WO2007007750A1 - 映像整合装置、方法、およびプログラム - Google Patents

映像整合装置、方法、およびプログラム Download PDF

Info

Publication number
WO2007007750A1
WO2007007750A1 PCT/JP2006/313765 JP2006313765W WO2007007750A1 WO 2007007750 A1 WO2007007750 A1 WO 2007007750A1 JP 2006313765 W JP2006313765 W JP 2006313765W WO 2007007750 A1 WO2007007750 A1 WO 2007007750A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
matching
frame
deteriorated
degraded
Prior art date
Application number
PCT/JP2006/313765
Other languages
English (en)
French (fr)
Inventor
Jun Okamoto
Takaaki Kurita
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to US11/921,209 priority Critical patent/US8094196B2/en
Priority to EP06768078.5A priority patent/EP1903809B1/en
Priority to CA2611397A priority patent/CA2611397C/en
Priority to JP2007524656A priority patent/JP4482031B2/ja
Priority to CN2006800218895A priority patent/CN101199211B/zh
Publication of WO2007007750A1 publication Critical patent/WO2007007750A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/004Diagnosis, testing or measuring for television systems or their details for digital television systems

Definitions

  • Video alignment apparatus method, and program
  • the present invention relates to a video processing technique, and more particularly to a video matching technique for temporally and spatially matching a reference video and a degraded video used for subjective quality evaluation of a video.
  • An objective quality evaluation method that estimates the subjective quality using physical features of a video signal, which is the power of multiple video frames (still images) arranged along the time axis, includes a reference video and a degraded video. Is used to estimate a subjective quality evaluation value for a desired evaluation object.
  • Degraded video refers to video that has deteriorated due to signal processing such as encoding of the reference video or network transmission, that is, loss in the evaluation target!
  • the reference image and the deteriorated image can be appropriately matched when, for example, the number of pixels expands or contracts to an integral multiple, but only a few pixels can be obtained. If it is deformed! /, It can be fully supported.
  • the video itself may be stretched or deformed by a few pixels, the reference video itself may be originally blurred, or the degree of deterioration may be large. There is also.
  • Such video signals can be partially matched, but in many other areas they cannot be matched, and it may not be possible to optimize the matching between the reference video and the degraded video.
  • the present invention is intended to solve such a problem, and is a video matching device capable of determining whether video matching is appropriate when obtaining an objective quality evaluation that an evaluator having specialized knowledge does not make an empirical judgment. It aims to provide a method, and a program. Means for solving the problem
  • an image matching apparatus includes an arbitrary reference image having a plurality of reference image frame powers arranged along a time axis, and the reference image frame is arbitrarily selected.
  • the deteriorated video frame force deteriorated due to the evaluation target of the input is input, and the degraded video is selected from a plurality of reference video frames having a time lag within a predetermined number of frames for each deteriorated video frame.
  • Frame and spatial And a matching state detecting means for detecting a reference video frame in a matching state that is temporally matched, and a matching degree deriving means for deriving a matching degree indicating a matching degree between the reference video frame in the matching state and the deteriorated video frame.
  • a matching information output means for outputting the reference video and the degraded video that are matched based on the matching state and the matching degree, and a degradation amount derivation for deriving a degradation amount indicating a degree of degradation between any two video frames.
  • a first degree of degradation indicating the amount of degradation between the reference video frame and the degraded video frame in the matched state by controlling the degradation amount deriving unit by the matching degree deriving means, and from the matched state
  • a second deterioration amount indicating a deterioration amount between the reference video frame and the deteriorated video frame that are shifted by a predetermined number of pixels is obtained, and based on a ratio between the first deterioration amount and the second deterioration amount. Calculate consistency It is what I did.
  • the video matching method includes an arbitrary reference video having a plurality of reference video frame powers arranged along the time axis by the matching state detection means, and arbitrary evaluation of these reference video frames.
  • the degraded video frame power degraded by the target is input, and the degraded video frame is selected from among the degraded video frames and a plurality of reference video frames having a time lag within a predetermined number of frames for each degraded video frame.
  • a matching state detection step for detecting a reference video frame in a matching state spatially and temporally matched, and matching indicating a matching degree between the reference video frame in a matching state and a degraded video frame by a matching degree deriving unit.
  • the reference image and the deteriorated image matched based on the matching state by the matching degree deriving step for deriving the degree of matching and the matching information output means A matching information output step for outputting a matching level, and a degradation amount deriving step for deriving a degradation amount indicating a degree of degradation between any two video frames by a degradation amount deriving unit.
  • the program according to the present invention includes a plurality of reference video frame forces arranged along a time axis, and arbitrary reference videos having these reference video frames.
  • Degraded video frame power that has deteriorated is input, and the reference video and degraded video are output spatially and temporally aligned and output to the computer of the video alignment device.
  • a matching state detecting step for detecting a reference video frame in a matching state spatially and temporally matched with the deteriorated video frame from a plurality of reference video frames having a time lag within a predetermined number of frames, and matching
  • the degree deriving means indicates the degree of matching between the reference video frame and the deteriorated video frame in the matching state.
  • a matching degree deriving step for deriving the matching level, a matching information outputting step for outputting the reference video and the degraded video and the matching level based on the matching state by the matching information output means, and the degradation amount deriving unit A deterioration amount deriving step for deriving a deterioration amount indicating the degree of deterioration between the two video frames, and using the deterioration amount deriving step as a matching degree deriving step, A first deterioration amount indicating the amount of deterioration between the frame and a second deterioration amount indicating a deterioration amount between the reference video frame and the deteriorated video frame in a state where the matching state force is shifted by a predetermined number of pixels; And a step of calculating the degree of consistency based on the ratio of the first deterioration amount and the second deterioration amount.
  • the degree of matching indicating the degree of matching is calculated based on the ratio of the second amount of deterioration indicating the amount of deterioration between the reference video frame and the deteriorated video frame in a state shifted by a predetermined number of pixels from the matching state.
  • the degree of consistency can be calculated as an index indicating the degree of optimization of video matching.
  • FIG. 1 is a block diagram showing a configuration of a video matching apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a video matching process of the video matching device according to the present embodiment.
  • FIG. 3 is an explanatory view showing an example of a reference test video for format conversion confirmation.
  • FIG. 4 is an explanatory view showing an example of a reference test image for position alignment and alignment range confirmation.
  • FIG. 5 is an explanatory view showing an example of a reference test video for confirming a local deformation processable range.
  • FIG. 6 is an explanatory diagram showing an example of a reference test video for confirming the luminance and color appearance distribution.
  • FIG. 7 is an explanatory diagram showing an example of matching display timings.
  • FIG. 8 is an explanatory diagram showing another example of matching display timing.
  • FIG. 9 is an explanatory diagram showing another example of matching display timing.
  • FIG. 10 is an explanatory diagram showing an example of macro synchronization processing in the time direction.
  • FIG. 11 is an explanatory diagram showing an example of micro synchronization processing in the time direction.
  • FIG. 12 is an explanatory view showing a calculation example of the deterioration amount and the inter-frame difference value in the matching state detection process.
  • FIG. 13 is an explanatory diagram showing a change in matching characteristics depending on a matching state.
  • FIG. 14 is an explanatory diagram showing changes in matching characteristics depending on the definition of the reference video.
  • FIG. 15 is an explanatory diagram showing pixel shift.
  • FIG. 16 is a block diagram showing a configuration of a video matching apparatus according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a video matching apparatus according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a video matching apparatus according to an embodiment of the present invention.
  • the video matching device 100 is a signal processing device that performs arbitrary arithmetic processing on an input signal to obtain a desired output signal, and includes a plurality of video frames (still images) arranged along the time axis.
  • An arbitrary reference video 1 that is powerful and a deteriorated video 2 that has deteriorated due to an arbitrary evaluation target such as sign signal processing or network transmission are input to the reference video 1, and the deteriorated video 2 is compared to the reference video 1.
  • This is a device that outputs images that are spatially and temporally matched and various types of matching processing information related to matching processing.
  • the present embodiment shows the amount of deterioration between the reference video frame and the deteriorated video frame when the reference video and the deteriorated video are in an alignment state that is most closely aligned in terms of space and time.
  • the degree of matching indicating the degree of matching based on the ratio between the amount of deterioration and the second amount of deterioration indicating the amount of deterioration between the reference video frame and the deteriorated video frame in a state that is deviated by a predetermined number of pixels from the matching state. Is calculated and output.
  • the video matching apparatus 100 includes a format conversion unit 10, a display timing matching unit 20, a video matching unit 30, a deterioration amount deriving unit 40, and a matching parameter deriving unit 50. It is realized by a signal processing circuit unit, an arithmetic processing unit, and further a storage unit.
  • the arithmetic processing unit has a microprocessor such as a CPU or DSP and its peripheral circuits, and various functional units are realized by reading and executing the program from the microprocessor or the memory or storage unit of the peripheral circuit.
  • the storage unit includes a storage device such as a hard disk memory, and stores various processing information used in the signal processing circuit unit and the arithmetic processing unit, video data of reference video and degraded video, and a program.
  • the format conversion unit 10 includes a signal processing circuit and an arithmetic processing unit.
  • the format conversion unit 10 has a function of converting the signal format of the degraded video 2 into the signal format of the reference video 1, and the degradation after format conversion obtained by the format conversion. It has a function to output video 2A.
  • the display timing matching unit 20 includes a signal processing circuit and an arithmetic processing unit.
  • the display timing matching unit 20 has a function of matching the number of video frames of the degraded video 2A after format conversion and the display timing with the reference video 1, and this matching. And a function to output the obtained degraded video 2B after timing matching.
  • the video matching unit 30 includes a signal processing circuit and an arithmetic processing unit. The video matching unit 30 performs matching processing on the input reference video 1 and the deteriorated video 2B for each video frame, and further matches the reference video and the deteriorated video after the matching. Has a function to output various types of matching information related to video matching processing, such as the degree of matching.
  • the video matching unit 30 is provided with macro synchronizing means 31, micro synchronizing means 32, matching state detecting means 33, matching degree deriving means 34, and matching information output means 35 as specific functional means.
  • the macro synchronization means 31 derives a macro frame difference between the reference video 1 and the degraded video 2B by comparing transitions of predetermined video feature values extracted from the input reference video 1 and the degraded video 2B, respectively. It has a function.
  • the micro-synchronizing means 32 includes a plurality of arbitrary degraded video frames from the reference video 1 and the degraded video 2B that have been macro-synchronized by the macro synchronizing means 31, and a plurality of temporal shifts within a predetermined number of frames with respect to the degraded video frames. Select the frame pair with the reference video frame, control the deterioration amount deriving unit 40 to acquire the deterioration amount of these frame pairs, and the reference video 1 based on the frame pair with the minimum deterioration amount among these frame pairs 1 And a function of deriving a micro frame difference between the degraded video 2B.
  • the matching state detection means 33 for the reference image 1 and the deteriorated image 2B synchronized by the macro frame difference and the micro frame difference, for each deteriorated image frame, the time difference within the predetermined number of frames from the deteriorated image frame. It has a function of detecting a reference video frame in a matching state spatially and temporally aligned with the degraded video frame from among a plurality of reference video frames.
  • the matching degree deriving means 34 has a function of deriving a matching degree indicating a matching degree between the reference video frame and the degraded video frame in the matching state. More specifically, the deterioration amount deriving unit 40 is controlled to shift the first deterioration amount indicating the deterioration amount between the reference video frame and the deteriorated video frame in the aligned state by a predetermined number of pixels from the aligned state. The second degradation amount indicating the degradation amount between the reference video frame and the degraded video frame is obtained, and the degree of matching is calculated based on the ratio of the first degradation amount and the second degradation amount. To do. At this time, the spatial feature (SI) of the reference video calculated based on the ITU-T P. 910 rules is multiplied by the above ratio to match. The degree may be calculated.
  • SI spatial feature
  • the matching information output means 35 has a function of outputting matching information related to the video matching processing, including the degree of matching for each deteriorated video frame.
  • the degradation amount deriving unit 40 includes a signal processing circuit and an arithmetic processing unit, and has a function of deriving a signal-to-noise ratio between any two video frames as a degradation amount and any two video frames. A function of deriving an average value of pixel value differences between frames as an inter-frame difference value, and a function of outputting the deterioration amount and inter-frame difference value to the video matching unit 30.
  • the degradation amount deriving unit 40 sets the signal-to-noise ratio between the reference video frame and the degraded video frame as the first degradation amount in response to an instruction from the matching degree deriving unit 34. calculate. Further, in accordance with an instruction from the degree-of-matching deriving means 34, the reference video frame in the aligned state and a plurality of images that are shifted from the aligned state in the horizontal direction, the vertical direction, and the vertical and horizontal directions by a predetermined number of pixels The average signal-to-noise ratio with the degraded video frame is calculated as the second degradation amount. Further, in accordance with an instruction from the matching state detection means 33, the signal-to-noise ratio between the reference video frame and the deteriorated video frame is calculated as the deterioration amount.
  • the matching parameter deriving unit 50 includes a signal processing circuit and an arithmetic processing unit.
  • the matching parameter deriving unit 50 compares a predetermined reference test video 3 with a degradation test video 4 in which the reference test video 3 has deteriorated due to an evaluation target, It has a function of deriving various alignment parameters used for video alignment processing.
  • FIG. 2 is a flowchart showing the video matching process of the video matching device according to the present embodiment.
  • reference video 1 and degraded video 2 include frame rate information or frame display time Z capture time information, and there are multiple reference video and degraded video before and after the frame to be processed. It is assumed that the processing proceeds in non-real time while accumulating frames for storage.
  • the image matching apparatus 100 Prior to the alignment of the reference image 1 and the deteriorated image 2, the image matching apparatus 100 compares the reference test image 3 and the deterioration test image 4 by the alignment parameter deriving unit 50 and compares various alignment parameters. Deriving the meter (step 100).
  • the reference test video 3 stored in advance in the video matching device 100 may be input to the evaluation target, and the degradation test video 4 as the output may be received.
  • These reference test image 3 and deterioration test image 4 may be actual signals or data files composed of data strings indicating signal values.
  • the degradation test video 4 is processed using the same processing method as the format conversion unit 10.
  • the matching parameters are derived after 4 is in the same format as the reference test video 3.
  • FIG. 3 is an example of a reference test video for format conversion confirmation.
  • This reference test image 3A is a test image in which the brightness (including color) of the same pattern such as a checkered pattern is maximized and minimized.
  • the video scaling ratio 5A of the reference test video 3 and the degradation test video 4 can be derived as a matching meter from the difference in pattern position and size. If the reference test video 3A is used, the luminance appearance range 5B in the reference test video 3 and the degradation test video 4 can be derived as a matching parameter from the maximum and minimum luminance values (including colors) of the reference video and the degradation video.
  • FIG. 4 is an example of a reference test video for position alignment 'alignment range confirmation.
  • This reference test image 3B is a test image with markers that pinpoint the positions at multiple points scattered over a wide area of the image. The surrounding pattern power can also be estimated.
  • FIG. 5 is an example of a reference test video for confirming the local deformation processable range.
