraînement hybride doté d'un moteur à combustion interne à pistons opposés
WO2021207100A1 (fr) * 2020-04-06 2021-10-14 Pinnacle Engines, Inc. Procédé et système pour moteur à combustion interne à pistons opposés hybride avec commandes de planification de volume et de synchronisation d'allumage
EP3874135A4 (fr) * 2018-10-31 2022-04-27 Pinnacle Engines, Inc. Moteur à combustion interne hybride, à pistons opposés
CN114790974A (zh) * 2022-04-19 2022-07-26 中北大学 可变排量对置式柱塞泵及其变排量计算方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237542B2 (en) * 2005-07-27 2007-07-03 Reisser Heinz-Gustav A Internal combustion engine
CN101871389B (zh) * 2010-06-28 2012-11-21 李刊军 相对活塞式发动机
DE102011087790B4 (de) * 2011-12-06 2014-11-27 Siemens Ag Vorrichtung und Verfahren zur Stromerzeugung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401188A (en) * 1943-03-01 1946-05-28 Gen Electric Internal-combustion engine with variable compression ratio
US4856463A (en) * 1987-01-28 1989-08-15 Johnston Richard P Variable-cycle reciprocating internal combustion engine
US20060021589A1 (en) * 2004-07-29 2006-02-02 Jacobsen Stephen C Valve system for a rapid response power conversion device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB746820A (en) * 1953-11-06 1956-03-21 English Electric Co Ltd Improvements in and relating to two-stroke cycle internal combustion engines
US2858816A (en) * 1957-10-08 1958-11-04 Leon A Prentice Internal combustion engines of the variable compression type
WO1988001682A1 (fr) * 1986-09-04 1988-03-10 Galbraith Engineering Pty. Ltd. Machines a mouvement alternatif
EP0344204A1 (fr) * 1987-01-28 1989-12-06 JOHNSTON, Richard P. Moteur a combustion interne a mouvement alternatif et a cycle variable
JPH05263670A (ja) * 1992-03-17 1993-10-12 Mitsubishi Motors Corp 可変圧縮比エンジン
US6039011A (en) * 1997-03-05 2000-03-21 The American University Of Baku Internal combustion engine with opposed pistons
JP4149621B2 (ja) * 1999-09-03 2008-09-10 邦彦 奥平 対向ピストン式2サイクルユニフロー型機関
JP2004011546A (ja) * 2002-06-07 2004-01-15 Mitsubishi Heavy Ind Ltd 内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401188A (en) * 1943-03-01 1946-05-28 Gen Electric Internal-combustion engine with variable compression ratio
US4856463A (en) * 1987-01-28 1989-08-15 Johnston Richard P Variable-cycle reciprocating internal combustion engine
US20060021589A1 (en) * 2004-07-29 2006-02-02 Jacobsen Stephen C Valve system for a rapid response power conversion device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745915B2 (en) 2006-04-18 2017-08-29 Pinnacle Engines, Inc Internal combustion engine
US9206749B2 (en) 2009-06-04 2015-12-08 Pinnacle Engines, Inc. Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use
CN102459845A (zh) * 2009-06-10 2012-05-16 阿尔瓦发动机公司 发动机控制方法
US9835079B2 (en) 2009-06-10 2017-12-05 Alvar Engine Ab Engine control method
US20120078491A1 (en) * 2009-06-10 2012-03-29 Alvar Engine Ab Engine control method
CN102459845B (zh) * 2009-06-10 2014-10-15 阿尔瓦发动机公司 发动机控制方法
WO2010143998A1 (fr) * 2009-06-10 2010-12-16 Alvare Engine Ab Procédé de commande de moteur
CN102720593A (zh) * 2010-10-08 2012-10-10 品纳科动力有限公司 对置活塞及其它内燃机的可变压缩比系统及制造使用方法
EP3190259A3 (fr) * 2010-10-08 2017-09-20 Pinnacle Engines, Inc. Systèmes à rapport de compression variable pour moteurs à pistons opposés et procédés de fabrication et d'utilisation associés
US8413619B2 (en) 2010-10-08 2013-04-09 Pinnacle Engines, Inc. Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use
EP2625404A1 (fr) * 2010-10-08 2013-08-14 Pinnacle Engines, Inc. Systèmes à rapport de compression variable pour moteurs à pistons opposés et autres moteurs à combustion interne, et procédés de fabrication et utilisation associés
US9650951B2 (en) 2010-10-08 2017-05-16 Pinnacle Engines, Inc. Single piston sleeve valve with optional variable compression ratio capability
WO2012048301A1 (fr) * 2010-10-08 2012-04-12 Pinnacle Engines, Inc. Systèmes à rapport de compression variable pour moteurs à pistons opposés et autres moteurs à combustion interne, et procédés de fabrication et utilisation associés
EP2625404A4 (fr) * 2010-10-08 2014-11-05 Pinnacle Engines Inc Systèmes à rapport de compression variable pour moteurs à pistons opposés et autres moteurs à combustion interne, et procédés de fabrication et utilisation associés
CN102619614A (zh) * 2011-01-26 2012-08-01 杨成元 新型泵压四冲程四缸分层旋涡燃烧节能汽油机
CN102155285A (zh) * 2011-01-26 2011-08-17 杨成元 新型四冲程新配气机构四缸分层双转涡燃烧节能内燃机
CN102155285B (zh) * 2011-01-26 2013-05-22 杨成元 新型四冲程新配气机构四缸分层双转涡燃烧节能内燃机
CN102094702A (zh) * 2011-01-26 2011-06-15 杨成元 新型四冲程新配气机构分层双转涡燃烧节能内燃机
CN102400784A (zh) * 2011-10-28 2012-04-04 欧益忠 一种双缸四活塞对置式液控发动机
CN102926865A (zh) * 2011-11-05 2013-02-13 摩尔动力(北京)技术股份有限公司 对置活塞滑动缸分置配气发动机
CN102979618A (zh) * 2011-11-19 2013-03-20 摩尔动力(北京)技术股份有限公司 自启动二冲程发动机
CN102518513A (zh) * 2011-12-19 2012-06-27 欧益忠 液控移动活塞式发动机
CN102425494A (zh) * 2011-12-19 2012-04-25 欧益忠 液控对置活塞式发动机
US10047976B2 (en) 2011-12-21 2018-08-14 Venus Systems Limited Centrifugal refrigerant vapour compressors
US10458323B2 (en) 2011-12-23 2019-10-29 Cox Powertrain Limited Internal combustion engines
CN103382894A (zh) * 2012-05-02 2013-11-06 李德杰 对向活塞结构的内燃发动机
US9316150B2 (en) 2012-07-02 2016-04-19 Pinnacle Engines, Inc. Variable compression ratio diesel engine
EP2984289A1 (fr) * 2013-04-09 2016-02-17 Achates Power, Inc. Mécanisme de variation du calage de vilebrequin sur un moteur à pistons opposés, à deux vilebrequins, commandé par courroie/chaîne
US9849770B2 (en) 2013-05-10 2017-12-26 Achates Power, Inc. Placement of an opposed-piston engine in a heavy-duty truck
US10260411B2 (en) 2013-08-30 2019-04-16 Newlenoir Limited Piston arrangement and internal combustion engine
WO2015039829A1 (fr) * 2013-09-19 2015-03-26 Siemens Aktiengesellschaft Procédé permettant de faire fonctionner un dispositif pourvu d'un moteur à pistons opposés et de deux moteurs électriques
US10844718B2 (en) 2016-05-17 2020-11-24 DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V. Free piston apparatus
US10605081B2 (en) 2016-05-17 2020-03-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free-piston device and method for operating a free-piston device
US10612380B2 (en) 2016-05-17 2020-04-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free piston device and method for operating a free piston device
WO2017198569A1 (fr) * 2016-05-17 2017-11-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Dispositif à piston libre
US10890070B2 (en) 2016-05-17 2021-01-12 DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V. Free piston device
EP3874135A4 (fr) * 2018-10-31 2022-04-27 Pinnacle Engines, Inc. Moteur à combustion interne hybride, à pistons opposés
WO2021041092A1 (fr) * 2019-08-29 2021-03-04 Achates Power, Inc. Système d'entraînement hybride doté d'un moteur à combustion interne à pistons opposés
CN114303007A (zh) * 2019-08-29 2022-04-08 阿凯提兹动力公司 具有对置活塞内燃发动机的混合动力驱动系统
US11598259B2 (en) 2019-08-29 2023-03-07 Achates Power, Inc. Hybrid drive system with an opposed-piston, internal combustion engine
US11982225B2 (en) 2019-08-29 2024-05-14 Achates Power, Inc. Hybrid drive system with an opposed-piston, internal combustion engine
WO2021207100A1 (fr) * 2020-04-06 2021-10-14 Pinnacle Engines, Inc. Procédé et système pour moteur à combustion interne à pistons opposés hybride avec commandes de planification de volume et de synchronisation d'allumage
CN114790974A (zh) * 2022-04-19 2022-07-26 中北大学 可变排量对置式柱塞泵及其变排量计算方法

Also Published As

Publication number Publication date
GB0514600D0 (en) 2005-08-24
GB2428450B (en) 2007-08-01
GB2428450A (en) 2007-01-31

Similar Documents

Publication Publication Date Title
WO2007010186A1 (fr) Moteur a pistons opposes avec synchronisation variable
KR960007104B1 (ko) 압축공기를 동력 매체로 하는 엔진
US5992356A (en) Opposed piston combustion engine
DK2171211T3 (en) combustion Engines
US3485221A (en) Omnitorque opposed piston engine
JP5514247B2 (ja) ダブルピストンサイクル機関
US6230671B1 (en) Variable compression and asymmetrical stroke internal combustion engine
JP3016485B2 (ja) クランク無し往復運動2サイクル内燃機関
EP1819912B1 (fr) Perfectionnements apportes a des machines a mouvement alternatif
DK2721256T3 (en) BURNING ENGINES
EP1934430B1 (fr) Moteurs a deux temps a compression variable
GB2475068A (en) A two stroke internal combustion engine with variable compression ratio
US6343575B1 (en) Rotating/reciprocating cylinder positive displacement device
US10815909B2 (en) Method for varying a cylinder-specific compression ratio of an applied-ignition internal combustion engine and internal combustion engine for carrying out a method of said type
JP4944131B2 (ja) 可変圧縮比及び排気口シャッタを有する2サイクル内燃機関
EP2721257A2 (fr) Moteurs à combustion interne
EP0476010B1 (fr) Moteur a pistons alternatifs ayant des cylindres de pompage et de puissance
JP2016510853A (ja) 改良された対向ピストンエンジン
GB2453131A (en) Internal combustion opposed-piston barrel engine
KR102160518B1 (ko) 배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법
CN102562294B (zh) 八冲程发动机
CN108868943A (zh) 应用电磁全可变气门的发动机二四冲程切换方法
US11365674B2 (en) Cam-driven radial rotary engine incorporating an HCCI apparatus
Deshwal et al. Optimizing internal combustion engine with the help of variable valve timing mechanism
GB2369859A (en) I.c. engine with opposed pistons and cam surfaces to transmit the piston movements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06764896

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)