WO2007007473A1 - デジタル放射線画像撮影システム - Google Patents

デジタル放射線画像撮影システム Download PDF

Info

Publication number
WO2007007473A1
WO2007007473A1 PCT/JP2006/310178 JP2006310178W WO2007007473A1 WO 2007007473 A1 WO2007007473 A1 WO 2007007473A1 JP 2006310178 W JP2006310178 W JP 2006310178W WO 2007007473 A1 WO2007007473 A1 WO 2007007473A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
image
digital
control unit
minimum
Prior art date
Application number
PCT/JP2006/310178
Other languages
English (en)
French (fr)
Inventor
Yuko Shinden
Hiromu Ohara
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to EP06746712A priority Critical patent/EP1902677A4/en
Priority to US11/994,481 priority patent/US7746977B2/en
Priority to JP2007524537A priority patent/JP4862824B2/ja
Publication of WO2007007473A1 publication Critical patent/WO2007007473A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/588Setting distance between source unit and detector unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4494Means for identifying the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/589Setting distance between source unit and patient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention digitally captures an object using a phase contrast imaging method, which is one of the magnification imaging techniques, and uses the obtained digital image data (enlarged image of the object) as a diagnostic style (
  • the present invention relates to a digital radiographic image generation system that outputs a reduced size so as to match an object that is approximately the same size as the subject (diagnosis based on a life size image).
  • the spatial resolution of image reading is the size of the reading pixel size or reading sampling pitch of the X-ray detector.
  • the reading pixel size or the reading sampling pitch cannot be drawn, and even if the subject is larger than the reading pixel size or the reading sampling pitch, the contour drawing of the subject becomes unclear. is there.
  • the structure of the X-ray detector is miniaturized and complicated, and the data capacity to be handled increases, which increases the costs of the X-ray detector and the memory for data processing, and the data processing. There is a disadvantage that time increases.
  • the read pixel size or the read sampling pitch is important, but even if only the read pixel size or the read sampling pitch is reduced, the image finally provided to the interpreting physician (the image used for diagnosis) ) Cannot improve the visibility of the edge-enhanced edge (contour).
  • Patent Document 1 discloses a digital phase contrast X-ray imaging system that is substantially equal to the half-width of the edge enhancement.
  • phase contrast imaging is performed using CR (Computed Radiography), FPD (Flat Panel Detector), etc., and when the obtained image data is output to a film or a viewer, the phase contrast is obtained.
  • Shooting magnification (magnification) during shooting: M, minimum control unit during scanning (pixel size): A, minimum control unit during output (pixel size): B, and B AZM
  • output pixels can be associated with 1: 1.
  • image degradation that does not occur when a part of the edge-enhanced edge image is lost during the interpolation process is preferable.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-180670
  • Patent Document 1 depending on the imaging position of the lesion edge on each minimum control unit of a detector such as a CR plate or an FPD, a part of the peaks and valleys of the output signal are included in the minimum control unit. May coexist with some of them. In this case, since the output signal value is canceled out between the peak and the valley, the output signal value in the minimum control unit becomes low, and the difference from the output signal value in the minimum control unit where the image of the peak or valley is not formed becomes small. In some cases, it will be at the same level. As a result, an edge-enhanced image cannot be obtained at the reading stage, and a satisfactory edge-enhanced image cannot be obtained even if an output device that can reproduce faithfully thereafter is used.
  • the present invention has been made in view of the above-described problems.
  • digitally reading an image generated by a phase contrast imaging method what kind of reading control unit is used?
  • the purpose is to provide a digital radiographic imaging system that can reliably detect edges, which are the effects of phase contrast imaging, even when images are formed in phase (position). It is said.
  • a digital radiographic imaging system of the present invention is a digital radiographic image that performs phase-contrast imaging, which includes an X-ray tube that irradiates a subject with X-rays, and a digital detector that detects X-rays transmitted through the subject.
  • the digital radiographic imaging system of the present invention performs phase contrast imaging including an X-ray tube that irradiates a subject with X-rays and a digital detector that detects X-rays transmitted through the subject.
  • a digital radiographic imaging system wherein a focal diameter of the X-ray tube is D (m), a minimum control unit S (m) of the digital detector, and a distance Rl (m) from the X-ray tube focus to the subject ,
  • an enlargement factor M (R1 + R2) ZR1, an edge enhancement width E by X-ray refraction, and D ⁇ 2S / (M-1) It is characterized by being! /
  • FIG. 1 is a schematic configuration diagram of a digital radiographic image capturing system.
  • FIG. 2 is a schematic configuration diagram of an X-ray imaging apparatus.
  • FIG. 3 is a diagram for explaining the principle that phase contrast edge enhancement of a subject image is caused by X-ray refraction.
  • FIG. 4 is a diagram showing a half-value width of phase contrast edge enhancement.
  • FIG. 6 is a diagram for explaining that detection is possible even when the pixel size of the digital detector has a certain size.
  • FIG. 7 is a diagram for explaining that the edge emphasis width is wider than the edge emphasis width that can be generated by an ideal X-ray radiated from a point light source.
  • FIG. 8 is a diagram for explaining that edges can always be recognized by sampling at the same reading sampling pitch S as half-value width EB, but edges may not be recognized.
  • FIG. 10 is a diagram for explaining a control unit.
  • FIG. 11 is a model diagram of a plastic fiber image.
  • FIG. 12 is a diagram showing the relationship between the difference density obtained by subtracting the reference density and the position of the density power of the fiber image.
  • FIG. 13 is an enlarged view of the edge portion of FIG.
  • FIG. 14 is a diagram showing a digital radiographic image capturing system according to a second embodiment.
  • FIG. 15 is a diagram showing an internal configuration of the JOB manager of FIG.
  • FIG. 16 is a diagram showing an example of an output setting table in which output setting information of each output device in FIG. 14 is stored.
  • FIG. 17 is a flowchart explaining the flow of output control processing executed by the OB manager.
  • FIG. 18 is a diagram showing a relationship between an enlarged image and an output image when the minimum output unit is different.
  • the digital radiographic imaging system of this embodiment includes a phase contrast imaging device (X-ray imaging device) 1, an image processing device (work stage) 2, an image output device 4 (viewer 4a, printer 4b), and a storage device 6.
  • X-ray imaging device X-ray imaging device
  • work stage image processing device
  • image output device 4 viewer 4a, printer 4b
  • storage device 6 Storage device 6.
  • Each device can communicate with DICOM protocol and digitally reproduce the digital image data generated by the phase contrast imaging method.
  • the phase contrast imaging apparatus 1 performs two-dimensional planar digital image capturing.
  • an image signal is taken out and image processing is performed by the image processing apparatus 2.
  • the image signal is displayed as an image by the viewer 4a of the image output device 4 and is also printed out by the printer 4b.
  • the phase contrast imaging apparatus 1 includes a digital detector such as CR, FPD, and a split X-ray detector that are preferred by a so-called digital imaging apparatus. It is also possible to take a picture on a screen or film system and digitize the developed film with a digitizer.
  • a digital detector such as CR, FPD, and a split X-ray detector that are preferred by a so-called digital imaging apparatus. It is also possible to take a picture on a screen or film system and digitize the developed film with a digitizer.
  • FPDs There are two types of FPDs, a so-called direct type and an indirect type. In the present invention, these methods are not limited at all.
  • direct type FPD X-rays are irradiated on a-Se, and the generated charges are collected and stored in a capacitor. Then, the accumulated charge is taken out two-dimensionally in order and finally used as an image signal.
  • the split X-ray detector is a flat scintillator that emits visible light when irradiated with X-rays.
  • a device that directly contacts the CCD to extract the image signal a device that collects the emitted light with a glass fiber and guides the CCD to extract the image signal, or a lens or the like that guides the emitted light to the CCD and outputs the image signal. To take out.
  • the reading pixel size or the reading sampling pitch of the digital detector is defined as the minimum control unit Sm) at the time of reading.
  • the minimum control unit S is preferably 10 ⁇ 3 ⁇ 200 / ⁇ ⁇ . If it is larger than 2000 / zm, it is difficult to accurately obtain a subject transmission X-ray image. If it is smaller than 10 / zm, the yield is poor and the manufacturing cost is high. More preferably, it is 30 ⁇ 3 ⁇ 100 / ⁇ ⁇ , and reading sampling within this range enables reading without missing the edge-enhanced boundary image obtained by phase contrast imaging. And sharpness is improved.
  • the viewer 4a is used to display the imaged data and confirm the quality of the position of the imaging region. If good, the engineer sends the data to the storage device 6 such as a storage device and stores it. At the same time, it is also possible to send the image data to an interpreting doctor's workstation (not shown).
  • a cathode ray tube CRT
  • a liquid crystal a plasma display, a liquid crystal projector, an organic EL, or the like
  • the luminance is 400 to 1000 cdZ m 2
  • the contrast ratio is 200 to 10,000
  • the information depth is 8 or 16 bits.
  • the size of the screen is not particularly limited, but a size that can display the entire imaging region is preferable. It is preferable to display text information such as the patient's name, imaging magnification, and imaging date along with the image. Also, past images, other modality images such as X-ray CT'MRI, and color images such as ablation specimen images and fundus photographs may be displayed simultaneously or separately.
  • the output pixel size of the viewer 4a or the output writing pitch of the printer 4b is defined as the minimum control unit A ( ⁇ m) at the time of output.
  • FIG. Fig. 2 shows an outline of the X-ray imaging device 1 in Fig. 1.
  • Close-contact photography refers to photographing with the subject 11 in contact with the digital detector 10 or a member including the digital detector 10.
  • the position force on the digital detector 10 side of the subject 11 is also defined as the distance to the digital detector 10 or a member including it as R2.
  • Substantially 0 means that R2 is 0.05m or less, or that the magnification factor M is less than 1.1.
  • the enlargement factor M is defined as a value obtained by dividing the maximum length of the projected image by the length of the corresponding part of the subject body.
  • phase contrast image By selecting an enlargement factor M of 1 ⁇ M ⁇ 10, a phase contrast image is obtained. Preferably, 1.4 ⁇ M ⁇ 3, and by selecting an enlargement factor M in this range, a high-quality phase contrast image that can be used as a diagnostic image can be obtained.
  • phase contrast image 12 can be captured by the X-rays emitted from the X-ray tube 13.
  • Phase contrast photography is when R2 exceeds 0.05 m or when the magnification factor M is 1.1 or higher.
  • the distance R1 between the focal point a of the X-ray tube 13 and the subject 11 of the present embodiment is 0. In consideration of the general shape of the photographing room (particularly, the distance from the floor to the ceiling) and the thickness of the subject. In consideration of image quality and work efficiency, it is preferably 0.25 ⁇ Rl ⁇ 2m. In addition, the distance R2 between the subject 11 and the digital detector 10 is 0.15 ⁇ R2 ⁇ 5m, taking into account the general shape of the room (especially the distance from the floor to the ceiling) and the image quality that can be diagnosed. Preferably, 0.5 ⁇ R2 ⁇ 2m.
  • the X-ray tube 13 is preferably a rotating anode thermionic tube.
  • electrons are emitted from the filament, and the electrons collide with the anode to which an arbitrary voltage of 10 kV to 500 kV is applied, and the kinetic energy is converted into electromagnetic waves to emit X-rays.
  • what emits electrons may be a filament, but carbon nanotubes can be used.
  • the anode is made of molybdenum or tungsten metal, and it is preferable to rotate the anode so that the anode is not damaged by heat generation due to collision of thermionic electrons.
  • the shape of the part where the thermal electrons collide with the anode is generally designed as a square when the radiated directional force is also seen, and is called the focal point.
  • the length of one side of this square is called the focal diameter D and represents the size of the X-ray source.
  • the focal diameter D is generally provided by the manufacturer of the X-ray tube as its specification, and can be measured using a test chart if it is a pinhole camera as defined in JIS Z4702.
  • the focal diameter D is 1 ⁇ 0 ⁇ 300 111, preferably 30 ⁇ 0 ⁇ 100 111.
  • a focal length D of 1 m or more By selecting a focal length D of 1 m or more, X-ray output sufficient to pass through the subject 11 can be obtained. High-quality images suitable for diagnosis can be obtained at / zm or more.
  • the focal diameter is small, the image quality is improved, but the shooting time is longer. In mammography, etc., it is necessary to observe the shape of a structure of about 100 m, so a smaller focus is desired, so the distance is 30 m or more and 100 m or less.
  • a focal diameter D of 30 ⁇ 100 / ⁇ ⁇ an edge image that can be detected by the digital detector 10 is obtained, and an image with high sharpness is obtained.
  • the minimum control unit S (m) which is the reading pixel size or the reading sampling pitch of the digital detector 10 is 10 ⁇ S ⁇ 200 m, preferably 30 ⁇ S ⁇ 100 ⁇ m. As the minimum control unit S is smaller, a finer image can be obtained and a detailed structure can be seen, but the manufacturing of the detection unit becomes difficult and the product yield is lowered.
  • the detection area of the digital detector 10 preferably covers the entire area of the subject area.
  • the minimum control unit A which is the output pixel size or output writing pitch of the image output device 4, is 25 ⁇ 300 / ⁇ ⁇ , and if the minimum control unit ⁇ is too large, the contour of the image appears blurred. The smaller the size, the more detailed the image can be displayed, and even the detailed structure can be seen. However, if the minimum control unit A becomes smaller, the yield will deteriorate and the manufacturing cost will increase. In addition, the amount of image data increases, and it takes time to switch between displays and images, resulting in reduced work efficiency.
  • the phase contrast imaging apparatus 1 performs imaging by the above-described method, and acquires a sharper high-concentration radiographic image using a phenomenon in which an edge is generated at the edge of the object image due to X-ray refraction. It is a device for doing.
  • phase contrast imaging As shown in FIG. 3, outside the edge of the subject 11, the X-ray that has passed the edge of the subject 11 is refracted and passes the side of the subject 11 on the digital detector 10. It overlaps with the X-ray and the X-ray intensity increases. Conversely, the X-ray intensity decreases near the inside edge of the subject 11. In this way, the X-ray intensity is edge-enhanced with a mountain on the outside and a valley on the inside, with the edge of the subject 11 as a boundary.
  • This edge enhancement operation is also called an edge effect.
  • This edge emphasis function can obtain a sharp X-ray image with sharp edges.
  • the half-value width E of phase contrast edge enhancement can be expressed by the following equation (1).
  • is the difference in refractive index where X-ray refraction occurs, and r is the radius of the object (subject).
  • the Coolidge X-ray tube 5 (also referred to as a thermionic X-ray tube) is widely used in medical sites and nondestructive inspection facilities.
  • Figure 5 shows the case where the Coolidge X-ray tube 5 is used.
  • thermionic electrons collide with a metal anode such as tungsten to emit X-rays, and the X-rays radiate out in a nearly square window force radiation called the focal point.
  • the length of one side of this square window is called the focal diameter.
  • the X-ray source cannot be regarded as an ideal point light source.
  • the half width E of phase contrast edge emphasis increases and the intensity decreases due to so-called geometrical unsharpness.
  • the half-value width E of phase contrast edge enhancement can be expressed as shown in Equation (2).
  • D represents the focal diameter of the Coolidge X-ray tube 5 to be used.
  • the half-value width E of phase contrast edge enhancement is widened due to geometric instability as described above, and the edge-enhanced image is blurred. Even when the pixel size of the digital detector 10 is relatively large, the edge-enhanced image can be detected.
  • the edge-enhanced image is accurately detected, and secondly, image information of the detected edge-enhanced image is not lost. It must be output in a state that can be diagnosed.
  • E is an edge enhancement width formed by X-rays emitted from an ideal point light source by the X-ray source of the X-ray tube.
  • B is the size of the blur due to geometrical sharpness.
  • Edge enhancement width EB due to X-rays emitted from a light source having a focal diameter D is broader than the edge enhancement width E formed by X-rays emitted from an ideal point light source.
  • EB is the edge emphasis half-width, and represents the edge-to-valley distance of the edge. This is expressed as E + B with an ideal edge emphasis width E with blur B added.
  • Sampling ⁇ theorem is: “When the maximum spatial frequency of an analog image is fmax (cycles / mm), the sampling interval (sampling interval) A x (mm) is ⁇ ⁇ l / (2fmax It is necessary to set to ").”
  • the probability is low, but the relationship between each minimum reading control unit S and the imaging position (phase) is shown in FIG.
  • (b) SZ2 is shifted from Fig. 8 (a))
  • the detected signal value has the same intensity (or output intensity difference) as the signal value read in each reading minimum control unit.
  • the edge cannot be recognized because the intensity difference is so small that it cannot be visually recognized by human eyes.
  • the focal diameter of the X-ray tube is D m
  • the minimum control unit of the digital detector reading pixel size or reading sampling pitch) S m
  • from the X-ray tube focus to the subject.
  • subject power is also the distance R2 (m) to the digital detector
  • magnification factor M (R 1 + R2) ZR1
  • edge enhancement width E by X-ray refraction D ⁇ (2S- E) / (M-1).
  • the minimum control unit (read pixel size or read sampling pitch) S in the digital detector 10 is made to correspond to the minimum control unit (output pixel size or output write pitch) A of the image output device 4. In this case, since it is necessary to reduce the image to actual size, it is necessary that S> A.
  • the minimum control unit S of the digital detector 10 and the n collections of the minimum control unit A of the image output device 4 are associated as data (the minimum control unit S of the digital detector 10).
  • the density value or luminance value calculated based on the transmitted X-ray dose for each image is assigned as output data of n aggregates in the minimum control unit A of the image output device 4).
  • a plurality of mX n pixels may be associated as one control unit.
  • the output value of each pixel is averaged and treated as the output value of the area.
  • EB E + B
  • the edge-enhanced half-value width EB is mostly the blur width in the focal diameter and the imaging conditions used in a general medical imaging apparatus.
  • the edge can be reliably detected as in the case of the above embodiment.
  • the output is the same as in the above embodiment.
  • the evaluation was performed by shooting a cylindrical plastic fiber with a radius of lmm as the subject, and 25 ⁇ ⁇
  • Images were printed with an imager with a minimum control unit ⁇ in the range of A ⁇ 300 m.
  • the edge of the printed image was scanned at 20 points per condition with a microdensitometer, and the edge enhancement was observed.
  • the focal spot diameter is the actual measurement size, not the display size.
  • a laser imager DRYPRO MODEL 793 manufactured by Cocaminolta was used as an output device.
  • Each digital data obtained at the reading sampling pitch of the digital detector was associated with the output writing pitch data 1: 1, and the film was output.
  • Equation (3) The range of focal length D in Equation (3) and Equation (4) is as follows.
  • FIG. 11 is an example of a plastic fiber image.
  • the density of the fiber image was measured by scanning the line segment 100 in Fig. 11 with a microdensitometer.
  • the density of the uniformly exposed area was measured as a reference density.
  • the measured density force of the fiber image The difference density was obtained by subtracting the reference density.
  • FIG. 12 is an example of the obtained difference density result. If the edges are clearly visible on the image output on the film, a shape like the “edge recognition” in Figure 12 is obtained. In other words, a graph with a peak near the interface between the subject and air is obtained. It is.
  • FIG. 13 is a measurement result in this photographing experiment example, and is an enlarged view of an edge portion corresponding to the portion surrounded by a circle in FIG. Table 1 shows the experimental conditions.
  • the digital reading unit (detection unit) of the present invention digitally detects the phase contrast effect (edge enhancement) image at the edge at the reading stage. Don't be.
  • equation (3) In an experiment using a plastic fiber like this experiment, it is possible to define the relationship between D, A, S, and M by applying equation (3). However, when actually photographing a living body, various compounds are mixed together and the shape is complicated, and calculation using equation (3) is difficult. On the other hand, equation (4) is an equation that uses only the value determined by the setting of the device, not the subject, and can be easily calculated and is practical.
  • Equation (4) that approximates “S—E” as “S” is almost the same as the result of Equation (3). It turns out that it is good to use.
  • the peak and valley of the edge are not included in the same reading control unit. Therefore, it is possible to reliably detect an edge which is an effect of phase contrast imaging regardless of the phase (position) for each reading control unit. As a result, the edge visibility in the final output image (film or viewer) is improved.
  • FIG. 14 shows the configuration of the digital radiographic image capturing system in the present embodiment.
  • the digital radiographic imaging system includes image generation apparatuses 101a to 101d, JOB manager 102, DB (Data Base) 103, image recording apparatuses 104a to 104c, and image display apparatuses 104d and 104e. It is configured with.
  • Each device is configured to be able to send and receive information to and from each other via a network N compliant with DICOM (Digital Imaging and Communication in Medicine) standards.
  • DICOM Digital Imaging and Communication in Medicine
  • the image generation devices 101a to 101d generate digital data of an X-ray image obtained by imaging a subject, and an imaging system image generation device 101a that performs an imaging operation and an X-ray image generation operation by one unit.
  • 101b is configured separately from the imaging device, and is classified as a reading system image generation device 101c, 101d that reads X-ray images recorded in a portable image detector and generates X-ray image data. Is done.
  • the image generation devices 101a and 101b of the imaging generation system read imaging data including an X-ray tube, an image detector (FPD or phosphor sheet), etc., and an X-ray image recorded on the image detector.
  • the image generation means functions as a digital image detector that digitally displays an X-ray image.
  • the image generation device 101c and lOld of the reading system only the image generation means (functioning as a digital image detector) is provided, and the photographing operation is performed with a force set by a separate photographing device. This is performed using a portable image detector such as the above.
  • the image generation devices 101c and 1 Old perform the reading operation of the X-ray image recorded on the force set by this imaging operation.
  • phase contrast imaging method and the X-ray image generation method are the same. Details of the photographing method and the like will be described later.
  • the JOB manager 102 controls and manages the flow of X-ray images in the digital radiographic imaging system. Also, output control is performed when an X-ray image is output by the output devices of the image recording devices 104a to 104c or the image display devices 104d and 104e.
  • the JOB manager 102 receives from the HIS (Hospital Information System) or RIS (Radiology Information System) and stores the imaging instruction information designated by the doctor regarding imaging called imaging order information. Yes.
  • the job manager 102 manages captured X-ray images based on this imaging order information.
  • the imaging order information includes patient information (name, age, gender, etc.) related to the subject (patient) to be imaged, and imaging information related to imaging (imaging site, imaging direction, imaging method, etc.)
  • the job manager 102 retrieves radiographing order information corresponding to the X-ray image, and attaches patient information, radiographing information, etc. included in the radiographing order information to the X-ray image.
  • image generation information (minimum generation unit at the time of image generation, amount of image data, etc.) at the time of image generation in the image generation apparatuses 101a to 101d is attached to the X-ray image.
  • Each X-ray image can be individually identified by the accompanying information.
  • FIG. 15 shows the internal configuration of the job manager 102.
  • the JOB manager 102 includes a control unit 121, an operation unit 122, a display unit 123, a communication unit 124, and a storage unit 125.
  • the control unit 121 is also configured with a CPU (Central Processing Unit), a RAM (Random Access Memory) and the like, and reads various control programs from the storage unit 125 and cooperates with the programs to perform various operations and Centralized control of the operation of each unit 122-125.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • the operation unit 122 includes a keyboard, a mouse, and the like, generates an operation signal corresponding to the operation of these operators, and outputs the operation signal to the control unit 121.
  • the display unit 123 includes a display such as an LCD (Liquid Crystal Display), and displays various display information such as various operation screens and processing results by the control unit 121 on the display.
  • a display such as an LCD (Liquid Crystal Display)
  • various display information such as various operation screens and processing results by the control unit 121 on the display.
  • the communication unit 124 includes a communication interface such as a network interface card, and transmits and receives information to and from each device on the network N.
  • the storage unit 125 stores various control programs, parameters necessary for program execution, data such as processing results by the control unit 121, and the like.
  • the storage unit 125 stores an output setting table 251.
  • the output setting table 251 is a table for managing output setting information in the output devices included in the digital radiographic imaging system, that is, the image recording devices 104a to 104c and the image display devices 104d and 104e.
  • the output setting table 251 for each output device ID (104a to 104d, etc.) uniquely assigned to each output device, the output form (film recording or Monitor display) and various output setting information of minimum output unit A (also referred to as minimum control unit during output) (unit / zm) is stored.
  • the minimum output unit A refers to the minimum structural unit that constitutes an output image when an X-ray image is output, and specifically refers to a pixel size and a writing pitch size.
  • setting information of a plurality of minimum output units is stored. The output setting information is registered and set every time a new output device is introduced into the digital radiographic imaging system.
  • the DB 103 is composed of a large capacity memory, and stores an X-ray image generated by imaging. Each X-ray image is managed as a DB based on the accompanying information attached by the JOB manager 102.
  • the image recording devices 104a to 104c and the image display devices 104d and 104e perform X-ray image output processing.
  • the image recording devices 104a to 104c record X-ray images on a film, and the image display device 104d.
  • 104e displays an X-ray image on the monitor.
  • output devices 104a to 104e are collectively referred to as output devices 104a to 104e.
  • Each of the output devices 104a to 104e has a minimum output unit that can be output.
  • the output devices 104a to 104e When the X-ray image to be output and its output instruction information are input by the job manager 102, the output devices 104a to 104e perform output processing of the input X-ray image according to the output instruction information.
  • the output instruction information includes the minimum output unit to be applied at the time of output, the output method based on the minimum output unit, the film size, and other output conditions.
  • Each of the output devices 104a to 104e assigns a signal value (pixel value) for each minimum generation unit of the input X-ray image to each specified minimum output unit according to the specified output method, and also has a minimum output unit force. The output image is reconstructed and the output image is output.
  • the job manager 102 performs processing to reconstruct the output image, distributes it to the output devices 104a to 104e, and performs only processing to output the output image distributed from the output devices 104a to 104ei and the OB manager 102. Even so.
  • phase contrast imaging performed in the imaging system image generation devices 101a, 101b, etc. is basically the same as in the first embodiment, and a description thereof will be omitted.
  • the minimum generation unit S and enlargement are automatically performed on the image generation devices 101a and 101b side.
  • the rate M is detected and the information is written in the header area of the enlarged image.
  • the enlargement factor M may be configured such that an engineer inputs the information, or in the image generation apparatuses 101a and 102b as long as the position of the subject and the position of the image detector 12 can be detected by the image generation apparatuses 101a and 101b.
  • a configuration may be adopted in which the enlargement factor M is automatically calculated.
  • an engineer recorded an enlarged image after shooting. Since the force set has to be loaded into the image generation device 101c and lOld, the operator is required to input information on the minimum generation unit S and magnification M at that time, and the information is input by the image generation device 101c and lOld. The information on the minimum generation unit S and magnification M is read and written in the header area of the enlarged image.
  • Enlarged image data attached with image generation information such as the minimum generation unit S and the enlargement ratio M is transmitted to the job manager 102.
  • the job manager 102 attaches additional information based on the photographing order information to the enlarged image and saves it in the DB 103.
  • the job manager 102 outputs the enlarged image stored in the DB 103 to the output device.
  • Output control processing distributed to 104a to 104e is executed.
  • the output control process is a software process realized by the cooperation of the control unit 121 and a processing program stored in the storage unit 125.
  • step S2 the incidental information of the received enlarged image data is referred to, and information on the minimum generation unit S and the enlargement factor M is acquired (step Sl).
  • step S2 an optimum output unit Q that can be output with a life size without performing the reduction interpolation process is calculated from the minimum generation unit S and the enlargement ratio M. That is, the optimum output unit Q that satisfies the following equation (5) is obtained (step S2).
  • the signal value for each minimum generation unit S is made to correspond to the minimum output unit A in a 1: 1 ratio, and the signal value is the minimum output unit A, the reduced interpolation process is not required.
  • an output unit (minimum output unit A or a collection thereof) that can output an enlarged image with the same size as or close to the life size even when such signal value assignment is performed.
  • nA By outputting at nA), it is possible to output an enlarged image with a life size that does not deteriorate the image quality while maintaining the edge effect.
  • the output setting table 251 is referred to, and the optimum output unit Q or the optimum output unit Q that is obtained is the closest!
  • output devices 104a to 104e that are the minimum output unit ⁇ that can be output in the output unit and satisfy S> A are selected (step S3).
  • the output means of the minimum output unit A that can be output in the optimum output unit Q is preferentially selected, and then the output means force of the minimum output unit A that can be output in the output unit closest to the optimum output unit Q is given priority. Selected. Note that the relationship of S> A is because the purpose is to output an enlarged image in life size.
  • the minimum output unit A that can be output in the optimum output unit Q is the case where output is possible with the minimum output unit A itself, and the output is possible with the aggregate nA of the minimum output unit A Means that it is included.
  • the optimal output unit Q is 25 m.
  • the minimum output unit A is the same as the optimum output unit 25 ( ⁇ m) in the film recording output mode. . Therefore, one of the output devices 104a and 104c is selected. Which is selected may be arbitrary, or may be narrowed down by other conditions, such as selecting a film that can be output at the film size to be output.
  • Step S4 If the output is not possible (Step S4; N), then the output with the minimum output unit A that can be output in the output unit closest to the optimum output unit Q or the optimum output unit Q A device selection is made (step S5).
  • the output device 104a is selected from the output devices 104a and 104c. 1S
  • the output device 104a is not turned on, or a large amount of image data to be output is waiting to be output. If the status information is input, it is determined that the output is not possible, and among the other output devices 104b to 104e excluding the output device 104a, the next is the same or closest to the optimum output unit Q.
  • An output device is selected.
  • the output device 104c has the same minimum output unit A (25 m) as the optimal output unit Q. Force device 104c is selected.
  • the output device 104b having the minimum output unit A is preferentially selected.
  • the signal value of the minimum generation unit S43.75 (m) is assigned 1: 1 to one pixel having the size of the minimum output unit A27 ( ⁇ m)
  • the output image is relative to the life size as shown in Fig. 18. 1. It has been enlarged by a factor of 08 and does not become life size (expansion rate 1.0). However, if such a small enlargement ratio is used, the life size is within the range that can be used without any problem for interpretation. Therefore, the output is close to the optimum output unit Q, and the output is selected with priority.
  • step S4 When the output devices 104a to 104c that can output are selected in this way (step S4; Y), the output condition is determined by the control unit 121, and output instruction information indicating the output condition is generated. The data is delivered to the selected output devices 104a to 104c together with the enlarged image data to be output (step S6).
  • the condition for assigning the signal value for each minimum generation unit S to the minimum output unit A that is, the signal value in one unit of the minimum generation unit S is the minimum output unit A (or its aggregate) If you assign 1 unit to 1 unit of nA),! / ⁇ ⁇ condition is included.
  • the minimum output unit A or its aggregate
  • information on the minimum number of output units n constituting the aggregate nA is also included.
  • the output devices 104a to 104e an output image is generated from the enlarged image according to the output instruction information, and the output is performed. Therefore, it is possible to output without performing the reduction interpolation process and with a life size or a size close thereto. Become.
  • the selected one output device 104a to 104e when output by a plurality of minimum output units A is possible, there is a condition indicating which minimum output unit A is used for output. It is included in the output condition. In addition, if there is a film size specified by the engineer, output conditions such as size information are also included. In this way, in the output devices 104a to 104e that have received the enlarged image to be output and the output instruction information from the JOB manager 102, the output operation of the enlarged image to be output is performed according to the output instruction information. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