  • This reference test image 3C is a test in which black and white frames are alternately inserted for every fixed number of pixels, for example, every pixel. This is the image.
  • FIG. 6 is an example of a reference test video for checking the luminance / color appearance distribution.
  • This reference test video 3D is an image (gray image) that repeats a gradual change in brightness within the screen from the minimum value (e.g. 0) to the maximum value (e.g. 255), or for each reference color that changes the color in the same way.
  • This is a test image consisting of images (red image, green image, blue image).
  • the luminance and color appearance distribution 5G (average value, variance, number of gradations) in the degradation test video 4 can be derived as a matching parameter.
  • the format conversion unit 10 expands the video derived by the matching parameter deriving unit 50.
  • the signal format of the degraded video 2 is converted based on the matching parameter 51 including the reduction ratio 5A and the luminance appearance range 5B, and the degraded video 2A after the format conversion is output (step 101).
  • the reference video 1 is an uncompressed YUV format and the data format of the degraded video is an uncompressed RGB format, for example, Rec. ITU-R BT.601 "STUDIO ENCODING PARAME TERS OF DIGITAL TELEVISION FOR STANDARD 4: 3 AND WIDE-SCREEN 16: 9 ASPECT RATIOS ⁇ ⁇ is used to convert degraded video 2.
  • the deteriorated video 2 is in a compressed format, it is converted to an uncompressed format in advance. If the aspect ratio is different, convert it so that it is the same. For example, if it can be simply calculated as an integer multiple, it is necessary to convert it to an arbitrary size. For example, “Digital image processing that works well” Chapter 7 “Creating images” Perform conversion to any size as in “Resolution Conversion”. Then, the degraded video 2A converted from the reference video is passed to the display timing matching unit 20.
  • the video enlargement / reduction ratio derived by the matching parameter deriving unit 50 is used. Based on 5A, the image is converted for enlargement / reduction. Also brightness If the appearance range of a pixel is due to a difference in the standard based on the appearance range 5B, conversion that matches the appearance range shall be performed using linear transformation of luminance values.
  • the display timing matching unit 20 performs processing such as frame interpolation in order to match the degraded video 2A format-converted by the format conversion unit 10 with the display timing of the reference video 1, and performs degraded video after timing matching.
  • 2B is output (step 102). 7 to 9 show examples of display timing matching.
  • the degraded video 2A is displayed using the video displayed at the display timing of the standard video 1 or the video that is temporally close to the display timing of the standard video 1. Interpolate.
  • the reference video 1 itself does not have a constant frame rate
  • the reference video 1 and the deteriorated video 2A are interpolated so as to be displayed at an accurate time interval different from these.
  • the video matching unit 30 obtains the video enlargement / reduction ratio 5A, luminance appearance range 5B, spatial direction shift amount 5C, corresponding range 5D, and video deformation region range 5E obtained by the matching parameter derivation unit 50. Or, using the matching parameter 52 such as the appearance distribution 5G, transition between the three motion states, ie, the evaluation start state, the synchronization state, and the freeze state, while the reference image 1 and the deteriorated image after timing matching 2B video alignment processing is performed (steps 110 to 135).
  • the matching parameter 52 such as the appearance distribution 5G
  • the video matching unit 30 performs macro synchronization processing by the macro synchronization means 31 in order to achieve rough synchronization in the time direction (step 110).
  • the macro synchronization means 31 calculates the video feature amount such as the average value of the luminance Z color difference ZRGB value for each frame or for a specific area of the reference video 1 and the degraded video 2B for a certain period of time. Transitions are compared, and the frame difference when the consistency between the two becomes the highest is derived as a macro time-direction shift, that is, a macro frame difference.
  • FIG. 10 is an example of macro synchronization processing in the time direction. Specifically, as shown in Fig. 10, the time from the condition that the difference between each time series value is minimized by shifting the feature quantity such as the average luminance value in the time direction or the condition that the cross-correlation coefficient is maximized. Misalignment, ie macro Deriving the frame difference.
  • FIG. 11 is an explanatory diagram showing an example of micro synchronization processing.
  • the micro-synchronization means 32 is an arbitrary frame pair of the reference image 1 and the deteriorated image 2B after the macro synchronization, for example, the first frame of the deteriorated image 2B, and the reference image 1 corresponding thereto. 11 and the frame force obtained by the matching parameter deriving unit 50 as shown in FIG. 11 for each frame to be searched and each frame pair having a time difference within a predetermined number of frames.
  • the degradation amount deriving unit 40 calculates a signal-to-noise ratio PSNR (Peak Signal to Noise Ratio) using Equation 1 described later as the degradation amount between these two frames.
  • PSNR Peak Signal to Noise Ratio
  • the micro synchronization means 32 selects the frame pair having the maximum signal-to-noise ratio PSNR calculated by the degradation amount deriving unit 40, that is, the smallest degradation amount, so that the reference video 1 and the degraded video are selected.
  • the frame correspondence with the most consistent 2B is obtained, and this frame difference is derived as a microframe difference. This makes it possible to achieve micro alignment in the time direction.
  • a synchronized state such a frame correspondence relationship between the reference video 1 and the degraded video 2B is referred to as a synchronized state.
  • the frame pair force in the frame correspondence relationship between the reference video 1 and the degraded video 2B has a spatial positional relationship that minimizes the amount of degradation, specifically a positional relationship that maximizes the signal-to-noise ratio PSNR.
  • the state is the alignment state in which the reference image 1 and the deteriorated image 2B are most aligned in time and space.
  • the video matching unit 30 matches the reference video 1 and the reference video 1 that are in a synchronized frame correspondence until either the reference video 1 or the degraded video 2B after timing matching is the last video frame. From the degraded video 2B, the reference video target frame and the degraded video target frame are selected in sequence, and the reference video target frame and the degraded video target frame are the same as shown below.
  • the processing loop in the initial state and the frozen state is started (steps 112 and 114).
  • variables i and j indicate the reference video target frame number and the degraded video target frame number, respectively.
  • Variables N and M indicate the reference video final frame number and the degraded video final frame number, respectively.
  • Flag F1 indicates the synchronized state (0) and asynchronous state (1) of both images in the spatial direction.
  • Flag F2 indicates the synchronized state (0), frame skip (1), and others (2: frame) in the time direction. Return state).
  • the variable Count is the number of times the degraded video is frozen.
  • the video matching unit 30 uses the matching state detecting unit 33 to obtain the amount of deviation in the time-space direction obtained by the matching parameter deriving unit 50.
  • a degraded degraded video is generated by correcting degraded video 2B based on 5C, luminance and color information 5B, 5G, and the degradation amount and inter-frame difference value from the reference video are calculated by the alignment status detection process described later (step 120).
  • the matching state detection means 33 passes the deteriorated image and the reference frame to be processed to the deterioration amount deriving unit 40, so that the deterioration amount deriving unit 40 and the inter-frame deterioration amount related to these frames are transmitted. Get the difference value.
  • FIG. 12 is an explanatory diagram showing a calculation example of the deterioration amount and the inter-frame difference value in the matching state detection process.
  • the degradation amount deriving unit 40 receives the degraded video target frame (j) of the degraded video 2B and the reference video target frame (i) of the reference video 1 corresponding thereto received from the matching state detection unit 33.
  • the reference image target frame (i) force The reference image frame force having a time lag within a predetermined number of frames and the amount of deterioration are derived for each force frame pair. From these frame pairs, the frame pair with the minimum degradation amount and the matching state is selected, and the frame number of the reference video frame is derived.
  • the degradation amount deriving unit 40 derives an inter-frame difference value between each of the immediately preceding frame and the reference video frame and the degraded video frame of the frame pair using Equation 2 described later. At this time, the deterioration amount deriving unit 40 calculates a difference value of the pixel values for each pixel of both video frames, and calculates an average difference value of pixels of the entire video frame as an inter-frame difference value. [0052]
  • the video matching unit 30 determines whether or not the degraded video is frozen based on the inter-frame difference value of each target frame derived by the degradation amount deriving unit 40 by the matching state detection unit 33 (step 121). In other words, if the difference value for the reference image shows a certain value while that of the deteriorated image shows almost 0, it is determined that the deteriorated image has no change.
  • step 121 If the degraded video is in a frozen state (step 121: YES), the video matching unit 30 sets the flag F1 to the asynchronous state (1) and sets the number of freezes to 1 (step 128). Then, the process proceeds to step 114 of the processing loop.
  • the video matching unit 30 performs a matching degree calculation process described later by the matching degree deriving unit 34, and shows a matching degree indicating a matching degree between the reference video frame and the deteriorated video frame in the matching state.
  • the matching information output means 35 matches the matching reference video or the matching deteriorated video composed of the reference video and the deteriorated video based on the matching state, the matching degree, the matching parameter (5A to 5G), and the synchronization information (F2). And consistency information such as the number of freezes (Count) are output (step 126). After resetting Count to 0 (step 127), the process proceeds to step 114.
  • the video matching unit 30 executes the matching state detection process in the matching state detection means 33 in the same manner as in step 120 (step 130), it is determined whether or not the deteriorated video is frozen in the same manner as in step 121 (step 131). If the deteriorated video is in a frozen state (step 131: YES), the alignment state detection means 33 increments the number of freezes Count (+1) (step 135) and proceeds to step 114 of the processing loop.
  • step 131: NO when the deteriorated video is not in the frozen state (step 131: NO), the video matching unit 30 performs macro synchronization processing similar to step 110 (step 132), and the matching information output means 35 performs the number of freezes. Count is output (step 133). Then, the flags F1 and Count are reset to 0 (step 134), and the process loops to step 114.
  • step 114 the reference video target frame number i and the degraded video target frame number j are incremented, respectively, and if i and N or; j ⁇ M holds, the loop processing between step 112 and step 112 is repeated. Also, when both i and j reach N and M, the series of video alignment processing is completed.
  • FIG. 13 is an explanatory diagram showing changes in matching characteristics depending on the matching state.
  • FIG. 14 is an explanatory diagram showing changes in matching characteristics depending on the definition of the reference video.
  • FIG. 15 is an explanatory diagram showing pixel shift.
  • the degree of matching is derived using the following two features.
  • the first feature is that, as shown in FIG. 13, when the matching is optimized, the signal-to-noise ratio between the frame of the reference image and the deteriorated image in the matching state and only one pixel from the matching state If the signal-to-noise ratio difference in the shifted state is large and matching is not optimized, the difference in the signal-to-noise ratio in the state shifted by one pixel from the matched state is small.
  • the second feature is that when matching is optimized, the characteristic is the fineness of the reference image pattern as shown in Fig. 14. The higher the video, the more prominent the tendency is.
  • the specific degree of matching calculation process by the degree-of-matching deriving means 34 is as follows. First, the inferiority in the matching state that is determined to be the most temporally and spatially matched between the reference video and the degraded video. As shown in the signal-to-noise ratio PSNR (Peak Signal to Noise Ratio) in Equation 1, the pixel difference value between the reference image and the deteriorated image with respect to the peak luminance (255), In other words, the logarithmic ratio with MSE shown in Equation 2 is calculated.
  • PSNR Peak Signal to Noise Ratio
  • Equation 2 Yin and Yout are reference images Z-degraded images, N is the number of pixels, and Y (X, y, i) is the pixel value at the position (x, y) of the i-th frame.
  • the signal-to-noise ratio PSNR is calculated in the same manner for the state where the predetermined number of pixels is deviated from the matching state (near the matching state), and the average value is calculated as the deterioration amount (second deterioration (Quantity).
  • the deterioration amount second deterioration (Quantity).
  • eight states shifted from the aligned state by one pixel or 18 states shifted by two pixels are used.
  • the SI value is the spatial feature defined in ITU-T P.910 (“Subjective video quality a ssessment methods for multimedia applications,” Aug. 1996.). Information) is calculated, and the degree of consistency is derived from Equation 3 using these values.
  • is a coefficient for normalizing the degree of matching.
  • Consistency a X SI value X of reference image X (PSNRZ alignment near PSNR average value) (3)
  • the amount of deterioration between the reference video frame and the deteriorated video frame when the reference video and the deteriorated video are in the aligned state that is the most consistent in terms of space and time.
  • a reference image with a first degradation amount indicating Based on the ratio of the second degradation amount indicating the degradation amount between the frame and the degraded video frame, the matching degree indicating the degree of matching is calculated and output.
  • the degree of consistency can be calculated as an index.
  • the degree of matching is calculated by multiplying the spatial feature quantity (SI) of the reference image calculated based on the ITU-T P.910 standard by the ratio of the deterioration amount, Can be weighted by quantity.
  • the degree of matching can be calculated stably and universally.
  • the case where the signal-to-noise ratio PSNR is used as the deterioration amount has been described as an example.
  • the present invention is not limited to this, and an average difference value of pixel values may be used. Even when using a signal-to-noise ratio, use a known signal-to-noise ratio other than PSNR.
  • the video matching unit 30 and the degradation amount deriving unit 40 are realized by separate functional units.
  • both of these functional units are both signal processing circuits.
  • This is realized by a processing unit and an arithmetic processing unit. Therefore, as shown in FIG. 16, the deterioration amount deriving unit 40 may be realized by the same function unit as the video matching unit 30.
  • various types of data can be exchanged between each functional means of the video matching unit 30 and the degradation amount deriving unit 40 very easily, and the required processing time can be shortened and one-dose resource can be reduced. it can.
  • This also applies to the relationship between the format converter 10, the display timing matching unit 20, or the matching parameter deriving unit 50 and the video matching unit 30.
  • the degraded video frame is fixed and a plurality of reference video frames and frame pairs are configured in the micro synchronization processing in step 111 has been described as an example. It is not limited. For example, fix the reference video frame and It is possible to execute the same micro-synchronization processing as described above in which a degraded video frame corresponding to this and a plurality of degraded video frames having a time lag within a predetermined number of frames with the degraded video frame may be configured.
  • the force described as an example in which the micro synchronization means 32 and the alignment state detection means 33 are realized by separate functional means is not limited to this.
  • both the micro synchronization means 32 and the matching state detection means 33 both control the deterioration amount deriving unit 40 to acquire the deterioration amounts of a plurality of frame pairs and select the frame pair having the smallest deterioration amount. It has a function. Therefore, realize these with the same functional means.
  • the matched information output means 35 when the matched information output means 35 outputs the matched video, the reference video frame and the degraded video frame used for calculating the degree of matching are matched with the matched reference video and the matched degradation, respectively. It may be output as a video.
  • the present invention is not limited to this.
  • the video alignment processing may be performed using the reference video 1 after the interpolation.
  • the matching parameter deriving unit 50 is provided in the present embodiment, the case where the matching parameter deriving unit 50 is provided has been described as an example. However, the matching parameter deriving unit 50 is not provided, and necessary parameters are derived within the process of FIG. Please do it.
  • the signal-to-noise ratio PSNR is If the maximum deviation is derived as 5C in the spatial direction,
  • the luminance display range 5B is derived as a matching parameter from the maximum and minimum luminance values (including colors) of the reference video frame and the deteriorated video frame.
  • the brightness and color appearance distribution 5G average value, variance, number of gradations
  • a matching parameter deriving unit 50 is provided to compare a predetermined test reference image with a test deteriorated image obtained from the test reference image according to the evaluation target, Since the various matching parameters used to match the reference video and the degraded video are derived, the degradation characteristics of the evaluation target are remarkable compared to the case of using the normal reference video and degraded video as described above. Can be derived. Furthermore, since the matching process is performed based on this matching parameter, appropriate video matching is performed even if the reference video or degraded video is blurred or the degradation caused by the evaluation target is large. be able to.
  • the video matching device 100 can be used as an objective evaluation device.
  • the video matching apparatus objectively evaluates the quality of video played on the receiving terminal in quality management of video distribution services and video communication services using an IP network such as the Internet.
  • IP network such as the Internet.
  • it is useful as a device that aligns the reference video and the degraded video temporally and spatially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Picture Signal Circuits (AREA)

Abstract

 映像整合装置(100)の整合状態検出手段(33)により、基準映像(1)と劣化映像(2B)の各映像フレームのうち劣化映像フレームごとに空間的および時間的に整合した整合状態にある基準映像フレームを検出し、整合度導出手段(34)により、劣化量導出部(40)を制御して、整合状態にある基準映像フレームと劣化映像フレームとの間の劣化量を示す第1の劣化量と、整合状態から所定画素数だけずれた状態の、基準映像フレームと劣化映像フレームとの間の劣化量を示す第2の劣化量とを取得し、これら第1の劣化量と第2の劣化量の比に基づき整合度を算出し、整合情報出力手段(35)により、整合後の基準映像および劣化映像と整合度とを出力する。

Description

映像整合装置、方法、およびプログラム
技術分野
[0001] 本発明は、映像処理技術に関し、特に映像の主観品質評価に用いる基準映像と 劣化映像を時間的および空間的に整合させる映像整合技術に関する。
背景技術
[0002] 時間軸に沿って並べられた複数の映像フレーム (静止画)力 なる映像信号の物理 的な特徴量を用いて主観品質を推定する客観品質評価法には、基準映像と劣化映 像とを用いて、所望の評価対象に対する主観品質評価値を推定する技術がある。劣 化映像とは、基準映像に対する符号化やネットワーク伝送などの信号処理すなわち 評価対象での損失によって劣化した映像を!ヽぅ。
このような技術では、基準映像と劣化映像の間に時間方向や空間方向のずれがあ る場合、精度良く主観品質評価値を推定できないため、基準映像と劣化映像を適切 に整合させることが重要となる。
[0003] 従来より提案されている、基準映像と劣化映像を用いて主観品質評価値を推定す る技術(例えば、特開 2004— 080177号公報、 USP5,446,492、 USP6,704,451など参 照)は、 TV放送を想定しており、厳密に同期している信号あるいは同一の映像サイ ズ.フレームレートの信号については適切に主観品質評価値を推定することができる
。したがって、これら技術は、予め整合している基準映像と劣化映像を用いること、あ るいは映像の開始時点で簡易的に整合させた基準映像と劣化映像を用いることを前 提とするちのである。
[0004] しかし、近年普及し始めて!/、る、インターネットなどの IPネットワークを用いた映像配 信サービスや映像コミュニケーションサービスでは、パーソナルコンピュータ(PC)端 末で映像を受信するため、基準映像と劣化映像のサイズやアスペクト比が異なって いたり、ネットワーク性能に起因した映像品質の劣化が大きぐ基準映像と劣化映像 の空間的や時間的な位置の整合は取れていない。したがって、上記技術では適切 に主観品質評価値を推定することはできな 、。 [0005] これに対して、発明者らは、基準映像と劣化映像の信号フォーマットを揃えるととも に、これら映像信号に対するマクロ的やよびミクロ的な整合処理をフレームごとに行う ことにより、基準映像と劣化映像の時間方向や空間方向の整合をとつて客観評価結 果を得る技術を提案した (例えば、 WO2005Z020592A1など参照)。
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、この従来技術では、基準映像と劣化映像が、例えば画素数について 整数倍に伸縮'変形している場合には適切に整合をとることができるものの、単に数 画素だけ伸縮'変形して!/、る場合、完全には対応できて 、な 、。
特に、評価対象となる映像符号化や伝送システムなどの信号処理によっては、映 像自体を数画素だけ伸縮'変形して 、たり、基準映像自体が元々ぼやけて 、たり、 劣化の程度が大きいこともある。このような映像信号については、部分的には整合が 取れるが、それ以外の多くの領域では整合が取れなくなり、基準映像と劣化映像の 整合を最適化できな ヽ場合がある。
[0007] このため、客観品質評価値を得る際には映像整合が適切力どうかについて専門知 識を持つ評価者が経験的に判断する必要がある。したがって、専門知識を持つ評価 者がいない場合には、客観品質評価を得る際の映像整合が適切カゝどうかを判断でき ず、結果として適切な主観品質評価値を推定することはできな 、と 、う問題点があつ た。
本発明はこのような課題を解決するためのものであり、専門知識を持つ評価者が経 験的に判断することなぐ客観品質評価を得る際の映像整合が適切かどうかを判断 できる映像整合装置、方法、およびプログラムを提供することを目的としている。 課題を解決するための手段
[0008] このような目的を達成するために、本発明にかかる映像整合装置は、時間軸に沿つ て並べられた複数の基準映像フレーム力 なる任意の基準映像とこれら基準映像フ レームが任意の評価対象により劣化した劣化映像フレーム力 なる劣化映像とを入 力とし、劣化映像フレームごとに当該劣化映像フレームと所定フレーム数以内の時間 的ずれを有する複数の基準映像フレームのうちから当該劣化映像フレームと空間的 および時間的に整合した整合状態にある基準映像フレームを検出する整合状態検 出手段と、整合状態にある基準映像フレームと劣化映像フレームの間の整合度合い を示す整合度を導出する整合度導出手段と、整合状態に基づき整合された基準映 像および劣化映像と整合度とを出力する整合情報出力手段と、任意の 2つの映像フ レームの間の劣化度合いを示す劣化量を導出する劣化量導出部とを備え、整合度 導出手段により、劣化量導出部を制御して、整合状態にある基準映像フレームと劣 化映像フレームとの間の劣化量を示す第 1の劣化量と、整合状態から所定画素数だ けずれた状態の基準映像フレームと劣化映像フレームとの間の劣化量を示す第 2の 劣化量とを取得し、これら第 1の劣化量と第 2の劣化量の比に基づき整合度を算出す るようにしたものである。
[0009] また、本発明にかかる映像整合方法は、 整合状態検出手段により、時間軸に沿つ て並べられた複数の基準映像フレーム力 なる任意の基準映像とこれら基準映像フ レームが任意の評価対象により劣化した劣化映像フレーム力 なる劣化映像とを入 力とし、劣化映像フレームごとに当該劣化映像フレームと所定フレーム数以内の時間 的ずれを有する複数の基準映像フレームのうちから当該劣化映像フレームと空間的 および時間的に整合した整合状態にある基準映像フレームを検出する整合状態検 出ステップと、整合度導出手段により、整合状態にある基準映像フレームと劣化映像 フレームの間の整合度合いを示す整合度を導出する整合度導出ステップと、整合情 報出力手段により、整合状態に基づき整合された基準映像および劣化映像と整合度 とを出力する整合情報出力ステップと、劣化量導出部により、任意の 2つの映像フレ ームの間の劣化度合いを示す劣化量を導出する劣化量導出ステップとを備え、整合 度導出ステップは、劣化量導出ステップを用いて、整合状態にある基準映像フレー ムと劣化映像フレームとの間の劣化量を示す第 1の劣化量と、整合状態から所定画 素数だけずれた状態の基準映像フレームと劣化映像フレームとの間の劣化量を示す 第 2の劣化量とを取得するステップと、これら第 1の劣化量と第 2の劣化量の比に基づ き整合度を算出するステップとからなる。
[0010] また、本発明にかかるプログラムは、 時間軸に沿って並べられた複数の基準映像 フレーム力 なる任意の基準映像とこれら基準映像フレームが任意の評価対象により 劣化した劣化映像フレーム力 なる劣化映像とを入力とし、これら基準映像と劣化映 像を空間的および時間的に整合させて出力する映像整合装置のコンピュータに、整 合状態検出手段により、時間軸に沿って並べられた複数の基準映像フレーム力 な る任意の基準映像とこれら基準映像フレームが任意の評価対象により劣化した劣化 映像フレーム力 なる劣化映像とを入力とし、劣化映像フレームごとに当該劣化映像 フレームと所定フレーム数以内の時間的ずれを有する複数の基準映像フレームのう ちから当該劣化映像フレームと空間的および時間的に整合した整合状態にある基準 映像フレームを検出する整合状態検出ステップと、整合度導出手段により、整合状 態にある基準映像フレームと劣化映像フレームの間の整合度合いを示す整合度を 導出する整合度導出ステップと、整合情報出力手段により、整合状態に基づき整合 された基準映像および劣化映像と整合度とを出力する整合情報出力ステップと、劣 化量導出部により、任意の 2つの映像フレームの間の劣化度合いを示す劣化量を導 出する劣化量導出ステップとを実行させ、整合度導出ステップとして、劣化量導出ス テツプを用いて、整合状態にある基準映像フレームと劣化映像フレームとの間の劣化 量を示す第 1の劣化量と、整合状態力 所定画素数だけずれた状態の基準映像フレ ームと劣化映像フレームとの間の劣化量を示す第 2の劣化量とを取得するステップと 、これら第 1の劣化量と第 2の劣化量の比に基づき整合度を算出するステップとを実 行させる。
発明の効果
本発明によれば、基準映像と劣化映像が空間的および時間的に最も整合した整合 状態にあるときの、基準映像フレームと劣化映像フレームとの間の劣化量を示す第 1 の劣化量と、整合状態から所定画素数だけずれた状態の、基準映像フレームと劣化 映像フレームとの間の劣化量を示す第 2の劣化量との比に基づき、整合の度合いを 示す整合度が算出されるため、映像整合の最適化具合を示す指標として整合度を 算出できる。
したがって、専門知識を持つ評価者が経験的に判断することなぐ客観品質評価値 を得る際の映像整合が適切力どうかを判断することが可能となる。これにより、適切な 主観品質評価値を容易に推定することができ、最終的には、映像サービスにおいて 品質を考慮した開発やサービス提供を実現することができる。
図面の簡単な説明
[0012] [図 1]図 1は、本発明の一実施の形態にカゝかる映像整合装置の構成を示すブロック図 である。
[図 2]図 2は、本実施の形態にかかる映像整合装置の映像整合処理を示すフローチ ヤートである。
[図 3]図 3は、フォーマット変換確認用の基準テスト映像例を示す説明図である。
[図 4]図 4は、位置整合'整合範囲確認用の基準テスト映像例を示す説明図である。
[図 5]図 5は、局所変形処理可能範囲確認用の基準テスト映像例を示す説明図であ る。
[図 6]図 6は、輝度,色出現分布確認用の基準テスト映像例を示す説明図である。
[図 7]図 7は、表示タイミングの整合例を示す説明図である。
[図 8]図 8は、表示タイミングの他の整合例を示す説明図である。
[図 9]図 9は、表示タイミングの他の整合例を示す説明図である。
[図 10]図 10は、時間方向のマクロ同期処理例を示す説明図である。
[図 11]図 11は、時間方向のミクロ同期処理例を示す説明図である。
[図 12]図 12は、整合状態検出処理における劣化量とフレーム間差分値の算出例を 示す説明図である。
[図 13]図 13は、整合状態による整合特性の変化を示す説明図である。
[図 14]図 14は、基準映像の精細度による整合特性の変化を示す説明図である。
[図 15]図 15は、画素ずれを示す説明図である。
[図 16]図 16は、本発明の他の実施の形態にカゝかる映像整合装置の構成を示すプロ ック図である。
発明を実施するための最良の形態
[0013] 次に、本発明の実施の形態について図面を参照して説明する。
[映像整合装置]
まず、図 1を参照して、本発明の一実施の形態に力かる映像整合装置について説 明する。図 1は、本発明の一実施の形態にカゝかる映像整合装置の構成を示すブロッ ク図である。
[0014] 映像整合装置 100は、入力信号に対して任意の演算処理を行って所望の出力信 号を得る信号処理装置からなり、時間軸に沿って並べられた複数の映像フレーム (静 止画)力 なる任意の基準映像 1と、この基準映像 1が符号ィ匕信号処理やネットワーク 伝送などの任意の評価対象により劣化した劣化映像 2とを入力とし、基準映像 1に対 して劣化映像 2を空間的および時間的に整合させた映像および整合処理に関する 各種整合処理情報を出力する装置である。
[0015] 本実施の形態は、基準映像と劣化映像が空間的および時間的に最も整合した整 合状態にあるときの、基準映像フレームと劣化映像フレームとの間の劣化量を示す 第 1の劣化量と、整合状態から所定画素数だけずれた状態の、基準映像フレームと 劣化映像フレームとの間の劣化量を示す第 2の劣化量との比に基づき、整合の度合 いを示す整合度を算出出力するようにしたものである。
[0016] この映像整合装置 100には、フォーマット変換部 10、表示タイミング整合部 20、映 像整合部 30、劣化量導出部 40、および整合パラメータ導出部 50が設けられている これら機能部は、信号処理回路部や演算処理部、さらには記憶部により実現される 。このうち、演算処理部は CPUや DSPなどのマイクロプロセッサとその周辺回路を有 し、マイクロプロセッサ内部や周辺回路のメモリあるいは記憶部からプログラムを読み 込んで実行することにより各種機能部を実現する。また、記憶部はハードディスクゃメ モリなどの記憶装置からなり、信号処理回路部や演算処理部で用いる各種処理情報 、基準映像や劣化映像の映像データ、さらにはプログラムを記憶する。
[0017] フォーマット変換部 10は、信号処理回路や演算処理部からなり、劣化映像 2の信号 フォーマットを基準映像 1の信号フォーマットに変換する機能と、このフォーマット変換 により得られたフォーマット変換後の劣化映像 2Aを出力する機能とを有している。
[0018] 表示タイミング整合部 20は、信号処理回路や演算処理部からなり、フォーマット変 換後の劣化映像 2Aの映像フレーム数とその表示タイミングを基準映像 1に整合させ る機能と、この整合により得られたタイミング整合後の劣化映像 2Bを出力する機能と を有している。 [0019] 映像整合部 30は、信号処理回路や演算処理部からなり、入力された基準映像 1と 劣化映像 2Bとをそれぞれの映像フレームについて整合処理を行い、整合後の基準 映像や劣化映像さらにはその整合度など、映像整合処理に関する各種整合情報を 出力する機能を有している。
この映像整合部 30には、具体的な機能手段として、マクロ同期手段 31、ミクロ同期 手段 32、整合状態検出手段 33、整合度導出手段 34、および整合情報出力手段 35 が設けられている。
[0020] マクロ同期手段 31は、入力された基準映像 1と劣化映像 2Bからそれぞれ抽出した 所定の映像特徴量の推移を比較することにより、基準映像 1と劣化映像 2Bのマクロフ レーム差を導出する機能を有して 、る。
[0021] ミクロ同期手段 32は、マクロ同期手段 31によりマクロ同期させた基準映像 1と劣化 映像 2Bから任意の劣化映像フレームと当該劣化映像フレームに対し所定フレーム 数以内の時間的ずれを有する複数の基準映像フレームとのフレームペアを選択し、 劣化量導出部 40を制御してこれらフレームペアの劣化量を取得する機能と、これら フレームペアのうち劣化量が最小となるフレームペアに基づき基準映像 1と劣化映像 2Bとのミクロフレーム差を導出する機能とを有して 、る。
[0022] 整合状態検出手段 33は、マクロフレーム差およびミクロフレーム差により同期させ た基準映像 1と劣化映像 2Bについて、劣化映像フレームごとに当該劣化映像フレー ムと所定フレーム数以内の時間的ずれを有する複数の基準映像フレームのうちから 当該劣化映像フレームと空間的および時間的に整合した整合状態にある基準映像 フレームを検出する機能を有して 、る。
[0023] 整合度導出手段 34は、整合状態にある基準映像フレームと劣化映像フレームの間 の整合度合いを示す整合度を導出する機能を有している。より具体的には、劣化量 導出部 40を制御して、整合状態にある基準映像フレームと劣化映像フレームとの間 の劣化量を示す第 1の劣化量と、整合状態から所定画素数だけずれた状態の基準 映像フレームと劣化映像フレームとの間の劣化量を示す第 2の劣化量とを取得し、こ れら第 1の劣化量と第 2の劣化量の比に基づき整合度を算出する。この際、 ITU-T P. 910の規定に基づき算出した基準映像の空間的特徴量 (SI)を上記比に乗算して整合 度を算出してもよい。
整合情報出力手段 35は、劣化映像フレームごとの整合度を含む、これら映像整合 処理に関する整合情報を出力する機能を有している。
[0024] 劣化量導出部 40は、信号処理回路や演算処理部からなり、任意の 2つの映像フレ ームの間の信号対雑音比を劣化量として導出する機能と、任意の 2つの映像フレー ムの間の各画素値差分の平均値をフレーム間差分値として導出する機能と、これら 劣化量およびフレーム間差分値を映像整合部 30へ出力する機能とを有している。
[0025] 具体的には、劣化量導出部 40は、整合度導出手段 34からの指示に応じて、基準 映像映像フレームと劣化映像フレームとの間の信号対雑音比を第 1の劣化量として 算出する。また、整合度導出手段 34からの指示に応じて、整合状態にある基準映像 フレームと、整合状態から所定画素数だけ横方向、縦方向、および縦横両方向にそ れぞれずれた状態にある複数の劣化映像フレームとの間の平均信号対雑音比を第 2の劣化量として算出する。また、整合状態検出手段 33からの指示に応じて、基準 映像映像フレームと劣化映像フレームとの間の信号対雑音比を劣化量として算出す る。
[0026] 整合パラメータ導出部 50は、信号処理回路や演算処理部からなり、所定の基準テ スト映像 3とこの基準テスト映像 3が評価対象により劣化した劣化テスト映像 4とを比較 する機能と、映像整合処理に用いる各種整合パラメータを導出する機能とを有してい る。
[0027] [映像整合装置の動作]
次に、図 2を参照して、本実施の形態に力かる映像整合装置の動作について説明 する。図 2は、本実施の形態にカゝかる映像整合装置の映像整合処理を示すフローチ ヤートである。なお、ここでは、基準映像 1および劣化映像 2にはフレームレート情報 あるいはフレーム表示時刻 Z取込時刻情報が含まれているものとし、基準映像およ び劣化映像は処理対象となるフレーム前後の複数フレーム分を記憶部に蓄積しなが ら非リアルタイムに処理を進めるものとする。
[0028] 映像整合装置 100は、基準映像 1と劣化映像 2の整合に先だって、整合パラメータ 導出部 50により、基準テスト映像 3および劣化テスト映像 4とを比較して各種整合パラ メータを導出する (ステップ 100)。
[0029] この際、映像整合装置 100に予め格納されている基準テスト映像 3を評価対象に入 力しその出力である劣化テスト映像 4を受け取るようにしてもよい。これら基準テスト映 像 3および劣化テスト映像 4は、実際の信号であってもよく信号値を示すデータ列か らなるデータファイルであってもよ 、。
ただし、劣化テスト映像 4の信号形式やサイズが基準テスト映像 3と異なることが入 力データファイルのヘッダ情報などで事前に認識できる場合、フォーマット変換部 10 と同様の処理方法を用いて劣化テスト映像 4を基準テスト映像 3と同等の形式にして から整合パラメータを導出するものとする。
[0030] 整合パラメータ導出部 50では、ステップ 100で整合パラメータを導出する際、図 3
〜図 6に示すような基準テスト映像を用いて、各種整合パラメータを導出する。
[0031] 図 3は、フォーマット変換確認用の基準テスト映像例である。この基準テスト映像 3A は、市松模様など、同じ形状の模様の輝度 (色も含む)を最大と最小にしたテスト映 像である。
このような基準テスト映像 3Aを用いれば、模様位置関係やサイズの違いから、整合 ノ メータとして基準テスト映像 3と劣化テスト映像 4の映像拡大縮小率 5Aを導出で きる。また基準テスト映像 3Aを用いれば、基準映像と劣化映像の最大'最小の輝度 値 (色も含む)から、整合パラメータとして基準テスト映像 3と劣化テスト映像 4における 輝度出現範囲 5Bを導出できる。
[0032] 図 4は、位置整合'整合範囲確認用の基準テスト映像例である。この基準テスト映 像 3Bは、映像のうち広い範囲に点在する複数地点にピンポイントでその位置を示す マーカーの入ったテスト映像であり、特定のポイントが劣化して分力りにくくなつても周 りの模様力もそのポイントを推定可能な映像である。
このような基準テスト映像 3Bを用いれば、基準映像と劣化映像における空間方向 のずれ量 5Cと、映像フレーム内で対応が取れている空間方向のずれ対応範囲 5Dと を整合パラメータとして導出できる。
[0033] 図 5は、局所変形処理可能範囲確認用の基準テスト映像例である。この基準テスト 映像 3Cは、例えば 1画素ごとなどの一定画素数ごとに白黒の枠を交互に入れたテス ト画像である。
このような基準テスト映像 3Cを用いれば、基準テスト映像 3Cに対する劣化テスト映 像の部分的な映像変形領域範囲 5Eや、評価映像として有効に使える有効領域範囲 5Fを整合パラメータとして導出できる。
[0034] 図 6は、輝度 ·色出現分布確認用の基準テスト映像例である。この基準テスト映像 3 Dは、画面内の輝度を最小値 (例えば 0)から最大値 (例えば 255)まで段階的な変化 を繰り返す画像 (グレー画像)や、同様に色を変化させる基準色ごとの画像 (赤画像、 緑画像、青画像)からなるテスト画像である。
このような基準テスト映像 3Dを用いれば、劣化テスト映像 4における輝度や色の出 現分布 5G (平均値や分散、階調数)を整合パラメータとして導出できる。
[0035] 次に、フォーマット変換部 10は、基準映像 1と劣化映像 2について、信号形式、サイ ズ、アスペクト比、信号の出現範囲が異なる場合、整合パラメータ導出部 50で導出さ れた映像拡大縮小率 5Aや輝度出現範囲 5Bからなる整合パラメータ 51に基づき劣 化映像 2の信号形式の変換を行い、フォーマット変換後の劣化映像 2Aを出力する( ステップ 101)。
[0036] この際、基準映像 1が非圧縮の YUV形式であり、劣化映像のデータ形式が非圧縮 の RGB形式であれば、例えば Rec. ITU- R BT.601 "STUDIO ENCODING PARAME TERS OF DIGITAL TELEVISION FOR STANDARD 4:3 AND WIDE-SCREEN 16:9 ASPECT RATIOS〃の変換式を用いて劣化映像 2を変換する。
[0037] なお、劣化映像 2が圧縮形式の場合は事前に非圧縮形式に変換しておく。また、サ ィズゃアスペクト比が異なる場合は、それが同一となるように変換する。例えば単純に 整数倍として計算できる場合があるが、それで済まな!/ヽ場合は任意のサイズに変換 する必要があり、例えば「よくわ力るディジタル画像処理」 CQ出版の第 7章「画像の解 像度変換」のように、任意のサイズへの変換を行う。その上で基準映像と変換した劣 化映像 2Aを表示タイミング整合部 20に渡す。
[0038] 特に、事前に映像フォーマットを正確に把握していない場合、あるいはヘッダなど に映像フォーマットの情報が存在して 、な 、場合には、整合パラメータ導出部 50で 導出された映像拡大縮小率 5Aに基づき映像の拡大縮小の変換を行う。また、輝度 出現範囲 5Bに基づいて画素の出現範囲が規格の違いによるものである場合、輝度 値の線形変換を用いて出現範囲を合わせる変換を行うものとする。
[0039] 続いて、表示タイミング整合部 20は、フォーマット変換部 10でフォーマット変換され た劣化映像 2Aを基準映像 1の表示タイミングに合わせるため、フレーム補間などの 処理を行い、タイミング整合後の劣化映像 2Bを出力する (ステップ 102)。図 7〜図 9 は、表示タイミングの整合例である。
[0040] 具体的には、図 7のように、基準映像 1の表示間隔よりフォーマット変換後の劣化映 像 2Aの表示間隔が定常的に長い場合、劣化映像 2Aについて直前フレームを補間 することにより映像を補う。
また、図 8のように、劣化映像の表示間隔が揺らぐ場合、基準映像 1の表示タイミン グに表示している映像あるいは時間的に基準映像 1の表示タイミングに近い映像を 用いて劣化映像 2Aを補間する。
さらに、図 9のように、基準映像 1自体が一定のフレームレートでない場合、基準映 像 1と劣化映像 2Aを、これらとは別の正確な時間間隔で表示されるように補間する。
[0041] 次に、映像整合部 30は、整合パラメータ導出部 50で得られた、映像拡大縮小率 5 A、輝度出現範囲 5B、空間方向のずれ量 5C、対応範囲 5D、映像変形領域範囲 5E 、あるいは出現分布 5Gなどの整合パラメータ 52を用いて、 3つの動作の状態、すな わち評価開始状態、同期状態、およびフリーズ状態を遷移しながら、基準映像 1とタ イミング整合後の劣化映像 2Bの映像整合処理を行う(ステップ 110〜135)。
[0042] まず、評価開始状態において、映像整合部 30は、時間方向の大まかな同期をとる ために、マクロ同期手段 31により、マクロ同期処理を行う(ステップ 110)。このマクロ 同期処理において、マクロ同期手段 31は、一定時間の基準映像 1と劣化映像 2Bに 関する、 1フレームごとや特定領域の信号の輝度 Z色差 ZRGB値の平均値のような 、映像特徴量の推移を比較し、両者間の整合性が最も高くなつたときのフレーム差を 、マクロな時間方向のずれ、すなわちマクロフレーム差として導出する。
[0043] 図 10は、時間方向のマクロ同期処理例である。具体的には、図 10に示すように、 平均輝度値などの特徴量を時間方向にずらして各時系列値の差分が最小になる条 件、あるいは相互相関係数が最大になる条件から時間方向のずれ、すなわちマクロ フレーム差を導出する。
[0044] 続いて、映像整合部 30は、ミクロ同期手段 32により得たマクロフレーム差でマクロ 同期をとつた後の基準映像 1と劣化映像 2Bについて、さらに時間方向と空間方向に おける詳細な同期をとるため、ミクロ同期処理を行う(ステップ 111)。図 11は、ミクロ 同期処理例を示す説明図である。
[0045] このミクロ同期処理において、ミクロ同期手段 32は、マクロ同期後の基準映像 1と劣 化映像 2Bの任意のフレームペア、例えば劣化映像 2Bの先頭フレームと、これに対 応する基準映像 1のフレームおよび当該フレーム力 所定フレーム数以内の時間ず れを有するフレームからなる検索対象フレームと、力 なる各フレームペアにっ 、て、 図 11で示すように、整合パラメータ導出部 50で得られた空間方向のずれ量 5C (上 下左右の位置)だけ両者間の画素位置を補正したときの劣化量の算出を劣化量導 出部 40に指示する。これに応じて、劣化量導出部 40は、これら両フレーム間の劣化 量として後述の式 1を利用して信号対雑音比 PSNR(Peak Signal to Noise Ratio)をそ れぞれ算出する。
[0046] ミクロ同期手段 32は、劣化量導出部 40で算出されたこれら信号対雑音比 PSNRが 最大である、すなわち劣化量が最小であるフレームペアを選択することにより、基準 映像 1と劣化映像 2Bの最も整合がとれたフレーム対応関係を求め、このフレーム差 をミクロフレーム差として導出する。これにより時間方向のミクロな整合をとることが可 能となる。以下では、このような基準映像 1と劣化映像 2Bのフレーム対応関係を同期 状態という。
また、このような基準映像 1と劣化映像 2Bのフレーム対応関係にあるフレームペア 力 その劣化量が最小となる空間的な位置関係、具体的には信号雑音比 PSNRが 最大となる位置関係にある状態を、基準映像 1と劣化映像 2Bが時間的および空間的 に最も整合して 、る整合状態と 、う。
[0047] 次に、映像整合部 30は、基準映像 1およびタイミング整合後の劣化映像 2Bのいず れかが最後の映像フレームとなるまで、同期状態のフレーム対応関係にある基準映 像 1と劣化映像 2Bから、基準映像対象フレームと劣化映像対象フレームを順次選択 し、これら基準映像対象フレームと劣化映像対象フレームについて、以下のような同 期状態およびフリーズ状態での処理ループを開始する (ステップ 112, 114)。
[0048] なお、図 2において、変数 i, jはそれぞれ基準映像対象フレーム番号および劣化映 像対象フレーム番号を示し、変数 N, Mはそれぞれ基準映像最終フレーム番号およ び劣化映像最終フレーム番号を示す。また、フラグ F1は空間方向における両映像の 同期状態 (0) ,非同期状態(1)を示し、フラグ F2は時間方向における両映像の同期 (0) ,コマ飛び(1) ,その他(2 :コマ戻状態)を示す。変数 Countは劣化映像のフリー ズ回数である。
[0049] まず、フラグ F1が 0を示す同期状態の場合 (ステップ 113 : NO)、映像整合部 30は 、整合状態検出手段 33により、整合パラメータ導出部 50で得られた時間空間方向の ずれ量 5Cや輝度および色情報 5B, 5Gに基づき劣化映像 2Bを補正した整合劣化 映像を生成し、後述する整合状態検出処理により、基準映像との間の劣化量および フレーム間差分値を算出する (ステップ 120)。
この際、整合状態検出手段 33は、劣化量導出部 40に対して、これら劣化映像と基 準映像の処理対象フレームをそれぞれ渡すことにより、劣化量導出部 40からこれら フレームに関する劣化量およびフレーム間差分値を取得する。
[0050] 図 12は、整合状態検出処理における劣化量とフレーム間差分値の算出例を示す 説明図である。劣化量導出部 40は、図 12に示すように、整合状態検出手段 33から 受け取った、劣化映像 2Bの劣化映像対象フレーム (j)と、これに対応する基準映像 1 の基準映像対象フレーム (i)および当該基準映像対象フレーム (i)力 所定フレーム 数以内の時間ずれを有する基準映像フレーム力 なる検索対象フレームと、力 なる 各フレームペア間について劣化量をそれぞれ導出する。そして、これらフレームペア のうち劣化量が最小で整合状態にあるフレームペアを選択し、その基準映像フレー ムのフレーム番号を導出する。
[0051] また、劣化量導出部 40は、上記フレームペアの基準映像フレームと劣化映像フレ ームについて、後述の式 2を用いて、それぞれの直前フレームとのフレーム間差分値 を導出する。この際、劣化量導出部 40は、両映像フレームの画素ごとに画素値の差 分値を算出し、当該映像フレーム全体の画素の平均差分値をフレーム間差分値とし て算出する。 [0052] 映像整合部 30は、整合状態検出手段 33により、劣化量導出部 40により導出され た各対象フレームのフレーム間差分値に基づいて劣化映像のフリーズ有無を判断す る(ステップ 121)。すなわち、基準映像についての差分値がある値を示しているのに 対し、劣化映像のそれがほとんど 0を示していれば、劣化映像に変化がないフリーズ 状態であると判断する。
ここで、劣化映像がフリーズ状態の場合 (ステップ 121 : YES)、映像整合部 30は、 フラグ F1を非同期状態(1)に設定するとともに、フリーズ数 Countを 1に設定して (ス テツプ 128)、処理ループのステップ 114へ移行する。
[0053] 一方、劣化映像がフリーズ状態ではない場合 (ステップ 121 :NO)、整合状態検出 手段 33は、ステップ 120の整合状態検出処理により得られた、劣化映像対象フレー ムと基準映像フレームとの間の劣化量力 最小か否力判断し (ステップ 122)、最小の 場合は (ステップ 122 : YES)、同期状態 (F2 = 0)と設定する (ステップ 124)。
最小でない場合は (ステップ 122 : NO)、フレームずれ状態 (コマ飛び状態,コマ戻 り状態など)であると判定し、検索対象フレームのうち劣化量が最小で整合状態にあ る基準映像フレームの番号を iに設定し、コマ飛びならフラグ F2= lに設定し、それ以 外ならフラグ F2 = 2と設定し、そのときのコマ(フレーム)のずれ数を Countに設定す る(ステップ 123)。
[0054] 続いて、映像整合部 30は、整合度導出手段 34により、後述する整合度算出処理 を実行して、整合状態にある基準映像フレームと劣化映像フレームの整合の度合 ヽ を示す整合度の計算を行う (ステップ 125)。続いて、整合情報出力手段 35により、 上記整合状態に基づき整合された基準映像や劣化映像からなる整合基準映像や整 合劣化映像、整合度、整合パラメータ(5A〜5G)、同期情報 (F2)、およびフリーズ 数 (Count)などの整合情報を出力する(ステップ 126)。そして、 Countを 0にリセット した後(ステップ 127)、ステップ 114へ移行する。
[0055] また、フラグ F1が 1を示す非同期状態の場合 (ステップ 113 :YES)、映像整合部 3 0は、ステップ 120と同様にして整合状態検出手段 33で整合状態検出処理を実行し (ステップ 130)、ステップ 121と同様の劣化映像のフリーズ有無を判断する (ステップ 131)。 ここで、劣化映像がフリーズ状態の場合 (ステップ 131 : YES)、整合状態検出手段 33は、フリーズ数 Countをインクリメント( + 1)して(ステップ 135)、処理ループのス テツプ 114へ移行する。
[0056] 一方、劣化映像がフリーズ状態ではない場合 (ステップ 131 :NO)、映像整合部 30 は、ステップ 110と同様のマクロ同期処理を行い (ステップ 132)、整合情報出力手段 35により、フリーズ数 Countを出力する(ステップ 133)。そして、フラグ F1および Co untを 0にリセットし (ステップ 134)、処理ループのステップ 114へ移行する。
[0057] ステップ 114では、基準映像対象フレーム番号 iおよび劣化映像対象フレーム番号 j をそれぞれインクリメントし、 iく Nまたは; j< Mが成立する場合は、ステップ 112との間 のループ処理を繰り返す。また、 i, jがともに N, Mに達した時点で、一連の映像整合 処理を終了する。
[0058] なお、上記映像整合処理では、常に基準映像と劣化映像について、 1フレーム全 体または特定領域の信号の輝度 Z色差 ZRGB値の平均値のような特徴量を蓄積し ているものとする。また、何らかの事情で同期が取れなくなったとき、例えば対象とな るフレームにおける特徴量が一定期間の平均値力 ある閾値(3 σのように標準偏差 の定数倍)以上に開きが生じた場合には、評価初期状態に入ることとし、ステップ 11 0からの処理が再開される。
[0059] [整合度算出動作]
次に、図 13〜図 15を参照して、本実施の形態に力かる整合度算出動作について 説明する。図 13は、整合状態による整合特性の変化を示す説明図である。図 14は、 基準映像の精細度による整合特性の変化を示す説明図である。図 15は、画素ずれ を示す説明図である。
[0060] 整合度は、次の 2つの特徴を利用して導出する。第 1の特徴は、図 13に示すように 、整合が最適化されている場合には、その整合状態における基準映像と劣化映像の フレーム間の信号対雑音比と、整合状態から 1画素だけでもずれた状態の信号対雑 音比の差が大きぐ整合が最適化されていない場合には、整合状態から 1画素でも ずれた状態の信号対雑音比の差が小さいこと、である。第 2の特徴は、整合が最適 化されている場合の特性は、図 14に示すように基準映像の絵柄が細かぐ精細度が 高い映像ほど顕著な傾向があること、である。
[0061] 整合度導出手段 34による具体的な整合度の算出処理については、まず、基準映 像と劣化映像の間で時間'空間的に最も整合していると判断された整合状態での劣 ィ匕量(第 1の劣化量)として、式 1の信号対雑音比 PSNR(Peak Signal to Noise Ratio) に示すように、ピーク輝度(255)に対して基準映像と劣化映像の画素差分値、すな わち式 2に示す MSEとの対数比を計算する。
ただし、式 2において、 Yin, Youtは基準映像 Z劣化映像であり、 Nは画素数、 Y( X, y, i)は第 iフレーム目の位置 (x, y)における画素値を示す。
[0062] [数 1]
Figure imgf000018_0001
MSE = ^∑ { ^,ヌ ' )― ( ,ヌ , 4:
[0063] 次に、その整合状態から所定画素数だけずれた状態 (整合近傍状態)につ 、ても 同様にその信号対雑音比 PSNRを計算し、その平均値を劣化量 (第 2の劣化量)とし て導出する。ここでは、図 15に示すように、整合状態から 1画素隣りにずれた 8つの 状態または 2画素隣りにずれた 18個の状態を用いることとする。
そして、基準映像の空間的特徴量として、 ITU-T P.910("Subjective video quality a ssessment methods for multimedia applications," Aug.1996.)に規疋 れる空間的特 徴量である SI値 (Spatial Information)を計算し、これら値を利用して式 3により整合度 を導出する。ただし、 αは整合度を正規ィ匕するための係数である。
整合度 = a X基準映像の SI値 X (整合状態の PSNRZ整合近傍状態の PSNRの平 均値)… (3)
[0064] このように、本実施の形態では、基準映像と劣化映像が空間的および時間的に最 も整合した整合状態にあるときの、基準映像フレームと劣化映像フレームとの間の劣 化量を示す第 1の劣化量と、整合状態から所定画素数だけずれた状態の、基準映像 フレームと劣化映像フレームとの間の劣化量を示す第 2の劣化量との比に基づき、整 合の度合 ヽを示す整合度を算出出力するようにしたので、映像整合の最適化具合を 示す指標として整合度を算出できる。
したがって、専門知識を持つ評価者が経験的に判断することなぐ客観品質評価を 得る際の映像整合が適切力どうかを判断することが可能となる。これにより最終的に は、映像サービスにおいて品質を考慮した開発やサービス提供を実現することがで きる。
[0065] また、 ITU-T P.910の規定に基づき算出した基準映像の空間的特徴量 (SI)を劣化 量の比に乗算して整合度を算出するようにしたので、基準映像の特徴量で重み付け を行うことができる。
また、劣化量として、劣化量算出対象となる画素力 算出した基準映像と劣化映像 の信号対雑音比を用いるようにしたので、安定的かつ汎用的に整合度を算出できる 。なお、本実施の形態では、劣化量として信号対雑音比 PSNRを用いた場合を例と して説明したが、これに限定されるものではなぐ画素値の平均差分値を用いてもよ い。また、信号雑音比を用いる場合でも PSNR以外の公知の信号対雑音比を用いて ちょい。
[0066] [実施の形態の拡張]
本実施の形態では、図 1に示すように、映像整合部 30と劣化量導出部 40とを別個 の機能部により実現した場合を例として説明したが、これら両機能部は、ともに信号 処理回路部や演算処理部で実現される。したがって、図 16に示すように、劣化量導 出部 40を映像整合部 30と同一機能部で実現してもよい。これにより、映像整合部 30 の各機能手段と劣化量導出部 40との間で、各種データを極めて容易にやり取りする ことができ、処理所要時間の短縮ゃノ、一ドウ ア資源の削減を実現できる。また、こ のことはフォーマット変換部 10、表示タイミング整合部 20、あるいは整合パラメータ導 出部 50と映像整合部 30との関係についても同様に適応できる。
[0067] また、本実施の形態では、ステップ 111のミクロ同期処理において、劣化映像フレ ームを固定して、複数の基準映像フレームとフレームペアを構成する場合を例として 説明したが、これに限定されるものではない。例えば、基準映像フレームを固定し、こ れに対応する劣化映像フレームおよび当該劣化映像フレームと所定フレーム数以内 の時間ずれを有する複数の劣化映像フレームとフレームペアを構成してもよぐ前述 と同様のミクロ同期処理を実行できる。
[0068] また、本実施の形態では、ミクロ同期手段 32と整合状態検出手段 33が別個の機能 手段から実現されている場合を例として説明した力 これに限定されるものではない 。前述したように、これらミクロ同期手段 32と整合状態検出手段 33は、ともに劣化量 導出部 40を制御して、複数のフレームペアの劣化量を取得し、最も劣化量の小さい フレームペアを選択する機能を有している。したがって、これらを同一の機能手段で 実現してちょい。
[0069] また、本実施の形態において、整合情報出力手段 35により、整合後の映像を出力 する際、整合度算出に用いた基準映像フレームや劣化映像フレームを、それぞれ整 合基準映像や整合劣化映像として出力してもよい。
また、本実施の形態では、外部から入力された基準映像 1を映像整合部 30での映 像整合処理に用いる場合を例として説明したが、これに限定されるものではない。例 えば図 9に示したように、表示タイミング整合部 20により基準映像 1のフレームレート を補間した場合は、この補間後の基準映像 1を用いて映像整合処理を行ってもよい。
[0070] また、本実施の形態では、整合パラメータ導出部 50を設けた場合を例として説明し たが、整合パラメータ導出部 50を設けず、図 2の処理内で必要なパラメータを導出す るようにしてちょい。
例えば、ステップ 111のミクロ同期処理において、劣化映像 2Bの劣化映像対象フ レームとこれに対応する基準映像 1側の各基準処理対象フレームとにつ 、て、それ ぞれのフレームペア間で劣化量を算出する際、フレームペア間の空間方向の画素位 置すなわちずれ量を変えていくつかの信号対雑音比 PSNRを劣化量導出部 40によ り算出しておき、その信号対雑音比 PSNRが最大となったときのずれ量を空間方向 のずれ量 5Cとして導出すればょ 、。
[0071] また、ミクロ同期がとれた時点のフレームペアに基づき、その基準映像フレームと劣 化映像フレームの最大'最小の輝度値 (色も含む)から、整合パラメータとして輝度出 現範囲 5Bを導出してもよぐ輝度や色の出現分布 5G (平均値や分散、階調数)を導 出してもよい。
[0072] また、本実施の形態では、整合パラメータ導出部 50を設けて、所定のテスト用基準 映像と評価対象によりテスト用基準映像カゝら得られたテスト用劣化映像とを比較して 、基準映像と劣化映像を整合するのに用いる各種整合パラメータを導出するようにし たので、前述のように通常の基準映像や劣化映像を用いた場合と比較して、評価対 象の劣化特性を顕著に表す整合パラメータを導出できる。さらに、この整合パラメ一 タに基づき整合処理を行うようにしたので、基準映像や劣化映像がぼやけて 、る場 合や、評価対象で生じている劣化が大きい場合でも、適切な映像整合を行うことがで きる。
[0073] なお、前述した映像整合方法においては、映像整合部 30から基準映像と整合映 像とその整合情報 (時間方向の状態)を出力したものを客観評価装置に入力すること を想定している力 ミクロ同期処理において劣化量導出部 40から劣化量ではなく客 観評価値を受け取り、映像整合部 30よりその結果を出力すれば、映像整合装置 10 0を客観評価装置として利用することもできる。
産業上の利用可能性
[0074] 本発明に力かる映像整合装置は、インターネットなどの IPネットワークを用いた映像 配信サービスや映像コミュニケーションサービスの品質管理にお 、て、受信側端末で 再生される映像の品質を客観評価する際、その基準映像と劣化映像を時間的およ び空間的に整合させる装置として有用である。

Claims

請求の範囲
[1] 時間軸に沿って並べられた複数の基準映像フレーム力 なる任意の基準映像とこ れら基準映像フレームが任意の評価対象により劣化した劣化映像フレーム力 なる 劣化映像とを入力とし、前記劣化映像フレームごとに当該劣化映像フレームと所定フ レーム数以内の時間的ずれを有する複数の基準映像フレームのうちから当該劣化映 像フレームと空間的および時間的に整合した整合状態にある基準映像フレームを検 出する整合状態検出手段と、
前記整合状態にある基準映像フレームと劣化映像フレームの間の整合度合いを示 す整合度を導出する整合度導出手段と、
前記整合状態に基づき整合された基準映像および劣化映像と前記整合度とを出 力する整合情報出力手段と、
任意の 2つの映像フレームの間の劣化度合いを示す劣化量を導出する劣化量導 出部と
を備え、
前記整合度導出手段は、前記劣化量導出部を制御して、前記整合状態にある基 準映像フレームと劣化映像フレームとの間の劣化量を示す第 1の劣化量と、前記整 合状態力 所定画素数だけずれた状態の基準映像フレームと劣化映像フレームとの 間の劣化量を示す第 2の劣化量とを取得し、これら第 1の劣化量と第 2の劣化量の比 に基づき前記整合度を算出する
ことを特徴とする映像整合装置。
[2] 請求項 1に記載の映像整合装置において、
前記劣化量導出部は、前記整合度導出手段の制御に応じて、前記基準映像フレ ームと前記劣化映像フレームとの間の信号対雑音比を前記第 1の劣化量として算出 することを特徴とする映像整合装置。
[3] 請求項 1に記載の映像整合装置において、
前記劣化量導出部は、前記整合度導出手段の制御に応じて、前記整合状態にあ る前記基準映像フレームと、前記整合状態から所定画素数だけ横方向、縦方向、お よび縦横方向にそれぞれずれた状態にある前記劣化映像の各映像フレームとの間 の平均信号対雑音比を前記第 2の劣化量として算出することを特徴とする映像整合 装置。
[4] 請求項 1に記載の映像整合装置において、
前記整合度導出手段は、 ITU-T P.910の規定に基づき算出した前記基準映像の 空間的特徴量 (SI)を前記比に乗算して前記整合度を算出することを特徴とする映像 整合装置。
[5] 請求項 1に記載の映像整合装置において、
前記劣化映像の信号フォーマットを前記基準映像の信号フォーマットに変換して出 力するフォーマット変換部と、前記基準映像および前記フォーマット変換後の劣化映 像に含まれる映像フレーム数とその表示タイミングを整合させて出力する表示タイミン グ整合部とをさらに備え、
前記整合状態検出手段は、前記表示タイミング整合部により表示タイミングを整合 させた基準映像と劣化映像を入力とする
ことを特徴とする映像整合装置。
[6] 請求項 5に記載の映像整合装置において、
所定の基準テスト映像とこの基準テスト映像が前記評価対象により劣化した劣化テ スト映像とを比較して、前記基準テスト映像の映像フレームと前記劣化テスト映像の 映像フレームの大きさに関する拡大縮小率と、前記基準テスト映像と前記劣化テスト 映像で用いられる輝度範囲とを、整合パラメータとして導出する整合パラメータ導出 部をさらに備え、
前記フォーマット変換部は、前記拡大縮小率と前記輝度範囲に基づき前記フォー マット変換を行う
ことを特徴とする映像整合装置。
[7] 請求項 1に記載の映像整合装置において、
前記整合状態検出手段は、前記劣化量導出部を制御して、当該劣化映像フレー ムについて検索対象となる各基準映像フレームとのフレームペアごとに劣化量を取 得し、これらフレームペアのうち劣化量が最小となるフレームペアを整合状態にあると 判断することを特徴とする映像整合装置。
[8] 請求項 7に記載の映像整合装置において、
前記劣化量導出部は、前記整合状態検出手段からの指示に応じて、前記基準映 像映像フレームと前記劣化映像フレームとの間の信号対雑音比を前記劣化量として 算出することを特徴とする映像整合装置。
[9] 請求項 1に記載の映像整合装置において、
入力された前記基準映像の各基準映像フレームと入力された前記劣化映像の各 劣化映像フレームカゝらそれぞれ抽出した所定の映像特徴量の推移を比較することに より、前記基準映像と前記劣化映像のマクロフレーム差を導出するマクロ同期手段を さらに備え、
前記整合状態検出手段は、前記マクロフレーム差に基づき時間的に同期させた基 準映像と劣化映像を入力とする
ことを特徴とする映像整合装置。
[10] 請求項 9に記載の映像整合装置において、
前記マクロフレーム差によりマクロ同期させた基準映像と劣化映像から任意の劣化 映像フレームと当該劣化映像フレームに対し所定フレーム数以内の時間的ずれを有 する複数の基準映像フレームとのフレームペアを選択し、前記劣化量導出部を制御 してこれらフレームペアごとに劣化量を取得し、これらフレームペアのうち劣化量が最 小となるフレームペアに基づき前記基準映像と前記劣化映像のミクロフレーム差を導 出するミクロ同期手段をさらに備え、
前記整合状態検出手段は、前記マクロフレーム差および前記ミクロフレーム差に基 づき時間的に同期させた基準映像と劣化映像を入力とする
ことを特徴とする映像整合装置。
[11] 整合状態検出手段により、時間軸に沿って並べられた複数の基準映像フレームか らなる任意の基準映像とこれら基準映像フレームが任意の評価対象により劣化した 劣化映像フレーム力 なる劣化映像とを入力とし、前記劣化映像フレームごとに当該 劣化映像フレームと所定フレーム数以内の時間的ずれを有する複数の基準映像フ レームのうちから当該劣化映像フレームと空間的および時間的に整合した整合状態 にある基準映像フレームを検出する整合状態検出ステップと、 整合度導出手段により、前記整合状態にある基準映像フレームと劣化映像フレー ムの間の整合度合いを示す整合度を導出する整合度導出ステップと、
整合情報出力手段により、前記整合状態に基づき整合された基準映像および劣化 映像と前記整合度とを出力する整合情報出力ステップと、
劣化量導出部により、任意の 2つの映像フレームの間の劣化度合いを示す劣化量 を導出する劣化量導出ステップと
を備え、
前記整合度導出ステップは、前記劣化量導出ステップを用いて、前記整合状態に ある基準映像フレームと劣化映像フレームとの間の劣化量を示す第 1の劣化量と、前 記整合状態力 所定画素数だけずれた状態の基準映像フレームと劣化映像フレー ムとの間の劣化量を示す第 2の劣化量とを取得するステップと、これら第 1の劣化量と 第 2の劣化量の比に基づき前記整合度を算出するステップとからなる
ことを特徴とする映像整合方法。
[12] 時間軸に沿って並べられた複数の基準映像フレーム力 なる任意の基準映像とこ れら基準映像フレームが任意の評価対象により劣化した劣化映像フレーム力 なる 劣化映像とを入力とし、これら基準映像と劣化映像を空間的および時間的に整合さ せて出力する映像整合装置のコンピュータに、
整合状態検出手段により、時間軸に沿って並べられた複数の基準映像フレームか らなる任意の基準映像とこれら基準映像フレームが任意の評価対象により劣化した 劣化映像フレーム力 なる劣化映像とを入力とし、前記劣化映像フレームごとに当該 劣化映像フレームと所定フレーム数以内の時間的ずれを有する複数の基準映像フ レームのうちから当該劣化映像フレームと空間的および時間的に整合した整合状態 にある基準映像フレームを検出する整合状態検出ステップと、
整合度導出手段により、前記整合状態にある基準映像フレームと劣化映像フレー ムの間の整合度合いを示す整合度を導出する整合度導出ステップと、
整合情報出力手段により、前記整合状態に基づき整合された基準映像および劣化 映像と前記整合度とを出力する整合情報出力ステップと、
劣化量導出部により、任意の 2つの映像フレームの間の劣化度合いを示す劣化量 を導出する劣化量導出ステップと
を実行させ、
前記整合度導出ステップとして、前記劣化量導出ステップを用いて、前記整合状態 にある基準映像フレームと劣化映像フレームとの間の劣化量を示す第 1の劣化量と、 前記整合状態から所定画素数だけずれた状態の基準映像フレームと劣化映像フレ ームとの間の劣化量を示す第 2の劣化量とを取得するステップと、これら第 1の劣化 量と第 2の劣化量の比に基づき前記整合度を算出するステップと
を実行させるプログラム。
PCT/JP2006/313765 2005-07-11 2006-07-11 映像整合装置、方法、およびプログラム WO2007007750A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/921,209 US8094196B2 (en) 2005-07-11 2006-07-11 Video matching device, method, and program
EP06768078.5A EP1903809B1 (en) 2005-07-11 2006-07-11 Video matching device, method, and program
CA2611397A CA2611397C (en) 2005-07-11 2006-07-11 Video matching device, method, and program
JP2007524656A JP4482031B2 (ja) 2005-07-11 2006-07-11 映像整合装置、方法、およびプログラム
CN2006800218895A CN101199211B (zh) 2005-07-11 2006-07-11 视频匹配装置,方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005201910 2005-07-11
JP2005-201910 2005-07-11

Publications (1)

Publication Number Publication Date
WO2007007750A1 true WO2007007750A1 (ja) 2007-01-18

Family

ID=37637141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313765 WO2007007750A1 (ja) 2005-07-11 2006-07-11 映像整合装置、方法、およびプログラム

Country Status (7)

Country Link
US (1) US8094196B2 (ja)
EP (1) EP1903809B1 (ja)
JP (1) JP4482031B2 (ja)
KR (1) KR100963614B1 (ja)
CN (1) CN101199211B (ja)
CA (1) CA2611397C (ja)
WO (1) WO2007007750A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172440B2 (ja) * 2008-01-08 2013-03-27 日本電信電話株式会社 映像品質推定装置、方法およびプログラム
JP2009260941A (ja) * 2008-03-21 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> 映像品質客観評価方法、映像品質客観評価装置、及びプログラム
US9087125B2 (en) * 2009-08-10 2015-07-21 Pixel Forensics, Inc. Robust video retrieval utilizing video data
JP2011254240A (ja) * 2010-06-01 2011-12-15 Sony Corp 画像処理装置、画像処理方法およびプログラム
KR20120029690A (ko) * 2010-09-17 2012-03-27 삼성전자주식회사 디스플레이 장치 및 그 영상 처리 방법
US8873642B2 (en) * 2010-12-22 2014-10-28 Verizon Patent And Licensing Inc. Video content analysis methods and systems
US9055279B2 (en) * 2011-04-15 2015-06-09 Tektronix, Inc. System for natural language assessment of relative color quality
CN102879660B (zh) * 2011-07-11 2016-08-31 富泰华工业(深圳)有限公司 电子产品测试装置及方法
KR20130015179A (ko) * 2011-08-02 2013-02-13 삼성디스플레이 주식회사 표시 장치 및 표시 장치 구동 방법
US9191553B2 (en) * 2011-09-30 2015-11-17 Intel Corporation System, methods, and computer program products for multi-stream audio/visual synchronization
US8730328B2 (en) 2011-10-06 2014-05-20 Qualcomm Incorporated Frame buffer format detection
US9659437B2 (en) 2012-09-28 2017-05-23 Bally Gaming, Inc. System and method for cross platform persistent gaming sessions using a mobile device
US9767642B2 (en) * 2011-10-14 2017-09-19 Bally Gaming, Inc. System and method for cross platform persistent gaming sessions using a mobile device
US9672688B2 (en) 2011-10-14 2017-06-06 Bally Gaming, Inc. System and method for cross platform persistent gaming sessions using a mobile device
US9626567B2 (en) 2013-03-13 2017-04-18 Visible Measures Corp. Automated video campaign building
JP6398979B2 (ja) * 2013-08-23 2018-10-03 日本電気株式会社 映像処理装置、映像処理方法および映像処理プログラム
KR102236561B1 (ko) * 2014-12-31 2021-04-07 삼성디스플레이 주식회사 열화 보상 장치, 이를 포함하는 표시 장치 및 열화 보상 방법
US10674180B2 (en) * 2015-02-13 2020-06-02 Netflix, Inc. Techniques for identifying errors introduced during encoding
CN109076202B (zh) * 2016-04-27 2021-03-16 索尼公司 图像投影设备、投影成像系统和校正方法
CN107465940B (zh) * 2017-08-30 2019-10-25 苏州科达科技股份有限公司 视频对准方法、电子设备及存储介质
CN109996062B (zh) * 2019-04-04 2020-08-11 广东省安心加科技有限公司 视频图像质量检测方法、装置、计算机设备和存储介质
KR102680344B1 (ko) 2022-11-25 2024-07-02 주식회사 와이즈오토모티브 영상 시험 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078618A (ja) * 1998-07-25 2000-03-14 Tektronix Inc ビデオ画像品質の評価方法
WO2001074072A1 (en) 2000-03-27 2001-10-04 Teranex, Inc. Processing sequential video images to detect image motion among interlaced video fields or progressive video images
JP2001326869A (ja) * 2000-05-15 2001-11-22 Kdd Media Will Corp 映像信号・映像信号解析結果同時表示装置
JP2003047029A (ja) * 2001-07-31 2003-02-14 Shibasoku:Kk 動きベクトルを用いる画像評価方法及び装置
JP2005064679A (ja) * 2003-08-08 2005-03-10 Kddi Corp 画像特徴量抽出方式および画質評価方式

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446492A (en) * 1993-01-19 1995-08-29 Wolf; Stephen Perception-based video quality measurement system
EP0809409B1 (en) * 1996-05-24 2001-08-29 Matsushita Electric Industrial Co., Ltd. Method and circuit to determine a noise value that corresponds to the noise in a signal
DE69803830T2 (de) * 1998-03-02 2002-09-12 Koninklijke Kpn N.V., Groningen Verfahren, Vorrichtung, ASIC und deren Benutzung zur objektiven Videoqualitätbewertung
US6826294B1 (en) * 1999-03-05 2004-11-30 Koninklijke Philips Electronics N.V. Block matching motion estimation using reduced precision clustered predictions
CA2403665C (en) * 2000-03-31 2007-12-04 British Telecommunications Public Limited Company Image processing
JP2004080177A (ja) 2002-08-13 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> 映像品質評価装置、映像品質評価方法、映像品質評価プログラム及びそのプログラムを記録した記録媒体
CA2646805C (en) 2003-08-22 2012-04-24 Nippon Telegraph And Telephone Corporation Video quality assessing apparatus, video quality assessing method, video quality assessing program, video aligning apparatus, video aligning method, and video aligning program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078618A (ja) * 1998-07-25 2000-03-14 Tektronix Inc ビデオ画像品質の評価方法
WO2001074072A1 (en) 2000-03-27 2001-10-04 Teranex, Inc. Processing sequential video images to detect image motion among interlaced video fields or progressive video images
JP2001326869A (ja) * 2000-05-15 2001-11-22 Kdd Media Will Corp 映像信号・映像信号解析結果同時表示装置
JP2003047029A (ja) * 2001-07-31 2003-02-14 Shibasoku:Kk 動きベクトルを用いる画像評価方法及び装置
JP2005064679A (ja) * 2003-08-08 2005-03-10 Kddi Corp 画像特徴量抽出方式および画質評価方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1903809A4

Also Published As

Publication number Publication date
EP1903809A1 (en) 2008-03-26
CA2611397A1 (en) 2007-01-18
US8094196B2 (en) 2012-01-10
EP1903809B1 (en) 2014-03-19
CA2611397C (en) 2010-12-21
US20090040311A1 (en) 2009-02-12
JP4482031B2 (ja) 2010-06-16
JPWO2007007750A1 (ja) 2009-01-29
KR20080012354A (ko) 2008-02-11
EP1903809A4 (en) 2011-10-12
CN101199211A (zh) 2008-06-11
CN101199211B (zh) 2010-05-26
KR100963614B1 (ko) 2010-06-15

Similar Documents

Publication Publication Date Title
JP4482031B2 (ja) 映像整合装置、方法、およびプログラム
JP5347012B2 (ja) 映像整合装置、映像整合方法及び映像整合プログラム
US20100271515A1 (en) Image generation apparatus and image generation method
US8305489B2 (en) Video conversion apparatus and method, and program
US8036479B2 (en) Image processing apparatus and method, and storage medium for controlling gradation of moving images
US7412092B2 (en) Image processing apparatus, image processing method, and program
US20120274845A1 (en) Image processing device and method, and program
KR101140442B1 (ko) 이미지 상태 정보의 정정 방법, 움직임 보상 이미지 처리방법, 및 이미지 상태 정보 정정기
JP4449696B2 (ja) 画像処理装置および画像処理方法、並びにプログラム
US8115863B2 (en) Video de-interlacer using pixel trajectory
JP2008005183A (ja) 映画素材に適した映像符号化方法および符号化装置
CN100440982C (zh) 判定视频信号的设备和方法
KR101174589B1 (ko) 지역 복잡도를 기초로 한 디인터레이싱 방법 및 이러한 방법을 수행하는 영상 처리 장치
JP4102620B2 (ja) 映像方式変換装置
JP5300600B2 (ja) 映像処理装置およびその方法
JP5082933B2 (ja) 動きベクトル検出回路、動きベクトル検出装置、及び集積回路
JP4883029B2 (ja) 動きベクトル検出回路、動きベクトル検出装置、及び集積回路
JP2010251880A (ja) 映像処理装置およびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021889.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524656

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11921209

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006768078

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2611397

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077029000

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE