WO2007007446A1 - アレイスピーカシステムおよびアレイマイクシステム - Google Patents

アレイスピーカシステムおよびアレイマイクシステム Download PDF

Info

Publication number
WO2007007446A1
WO2007007446A1 PCT/JP2006/306214 JP2006306214W WO2007007446A1 WO 2007007446 A1 WO2007007446 A1 WO 2007007446A1 JP 2006306214 W JP2006306214 W JP 2006306214W WO 2007007446 A1 WO2007007446 A1 WO 2007007446A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
speaker
array
units
unit
Prior art date
Application number
PCT/JP2006/306214
Other languages
English (en)
French (fr)
Inventor
Toshiaki Ishibashi
Takuya Tamaru
Original Assignee
Yamaha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005205923A external-priority patent/JP4618028B2/ja
Priority claimed from JP2005208321A external-priority patent/JP4618029B2/ja
Application filed by Yamaha Corporation filed Critical Yamaha Corporation
Priority to EP06730162A priority Critical patent/EP1909531B1/en
Priority to US11/988,625 priority patent/US8320596B2/en
Priority to CN200680025242.XA priority patent/CN101218847B/zh
Publication of WO2007007446A1 publication Critical patent/WO2007007446A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/403Linear arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers

Definitions

  • the present invention relates to an array speaker system capable of directivity control, and more particularly to an array speaker system with an improved frequency band capable of directivity control. Furthermore, the present invention relates to an array microphone system capable of directivity control, and more particularly to an array microphone system with an improved frequency band capable of directivity control.
  • an audio playback device that uses a speaker array in which a plurality of speaker units are arranged in a line and creates a virtual sound source using the sound beam of the speaker array and reflection from the wall of the room around the listener is proposed. (See, for example, JP-A-2005-64746).
  • FIG. 7 shows the structure of a line array speaker in the audio playback device described in Japanese Patent Laid-Open No. 2005-64746.
  • the line array speaker is configured by arranging a plurality of speaker units 21 (21-1 to 21-n) on a line in an elongated casing.
  • the speaker units 21 are arranged equidistantly at a distance d, and the width of the speaker array is L.
  • the synthesized wavefront of the audio output from all the speaker units 21 is parallel to the audio beam propagating forward only. Become. The sound component propagating in the direction other than the front is canceled by combining the components output from each speaker unit 21 (by interfering with each other), and only the component toward the front is strengthened by the combination to be a sound beam. Remain. Further, when the sound output from the speaker unit 21 is sequentially delayed toward one end and the other end, the synthesized wavefront is inclined according to the delay time, and the sound beam can be directed obliquely.
  • the beam width of the sound beam is determined by the following Equation 1 (where V represents the speed of sound and f represents the frequency).
  • the number of speaker units can be increased, or the distance d between the speaker units can be increased to implement the same number.
  • the distance d between the force units is increased, a problem arises that another sound beam is generated in a direction other than the intended direction due to the spatial folding phenomenon, which makes it difficult to control the directivity in the high frequency band.
  • d must be set to satisfy the condition of Equation 2 below.
  • a sound collection device that uses a (line) array microphone composed of a plurality of microphone units, sets a delay time for the output of each microphone unit, and controls directivity (for example, (See JP-A-5-91588).
  • FIG. 14 shows the structure of the line array microphone.
  • This line array microphone is configured by arranging a plurality of microphone units 221 (221-1 to 221-n) on a line in an elongated casing.
  • Each microphone unit 221 is arranged equidistantly at an interval d, and the width of the array microphone is L.
  • the plane sound waves (sound waves with the same phase) that vertically arrive at the front forces of the plurality of microphone units 221 are picked up by the respective microphone units 221, and when the audio signals output from the respective microphone units 221 are synthesized, the same Strengthen because of the phase.
  • sound waves coming from other than the front surface for example, the horizontal direction of the line array microphone
  • the width L of the array microphone is increased (ma
  • the directivity becomes sharper and the main beam is concentrated in the desired direction. Can.
  • the width L of the array microphone is increased, the finger can reach the lower frequency band.
  • the beam width of the main beam is determined by Equation 3 below (where V is the speed of sound and f is the frequency).
  • the number of microphone units can be increased, and in order to implement the same number, the distance d between the microphone units can be increased. But the microphone unit
  • the low frequency side of the frequency band where the directivity control is possible is approximately 500 Hz when 0 is ⁇ 30 ° when the beam width is 3 dB lower than the peak value in Equation 3.
  • the high frequency side is approximately 4 kHz according to Equation 4. Therefore, the frequency band in which directivity control is possible is about 500 to about 4 kHz, and it can collect the band sound like a telephone voice, but it can realize the band sound collection (for example, about 250 Hz to 12 kHz) required for music recording applications. I could't do it. In order to realize this, the number of microphone units must be increased, but there is a problem that the cost increases when the number of microphone units is increased.
  • a plurality of line array units in which a plurality of speaker units are arranged on a straight line are connected in a vertical direction that is a direction orthogonal to the straight line or a horizontal direction that is the direction of the straight line. It is characterized by.
  • the line array units are connected vertically or horizontally. For example, when two speaker arrays are arranged in parallel on the left and right, the apparent width L of the speaker array is doubled, and the lower limit frequency at which directivity control is possible is doubled.
  • the present invention is further characterized in that the plurality of line array units arranged in the vertical direction are connected so as to be shifted to the left and right by "interval Z of each force unit Z number of arrangement stages".
  • the line array units when n number of line array units are provided in the vertical direction, the line array units are provided by being shifted by lZn of the interval between the speaker units. If they are shifted by lZn of the speaker unit spacing, the apparent speaker spacing d is multiplied by lZn, and the maximum frequency at which directivity control is possible becomes n times.
  • the present invention is further characterized in that a plurality of line array units are connected in the left-right direction, and another line array unit is connected vertically in the central portion of the arrangement in the left-right direction.
  • the line array units are connected side by side in parallel, and another line array unit is overlapped at the center.
  • the direction controllable bandwidth on the low frequency side is improved by increasing the width of the speaker array, and the interval between the speaker units is not affected, so there is no need to connect separate line array units above and below the left and right ends of the line array unit. .
  • the line array unit of the present invention supplies a plurality of speaker units arranged in a straight line, input means for inputting an audio signal, and the audio signal to each speaker unit with a predetermined delay.
  • a signal processing means for controlling the directivity of the line array unit, a connection detection means for detecting a connection form and a position therein, and the signal according to the connection form and the connection position detected by the connection detection means.
  • control means for setting a delay amount of the processing means.
  • connection form and the position in it are detected, and the delay amount of each speaker unit is set according to the position.
  • the directivity is controlled in the entire array speaker system.
  • Each control means may set the delay amount independently, or any one of the connected line array units may set the delay amount of the entire array speaker system.
  • a plurality of line array units can be connected to change the apparent width of the speaker array and the interval between the speaker units.
  • the directivity controllable frequency band can be arbitrarily designed.
  • a plurality of line array units in which a plurality of microphone units are arranged on a straight line are connected in the vertical direction, which is a direction orthogonal to the straight line, or the horizontal direction, which is the direction of the straight line. It is characterized by.
  • the line array units are connected vertically or horizontally. For example, left and right
  • the present invention is further characterized in that the plurality of line array units arranged in the vertical direction are connected so as to be shifted to the left and right by "the interval Z of the respective microphone units".
  • the line array units when n number of line array units are arranged in the vertical direction, the line array units are arranged by being shifted by lZn of the interval between the microphone units. If they are shifted and overlapped by lZn of the distance between the microphone units, the apparent microphone distance is d force lZn times, and the upper limit frequency at which directivity control is possible
  • the present invention is further characterized in that a plurality of line array units are connected in the left-right direction, and another line array unit is connected vertically in the central portion of the arrangement in the left-right direction.
  • the line array units are connected in parallel on the left and right, and another line array unit is overlaid at the center.
  • the direction controllable band on the low frequency side is improved by increasing the width of the array microphone, and the distance between the microphone units is not affected, so there is no need to connect the line array unit above and below the left and right ends of the line array unit. .
  • the line array unit of the present invention has a plurality of microphone units arranged in a straight line, and each microphone unit delays an audio signal output from each microphone unit for a predetermined time, thereby directing the directivity of the line array unit.
  • Signal processing means for controlling the output, output means for outputting the audio signal to the outside, connection detection means for detecting the connection form and position in the connection form, and the connection form and connection position detected by the connection detection means And a control means for setting a delay amount of the signal processing means accordingly.
  • connection form and the position in it are detected, and the delay amount of each microphone unit is set according to the position. This controls the directivity of the entire array microphone system.
  • Each control means may set the delay amount independently, or Either one of the connected line array units may set the delay amount of the entire array microphone system.
  • a plurality of line array units can be connected to change the apparent width of the array microphone and the interval between the microphone units, so that the directivity can be changed according to the required frequency band.
  • a controllable frequency band can be arbitrarily designed.
  • FIG. 1 is a schematic diagram showing the configuration of an array speaker system.
  • FIG. 2 is a diagram for explaining overlapping of speaker devices.
  • FIG. 3A is a diagram for explaining the principle of a speaker array, and showing a case where audio signals of the same phase are simultaneously input to a speaker unit.
  • FIG. 3B is a diagram for explaining the principle of the speaker array, and showing a case where an audio beam is formed obliquely.
  • FIG. 4A is a diagram showing an example of an audio beam control angle.
  • FIG. 4B is a diagram showing an example of an audio beam control angle, and is a diagram showing a case where the number of speaker units is quadrupled under the conditions of FIG. 4A.
  • FIG. 4C is a diagram showing an example of an audio beam control angle, and is a diagram showing a case where the frequency is set to 1Z4 under the conditions of FIG. 4A.
  • FIG. 4D is a diagram showing an example of a sound beam control angle, and is a diagram showing a case where the frequency is multiplied by 8 under the conditions of FIG. 4A.
  • FIG. 5 is a block diagram showing a configuration of a speaker device.
  • FIG. 6 is a schematic view showing a connection terminal.
  • FIG. 7 is a block diagram showing a conventional line array speaker unit.
  • FIG. 8 is a schematic diagram showing the configuration of an array microphone system.
  • FIG. 9 is a diagram for explaining the overlapping of microphone devices.
  • FIG. 10A is a diagram for explaining the principle of an array microphone, and is a diagram showing a case where sound waves arrive at all microphone units from the front in the same phase.
  • FIG. 10B is a diagram for explaining the principle of the array microphone, and shows a case where the main beam is inclined.
  • FIG. 11A is a diagram showing an example of a sound beam control angle, and is a diagram showing a relationship between an angle and a gain N.
  • FIG. 11B is a diagram showing an example of the sound beam control angle, and is a diagram showing a case where the number of microphone units is quadrupled under the conditions of FIG. 11A.
  • FIG. 11C is a diagram showing an example of the sound beam control angle, and is a diagram showing a case where the frequency is set to 1Z4 under the condition of FIG. 11A.
  • FIG. 11D is a diagram showing an example of the sound beam control angle, and is a diagram showing a case where the frequency is increased by 8 times under the conditions of FIG. 11A.
  • FIG. 12 is a block diagram showing a configuration of a microphone device.
  • FIG. 13 is a schematic view showing a connection terminal.
  • FIG. 14 is a block diagram showing a conventional line array microphone unit.
  • Control unit 13 Control unit, 14: Clock switching unit, 15: Connection detection unit, 16: Conversion unit,
  • 201 Microphone device
  • 211 Microphone unit
  • 212 Directivity control unit
  • Control unit 214: Clock switching unit
  • 215 Connection detection unit
  • FIG. 1 is a schematic diagram showing the configuration of an array speaker system according to an embodiment of the present invention. As shown in the figure, the array speaker system includes a plurality of speaker devices 1A to 1D.
  • the speaker device 1A and the speaker device 1B are connected side by side in the left-right direction.
  • the speaker device 1C is connected above the speaker device 1A and the speaker device 1B, and the speaker device 1D is connected below the speaker device 1A and the speaker device 1B.
  • Each speaker device 1 has a configuration in which eight speaker units 11-1 to: L1-8 are arranged at equal intervals in a line at intervals d, and corresponds to the line array unit of the present invention. .
  • the speaker unit other types such as a force horn speaker unit generally using a cone type speaker unit may be used.
  • Speaker unit 11-1 at one end The distance from the other end to the speaker unit 11-8 is L. This distance L is the width of the speaker device 1.
  • the speaker device 1A and the speaker device 1B are arranged side by side in the left-right direction! /, So the apparent width of this array speaker system is 2L.
  • a plurality of speaker units may be arranged or may be reduced.
  • Speaker device 1C is connected to the upper center of speaker device 1A and speaker device 1B so that the horizontal position of the speaker force is shifted to the right by dZ3.
  • the speaker device 1D is connected to the lower center of the speaker device 1A and the speaker device 1B so that the horizontal position of the speaker is shifted to the left by dZ3.
  • FIG. 2 is a diagram for explaining overlapping of the speaker device.
  • the speaker device 1C is placed above the speaker device 1A and the speaker device 1B so as to be shifted to the right by a distance dZ3.
  • the speaker device 1D is placed below the speaker device 1A (and the speaker device 1B) so as to be shifted leftward by a distance dZ3. Therefore, in such an overlapped place, the apparent distance between the force units of the array speaker system is the distance dZ3.
  • 3A and 3B are diagrams for explaining the principle of the speaker array. Here, the principle of the spin array is explained.
  • FIG. 3A shows a case where audio signals having the same phase are simultaneously input to all speaker units 11.
  • the sound output from the individual speaker units 11 propagates radially (circular), but the sound output from all the speaker units 11 is synthesized.
  • the wavefront is narrowed down into a beam and propagates only forward. The components propagating in other directions are canceled (by interfering with each other) by synthesizing the audio components output from each speaker unit 11, and only the components that are directed forward are strengthened by synthesis. It remains as an audio beam.
  • FIG. 3B shows a case where the sound beam is formed obliquely.
  • the sound beam is formed at an angle of ⁇ from the front to the right.
  • the sound is first output from the speaker unit 11 at the side end (left end). Subsequently, every time ⁇ elapses, sound is output sequentially from the speaker unit 11 on the right.
  • This delay time is controlled by a directivity control unit (described later) connected to each speaker unit 11.
  • the synthesized wavefront is inclined according to the delay time as shown in the figure, and the sound beam Can be directed diagonally.
  • FIGS. 4A to 4D are diagrams showing examples of sound beam control angles.
  • the horizontal axis of the graph shown in Fig. 4A is ⁇ , and the vertical axis is the gain (G) of the speaker array.
  • the beam width ⁇ 1 is expressed by the equation 1 is determined by the loudspeaker spacing d, the loudspeaker array width L, and the frequency f.
  • the horizontal axis represents ⁇ and the vertical axis represents gain.
  • the beam width has a sharp directivity in the target direction, which is smaller than the beam width shown in Fig. 4A.
  • the frequency f is quadrupled or the speaker unit width d is quadrupled, as shown in Fig. 4B. Beam width is obtained.
  • the horizontal axis represents ⁇ and the vertical axis represents gain.
  • Fig. 4C there is no ⁇ 1 where the gain G is zero.
  • FIG. 6 is a diagram showing the relationship between ⁇ and gain G.
  • the horizontal axis represents ⁇ and the vertical axis represents gain.
  • the speaker array has a frequency dependence on the width of the sound beam.
  • the number of speaker units n 16
  • the spacing between speaker units d 4.5 cm
  • the frequency band in which the directivity can be controlled is about 500 Hz to about 4 kHz. At frequencies lower than this frequency band, the directivity characteristics are lost as shown in FIG. 4C, and at higher frequencies, voice beams are generated in directions other than the intended direction as shown in FIG. 4D.
  • the frequency bandwidth capable of directivity control can be increased.
  • the array speaker system of this embodiment has the speaker device 1A and the speaker device 1B arranged side by side in the left-right direction! /, So the apparent number of speaker units of this array speaker system n Is doubled, that is, the width L of the speaker array is doubled, and the frequency band in which the directivity can be controlled is doubled on the low frequency side.
  • the speaker device 1C and the speaker device 1D are overlapped in the up-down direction and shifted in the left-right direction by dZ3, the apparent speaker unit spacing of this array spinning system is dZ3, and directivity control is possible.
  • the frequency band becomes three times higher on the high side.
  • the array speaker system of the present invention reduces the number of speaker units, By designing a single speaker device with reduced cost and connecting multiple speaker devices as shown in the above example according to the required frequency band, the frequency band that can be easily directional controlled is improved. be able to.
  • FIG. 5 is a block diagram showing the configuration of each speaker device.
  • the speaker device 1 includes n speaker units 11-1 to: L l-n, directivity control unit 12, control unit 13, clock switching unit 14, connection detection unit 15, And a conversion unit 16.
  • speaker units 11-1 to LI-n are connected to the directivity control unit 12, and the directivity control unit 12 is connected to the control unit 13, the clock switching unit 14, and the conversion unit 16. ing. Further, the control unit 13 is connected to the connection detection unit 15!
  • Directivity control unit 12, control unit 13, and clock switching unit 14 are connected to directivity control unit 12, control unit 13, and clock switching unit 14 of other speaker device 1, respectively.
  • the directivity control unit 12, the control unit 13, and the clock switching unit 14 may be connected to other speaker devices 1 by sharing a single connection line (connection terminal), and dedicated to each. You can also connect with the connection line (connection terminal)!
  • the directivity control unit 12 supplies the input audio data to the speaker units 11-1 to: Ll-n with a predetermined delay amount, respectively, and controls the directivity of the speaker array. Each delay amount is set by the control unit 13.
  • Speaker unit 11—1 ⁇ : L I—n converts the input audio data to DZA and emits the sound.
  • the control unit 13 controls the clock switching unit 14 and the directivity control unit 12, and transmits a control command to the control unit 13 of the other connected speaker device 1 to control the other control unit 13. Do.
  • the clock switching unit 14 is connected to a crystal oscillator (not shown) built in the speaker device, and supplies a reference clock to the directivity control unit 12.
  • the directivity control unit 12 operates based on this reference clock.
  • the clock switching unit 14 is connected to the clock switching unit 14 of another speaker device 1, the reference clock is transmitted to the clock switching unit 14 of the other speaker device 1.
  • directivity control is performed. Selectively supply either the reference clock received to control unit 12 or the reference clock of the built-in crystal oscillator.
  • the conversion unit 16 converts the analog audio signal input from the audio device digital into an AZD conversion function, and when digital audio data is input, the sampling frequency of the audio data (eg, 44.1 kHz). ) Is converted to a reference frequency (for example, 48 kHz) of the speaker device 1. The converted audio data is supplied to the directivity control unit 12.
  • the directivity control unit 12 supplies the audio data input from the conversion unit 16 to the speaker units 11-1 to: L 1-n with a predetermined delay amount based on instructions from the control unit 13.
  • FIG. 6 shows a connection detection unit 15 including a plurality of connection terminals 15-s installed around the speaker device 1.
  • the connection detection unit 15 detects the connection state of each speaker device 1 and transmits to the control unit 13 at which position in the array speaker system the speaker device 1 is connected.
  • Each speaker device 1 is provided with connecting terminals 15-s on the right side, left side, top right, top center right, top center left, top left, bottom right, bottom center right, bottom center left, and bottom left, respectively. Speak.
  • the connection position can be detected depending on which connection terminal 15—s is connected to the connection terminal 15—s of another speaker device 1.
  • the speaker device 1A is connected to the right side terminal, the upper right terminal, the upper center right terminal, the lower right terminal, and the lower center right terminal.
  • the connection detection unit 15 determines that the speaker device 1 is located on the left side of the middle stage in the array speaker system. Thereby, the connection position in the array speaker system can be detected.
  • connection terminals 15-s are installed at positions where the speaker unit 11 is connected to be shifted by dZ3 in the vertical direction as described above.
  • the directivity control unit 12, the control unit 13, and the clock switching unit 14 described above are connected to the other directivity control unit 12, the control unit 13, and the clock switching unit 14 by the connecting terminal 15-s. Yes.
  • the method for detecting the connection position is not limited to this example.
  • the user may specify the position of the speaker device 1 manually.
  • directivity control of this array speaker system will be described in detail.
  • the speaker device 1 to which the audio signal is input from the audio device may be a master speaker device, and the other speaker device 1 may be a master speaker device.
  • the speaker device to which the audio signal is directly input from the audio device may be automatically selected as the master speaker device, or the user may select it manually!
  • the control unit 13 of the speaker device 1 serving as the master speaker device sets the clock switching unit 14 to read the internal crystal oscillator force reference clock.
  • the directivity control unit 12 of the master speaker device operates with a reference clock to which this built-in crystal oscillator force is also supplied. Further, the control unit 13 instructs the clock switching unit 14 to transmit the reference clock to the other speaker devices 1.
  • the directivity control unit 12 of the other speaker device 1 is based on the reference clock transmitted by the master speaker device! It works quickly.
  • the digital audio data input from the conversion unit 16 to the directivity control unit 12 is transmitted to another speaker device 1.
  • Both the directivity control unit 12 and the clock switching unit 14 described above operate by reading the reference clock and supply digital audio data to the other speaker devices 1.
  • the digital audio data synchronized by all the speaker devices 1 is supplied.
  • audio signals may be directly input to all the speaker devices 1 and then each directivity control unit 12 may synchronize audio data.
  • the control unit 13 of the master speaker device sets the delay amount of the audio data supplied to each speaker unit 11 in the directivity control unit 12.
  • the controller 13 of all connected speaker devices 1 is instructed to set the delay amount of the audio data to be supplied to each speaker unit 11 to the directivity controller 12 of the speaker device 1.
  • the master speaker device controls the direction characteristics of the entire speaker unit as one speaker array.
  • the speaker unit 11A of the speaker device 1A starts from the speaker unit 11-1. Audio data should be supplied to the IB speaker unit 11-8 with a predetermined delay amount. At this time, it is assumed that the speaker device 1C and the speaker device ID are on the same line as the speaker device 1A and the speaker device 1B, and the respective delay amounts are set. As a result, the directivity characteristics of the entire array speaker system can be controlled.
  • the delay amount of all the speaker devices connected to the master speaker device is set. However, each speaker device sets the delay amount independently. May be. In this case, information defining the beam direction is transmitted and received between the speaker devices so that the sound beam is formed in the entire array speaker system.
  • the array speaker system in the present embodiment connects a plurality of speaker devices 1A to 1D, synchronizes all the speaker devices, and detects their connection positions.
  • the apparent width of this array speaker system is doubled and the distance between speaker units is 1 Z3 times, so the frequency band in which the directivity control of this speaker unit can be controlled with respect to a single speaker device 1 is low. It will be doubled on the high side and tripled on the high side.
  • the force described for an array speaker system in which two stages in the left-right direction and three stages in the up-down direction are connected is not limited to this configuration example. It may be connected in four stages in the upward and downward directions, or in two stages.
  • the speaker units may be placed with different widths depending on the number of the upper and lower parts. Since the number of speaker units to be connected is changed according to the frequency band in which directivity control is required, it is possible to improve the frequency band in which directivity control can be easily performed while the speaker array has a reduced cost.
  • FIG. 8 is a schematic diagram showing the configuration of the array microphone system according to the embodiment of the present invention. As shown in the figure, this array microphone system includes a plurality of microphone devices 201A to 201D.
  • Microphone device 201A and microphone device 201B are connected side by side in the left-right direction.
  • the microphone device 201C is connected above the microphone device 201A and the microphone device 201B, and the microphone device 201D is connected below the microphone device 201A and the microphone device 201B.
  • Each microphone device 201 includes eight microphone units 211-1 to 211-8 at intervals d.
  • the configuration is arranged in two lines at equal intervals, and corresponds to the line array unit of the present invention.
  • the microphone unit may use other types such as a force condenser microphone unit that generally uses a dynamic microphone unit.
  • the distance from the microphone unit 211-1 at one end to the microphone unit 211-8 at the other end is L. This distance L is the microphone device
  • the width is 201.
  • the array microphone system of the present embodiment includes a microphone device 201A and
  • the apparent width of this array microphone system is 2L.
  • a microphone device in which eight microphone units are arranged is shown, but a plurality of microphone units may be arranged or may be reduced.
  • microphone device 201C is connected to the upper center of microphone device 201A and microphone device 201B so that the horizontal position of the microphone is shifted to the right by dZ3.
  • Microphone device 201C is connected to the upper center of microphone device 201A and microphone device 201B so that the horizontal position of the microphone is shifted to the right by dZ3.
  • 201D is connected to the microphone device 201A and the microphone device 201B so that the horizontal position of the microphone is shifted to the left of dZ3.
  • FIG. 9 is a diagram for explaining the overlapping of the microphone device. As shown in the figure, the microphone device 201C is located above the microphone device 201A (and the microphone device 201B) by a distance d Z3 to the right.
  • the microphone device 201D is placed below the microphone device 201A (and the microphone device 201B) so as to be shifted to the left by a distance dZ3.
  • the apparent distance between the microphones in the array microphone system is the distance d Z3 for this overlapped portion.
  • FIG. 10A and FIG. 10B are diagrams for explaining the principle of the array microphone. Here, the principle of the array microphone will be explained.
  • FIG. 10A shows a case where sound waves arrive at all the microphone units 211 from the front in the same phase.
  • the audio signals output from the individual microphones 211 are strengthened by synthesis.
  • the audio signals output from each microphone unit 211 are weakened by being synthesized because they have different phases. Therefore, the sensitivity of the array microphone is reduced to a beam shape, and the main sensitivity (main beam) is formed only forward.
  • FIG. 10B shows a case where the main beam is inclined.
  • the main beam is formed at an angle of ⁇ from the front to the right.
  • the sound wave arrives from the end (right end) in the main beam direction, and the sound wave finally arrives at the end (left end) opposite to the main beam direction, so time ⁇ has passed from the left microphone unit 211.
  • the audio signal is output from the right microphone unit 211.
  • This delay time is controlled by a directivity control unit (described later) connected to each microphone unit 211.
  • the main beam is tilted according to the delay time as shown in the figure by sequentially delaying the audio signals output from the microphone units 211 in a line toward the other end of the audio signal. .
  • the angle ⁇ of the main beam can be controlled.
  • FIGS. 11A to 11D are diagrams showing examples of main beam control angles.
  • FIG. 11A The horizontal axis of the graph shown in Fig. 11A represents ⁇ , and the vertical axis represents the gain (G) of the array microphone.
  • the array marker is arranged.
  • the frequency f is quadrupled or the microphone unit width d is quadrupled.
  • the horizontal axis represents ⁇ and the vertical axis represents gain.
  • Fig. 11C there is no ⁇ 2 where the gain G is zero.
  • the horizontal axis represents ⁇
  • the vertical axis represents gain.
  • the array microphone has frequency dependence on the width of the main beam.
  • the number of microphone units n 16
  • the interval between microphone units d 4.5cm
  • the frequency band where directivity control is possible is approximately 500 Hz to
  • an array microphone system of the present embodiment by connecting side by side microphone device 201A and the microphone unit 201B in the lateral direction, Runode, the number n of microphones units apparent in this array microphone system 2 Double, that is, the width L of the array microphone is doubled, enabling directivity control.
  • the frequency band that extends is doubled to the low frequency side.
  • this array microphone system is The apparent microphone unit spacing of the system is d Z3, and the frequency band in which directivity control is possible
  • a single microphone device is designed in which the number of microphone units is reduced and the cost is reduced, and a plurality of microphones are provided as in the above example according to the required frequency band.
  • FIG. 12 is a block diagram showing the configuration of each microphone device.
  • the microphone device 201 includes n microphone units 211-1 to 211-n, a directivity control unit 212, a control unit 213, a clock switching unit 214, a connection detection unit 215, and a conversion unit. 216.
  • the n microphone units 211-l to 211-n are connected to the directivity control unit 212, and each collected sound signal is AZD converted and supplied to the directivity control unit 212.
  • the control unit 212 is connected to the control unit 213, the clock switching unit 214, and the conversion unit 216.
  • a connection detection unit 215 is connected to the control unit 213.
  • Directivity control unit 212, control unit 213, and clock switching unit 214 are connected to directivity control unit 212, control unit 213, and clock switching unit 214 of other microphone device 201, respectively.
  • the directivity control unit 212, the control unit 213, and the clock switching unit 214 may be connected to the other microphone device 201 by sharing a single connection line (connection terminal). Even if it is connected to the dedicated connection line (connection terminal).
  • Directivity control unit 212 outputs the audio signals output from microphone units 211-1 to 211-n with a predetermined delay amount, and controls the directivity of the array microphone. Each delay amount is set by the control unit 213. The output signal of the directivity control unit 212 is output as audio data (audio signal) to the conversion unit 216 and other microphone devices with a predetermined delay amount.
  • the control unit 213 controls the clock switching unit 214 and the directivity control unit 212, and transmits a control command to the control unit 213 of the other connected microphone apparatus 201 to control the other control unit 213.
  • the clock switching unit 214 is connected to a crystal oscillator (not shown) built in the microphone device, and supplies a reference clock to the directivity control unit 212.
  • the directivity control unit 212 operates based on this reference clock. Further, when the clock switching unit 214 is connected to the clock switching unit 214 of the other microphone device 201, the reference clock is transmitted to the clock switching unit 214 of the other microphone device 201. Further, when a reference clock is received from another microphone device 201, either the reference clock received by the directivity control unit 212 or the reference clock of the built-in crystal oscillator is selectively supplied.
  • the conversion unit 216 includes a DZA conversion function for converting the audio data input from the directivity control unit 212 into an analog audio signal.
  • the converted analog audio signal is output to an external device such as an audio device (recording device).
  • the conversion unit 216 also includes a frequency conversion that converts the reference sampling frequency (for example, 48 kHz) of the microphone device 201 into a sampling frequency (for example, 44.1 kHz) such as a CD. It can also be output as an audio signal.
  • FIG. 13 shows a connection detection unit 215 including a plurality of connection terminals 215-s installed around the microphone device 201.
  • the connection detection unit 215 detects the connection state of each microphone device 201 and transmits to the control unit 213 which position in the array microphone system the own microphone device 201 is connected to.
  • Each microphone device 201 has connecting terminals 215-s on the right side, left side, top right side, top center right, top center left, top left, bottom right, bottom center right, bottom center left and bottom left. Has been.
  • the connection position can be detected depending on which connection terminal 21 5-s is connected to the connection terminal 215-s of the other microphone device 201.
  • the microphone device 201A is connected to the right side terminal, the top right terminal, the top center right terminal, the bottom right terminal, and the bottom center right terminal.
  • the connection detection unit 215 determines that the microphone device 201 is located on the left side of the middle stage in the array microphone system. Thereby, the connection position in the array microphone system can be detected.
  • connecting terminals 215-s are installed at positions where the microphone unit 211 is connected to be shifted by dZ3 in the vertical direction as described above.
  • This connecting terminal 21 The directivity control unit 212, control unit 213, and clock switching unit 214 described above are connected to the other directivity control unit 212, control unit 213, and clock switching unit 214 by 5-s.
  • the method for detecting the connection position is not limited to this example.
  • the user may specify the position of the microphone device 201 manually.
  • this microphone device 201 becomes the master microphone device of the array microphone system.
  • This master microphone device force controls another microphone device 201 connected thereto.
  • the microphone device 201 that is directly connected to the audio device may be the master microphone device! /, And the other microphone device 201 may be the master microphone device.
  • the microphone device directly connected to the audio device may be automatically selected as the master microphone device, or the user may select it manually!
  • the control unit 213 of the microphone device 201 serving as the master microphone device sets the clock switching unit 214 to read the internal crystal oscillator force reference clock.
  • the directivity control unit 212 of the master microphone device operates with a reference clock to which this built-in crystal oscillator force is also supplied.
  • the control unit 213 instructs the clock switching unit 214 to transmit the reference clock to the other microphone device 201.
  • the directivity control unit 212 of the other microphone device 201 operates based on the reference clock transmitted by the master microphone device.
  • the audio data output from each microphone unit 211 to directivity control unit 212 is input to directivity control unit 212 of the master microphone device.
  • the directivity control unit 212 in the other microphone device operates by reading the reference clock to which the master microphone device power is also transmitted, and supplies audio data to the master microphone device.
  • the audio data synchronized from all the microphone devices 201 is supplied to the master microphone device.
  • the audio data input to the directivity control unit 212 of the master microphone device 201 is output to an audio device that is directly connected.
  • audio devices and all microphone devices 201 may be connected to output audio data from the respective microphone devices 201 to the audio devices.
  • the control unit 213 of the master microphone device sends each microphone unit 2 to the directivity control unit 212. Sets the delay amount of audio data output by 11. Further, the delay amount of the audio data output from each microphone unit 211 is set in the directivity control unit 212 of the microphone device 201 for all the connected microphone devices 201 of the control unit 213. Instruct.
  • the master microphone device controls the directivity of the entire microphone unit as one array microphone. That is, in FIG. 8, audio data is output with a predetermined delay amount from the microphone unit 211-1 of the microphone device 201A to the microphone unit 211-8 of the microphone device 201B in order.
  • the microphone device 201C and the microphone device 201D are regarded as being on the same line as the microphone device 201A and the microphone device 201B, and set their respective delay amounts. Thereby, the directivity characteristics of the entire array microphone system can be controlled.
  • the master microphone device is connected and the delay amount of all microphone devices is set.
  • each microphone device sets the delay amount independently. May be.
  • information defining the beam direction is transmitted and received between the microphone devices so that the main beam is formed in the entire array microphone system.
  • the array microphone system connects a plurality of microphone devices 201A to 201D, synchronizes all the microphone devices, and detects the connection position.
  • the apparent width of this array microphone system is doubled, and the interval between microphone units is 1Z3 times, so the frequency band that enables directivity control of this microphone unit relative to a single microphone device 201 is low. Will be doubled and 3x higher.
  • the force described for the array microphone system in which two stages in the left-right direction and three stages in the up-down direction are connected is not limited to this configuration example.
  • Four stages may be connected in the vertical direction, or two stages may be connected.
  • the microphone units can be placed with different widths depending on the number of the top and bottom. Since the number of microphone units to be connected is changed according to the frequency band where directivity control is required, it is possible to improve the frequency band in which directivity control can be easily performed while using an array microphone with reduced costs.
  • the present invention can be used for applications requiring control of frequency band orientation such as a sound system required for movie screening, and for frequency band orientation of a sound collection device that collects the voice of a speaker. Applicable to applications that require control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 本発明では、複数のスピーカ装置1A~Dを連結する。それぞれのスピーカ装置は、連結位置を検出することができる。いずれか一つのマスタスピーカ装置にオーディオ信号を入力する。マスタスピーカ装置は、連結された他のスピーカ装置1と同期し、オーディオ信号を他のスピーカ装置1に供給する。また、各スピーカ装置1のスピーカユニット11の遅延量をコントロールする。単一のスピーカ装置に対して、このアレイスピーカシステムの見かけ上の幅は2倍となり、スピーカユニットの間隔は1/3倍となる。したがって、指向制御可能となる周波数帯域が向上する。  また、本発明では、複数のマイク装置201A~201Dを上下左右に連結する。それぞれのマイク装置は、連結位置を検出することができる。それぞれのマイク装置からマスタマイク装置に音声データを出力する。マスタマイク装置は、連結された他のマイク装置201と同期し、連結されたアレイマイクシステム全体でアレイマイクとみなして各マイク装置201のマイクユニット211の遅延量をコントロールする。単一のマイク装置に対して、このアレイマイクシステムの見かけ上の幅は2倍となり、マイクユニットの間隔は1/3倍となる。したがって、指向制御可能となる周波数帯域が向上する。

Description

明 細 書
アレイスピーカシステムおよびアレイマイクシステム
技術分野
[0001] この発明は、指向制御可能なアレイスピーカシステムに関し、特に指向制御可能周 波数帯域を向上したアレイスピーカシステムに関する。更に、この発明は、指向制御 可能なアレイマイクシステムに関し、特に指向制御可能周波数帯域を向上したアレイ マイクシステムに関する。
本願は、 2005年 7月 14日に日本国特許庁において出願された特願 2005— 205 923号、及び 2005年 7月 19日に日本国特許庁において出願された特願 2005— 2 08321号に基づく優先権を主張し、その内容をここに援用する。
背景技術
[0002] 近年、家庭内で映画館の臨場感を楽しむことができるホームシァタが普及している 。ホームシァタでは、 5. 1チャンネルサラウンドに代表されるように、受聴者を取り囲 むように複数のスピーカ装置を設置するものが一般的である。しかし、このような複数 のスピーカ装置により実現されるサラウンドシステムは、各スピーカ装置への配線が 煩雑となり、また、複数のスピーカ装置を設置するためのスペースが必要になるという 問題があった。
[0003] そこで、スピーカユニットをライン状に複数個並べたスピーカアレイを用い、スピーカ アレイの音声ビームと部屋の壁面による反射を使った仮想音源を受聴者の周囲に作 り出すオーディオ再生装置が提案されている(例えば、特開 2005— 64746号公報 を参照)。
[0004] 図 7に、特開 2005— 64746号公報に記載のオーディオ再生装置におけるラインァ レイスピーカの構造を示す。このラインアレイスピーカは、細長い筐体に複数のスピー 力ユニット 21 (21 - 1〜21— n)をライン上に配列して構成される。各スピーカユニット 21は、間隔 dで等距離に配置されており、スピーカアレイの幅は Lとなる。
[0005] 複数のスピーカユニット 21に同位相の音声信号を入力すると、全てのスピーカュ- ット 21から出力される音声の合成波面は、平行で前方のみに伝搬する音声ビームと なる。前方以外の方向へ伝搬する音声成分は、各スピーカユニット 21から出力され た成分が合成されることによって (干渉しあうことによって)打ち消され、前方に向かう 成分のみが合成によって強められて音声ビームとして残る。また、スピーカユニット 21 力 出力する音声を一端力 他端に向けて順次遅延すると、合成波面はその遅延時 間に応じて傾斜し、音声ビームを斜め方向に向けることができる。
[0006] このように、複数のスピーカユニットに入力する音声信号の遅延量を制御することで 、目的の方向に音声ビームを向ける (指向特性を制御する)ことが可能である。
[0007] 図 7に示したようなラインアレイスピーカにおいては、スピーカアレイの幅 Lを大きく( スピーカユニットの数を多く)すると指向特性が鋭くなり、目的の方向に音声ビームを 集中することができる。また、スピーカアレイの幅 Lを大きくすると、より低周波数帯域 側まで指向制御が可能となる。
[0008] 音声ビームのビーム幅は以下の数式 1で決められる(ただし、 Vは音速、 fは周波数 を表す)。
[0009] Θ =sin_1 (v/fdn) · · · 数式 1
スピーカアレイの幅 Lを大きくするためには、スピーカユニットの数を増やしたり、ま た、同数で実施するにはスピーカユニットの間隔 dを大きくすればよい。しかし、スピ 一力ユニットの間隔 dを大きくすると、空間的折り返し現象により、目的とする方向以 外にも別の音声ビームが生じるという問題が発生するため、高周波数帯域の指向制 御が困難となる。別の音声ビームを生じさせないためには、以下の数式 2の条件を満 たすように dを設定しなければならな 、。
[0010] d<v/2f · · · 数式 2
例えば、スピーカユニットの間隔 d=4. 5cm、スピーカアレイの幅 L = 67. 5cmとし た場合の指向制御可能となる周波数帯域の低域周波数側は、数式 1より、約 500Hz となり、高域周波数側は、数式 2より、約 4kHzとなる。よって、指向制御可能となる周 波数帯域は、約 500〜約 4kHz程度となり、電話音声程度の帯域再生はできるが、ホ 一ムシァタに求められる帯域再生(例えば約 250Hz〜 12kHz)を実現することができ なかった。これを実現させるためには、スピーカユニットの数を増やさなければならな いが、スピーカユニットの数を多くするとコストがかかるという問題がある。 [0011] このように、指向制御可能周波数の向上とコストを抑制することとはトレードオフの関 係にあった。
[0012] 従って、必要となる周波数帯域に応じて、指向制御可能周波数帯域を任意に設計 することができるアレイスピーカシステムの必要性が求められて 、る。
[0013] 通信会議等においては、発話者の音声を的確にマイクで収音することが要求され る。そのため、指向性マイクを用い、発話者の方向の音声を効率よく収音することが 行われている。
[0014] また、複数のマイクユニットからなる(ライン)アレイマイクを用いて、それぞれのマイ クユニットの出力に遅延時間を設定し、指向性を制御する収音装置が提案されてい る(例えば、特開平 5— 91588号公報を参照)。
[0015] 図 14に、ラインアレイマイクの構造を示す。このラインアレイマイクは、細長い筐体に 複数のマイクユニット 221 (221 - 1〜221— n)をライン上に配列して構成される。各 マイクユニット 221は、間隔 dで等距離に配置されており、アレイマイクの幅は Lとな
2 2 る。
[0016] 複数のマイクユニット 221の前方力も垂直に到来する平面音波(同位相の音波)を 、それぞれのマイクユニット 221で収音し、それぞれのマイクユニット 221が出力する 音声信号を合成すると、同位相であるために強め合う。一方で、前面以外 (例えばラ インアレイマイクの横方向)から到来する音波は、それぞれのマイクユニット 221で出 力する音声信号の位相が異なるために、合成することで打ち消し合う。したがって、ァ レイマイクの感度はビーム状に絞り込まれて、前方にのみ主感度(主ビーム)を形成 する。
[0017] ここで、それぞれのマイクユニット 221から出力する音声信号を一端力も他端に向 けて順次遅延すると、最大レベルとなる収音方向がその遅延時間に応じて傾斜し、 主ビームを斜め方向に向けることができる。
[0018] このように、複数のマイクユニットが出力する音声信号の遅延量を制御することで、 目的の方向から音声を収音する(指向特性を制御する)ことが可能である。
[0019] 図 14に示したようなラインアレイマイクにおいては、アレイマイクの幅 Lを大きく(マ
2
イクユニットの数を多く)すると指向特性が鋭くなり、目的の方向に主ビームを集中す ることができる。また、アレイマイクの幅 Lを大きくすると、より低周波数帯域側まで指
2
向制御が可能となる。
[0020] 主ビームのビーム幅は以下の数式 3で決められる(ただし、 Vは音速、 fは周波数を 表す)。
[0021] Θ =sin_1 (v/fd n) · · · 数式 3
2
マイクアレイの幅 Lを大きくするためには、マイクユニットの数を増やしたり、また、同 数で実施するにはマイクユニットの間隔 dを大きくすればよい。しかし、マイクユニット
2
の間隔 d
2を大きくすると、空間的折り返し現象により、目的とする方向以外にも別の主 ビームが生じるという問題が発生するため、高周波数帯域の指向制御が困難となる。 別の主ビームを生じさせないためには、以下の数式 4の条件を満たすように dを設定
2 しなければならない。
[0022] d <v/2f · · · 数式 4
2
例えば、マイクユニットの間隔 d =4. 5cm、マイクアレイの幅 L =67. 5cmとした
2 2
場合の指向制御可能となる周波数帯域の低域周波数側は、数式 3において、ビーム 幅をピーク値から 3dB下がる範囲としたときに、 0が ± 30° になるような値は約 500 Hzとなり、高域周波数側は、数式 4より、約 4kHzとなる。よって、指向制御可能となる 周波数帯域は、約 500〜約 4kHz程度となり、電話音声程度の帯域収音はできるが 、音楽録音用途に求められる帯域収音 (例えば約 250Hz〜12kHz)を実現すること ができな力つた。これを実現させるためには、マイクユニットの数を増やさなければな らないが、マイクユニットの数を多くするとコストがかかるという問題がある。
[0023] このように、指向制御可能周波数の向上とコストを抑制することとはトレードオフの関 係にあった。
[0024] 従って、必要となる周波数帯域に応じて、指向制御可能周波数帯域を任意に設計 することができるアレイマイクシステムの必要性が求められている。
発明の開示
[0025] この発明のアレイスピーカシステムは、複数のスピーカユニットを直線上に配列した ラインアレイユニットを、前記直線と直交する方向である上下方向、または前記直線 の方向である左右方向に複数連結してなることを特徴とする。 [0026] この発明では、ラインアレイユニットを上下、または左右に連結する。例えば左右に 2つスピーカアレイを並列すると、見かけ上のスピーカアレイの幅 Lが 2倍となり、指向 制御可能となる下限周波数が 2倍となる。
[0027] この発明は、さらに、上下方向に配置される複数のラインアレイユニットは、「各スピ 一力ユニットの間隔 Z配列段数」ずつ左右にずらして連結されることを特徴とする。
[0028] この発明では、ラインアレイユニットを上下方向に n数重設する場合、スピーカュ- ットの間隔の lZnだけずらして重設する。スピーカユニットの間隔の lZnだけずらし て重設すると、見かけ上のスピーカの間隔 dが lZn倍となり、指向制御可能となる上 限周波数が n倍になる。
[0029] この発明は、さらに、複数のラインアレイユニットを左右方向に連結し、該左右方向 の配置の中央部に他のラインアレイユニットを上下に連結したことを特徴とする。
[0030] この発明では、ラインアレイユニットを左右に並列して連結し、その中央部に他のラ インアレイユニットを重設する。低周波数側の指向制御可能帯域は、スピーカアレイ の幅を大きくすれば向上し、スピーカユニットの間隔は影響しないので、ラインアレイ ユニット左右端側の上下に別のラインアレイユニットを連結する必要はない。
[0031] この発明のラインアレイユニットは、直線上に配列した複数のスピーカユニットと、ォ 一ディォ信号を入力する入力手段と、各スピーカユニットに、前記オーディオ信号を それぞれ所定時間遅延して供給し、ラインアレイユニットの指向性を制御する信号処 理手段と、連結の形態とその中での位置を検出する連結検出手段と、前記連結検出 手段が検出した連結形態と連結位置に応じて前記信号処理手段の遅延量を設定す る制御手段と、を備えたことを特徴とする。
[0032] この発明では、連結形態と、その中での位置を検出し、その位置に応じて各スピー 力ユニットの遅延量を設定する。これにより、アレイスピーカシステム全体で指向特性 が制御される。それぞれの制御手段が独立して遅延量を設定するようにしてもょ 、し 、連結されているラインアレイユニットのうちいずれか 1つの制御手段がァレイスピー カシステム全体の遅延量を設定するようにしてもよ ヽ。
[0033] この発明によれば、複数のラインアレイユニットを連結して、見かけ上のスピーカァ レイの幅や、スピーカユニットの間隔を変更することができるので、必要となる周波数 帯域に応じて、指向制御可能周波数帯域を任意に設計することができる。
[0034] この発明のアレイマイクシステムは、複数のマイクユニットを直線上に配列したライン アレイユニットを、前記直線と直交する方向である上下方向、または前記直線の方向 である左右方向に複数連結してなることを特徴とする。
[0035] この発明では、ラインアレイユニットを上下、または左右に連結する。例えば左右に
2つアレイマイクを並列すると、見かけ上のアレイマイクの幅 Lが 2倍となり、指向制御 可能となる下限周波数が 2倍となる。
[0036] この発明は、さらに、上下方向に配置される複数のラインアレイユニットは、「各マイ クユニットの間隔 Z配列段数」ずつ左右にずらして連結されることを特徴とする。
[0037] この発明では、ラインアレイユニットを上下方向に n数重設する場合、マイクユニット の間隔の lZnだけずらして重設する。マイクユニットの間隔の lZnだけずらして重設 すると、見かけ上のマイクの間隔 d力 lZn倍となり、指向制御可能となる上限周波数
2
が n倍になる。
[0038] この発明は、さらに、複数のラインアレイユニットを左右方向に連結し、該左右方向 の配置の中央部に他のラインアレイユニットを上下に連結したことを特徴とする。
[0039] この発明では、ラインアレイユニットを左右に並列して連結し、その中央部に他のラ インアレイユニットを重設する。低周波数側の指向制御可能帯域は、アレイマイクの 幅を大きくすれば向上し、マイクユニットの間隔は影響しないので、ラインアレイュニッ ト左右端側の上下にラインアレイユニットを連結する必要はない。
[0040] この発明のラインアレイユニットは、直線上に配列した複数のマイクユニットと、各マ イクユニットに、各マイクユニットが出力するオーディオ信号をそれぞれ所定時間遅延 して、ラインアレイユニットの指向性を制御する信号処理手段と、オーディオ信号を外 部に出力する出力手段と、連結の形態とその中での位置を検出する連結検出手段と 、前記連結検出手段が検出した連結形態と連結位置に応じて前記信号処理手段の 遅延量を設定する制御手段と、を備えたことを特徴とする。
[0041] この発明では、連結形態と、その中での位置を検出し、その位置に応じて各マイク ユニットの遅延量を設定する。これにより、アレイマイクシステム全体で指向特性が制 御される。それぞれの制御手段が独立して遅延量を設定するようにしてもよいし、連 結されているラインアレイユニットのうちいずれ力 1つの制御手段がアレイマイクシステ ム全体の遅延量を設定するようにしてもょ 、。
[0042] この発明によれば、複数のラインアレイユニットを連結して、見かけ上のアレイマイク の幅や、マイクユニットの間隔を変更することができるので、必要となる周波数帯域に 応じて、指向制御可能な周波数帯域を任意に設計することができる。
図面の簡単な説明
[0043] [図 1]アレイスピーカシステムの構成を示した概略図である。
[図 2]スピーカ装置の重設について説明する図である。
[図 3A]スピーカアレイの原理を説明するための図であって、スピーカユニットに同位 相のオーディオ信号を同時に入力した場合を示す図である。
[図 3B]スピーカアレイの原理を説明するための図であって、音声ビームを斜めに形成 する場合を示す図である。
[図 4A]音声ビーム制御角度の例を示した図である。
[図 4B]音声ビーム制御角度の例を示した図であって、図 4Aの条件にお 、てスピーカ ユニットの数を 4倍にした場合を示す図である。
[図 4C]音声ビーム制御角度の例を示した図であって、図 4Aの条件において周波数 を 1Z4にした場合を示す図である。
[図 4D]音声ビーム制御角度の例を示した図であって、図 4Aの条件において周波数 を 8倍にした場合を示す図である。
[図 5]スピーカ装置の構成を示すブロック図である。
[図 6]連結端子を示す概略図である。
[図 7]従来のラインアレイスピーカユニットを示すブロック図である。
[図 8]アレイマイクシステムの構成を示した概略図である。
[図 9]マイク装置の重設について説明する図である。
[図 10A]アレイマイクの原理を説明するための図であって、全てのマイクユニットに前 方から同位相で音波が到来した場合を示す図である。
[図 10B]アレイマイクの原理を説明するための図であって、主ビームを斜めにする場 合を示す図である。 [図 11A]音声ビーム制御角度の例を示した図であって、角度閧ニゲイン Gの関係を示 した図である。
[図 11B]音声ビーム制御角度の例を示した図であって、図 11Aの条件においてマイ クユニットの数を 4倍にした場合を示す図である。
[図 11C]音声ビーム制御角度の例を示した図であって、図 11Aの条件において周波 数を 1Z4にした場合を示す図である。
[図 11D]音声ビーム制御角度の例を示した図であって、図 11Aの条件において周波 数を 8倍にした場合を示す図である。
[図 12]マイク装置の構成を示すブロック図である。
[図 13]連結端子を示す概略図である。
[図 14]従来のラインアレイマイクユニットを示すブロック図である。
符号の説明
[0044] 1 :スピーカ装置、 11 :スピーカユニット、 12 :指向性制御部、
13 :制御部、 14 :クロック切換部、 15 :連結検出部、 16 :変換部、
201 :マイク装置、 211 :マイクユニット、 212 :指向性制御部、
213 :制御部、 214 :クロック切換部、 215 :連結検出部、
216 :変換部
発明を実施するための最良の形態
[0045] 図 1は本発明の実施形態に係るアレイスピーカシステムの構成を示した概略図であ る。同図に示すように、このアレイスピーカシステムは、複数のスピーカ装置 1A〜Dを 備えている。
[0046] スピーカ装置 1Aとスピーカ装置 1Bは左右方向に並んで連結されて!、る。スピーカ 装置 1Cは、スピーカ装置 1Aとスピーカ装置 1Bの上方に連結されており、スピーカ装 置 1Dはスピーカ装置 1Aとスピーカ装置 1Bの下方に連結されている。
[0047] 各スピーカ装置 1は、それぞれ 8個のスピーカユニット 11— 1〜: L 1— 8を間隔 dでラ イン状に等間隔に配置した構成であり、本発明のラインアレイユニットに相当する。ス ピー力ユニットは、一般的にはコーン型スピーカユニットを用いる力 ホーン型スピー 力ユニット等、その他の形式を用いてもよい。一方の端部のスピーカユニット 11—1か ら他方の端部のスピーカユニット 11— 8までの距離は Lとなる。この距離 Lをスピーカ 装置 1の幅しとする。ここで、本実施形態のアレイスピーカシステムは、スピーカ装置 1 Aとスピーカ装置 1Bを左右方向に並べて連結して!/、るので、このアレイスピーカシス テムの見かけ上の幅は 2Lとなる。なお、この例においては、 8個のスピーカユニットを 配置したスピーカ装置について示している力 さらに複数のスピーカユニットを配置し てもよいし、少なくしてもよい。
[0048] また、スピーカ装置 1Cは、スピーカ装置 1Aおよびスピーカ装置 1Bに対し、スピー 力の水平方向の位置が dZ3右にずれるように中央上方に接続されている。スピーカ 装置 1Dは、スピーカ装置 1Aおよびスピーカ装置 1Bに対し、スピーカの水平方向の 位置が dZ3左にずれるように中央下方に接続されて 、る。
図 2は、スピーカ装置の重設について説明する図である。同図に示すように、スピー 力装置 1Cは、スピーカ装置 1Aおよびスピーカ装置 1Bの上方に距離 dZ3だけ右方 向にずれて重設されている。同様に、スピーカ装置 1Dは、スピーカ装置 1A (および スピーカ装置 1B)の下方に距離 dZ3だけ左方向にずれて重設されている。したがつ て、このように重設された箇所については、アレイスピーカシステムの見かけ上のスピ 一力ユニットの間隔は距離 dZ3となる。
[0049] 図 3A及び図 3Bは、スピーカアレイの原理を説明するための図である。ここで、スピ 一力アレイの原理にっ 、て説明する。
[0050] 図 3Aは、全てのスピーカユニット 11に同位相のオーディオ信号を同時に入力した 場合を示して 、る。全てのスピーカユニット 11に同位相のオーディオ信号を同時に 入力すると、個別のスピーカユニット 11から出力された音声は放射状(円形)に伝搬 していくが、全てのスピーカユニット 11から出力された音声の合成波面は、同図に示 すように、ビーム状に絞り込まれて前方にのみ伝搬する。これ以外の方向へ伝搬する 成分は、各スピーカユニット 11から出力された音声成分が合成されることによって (干 渉しあうことによって)打ち消され、前方に向力う成分のみが合成によって強められて 音声ビームとして残って 、る。
[0051] 図 3Bは、音声ビームを斜めに形成する場合を示している。同図では、音声ビーム を、正面から右方向の Θの角度に形成している。この場合、音声ビームの向きと反対 側の端部 (左端)のスピーカユニット 11から最初に音声を出力する。続いて、時間 τ が経過する毎に順次右隣のスピーカユニット 11から音声を出力する。この遅延時間 は、各スピーカユニット 11に接続されている指向性制御部(後述する)によって制御さ れる。このように、一列に並んでいるスピーカユニット 11から出力する音声を一端から 他端に向けて順次遅延することにより、合成波面は、図示のようにその遅延時間に応 じて傾斜し、音声ビームを斜め方向に向けることができる。
[0052] この傾斜角度 Θは、音速を Vとすると、 Θ = sin_1 (V τ Zd)の関係になる。したがつ て、 てを制御することによって音声ビームの角度 Θを制御できることになる。
[0053] 図 4A〜図 4Dは、音声ビーム制御角度の例を示した図である。
図 4Aは、一例としてスピーカユニットの数 n= 16、スピーカユニットの間隔 d=4. 5 cm、スピーカアレイの幅 L= 67. 5cmの場合について、角度 Θとゲイン Gの関係を 示す。図 4Aに示すグラフの横軸は Θ、縦軸はスピーカアレイのゲイン (Gとする)を表 す。
[0054] 図 4Aにおいて、 Θ =0を目的の音声ビーム方向とし、ゲイン Gは、 Θ =0で最大と なる。 Θ =0から離れるにつれて、各スピーカユニットから出力された音声が干渉して ゲイン Gは低下し、 0 = ± 0 1で零となる。目的の音声ビーム方向 Θ =0を挟んでゲ イン Gが零になるまでの幅をビーム幅とする。このゲイン Gが零となる Θ 1、つまり音声 ビームの幅は、周波数を fとすると、上述した数式 1より、 Θ l = sin_1 (vZfdn)で決定 される。
[0055] 図 4Aにおいては、周波数 f = 1kHzについての例を示している。ここで本実施形態 においては、各スピーカユニットが間隔 dで等距離に配置されているので、スピーカァ レイの幅 Lは、 L = d (n— 1)で表され、ビーム幅 θ 1は、数式 1により、スピーカュ-ッ トの間隔 d、スピーカアレイの幅 L、および周波数 fによって決定される。
[0056] 図 4Bは、図 4Aの条件において、スピーカユニットの数 nを 4倍である n= 64とした 場合の角度 0とゲイン Gの関係を示した図である。図 4Bに示すグラフにおいても横 軸は Θ、縦軸はゲインを表す。図 4Bにおいてビーム幅は、図 4Aに示したビーム幅よ りも小さぐ目的の方向に鋭い指向特性を有している。また、 sin 0 l =vZfdnの関係 から、周波数 fを 4倍、または、スピーカユニットの幅 dを 4倍としても図 4Bに示すような ビーム幅が得られる。
[0057] 図 4Cは、図 4Aの条件において、周波数 fを 1Z4である f= 250Hzとした場合の角 度 Θとゲイン Gの関係を示した図である。図 4Cに示すグラフにおいても横軸は Θ、縦 軸はゲインを表す。図 4Cにおいては、ゲイン Gが零となる θ 1が存在しない。
[0058] 図 4Dは、図 4Aの条件において、周波数 fを 8倍である f =8kHzとした場合の角度
Θとゲイン Gの関係を示した図である。図 4Dに示すグラフにおいても横軸は Θ、縦軸 はゲインを表す。図 4Dにおいては、 Θ =0以外の方向にも音声ビームが生じている。 これはいわゆる空間の折り返し現象と呼ばれるものであり、 d≥vZ2fとなる周波数に お ヽて図 4Dに示すような現象が発生する。
[0059] このように、スピーカアレイは、音声ビームの幅に周波数依存性を有しており、上記 例のように、スピーカユニットの数 n= 16、スピーカユニットの間隔 d=4. 5cm、スピ 一力アレイの幅 L = 67. 5cmの場合においては、指向制御可能となる周波数帯域は 約 500Hz〜約 4kHz程度となる。この周波数帯域よりも低 、周波数では図 4Cのよう に指向特性が無くなり、高い周波数では図 4Dのように、目的の方向以外にも音声ビ ームが生じてしまう。
[0060] 上述したように、ゲイン Gが零となる θ 1は、 sin Θ l =vZfdnで表されるので、周波 数 f、スピーカユニットの間隔 d、スピーカユニットの数 nが θ 1に及ぼす影響は等価で ある。つまり、スピーカユニットの間隔 dを小さくし、さらにスピーカユニットの数 nを増 やすことによりスピーカアレイの幅 Lを大きくすることで、指向制御可能な周波数帯域 幅を広げることができる。
[0061] ここで、本実施形態のアレイスピーカシステムは、スピーカ装置 1Aとスピーカ装置 1 Bを左右方向に並べて連結して!/、るので、このアレイスピーカシステムの見かけ上の スピーカユニットの数 nは 2倍、すなわちスピーカアレイの幅 Lが 2倍となり、指向制御 可能となる周波数帯域は低域側に 2倍に広がる。また、スピーカ装置 1Cとスピーカ装 置 1Dを、上下方向に dZ3だけ左右方向にずれて重設しているので、このアレイスピ 一力システムの見かけ上のスピーカユニットの間隔は dZ3となり、指向制御可能とな る周波数帯域は高域側に 3倍に広がる。
[0062] したがって、本発明のアレイスピーカシステムは、スピーカユニットの数を少なくし、 コストを抑えた単一のスピーカ装置を設計しておき、必要となる周波数帯域に応じて 上記例のように複数のスピーカ装置を連結することで、容易に指向制御可能な周波 数帯域を向上させることができる。
[0063] 次に、本実施形態のアレイスピーカシステムの各スピーカ装置の構成について詳 細に説明する。
図 5は、各スピーカ装置の構成を示すブロック図である。同図に示すように、このス ピー力装置 1は、 n個のスピーカユニット 11— 1〜: L l—n、指向性制御部 12、制御部 13、クロック切換部 14、連結検出部 15、および変換部 16を備えている。
[0064] n個のスピーカユニット 11— 1〜: LI— nは、指向性制御部 12に接続され、指向性制 御部 12は、制御部 13、クロック切換部 14、変換部 16に接続されている。また、制御 部 13には連結検出部 15が接続されて!、る。
[0065] 指向性制御部 12、制御部 13、およびクロック切換部 14は、それぞれ他のスピーカ 装置 1の指向性制御部 12、制御部 13、およびクロック切換部 14に接続されている。 指向性制御部 12、制御部 13、およびクロック切換部 14は、他のスピーカ装置 1と単 一の接続線 (接続端子)を共有して接続されるようにしてもょ 、し、それぞれに専用の 接続線 (接続端子)で接続されるようにしてもよ!、。
[0066] 指向性制御部 12は、入力された音声データをスピーカユニット 11—1〜: Ll—nに それぞれ所定の遅延量で供給し、スピーカアレイの指向性を制御する。それぞれの 遅延量は制御部 13によって設定される。スピーカユニット 11— 1〜: L I— nは、それぞ れ入力された音声データを DZA変換して放音する。
[0067] 制御部 13は、クロック切換部 14と指向性制御部 12の制御を行い、接続された他の スピーカ装置 1の制御部 13にコントロールコマンドを送信して他の制御部 13の制御 も行う。
[0068] クロック切換部 14は、スピーカ装置内蔵の水晶発振子(図示せず)と接続されてお り、指向性制御部 12に基準クロックを供給する。指向性制御部 12は、この基準クロッ クに基づいて動作する。また、クロック切換部 14力 他のスピーカ装置 1のクロック切 換部 14に接続されている場合、他のスピーカ装置 1のクロック切換部 14に基準クロッ クを送信する。また、他のスピーカ装置 1から基準クロックを受信した場合、指向性制 御部 12に受信した基準クロック、または内蔵の水晶発振子の基準クロックのいずれ かを選択的に供給する。
[0069] 変換部 16は、オーディオ機器カゝら入力されるアナログ音声信号をデジタル変換す る AZD変換機能と、デジタル音声データが入力された場合にその音声データのサ ンプリング周波数 (例えば 44. 1kHz)をこのスピーカ装置 1の基準周波数 (例えば 48 kHz)に変換する周波数変 能とを備えている。変換した音声データは指向性制 御部 12に供給する。
[0070] 指向性制御部 12は、制御部 13の指示に基づいて、変換部 16から入力された音声 データをスピーカユニット 11 - 1〜: L 1—nにそれぞれ所定の遅延量で供給する。
[0071] 図 6は、スピーカ装置 1の周囲に複数設置された連結端子 15— sからなる連結検出 部 15を示す。この連結検出部 15は、各スピーカ装置 1の接続状態を検出し、アレイ スピーカシステム内のどの位置に自己のスピーカ装置 1が接続されているかを制御 部 13に伝達する。各スピーカ装置 1は、側面右側、側面左側、上面右側、上面中央 右側、上面中央左側、上面左側、下面右側、下面中央右側、下面中央左側、および 下面左側にそれぞれ連結端子 15— sが設置されて ヽる。どの連結端子 15— sが他の スピーカ装置 1の連結端子 15— sに接続されたかによって接続位置を検出することが できる。
例えば同図において、スピーカ装置 1Aは、側面右側の端子、上面右側の端子、上 面中央右側の端子、下面右側の端子、および下面中央右側の端子が接続されること となり、この接続配置であれば、連結検出部 15は、このスピーカ装置 1がァレイスピー カシステム内において中段の左側に位置すると判断する。これにより、アレイスピーカ システム内の連結位置を検出することができる。
なお、これらの連結端子 15— sは、上述したようにスピーカユニット 11が上下方向に dZ3ずつずれて連結されるような位置に設置されている。また、この連結端子 15— s によって、上述した指向性制御部 12、制御部 13、およびクロック切換部 14が他の指 向性制御部 12、制御部 13、およびクロック切換部 14に接続されている。
[0072] なお、連結位置の検出手法はこの例に限るものではな 、。例えばユーザがマ-ュ アルでスピーカ装置 1の位置を指定するようにしてもよい。 [0073] 次に、このアレイスピーカシステムの指向性制御について詳細に説明する。ユーザ カ^、ずれか 1つのスピーカ装置 1にオーディオ機器を接続し、オーディオ信号を入力 すると、このスピーカ装置 1はアレイスピーカシステムのマスタスピーカ装置となる。こ のマスタスピーカ装置が、連結されている他のスピーカ装置 1を制御する。なお、ォー ディォ機器カゝらオーディオ信号が入力されるスピーカ装置 1をマスタスピーカ装置とし てもよいし、他のスピーカ装置 1をマスタスピーカ装置としてもよい。オーディオ機器か ら直接オーディオ信号が入力されたスピーカ装置がマスタスピーカ装置として自動選 択されるようにしてもょ ヽし、ユーザがマニュアルで選択するようにしてもよ!ヽ。
[0074] マスタスピーカ装置となったスピーカ装置 1の制御部 13は、クロック切換部 14に内 蔵水晶発振子力 基準クロックを読み取るように設定する。マスタスピーカ装置の指 向性制御部 12は、この内蔵水晶発振子力も供給される基準クロックで動作する。また 、制御部 13はクロック切換部 14に、他のスピーカ装置 1に基準クロックを送信するよう に指示する。他のスピーカ装置 1の指向性制御部 12は、このマスタスピーカ装置が 送信する基準クロックに基づ!ヽて動作する。
[0075] また、マスタスピーカ装置において、変換部 16から指向性制御部 12に入力された デジタル音声データは、他のスピーカ装置 1に送信される。指向性制御部 12も上記 のクロック切換部 14力も基準クロックを読み出して動作し、他のスピーカ装置 1にデジ タル音声データを供給する。これにより全てのスピーカ装置 1で同期されたデジタル 音声データが供給されることとなる。なお、全てのスピーカ装置 1のそれぞれにォー ディォ機器カゝらオーディオ信号を直接入力するようにし、その後各指向性制御部 12 が音声データの同期をとるようにしてもよ 、。
[0076] マスタスピーカ装置の制御部 13は、指向性制御部 12にそれぞれのスピーカュ-ッ ト 11に供給する音声データの遅延量を設定する。また、連結されている全てのスピー 力装置 1の制御部 13に対して、そのスピーカ装置 1の指向性制御部 12にそれぞれの スピーカユニット 11に供給する音声データの遅延量を設定するように指示する。ここ で、マスタスピーカ装置は、スピーカユニット全体を 1つのスピーカアレイとしてその指 向特性を制御する。
つまり、図 1において、スピーカ装置 1Aのスピーカユニット 11—1から順にスピーカ 装置 IBのスピーカユニット 11— 8まで、所定の遅延量で音声データを供給するよう にする。このとき、スピーカ装置 1C、およびスピーカ装置 IDは、スピーカ装置 1A、お よびスピーカ装置 1Bと同一のライン上に存在するとみなして、それぞれの遅延量を 設定する。これにより、アレイスピーカシステム全体の指向特性を制御することができ る。
[0077] なお、上記例では、マスタスピーカ装置が連結されている全てのスピーカ装置の遅 延量を設定するように説明したが、それぞれのスピーカ装置が独立して遅延量を設 定するようにしてもよい。この場合、アレイスピーカシステム全体で音声ビームが形成 されるように、各スピーカ装置間でビーム方向を規定する情報を送受信するものとす る。
[0078] 以上のようにして、本実施形態におけるアレイスピーカシステムは、複数のスピーカ 装置 1A〜Dを連結して全てのスピーカ装置を同期し、その連結位置を検出する。こ のアレイスピーカシステムの見かけ上の幅は 2倍となり、スピーカユニットの間隔は 1 Z3倍となるので、単一のスピーカ装置 1に対し、このスピーカユニットの指向制御可 能となる周波数帯域は低域側に 2倍、高域側に 3倍に向上することとなる。
[0079] なお、本実施形態においては、左右方向に 2つ、上下方向に 3段を連結したアレイ スピーカシステムについて説明した力 本発明はこの構成例に限るものではない。上 下方向に 4段連結するようにしてもよいし、 2段連結するようにしてもよい。上下に重設 する数に応じて、スピーカユニットの幅をずらして重設すればよい。指向制御が必要 となる周波数帯域に応じて連結するスピーカユニットの数を変更するので、コストを抑 えたスピーカアレイでありながら、容易に指向制御可能な周波数帯域を向上させるこ とがでさる。
[0080] 図 8は本発明の実施形態に係るアレイマイクシステムの構成を示した概略図である 。同図に示すように、このアレイマイクシステムは、複数のマイク装置 201 A〜Dを備 えている。
[0081] マイク装置 201Aとマイク装置 201Bは左右方向に並んで連結されている。マイク装 置 201Cは、マイク装置 201Aとマイク装置 201Bの上方に連結されており、マイク装 置 201Dはマイク装置 201Aとマイク装置 201Bの下方に連結されている。 [0082] 各マイク装置 201は、それぞれ 8個のマイクユニット 211—1〜211—8を間隔 dで
2 ライン状に等間隔に配置した構成であり、本発明のラインアレイユニットに相当する。 マイクユニットは、一般的にはダイナミックマイクユニットを用いる力 コンデンサマイク ユニット等、その他の形式を用いてもよい。一方の端部のマイクユニット 211—1から 他方の端部のマイクユニット 211—8までの距離は Lとなる。この距離 Lをマイク装置
2 2
201の幅 Lとする。ここで、本実施形態のアレイマイクシステムは、マイク装置 201Aと
2
マイク装置 201Bを左右方向に並べて連結して!/、るので、このアレイマイクシステムの 見かけ上の幅は 2Lとなる。
2
なお、この例においては、 8個のマイクユニットを配置したマイク装置について示し ているが、さらに複数のマイクユニットを配置してもよいし、少なくしてもよい。
[0083] また、マイク装置 201Cは、マイク装置 201Aおよびマイク装置 201Bに対し、マイク の水平方向の位置が d Z3右にずれるように中央上方に接続されている。マイク装置
2
201Dは、マイク装置 201Aおよびマイク装置 201Bに対し、マイクの水平方向の位 置が d Z3左にずれるように中央下方に接続されている。
2
図 9は、マイク装置の重設について説明する図である。同図に示すように、マイク装 置 201Cは、マイク装置 201A (およびマイク装置 201B)の上方に距離 d Z3だけ右
2 方向にずれて重設されている。同様に、マイク装置 201Dは、マイク装置 201A (およ びマイク装置 201B)の下方に距離 d Z3だけ左方向にずれて重設されている。した
2
がって、この重設された箇所については、アレイマイクシステムの見かけ上のマイクュ ニットの間隔は距離 d Z3となる。
2
[0084] 図 10A及び図 10Bは、アレイマイクの原理を説明するための図である。ここで、ァレ イマイクの原理にっ 、て説明する。
[0085] 図 10Aは、全てのマイクユニット 211に前方から同位相で音波が到来した場合を示 している。全てのマイクユニット 211に同位相で音波が到来すると、個別のマイクュ- ット 211から出力されたオーディオ信号は、合成によって強められる。一方で、これ以 外の方向から音波が到来すると、各マイクユニット 211から出力されるオーディオ信 号はそれぞ; ί! ^立相が異なるために合成されることによって弱められる。したがって、ァ レイマイクの感度はビーム状に絞り込まれて前方にのみ主感度(主ビーム)を形成す る。
[0086] 図 10Bは、主ビームを斜めにする場合を示して 、る。図 10Bでは、主ビームを、正 面から右方向の Θの角度に形成している。この場合、主ビームの方向の端部 (右端) から音波が到来し、主ビーム方向と反対の端部 (左端)に最後に音波が到来するの で、左側のマイクユニット 211から時間 τが経過する毎に順次右隣のマイクユニット 2 11からオーディオ信号を出力するようにする。この遅延時間は、各マイクユニット 211 に接続されている指向性制御部(後述する)によって制御される。
このように、一列に並んで 、るマイクユニット 211から出力するオーディオ信号を一 端力 他端に向けて順次遅延することにより、主ビームは、図示のようにその遅延時 間に応じて傾斜する。
[0087] この傾斜角度 Θは、音速を Vとすると、 sin θ =ν τ άの関係になる。したがって、
2
τを制御することによって主ビームの角度 Θを制御できることになる。
[0088] 図 11A〜図 11Dは、主ビーム制御角度の例を示した図である。
図 11Aに示すグラフの横軸は Θ、縦軸はアレイマイクのゲイン (Gとする)を表す。 図 11Aは、一例としてマイクユニットの数 η= 16、マイクユニットの間隔 d =4. 5cm、
2
アレイマイクの幅 L =67. 5cmの場合について、角度 Θとゲイン Gの関係を示す。
2
[0089] 図 11Aにおいて、 Θ =0を目的の主ビーム方向とし、ゲイン Gは、 Θ =0で最大とな る。 Θ =0から離れるにつれて、各マイクユニットから出力されたオーディオ信号が打 ち消されてゲイン Gは低下し、 0 = ± 0 2で零となる。目的の主ビーム方向 Θ =0を 挟んでゲイン Gが零になるまでの幅をビーム幅とする。このゲイン Gが零となる Θ 2、 つまり主ビームの幅は、周波数を fとすると、上述した数式 3より、 Θ 2 = sin_1 (v/fd
2 n)で決定される。
[0090] 図 11Aにおいては、周波数 f= lkHzについての例を示している。ここで本実施形 態においては、各マイクユニットが間隔 dで等距離に配置されているので、アレイマ
2
イクの幅 Lは、 L =d (n— 1)で表され、ビーム幅 Θ 2は、数式 3により、マイクユニット
2 2 2
の間隔 d、アレイマイクの幅 L、および周波数 fによって表される。
2 2
[0091] 図 11Bは、図 11Aの条件において、マイクユニットの数 nを 4倍である n= 64とした 場合の角度 0とゲイン Gの関係を示した図である。図 11Bに示すグラフにおいても横 軸は θ、縦軸はゲインを表す。図 11Bにおいてビーム幅は、図 11Aに示したビーム 幅よりも小さぐ目的の方向に鋭い指向特性を有している。また、 sin Θ 2=v/fd nの
2 関係から、周波数 fを 4倍、または、マイクユニットの幅 dを 4倍としても図 11Bに示す
2
ようなビーム幅が得られる。
[0092] 図 11Cは、図 11Aの条件において、周波数 fを 1Z4である f= 250Hzとした場合の 角度 Θとゲイン Gの関係を示した図である。図 11Cに示すグラフにおいても横軸は Θ 、縦軸はゲインを表す。図 11Cにおいては、ゲイン Gが零となる Θ 2が存在しない。
[0093] 図 11Dは、図 11Aの条件において、周波数 fを 8倍である f= 8kHzとした場合の角 度 Θとゲイン Gの関係を示した図である。図 11Dに示すグラフにおいても横軸は Θ、 縦軸はゲインを表す。図 11Dにおいては、 Θ =0以外の方向にも主ビームが生じて いる。これはいわゆる空間の折り返し現象と呼ばれるものであり、 d≥vZ2fとなる周
2
波数にお 、て図 11Dに示すような現象が発生する。
[0094] このように、アレイマイクは、主ビームの幅に周波数依存性を有しており、上記例の ように、マイクユニットの数 n= 16、マイクユニットの間隔 d =4. 5cm、アレイマイクの
2
幅 L =67. 5cmの場合においては、指向制御可能となる周波数帯域は約 500Hz〜
2
約 4kHz程度となる。この周波数帯域よりも低い周波数では図 11Cのように指向特性 が無くなり、高い周波数では図 11Dのように、目的の方向以外にも主ビームが生じて しまう。
[0095] 上述したように、ゲイン Gが零となる Θ 2は、 sin Θ 2=v/fd nで表されるので、周波
2
数 f、マイクユニットの間隔 d、マイクユニットの数 nが Θ 2に及ぼす影響は等価である
2
。つまり、マイクユニットの間隔 dを小さくし、さらにマイクユニットの数 nを増やすことに
2
よりアレイマイクの幅 Lを大きくすることで、指向制御可能な周波数帯域幅を広げるこ
2
とがでさる。
[0096] ここで、本実施形態のアレイマイクシステムは、マイク装置 201Aとマイク装置 201B を左右方向に並べて連結して 、るので、このアレイマイクシステムの見かけ上のマイ クユニットの数 nは 2倍、すなわちアレイマイクの幅 Lが 2倍となり、指向制御可能とな
2
る周波数帯域は低域側に 2倍に広がる。また、マイク装置 201Cとマイク装置 201Dを 、上下方向に d Z3だけ左右方向にずれて重設しているので、このアレイマイクシス テムの見かけ上のマイクユニットの間隔は d Z3となり、指向制御可能となる周波数帯
2
域は高域側に 3倍に広がる。
[0097] したがって、本発明のアレイマイクシステムは、マイクユニットの数を少なくし、コスト を抑えた単一のマイク装置を設計しておき、必要となる周波数帯域に応じて上記例 のように複数のマイク装置を連結することで、容易に指向制御可能周波数帯域を向 上させることができる。
[0098] 次に、本実施形態のアレイマイクシステムの各マイク装置の構成について詳細に説 明する。
図 12は、各マイク装置の構成を示すブロック図である。同図に示すように、このマイ ク装置 201は、 n個のマイクユニット 211— 1〜211— n、指向性制御部 212、制御部 213、クロック切換部 214、連結検出部 215、および変換部 216を備えている。
[0099] n個のマイクユニット 211— l〜211—nは、指向性制御部 212に接続され、それぞ れ収音した音声信号を AZD変換して指向性制御部 212に供給し、指向性制御部 2 12は、制御部 213、クロック切換部 214、変換部 216に接続されている。また、制御 部 213には連結検出部 215が接続されている。
[0100] 指向性制御部 212、制御部 213、およびクロック切換部 214は、それぞれ他のマイ ク装置 201の指向性制御部 212、制御部 213、およびクロック切換部 214に接続され ている。指向性制御部 212、制御部 213、およびクロック切換部 214は、他のマイク 装置 201と単一の接続線 (接続端子)を共有して接続されるようにしてもょ ヽし、それ ぞれに専用の接続線 (接続端子)で接続されるようにしてもょ 、。
[0101] 指向性制御部 212は、マイクユニット 211— l〜211—nから出力されたオーディオ 信号をそれぞれ所定の遅延量で出力し、アレイマイクの指向性を制御する。それぞ れの遅延量は制御部 213によって設定される。指向性制御部 212の出力信号は、音 声データ (オーディオ信号)として所定の遅延量で変換部 216と他のマイク装置に出 力される。
[0102] 制御部 213は、クロック切換部 214と指向性制御部 212の制御を行い、接続された 他のマイク装置 201の制御部 213にコントロールコマンドを送信して他の制御部 213 の制御も行う。 [0103] クロック切換部 214は、マイク装置内蔵の水晶発振子(図示せず)と接続されており 、指向性制御部 212に基準クロックを供給する。指向性制御部 212は、この基準クロ ックに基づいて動作する。また、クロック切換部 214が、他のマイク装置 201のクロック 切換部 214に接続されている場合、他のマイク装置 201のクロック切換部 214に基準 クロックを送信する。また、他のマイク装置 201から基準クロックを受信した場合、指向 性制御部 212に受信した基準クロック、または内蔵の水晶発振子の基準クロックのい ずれかを選択的に供給する。
[0104] 変換部 216は、指向性制御部 212から入力される音声データをアナログ音声信号 に変換する DZA変換機能を備えて ヽる。変換したアナログ音声信号はオーディオ 機器 (録音機器)等、外部に出力する。なお、変換部 216は、このマイク装置 201の 基準サンプリング周波数 (例えば 48kHz)カゝら CD等のサンプリング周波数 (例えば 4 4. 1kHz)に変換する周波数変 能も備えており、オーディオ機器等にデジタル 音声信号として出力することもできる。
[0105] 図 13は、マイク装置 201の周囲に複数設置された連結端子 215— sからなる連結 検出部 215を示す。この連結検出部 215は、各マイク装置 201の接続状態を検出し 、アレイマイクシステム内のどの位置に自己のマイク装置 201が接続されているかを 制御部 213に伝達する。各マイク装置 201は、側面右側、側面左側、上面右側、上 面中央右側、上面中央左側、上面左側、下面右側、下面中央右側、下面中央左側 、および下面左側にそれぞれ連結端子 215— sが設置されている。どの連結端子 21 5— sが他のマイク装置 201の連結端子 215— sに接続されたかによって接続位置を 検出することができる。
例えば、図 13において、マイク装置 201Aは、側面右側の端子、上面右側の端子、 上面中央右側の端子、下面右側の端子、および下面中央右側の端子が接続される こととなり、この接続配置であれば、連結検出部 215は、このマイク装置 201がアレイ マイクシステム内において中段の左側に位置すると判断する。これにより、アレイマイ クシステム内の連結位置を検出することができる。
なお、これらの連結端子 215— sは、上述したようにマイクユニット 211が上下方向 に d Z3ずつずれて連結されるような位置に設置されている。また、この連結端子 21 5— sによって、上述した指向性制御部 212、制御部 213、およびクロック切換部 214 が他の指向性制御部 212、制御部 213、およびクロック切換部 214に接続されている
[0106] なお、連結位置の検出手法はこの例に限るものではない。例えばユーザがマ-ュ アルでマイク装置 201の位置を指定するようにしてもょ 、。
[0107] 次に、このアレイマイクシステムの指向性制御について詳細に説明する。ユーザが V、ずれか 1つのマイク装置 201にオーディオ機器を接続すると、このマイク装置 201 はアレイマイクシステムのマスタマイク装置となる。このマスタマイク装置力 連結され ている他のマイク装置 201を制御する。なお、オーディオ機器と直接接続されるマイ ク装置 201をマスタマイク装置としてもよ!/、し、他のマイク装置 201をマスタマイク装置 としてもよ ヽ。オーディオ機器と直接接続されたマイク装置がマスタマイク装置として 自動選択されるようにしてもょ 、し、ユーザがマニュアルで選択するようにしてもよ!、。
[0108] マスタマイク装置となったマイク装置 201の制御部 213は、クロック切換部 214に内 蔵水晶発振子力 基準クロックを読み取るように設定する。マスタマイク装置の指向 性制御部 212は、この内蔵水晶発振子力も供給される基準クロックで動作する。また 、制御部 213はクロック切換部 214に、他のマイク装置 201に基準クロックを送信する ように指示する。他のマイク装置 201の指向性制御部 212は、このマスタマイク装置 が送信する基準クロックに基づ ヽて動作する。
[0109] また、他のマイク装置において、各マイクユニット 211から指向性制御部 212に出力 された音声データは、マスタマイク装置の指向性制御部 212に入力される。他のマイ ク装置における指向性制御部 212は、マスタマイク装置力も送信された基準クロック を読み出して動作し、マスタマイク装置に音声データを供給する。これによりマスタマ イク装置には、全てのマイク装置 201から同期された音声データが供給されることとな る。マスタマイク装置 201の指向性制御部 212に入力された音声データは、直接接 続されているオーディオ機器に出力される。
[0110] なお、オーディオ機器と全てのマイク装置 201をそれぞれ接続し、それぞれのマイ ク装置 201からオーディオ機器に音声データを出力するようにしてもょ 、。
[0111] マスタマイク装置の制御部 213は、指向性制御部 212にそれぞれのマイクユニット 2 11が出力する音声データの遅延量を設定する。また、連結されている全てのマイク 装置 201の制御部 213に対して、そのマイク装置 201の指向性制御部 212にそれぞ れのマイクユニット 211が出力する音声データの遅延量を設定するように指示する。 ここで、マスタマイク装置は、マイクユニット全体を 1つのアレイマイクとしてその指向 特性を制御する。つまり、図 8において、マイク装置 201Aのマイクユニット 211—1か ら順にマイク装置 201Bのマイクユニット 211—8まで、所定の遅延量で音声データを 出力するようにする。
このとき、マイク装置 201C、およびマイク装置 201Dは、マイク装置 201A、および マイク装置 201Bと同一のライン上に存在するとみなして、それぞれの遅延量を設定 する。これにより、アレイマイクシステム全体の指向特性を制御することができる。
[0112] なお、上記例では、マスタマイク装置が連結されて 、る全てのマイク装置の遅延量 を設定するように説明したが、それぞれのマイク装置が独立して遅延量を設定するよ うにしてもよい。この場合、アレイマイクシステム全体で主ビームが形成されるように、 各マイク装置間でビーム方向を規定する情報を送受信するものとする。
[0113] 以上のようにして、本実施形態におけるアレイマイクシステムは、複数のマイク装置 201A〜201Dを連結して全てのマイク装置を同期し、その連結位置を検出する。こ のアレイマイクシステムの見かけ上の幅は 2倍となり、マイクユニットの間隔は 1Z3倍 となるので、単一のマイク装置 201に対し、このマイクユニットの指向制御可能となる 周波数帯域は低域側に 2倍、高域側に 3倍に向上することとなる。
[0114] なお、本実施形態においては、左右方向に 2つ、上下方向に 3段を連結したアレイ マイクシステムについて説明した力 本発明はこの構成例に限るものではない。上下 方向に 4段連結するようにしてもよいし、 2段連結するようにしてもよい。上下に重設す る数に応じて、マイクユニットの幅をずらして重設すればよい。指向制御が必要となる 周波数帯域に応じて連結するマイクユニットの数を変更するので、コストを抑えたァレ イマイクでありながら、容易に指向制御可能な周波数帯域を向上させることができる。 産業上の利用可能性
[0115] 本発明は、映画の上映に必要なサウンドシステム等の周波数帯域の指向の制御が 必要とされる用途や、発話者の音声を収音する収音装置等の周波数帯域の指向の 制御が必要とされる用途に適用できる。

Claims

請求の範囲
[1] 複数のスピーカユニットを直線上に配列したラインアレイユニットを、前記直線と直 交する方向である上下方向、または前記直線の方向である左右方向に複数連結し てなるアレイスピーカシステム。
[2] 上下方向に連結される複数のラインアレイユニットは、「各スピーカユニットの間隔 Z配列段数」ずつ左右にずらして連結される請求項 1に記載のアレイスピーカシステ ム。
[3] 複数のラインアレイユニットを左右方向に連結し、該左右方向の配置の中央部に他 のラインアレイユニットを上下に連結した請求項 1または請求項 2に記載のアレイスピ 一力システム。
[4] 請求項 1乃至請求項 3に記載のアレイスピーカシステムに用いるラインアレイュ-ッ トであって、
直線上に配列した複数のスピーカユニットと、
オーディオ信号を入力する入力手段と、
各スピーカユニットに、前記オーディオ信号をそれぞれ所定時間遅延して供給し、 ラインアレイユニットの指向性を制御する信号処理手段と、
連結の形態とその中での位置を検出する連結検出手段と、
前記連結検出手段が検出した連結形態と連結位置に応じて前記信号処理手段の 遅延量を設定する制御手段と、
を備えたことを特徴とするラインアレイユニット。
[5] 複数のマイクユニットを直線上に配列したラインアレイユニットを、前記直線と直交 する方向である上下方向、または前記直線の方向である左右方向に複数連結してな るアレイマイクシステム。
[6] 上下方向に連結される複数のラインアレイユニットは、「各マイクユニットの間隔 Z配 列段数」ずつ左右にずらして連結される請求項 5に記載のアレイマイクシステム。
[7] 複数のラインアレイユニットを左右方向に連結し、該左右方向の配置の中央部に他 のラインアレイユニットを上下に連結した請求項 5または請求項 6に記載のアレイマイ クシステム。 請求項 5乃至請求項 7に記載のアレイマイクシステムに用いるラインアレイユニットで あって、
直線上に配列した複数のマイクユニットと、
各マイクユニットに、各マイクユニットが出力するオーディオ信号をそれぞれ所定時 間遅延して、ラインアレイユニットの指向性を制御する信号処理手段と、
オーディオ信号を外部に出力する出力手段と、
連結の形態とその中での位置を検出する連結検出手段と、
前記連結検出手段が検出した連結形態と連結位置に応じて前記信号処理手段の 遅延量を設定する制御手段と、
を備えたことを特徴とするラインアレイユニット。
PCT/JP2006/306214 2005-07-14 2006-03-28 アレイスピーカシステムおよびアレイマイクシステム WO2007007446A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06730162A EP1909531B1 (en) 2005-07-14 2006-03-28 Array speaker system and array microphone system
US11/988,625 US8320596B2 (en) 2005-07-14 2006-03-28 Array speaker system and array microphone system
CN200680025242.XA CN101218847B (zh) 2005-07-14 2006-03-28 阵列扬声器系统以及阵列传声器系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005205923A JP4618028B2 (ja) 2005-07-14 2005-07-14 アレイスピーカシステム
JP2005-205923 2005-07-14
JP2005208321A JP4618029B2 (ja) 2005-07-19 2005-07-19 アレイマイクシステム
JP2005-208321 2005-07-19

Publications (1)

Publication Number Publication Date
WO2007007446A1 true WO2007007446A1 (ja) 2007-01-18

Family

ID=37636846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306214 WO2007007446A1 (ja) 2005-07-14 2006-03-28 アレイスピーカシステムおよびアレイマイクシステム

Country Status (3)

Country Link
US (1) US8320596B2 (ja)
EP (1) EP1909531B1 (ja)
WO (1) WO2007007446A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166489A (ja) * 2010-02-10 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> 音響再生装置及び方法
US8428293B2 (en) 2007-05-21 2013-04-23 Panasonic Corporation Speaker device
JP2017513438A (ja) * 2014-03-26 2017-05-25 サウンド ディメンション アーベー 音響再生用装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0514361D0 (en) * 2005-07-12 2005-08-17 1 Ltd Compact surround sound effects system
KR101290149B1 (ko) * 2009-12-11 2013-07-26 한국전자통신연구원 접이식 지향성 스피커 어레이 모듈
DE102010004882B4 (de) * 2010-01-18 2014-09-18 Lb Lautsprecher Und Beschallungstechnik Gmbh Gruppenstrahler mit einem linienförmigen Lautsprecherband
US20120148075A1 (en) * 2010-12-08 2012-06-14 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
WO2012127812A1 (ja) * 2011-03-23 2012-09-27 パナソニック株式会社 スピーカとこれを用いた電子機器、ならびに移動体装置
US8934647B2 (en) 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive acoustic driver selection
US9253561B2 (en) * 2011-04-14 2016-02-02 Bose Corporation Orientation-responsive acoustic array control
US8934655B2 (en) 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive use of acoustic reflection
ITFI20120061U1 (it) * 2012-10-13 2014-04-14 H P Sound Equipment S R L Diffusore acustico
CN103002389B (zh) 2012-11-08 2016-01-13 广州市锐丰音响科技股份有限公司 一种声接收装置
US9469254B1 (en) * 2013-02-14 2016-10-18 Wet Sounds, Inc. Speaker systems for off-road vehicles, ATVs, UTVs, watercraft, and motorcycles
US9226062B2 (en) 2014-03-18 2015-12-29 Cisco Technology, Inc. Techniques to mitigate the effect of blocked sound at microphone arrays in a telepresence device
TWI599240B (zh) * 2014-04-02 2017-09-11 微晶片科技公司 喇叭裝置及其喇叭系統
WO2016028263A1 (en) * 2014-08-18 2016-02-25 Nunntawi Dynamics Llc Optimizing the performance of an audio playback system with a linked audio/video feed
US20160249132A1 (en) * 2015-02-23 2016-08-25 Invensense, Inc. Sound source localization using sensor fusion
US10097902B2 (en) * 2015-05-06 2018-10-09 Blackfire Research Corporation System and method for using multiple audio input devices for synchronized and position-based audio
JP2017041756A (ja) 2015-08-19 2017-02-23 ヤマハ株式会社 オーディオシステムおよびオーディオ機器
JP6668636B2 (ja) * 2015-08-19 2020-03-18 ヤマハ株式会社 オーディオシステムおよびオーディオ機器
US20190349676A1 (en) * 2016-11-08 2019-11-14 Knowles Electronics, Llc Stream synchronization
US10469973B2 (en) * 2017-04-28 2019-11-05 Bose Corporation Speaker array systems
US10349199B2 (en) 2017-04-28 2019-07-09 Bose Corporation Acoustic array systems
US10805664B2 (en) * 2018-10-15 2020-10-13 Bose Corporation Wireless audio synchronization
USD967076S1 (en) * 2019-03-28 2022-10-18 Sony Group Corporation Microphone
DE102019134541A1 (de) * 2019-12-16 2021-06-17 Sennheiser Electronic Gmbh & Co. Kg Verfahren zur Steuerung eines Mikrofonarrays und Vorrichtung zur Steuerung eines Mikrofonarrays

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941995A (ja) * 1982-09-01 1984-03-08 Victor Co Of Japan Ltd 指向性マイクロホン装置
JPH0541897A (ja) * 1991-08-07 1993-02-19 Pioneer Electron Corp スピーカ装置およびその指向性制御方法
JPH11262084A (ja) * 1998-01-09 1999-09-24 Sony Corp スピーカ装置及びオーディオ信号送信装置
JP2004032314A (ja) * 2002-06-25 2004-01-29 Fuji Xerox Co Ltd マイクロホンアレイ
JP2005064746A (ja) * 2003-08-08 2005-03-10 Yamaha Corp オーディオ再生装置、ラインアレイスピーカユニットおよびオーディオ再生方法
WO2007007083A1 (en) 2005-07-12 2007-01-18 1...Limited Compact surround-sound effects system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521908A (en) 1982-09-01 1985-06-04 Victor Company Of Japan, Limited Phased-array sound pickup apparatus having no unwanted response pattern
JPH0591588A (ja) 1991-09-27 1993-04-09 Railway Technical Res Inst 指向方向可変指向性収音装置
US5406634A (en) * 1993-03-16 1995-04-11 Peak Audio, Inc. Intelligent speaker unit for speaker system network
US5802190A (en) * 1994-11-04 1998-09-01 The Walt Disney Company Linear speaker array
US6801631B1 (en) * 1999-10-22 2004-10-05 Donald J. North Speaker system with multiple transducers positioned in a plane for optimum acoustic radiation pattern
DE10001410C2 (de) * 2000-01-14 2001-12-06 Harman Audio Electronic Sys Flachlautsprecheranordnung
US7260235B1 (en) * 2000-10-16 2007-08-21 Bose Corporation Line electroacoustical transducing
KR100922910B1 (ko) * 2001-03-27 2009-10-22 캠브리지 메카트로닉스 리미티드 사운드 필드를 생성하는 방법 및 장치
US7130430B2 (en) * 2001-12-18 2006-10-31 Milsap Jeffrey P Phased array sound system
DK174558B1 (da) * 2002-03-15 2003-06-02 Bruel & Kjaer Sound & Vibratio Stråleformende transducer-antennesystem
GB0304126D0 (en) * 2003-02-24 2003-03-26 1 Ltd Sound beam loudspeaker system
US7319767B2 (en) * 2003-06-30 2008-01-15 Bose Corporation Line array electroacoustical transducing
US7415124B2 (en) * 2004-03-15 2008-08-19 Hpv Technologies Llc Low frequency surface array
JP4007356B2 (ja) * 2004-09-27 2007-11-14 ヤマハ株式会社 音響システム
JP4207881B2 (ja) * 2004-11-15 2009-01-14 ソニー株式会社 マイクシステムおよびマイク装置
US20060115101A1 (en) * 2004-11-18 2006-06-01 Schoenberger Michael A Multiple amplifier synchronization system
JP2006262416A (ja) * 2005-03-18 2006-09-28 Yamaha Corp 音響システム、音響システムの制御方法および音響機器
US7646876B2 (en) * 2005-03-30 2010-01-12 Polycom, Inc. System and method for stereo operation of microphones for video conferencing system
US20070229215A1 (en) * 2006-03-10 2007-10-04 Sony Corporation Modular Entertainment System
EP2160921B1 (en) * 2007-06-08 2012-12-19 Koninklijke Philips Electronics N.V. Beamforming system comprising a transducer assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941995A (ja) * 1982-09-01 1984-03-08 Victor Co Of Japan Ltd 指向性マイクロホン装置
JPH0541897A (ja) * 1991-08-07 1993-02-19 Pioneer Electron Corp スピーカ装置およびその指向性制御方法
JPH11262084A (ja) * 1998-01-09 1999-09-24 Sony Corp スピーカ装置及びオーディオ信号送信装置
JP2004032314A (ja) * 2002-06-25 2004-01-29 Fuji Xerox Co Ltd マイクロホンアレイ
JP2005064746A (ja) * 2003-08-08 2005-03-10 Yamaha Corp オーディオ再生装置、ラインアレイスピーカユニットおよびオーディオ再生方法
WO2007007083A1 (en) 2005-07-12 2007-01-18 1...Limited Compact surround-sound effects system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1909531A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428293B2 (en) 2007-05-21 2013-04-23 Panasonic Corporation Speaker device
JP2011166489A (ja) * 2010-02-10 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> 音響再生装置及び方法
JP2017513438A (ja) * 2014-03-26 2017-05-25 サウンド ディメンション アーベー 音響再生用装置

Also Published As

Publication number Publication date
EP1909531A4 (en) 2011-08-31
EP1909531A1 (en) 2008-04-09
EP1909531B1 (en) 2013-02-20
US8320596B2 (en) 2012-11-27
US20100220877A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
WO2007007446A1 (ja) アレイスピーカシステムおよびアレイマイクシステム
JP4618028B2 (ja) アレイスピーカシステム
JP4127156B2 (ja) オーディオ再生装置、ラインアレイスピーカユニットおよびオーディオ再生方法
JP5405598B2 (ja) スピーカ
EP1615414A2 (en) Sound apparatus and teleconference system
JP5293291B2 (ja) スピーカアレイ装置
JP4258472B2 (ja) 拡声システム
EP3062536B1 (en) Speaker array apparatus
CN102325298A (zh) 音频信号处理装置和音频信号处理方法
US20050281409A1 (en) Multi-channel audio system
US20070263890A1 (en) Reconfigurable audio-video surround sound receiver (avr) and method
WO2012005122A1 (ja) 音響システム
US11166090B2 (en) Loudspeaker design
WO2006022379A1 (ja) アレイスピーカ装置
JP2010534965A (ja) 複数のポートを有するスピーカエンクロージャを備える音響再生システム及び関連する処理回路
WO2017169888A1 (ja) 音響再生装置および方法、並びにプログラム
JP2010177891A (ja) スピーカアレイ装置、信号処理方法およびプログラム
WO2007127781A2 (en) Method and system for surround sound beam-forming using vertically displaced drivers
JP4618029B2 (ja) アレイマイクシステム
US7027605B2 (en) Mid-range loudspeaker
JP2006191285A (ja) アレイスピーカシステムおよびそのオーディオ信号処理装置
WO2007127822A2 (en) Reconfigurable audio-video surround sound receiver (avr) and method
EP3881316A1 (en) Loudspeaker system with overhead sound image generating elevation module
JP5897500B2 (ja) スピーカアレイ装置及びスピーカアレイ装置の出力制御方法
GB2614093A (en) Echo cancellation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025242.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11988625

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730162

Country of ref document: EP