 読取制御単位のどのような位相(位置)に結像しても位相コントラスト撮影の効果であるエッジを確実に検出することができるデジタル放射線画像撮影システムを提供する。  被写体にX線を照射するX線管と、被写体を透過したX線を検出するデジタル検出器と、を有する位相コントラスト撮影を行うデジタル放射線画像撮影システムであって、前記X線管の焦点径をD(μm)、デジタル検出器の最小制御単位S(μm)、X線管焦点から被写体までの距離R1(m)、被写体からデジタル検出器までの距離R2(m)、拡大率M=(R1+R2)/R1、X線屈折によるエッジ強調幅E、とするとき、D≧(2S-E)/(M-1) である。

Description

明 細 書
デジタル放射線画像撮影システム
技術分野
[0001] この発明は、拡大撮影手法のひとつである位相コントラスト撮影方法により被写体を デジタル的に撮影し、得られたデジタル画像データ(当該被写体の拡大された画像) を、読影医の診断スタイル (被写体と略等倍 (ライフサイズと呼称される)の画像に基 づき診断)に合致するよう、縮小して出力するデジタル放射線画像生成システムに関 する。
[0002] 位相コントラスト撮影方法で撮影された画像は、病巣辺縁部(輪郭)がエッジ強調さ れた視認性の高い画像となり、医療分野での期待が高ぐ特にマンモグラフィ (乳房 画像)分野に於ける診断精度の向上が期待される。
背景技術
[0003] 医用画像分野にお!、ても、デジタル化が進みつつあり、デジタル画像撮影では、画 像の読み取りの空間分解能は、 X線検出器の読取画素サイズ又は読取サンプリング ピッチの大きさに依存して制限を受ける。この場合、読取画素サイズ又は読取サンプ リングピッチより小さい被写体は描写できず、また、読取画素サイズ又は読取サンプリ ングピッチより大きい被写体であっても、被写体の輪郭描写が不鮮明となってしまう等 の問題がある。
[0004] ここで、 X線検出器の構造が微細化'複雑化すると共に、取り扱うデータ容量が増 大することから、 X線検出器やデータ処理用のメモリ等のコストが上昇し、データ処理 時間が増大してしまうという不都合が生じる。
[0005] 勿論、読取画素サイズ又は読取サンプリングピッチは重要ではあるが、読取画素サ ィズ又は読取サンプリングピッチの微細化のみを図っても、最終的に読影医に提供 する画像 (診断に供する画像)におけるエッジ強調された辺縁部 (輪郭部)の視認性 向上を達成できない。
[0006] 位相コントラスト X線画像のデジタル画像を得るデジタル X線画像検出器を備え、こ のデジタル X線画像検出器の読取画素サイズ力 位相コントラスト X線画像の位相コ ントラストエッジ強調半値幅と略同等であるデジタル位相コントラスト X線画像撮影シ ステムが特許文献 1に開示されて!ヽる。
[0007] また、例えば、 CR (Computed Radiography)や FPD(Flat Panel Detector)等を使用 して、位相コントラスト撮影を行い、得られた画像データを、フィルムやビューァに出 力する際に、位相コントラスト撮影時の撮影倍率 (拡大倍率) : M、読取時の最小制御 単位 (画素サイ ):A、出力時の最小制御単位 (画素サイズ): B、とし、 B=AZMであ ると、読取画素と出力画素とを 1 : 1に対応付けることが可能である。この場合、縮小補 間処理が不要となるので、補間処理時に前記エッジ強調された辺縁画像の一部を消 失することがなぐ画像劣化を生じず、好ましいことが知られている。
特許文献 1 :特開 2003— 180670号公報
発明の開示
発明が解決しょうとする課題
[0008] この位相コントラスト撮影方法による画像の特徴である、周囲とは異なる特性領域の 辺縁 (境界)部分がエッジ強調された画像を、フィルムやビューァに視認性良く画像 出力するためには、エッジ強調された辺縁画像をつぶさず忠実に出力することが必 要である。
[0009] 上記特許文献 1においては、 CRプレートや FPD等の検出器の各最小制御単位へ の病巣辺縁部の結像位置によっては、最小制御単位内に出力信号の山の一部と谷 の一部とが共存する場合がある。この場合、山と谷とで出力信号値が相殺されるため 、当該最小制御単位における出力信号値が低くなり、山や谷の結像していない最小 制御単位における出力信号値と差が小さくなつたり、場合によっては同等レベルにな つてしまう。その結果、読み取り段階でエッジ強調された画像を得ることができなくなり 、その後いかに忠実に再現できる出力装置を用いても、満足のいくエッジ強調された 画像を得ることができなくなってしまう。
[0010] 本発明は、以上のような問題に鑑みてなされたものであり、位相コントラスト撮影方 法により生成された画像を、デジタル的に読み取るに際し、個々の読取制御単位に 対し、どのような位相 (位置)に結像しても位相コントラスト撮影の効果であるエッジを 確実に検出することができるデジタル放射線画像撮影システムを提供することを目的 としている。
課題を解決するための手段
[0011] 本発明のデジタル放射線画像撮影システムは、被写体に X線を照射する X線管と、 前記被写体を透過した X線を検出するデジタル検出器と、を有する位相コントラスト 撮影を行うデジタル放射線画像撮影システムであって、前記 X線管の焦点径を D ( μ m)、前記デジタル検出器の最小制御単位 S (; z m)、前記 X線管焦点から前記被写 体までの距離 Rl (m)、前記被写体力も前記デジタル検出器までの距離 R2 (m)、拡 大率 M= (R1 +R2) ZR1、 X線屈折によるエッジ強調幅 E、とするとき、 D≥ (2S -E ) Z (M— 1)であることを特徴として!/、る。
[0012] また、本発明のデジタル放射線画像撮影システムは、被写体に X線を照射する X線 管と、前記被写体を透過した X線を検出するデジタル検出器と、を有する位相コント ラスト撮影を行うデジタル放射線画像撮影システムであって、前記 X線管の焦点径を D ( m)、前記デジタル検出器の最小制御単位 S ( m)、前記 X線管焦点から前記 被写体までの距離 Rl (m)、前記被写体力も前記デジタル検出器までの距離 R2 (m) 、拡大率 M= (R1 +R2) ZR1、 X線屈折によるエッジ強調幅 E、とするとき、 D≥2S / (M— 1)であることを特徴として!/、る。
発明の効果
[0013] 本発明によれば、位相コントラスト撮影方法により生成された画像を、デジタル的に 読み取るに際し、エッジの山と谷が同一の読取制御単位内に含まれることが無!、の で、個々の読取制御単位に対し、どのような位相 (位置)に結像しても位相コントラスト 撮影の効果であるエッジを確実に検出することができる。
図面の簡単な説明
[0014] [図 1]デジタル放射線画像撮影システムの概略構成図である。
[図 2]X線撮影装置の概略構成図である。
[図 3]X線の屈折によって被写体画像の位相コントラストエッジ強調が生ずる原理を説 明する図である。
[図 4]位相コントラストエッジ強調の半値幅を示す図である。
[図 5]クーリッジ X線管を用いる場合の位相コントラストエッジ強調の半値幅を示す図 である。
[図 6]デジタル検出器の画素サイズが一定の大きさをもっていても検出可能なことを 説明する図である。
[図 7]理想的な点光源カゝら放射された X線によりできる場合のエッジ強調幅よりも幾何 学的不鋭により広がることを説明する図である。
[図 8]半値幅 EBと同じ読取サンプリングピッチ Sでサンプリングすることにより常時エツ ジを認識可能であるが、エッジが認識されない場合があることを説明する図である。
[図 9]デジタル検出器での最小制御単位 (読取画素サイズ又は読取サンプリングピッ チ) Sと、画像出力装置の最小制御単位(出力画素サイズ又は出力書き込みピッチ)
Aの関係を示す図である。
[図 10]—制御単位を説明する図である。
[図 11]プラスチックファイバ画像のモデル図である。
[図 12]ファイバ画像の濃度力も基準濃度を差し引いて得られた差分濃度と位置との 関係を示す図である。
[図 13]図 12のエッジ部分の拡大図である。
[図 14]第 2の実施形態に係るデジタル放射線画像撮影システムを示す図である。
[図 15]図 14の JOBマネージャの内部構成を示す図である。
[図 16]図 14の各出力装置の出力設定情報が記憶された出力設定テーブル例を示 す図である。
[図 17 OBマネージャにより実行される出力制御処理の流れを説明するフローチヤ ートである。
[図 18]拡大画像と最小出力単位が異なる場合のその出力画像との関係を示す図で ある。
符号の説明
1 X線撮影装置
2 画像処理装置
4 画像出力装置
4a ビューァ 4b プリンタ
6 保存装置
100 デジタル放射線画像撮影システム
101a〜101d 画像生成装置
102 JOBマネージャ
103 DB
104a〜104c 画像記録装置
104d、 104e 画像表示装置
発明を実施するための最良の形態
[0016] (第 1の実施形態)
第 1の実施形態に係るデジタル放射線画像撮影システムを図 1に示す。本実施形 態のデジタル放射線画像撮影システムは、位相コントラスト撮影装置 (X線撮影装置) 1、画像処理装置(ワークステージヨン) 2、画像出力装置 4 (ビューァ 4a、プリンタ 4b) 、及び保存装置 6が LAN、 WAN等で接続されている。各装置は DICOMプロトコル に対応した通信が可能となっており、位相コントラスト撮影方法により生成されたデジ タル画像データを、デジタル的に再現する。
[0017] まず、位相コントラスト撮影装置 1では、 2次元平面デジタル画像撮影が行なわれ、 この X線画像が撮影されると、画像信号が取り出されて画像処理装置 2で画像処理 が行なわれる。さらに、画像信号は、画像出力装置 4のビューァ 4aで画像表示され、 また、プリンタ 4bで画像プリント出力される。
[0018] 位相コントラスト撮影装置 1は、いわゆるデジタル画像撮影装置が好ましぐ CR、 F PD、分割型 X線検出器などのデジタル検出器を備える。又、スクリーン、フィルム系 で撮影し、現像後のフィルムをデジタイザでデジタルィ匕したものであっても良 、。
[0019] FPDはいわゆる直接型と間接型との 2種類があり、本発明においては、これら方式 についてはなんら制限するものではない。直接型 FPDでは、 X線を a— Seなどに照 射し、発生した電荷を集めてー且コンデンサなどに蓄積する。そして、 2次元的に順 番にその蓄積電荷を取り出して、最終的に画像信号とするものである。
[0020] 分割型 X線検出器は、 X線を照射すると可視光を発光する平面のシンチレータに 直接 CCDを当接させて画像信号を取り出すものや、発光光をガラスファイバで収集 し CCD〖こ導 ヽて画像信号を取り出すもの、あるいはレンズ等を用いて発光光を CCD に導 、て画像信号を取り出すものである。
[0021] デジタル検出器の読取画素サイズ又は読取サンプリングピッチを、読取時の最小 制御単位 S m)と定義する。最小制御単位 Sは、 10≤3≤200 /ζ πιが好ましい。 2 00 /z mより大きいと、被写体透過 X線像を正確に取得することが難しぐ 10 /z mより 小さいと、歩留まりが悪く製造コストも高くなる。より好ましくは、 30≤3≤100 /ζ πιであ り、この範囲で読取サンプリングを行うことにより、位相コントラスト撮影で得られたエツ ジ強調された境界画像を欠落すること無しに読み取ることが可能となり、鮮鋭性が向 上する。
[0022] ビューァ 4aは、撮影済データを表示させ、撮影部位のポジショニングの良否を確認 するために使用する。良好な場合、技師は、記憶装置等の保存装置 6に当該データ を送信し、保存する。また、これと同時に、図示せぬ読影医のワークステーションに、 当該画像データを送信することとしても良!ヽ。
[0023] ビューァ 4aには、陰極線管(CRT)、液晶、プラズマディスプレイ、液晶プロジェクタ 一、有機 EL等を用いることができる。ビューァ 4aにおいて、輝度: 400〜1000cdZ m2、コントラスト比: 200〜10000、情報の深さ: 8あるいは 16bit、が好ましい。画面 の大きさはとくに制限はないが、撮影部位全体が表示されるサイズが好ましい。患者 の氏名、撮影拡大率、撮影年月日等の文字情報を画像と一緒に表示することが好ま しい。また、過去画像、 X線 CT'MRI等の他のモダリティ画像、切除検体画像や眼底 写真等のカラー画像等を同時にあるいは別々に表示してもよ 、。
[0024] ビューァ 4aの出力画素サイズ又はプリンタ 4bの出力書き込みピッチを、出力時の 最小制御単位 A ( μ m)と定義する。
[0025] 次に、位相コントラスト撮影方法を図 2に基づいて説明する。図 1の X線撮影装置 1 の概略を図 2に示す。密着撮影とは、デジタル検出器 10あるいはデジタル検出器 10 を含む部材に被写体 11を当接させた状態で撮影することをいう。被写体 11のデジタ ル検出器 10側の位置力もデジタル検出器 10あるいはそれを含む部材までの距離を R2として定義する。密着撮影は、 R2 = 0あるいは実質的に 0であることを意味する。 実質的に 0とは、 R2が 0. 05m以下、あるいは拡大率 Mが 1. 1未満であることを意味 する。拡大率 Mは、投影画像の最大長を被写体本体の対応する部分の長さで除した ときに得られる値で定義される。
[0026] 1 < M≤ 10の拡大率 Mを選択することにより、位相コントラスト画像が得られる。好 ましくは、 1. 4≤M≤3であり、この範囲の拡大率 Mを選択することにより、診断画像 として使用可能な高画質の位相コントラスト画像が得られる。
[0027] 図 2に示すように、デジタル検出器 10を被写体 11より離して設置すると、 X線管 13 力 放射される X線により、位相コントラスト画像 12を撮影することができる。 R2が 0. 05mを越える場合や拡大率 Mが 1. 1以上の場合が位相コントラスト撮影である。
[0028] 本実施形態の X線管 13の焦点 aと被写体 11との距離 R1は、一般的な撮影室の形 状 (特に、床〜天井の距離)及び被写体の厚みを考慮すると、 0. 15≤Rl≤5m、さ らに画質及び作業効率を考慮すると、好ましくは 0. 25≤Rl≤2mである。また、被 写体 11とデジタル検出器 10との距離 R2は、一般的な撮影室の形状 (特に、床〜天 井の距離)及び診断可能な画質を考慮すると、 0. 15≤R2≤5m、好ましくは 0. 5≤ R2≤2mである。
[0029] X線管 13は、回転陽極熱電子管が好ましい。すなわち、フィラメントから電子が放射 され、 10kV以上 500kVまでの任意の電圧をかけた陽極に電子が衝突し、その運動 エネルギーが電磁波に変換されて X線が放射されるものである。この場合、電子を放 出するものがフィラメントでもよ 、が、カーボンナノチューブを用いても差し支えな 、。 陽極はモリブデンやタングステン金属力 なり、熱電子の衝突により発熱で陽極が損 傷しないように陽極を回転させることが好ましい。熱電子が陽極に衝突する部分の形 状は、放射される方向力も見たとき、一般に正方形に設計され、焦点とよばれる。この 正方形の一辺長が焦点径 Dと呼ばれ、 X線源の大きさを表すものである。焦点径 Dは 、一般に X線管の製造メーカがその仕様として提示するものであり、そして JIS Z470 2に定められるようにピンホールカメラある 、はテストチャートを用いて測定することが できる。
[0030] 焦点径 Dは、 1≤0≤300 111、好ましくは30≤0≤100 111でぁる。 1 m以上の 焦点径 Dを選択することにより、被写体 11を透過するだけの X線出力が得られ、 30 /z m以上で、診断に適した高画質の画像が得られる。焦点径が小さいと、画質は良く なるが撮影時間が長くなる。又、マンモグラフィ等では百 m程度の構造物の形状を 観察する必要があるため、より小焦点化が望まれることから 30 m以上 100 m以下 となる。 30≤ϋ≤100 /ζ πιの焦点径 Dを選択することにより、デジタル検出器 10で検 出可能なエッジ像が得られ、高鮮鋭度の画像が得られる。
[0031] デジタル検出器 10の読取画素サイズ又は読取サンプリングピッチである最小制御 単位 S ( m)は、 10≤S≤200 mであり、好ましくは 30≤S≤ 100 μ mである。最 小制御単位 Sが小さいほど、緻密な画像が得られ、細部の構造まで見ることが可能に なるが、検出部の製造が困難になり、製品歩留まりを低下させる。デジタル検出器 10 の検出領域は、被写体部位の拡大された領域を全てカバーすることが好ま 、。
[0032] 画像出力装置 4の出力画素サイズ又は出力書き込みピッチである最小制御単位 A は、 25≤Α≤300 /ζ πιであり、最小制御単位 Αが大きすぎると、画像の輪郭がぼやけ て見え、小さいほど、緻密な画像が表示でき、細部の構造物まで見ることができる。し かし、最小制御単位 Aが小さくなると、歩留まりが悪くなるとともに製造コストが増大し てしまう。また、画像データ量が多くなり、表示や画像の切り替えに時間が掛カるため 作業効率が低下する。
[0033] 好ましくは 50≤Α≤200 μ mであり、 200 μ mを超えると、微細な構造物を見るよう な細かい診断の場合には診断しに《なることがある。
[0034] 位相コントラスト撮影装置 1は、上記の方法で撮影を行い、 X線の屈折によって被写 体像の辺縁にエッジが生ずる現象を利用して、より鮮鋭度の高 ヽ放射線画像を取得 するための装置である。
[0035] 位相コントラスト撮影では、図 3に示すように、被写体 11の辺縁の外側では、被写体 11の辺縁を通過した X線が屈折してデジタル検出器 10上で被写体 11の横を通過し た X線と重なり、 X線強度が強くなる。逆に、被写体 11の辺縁の内側付近では、 X線 強度が弱くなる。このように、 X線強度は、被写体 11の辺縁を境にして、外側に山、 内側に谷が生じ、エッジ強調される。このエッジ強調作用は、エッジ効果ともよばれる 。このエッジ強調作用により、辺縁がくっきりと描写される鮮鋭性の良好な X線画像を 得ることができる。 [0036] このとき、 X線源を点光源としてみなすと、図 4に示すように、位相コントラストエッジ 強調の半値幅 Eは、次の式(1)で表すことができる。
[0037] E = 2. 3 (1 +R2/R1) 1/3{R2 6 (2r) 1/2}2/3· · . (1)
δは X線の屈折が起こる部分での屈折率差、 rは物体 (被写体)の半径である。
[0038] 一方、医療現場や非破壊検査施設では、クーリッジ X線管 5 (熱電子 X線管とも言う )が広く使用されている。クーリッジ X線管 5を用いる場合を図 5に示す。クーリッジ X線 管 5では、熱電子がタングステンなどの金属陽極に衝突して X線を放射し、焦点と呼 ばれるほぼ正方形の窓力 放射状に X線が飛び出す。この正方形の窓の一辺の長さ を焦点径という。クーリッジ X線管 5を用いるときは、 X線源を理想的な点光源とみなす ことができない。すなわち有限の大きさをもつ X線源としての焦点によって、図 6に示 すように、いわゆる幾何学的不鋭によって位相コントラストエッジ強調の半値幅 Eが広 がり、かつ強度が減少する。このとき位相コントラストエッジ強調の半値幅 Eは式(2) のように表すことができる。
EB = 2. 3 (1 +R2/R1) 1/3{R2 6 (2r) 1/2}2/3+D (R2/Rl) · · · (2)
ここで、 Dは、使用するクーリッジ X線管 5の焦点径を表す。
[0039] クーリッジ X線管 5を用いる場合、上記のように幾何学的不鋭により位相コントラスト エッジ強調の半値幅 Eが広がり、エッジ強調画像がボケてしまうが、逆に半値幅 Eが 広がるため、デジタル検出器 10の画素サイズが比較的大きい場合でも、エッジ強調 画像の検出が可能となる。
[0040] 位相コントラスト撮影により得られた高鮮鋭な画像を診断画像として提供するために は、第 1にエッジ強調画像を精度良く検出し、第 2に検出したエッジ強調画像の画像 情報を失わずに診断可能な状態で出力しなければならない。
[0041] まず、検出について説明する。位相コントラスト撮影法により得るエッジ強調半値幅 は、図 7に示すように、 EB = E + Bで表される。 Eは、 X線管の X線源が理想的な点光 源カゝら放射された X線により形成されるエッジ強調幅である。 Bは、幾何学的不鋭によ るボケの大きさである。焦点径 Dを有する光源より放射された X線によるエッジ強調幅 EBは、理想的な点光源から放射された X線により形成されるエッジ強調幅 Eよりも幾 何学的不鋭により広がる。 EBは、エッジ強調半値幅であり、エッジの山—谷間距離を 表し、理想的なエッジ強調幅 Eにボケ Bをカ卩えた E + Bで表される。
[0042] EBが読み取り最小制御単位 (読取画素サイズ又は読取サンプリングピッチ) Sよりも 小さい場合には、エッジ強調の視認性が低い、条件によっては視認出来ない画像と なる確率が高い。
[0043] これは、 EBが Sよりも小さいため、エッジの山と谷が同一読取最小制御単位内に含 まれることにより一部又は全てが相殺されることに因る。
[0044] EBが Sより小さい前記の場合でも、読取最小制御単位に対するエッジ結像位置に よっては、エッジの山と谷を、それぞれ別々の制御単位で捕らえ、エッジ強調の視認 可能な画像が得られる場合もある。しかし、読取最小制御単位に対するエッジ結像 位置が適正な位置となるカゝ否かは確率論的に決定されるため、同じ撮影条件で撮影 した画像でも、エッジが見える場合と見えない場合が出てきてしまう。エッジを視認で きる確率は、 EBが Sと比べて大きいほど高くなり、ある大きさ以上では常にエッジが視 認可能となる。
[0045] 被写体を透過した X線画像を、デジタル検出器で取り込む場合、標本化定理を満 足する必要がある。
[0046] 標本ィ匕定理とは、「アナログ画像の持つ最大空間周波数が fmax (cycles/mm)で あるとき、標本化間隔 (サンプリング間隔) A x (mm)は、 Δ χ≤ l/ (2fmax)に設定 する必要がある。」と言う定理である。
[0047] 上記を具体的な値で表すと、例えば、アナログ画像の持つ最大空間周波数が 5cy clesZmmの場合、 0. 1mm以下の標本化間隔(サンプリング間隔)でデジタル化す る必要がある、と言う意味である。
[0048] 今、エッジの山と谷を合わせた幅 2EBがその画像の持つ最大空間周波数 (fmax) の周期であるような画像を仮定し、前記標本化定理を適用すると、エッジをデジタル 検出器で検出するために必要なサンプリング間隔を求めることができる。
[0049] このとき、最大空間周波数 fmaxは、 fmax= 1/ (2EB) (cycles/mm)で表される 。従って、エッジを再現するために必要なサンプリング間隔 Δ χは、 A x≤EB (mm) であり、エッジ強調半値幅 EB以下の読取幅であれば、エッジの山と谷とを検出できる こととなる(図 8 (a) )。 [0050] しかし、エッジ強調半値幅 EBと同じサイズの読取最小制御単位 Sでサンプリングを 行う場合に、確率は低いが、各読取最小制御単位 Sと結像位置 (位相)との関係が図 8 (b)のようになる(図 8 (a)に対して L = SZ2だけずれる)と、検出された信号値では 、各読取最小制御単位で読み取った信号値が同一強度 (又は出力強度差はあるが 、人間の目で視認できないほど小さい強度差)となるため、エッジを認識できなくなる
[0051] 従って、エッジを認識する為には、 S<EBである必要があり、より確実にエッジを検 出する場合には、 S≤EBZ2であることが好ま 、(図 8 (c) )。
[0052] 一方、幾何学的不鋭によるボケ Bは、 B = D (M—1)で求めることができるので、 S
≤EBZ2、すなわち、 S≤ (E + B)Z2より、
D≥ (2S -E) / (M- 1) · · · (3)
となる。
[0053] 本実施形態にぉ 、ては、 X線管の焦点径を D m)、デジタル検出器の最小制御 単位 (読取画素サイズ又は読取サンプリングピッチ) S m)、 X線管焦点から被写体 までの距離 Rl (m)、被写体力もデジタル検出器までの距離 R2 (m)、拡大率 M= (R 1 +R2) ZR1、 X線屈折によるエッジ強調幅 E、とするとき、 D≥ (2S-E) / (M- 1) である。
[0054] 以上のように、 D≥(2S— E)Z(M— 1)となるような放射線画像撮影システムであれ ば、エッジを確実に検出することができる。
[0055] 次に、出力について説明する。位相コントラスト撮影をすることにより検出画像は実 寸よりも拡大された画像となる。そのため、図 9に示すように、デジタル検出器 10での 最小制御単位 (読取画素サイズ又は読取サンプリングピッチ) Sを画像出力装置 4の 最小制御単位 (出力画素サイズ又は出力書き込みピッチ) Aに対応させるにあたり、画 像を実寸大に縮小する必要があるため、 S > Aである必要がある。
[0056] このとき、デジタル検出器 10の最小制御単位 Sと、画像出力装置 4の最小制御単 位 Aの n個の集合体と、をデータとして対応付ける(デジタル検出器 10の最小制御単 位 S毎の透過 X線量に基づき算出された濃度値又は輝度値を、画像出力装置 4の最 小制御単位 Aの n個の集合体の出力データとして割り付ける)。図 10 (a)に示すよう に、デジタル検出器 10の最小制御単位 Sに対して、画像出力装置 4の物理的分解 能である 1つのピクセルを一制御単位として対応付ける場合もあるし (n= 1に相当)、 図 10 (b)に示すように、 mX nの複数のピクセル(例えば、 2 X 2=4ピクセル(n=4に 相当))を一制御単位として対応付ける場合もある。複数のピクセルを対応付ける場 合、各ピクセルの出力値を平均して、当該領域の出力値として扱う。両制御単位が相 似形の場合には、縦、横ともに同数の最小制御単位を有し (m=n)、両制御単位が 相似形で無い場合には、 m≠nとなる。
[0057] このようにすれば、縮小補間処理が不要となり、縮小補間処理に伴ってエッジ強調 画像が消失してしまうことが無ぐエッジ強調された境界部において良好な視認性が 得られる。
[0058] 特に、拡大率が Mの場合、 S = MA、 n= 1の条件であれば、倍率も一致する(ライ フサイズでの出力が可能となる)。
[0059] 上記の実施形態では、 EB = E + Bとしたが、エッジ強調半値幅 EBは、一般的な医 療用撮影装置に使用されている焦点径と撮影条件では、そのほとんどがボケ幅 Bで あり(ボケ幅 Bは、理想的なエッジ強調半値幅 Eの数倍力 数十倍であり)、 EB = Bと 近似することが可能である。
[0060] EB=Bとすると、 S≤B/2となり、
B = D (M—1)から、
D≥2S/ (M- 1) · · · (4)
となる。
[0061] この場合においても、上記の実施形態の場合と同様に、エッジを確実に検出するこ とができる。また、出力についても上記の実施形態の場合と同様である。
[撮影実験例]
評価は、被写体として半径 lmmの円柱状プラスチックファイバを撮影し、 25 ^ πι≤
A≤ 300 mの範囲の最小制御単位 Αを有するイメージャにて、画像をプリントした。 プリントされた画像のエッジ部をマイクロデンシトメータにて 1条件につき、 20箇所スキ ヤンしてエッジ強調度を観察した。
[0062] 撮影条件は、 X線エネルギーを 50KeV、照射 X線量 50mAs、拡大率 M = 1. 75( Rl = lm、 R2 = 0. 75m),拡大率M = 2(Rl = lm、 R2= lm)で撮影実験を行った
[0063] 使用 X線源としては、焦点径の設定の都合により、焦点径 Dが πι〜300 /ζ mま で変更可能に改良された非破壊検査用 X線源を用いた。 X線管のターゲット (陽極)と しては、回転陽極式のタングステン管を用いた。尚、焦点径は実測サイズであり、表 示サイズではない。
[0064] デジタル検出器としては、 CRであるコ-カミノルタ社製力セッテタイプダイレクトデジ タイザ Regius MODEL 190を用いた。読取サンプリングピッチ(読取最小制御単 位 S)は、 43. と 87. 5 /z mの 2種類である。
[0065] 出力装置としては、コ-カミノルタ社製レーザーイメージャ DRYPRO MODEL 7 93を用いた。出力書き込みピッチ(出力最小制御単位 A)は、 25 /ζ πι、43. 75 /z m の 2種類である。そして、デジタル検出器の読取サンプリングピッチで得られた各デジ タルデータを、出力書き込みピッチのデータに 1 : 1で対応付け、フィルム出力を行つ た。
式(3)及び式 (4)における焦点径の Dの範囲は、以下のようになる。
d=8 X 10_7、 r=0.001m、 M= 1.75、 Ε = 24.9 μ m、 S=43.75 μ mのとき、 D≥8
3.58 (式(3) )、 D≥116.67 (式(4) )。
d=8 X 10_7、 r=0.001m、 M= 1.75、 E = 24.9 μ m、 S = 87.5 μ mのとき、 D≥20 0 (式(3) )、 D≥233 (式(4) )。
d=8 X 10_7、 r=0.001m、 M = 2、 E = 31.46 μ m、 S = 87.5 μ mのとき、 D≥143
(式 (3) )、D≥175 (式 (4) )。
[0066] 図 11は、プラスチックファイバ画像の一例である。図 11の線分 100の上をマイクロ デンシトメータで走査し、ファイバ画像の濃度を測定した。また、基準濃度として、一 様露光部の濃度を測定した。ファイバ画像の測定濃度力 基準濃度を差し引くことに より、差分濃度を求めた。
[0067] 図 12は、得られる差分濃度の結果の一例である。フィルムに出力された画像上で、 エッジが明確に視認できるものについては、図 12の「エッジ認識」のような形状のダラ フが得られる。つまり被写体側と空気側の界面近傍にピークが見られるグラフが得ら れる。
エッジの視認性が低下するに伴い、グラフ上のピークは低くなつていく。エッジが視認 できないものについては、図 12の「エッジ非認識」のような形状のグラフが得られる。
[0068] また、エッジを捕捉できたり、できな力つたりして 、る画像では、 20測定点を平均化 するとエッジ強調ピークの高さが低くなる。
[0069] 図 13は、本撮影実験例における測定結果であり、図 12の円形で囲まれた部分に 相当する、エッジ部分の拡大図である。実験条件は表 1の通りである。式(3)及び式(
4)を満たす場合を口、満たさない場合を園で示している。
[0070] [表 1]
Figure imgf000016_0001
[0071] この表 1から明らかなように、式(3)を満たす場合 (測定例 2, 4, 6, 7)には、デジタ ル検出器の個々の読取制御単位に対し、プラスチックファイバ辺縁が色々な位相の 結像位置となるように配置 (斜め配置)した図 11のような被写体であっても、プラスチ ックファイバの各稜線 (辺縁)には、書き込みピッチの大きさに依らず、明瞭な高強度 のエッジが連続的に観察された。一方、式 (3)を満たさない場合 (測定例 1, 3, 5)に は、エッジが観察されなかった。
[0072] これは、本件発明のデジタル読取部 (検出部)により、読み取りの段階で、辺縁部の 位相コントラスト効果 (エッジ強調)画像を、デジタル的に高強度に検出していることに ほかならない。
[0073] この傾向は、読取サンプリングピッチ S、出力書き込みピッチ A、焦点径 Dを変えて も変らなかった。 [0074] 式 (4)を満たす場合 (測定例 2, 4, 6)にも明瞭な高強度のエッジが確認された。測 定例 7のように式 (4)を満たさな!/、場合にもエッジが確認されて ヽる。これは、式 (4) は、式(3)よりも狭く限定されており、式 (4)の範囲は必ず式(3)の範囲内にあるから である。測定例 7においては、上述したように、式(3)は満たしている。
[0075] 本実験のようにプラスチックファイバを用いた実験では、式(3)を適用し D、 A、 S、 Mの関係を規定することが可能である。しかし、実際に生体を撮影する場合には、様 々な化合物が混じりあうとともに形状も複雑であり、式 (3)を用いた計算が難しい。そ れに対し、式 (4)は被写体ではなく装置のセッティングで決定される値のみを使用し た式であり、簡便に計算でき実用的である。
[0076] この場合、「S— E」 を「S」として近似する式 (4)による結果は、式(3)による結果と 略同等の結果が得られ、実用的には、式 (4)を用いると良いことがわかる。
[0077] 以上のように、本発明によれば、位相コントラスト撮影方法により生成された画像を 、デジタル的に読み取るに際し、エッジの山と谷が同一の読取制御単位内に含まれ ることが無いので、個々の読取制御単位に対し、どのような位相 (位置)に結像しても 位相コントラスト撮影の効果であるエッジを確実に検出することができる。その結果、 最終出力画像 (フィルム、又はビューァ)におけるエッジ視認性が向上する。
(第 2の実施形態)
図 14に、本実施形態におけるデジタル放射線画像撮影システムの構成を示す。
[0078] 図 14に示すように、デジタル放射線画像撮影システムは、画像生成装置 101a〜l 01d、 JOBマネージャ 102、 DB (Data Base) 103、画像記録装置 104a〜104c、画 像表示装置 104d、 104eを備えて構成されている。各装置は、 DICOM (Digital Ima ging and Communication in Medicine)の規格に準拠したネットワーク Nを介して互い に情報の送受信が可能に構成されている。
[0079] 画像生成装置 101a〜101dは、被写体を撮影した X線画像のデジタルデータを生 成するものであり、撮影動作と X線画像の生成動作を一台で行う撮影系の画像生成 装置 101a、 101bと、撮影装置とは別体に構成され、可搬型の画像検出器に記録さ れた X線像を読み取って X線画像データを生成する読取系の画像生成装置 101c、 101dとに分類される。 [0080] 撮影生成系の画像生成装置 101a、 101bは、 X線管、画像検出器 (FPD又は蛍光 体シート)等からなる撮影手段と、画像検出器に記録された X線画像を読み取り画像 データを生成する画像生成手段とを備えて、撮影動作とともに画像生成動作を行うも のである。画像生成手段は、 X線画像をデジタルィ匕するデジタル画像検出器として機 能する。
[0081] 一方、読取系の画像生成装置 101c、 lOldの場合、画像生成手段 (デジタル画像 検出器として機能する)のみを備えており、撮影動作は、別体に構成された撮影装置 により力セッテ等の可搬型の画像検出器を用いて行われる。画像生成装置 101c、 1 Oldは、この撮影動作により力セッテに記録された X線画像の読取動作を行う。
[0082] 何れの画像生成装置 10 la〜 10 Idであっても、位相コントラスト撮影の方法、 X線 画像の生成方法は同じである。撮影方法等についての詳細は、後述する。
[0083] JOBマネージャ 102は、デジタル放射線画像撮影システムにおける X線画像の流 れを制御し、管理するものである。また、 X線画像を画像記録装置 104a〜104c又は 画像表示装置 104d、 104eの各出力装置により出力する際の出力制御を行う。
[0084] また、 JOBマネージャ 102は、撮影オーダ情報と呼ばれる撮影に関して医師により 指定された撮影指示情報を図示しな 、HIS (Hospital Information System)又は RIS ( Radiology Information System)から受信して記憶している。 JOBマネージャ 102は、こ の撮影オーダ情報に基づいて、撮影された X線画像の管理を行う。例えば、撮影ォ ーダ情報には、撮影対象の被写体 (患者)に関する患者情報 (氏名、年齢、性別等) 、撮影に関する撮影情報 (撮影対象部位、撮影方向、撮影方法等)が含まれるので、 JOBマネージャ 102は X線画像に対応する撮影オーダ情報を検索し、当該撮影ォー ダ情報に含まれる患者情報、撮影情報等を X線画像に付帯させる。また、画像生成 装置 101a〜101dにおける画像生成時の画像生成情報 (画像生成時の最小生成単 位、画像データ量等)を X線画像に付帯させる。各 X線画像は付帯情報により個別に 識別することが可能となる。
[0085] 図 15に、 JOBマネージャ 102の内部構成を示す。
[0086] 図 15に示すように、 JOBマネージャ 102は、制御部 121、操作部 122、表示部 123 、通信部 124、記憶部 125を備えて構成されている。 [0087] 制御部 121は、 CPU (Central Processing Unit)や RAM (Random Access Memory) 等力も構成されており、記憶部 125から各種制御プログラムを読み出して当該プログ ラムとの協働により、各種演算及び各部 122〜 125の動作の集中制御を行う。
[0088] 操作部 122は、キーボード、マウス等を備え、これら操作子の操作に応じた操作信 号を生成して制御部 121に出力する。
[0089] 表示部 123は、 LCD (Liquid Crystal Display)等のディスプレイを備え、このデイス プレイ上に各種操作画面や制御部 121による処理結果等の各種表示情報を表示す る。
[0090] 通信部 124は、ネットワークインターフェイスカード等の通信用インターフェイスを備 えて構成されており、ネットワーク N上の各装置と情報の送受信を行う。
[0091] 記憶部 125は、各種制御プログラムや、プログラムの実行に必要なパラメータ、制 御部 121による処理結果等のデータを記憶して 、る。
[0092] また、記憶部 125は、出力設定テーブル 251を記憶している。
[0093] 出力設定テーブル 251は、デジタル放射線画像撮影システムに含まれる出力装置 、つまり画像記録装置 104a〜104c、画像表示装置 104d、 104eにおける出力設定 情報を管理するためのテーブルである。
[0094] 例えば、出力設定テーブル 251には、図 16に示すように、各出力装置に固有に付 されている出力装置 ID (104a〜104d等)毎に、出力装置の出力形態 (フィルム記録 又はモニタ表示)、出力可能な最小出力単位 A (出力時の最小制御単位ともいう)(単 位/ z m)の各種出力設定情報が記憶されている。ここで、最小出力単位 Aとは、 X線 画像を出力する際のその出力画像を構成する最小の構成単位をいい、具体的には 画素サイズ、書き込みピッチサイズをいう。なお、一の出力装置で複数の最小出力単 位による出力が可能な場合には、複数の最小出力単位の設定情報が記憶されてい る。これらの出力設定情報は、出力装置が新規にデジタル放射線画像撮影システム に導入される毎に登録され、設定される。
[0095] DB103は、大容量メモリから構成され、撮影により生成された X線画像を記憶して いる。各 X線画像は、 JOBマネージャ 102により付帯された付帯情報により DB化され 、管理される。 [0096] 画像記録装置 104a〜104c、画像表示装置 104d、 104eは、 X線画像の出力処理 を行うものであり、画像記録装置 104a〜 104cはフィルムに X線画像を記録し、画像 表示装置 104d、 104eはモニタに X線画像を表示する。以下、これらを総称して出力 装置 104a〜104eと!ヽぅ。
[0097] 各出力装置 104a〜104eは、それぞれが出力可能な最小出力単位を有している。
出力装置 104a〜104eは、 JOBマネージャ 102により出力対象の X線画像及びその 出力指示情報が入力されると、当該出力指示情報に従って入力された X線画像の出 力処理を行う。出力指示情報には、出力時に適用する最小出力単位、その最小出 力単位による出力方法、フィルムサイズ、その他の出力条件が含まれる。各出力装置 104a〜104eは、入力された X線画像の最小生成単位毎の信号値 (画素値)を、指 定された出力方法に従って指定された最小出力単位毎に割り当てて最小出力単位 力もなる出力画像を再構成し、この出力画像の画像出力を行う。なお、 JOBマネージ ャ 102において出力画像を再構成する処理を行ってこれを出力装置 104a〜104e に配信し、出力装置 104a〜104eiお OBマネージャ 102から配信された出力画像を 出力する処理のみ行う構成であってもよ 、。
[0098] 次に、上記デジタル放射線画像撮影システムの動作について説明する。
[0099] 撮影系の画像生成装置 101a、 101b等において行われる位相コントラスト撮影に ついては、第 1の実施形態の場合と基本的に同様であり、説明を省略する。
[0100] 画像生成装置 101a〜101dにおいて高画質の拡大画像データが生成されると、各 画像生成装置 101a〜101dにおいて画像生成時の最小生成単位 S (読取時の最小 制御単位とも!、う)及び拡大率 M等、画像生成情報を当該拡大画像に付帯させる。
[0101] 撮影系の画像生成装置 101a、 101bの場合は、撮影後すぐ読取処理が行われて データ生成が行われるので、画像生成装置 101a、 101b側で自動的に最小生成単 位 S及び拡大率 Mを検出して拡大画像のヘッダ領域にその情報を書き込む等する。 拡大率 Mは、技師がその情報を入力する構成としてもよいし、被写体位置と画像検 出器 12の位置を画像生成装置 101a、 101b側で検出できる構成であれば画像生成 装置 101a、 102bにおいて拡大率 Mを自動的に算出する構成としてもよい。
[0102] 読取系の画像生成装置 101c、 101dでは、撮影後、技師が拡大画像の記録された 力セッテを画像生成装置 101c、 lOldに装填しなければならないため、その際にォ ペレータに最小生成単位 S及び拡大率 Mの情報を入力させる構成とし、画像生成装 置 101c、 lOldで入力された最小生成単位 S及び拡大率 Mの情報を読み取った拡 大画像のヘッダ領域に書き込むこととする。
[0103] 最小生成単位 S及び拡大率 M等の画像生成情報が付帯された拡大画像のデータ は、 JOBマネージャ 102に送信される。 JOBマネージャ 102では、画像生成装置 101 a〜101dから拡大画像のデータが受信されると、当該拡大画像に撮影オーダ情報 に基づく付帯情報が付帯され、 DB103へ保存される。
[0104] その後、 JOBマネージャ 102では、 DB103に保存されている拡大画像を出力装置
104a〜104eに配信する出力制御処理が実行される。
[0105] 以下、図 17を参照して出力制御処理の流れを説明する。なお、出力制御処理は、 制御部 121と記憶部 125に格納される処理プログラムとの協働により実現されるソフト ウェア処理である。
[0106] まず、受信された拡大画像データの付帯情報が参照され、最小生成単位 S及び拡 大率 Mの情報が取得される (ステップ Sl)。次いで、この最小生成単位 S及び拡大率 Mから、縮小補間処理を行うことなぐライフサイズで出力が可能な最適出力単位 Q が算出される。すなわち、下記式 (5)を満たす最適出力単位 Qが求められる (ステツ プ S2)。
[0107] Q = S/M- - - (5)
最小生成単位 S毎の信号値を、最小出力単位 Aのそれぞれに 1: 1で対応させて最 小出力単位 Aの信号値としたとき、縮小補間処理が不要となる。最小出力単位 Aの 集合体 nA(nは自然数の 2乗の値を取り得る)に信号値を対応させる場合も同様であ る。例えば、拡大率 Mが 1. 75、最小生成単位 Sが 43. 75 m)、最小出力単位 A 力 5 m)であれば、画像生成時の S=43. 75 m)の 1画素に対し、出力時 には A= 12. 5 ( m)の画素 4個分 (縦: 2画素 X横: 2画素)が 1: 1で対応することと なる。
[0108] よって、このような信号値の割付を行ってもライフサイズと同一又はそれに近いサイ ズで拡大画像の出力を行うことが可能な出力単位 (最小出力単位 A又はその集合体 nA)で出力を行うことにより、エッジ効果を保持したまま画質劣化させることなぐライ フサイズで拡大画像を出力することができる。
[0109] 次に、出力設定テーブル 251が参照され、求められた最適出力単位 Q又は最適出 力単位 Qに最も近!、出力単位で出力可能な最小出力単位 Αであって、 S > Aを満た す出力装置 104a〜104eが選択される (ステップ S3)。このとき、最適出力単位 Qで 出力可能な最小出力単位 Aの出力手段が優先的に選択され、次いで最適出力単位 Qに最も近い出力単位で出力可能な最小出力単位 Aの出力手段力 優先的に選択 される。なお、 S >Aの関係とするのは、拡大画像をライフサイズで出力することを目 的としているためである。また、最適出力単位 Q (又はそれに最も近い出力単位)で 出力可能な最小出力単位 Aとは、最小出力単位 Aそのもので出力可能な場合と、最 小出力単位 Aの集合体 nAにより出力可能な場合とが含まれることを意味する。
[0110] 例えば、最小生成単位 Sが 43. 75 ( m)、拡大率 Mが 1. 75倍であり、フィルムへ の出力が指示されている場合、上記式(5)から最適出力単位 Qは 25 m)と求めら れる。図 16に示す出力設定テーブル 251の例では、フィルム記録の出力形態で最 小出力単位 Aが最適出力単位 25 ( μ m)と同一である出力装置が、出力装置 104a、 104cの 2つ存在する。よって、出力装置 104a、 104cのうち、何れか 1つの出力装置 が選択される。何れを選択するかは任意であってもよいし、出力対象のフィルムサイ ズで出力可能な方を選択する等、他の条件で絞り込むこととしてもよい。
[0111] 次いで、選択された出力装置 104a〜104eは、出力可能な状態か否かが判別され
(ステップ S4)、出力可能な状態でない場合には (ステップ S4 ;N)、次に最適出力単 位 Q又は最適出力単位 Qに最も近い出力単位で出力可能な最小出力単位 Aを有す る出力装置の選択が行われる (ステップ S5)。
[0112] 上記の例で説明すると、出力装置 104a、 104cのうち出力装置 104aが選択された 1S この出力装置 104aの電源が入っていない、或いは出力対象の画像データが多 量に出力待ちしている等のステータス情報が入力されている場合には、出力不可な 状態であると判別され、出力装置 104aを除く他の出力装置 104b〜104eのうち、次 に最適出力単位 Qと同一又は最も近い出力装置が選択される。この例では、出力装 置 104cが最適出力単位 Qと同一の最小出力単位 A(25 m)を有しているため、出 力装置 104cが選択される。
[0113] さらに、最適出力単位 25 ( m)と同一の最小出力単位 Aを有する出力装置 104a 、 104cが何れも出力不可であった場合、次に最適出力単位 25 m)に近い 27 m)の最小出力単位 Aを有する出力装置 104bが優先的に選択される。最小生成単 位 S43. 75 ( m)の信号値を最小出力単位 A27 ( μ m)のサイズを有する 1画素に 1 : 1で割り付けると、図 18に示すようにその出力画像はライフサイズに対して 1. 08倍 だけ拡大されたものとなり、ライフサイズ (拡大率 1. 0)とはならない。しかし、このよう なわずかな拡大率であればほぼライフサイズとして読影に問題なく使用できる範囲で あるので、最適出力単位 Qに近 、出力が可能として優先的に選択することとする。
[0114] つまり、図 16に示す出力設定の場合、最小生成単位 Sが 43. 75 m)、拡大率 M が 1. 75でフィルム出力するのであれば、出力装置 104a又は 104cの 25 m)、出 力装置 104bの 27 ( m)、出力装置 104cの 30. 2 ( /ζ πι)、出力装置 104aの 43. 7 5 ( m)と ヽぅ順番で優先的に選択されることとなる。
[0115] このようにして、出力可能な出力装置 104a〜104cが選択されると (ステップ S4 ;Y) 、制御部 121において出力条件が決定され、当該出力条件を示す出力指示情報が 生成されて出力対象の拡大画像のデータとともに前記選択された出力装置 104a〜 104cに配信される(ステップ S 6)。
[0116] 出力条件には、最小生成単位 S毎の信号値を最小出力単位 Aに割り付ける際の条 件、つまり最小生成単位 Sの 1単位における信号値を、最小出力単位 A (又はその集 合体 nA)の 1単位に 1: 1で対応させて割り付けると!/ヽぅ条件が含まれる。集合体単位 で割り付ける場合には、その集合体 nAを構成する最小出力単位数 nの情報も含まれ る。出力装置 104a〜104eでは、この出力指示情報に従って拡大画像から出力画像 が生成されてその出力が行われるので、縮小補間処理を行うことなぐかつライフサイ ズ又はそれに近いサイズで出力することが可能となる。
[0117] また、選択された一の出力装置 104a〜104eにおいて、複数の最小出力単位 Aに よる出力が可能な場合は、何れの最小出力単位 Aを用いて出力を行うのかを示す条 件が出力条件に含められる。その他、技師により指定されているフィルムサイズ等が あれば、そのサイズ情報等の出力条件も含められる。 [0118] このようにして、 JOBマネージャ 102から出力対象の拡大画像及びその出力指示情 報が受信された出力装置 104a〜104eでは、当該出力指示情報に従って出力対象 の拡大画像の出力動作が行われる。
[0119] 以上のように、本実施形態によれば、異なる最小出力単位 Aを有する出力装置を 複数備えたデジタル放射線画像撮影システムであっても、最小生成単位 S及び拡大 率 Mに応じた出力装置により画像出力を行うよう制御することができる。これにより、 位相コントラスト撮影によりエッジ強調された視認性の良い高画質な拡大画像を、縮 小補間処理を行うことなぐかつライフサイズ又はそれに近いサイズで出力することが でき、読影に最適な X線画像を提供することができる。
[0120] また、出力装置 104a〜104eのうちの 1つが選択された場合でも、当該選択された 出力装置 104a〜104eが出力可能な状態ではない場合には、他の出力装置 104a 〜104eから再選択するので、複数ある出力装置 104a〜104eの状態を考慮しなが ら、出力対象画像の配信を行うことができる。
[0121] また、選択された出力装置 104a〜104eにおいて複数の最小出力単位 Aが適用 可能な場合には、最適出力単位 Qでの出力を実現可能な最小出力単位 Aを指定し て出力させることができる。

Claims

請求の範囲
[1] 被写体に X線を照射する X線管と、
前記被写体を透過した X線を検出するデジタル検出器と
を有する位相コントラスト撮影を行うデジタル放射線画像撮影システムであって、 前記 X線管の焦点径を D m)、
前記デジタル検出器の最小制御単位 S m)、
前記 X線管焦点力 前記被写体までの距離 Rl (m)、
前記被写体力も前記デジタル検出器までの距離 R2 (m)、
拡大率 M= (R1 +R2) ZR1、
X線屈折によるエッジ強調幅 E、
とするとさ、
D≥ (2S-E) / (M- 1)であることを特徴とするデジタル放射線画像撮影システム。
[2] 被写体に X線を照射する X線管と、
前記被写体を透過した X線を検出するデジタル検出器と
を有する位相コントラスト撮影を行うデジタル放射線画像撮影システムであって、 前記 X線管の焦点径を D m)、
前記デジタル検出器の最小制御単位 S m)、
前記 X線管焦点力 前記被写体までの距離 Rl (m)、
前記被写体力も前記デジタル検出器までの距離 R2 (m)、
拡大率 M= (R1 +R2) ZR1、
X線屈折によるエッジ強調幅 E、
とするとさ、
D≥2S/ (M- 1)であることを特徴とするデジタル放射線画像撮影システム。
[3] 前記デジタル検出器により検出された X線像を出力する画像出力装置を有し、 前記画像出力装置の最小制御単位 A ( m)とするとき、
S > Aであると共に、
前記デジタル検出器の最小制御単位 Sと、前記画像出力装置の最小制御単位 Aの n個の集合体と、をデータとして対応付けて再生出力する、ことを特徴とする請求の 範囲第 1項又は第 2項に記載のデジタル放射線画像撮影システム。
[4] 前記画像出力装置を複数備え、
前記複数の画像出力装置のそれぞれの最小制御単位 Aの情報を取得し、この複数 の画像出力装置のうち、 SZMで示される出力単位又は SZMに最も近い出力単位 で出力可能な最小制御単位 Aを有する出力手段を選択する選択手段と、 前記最小生成単位 S毎の信号値を、前記選択された画像出力装置の最小制御単位 A毎の又はその集合体 nA毎の信号値として割り付けて、前記選択された画像出力 装置により画像出力を行わせる出力制御手段と、
を有することを特徴とする請求の範囲第 3項に記載のデジタル放射線画像撮影シス テム。
[5] 前記選択手段は、前記 SZMで示される出力単位で出力可能な最小制御単位 Aに 次!、で、 SZMに最も近い出力単位で出力可能な最小制御単位 Aを有する画像出 力装置を優先的に選択することを特徴とする請求の範囲第 4項に記載のデジタル放 射線画像撮影システム。
[6] 一の画像出力装置が複数の最小制御単位 Aで出力可能であるとき、
前記選択手段は、前記複数の最小制御単位 Aのうち、 SZMで示される出力単位で 出力可能な最小制御単位 Aを有する画像出力装置力 優先的に選択し、 前記出力制御手段は、前記選択された画像出力装置が有する複数の最小制御単 位 Aのうち、 SZMの出力単位で出力可能な最小制御単位 Aで画像出力を行わせる ことを特徴とする請求の範囲第 4項又は第 5項に記載のデジタル放射線画像撮影シ ステム。
[7] S = MAの時
n= 1、
であることを特徴とする請求の範囲第 3項〜第 6項の何れか 1項に記載のデジタル放 射線画像撮影システム。
PCT/JP2006/310178 2005-07-08 2006-05-23 デジタル放射線画像撮影システム WO2007007473A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06746712A EP1902677A4 (en) 2005-07-08 2006-05-23 DIGITAL RADIATION IMAGE PHOTOGRAPHY SYSTEM
US11/994,481 US7746977B2 (en) 2005-07-08 2006-05-23 Digital radiation image radiographing system
JP2007524537A JP4862824B2 (ja) 2005-07-08 2006-05-23 デジタル放射線画像撮影システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-199614 2005-07-08
JP2005-199581 2005-07-08
JP2005199581 2005-07-08
JP2005199614 2005-07-08

Publications (1)

Publication Number Publication Date
WO2007007473A1 true WO2007007473A1 (ja) 2007-01-18

Family

ID=37636873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310178 WO2007007473A1 (ja) 2005-07-08 2006-05-23 デジタル放射線画像撮影システム

Country Status (4)

Country Link
US (1) US7746977B2 (ja)
EP (1) EP1902677A4 (ja)
JP (1) JP4862824B2 (ja)
WO (1) WO2007007473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200103A (ja) * 2007-02-16 2008-09-04 Konica Minolta Medical & Graphic Inc 骨疾患評価システム
EP2439589A2 (en) 2010-10-07 2012-04-11 Rigaku Corporation X-ray image photographing method and X-ray image photographing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534756B2 (ja) * 2009-09-16 2014-07-02 キヤノン株式会社 画像処理装置、画像処理方法、画像処理システム及びプログラム
KR102286358B1 (ko) * 2018-08-10 2021-08-05 도시바 아이티 앤 콘트롤 시스템 가부시키가이샤 X선 촬상 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180670A (ja) * 2001-12-21 2003-07-02 Konica Corp デジタル位相コントラストx線画像撮影システム
US20030215061A1 (en) 2002-05-16 2003-11-20 Fuji Photo Film Co., Ltd Method, apparatus and program for radiation imaging
US20040109530A1 (en) 2002-11-26 2004-06-10 Konica Minolta Medical & Graphic, Inc. Radiation image radiographic apparatus
JP2004208773A (ja) * 2002-12-27 2004-07-29 Konica Minolta Holdings Inc 放射線画像形成システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010101B2 (ja) 1999-09-21 2007-11-21 コニカミノルタホールディングス株式会社 X線画像撮影装置
JP2001299733A (ja) * 2000-04-27 2001-10-30 Konica Corp Pci放射線画像処理装置、pci放射線画像検出処理装置、pci放射線画像出力装置及びpci画像診断支援装置
DE10245676B4 (de) * 2002-09-30 2008-01-17 Siemens Ag Phasenkontrast-Röntgengerät mit Strichfokus zur Erstellung eines Phasenkontrast-Bildes eines Objekts und Verfahren zum Erstellen des Phasenkontrast-Bildes
JP4445397B2 (ja) * 2002-12-26 2010-04-07 敦 百生 X線撮像装置および撮像方法
US7286640B2 (en) * 2004-04-09 2007-10-23 Xradia, Inc. Dual-band detector system for x-ray imaging of biological samples
EP1886629A4 (en) * 2005-06-01 2009-05-20 Konica Minolta Med & Graphic SYSTEM FOR THE DIGITAL COLLECTION OF RADIATION IMAGES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180670A (ja) * 2001-12-21 2003-07-02 Konica Corp デジタル位相コントラストx線画像撮影システム
US20030123611A1 (en) 2001-12-21 2003-07-03 Hiromu Ohara Digital phase contrast X-ray radiographing system
US20030215061A1 (en) 2002-05-16 2003-11-20 Fuji Photo Film Co., Ltd Method, apparatus and program for radiation imaging
US20040109530A1 (en) 2002-11-26 2004-06-10 Konica Minolta Medical & Graphic, Inc. Radiation image radiographic apparatus
JP2004208773A (ja) * 2002-12-27 2004-07-29 Konica Minolta Holdings Inc 放射線画像形成システム
US20040151277A1 (en) 2002-12-27 2004-08-05 Hiromu Ohara Radiation image formation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1902677A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200103A (ja) * 2007-02-16 2008-09-04 Konica Minolta Medical & Graphic Inc 骨疾患評価システム
EP2439589A2 (en) 2010-10-07 2012-04-11 Rigaku Corporation X-ray image photographing method and X-ray image photographing apparatus

Also Published As

Publication number Publication date
JPWO2007007473A1 (ja) 2009-01-29
US20090116615A1 (en) 2009-05-07
US7746977B2 (en) 2010-06-29
EP1902677A1 (en) 2008-03-26
JP4862824B2 (ja) 2012-01-25
EP1902677A4 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP5346654B2 (ja) 放射線撮影装置及びその制御方法
JP5294654B2 (ja) 画像表示方法および装置
US7155048B2 (en) PCI radiation image processing apparatus, PCI radiation image detecting apparatus, PCI radiation image outputting apparatus, and PCI image diagnosis supporting apparatus
JPH08186762A (ja) マンモグラフィ装置
JP5948275B2 (ja) 放射線撮影装置及び放射線撮影方法、並びに放射線撮影制御プログラム
JP6127033B2 (ja) 放射線画像撮影システム、画像処理装置、及び画像処理プログラム。
JP3947152B2 (ja) マンモグラフィ装置
JP2003180670A (ja) デジタル位相コントラストx線画像撮影システム
JP5677534B2 (ja) 放射線撮影装置及びその制御方法
WO2006129462A1 (ja) デジタル放射線画像撮影システム
JP5914625B2 (ja) 放射線撮影装置及びその制御方法
JP4862824B2 (ja) デジタル放射線画像撮影システム
JP6430239B2 (ja) 医用画像診断装置
JP2007244737A (ja) 医用画像システム
JP3947151B2 (ja) マンモグラフィ装置
JP3930472B2 (ja) マンモグラフィ装置
JP2021191404A (ja) 画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラム
JP2007244738A (ja) 医用画像システム
WO2007108346A1 (ja) 放射線画像処理方法、放射線画像処理装置及び放射線画像撮影システム
JP7448042B1 (ja) 動態画像処理装置、移動型放射線撮影装置、動態画像処理システム、プログラム及び動態画像処理方法
JP7118584B2 (ja) 医用画像診断装置、医用画像撮像装置および医用画像表示装置
JP2024076795A (ja) X線診断装置
JP2021037148A (ja) 医用画像診断装置、医用画像診断プログラムおよび撮影計画装置
WO2008047508A1 (en) Radiographic image taking apparatus
JP2008259688A (ja) 撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524537

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11994481

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006746712

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE