WO2007004642A1 - 改変トランスポゾンベクター及びその利用方法 - Google Patents

改変トランスポゾンベクター及びその利用方法 Download PDF

Info

Publication number
WO2007004642A1
WO2007004642A1 PCT/JP2006/313302 JP2006313302W WO2007004642A1 WO 2007004642 A1 WO2007004642 A1 WO 2007004642A1 JP 2006313302 W JP2006313302 W JP 2006313302W WO 2007004642 A1 WO2007004642 A1 WO 2007004642A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
gene
tir
transposon
cell
Prior art date
Application number
PCT/JP2006/313302
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Kaminaka
Hiroaki Maeda
Masaki Hirashima
Ryoichi Kawamura
Junichi Matsuda
Takashi Kuwana
Original Assignee
Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juridical Foundation The Chemo-Sero-Therapeutic Research Institute filed Critical Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority to US11/994,982 priority Critical patent/US9175295B2/en
Priority to EP06780756A priority patent/EP1921140B1/en
Priority to JP2007524072A priority patent/JP4927730B2/ja
Priority to AT06780756T priority patent/ATE537254T1/de
Publication of WO2007004642A1 publication Critical patent/WO2007004642A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/30Bird
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/90Vectors containing a transposable element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system

Definitions

  • the present invention relates to a modified transposon vector obtained by a gene recombination technique and a method for using the same. More specifically, the present invention relates to a modified transposon vector that suppresses a function of transposon-specific transfer on the genome and enables introduction of a large foreign gene into a cell and a method for using the same.
  • the key is how to insert it efficiently into the chromosomal DNA of the host (cell or animal individual for gene transfer). What is important is the type of vector used. The efficiency of insertion into the chromosomal DNA of the host varies greatly depending on the vector used, and it greatly affects the production efficiency of the subsequent thread and recombinant.
  • vectors used for introducing a target gene into an animal cell or an animal individual are roughly classified into viral vectors and non-viral vectors that use a viral genome in a viral particle. From the viewpoint of insertion into chromosomal DNA, the characteristics of both vectors are as follows: Outlined in
  • a viral vector inserts an expression unit of a target gene into the viral genome to produce a viral particle that retains the gene in the genome, which can be used as an animal cell or a fertilized egg, sometimes.
  • the gene is introduced by infecting the animal itself.
  • vectors that can be inserted into the host chromosomal DNA and vectors that are not inserted into the host chromosomal DNA and exist as episomes. Examples of the former include oncorretrovirus, lentivirus and adeno-associated virus vectors, and examples of the latter include adenovirus and herpesvirus vectors.
  • plasmid vectors are mainly used as non-viral vectors.
  • the plasmid vector uses a plasmid discovered as a circular extranuclear gene that is replicated and retained outside the chromosome of Escherichia coli as a vector.
  • Plasmid vectors are widely used as gene transfer vectors for animal cells because they can be easily expanded in E. coli even when the target gene is inserted.
  • the plasmid vector is DNA itself, it is difficult to introduce it into the cell as it is unless physical operations such as microinjection and electroporation are performed.
  • a transposon means a gene that translocates on a chromosome, and since its existence was first reported by Barbara McClintock, it has been found that it exists on the chromosomes of various organisms (for example, Non-Patent Document 1). .
  • Transposons are roughly classified into two types (for example, see Non-Patent Document 2). One is a retro-type transposon classified as class I, and the other is a DNA-type transposon classified as class II. Class I retro-type transposons are present on the chromosome as DNA.Once they are transcribed into RNA, they are converted from RNA into complementary DNA (cDNA) by the action of the reverse-encoding enzyme encoded in the chromosome. Reinserted on top. Thus, as long as this type of transposon is active, it tends to continually increase its replication. Furthermore, retro-type transposons are roughly divided into two groups depending on whether or not they have reverse transcriptase.
  • reverse transcriptase cannot move by themselves, and reverse transcriptase cannot be transferred from others. It is a non-independent retro-type transposon that can be borrowed and transferred.
  • the group encoding reverse transcriptase is broadly divided into those having a longer terminal repeat (LTR) and those having no longer terminal repeat (LTR).
  • LTR longer terminal repeat
  • LTR no longer terminal repeat
  • retrovirus is considered to be a kind of retrotransposon because it has an LTR sequence at the end of its genome and encodes a reverse transcriptase.
  • a class II DNA transposon is excised from the insertion position on the chromosome and reinserted at another position by the action of a transfer catalytic enzyme called transposase encoded by itself. This type of transition is called a cut-and-paste transposon.
  • a characteristic of this type of transposon is that the transposon gene has terminal sequences (TIRs) that are opposite to each other and have a base strength of several tens of bases and hundreds of bases. Have.
  • This Sleeping Beauty has been shown to have metastatic potential not only in fish-derived cells but also in mammalian cells, and its rate of introduction into chromosomal DNA is 80 times the rate of gene transfer by general transfection. (For example, see Non-Patent Document 4).
  • Table 1 shows active transposons belonging to the Tcl / mariner superfamily reported so far.
  • Sleeping Beauty was found to have the highest metastatic potential (see, for example, Non-Patent Document 5), and it does not require host-derived factors for expression of translocation activity. As a result, they are beginning to be used as non-viral gene transfer vectors that are efficient for animal cells and individuals.
  • Tc1 54 Caenorhabditis elegans
  • Tc3 462 Caenorhabditis elegans
  • the transposon vector system developed by Ivies et al. Is a transposon vector having a TIR sequence derived from shark fin at both ends, and a transposase required for transfer to chromosomal DNA. (Sleeping Beauty) expression plasmid is inserted into the cells at the same time.
  • This method by selecting only clones that have the target gene in the chromosomal DNA of the cell, it is possible to avoid transfer after chromosomal DNA insertion, which is a property of the transposon.
  • the transposon vector used in this system has a relatively long TIR sequence that is characteristic of the Tc3 type in the Tcl / mariner superfamily, and includes two transposases called direct repeats (DR). Has a binding sequence ( Figure 1).
  • transposon vectors represented by Sleeping Beauty which are non-viral vectors, show high insertion efficiency and broad host spectrum into chromosomal DNA. Use as a vector for introduction is expected to increase.
  • the Cre-Lox recombination system is an application of the recombination mechanism found in nocteriophage P1, and a recombination reaction with a LoxP sequence consisting of 34 bases where recombination occurs. It consists of two elemental forces called Cre, which is an enzyme (recombinase).
  • Cre an enzyme
  • the DNA sequence sandwiched between LoxP sequences is dropped, and conversely, the circular DNA with LoxP sequence is present on another DNA LoxP sequence. Any of the reactions inserted into can occur.
  • the Flp-FRT recombination system is an application of the recombination mechanism found in yeast (Saccharomyces cerevisiae). Like the Cre-Lox system, the Flp-FRT recombination system also has a 48-base strength, the place where recombination occurs The FRT sequence and Flp, the recombinase responsible for the recombination reaction, consist of two elements. Even in this recombination system, it is possible to remove the DNA sequence sandwiched between FRT sequences by the dropping reaction, or conversely, insert circular DNA having the FRT sequence into the FRT sequence.
  • Non-Patent Document 1 Richardson RD et al., Stem Cells, 20, 105-118, 2002
  • Non-Patent Document 2 Finnegan, Curr. Opin. Genet. Dev., 2, 861-867, 1992
  • Non-Patent Document 3 Ivies Z et al., Cell, 91, 501-510, 1997
  • Non-Patent Document 4 Yant SR et al., Nat. Genet., 25, 35-41, 2000
  • Non-Patent Document 5 Sylvia EJ et al., Proc. Natl. Acad. Sci. USA, 98, 6759-6764, 2001 Disclosure of the Invention
  • the transposon vector belonging to the Tcl / mariner superfamily and the system using Sleeping Beauty are increasingly used as safe and highly efficient introduction vectors among gene transfer vectors to chromosomal DNA of cells. Expected power The following problems exist.
  • the first problem is that there is a limit to the gene size that can be expected to be inserted into chromosomal DNA due to transposon activity.
  • the system using Sleeping Beauty which has the highest gene transfer efficiency among transposon vectors, has a lower transfer efficiency as the size of the DNA to be inserted increases, and the insert size exceeds 6 kbp.
  • the introduction efficiency is extremely reduced (J. Mol. Biol, 302, 93-102, 2000).
  • a promoter sequence necessary for the transcription of the mRNA and a poly A addition signal sequence necessary for the stability of the transcribed mRNA are required.
  • the size restriction of 6 kbp restricts the types of genes that can be inserted when the intended gene expression is intended.
  • several encoded peptides may associate to form a polymer to become an active protein, and several expression cassettes are inserted to express a protein that retains its activity. It is also necessary.
  • a drug resistance gene expression cassette that confers resistance to a lethal drug at the same time.
  • the expression cassette inserted into the chromosomal DNA is said to be one copy. Considering its insertion mechanism, any one expression cassette can be inserted into the cell at the same time. There is a possibility that it cannot be inserted.
  • a second problem is the possibility that a gene inserted by a transposon vector may be transferred on chromosome DNA.
  • Vector requirements for gene transfer into cells or individuals are: first, high transfer efficiency, second, stable expression of the transferred gene, and third, safety. It is considered necessary.
  • the advantage of transposon vectors compared to viral vectors such as oncoretroviruses and lentiviruses is that they are safe without worrying about virus particle formation.
  • the transposon vector is a vector that utilizes the property of transferring on chromosomal DNA, which has been known to exist, so it must exist in a state that retains the activity of transferring on chromosomal DNA after introduction. become.
  • transposon vector that maintains this activity is likely to be mixed into its expression product, thread and recombination protein, there is a concern in terms of safety, and its use is limited in the same way as viral vectors. It is thought that it will become something.
  • transposase As described above, in order to transpose as a transposon, expression of a transposase is required together with a TIR sequence. Therefore, as done by Ivies et al., Only the target gene is inserted by introducing the transposon vector containing the target gene to be introduced contained in the TIR sequence and the plasmid into which the transposase expression cassette is inserted separately. It is possible to sort selected animal cells or individuals. Generally speaking, it is considered that the ability to transfer can be lost by removing one of the factors necessary for DNA transfer (transposase).
  • a transposon having a self-sustaining metastasis a transposon that expresses an active transposase
  • a non-independent transposon a transposon that has lost its transposase activity
  • the transposon retains the ability to metastasize.
  • non-independent type belonging to hAT family In the medaka that introduced the Toll transposon, translocation within the genome has been clarified (protein nucleic acid enzyme 49,2103-2110, 2004).
  • the possibility of re-transposition means that it is necessary to deny the possibility that the introduced transposon vector is mixed into the final product and inserted into human chromosomal DNA.
  • the concern of this re-metastasis can be easily imagined as a particularly serious obstacle when using a transposon vector as a gene therapy vector.
  • an object of the present invention is to provide a modified transposon vector (hereinafter referred to as “modified transposon vector”) for introducing a foreign gene into a cell that can overcome the above-mentioned problems. is there.
  • Another object of the present invention is to provide a method for introducing a large foreign gene into a cell while suppressing the function of transposon-specific metastasis using the above-described modified transposon vector.
  • the purpose is to do.
  • Transformation efficiency cell introduction efficiency
  • transformation efficiency cell introduction efficiency
  • a plasmid containing a jellyfish green fluorescent protein (GFP) Z aminoglycoside 3, phosphotransferase (ne 0) gene expression cassette having Lox sequences at both ends added to a HeLa cell into which a modified transposon vector has been introduced (hereinafter referred to as a plasmid)
  • GFP jellyfish green fluorescent protein
  • ne 0 phosphotransferase
  • the present invention provides the following modified transposon vector, a method for expressing an exogenous gene using the vector, and a transformed cell and a transgenic animal obtained by the method.
  • a sequence where the recombination reaction occurs is inserted between at least one DR region of the DR region.
  • C A restriction enzyme recognition site or foreign gene expression cassette was inserted between the 5th and 3rd TIR sequences of the transposon gene.
  • mutant Lox sequence is selected from the group consisting of Lox71 sequence, Lox66 sequence, Lox2272 sequence and Lox511 sequence.
  • a modified transposon vector into which a nucleic acid fragment having the following characteristics (i) to (c) is inserted is introduced into a cell, the resulting foreign gene-expressing cell is cultured, and then the expressed foreign protein is
  • a method for producing foreign protein comprising recovering:
  • a method for producing a foreign protein comprising culturing foreign gene-expressing cells obtained by the following steps (1) to (4):
  • Lox sequence of the mutant type is selected from the group consisting of Lox71 sequence, Lox66 sequence, Lox2272 sequence and Lox511 sequence.
  • LoxP sequence, Lox71 sequence, Lox66 sequence, Lox2272 sequence and Lox511 sequence are SEQ ID NOs: 3, 4, 5, 6 and 7, respectively.
  • any one of the above 7 to 17, wherein the foreign gene-expressing cell is a cell selected from the group consisting of HeLa cell, Vero cell, CHO cell, 293 cell, BHK cell and SP2 / 0 cell force. the method of.
  • a transformed cell in which a foreign gene expression cassette having the same recombination reaction occurrence sequence as the following (mouth) added to either end is incorporated:
  • the foreign gene-expressing cell is a cell selected from the group consisting of HeLa cell, Vero cell, CHO cell, 293 cell, BHK cell and SP2 / 0 cell force.
  • the individual cells that can be cultured are fertilized eggs derived from mammals, birds, fish and invertebrates, cleavage cells up to the blastocyst stage, ES cells, EG cells and primordial germ cells (PGC) 27.
  • a field sequence in which a recombination reaction occurs is inserted between at least one DR region of the DR region;
  • transgenic animal according to 29, wherein the 5 ′ TIR sequence and the 3 ′ TIR sequence of the transposon gene are SEQ ID NOS: 1 and 2, respectively.
  • transgenic animal according to any one of 29 or 30, wherein the sequence at which the recombination reaction occurs is a Lox sequence or an FRT sequence.
  • mutant Lox sequence is selected from the group consisting of Lox71 sequence, Lox66 sequence, Lox2272 sequence and Lox511 sequence.
  • the cells capable of being individually selected are selected from the group consisting of fertilized eggs derived from mammals, birds, fish and invertebrates, cleavage cells up to the blastocyst stage, ES cells, EG cells and PGCs. 29. Any of the 34 transgenic animals.
  • a modified transposon vector retaining high introduction efficiency into cells is provided.
  • the modified transposon vector of the present invention is used because a sequence of a field that causes a recombination reaction, such as a Lox sequence or FRT sequence, is inserted into at least one of the 5th and 3rd TIR sequences of the transposon gene.
  • a recombination system according to the sequence of the field where the yarn recombination reaction occurs, it is possible to destroy the function of the transposon vector, which is inherently transferred on the cell chromosome.
  • the modified transposon vector of the present invention has a restriction enzyme recognition site, the foreign gene can be expressed in cells or individual animals by inserting the foreign gene into this site.
  • a mutant Lox sequence by introducing a modified transposon vector into a cell and then using the Cre-Lox recombination system as a recombination system.
  • a method for efficiently replacing and inserting a foreign gene into another gene is provided. This makes it possible to efficiently insert a gene having a large size exceeding 6 kb P, which was difficult when using a transposon vector, into a specific site in the chromosomal DNA of the cell. Therefore, a foreign gene can be replaced efficiently, and a foreign protein-producing cell or a foreign protein-producing recombinant animal having a high expression rate can be obtained more efficiently than before.
  • FIG. 1 shows the basic structure of a Tc3 type transposon belonging to the Tcl / mariner superfamily.
  • FIG. 2 shows the recombination mode in the Cre-Lox system.
  • FIG. 3 shows the main use of the Cre-Lox system.
  • FIG. 4 shows the structure of the transposon vector IR / DR-N.
  • FIG. 5 shows the structure of IR / DR-NTA-Ad / pSP in which a restriction enzyme recognition sequence is attached to IR / DR-N.
  • FIG. 6 shows donor plasmid pLx / GFP / neo / pA ( ⁇ ) to be introduced in order to cause a gene replacement reaction after introduction of the modified transposon vector into cells.
  • FIG. 7 shows the base sequence of the transposase gene.
  • FIG. 8 shows the amino acid sequence of transposase.
  • FIG. 9 shows the TIR sequence isolation and repair procedure.
  • FIG. 10 shows the construction procedure of transposon vector IR / DR-N.
  • Fig. 11 shows the IR / IR-DR-N IR / DR-N with a restriction enzyme recognition sequence added thereto.
  • FIG. 12 shows the construction procedure of IR / DR-NTA-Ad / pSP transposon activity confirmation plasmid IR / DR-puro.
  • FIG. 13 shows the procedure for constructing a modified transposon vector IR / DR-Ad / 5 ′ Lxp in which a mutated Lox71 sequence is inserted into the 5 ′ TIR sequence.
  • FIG. 14 shows the procedure for constructing plasmid 3 ′ IR / DR-Lxp / pSP in which the LoxP sequence is inserted into the 3 ′ TIR sequence.
  • FIG. 15 shows the procedure for constructing a plasmid 3 ′ IR / DR-LxpA / pSP in which a LoxP sequence and a poly A-added signal sequence are inserted into the 3′-side TIR sequence.
  • FIG. 16 shows modified transposon vectors IR / DR-Ad / LxDb and 5 ′ in which a mutant Lox71 sequence is inserted into the 5 ′ TIR sequence and a LoxP sequence is inserted into the 3 ′ TIR sequence.
  • the procedure for constructing a modified transposon vector IR / DR-Ad / LxpADb in which a mutant Lox71 sequence is inserted into the TIR sequence on the side and a LoxP sequence and a poly A addition signal sequence are inserted into the 3 ′ side TIR sequence is shown.
  • FIG. 17 shows plasmids for confirming the activity of various modified transposon vectors in which Lox sequences are inserted between DR sequences.
  • FIG. 18 shows donor plasmid pLx / used for gene replacement by Cre-Lox system.
  • Fig. 19 shows a Southern blot analysis of HeLa / neo obtained by gene replacement using the HeLa / puro Cre-Lox system obtained by introducing plasmid IR / DR-puro / LxpADb for evaluation of transposon activity. Results are shown.
  • Fig. 20 shows the process of producing HeLa / neo estimated by Southern blot analysis.
  • Fig.21 shows HeLa / puro and HeLa / neo 5 revealed by the Genome walking method.
  • FIG. 22 shows the insertion position in the chromosomal DNA of the modified transposon vector introduced into HeLa / neo, which was clarified by the Genome walking method.
  • FIG. 23 shows a single ZHeLa / puro obtained by single introduction of the modified transposon vector IR / DR-puro / LxpADb, and a single ZHeLa / puro obtained by gene replacement by the Cre_Lox system. The production process of neo is illustrated.
  • FIG. 24 shows the procedure for constructing a modified transposon vector in which the TIR sequence is destroyed by removing the inner DR sequence in the TIR sequence by the Cre-Lox system.
  • FIG. 25 shows the procedure for constructing IR / DR-GFP / neo / LxpADb.
  • FIG. 26 shows the results of confirming the GFP expression of PGC proliferated by G418 selection after introduction of IR / DR-GFP / neo / LxpADb and the reactivity to anti-SSEA-1 antibody.
  • FIG. 27 shows that PGC injected into the gonad primordium region of the embryo one day after injection of IR / DR-GFP / neo / LxpADb-introduced PGC is accumulated.
  • FIG. 28 shows that GFP is expressed in chick gonads hatched from IR / DR-GFP / neo / LxpADb-introduced PGC-injected embryos.
  • the modified transposon vector of the present invention is a transposon vector having two TIR sequences, and is suitable for inserting a gene region (gene expression cassette) for expressing a foreign gene between the two TIR sequences. It has a structure with a restriction enzyme recognition site.
  • the present invention provides an arrangement of a field that causes a recombination reaction such as a Lox sequence between at least one DR region of each of the 5 and 5 side TIR sequences of the transposon gene.
  • a modified transposon vector having a nucleic acid fragment comprising the 5'-side TIR sequence and the 3'-side TIR sequence inserted therein, a method for expressing a foreign gene in a cell using the modified transposon vector, and the modified transposon A method for expressing a foreign gene in a transgenic animal produced using an individualizable cell retaining a foreign gene obtained by introduction of the vector, and further, using the modified transposon vector, and an individualizable cell.
  • insert a foreign gene expression cassette by a recombination system such as Cre-Lox, or replace or remove an unnecessary gene such as a drug marker.
  • a foreign gene expression method consisting of disrupting at least one of the 3 'TIR sequences It is done.
  • the transposon used in the transposon vector can be used regardless of animal species as long as it has insertion activity.
  • a transposon with two DRs in one TIR sequence for example, Tc3 type A transposon belonging to is desirable.
  • a suitable example is a salmon-derived transposon.
  • An appropriate restriction enzyme recognition site is added to the vector of the present invention so that a gene expression cassette for expressing a foreign gene can be inserted between these two TIR sequences.
  • Isolation of the 5-side TIR sequence and the 3-side TIR sequence of the transposon gene may be performed using the same method as that used to isolate the transposase gene.
  • a primer (SEQ ID NO: 8) synthesized based on the report of A.D. Radice et al. (Mol. Gen. Genet. 244, 606-, 1994) is used as a primer.
  • an inactivated approximately 1.6 kbp transposon gene containing both the 5 ′ TIR sequence and the 3 ′ TIR sequence is amplified.
  • TIR sequences were compared with a TIR sequence (EMBLZGenBank accession No. 48685) derived from Tanichthys albonubes (Japanese name: Akahira) reported by Ivies et al. (Cell, 91, 501-, 1997). If there is a difference in the TIR sequence, it is repaired so that it has the same base sequence. If the TIR sequence reported by Ivies et al. (Cell, 91, 501-, 1997) and the above 5 'Rg / pSP and 3' Rg / pSP have mutations, the TIR sequence must be repaired.
  • the repair of the 5 'TIR sequence by the present inventors is performed, for example, as follows. -After amplifying an approximately 0.3kbp DNA fragment by PCR using IR / DR rFl (SEQ ID NO: 9) and IR / DR rRl (SEQ ID NO: 10) primers and cloning it into a plasmid (pCR2.1) After digestion with restriction enzymes EcoRI and Hindlll, 5 'RgDR / pSP is constructed by inserting into 5' Rg / pSP that has been digested with the same restriction enzymes and then dephosphorylated (BAP).
  • BAP dephosphorylated
  • the 3 side TIR sequence is repaired as follows. First, 3, using Rg / pSP as a saddle type, the combination of repair primers IR / DR rF2 (SEQ ID NO: 15) and IR / DR rR2 (SEQ ID NO: 16), and IR / DR rF3 (SEQ ID NO: 17) and IR / DR PCR is performed with a combination of DR rR3 (SEQ ID NO: 18), DNA fragments of about 200 bp each are amplified, and equal amounts thereof are mixed and annealed as described above.
  • the base sequences of the DR region of the 5 'and 3' TIRs repaired in this way are the DRs derived from Tanichthys albonubes (Japanese name: Aka fin), except for one base of the DR present inside the 3 'TIR. It is the same as the region and has the sequences set forth in SEQ ID NO: 19 and SEQ ID NO: 20, respectively.
  • 3 ′ IR / DR-AdF (SEQ ID NO: 23) and 3 ′ IR / DR-AdR (SEQ ID NO: 24) annealed adapter 3 ′ IR / DR-Ad are obtained.
  • 5 'IR / DR-Ad and 3' IR / DR-Ad are mixed in equal amounts and reacted for 30 minutes at 16 ° C using DNA Ligation Kit (TaKaRa). Collect the bound DNA fragments. This is digested with the restriction enzyme Hindlll and inserted into the Hindlll site of the previously constructed IR / DR-N to construct IR / DR-N-Ad.
  • IR / DR-N-Ad is digested with A11II, and a DNA fragment of about 2.5 kbp and a DNA fragment of about 630 bp containing the pSP72 vector portion are recovered.
  • the 2.5 kbp DNA fragment was circularized using the DNA Ligation Kit (TaKaRa), and this was used as a saddle type.
  • IR / DRTA-Fs (SEQ ID NO: 25) and 3, IR / DRTA-R Perform PCR using the primer (SEQ ID NO: 26) and amplify a DNA fragment of about 150 bp with restriction enzyme recognition sites added at the 5 and 3 'ends. This was cloned into a plasmid (TA-Fs / R), digested with restriction enzymes Xhol and Bglll, previously digested with the same restriction enzymes, and inserted into the BAP-treated cloning vector pSP72. TA-Fs / Get R-pSP.
  • the TA-Fs / R-pSP is digested with the restriction enzyme A11II, treated with BAP, and the 630 bp DNA fragment is inserted into it to restrict it between the two TIR sequences on the 5 'and 3' sides.
  • a transposon vector IR / DR-NTA-Ad / pSP (Fig. 5) with enzyme (Stul, NotI, Sail and Msd) recognition sites and restriction enzyme (Xhol and Bglll) recognition sites outside both TIR sequences is obtained. .
  • Whether or not the target fragment has been obtained is determined by appropriately determining the base sequence.
  • an adapter having an appropriate restriction enzyme recognition site may be inserted.
  • promoters suitable for foreign genes are defined as nucleic acid fragments added with an expression control region such as a stop codon, a poly A addition signal sequence, a Kozak sequence, or a secretory signal.
  • the promoter contained in the expression cassette can be any promoter that ultimately expresses a foreign gene, such as SV40 early, SV40 late, cytomegalovirus promoter,- ⁇ ⁇ -actin, depending on the combination with animal cells used as the host. It may be a thing.
  • a- ⁇ ⁇ -actin promoter system expression plasmid pCAGG Japanese Patent Laid-Open No. 3-168087) is used.
  • the neo gene For gene selection and gene amplification, the neo gene, dihydrofolate reductase (dhfr) gene, pure mouth mycin resistance enzyme gene, glutamine synthase (GS) gene, and other commonly known selection and gene amplification
  • the marker genes can be used.
  • Commercial products can also be used.
  • Examples of insertion of a gene expression cassette include insertion of a drug selection marker such as a puromycin resistance enzyme gene, insertion of a marker gene expression cassette such as GFP, or expression of a target foreign gene shown in the examples of the present invention. Insertion of a cassette etc. is mentioned.
  • a modified transposon vector is constructed by inserting a field sequence that causes a thread-replacement reaction, such as the Lo X sequence, between the two DR regions inherent in the 5-, 3-, and TIR sequences of the transposon gene. . Insertion at this position leaves high transduction efficiency of native transposon cells, and by using a recombination system such as Cre-Lox later, its translocation activity (activity on cell chromosomes) ) Can be eliminated. Such an effect can be achieved by inserting at least one of the TIR sequences on the 5th, 3rd, and 3rd sides of the transposon vector! /, Or a sequence in the field that causes a recombination reaction such as a Lo X sequence.
  • a field sequence that causes a thread-replacement reaction such as the Lo X sequence
  • Lox66 sequence SEQ ID NO: 5
  • Lox2272 sequence SEQ ID NO: 6
  • Lox511 sequence SEQ ID NO: 7
  • Cre-Lox recombination system has various mutant sequences as described above, this system is preferably used for the purpose of efficiently replacing or inserting foreign genes.
  • the combination of the mutant Lox sequence inserted into the transposon vector and the mutant Lox used for the substitution or insertion reaction is considered. There is a need. If a substitution reaction is expected, insert the Lox71, Lox2272, Lox511, or LoxP sequence into the transposon vector, and insert the gene by the replacement reaction using the Cre-Lox recombination system (donor plasmid). It is preferable to use a combination in which Lox66 sequence and Lox2272 sequence, Lox511 sequence or LoxP sequence are inserted.
  • the combination of Lox71 and Lox2272 sequences in the transposon vector and Lox66 and Lox2272 sequences in the donor plasmid is the most efficient. Or conversely, the combination of inserting the Lox71 sequence into the donor plasmid and the Lox66 sequence into the transposon vector is equally efficient. When an insertion reaction is expected, the combination of Lox71 and Lox66 is the best. In this case, the Lox71 sequence may be inserted on the transposon side, and the Lox66 sequence may be inserted on the donor plasmid side, or vice versa.
  • Cre-Lox recombination system is the best way to efficiently replace and insert genes due to the presence of the above-described mutant Lox sequence.
  • other recombination systems such as Hp-FRT are also available.
  • the modified transvector into which the Lox sequence has been inserted is a PCR using a primer having the Lox sequence inserted, using a nucleic acid fragment having the 5'-side TIR sequence or 3'-side TIR sequence of the transposon gene as a saddle type.
  • PCR is performed using SP6 primer (SEQ ID NO: 27) and primer Ps / Lx71R (SEQ ID NO: 28) having Lox71 sequence. Obtain a DNA fragment of approximately 200 bp.
  • IR / DR-NTA-Ad / pSP which was cloned using the TOPO ⁇ Cloning kit (INVITROGEN), digested with the restriction enzymes PshAI and Xhol, previously digested with the same restriction enzymes, and BAP-treated.
  • a modified transposon vector IR / DR-Ad / 5, Lxp in which Lo x71 sequence is inserted between two DR sequences existing in the 5 side TIR sequence is constructed.
  • Transposon Vector 3 IR / DR-Lxp / pSP with LoxP sequence inserted between the two DR sequences inherent in the side TIR sequence, is a restriction enzyme Sail / IR-DR-NTA-Ad / pSP. And Bglll, then digested with the same restriction enzymes, and then cloned into BAP-treated pSP72 (Promega) to construct 3 'IR / DR-Ad / pSP. Perform PCR using primer No. 27) and primer Af / LxpR (SEQ ID NO: 29) with Lox P sequence inserted to obtain a DNA fragment of about 400 bp with LoxP sequence attached in the 3 side TIR sequence.
  • This DNA fragment was cloned using TOPO TA Cloning kit (INVITROGEN), digested with restriction enzymes A11II and Sail, digested with the same restriction enzymes in advance, and BAP-treated 3 'IR / DR-Ad You can get it by inserting it into / pSP.
  • IR / DR-Ad / 5 Lxp 3 and 3 TIR sequences are IR / DR- It can be constructed by replacing Ad / pSP.
  • 3 'IR / DR-Lxp / pSP is digested with the restriction enzymes Bglll and Sail, digested with the same enzymes in advance, and inserted into BAP-treated IR / DR-Ad / 5' Lxp, so that the 5 'TIR
  • a modified transposon vector IR / DR-Ad / LxDb having a mutant Lox sequence (Lox71) in the sequence and a LoxP sequence in the 3 ′ TIR sequence can be constructed.
  • a poly A addition signal sequence is required downstream of the translation region for stable expression of a foreign gene in animal cells. Conversely, if there is no poly A addition signal sequence, the mRNA transcribed from the gene becomes unstable, resulting in a decrease in the expression of the final product protein.
  • a drug marker gene is used only when it is introduced into a cell without linking a poly-A added signal sequence downstream of one gene and inserted into the target position.
  • a poly-A trap method has been developed, which is designed so that a poly A-added signal sequence exists downstream of the cell and efficiently selects cells that have undergone homologous recombination.
  • this method can be used to construct a modified transposon vector with higher replacement efficiency.
  • a poly A signal sequence can be attached downstream of the Lox sequence inserted in the 3 'TIR sequence.
  • Such a modified transposon vector has, for example, a 3 'IR / DR-Lxp / pSP as a saddle type, and a SP6 primer and a poly A addition signal sequence derived from ushi growth hormone downstream of the LoxP sequence.
  • PCR was performed using the prepared primer Af / LxpAR (SEQ ID NO: 30), and the approximately 400 bp DNA with a LoxP sequence in the 3 'TIR sequence and a poly A-attached signal sequence downstream of the LoxP.
  • 3 'IR / DR-LxpA / pSP is digested with the restriction enzymes Bglll and Sail, previously digested with the same enzymes, and inserted into BAP-treated IR / DR-Ad / 5' Lxp, so that the 5 'TIR Construct a modified transposon vector IR / DR-Ad / LxpADb that has a mutated Lox sequence (Lox71) in the sequence, a LoxP sequence in the 3 'TIR sequence, and a downstream signal sequence with poly A. be able to.
  • the modified transposon vectors IR / DR-Ad / 5, Lxp, IR / DR-Ad / LxDb and IR / DR-Ad / LxpADb of the present invention have several types of restriction enzyme recognition sites, this restriction enzyme A foreign gene expression plasmid can be constructed by inserting an appropriate foreign gene expression cassette into the cleavage site. By introducing such a foreign gene expression plasmid into various cells including cells that can be individualized by an appropriate method, foreign protein-producing cells and foreign protein-producing animals can be produced.
  • a foreign gene expression cassette is defined as a nucleic acid fragment to which a suitable promoter, stop codon, poly A addition signal sequence, Kozak sequence, secretion signal, etc. are added to a foreign gene. By introducing this into an appropriate cell, the foreign gene can be expressed in the cell.
  • a nucleic acid fragment is obtained by inserting a foreign gene into various commercially available expression vectors (or expression plasmids) according to the attached procedure, and then cutting out the nucleic acid fragment portion using an appropriate restriction enzyme. Can be easily prepared.
  • pSI pCI-neo
  • pPICZ Invitrogen
  • pESP-1 Stratagene
  • BacPAK6 CellPAK6
  • pBAC insect cells
  • pET Stratagene
  • the donor plasmid used for gene replacement using the Cre-Lox recombination system can be constructed according to the following method.
  • the Lox sequence is added to both ends of the foreign gene expression cassette.
  • the Lox sequence has the ability to use the Lox sequence inserted in the 5 'TIR sequence and 3' TIR sequence of the transposon vector.
  • the combination of Lox71 sequence, Lox66 sequence or Lox2272 sequence -Lox2272 sequence is preferable! /.
  • a primer L x66 / LxP-F (SEQ ID NO: 31) having an Xhol recognition sequence on the 5 ′ side and a Lox66 sequence inside, a Bglll recognition sequence on the 5 ′ side and a LoxP sequence inside.
  • the primer Lx66 / LxP-R (SEQ ID NO: 32) is mixed, and PCR is carried out without trapping the DNA in the cage shape (3 Lx66 / LxP-F, 25 bases at the end and Lx66 / LxP The 25 bases at the 3rd end of -R have sequences complementary to each other), and a fragment of about 120 bp having Lox66 sequence and LoxP sequence ability is obtained.
  • an expression cassette having the GFP gene inserted therein is inserted between the fragments downstream of a promoter that can also obtain the expression vector pCAGn-mcs-polyA for animal cells (Japanese Patent Application No. 8-165249).
  • a neo gene expression cassette having no poly A addition signal sequence is inserted downstream of the GFP gene.
  • a donor plasmid pLx / GFP / neo / pA (-) with Lox66 sequence added to the 5 'end and LoxP sequence added to the 3' end of the expression cassette capable of expressing the GFP gene and neo gene (Fig. 6) is constructed.
  • the Cre gene used in the Cre-Lox recombination system must be functionally expressed in the same cell when the above donor plasmid is introduced into the target cell.
  • One method is to incorporate the Cre gene into an appropriate expression vector and introduce it into cells. In this method, it is possible to carry out a method in which the Cre gene is carried in the same plasmid as the donor plasmid or a method in which a separate plasmid is used.
  • the method of synthesizing and introducing Cre RNA, and the method of directly injecting the expressed protein into the cell satisfy the requirements of the present invention as long as the Cre activity is exhibited in the cell.
  • Cre expression plasmid An example of a plasmid that can be expressed (hereinafter sometimes referred to as “Cre expression plasmid”) is the plasmid pCAGGS / Cre provided by Associate Professor Araki of the Kumamoto University Genetic Experiment Facility.
  • the pCAGGS / Cre can be obtained by the method described in the literature (Proc. Natl. Acad. Sci. USA, 92, 160-164, 1995). Briefly, it is obtained by inserting a gene encoding Cre into the restriction enzyme Sa II recognition sequence of the pCAGGS expression vector.
  • the transposase used with the transposon vector can be any transposase as long as it imparts transposon activity to the transposon vector, but a pair with the transposon vector is desirable.
  • Transposase must be functionally expressed in the same cell when the transposon vector is introduced into the target cell.
  • One method is to incorporate the transposase gene into an appropriate expression vector and introduce it into cells. In this method, a method of carrying the transposase gene in the same plasmid as the transposon vector and a method of preparing a separate plasmid can be performed. Furthermore, the method of synthesizing and introducing transposase RNA, and the method of directly injecting the expressed protein into the cell satisfy the requirements of the present invention as long as the method allows the transposase activity to be exhibited in the cell.
  • transposase The gene encoding transposase is inactive in salmon and is not expressed. Therefore, the general gene thread recombination technique described by Sambrook et al. Molecular Cloning, A Laboratory Manual Second Edition. Cold Spring Harbor Laboratory Press, NY, 1989). In practice, commercially available kits are used. For example, for DNA extraction, Wizard Purification System (Promega), ISOTISSUE (Tubon Gene), DNA Extraction Kit (Toyobo), Genomic-tip System (Qiagen), etc. are used.
  • PCR is performed using salmon sperm-derived DNA (Nitsubon Gene) as a saddle and LA-Taq (Ta KaRa) and the attached reagent to amplify the transposase gene. .
  • Synthetic DNA is used as a PCR primer.
  • the 5 side ply based on the base sequence of the salmon transposase gene (EMBLZGenBank accession No. L12206).
  • the 3 'primer SEQ ID NO: 34
  • SEQ ID NO: 33 the nucleotide sequence of the mer
  • -jimas transposase gene EBLZGenBank accession No.
  • the transposase gene of about lkbp can be amplified. it can.
  • the reaction solution is heated under normal PCR conditions (96 ° C, 20 sec denaturation reaction, 68 ° C, 1.5 min annealing / extension reaction 40 cycles).
  • PC-800 (Astec) This is done by struggling with
  • the amplified DNA fragment is then cloned into a plasmid (PCR2.1) using TOPO TA Cloning kit (INVITROGEN).
  • the total nucleotide sequence of the DNA fragment can be determined using BigDye Terminator Cycle sequencing FS Ready Reaction Kit and ABI PRISM 310 Genetic Analyzer manufactured by Applied Bioins (ABI). Since salmon-derived transposase does not have transposition activity due to accumulation of amino acid mutations and exists in an inactive form, the amino acid sequence predicted from the base sequence of the obtained DNA fragment is Ivies et al.
  • SB transposase the amino acid sequence of a transposase having a transposition activity
  • GENETYX Gene information processing software
  • Takara's Site-Directed Mutagenesis System (Mutan-Super Express Km, Mutan-Express Km, Mutan-K, etc.), Stratagene's QuickChange Multi Site-Directed Mutagenesis Kit, QuickChange XL It is performed according to the attached protocol using commercially available kits such as Site-Directed Mutage nesis Kit and GeneTailor Site-Directed Mutagenesis System of Invitrogen.
  • nucleic acid fragment having a base sequence encoding the same amino acid sequence as the SB transposase gene by repairing the base sequence by mutagenesis using PCR Ivies et al .: Cell, 91, 501-, 1997) A plasmid (SB / pSP) into which was inserted was obtained.
  • the SB transposase gene thus obtained is incorporated into an appropriate expression vector and SB transposase can be expressed in the host by introducing the expression vector into the host.
  • Bacteria, yeast, animal cells, plant cells and insect cells that are commonly used for the expression of foreign genes can be used as hosts for expressing SB transposase. It is selected as appropriate.
  • animal cells are used as hosts.
  • a Kozak sequence may be added to the 5 'side of the SB transposase to increase the expression efficiency.
  • Various expression vectors have been developed and marketed for the expression of animal cells, and can be appropriately selected from these.
  • the SB transposase gene is amplified by using a plasmid (SB / pSP) in which the SB transposase gene fragment is cloned as a cage and using the synthetic DNAs described in SEQ ID NOs: 35 and 36.
  • SB / pSP plasmid
  • These primers have Xhol and Kozak sequences added to SEQ ID NO: 33 corresponding to the 5 ′ side of the SB transposase gene, and Sail and Bglll restriction enzyme recognition sites added to SEQ ID NO: 34 corresponding to the 3 ′ side.
  • the obtained cDNA fragment was digested with the restriction enzymes Xhol and Bglll, and then cloned into the cloning vector pSP72 (Promega) previously digested with the same restriction enzymes and dephosphorylated (BAP). Get / XS.
  • PCAGGS-DN5 which was partially modified from the expression vector for animal cells pCAGn-mcs-polyA (Japanese Patent Application No. Hei 8-165249), was digested with the restriction enzyme Sail, BAP-treated, and SB / XS was then used as the restriction enzyme. Insert a DNA fragment containing the transposase gene obtained by digestion with Xhol and Sail to construct a transposase expression plasmid (pCAGG / SB).
  • the transposon vector is introduced into animal cells according to the following method.
  • Animal cells include cell lines (HeLa, Vero, CHO, 293, BHK, SP2 / 0 and other myeloma cells), primary cells (CE, HUVEC, etc.), and individualizable cells (ES cells, EG cells, fertilized eggs) Cells from the blastocyst stage to primordial germ cells (PGC), etc.) may be selected depending on the purpose.
  • the calcium phosphate method, the DEAE dextran method, the method using lipofectin ribosomes, the protoplast polyethylene glycol fusion method, and the electopore position method can be used.
  • a suitable method may be selected depending on the host cell (Molecular Cloning ( 3rd Ed.), Vol 3, Cold Spring Harbor Laboratory Press (2001)).
  • the medium used for the culture an agar medium, a liquid medium, and DMEM, RPMI, a MEM, and the like are used depending on the shape of the medium.
  • those supplemented with serum, amino acids, vitamins, sugars, antibiotics, pH adjusting buffer, etc. are used.
  • the pH of the medium is set at 6-8, and the culture temperature is set at 30 ° C-39 ° C.
  • the amount of medium, additives, and culture time are appropriately adjusted according to the culture scale.
  • Trans-IT LT1 TaKaRa
  • Opt-MEM I Reduced-Serum Medium IVITROGEN
  • transposase expression plasmid pCAGGS / SB and gene expression cassette Carefully stir the transposon vector with, and let stand at room temperature for 15 minutes.
  • Add 2 ml / well of DMEM medium hereinafter sometimes referred to as “10% complete DMEM”
  • 10% complete DMEM the selection marker used
  • Drug-resistant cells can be obtained by continuing the culture in a medium containing a drug matched to the gene.
  • the obtained cells are cloned by the limiting dilution method or the like in the same manner as ordinary transformed cells.
  • the foreign gene expression cassette of the donor plasmid can be replaced with the Lox sequence portion.
  • the introduction method described above can be used.
  • a selectable marker gene it is necessary to use a marker gene different from the marker used in the modified transposon vector. In the case of an exchange reaction, it is possible to select cells into which a foreign gene has been inserted by eliminating the drug resistance without using a selection marker gene.
  • the expression of the GFP gene can be easily confirmed by observing the fluorescence generated by UV irradiation at the excitation wavelength.
  • the Cre-Lox recombination system it is possible to select from the loss of fluorescence.
  • a cell sorter it is possible to easily and quickly separate replacement cells from other cells.
  • the following drop-out method can be used in addition to gene replacement 'insertion using the Cre-Lox system.
  • a sequence where a recombination reaction occurs such as a LoxP sequence, is inserted into the internal restriction enzyme recognition site, and this is inserted between the DR region of either the 5 side TIR sequence or 3 ′ side TIR sequence.
  • a sequence where the same recombination reaction occurs is introduced into the inserted transposon vector cell.
  • the expression plasmid of the enzyme responsible for the recombination reaction corresponding to the sequence where the inserted recombination reaction takes place (Cre when using the LoxP sequence)
  • the mRNA of the enzyme or the enzyme itself Introducing either of these causes a drop-out reaction in the region sandwiched by the sequence of the field where the recombination reaction occurs, resulting in either a 5-side TIR sequence or a 3-side TIR sequence.
  • Trans_posase_ transposase
  • active '! ⁇ PCR was performed using salmon sperm-derived DNA (Nitsubon Gene Co., Ltd.) as a saddle type to amplify an approximately lkbp DNA fragment containing the transposase gene.
  • the amplified DNA fragment was cloned into a plasmid (pCR2.1) using the TOPO TA Cloning kit (INVITROGEN), and the entire base sequence of the DNA fragment of the clone was applied by Applied Bioins (ABI). Determination was performed using BigDye Terminator Cycle bequenceing FS Ready Reaction Kit and ABI PRISM 310 Genetic Analyzer.
  • SB transposase gene fragments after repair were inserted by synthesizing various primers necessary for repairing the mutation site and exchanging the amplified DNA fragment with the region where the mutation exists.
  • a plasmid (SB / pSP) was obtained.
  • the base sequence and amino acid sequence of the SB transposase gene are shown in FIGS. 7 and 8, respectively.
  • a Kozak sequence was attached to the 5 ′ side of the gene encoding SB transposase by PCR, and then inserted into an animal expression vector.
  • the SB / pSP obtained in Example 1 is a saddle type.
  • PCR was performed using the 5'-side primer (SEQ ID NO: 35) and the 3'-side primer (SEQ ID NO: 36), and the restriction enzyme Xhol recognition sequence and Kozak sequence were placed at the 5 'end of the transposase gene.
  • a DNA fragment added with recognition sequences of restriction enzymes Sail and Bglll at the ends was amplified. PCR was performed according to Example 1.
  • the vector PCAGGS-DN5 which was partially modified from the animal cell expression vector pCAGn-mcs-polyA (Japanese Patent Application No. 8-165249), was digested with the restriction enzyme Sail, treated with BAP, and treated with SB / XS.
  • a transposon vector (iR / DR-NTA-Ad / pSP) having several restriction enzyme recognition sites inside the 5th and 3rd TIR sequences of the transposon gene was constructed according to the following procedure.
  • the isolated Salmon Tel was digested with restriction enzymes EcoRI and Accl, and the obtained DNA fragments of about 0.4 kbp and about 1.2 kbp were separated from the DNA fragments derived from the plasmid on a 1.5% agarose gel. These two DNA fragments were recovered using the GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences), digested with EcoRI and Accl in advance, and BAP-treated. The clones were subcloned into the cloning vector pSP72 (Promega) (hereinafter, the obtained betaters were referred to as “5 ′ Rg / pSP” and “3 ′ Rg / pSP”, respectively).
  • the 5'-side TIR sequence was repaired as follows. 5. Using Rg / pSP as a saddle, PCR was performed using repair primers IR / DR rFl (SEQ ID NO: 9) and IR / DR rRl (SEQ ID NO: 10), and a DNA fragment of about 0.3 kbp was amplified and recovered. . This was cloned into a plasmid (PCR2.1) using TOPO TA Cloning kit (INVITROGEN), digested with restriction enzymes EcoRI and Hindlll, and separated on an agarose gel.
  • the obtained fragment was digested with the same restriction enzyme in advance and inserted into BAP-treated 5, Rg / pSP to construct 5, RgDR / pSP. Furthermore, using this 5, RgDR / pSP as a saddle type, a combination of repair primers IR / DR-5 '/ Fl (SEQ ID NO: 11) and IR / DR-5' / Rl (SEQ ID NO: 12), and IR / PCR was performed using a combination of DR-5 '/ F2 (SEQ ID NO: 13) and IR / DR-5' / R2 (SEQ ID NO: 14), and DNA fragments of about lOObp and about 160bp were amplified and recovered.
  • the 3 'TIR sequence was repaired as follows. Using 3 'Rg / pSP as a saddle type, a combination of IR / DR rF2 (SEQ ID NO: 15) and IR / DR rF3 (SEQ ID NO: 17) and IR / DR rF2 (SEQ ID NO: 16) PCR was performed with a combination of DR rR3 (SEQ ID NO: 18), and DNA fragments of about 200 bp each were amplified and recovered. An equal amount of these were mixed and annealed as described above.
  • a DNA fragment containing 5'-side TIR sequence obtained by digesting IR / DR-N with restriction enzymes Hindlll and EcoRV was digested with restriction enzymes Hindlll and PvuII and BAP-treated, then 3'-side TIR
  • An IR / D RN having both 5 ′ and 3 ′ TIR sequences was constructed by inserting into the 3 ′ RgDR / pSP containing the sequence (FIG. 10).
  • adapter 3 and IR / DR-Ad were annealed with 3 ′ IR / DR-AdF (SEQ ID NO: 23) and 3 ′ IR / DR-AdR (SEQ ID NO: 24). 5. Equivalent amounts of IR / DR-Ad and 3, IR / DR-Ad are mixed and reacted at 16 ° C for 30 minutes using DNA Ligation Kit (TaKaRa). The bound DNA fragment was recovered (IR / DR-Ad). This was digested with the restriction enzyme Hindlll and inserted into the Hindlll site of the previously constructed IR / DR-N to construct IR / DR-N-Ad.
  • the restriction enzyme recognition sites were attached to the ends of both the 5-side and 3-side TIR sequences as follows.
  • the obtained IR / DR-N-Ad was digested with A11II, and a DNA fragment of about 2.5 kbp and a DNA fragment of about 630 bp containing the pSP72 vector portion were recovered.
  • the 2.5 kbp DNA fragment was circularized (16 ° C, 30 minutes) using DNA Ligation Kit (TaKaRa), and this was used as a saddle, 5 'IR / DRTA-Fs (SEQ ID NO: 25) And 3, PCR was performed using IR / DRTA-R (SEQ ID NO: 26), and a DNA fragment of about 150 bp with restriction enzyme recognition sites added at the 5 'and 3' ends was amplified. This was cloned using TOPO TA Cloning kit (INVITROGEN) (hereinafter, the obtained clone plasmid was referred to as “TA-Fs / R”), and the nucleotide sequence of the 150 bp DNA fragment was confirmed.
  • TOPO TA Cloning kit IVITROGEN
  • TA-Fs / R was digested with the restriction enzymes Xhol and Bglll, digested with the same restriction enzymes in advance, and inserted into the BOP-treated clawing vector PSP72 to construct TA-Fs / R-pSP.
  • the TA-FsR-pSP is digested with the restriction enzyme A11II and then treated with BAP, followed by the previous 630 bp DNA A fragment was inserted.
  • restriction sites Stul, NotI, Sail and Mscl
  • restriction enzymes Xhol and Xhol
  • the PGK promoter (Adra CN, Gene, 60, 65- 74, 1987) Restricted expression plasmid pPGKpuro linked with puromycin metaenzyme gene (Gomez LE et al., Nucleic Acids Res., 19, 3465, 1991) and PGK-derived poly-A signal sequence under control.
  • a plasmid (IR / DR-puro) for confirming the transposon activity into which the puromycin resistance enzyme gene was inserted was constructed by inserting a DNA fragment of about 1.7 kbp obtained by digestion with the enzyme Sail (FIG. 12).
  • Example 3 (2) Using the IR / DR-NTA-Ad / pSP constructed in Example 3 (2) as a saddle type, the primer Ps / Lx71R (SEQ ID NO: 27) and the Lox71 sequence, a variant of the LoxP sequence, were inserted. PCR was performed using SEQ ID NO: 28), and a DNA fragment of about 200 bp in which the Lox71 sequence was added to the 5 ′ TIR sequence was amplified and recovered. PCR was performed according to Example 1 except for denaturation reaction (94 ° C, 1 minute), annealing reaction (55 ° C, 2 minutes) and extension reaction (72 ° C, 2 minutes for 35 cycles). .
  • the original sequence to be replaced with the inserted Lox71 sequence should not be changed so that the distance (number of bases in the DNA) between the two DR sequences does not change. Primers were designed to be the same length.
  • Example 3 IR / DR-NTA-Ad / pSP constructed in (2) is digested with the restriction enzymes Sail and Bglll, and then digested with the same restriction enzymes and subcloned into BSP-treated pSP72 (Promega). 3) IR / DR-Ad / pSP was constructed.
  • Example 5 PCR was performed under the same conditions as described above, and a DNA fragment of about 4 OObp with LoxP sequence added in the 3 ′ TIR sequence was amplified and recovered.
  • This DNA fragment was cloned using the TOPO TA Cloning kit (lNVIT ROGEN), digested with the restriction enzymes A11II and Sail, previously digested with the same restriction enzymes, and BAP-treated 3 'IR / DR-
  • Ad / pSP a modified transposon vector with a LoxP sequence between two DR sequences present in the 3 'TIR sequence, IR / DR-Lxp / pSP was constructed (Fig. 14).
  • the 3 IR / DR-Lxp / pSP 3 and side TIR sequences obtained in this way should have the same distance (number of bases in DNA) between the two existing DRs. The process is performed.
  • Example 5 (3), IR / DR-Lxp / pSP constructed in (2), primer A with SP6 primer and poly-A added signal sequence derived from ushi growth hormone downstream of LoxP sequence PCR was performed using f / LxpAR (SEQ ID NO: 30) under the same conditions as in Example 5 (1), and a LoxP sequence was added to the 3 'TIR sequence and a poly A-attached signal sequence was added downstream of the LoxP. The trapped DNA fragment of about 400 bp was amplified and recovered.
  • This DNA fragment was cloned using TOPO TA Cloning kit (INVITROGEN), digested with restriction enzyme A11II and Sail, digested with the same restriction enzyme in advance, and BAP-treated 3 'IR / DR-Lxp / By inserting it into pSP, a transposon vector 3 ′ IR / DR-LxpA / pSP having a LoxP sequence and a downstream signal with poly A was constructed (FIG. 15).
  • the 3 ′ TIR sequence of 3 ′ IR / DR-LxpA / pSP thus obtained is intrinsic.
  • the same treatment as in Example 5 (1) was performed so that the distance between the two DRs (the number of bases in the DNA) did not change.
  • Example 5 3 'IR / DR-Lxp / pSP (constructed in Example 5 (2)) was digested with restriction enzymes Bglll and Sail, digested with the same enzymes in advance, and BAP-treated IR / DR-Ad / 5' Lxp (implemented)
  • Example 5 constructed in (1)
  • a transposon vector IR / DR-Ad / LxDb having a Lox71 sequence in the 5 'TIR sequence and a LoxP sequence in the 3' TIR sequence was constructed.
  • Example 5 3 'IR / DR-LxpA / pSP (constructed in Example 5 (3)) was digested with restriction enzymes Bglll and Sail, digested with the same enzymes in advance, and BAP-treated IR / DR-Ad / 5' Lxp ( Example 5 (constructed in (1)) and has a mutant Lox71 in the 5 side TIR sequence, a LoxP sequence in the 3 side TIR sequence and a poly A-attached signal signal sequence downstream A modified transposon vector IR / DR-Ad / LxpADb was constructed (Fig. 16).
  • IR / DR-Ad / 5 ′ Lxp (constructed in Example 5 (1)), IR / DR-Ad / LxDb (constructed in Example 5 (4)) and IR / DR-Ad / LxpADb (Example 5 ( In order to confirm the transposon activity of 5)
  • the expression plasmid pPGKpuro in which the puromycin resistance enzyme gene and the PGK-derived poly A addition signal sequence are linked to each Sail site under the control of the PGK promoter is restricted.
  • transposase expression plasmid pCAGGS / SB constructed in Example 2 and the transposon activity confirmation plasmids constructed in Examples 4 and 6 were introduced into the competent cell JM109 (TOYOBO) according to the attached protocol, and a recombinant carrying each plasmid was prepared.
  • Transposon activity confirmation plasmids into HeLa cells was carried out as follows.
  • Opti-MEM I Reduced-Serum Medium (INVITROGEN) 250 ⁇ 1 Trans-IT LT1 (TaKaRa) 10 1 was stirred and allowed to stand at room temperature for 10 minutes, and then pCA GGS prepared in Example 2 /SB1.5 ⁇ g and transposon activity confirmation plasmid prepared in Examples 4 and 6 (IR / DR—puro, IR / DR—puro / 5, Lxp ⁇ IR / DR—puro / LxDb or IR / DR—puro Either 1 of / LxpADb) Stir 1.5 ⁇ g and stir at room temperature for 15 minutes to form a DNA / Trans-IT LT1 complex.
  • HeLa cells are composed of DMEM (Sigma) (hereinafter referred to as "10% comple te") containing 10% urine fetal serum (High clone) and 1/100 amount of penicillin-streptomycin solution (INVITROGEN).
  • HeLa cells derived from human cervical cancer maintained in DMEMJ) mainly Dainippon Pharmaceutical Co., Ltd.
  • DMEMJ DMEMJ
  • Dulbecco's phosphate buffer solution Sigma
  • a control was prepared by introducing a plasmid for confirming transposon activity alone into HeLa cells without adding / SB.
  • Example 7 HeL treated with the introduction of various transposon activity confirmation plasmids in Example 7 (2) a Wash cells with Dulbecco's phosphate buffer (Sigma), leave at 37 ° C for 3 minutes with 0.05% trypsin solution (INVITR OGEN) 200 1, and stop the enzyme reaction by adding 2ml of 10% complete DMEM. did. After this cell solution was dispersed by pipetting, 201 was taken, an equal amount of trypan blue staining solution (INVITROGEN) was added, and the number of cells was measured with a hemocytometer.
  • Dulbecco's phosphate buffer Sigma
  • Cell suspension power 3.8 X 10 4 cells are taken and placed in a 10 cm diameter dish (Corning) containing 10 ml of 10% complete DMEM containing 1 g / ml puromycin (BD Bioscience) in advance. In addition, the cells were cultured at 37 ° C in the presence of 5% CO. 1 ⁇ g / ml pure mouth during the incubation period
  • Each of the various transposon activity confirmation plasmids is incorporated at a high rate into the chromosome of HeLa cells, and its introduction efficiency is 15 to 50 times higher than when the various transposon activity confirmation plasmids are introduced alone. High strength (Table 3). This result shows that insertion of Lox sequence without changing the distance (number of bases) between two DR regions present in TIR has little effect on transposon activity. .
  • IR / DR-puro / LxpADb was introduced into HeLa cells on the second day of culture. Subcultured into a 10 cm diameter dish (Cowung) and cultured in 10% complete DMEM containing 1 ⁇ g / ml puromycin (BD Bioscience) for 2 weeks. The dish was washed with a phosphate buffer (Sigma), 10 ml of 0.5% EDTA (Wako Pure Chemical Industries) -containing Dulbecco's phosphate buffer was added, and the mixture was allowed to stand at room temperature for 5 minutes.
  • a phosphate buffer Sigma
  • 10 ml of 0.5% EDTA Wi-containing Dulbecco's phosphate buffer
  • HeLa / puro cells The cells (hereinafter sometimes referred to as “HeLa / puro cells”) were finally expanded sequentially to a 10 cm diameter dish culture. At the time of growing into a full sheet, the cells were collected by washing with Dulbecco's phosphate buffer (Sigma), followed by trypsinization. The 106 cells were stored in liquid nitrogen, it was used to extract the subsequent remaining chromosomal DNA.
  • a primer Lx66 / LxP-F (SEQ ID NO: 31) having an Xhol recognition sequence on the 5 ′ side and a Lox66 sequence inside, and a primer Lx66 / Lx PR having a Bglll recognition sequence on the 5 ′ side and a LoxP sequence inside. (SEQ ID NO: 32) was mixed, and PCR was performed with no DNA in the cage shape (3 Lx66 / LxP-F, 25 bases on the side end and 3 Lx66 / LxP-R, 3 side ends) 25 bases have sequences complementary to each other).
  • the amplified fragment of about 120 bp was digested with restriction enzymes Xhol and Bglll, and then digested with the same enzymes in advance and inserted into BAP-treated cloning vector pSP72 to construct Lx66 / LxP / pSP.
  • the Cre gene expression plasmid pCAGGS / Cre was provided by Assistant Professor Araki of the Kumamoto University Genetic Experiment Facility.
  • the suspension cells were passaged to a diameter of 10 cm dish (Corning Co.), was continued for 10 to 1 4 days of culture at 750 ⁇ g / mlG418 (TaKaRa Co.) containing 10% complete DMEM medium.
  • a G418-resistant single colony is recovered, maintained and passaged in 10% complete medium containing 750 ⁇ g / ml G418, and a 48-well plate (contained). Cultivated until almost full sheet form.
  • G418-resistant cells cloned in this way were divided in two on a 24-well plate, one in the same 10% com plete medium containing 750 ⁇ g / ml G418 and the other in 1 ⁇ g / ml puromycin.
  • a clone was selected that was cultured in a medium containing 10% complete for about 1 week, grown in a medium containing 750 ⁇ g / ml G418, and killed in a medium containing 1 ⁇ g / ml puromycin.
  • HeLa / neo cells After confirming that a G418-resistant and puromycin-resistant clone (hereinafter also referred to as “HeLa / neo cells”) emits green fluorescence due to GFP expression under a fluorescence microscope, the HeLa / neo cells were Collected after expansion to a 10 cm diameter dish. The 106 cells were stored in liquid nitrogen, was used remaining below chromosome D NA preparation.
  • Example 8 HeLa / puro cells and HeLa / neo cells (5 to 10 ⁇ 10 6 cells each) obtained in (1) and (3) were centrifuged at 1500 rpm for 5 minutes to collect cells.
  • a 10 mM Tris-HCl / lmM ED TA solution (hereinafter referred to as “TE”) 220 1 is suspended in this solution and suspended in a lysis buffer (10 mM Tris-HC1, 0.1 MEDTA, 0.5% SDS, final concentration 20 g / ml).
  • RNase Sigma
  • pH 8.0 was placed at 37 ° C with 200 1 pieces per 10 6 pieces.
  • the Neo gene detection probe uses pMClneo (STRATA GENE) as a saddle, primers neo / 1072F (SEQ ID NO: 37) and neo / 1501R (SEQ ID NO: 38), and puromycin resistant enzyme.
  • pPGKpuro was used as a saddle, and PCR was performed using puro In / S (SEQ ID NO: 39) and puro 2 (SEQ ID NO: 40), followed by agarose gel electrophoresis.
  • the target DNA fragment was recovered using GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences). Next, 100-200 ng of these DNA fragments are used as a saddle, labeled with [ ⁇ -32P] dCTP (Amersham Biosciences) according to the attached protocol using BcaBEST Dideoxy Sequencing Kit (Ta KaRa), and the neo probe and A puro probe was obtained.
  • the filter was transferred to a new Rapid Hyb buffer. To this was added neo probe or puro probe boiled at 100 ° C for 5 minutes and then rapidly cooled in ice, and further reacted at 65 ° C overnight. The filter was recovered, rinsed in a solution containing 2% SSC (0.3M sodium chloride, 0.03M sodium citrate) containing 0.5% SDS, and then washed in the same solution at room temperature for 15 minutes. Subsequently, washing was carried out at 65 ° C. for 30 minutes in a 0.1 ⁇ SSC solution containing 0.1% SDS 2 to 3 times, and finally rinsed with 0.1 ⁇ SSC to remove moisture on the filter paper.
  • SSC 0.3M sodium chloride, 0.03M sodium citrate
  • pLx / GFP / neo / pA (-) used as a positive control does not have the recognition sequence of the restriction enzyme Mil used for digestion, so a signal is detected but its size is different from that of HeLa / neo cells. It was different.
  • the puro probe when used, a signal of about 2.4 kbp is detected in HeLa / puro cells before gene replacement, the same as IR / DR-puro / LxpADb of the positive control, but HeLa / neo cells after gene replacement. No signal was detected (No.1, No.2, and No.9). From this result, it is inferred that the pure-mycin resistance enzyme gene of IR / DR-puro / LxpADb inserted into the chromosomal DNA was replaced with the neo gene and the GFP gene (Fig. 20).
  • PCR was performed using the BD GenomeWalker Universal Kit (BD Bioscience) and then inserted into the TIR sequences at both ends.
  • the base sequence in the vicinity of the Lox sequence was determined (hereinafter sometimes referred to as “Genome Walking”).
  • Gene Walking the chromosomal DNA of HeLa / neo cells purified in Example 8 (4) was digested with any of restriction enzymes EcoRV, PvuII, Sspl and Nael with a blunt end, and attached according to the protocol attached to the kit. Coupled adapter. This was used as a PCR template for the following.
  • the first step was carried out using an API primer derived from the adapter sequence (SEQ ID NO: 41) and a primer CAG / GSP2 (SEQ ID NO: 42) prepared based on the CAG promoter sequence. PCR was performed. Next, take the PCR reaction mixture 11 and perform the second-stage PCR using the AP2 primer derived from the adapter sequence (SEQ ID NO: 43) and the primer CAG / GSP4 (SEQ ID NO: 44) prepared from the CAG promoter sequence. It was.
  • the primer neo / 1306F (SEQ ID NO: 45) prepared based on the API primer and neo gene sequence was used in a reaction volume of 25 ⁇ 1.
  • First-stage PCR was performed, and the primer ne prepared from ⁇ 2 primer and neo gene sequence Second stage PCR was performed using o / 1389F (SEQ ID NO: 46).
  • the outside of the Lox sequence inserted into the 5'-side TIR sequence was identical to the IR / DR-puro / LxpADb sequence introduced first, and the inside was the pLx / GFP introduced for substitution. Consistent with the / neo / pA (-) sequence.
  • the outside of the Lox sequence inserted into the 3 'TIR sequence matches the sequence of IR / DR-puro / LxpADb that was originally introduced, and the inside is the pLx / GFP / neo / that was introduced for substitution. Consistent with the sequence of pA (-).
  • the Lox sequence in the confirmed 5'-side TIR sequence is the Lox71 sequence used for the IR / DR-puro / LxpADb introduced for the outer Cre junction, and the inner Cre
  • the sequence at the binding site was the Lox66 sequence used for pLx / GFP / neo / pA (-) introduced for substitution.
  • HeLa / neo cells were transformed into Lox sequences by simultaneous introduction of HeLa / puro force 3 ⁇ 4CAGGS / Cre and pLx / GFP / neo / p A (-) obtained by introduction of IR / DR-puro / LxpADb.
  • the insertion position of the GFP and neo gene expression cassette on HeLa / neo cell chromosomal DNA is the Lox sequence strength.
  • the sequence up to the dinucleotide TA at the end of the TIR sequence is the first on both the 5 'and 3' sides. It was identical to the IR / DR-puro / LxpADb-derived sequence introduced in. However, the sequence on the outer side matched the sequence on human chromosome 3 registered in the NCBI nucleic acid sequence database (GeneBank) in the United States.
  • transposon vector in which a Lox sequence was inserted into the 5 'TIR sequence and 3' TIR sequence of the transposon was inserted into the chromosomal DNA by transposon activity. Later, it will be shown that it can be replaced with another gene by the Cre-Lox recombination system via the Lox sequence in the TIR. Furthermore, by using this gene replacement reaction, the inner DR region of each of the two DR regions existing in the 5 ′ TIR sequence and 3 ′ TIR sequence of the previously introduced transposon vector can be removed. It indicates that it is possible.
  • Example 7 (2) only IR / DR-puro / LxpADb was introduced, and according to the method of Example 8 (1), a cloned puromycin resistant enzyme HeLa cell (hereinafter referred to as “single ZH eLa / puro The cells were sometimes cultured in a 6-well plate until they became full sheets, collected, and 10 6 were stored in liquid nitrogen. The remaining cells (1.7 x 10 5 cells / well) were seeded on a 6-well plate and cultured overnight. Then, according to the method of Example 7 (2), pLx / GFP / neo / pA (-) and pCAGGS / Cre was introduced.
  • pLx / GFP / neo / pA (-) and pCAGGS / Cre was introduced.
  • Example 8 G418-resistant HeLa cells cloned in accordance with the method of (1) (hereinafter also referred to as “single ZHeLa / neo cells”) are finally cultured in a dish having a diameter of 10 cm until they are almost full. And recovered. Chromosomal DNA was purified from the cells according to the method of Example 8 (5), and OD
  • the DNA concentration was calculated from the absorbance of 2 and stored at -20 ° C.
  • the nucleotide sequence of the gene replacement site was determined for the single ZHeLa / neo cell chromosomal DNA obtained in Example 9 (1) according to the method of Example 8 (6) (Genome Walking). As a result, single / HeLa / neo cells were obtained by introducing the transposon vector IR / DR-puro / LxpADb alone.
  • the isolated ZHeLa / puro recombined on the Lox sequence by simultaneous introduction of pCAGGS / Cre and pLx / GFP / neo / pA (-), and the region between the Lox sequences (puromycin resistance enzyme) It was obtained by replacing the gene expression cassette) with the region between the pLx / GFP / neo / pA (-) Lox sequences (GFP and neo gene expression cassette).
  • the sequences outside the 5 'and 3' end TIR sequences inserted into the chromosomal DNA of single ZHeLa / neo cells matched the sequence derived from IR / DR-puro / LxpADb. Further, the outside of the sequence coincided with the sequence on human chromosome 12 registered in the NCBI nucleic acid sequence database (GeneBank) in the United States. This result shows that the transposon vector introduced into HeLa cells, IR / DR-puro / LxpADb, was integrated into chromosome 12 of the HeLa cells by the normal recombination mechanism that occurs in the cells. This shows that puro cells were obtained, and that the individual ZHeLa / neo cells were obtained by the Cre-Lox recombination system.
  • Example 9 obtained by Genome Walking, which has undergone replacement by the Cre-Lox recombination system 5, has a DNA fragment having a part of the side TIR sequence, and has a part of the side 3, TIR sequence
  • the clones (2B-No.2 and 2B-No.6) that hold the respective DNA fragments have a structure in which the TIR sequence is destroyed by the substitution reaction.
  • the transposon vector in which the 5-side TIR sequence was destroyed and the transposon vector in which both the 5-side TIR sequence and the 3-side TIR sequence were destroyed Two types were built.
  • 5 '+3' IR / pSP was digested with the restriction enzyme Sail and then BAP-treated, and about 1.7kbp of DNA obtained by digestion with the same restriction enzyme of pPGKpuro.
  • the fragment was inserted to construct a plasmid 5 ′ + 3 ′ IR / p uro for evaluating transposon activity.
  • IR / DR-3 with disrupted TIR sequence, IR / puro (constructed in Example 9 (3)), 5, +3, IR with both TIR sequences disrupted / puro (constructed in Example 9 (3)) and IR / DR-Ad / LxpADb (constructed in Example 5 (5)) retaining the TIR sequence before gene replacement were transformed into the transposase expression plasmid pCAGGS / SB (implemented). And was introduced into HeLa cells by the method shown in Example 7 (2). On the second day after introduction, cells were collected by trypsin treatment, seeded with 5 X 10 5 cells per 10 cm diameter, and selected on 10% Complete medium containing 1 ⁇ g / ml puromycin. Started.
  • the modified transposon vector of the present invention (1) can introduce a foreign gene into cells at a high rate.
  • a large-sized gene can be inserted or replaced by the Cre-Lox recombination system.
  • a transposon is fate as a transposon. It has features such as the ability to reliably suppress metastatic potential.
  • Example 5 IR / DR-GFP / neo / LxpADb into which the GFP expression cassette and neomycin resistance gene expression cassette were inserted according to the procedure shown below into the modified transposon vector IR / DR-Ad / LxpADb constructed in (5). (Fig. 25).
  • pMClneo PolyA (STRATAGENE) was digested with the restriction enzymes Xhol and Sail, and the approximately 1.2kbp DNA fragment recovered was digested with Sail and BAP-treated IR / DR-GFP / LxpADb. Inserted to construct IR / DR-GFP / neo / LxpADb.
  • the purchased fertilized eggs (Nissei Laboratories) immediately after laying eggs are cultured in an incubator (Showa Franchi), and the hamburger's Hamilton classification (J. Morphol., 88, 49-92) is 2-3 days after the start of cultivation. , 195 1)
  • blood of stage 12-15 chicken embryos was collected and separated according to the method of Zhao et al. (Br. Poult. Sci., 44, 30-35, 2003).
  • the isolated PGC was confirmed to retain the properties of PGC due to its reactivity with the anti-SSEA-1 antibody.
  • the separated PGC was maintained and cultured according to the culture method disclosed in the international patent application (W 0 9606160).
  • transposase expression plasmid pCAGGS / SB constructed in Example 2 and the IR / DR-GFP / neo / LxpADb constructed in (1) were introduced into the PGC as follows.
  • pCAGGS / SB2.5 ⁇ g and IR / DR—GFP / neo / LxpADb2.5 ⁇ g were diluted with Opti—MEM I Reduced-Serum Medium (INVITR OGEN) 250 1 to obtain Opti-MEM I Reduced.
  • G418-resistant, GFP-expressing PGC introduced with the modified transposon plasmid obtained in (3) was injected into the stage 12-13 embryonic chick embryos according to the method of Kuwana et al. (Experimental medicine; 12 (2) special edition, 154-159, 1994). Briefly, the eggshells of fertilized eggs cultured for about 50 to 60 hours were removed to the extent that they could be manipulated so that the extraembryonic blood vessels (peripheral veins) of the chicken embryo could be observed under a stereomicroscope.
  • the 16 embryos injected with the modified transposon plasmid-introduced PGC in (4) were transferred 17 days after the start of culture in the incubator, and further cultured for 3 days. After 3 days of culture in the vitreous ware, 16 chicks also hatched 8 chicks. These 8 chicks also took their gonads and examined the expression of GFP. The expression of GFP was confirmed in 5 birds (Table 5, Fig. 28).
  • IR / DR-GFP / neo / LxpADb introduced GFP expression in embryonic gonads that died immediately after hatching after PGC injection
  • GFP expression rate Number of observed embryos Number of embryos expressing GFP
  • PGCs are future germ cells, ie cells destined to be separated into sperm or eggs Therefore, the modified transposon plasmid-introduced PGC is established in the gonad of the embryo and the expression of the introduced gene is maintained! / ⁇ ⁇
  • the fact means that the transgene is inherited by the next generation. Therefore, it means that it is possible to produce a transgenic chicken from the PGC introduced with the modified transposon plasmid from the six chicks obtained by the present invention.
  • genetic modification with a modified transposon plasmid is introduced.
  • a new PGC is obtained from a fertilized egg produced by a fowl, and a new foreign gene can be inserted or replaced by the Cre-Lox recombination system. .
  • GFP-producing cells obtained using the modified transposon vector of the present invention are used as a raw material for GFP protein.
  • a GFP protein can be produced from a culture solution or cell disruption of the cells cultured in large quantities using an appropriate purification method.
  • various foreign protein-producing cells or foreign protein-producing animals can be obtained, which can be used as materials for producing these foreign proteins.

Abstract

 改変トランスポゾンベクター及び外来遺伝子の細胞導入方法を提供する。下記の(イ)~(ロ)又は(イ)~(ハ)の特徴を有する核酸断片が挿入された改変トランスポゾンベクター、これを株化細胞や個体化可能な細胞の染色体DNAに導入後、更にCre-Lox等の組換えシステム下に、外来遺伝子発現カセットを導入して得られる外来遺伝子発現細胞、当該細胞(固体化可能な細胞の場合)を用いて作出した組換え動物、並びに前記細胞及び組換え動物から外来蛋白を生産する方法: (イ)トランスポゾン遺伝子の5’側TIR配列及び3’側TIR配列からなる; (ロ)トランスポゾン遺伝子の5’側TIR配列又は3’側TIR配列に各々2つずつ存在するDR領域の少なくとも一方のDR領域の間に組換え反応が生じる場の配列が挿入された; (ハ)トランスポゾン遺伝子の5’側TIR配列と3’側TIR配列の間に制限酵素認識部位又は外来遺伝子発現カセットが挿入された。

Description

明 細 書
改変トランスポゾンベクター及びその利用方法
技術分野
[0001] 本発明は、遺伝子組換え技術により得られる改変トランスポゾンベクター及びその 利用方法に関する。より詳細には、トランスポゾン特有のゲノム上を転移する機能を 抑え、且つ大きなサイズの外来遺伝子を細胞に導入することを可能にする改変トラン スポゾンベクター及びその利用方法に関する。
背景技術
[0002] 今日、 目覚まし 、進歩を遂げた遺伝子導入技術は、動物細胞に外来遺伝子を導 入して得られる遺伝子組換えタンパク質の生産や遺伝子組換え生物の作製、遺伝子 治療にお 、て欠力せな 、技術となって 、る。
[0003] 遺伝子導入技術の中で最も重要な点は、 目的とする遺伝子を効率良く細胞に導入 し、これを安定的に発現させることである。通常、 目的の遺伝子を発現する動物細胞 或いは動物個体 (以下、「組換え体」と総称する)を得るには、当該遺伝子を発現させ るためのカセット(プロモーター、当該遺伝子、ポリ A付加シグナル配列力もなるカセッ ト;以降、「発現カセット」と略す)と遺伝子導入のマーカーとなる薬剤耐性遺伝子の発 現カセットを EG細胞或いは ES細胞などの個体ィ匕可能な細胞に導入し、安定的に導 入遺伝子を発現する組換え体を選別する手法がとられる。このとき、当該遺伝子や薬 剤耐性遺伝子の発現カセットを導入するために用いる道具がベクターと呼ばれるもの である。安定的に当該遺伝子を発現する組換え体を効率良く得るためには、如何に 効率良く宿主 (遺伝子導入の対象となる細胞或いは動物個体)の染色体 DNAに挿入 させるかが鍵となり、この点において重要となるのが用いるベクターの種類である。用 いるベクターにより宿主の染色体 DNAへの挿入効率は大きく異なり、その後の糸且換え 体の作出効率にも大きく影響する。
[0004] 今日、動物細胞或いは動物個体への目的遺伝子の導入に利用されるベクターは、 ウィルス粒子内のウィルスゲノムを利用するウィルスベクターと非ウィルスベクターに 大別される。染色体 DNAへの挿入という観点から、両ベクターの特徴について、以下 に概説する。
[0005] ウィルスベクターは、その名が示すようにウィルスゲノム内に目的遺伝子の発現ュ ニットを挿入し、当該遺伝子をゲノム内に保持したウィルス粒子を作製し、これを動物 細胞或いは受精卵、時には動物個体そのものに感染させることで、当該遺伝子を導 入するものである。このタイプのベクターに分類されるものとして、宿主の染色体 DNA への挿入が可能なベクターと宿主の染色体 DNAには挿入されずェピソームとして存 在するベクターがある。前者の例としてはオンコレトロウイルス、レンチウィルス及びァ デノ随伴ウィルスベクターがあり、後者の例としてはアデノウイルス及びへルぺスウイ ルスベクターが知られて 、る。
[0006] これらウィルスベクターは、オリジナルのウィルスが有する細胞への感染力を利用 することから、細胞内への目的遺伝子の導入効率が高い。また、オリジナルのウィル スが有する細胞種特異性を維持することから、導入できる細胞種に制限がある。さら に、宿主の染色体 DNAへの挿入が可能なオンコレトロウイルスやレンチウィルスべク ターを利用した場合、複製可能なウィルス粒子の出現やゲノム内への逆転写酵素の 挿入による内在性レトロウイルスの産生による目的の遺伝子発現産物へのウィルス混 入のおそれ等、安全性面での懸念が存在する。
[0007] 一方、非ウィルスベクターとしては主にプラスミドベクターが利用されている。プラス ミドベクターは、大腸菌の染色体外で複製'保持される環状の核外遺伝子とし発見さ れたプラスミドをベクターとして利用したものである。プラスミドベクターでは、 目的遺 伝子を挿入しても大腸菌内で容易に増やせることから、動物細胞への遺伝子導入べ クタ一として汎用されている。し力し、プラスミドベクターは DNAそのものであることから 、マイクロインジェクション法や電気穿孔法等の物理的な操作を行わない限り、そのま まの状態で細胞内に導入することは難しい。現在、物理的手法以外に効率良く細胞 内に導入する方法として、リン酸カルシウム共沈法や DEAE-デキストランゃカチオン 性脂質との複合体形成法が用いられている。このような工夫により、細胞内への遺伝 子の導入効率は徐々に改善している力 先に述べたウィルスベクターを利用する方 法と比較するとかなり劣ると言わざるを得ない。さらに、最も重要な点は、プラスミドべ クタ一として目的遺伝子を導入した場合、その遺伝子が宿主の染色体 DNAに挿入さ れる確率は極めて低ぐ細胞質力 核内にまで到達できたベクターが染色体の複製 時に偶然挿入されるに過ぎない。プラスミドベクターはこのような欠点を有するものの 、安全性の面ではウィルスベクターよりも優れており、現在までのところ、本ベクター で得られた組換え体でし力組換えタンパク質の生産には利用されて 、な 、。
[0008] 近年、プラスミドベクター最大の弱点の一つである、宿主の染色体 DNAへの挿入効 率の低さを改善するために、染色体 DNAへの挿入機構を有するトランスポゾンを利 用したベクターが開発されている。トランスポゾンとは染色体上を転移する遺伝子とい う意味であり、バーバラマクリントックによりその存在が初めて報告されて以降、種々 の生物の染色体上に存在することが明らかとなった (例えば、非特許文献 1)。
[0009] トランスポゾンは大きく 2つの種類に分けられる(例えば、非特許文献 2参照)。一つ は、クラス Iに分類されるレトロ型のトランスポゾンであり、もう一つはクラス IIに分類され る DNA型のトランスポゾンである。クラス Iのレトロ型トランスポゾンは、染色体上に DNA として存在している力 いったん RNAに転写された後、内部にコードされている逆転 写酵素の働きで RNAから相補 DNA (cDNA)に変換され、染色体上に再挿入される。 したがって、この型のトランスポゾンは活性を有する限り、絶えず自身の複製を増や す傾向にある。さらに、レトロ型トランスポゾンは、逆転写酵素を有するか否かにより大 きく 2つのグループに分けられ、逆転写酵素をコードしていないものは自身では移動 することができず、他から逆転写酵素を借りて転移する、非自立的なレトロ型トランス ポゾンである。また、逆転写酵素をコードしているグループは、さらに長い末端反復配 列(Long Terminal Repeat ;LTR)を持つものと持たないものに大別される。いわゆるレ トロウィルスは、そのゲノムの末端に LTR配列を有し、逆転写酵素をコードしているこ と力ら、レトロトランスポゾンの一種とも考えられる。
[0010] 一方、クラス IIの DNA型トランスポゾンは、自身がコードするトランスポゼースと呼ば れる転移触媒酵素の働きにより、染色体上の挿入位置から切り取られ、別の位置に 再挿入される。このような転移形式カゝらカットアンドペースト型のトランスポゾンとも呼 ばれる。この型のトランスポゾンの特徴は、トランスポゾン遺伝子の両末端に十数塩基 力 数百塩基にも及ぶ互いに逆向きの配列(Terminal Inverted Repeat ;TIR)を有し、 その内部にはトランスポゼースをコードする遺伝子を有している。そして、発現したトラ ンスポゼースが、両末端の TIR配列を認識'結合し、これを染色体 DNAカゝら切り出して 染色体 DNA上の別の部位に挿入する反応を担 ヽ、染色体上を転移することを可能 にしている。これまでに報告されている転移活性のある主なトランスポゾンは、一部を 除いて細菌、植物、昆虫に限られている。し力し、 1997年 Iviesらは Tcl/mariner supe rfamilyに属するサケ由来のトランスポゾンを単離し、遺伝子変異の蓄積により不活性 化されたトランスポゼースをコードする遺伝子をすベて修復することで、ついにカット アンドペースト活性を復活した本酵素の再生に成功し、 Sleeping Beautyと命名した( 例えば、非特許文献 3参照)。この Sleeping Beautyは、魚由来の細胞だけでなぐ哺 乳類の細胞でも転移能を有することが明らかにされ、その染色体 DNAへの導入率は 一般的なトランスフエクシヨンによる遺伝子導入率の 80倍に達している(例えば、非特 許文献 4参照)。
[0011] 表 1には、これまでに報告されている、 Tcl/mariner superfamilyに属する活性型のト ランスポゾンを示す。ここに示す活性型トランスポゾンの中でも、 Sleeping Beautyは最 も高い転移能を有することが明らかとなり(例えば、非特許文献 5参照)、さらには転 移活性発現にあたって宿主由来の因子を必要としないという性質も重なり、動物細胞 や個体への効率の良い、非ウィルス型の遺伝子導入ベクターとしての利用が始まつ ている。
[0012] [表 1]
Tcl /manner superfamilyに J禹 る主な卜フンスポソノ
Superfamily family subfamily TIR length Organism
Tc1 54 Caenorhabditis elegans
Tc3 462 Caenorhabditis elegans
Tc1
Sleeping Beauty 225 Atlantic salmon
Tc1 /mariner
Minos 255 Drosophila hydei
Mos1 28 Drosophila mauritiana mariner
Himarl 31 Haematobia irritans [0013] Iviesらが開発したトランスポゾンベクターシステムは、両末端にァカヒレ由来の TIR配 列を持つトランスポゾンベクターに目的とする遺伝子の発現ユニットを挿入したプラス ミドと、染色体 DNAへの転移に必要なトランスポゼース(Sleeping Beauty)の発現ュ- ットを挿入したプラスミドを同時に細胞に導入するものである。この方法により、 目的と する遺伝子を細胞の染色体 DNAに持つクローンのみを選別することで、トランスポゾ ンの性質である染色体 DNA挿入後の転移を回避できるようにしている。さらに、本シ ステムに用いているトランスポゾンベクターは、 Tcl/mariner superfamilyの中でも Tc3 タイプに特徴的な比較的長い TIR配列を有し、その中にはダイレクトリピート (DR)と呼 ばれる 2箇所のトランスポゼース結合配列を持つ(図 1)。
[0014] 以上述べてきたように、 Sleeping Beautyに代表されるトランスポゾンベクターは、非 ウィルスベクターでありながら染色体 DNAへの高!ヽ揷入効率と広!ヽ宿主スペクトルを 示すことから、今後、遺伝子導入のためのベクターとしての利用が増えるものと予想さ れる。
[0015] このような遺伝子導入のためのベクター開発が進む一方で、 DNA上の特定の位置 への遺伝子の挿入や、特定の遺伝子の欠失又は置換を起こすための技術にも大き な進展が見られて!/、る。その代表的な技術が Cre-Lox及び Flp-FRT組換えシステム と呼ばれる組換え機構を利用したものである。
[0016] Cre- Lox組換えシステムは、ノ クテリオファージ P1で発見された組換え機構を応用 したものであり、組換えが生じる場である 34塩基カゝらなる LoxP配列と、組換え反応を 担う酵素(リコンビナーゼ)である Creという 2つの要素力 成る。野生型の LoxPでの組 換え反応では、 Creの存在下において、 LoxP配列で挟まれた DNA配列が脱落する反 応と、逆に LoxP配列を持つ環状 DNAを別の DNA上に存在する LoxP配列に挿入する 反応のいずれも生じうる。しかし、野生型の LoxPの場合、 LoxP配列に挿入する反応 よりも LoxP配列で挟まれた DNA配列が脱落する反応のほうが優位であることから、 Lo xP配列に DNA配列を挿入する反応を期待することは難 Uヽ(図 2)。この問題の解決 のために、今日では LoxPの変異配列が作製され、野生型の LoxP配列では期待でき な 、挿入反応や置換反応に応用されて 、る。表 2には主に利用されて 、る変異 Lox 配列と変異箇所を示す。これら変異 Loxを用いた Cre-Loxシステムを利用することで、 これまでの野生型の LoxPでは困難であった、効率的な Lox配列への DNAの挿入や L ox配列間での DNA配列の置換が可能となって!/、る(図 3)。
[0017] [表 2] 主な変異 Lox配列
名称 配列(一本鎖の配列のみ記載) 星 iTi々 づ
Cre結合部 Spacer部 Gre結合部
LoxP ATAACTTCGTATA GCATACAT TATACGAAGTTAT 野生型
Lox71 TACCGTTCGTATA GCATACAT TATACGAAGHAT LE変異体
Lox66 ATAACTTCGTATA GCATACAT TATACGAACGGTA RE変異体
Lox2272 ATAACTTCGTATA GGATACTT TATACGAAGHAT Spacer部変異体 し ox51 1 ATAACTTCGTATA GTATACAT TATACGAAGTTAT Spacer!!変異体
*配列中の下線は野生型の配列と異なる配列であることを示す。
[0018] また、 Flp- FRT組換えシステムは、酵母(Saccharomyces cerevisiae)で発見された組 換え機構を応用したもので、 Cre-Loxシステムと同様に、組換えが生じる場である 48 塩基力もなる FRT配列と、組換え反応を担うリコンビナーゼである Flpと 、う 2つの要素 カゝら成る。本組換えシステムでも、脱落反応により FRT配列で挟まれた DNA配列を除 V、たり、逆に FRT配列に FRT配列を持つ環状 DNAを挿入することが可能である。
[0019] このように、ー且、特定の配列を染色体 DNAに挿入することができれば、上述の組 換えシステムを利用することにより、特定の領域 (組換え反応が生じる場の配列上)で の遺伝子の挿入、脱落或いは置換反応を引き起こすことが可能となっている。
[0020] 非特許文献 1: Richardson RDら、 Stem Cells, 20, 105-118, 2002
非特許文献 2 : Finnegan, Curr. Opin. Genet. Dev., 2, 861-867, 1992
非特許文献 3 : Ivies Zら、 Cell, 91, 501-510, 1997
非特許文献 4 :Yant SRら、 Nat. Genet., 25, 35-41, 2000 非特許文献 5 : Sylvia EJら、 Proc. Natl. Acad. Sci. USA, 98, 6759-6764, 2001 発明の開示
発明が解決しょうとする課題
[0021] 前述のように、 Tcl/mariner superfamilyに属するトランスポゾンベクターと Sleeping B eautyを用いるシステムは、細胞の染色体 DNAへの遺伝子導入ベクターの中でも、安 全で導入効率の高いベクターとして利用が進むものと予想される力 以下の問題点 を抱えている。
[0022] 第一の問題点として、トランスポゾン活性により染色体 DNAへの挿入が期待できる 遺伝子サイズには制限があるという点である。報告によれば、トランスポゾンベクター 中で最も遺伝子導入効率の高い Sleeping Beautyを用いるシステムは、挿入対象とな る DNAサイズが大きくなればなるほど、その導入効率は低下し、インサートサイズが 6 kbpを超えると導入効率が極端に低下する(J. Mol. Biol, 302, 93-102, 2000)。遺伝 子を導入する場合、 目的の遺伝子にカ卩えて、その mRNA転写に必要なプロモーター 配列と転写された mRNAの安定ィ匕に必要なポリ A付加シグナル配列が必要である。こ のため、 6kbpというサイズの制限は目的遺伝子の発現を意図する場合、挿入できる 遺伝子の種類が制限されることになる。また、遺伝子によってはコードする数種のぺ プチドが会合してポリマーを形成して初めて活性のあるタンパク質となる場合もあり、 活性を保持したタンパク質を発現させるために数種の発現カセットを挿入することも 必要とされる。さらに、 目的の遺伝子が導入されている細胞或いは動物個体を選別 するために、致死性の薬剤に対する耐性を付与する薬剤耐性遺伝子の発現カセット も同時に挿入する必要がある。このように複数の遺伝子を細胞に導入する場合、一 般的には必要な数の遺伝子発現カセットをそれぞれ別々のプラスミドに挿入して、同 時に細胞内に導入するという手法がとられる。しかし、トランスポゾンベクターの場合、 染色体 DNA内に挿入される発現カセットは 1コピーと言われており、その挿入機構か ら考えると、同時に細胞内に導入してもいずれか一つの発現カセットしカゝ挿入できな い可能性もある。
[0023] さらに、例えばフォンビルブランド因子や血液凝固第 8因子のように、組換え医薬品 として有用なものの中には、一つのタンパク質をコードする遺伝子だけでも 8kbpを超 えるものも存在する(Science, 228, 1401-, 1985、 Nature, 312, 330-,)。このような巨 大な遺伝子を発現させようとする場合、先に述べたように複数のベクターに分けて遺 伝子を導入することは不可能であり、導入できる遺伝子サイズに 6kbpと ヽぅ制限が存 在するのは致命的である。
[0024] 第二の問題点として、トランスポゾンベクターによって挿入された遺伝子が染色体 D NA上を転移する可能性の存在である。細胞或 、は個体への遺伝子導入のためのベ クタ一要件として、第一に導入効率が高いこと、第二に導入された遺伝子が安定的 に発現されること、そして第三に安全であることが必要と考えられる。これらの要件の 中で、オンコレトロウイルスやレンチウィルスなどのウィルスベクターに比較してトラン スポゾンベクターが勝るものは、ウィルス粒子形成の心配がなぐ安全であるという点 である。トランスポゾンベクターは、その存在が知られるきっかけとなった染色体 DNA 上を転移する性質を利用するベクターであることから、導入後は染色体 DNA上を転 移する活性を保持したままの状態で存在することになる。仮に、この活性を維持したト ランスポゾンベクターがその発現産物である糸且換えたんぱく質中に混入するおそれ があるとすれば、安全性の面での懸念が生じ、ウィルスベクター同様その利用は限定 的なものになると考えられる。
[0025] 先に述べたように、トランスポゾンとして転移するには、 TIR配列とともにトランスポゼ ースの発現が必要である。したがって Iviesらが行ったように、 TIR配列で揷まれた導入 すべき目的の遺伝子を有するトランスポゾンベクターとトランスポゼースの発現カセッ トを挿入したプラスミドを別々にして導入することで、 目的の遺伝子のみを挿入した動 物細胞或いは個体を選別することは可能である。一般的に考えれば、 DNAの転移に 必要な因子のうちの一つ(トランスポゼース)を除くことで転移能を失わせることができ ると考免られる。
[0026] DNA型トランスポゾンの特徴として、自立的転移能を有するトランスポゾン (活性の あるトランスポゼースを発現するトランスポゾン)が同じゲノム内に存在すれば、非自 立的トランスポゾン(トランスポゼース活性を消失したトランスポゾン)も転移する性質 を有する。言い換えれば、活性のあるトランスポゼースの供給さえあれば、トランスポ ゾンは転移する能力を保持していると言える。実際、 hATファミリーに属する非自立型 の Tollトランスポゾンを導入したメダカにおいて、ゲノム内での転移が明らかとなって いる(蛋白質核酸酵素 49,2103-2110, 2004)。この転移再開の原因は明らかではな V、が、 1)宿主自身がゲノム内に有する不活性ィ匕されたトランスポゼースが自然に生じ た突然変異により活性体に再構築された、 2)転移活性を有するトランスポゾンが他の 種から侵入した、などが考えられている。活性のあるトランスポゾンの他種力もの侵入 に関しては、 hATファミリーに属する hoboのトランスポゼースが同じ hATファミリーに属 する Hermesを転移させる能力を有すること(Insect Mol. Biol, 8, 359-, 1999)力らも、 十分に起こりうると考えられる。 Sleeping Beautyが属する Tcl/mariner superfamilyにお いて、直接的にこのようなクロス転移反応が証明されているわけではないが、このファ ミリ一のトランスポゾンが種々の動物種に活性のある状態で存在することを考慮すれ ば、本トランスポゾンベクターのゲノム内での再転移の可能性を完全に否定すること はできない(Insect Biochem. Mol. Biol, 34, 121-, 2004) 0
[0027] 上述した機構での再転移の可能性が存在する以上、活性のあるトランスポゼースを 保持して!/、な 、動物細胞或いは個体を単に選別するだけで、導入したトランスポゾン ベクターの再転移を防ぐことはできないと予想される。
[0028] 導入したトランスポゾンベクターの再転移は、染色体 DNA上の位置の変更を意味す ることから、選別により高発現を獲得した動物細胞においては、ポジショナル効果と呼 ばれる発現量の低下を引き起こすと考えられる。一方、動物個体においては導入遺 伝子の発現量への影響に留まらず、再転移された位置によっては個体そのものの生 存にも影響がある。また、発現産物である組換えタンパク質の安全性を評価する上で
、再転移の可能性が存在することは、導入したトランスポゾンベクターの最終産物へ の混入とそのヒト染色体 DNAへの挿入の可能性を否定する必要が生じることを意味 する。この再転移の懸念は、トランスポゾンベクターを遺伝子治療のベクターとして利 用しょうとする場合には、特に大きな障害となることが容易に想像できる。
[0029] 以上述べたように、動物細胞や個体に遺伝子を導入するためのベクターとして、従 来の Sleeping Beautyに代表されるトランスポゾンベクターシステムを利用するには課 題が存在し、単なる外来遺伝子発現細胞の作製に止まらず、組換え医薬品の生産 や遺伝子組換え動物の作出に幅広く利用するには、その課題の克服が切望される。 [0030] したがって、本発明の目的は、上述の課題の克服が可能な外来遺伝子を細胞に導 入する為のトランスポゾンベクターの改変体(以下、「改変トランスポゾンベクター」と 称する)を提供することにある。
[0031] また、本発明の他の目的は、上記の改変トランスポゾンベクターを用いて、トランス ポゾン特有のゲノム上を転移する機能を抑え、且つ大きなサイズの外来遺伝子を細 胞に導入する方法を提供することを目的とする。
課題を解決するための手段
[0032] 本発明者らは、上記の課題を解決すべく鋭意研究を進めた結果、トランスポゾン遺 伝子の 5,側 TIR配列と 3,側 TIR配列の間にピューロマイシン耐性酵素遺伝子発現力 セットが挿入された核酸断片を有するトランスポゾンベクターをトランスポゼース発現 プラスミドと共に HeLa細胞に導入した場合の形質転換効率 (細胞導入効率)と、 5'側 TIR配列又は 3 '側 TIR配列の少なくとも一方の DR領域の間に Lox配列を挿入した前 記核酸断片を有する改変トランスポゾンベクターを同プラスミドと共に同細胞に導入し た場合の形質転換効率とが同じであることを見出した。
[0033] 更に、改変トランスポゾンベクターが導入された HeLa細胞に、両末端に Lox配列を 付加したクラゲ緑色蛍光蛋白(GFP) Zアミノグリコシド 3,ホスホトランスフェラーゼ (ne 0)遺伝子発現カツセトを有するプラスミド (以下、「ドナープラスミド」と称することもある )を Cre遺伝子発現プラスミドと共に導入したところ、ピューロマイシン耐性酵素遺伝子 と GFPZneo遺伝子が置換されることを見出し、かつ置換した遺伝子はトランスポゼー ス存在下でも転移活性が認められないことを見出し、本発明を完成するに至った。
[0034] したがって、本発明は、以下に示す改変トランスポゾンベクター及びこれを用いて外 来遺伝子を発現させる方法並びに該方法により得られる形質転換細胞及び遺伝子 組換え動物を提供するものである。
1.下記 (ィ)〜(口)又は (ィ)〜 (ハ)の特徴を有する核酸断片が挿入された改変トラ ンスポゾンベクター:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する
DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され (ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
2.トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1及 び 2である上記 1の改変トランスポゾンベクター。
3.組み換え反応が生じる場の配列が Lox配列又は FRT配列である上記 1又は 2の何 れかの改変トランスポゾンベクター。
4.該 Lox配列の少なくとも一個が変異型の Lox配列である上記 3の改変トランスポゾ ンベクター。
5.該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列 力もなる群より選択される上記 4の改変トランスポゾンベクター。
6. LoxP配列、 Lox71配列、 Lox66配列、 Lox2272及び Lox511配列がそれぞれ配列番 号 3、 4、 5、 6及び 7である上記 4又は 5の何れかの改変トランスポゾンベクター。
[0035] 7.下記 (ィ)〜 (ハ)の特徴を有する核酸断片が挿入された改変トランスポゾンベクタ 一を細胞に導入し、得られる外来遺伝子発現細胞を培養し、ついで発現された外来 蛋白を回収することからなる外来蛋白の生産方法:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
[0036] 8.下記(1)〜 (4)の工程により得られる外来遺伝子発現細胞を培養することからなる 外来蛋白の生産方法:
(1)下記 (ィ)〜(口)又は (ィ)〜 (ハ)の特徴を有する核酸断片が挿入された改変トラ ンスポゾンベクターを細胞に導入する工程、
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列力もなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在す る DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入さ れた;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された;
(2)得られる形質転換細胞をクローユングする工程、
(3)両末端又は何れか一方の末端に前記(1) (口)と同じ組換え反応が生じる場の配 列を付加した外来遺伝子発現カセットを前記クローン化形質転換細胞に導入するェ 程、及び
(4)外来遺伝子発現細胞を培養する工程。
9. トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1及 び 2である上記 7な!、し 8の何れかの方法。
10.組み換え反応が生じる場の配列が Lox配列又は FRT配列である上記 7な 、し 9 の何れかの方法。
11.該 Lox配列の少なくとも一個が変異型の Lox配列である上記 10の方法。
12.該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配 列からなる群より選択される上記 11の方法。
13. LoxP配列、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列がそれぞれ 配列番号 3、 4、 5、 6及び 7である上記 11又は 12の何れかの方法。
14.前記改変トランスポゾンベクターとトランスポゼース遺伝子発現プラスミドとを一緒 に細胞に導入することを特徴とする上記 7ないし 13の何れかの方法。
15. トランスポゼース遺伝子発現カセットが組み込まれた前記改変トランスポゾンべク ターを用いること特徴とする上記 7な 、し 13の何れかの方法。
16.前記外来遺伝子発現カセットと Cre遺伝子発現プラスミドとを一緒に導入すること を特徴とする上記 8ないし 15の何れかの方法。
17. Cre遺伝子発現カセットが組み込まれた前記外来遺伝子発現カセットを用いるこ とを特徴とする上記 8ないし 15の何れかの方法。
18.該外来遺伝子発現細胞が、 HeLa細胞、 Vero細胞、 CHO細胞、 293細胞、 BHK 細胞及び SP2/0細胞力 なる群より選択された細胞である上記 7ないし 17の何れか の方法。
19.下記 (ィ)〜(口)若しくは (ィ)〜 (ハ)の特徴を有する核酸断片を有する改変トラ ンスポゾンベクターが組み込まれた形質転換細胞、又は当該形質転換細胞に、更に 両末端又は何れか一方の末端に下記 (口)と同じ組換え反応が生じる場の配列を付 加した外来遺伝子発現カセットが組み込まれた形質転換細胞:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
20.外来遺伝子を発現する上記 19の形質転換細胞。
21. トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1 及び 2である上記 19又は 20の何れかの形質転換細胞。
22.組み換え反応が生じる場の配列が Lox配列又は FRT配列である上記 19な 、し 2 1の何れかの形質転換細胞。
23.該 Lox配列の少なくとも一個が変異型の Lox配列である上記 22の形質転換細胞
24.該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配 列からなる群より選択される上記 23の形質転換細胞。
25. LoxP配列、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列がそれぞれ 配列番号 3、 4、 5、 6及び 7である上記 23又は 24の何れかの形質転換細胞。
26.該外来遺伝子発現細胞が、 HeLa細胞、 Vero細胞、 CHO細胞、 293細胞、 BHK 細胞及び SP2/0細胞力もなる群より選択された細胞である上記 19ないし 25の何れか の形質転換細胞。
27.個体ィ匕可能な細胞である上記 19な 、し 25の何れかの形質転換細胞。
28.該個体ィ匕可能な細胞が、哺乳類、鳥類、魚類及び非脊椎動物由来の受精卵、 胚盤胞期までの卵割細胞、 ES細胞、 EG細胞並びに始原生殖細胞 (PGC)からなる群 より選択される上記 27の形質転換細胞。
29.下記 (ィ)〜 (ハ)の特徴を有する核酸断片を有する改変トランスポゾンベクター が組み込まれた外来遺伝子を発現する個体化可能な形質転換細胞、又は 下記 (ィ)〜(口)若しくは (ィ)〜 (ハ)の特徴を有する核酸断片を有する改変トランスポ ゾンベクターが組み込まれた個体ィ匕可能な形質転換細胞に、更に両末端又は何れ か一方の末端に下記 (口)と同じ組換え反応が生じる場の配列を付加した外来遺伝 子発現カセットが組み込まれた、外来遺伝子を発現する個体化可能な形質転換細 胞を用いて作出された遺伝子組換え動物:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する
DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
30. トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1 及び 2である上記 29の遺伝子組換え動物。
31.組み換え反応が生じる場の配列が Lox配列又は FRT配列である上記 29又は 30 の何れかの遺伝子組換え動物。
32.該 Lox配列の少なくとも一個が変異型の Lox配列である上記 31の遺伝子組換え 動物。
33.該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配 列からなる群より選択される上記 32の遺伝子組換え動物。
34. LoxP配列、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列がそれぞれ 配列番号 3、 4、 5、 6及び 7である上記 32又は 33の何れかの遺伝子組換え動物。
35.該個体ィ匕可能な細胞が、哺乳類、鳥類、魚類及び非脊椎動物由来の受精卵、 胚盤胞期までの卵割細胞、 ES細胞、 EG細胞並びに PGCからなる群より選択される上 記 29な!、し 34の何れかの遺伝子組換え動物。
36. -ヮトリである上記 29ないし 35の何れかの遺伝子組換え動物。 発明の効果
[0039] 本発明の方法によれば、細胞への高い導入効率を保持した改変トランスポゾンべク ターが提供される。本発明の改変トランスポゾンベクターは、トランスポゾン遺伝子の 5 ,側 TIR配列又は 3,側 TIR配列の少なくとも一方に Lox配列や FRT配列等の組換え反 応を生じる場の配列が挿入されているため、用いた糸且換え反応が生じる場の配列に 応じた組換えシステムを利用することで、本来、トランスポゾンベクターが有する細胞 染色体上を転移する機能を破壊することが可能である。また、本発明の改変トランス ポゾンベクターは、制限酵素認識部位を有するので、この部位に外来遺伝子を挿入 することにより、細胞或いは動物個体に該外来遺伝子を発現させることができる。
[0040] また、本発明の方法によれば、ー且、改変トランスポゾンベクターを細胞に導入した 後、組換えシステムとして Cre-Lox組換えシステムを用いることにより、変異 Lox配列を 利用することが可能となり、外来遺伝子を別の遺伝子に効率的に置換挿入する方法 が提供される。これにより、トランスポゾンベクターを用いた場合には困難であった 6kb Pを超える大きなサイズの遺伝子を細胞の染色体 DNA内の特定の部位に効率的に挿 入することが可能となる。故に、効率的に外来遺伝子を置換することができ、高発現 率を有する外来蛋白産生細胞又は外来蛋白産生遺伝子組換え動物を従来よりも効 率よく取得することができる。
図面の簡単な説明
[0041] [図 1]図 1は、 Tcl/mariner superfamilyに属する Tc3タイプのトランスポゾンの基本構造 を示す。
[0042] [図 2]図 2は、 Cre-Loxシステムでの組換え様式を示す。
[0043] [図 3]図 3は、 Cre-Loxシステムの主な利用法を示す。
[0044] [図 4]図 4は、トランスポゾンベクター IR/DR-Nの構造を示す。
[0045] [図 5]図 5は、 IR/DR-Nに制限酵素認識配列を付カ卩した IR/DR-NTA-Ad/pSPの構造 を示す。
[0046] [図 6]図 6は、改変トランスポゾンベクターの細胞への導入後に遺伝子置換反応を起 こすために導入するドナープラスミド pLx/GFP/neo/pA (-)を示す。
[0047] [図 7]図 7は、トランスポゼース遺伝子の塩基配列を示す。 [0048] [図 8]図 8は、トランスポゼースのアミノ酸配列を示す。
[0049] [図 9]図 9は、 TIR配列の単離と修復の手順を示す。
[0050] [図 10]図 10は、トランスポゾンベクター IR/DR-Nの構築手順を示す。
[0051] [図 11]図 11は、トランスポゾンベクター IR/DR-Nに制限酵素認識配列を付カ卩した IR/
DR-NTA-Ad/pSPの構築手順を示す。
[0052] [図 12]図 12は、 IR/DR- NTA- Ad/pSPのトランスポゾン活性確認用プラスミド IR/DR- p uroの構築手順を示す。
[0053] [図 13]図 13は、 5 '側 TIR配列内に変異 Lox71配列を挿入した改変トランスポゾンべク ター IR/DR- Ad/5 ' Lxpの構築手順を示す。
[0054] [図 14]図 14は、 3 '側 TIR配列内に LoxP配列を挿入したプラスミド 3 ' IR/DR-Lxp/pSP の構築手順を示す。
[0055] [図 15]図 15は、 3 '側 TIR配列内に LoxP配列とポリ A付加シグナル配列を挿入したプ ラスミド 3 ' IR/DR- LxpA/pSPの構築手順を示す。
[0056] [図 16]図 16は、 5'側 TIR配列内に変異 Lox71配列を挿入し、 3'側 TIR配列内に LoxP 配列を挿入した改変トランスポゾンベクター IR/DR-Ad/LxDb及び 5 '側 TIR配列内に 変異 Lox71配列を挿入し、 3 '側 TIR配列内に LoxP配列とポリ A付加シグナル配列を 挿入した改変トランスポゾンベクター IR/DR-Ad/LxpADbの構築手順を示す。
[0057] [図 17]図 17は、 DR配列間に Lox配列を挿入した各種改変トランスポゾンベクターの 活性確認用プラスミドを示す。
[0058] [図 18]図 18は、 Cre-Loxシステムによる遺伝子置換に使用するドナープラスミド pLx/
GFP/neo/pA (-)の構築手順を示す。
[0059] [図 19]図 19は、トランスポゾン活性評価用プラスミド IR/DR-puro/LxpADbを導入して 得た HeLa/puroの Cre- Loxシステムによる遺伝子置換によって得た HeLa/neoのサザ ンブロット解析結果を示す。
[0060] [図 20]図 20は、サザンブロット解析により推定された HeLa/neoの作製過程を図示し たものである。
[0061] [図 21]図 21は、 Genome walking法により明らかとなった HeLa/puro及び HeLa/neoの 5
'及び 3 '側の TIR内に存在する Lox配列近傍の塩基配列解析結果を示す。 [0062] [図 22]図 22は、 Genome walking法により明ら力となった HeLa/neoに導入した改変トラ ンスポゾンベクターの染色体 DNA中での挿入位置を示す。
[0063] [図 23]図 23は、改変トランスポゾンベクター IR/DR-puro/LxpADbの単独導入によつ て得られた単独 ZHeLa/puroと、その Cre_Loxシステムによる遺伝子置換によって得 られた単独 ZHeLa/neoの作製過程を図示するものである。
[0064] [図 24]図 24は、 Cre-Loxシステムにより TIR配列内の内側の DR配列を除くことによつ て TIR配列を破壊した改変トランスポゾンベクターの構築手順を示す。
[0065] [図 25]図 25は、 IR/DR- GFP/neo/LxpADbの構築手順を示す。
[0066] [図 26]図 26は、 IR/DR- GFP/neo/LxpADb導入後 G418セレクションにより増殖してき た PGCの GFP発現と抗 SSEA-1抗体に対する反応性を確認した結果を示す。
[0067] [図 27]図 27は、 IR/DR- GFP/neo/LxpADb導入 PGCの注入 1日後の胚の生殖巣原基 領域に注入した PGCが集積して 、ることを示す。
[0068] [図 28]図 28は、 IR/DR- GFP/neo/LxpADb導入 PGC注入胚より孵化したヒナの生殖 巣に GFPが発現して 、ることを示す。
発明を実施するための最良の形態
[0069] 本発明の改変トランスポゾンベクターは、 2つの TIR配列を持つトランスポゾンベクタ 一であって、その 2つの TIR配列間に外来遺伝子発現用の遺伝子領域 (遺伝子発現 カセット)を挿入出来るように適当な制限酵素認識部位を持つ構造を有する。本発明 は、該トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在す る DR領域の少なくとも一方の DR領域の間に Lox配列等の組換え反応を生じる場の配 列が挿入された該 5 '側 TIR配列と 3 '側 TIR配列カゝらなる核酸断片を有する改変トラン スポゾンベクター、該改変トランスポゾンベクターを用いて細胞に外来遺伝子を発現 させる方法、該改変トランスポゾンベクターの導入により得られる外来遺伝子を保持し た個体化可能細胞を利用して作出した遺伝子組換え動物に外来遺伝子を発現させ る方法、さらには該改変トランスポゾンベクターを、ー且、個体化可能細胞を含む細 胞に導入した後、 Cre-Lox等の組換えシステムにより外来遺伝子発現カツセトを挿入 、置換又は薬剤マーカー等の不必要な遺伝子の脱落により 5 '或いは 3 '側の TIR配 列の少なくとも一方を破壊することからなる、外来遺伝子の発現方法により特徴付け られる。
[0070] 1. トランスポゾンベクター (iR/DR-NTA-Ad/pSP)
トランスポゾンベクターに使用するトランスポゾンは挿入活性のあるものであれば動 物種を問わずどの様なものでも使用可能である力 望ましくは一つの TIR配列内に D Rを 2つ有するタイプのトランスポゾン、例えば Tc3タイプに属するトランスポゾンが望ま しい。その好適な例として、サケ由来のトランスポゾンが挙げられる。本発明のベクタ 一には、この 2つの TIR配列間に外来遺伝子を発現させるための遺伝子発現カセット が挿入できるように適当な制限酵素認識部位を付加して 、る。
[0071] (1)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列の単離
トランスポゾン遺伝子の 5,側 TIR配列及び 3,側 TIR配列の単離は、トランスポゼース 遺伝子を単離したときと同じ手法を用いればよい。この場合、プライマーとして、 A.D. Radiceら(Mol. Gen. Genet. 244, 606-, 1994)の報告に基づき合成されたプライマー (配列番号 8)が用いられる。該プライマーを用いて PCRを行うことにより、 5'側 TIR配 列と 3'側 TIR配列の両方の配列を含む不活ィ匕された約 1.6kbpのトランスポゾン遺伝 子が増幅される。ー且、プラスミド (pCR2.1)にクローユングした後、制限酵素 EcoRIと Acclで消化し、約 0.4kbpと約 1.2kbpの DNA断片をそれぞれクローニングベクター pSP 72 (プロメガ社)に再クローユングする。こうして 5'側 TIR配列を含むプラスミド (5' Rg/p SP)及び 3,側 TIR配列を含むプラスミド (3, Rg/pSP)が得られる。
[0072] 次に、これらの TIR配列は Iviesら(Cell, 91, 501-, 1997)が報告した Tanichthys albo nubes (日本名;ァカヒレ)由来の TIR配列(EMBLZGenBank accession No丄 48685)と 比較され、 TIR配列に違いがあれば、同じ塩基配列となるように修復される。 Iviesら (C ell, 91, 501-, 1997)が報告した TIR配列と上記 5' Rg/pSP及び 3' Rg/pSPに変異が存 在する場合には、 TIR配列の修復が必要である。
[0073] 本発明者らの 5'側 TIR配列の修復は、例えば以下のように行われる。ー且、 IR/DR rFl (配列番号 9)と IR/DR rRl (配列番号 10)のプライマーを用いた PCRにより約 0.3kb pの DNA断片を増幅し、プラスミド (pCR2.1)にクローユングした後、制限酵素 EcoRIと Hindlllで消化し、予め同じ制限酵素で消化後、脱リン酸化 (BAP)処理した 5' Rg/pSP に挿入して 5' RgDR/pSPを構築する。次いで、これを铸型として、修復プライマー IR/ DR-5, /Fl (配列番号 11)と IR/DR-5, /Rl (配列番号 12)の組合せ、及び IR/DR-5, /F 2 (配列番号 13)と IR/DR-5' /R2 (配列番号 14)の組合せによる PCRを行い、約 lOObp と約 160bpの DNA断片を得る。これらを等量混合し、変性反応(70°C、 10分間)後、室 温に戻るまで徐々に冷却することによりアニーリングする。両 DNA断片の相同配列部 分でアニーリングした DNAを铸型として、先に述べたプライマー IR/DR-5' /Flと IR/D R-5, /R2を用いて再度 PCRを行 、、得られる約 240bpの DNA断片をプラスミド(pCR2. 1)にクロー-ングする。これを制限酵素 Milと Hindlllで消化し、予め同じ制限酵素で 消化後、 BAP処理した 5' RgDR/pSPに挿入し、 5'側 TIR配列を有するプラスミド 5' IR/ DR- Nを得る。
[0074] 3,側 TIR配列の修復は、以下のとおり行われる。先ず、 3, Rg/pSPを铸型として、修 復プライマー IR/DR rF2 (配列番号 15)と IR/DR rR2 (配列番号 16)の組合せ、及び IR /DR rF3 (配列番号 17)と IR/DR rR3 (配列番号 18)の組合せによる PCRを行 、、各々 約 200bpの DNA断片を増幅し、これらを等量混合して上述と同様にアニーリング処理 する。この DNAを铸型として、先のプライマー IR/DR rF2と IR/DR rR3を用いて再度 P CRを行い、約 370bpの DNA断片を得、プラスミド(pCR2.1)にクローユングする。これを 制限酵素 EcoRIと Msdで消化した後、予め同じ制限酵素で消化後、 BAP処理した 3' R g/pSPに挿入して 3,側 TIR配列を有するプラスミド 3, RgDR/pSPを構築する。このよう にして修復された 5 '側 TIR及び 3 '側 TIRの DR領域の塩基配列は、 3 '側 TIRの内側に 存在する DRの 1塩基を除き Tanichthys albonubes (日本名;ァカヒレ)由来の DR領域と 同じであり、それぞれ配列番号 19及び配列番号 20記載の配列を有する。
[0075] (2)トランスポゾンベクター (iR/DR-NTA-Ad/pSP)の構築
先ず、 5' IR/DR-Nを制限酵素 Hindlllと EcoRVで消化して得られる 5'TIR配列を含む DNA断片を、制限酵素 Hindlllと PvuIIで消化後、 BAP処理した、 3 ' TIR配列を含む 3' R gDR/pSPに挿入することによって、 5'側と 3'側の両方の TIR配列を有する IR/DR-N ( 図 4)を構築する。
[0076] 次に IR/DR-Nの Hindlll切断部位に数種の制限酵素認識部位を有するアダプター を挿入する為に以下の処理が行われる。先ず、 5'末端をリン酸ィ匕したプライマー 5' IR /DR-AdF (配列番号 21)と 5, IR/DR-AdR (配列番号 22)を等量混合し、アニーリング 処理を行うことにより、両プライマーがアニーリングしたアダプター 5' IR/DR-Adを得る 。同様にして 3 ' IR/DR-AdF (配列番号 23)と 3 ' IR/DR-AdR (配列番号 24)をァニーリ ングしたアダプター 3' IR/DR-Adを得る。次いで、 5' IR/DR-Adと 3' IR/DR-Adを等量 混合し、 DNA Ligation Kit (TaKaRa社)を用いて 16°C、 30分反応した後、エタノール 沈殿法により両アダプターが結合した DNA断片を回収する。これを制限酵素 Hindlll で消化し、先に構築した IR/DR-Nの Hindlll部位に挿入して IR/DR-N-Adを構築する
[0077] 更に、 TIR配列両末端に構築に必要な制限酵素認識部位を付加するために以下 の処理が行われる。 IR/DR-N-Adを A11IIで消化し、 pSP72ベクター部分を含む約 2.5k bpの DNA断片と約 630bpの DNA断片を回収する。 2.5kbpの DNA断片については、 D NA Ligation Kit (TaKaRa社)を用いて環状化した後、これを铸型として、 5,IR/DRTA- Fs (配列番号 25)と 3, IR/DRTA-R (配列番号 26)のプライマーを用いて PCRを行 、、 5 ,側及び 3'側の末端に制限酵素認識部位が付加した約 150bpの DNA断片を増幅す る。これをー且、プラスミドにクローユング (TA- Fs/R)した後、制限酵素 Xholと Bglllで 消化し、予め同じ制限酵素で消化後、 BAP処理したクローユングベクター pSP72に挿 入し TA-Fs/R-pSPを得る。該 TA-Fs/R-pSPを制限酵素 A11IIで消化後、 BAP処理し、 これに先の 630bpの DNA断片を挿入することにより、 5'側と 3'側の 2つの TIR配列の間 に制限酵素(Stul、 NotI、 Sail及び Msd)認識部位、両 TIR配列の外側に制限酵素(Xh olと Bglll)認識部位を有するトランスポゾンベクター IR/DR-NTA-Ad/pSP (図 5)が得ら れる。
[0078] 目的の断片が得られたか否かは適宜、塩基配列を決定することにより行われる。上 記と異なる制限酵素認識部位を挿入する場合は適当な制限酵素認識部位を有する アダプターを挿入すればよい。アダプターを作製する際に目的の制限酵素認識部位 が含まれるように塩基配列を調製した合成 DNAを使用すればょ 、。このように適当な 制限酵素認識部位を持つことにより、様々な遺伝子発現カセットや組換え反応を生じ る場の配列を挿入することが可能となり、後述の TIR配列の破壊等に応用される。
[0079] (3)遺伝子発現カセット
遺伝子発現カセットには特段の制約はな ヽが、外来遺伝子に適当なプロモーター 等の発現調節領域、終止コドン、ポリ A付加シグナル配列、 Kozak配列、分泌シグナ ルなどを付加した核酸断片と定義される。当該発現カセットに含まれるプロモーター は、宿主として用いる動物細胞との組み合わせにより、 SV40初期、 SV40後期、サイト メガロウィルスプロモーター、 -ヮトリ βァクチンなど、最終的に外来遺伝子が発現す るものであれば如何なるものでもよい。好ましくは、 -ヮトリ β—ァクチンプロモーター 系発現プラスミド pCAGG (特開平 3-168087)が使用される。選択や遺伝子増幅のマ 一力一遺伝子として、 neo遺伝子ゃジヒドロ葉酸還元酵素 (dhfr)遺伝子、ピュー口マイ シン耐性酵素遺伝子、グルタミン合成酵素 (GS)遺伝子など一般に知られる選択や遺 伝子増幅用のマーカー遺伝子が利用できる。市販品を利用することも可能である。 動物細胞で発現させる場合は pSI、 pCI-neo (プロメガ社)、酵母では pPICZ (インビトロ ジェン社)、 pESP-Ι (ストラタジーン社)、昆虫細胞では BacPAK6 (クロンテック社)、 pB AC (ノバジェン社)、細菌では pET (ストラタジーン社)などが挙げられる力 これらは、 目的に合わせて適宜使用される。遺伝子発現カセットの挿入例としては、本発明の 実施例にも示したピューロマイシン耐性酵素遺伝子等の薬剤選択マーカーの挿入 や GFP等のマーカー遺伝子発現カセットの挿入、或いは目的とする外来遺伝子の発 現カセット等の挿入が挙げられる。
[0080] 2. 橼 ]^が牛じる場の西 R歹 II 揷人した改 トランスポゾンベクター
(1)改変トランスポゾンベクターの構築
トランスポゾン遺伝子の 5,側及び 3,側 TIR配列に内在する二つの DR領域の間に Lo X配列等の糸且換え反応が生じる場の配列を挿入することにより改変トランスポゾンべク ターが構築される。この位置に挿入することにより、 nativeのトランスポゾンが有する細 胞への高い導入効率を残し、後に Cre-Lox等の組換えシステムを利用することで、そ の転移活性 (細胞染色体上を移動する活性)を消失させることができる。斯かる効果 は、少なくとも、トランスポゾンベクターの 5,側又は 3,側 TIR配列の!/、ずれか一方に Lo X配列等の組換え反応が生じる場の配列を挿入することにより達成される。
[0081] Araki, K.ら(Nucleic Acids Res., 30(19), el03, 2002)や Soukharev, S.ら (Nucleic Ac ids Res., 27(18), e21, 1999)は、変異型の Lox配列を利用することにより、脱落反応よ りも置換や挿入反応を効率的に起こすことができることを明らかにした。このような変 異型の Lox配列については様々な配列が研究されており(G. Lee及び I. Saito, Gene, 55-65, 216, 1998)、いろいろな配列の可能性がある力 既に Lox71配列(配列番号 4)、 Lox66配列(配列番号 5)、 Lox2272配列(配列番号 6) , Lox511配列(配列番号 7 )などが報告されており、その望ましい配列として挙げられる。単に、トランスポゾンの 転移活性のみを消失させることを目的とする場合は、 LoxP配列を含むいずれの組換 え反応が生じる場の配列を使用してもよい。 Cre-Lox組換えシステムでは、前述のよう に様々な変異配列が存在することから、外来遺伝子の置換或いは挿入を効率的に 行うことを目的とする場合は本システムを用いることが好ましい。
[0082] さらに、 Cre-Lox組換えシステムを利用する場合には、トランスポゾンベクターに揷 入される変異型の Lox配列と置換又は挿入反応に利用される変異型の Loxとの組合 せを考慮する必要がある。置換反応を期待する場合、トランスポゾンベクターに Lox71 配列と Lox2272配列、 Lox511配列又は LoxP配列とを挿入し、後の Cre-Lox組換えシ ステムによる置換反応により遺伝子を挿入する側のプラスミド (ドナープラスミド)には L ox66配列と Lox2272配列、 Lox511配列又は LoxP配列とを挿入する組合せを用いるの がよい。中でもトランスポゾンベクターに Lox71配列と Lox2272配列とを、ドナープラス ミドに Lox66配列と Lox2272配列とを持つ組合せが最も効率が良!ヽ。或いは逆に Lox7 1配列をドナープラスミドに、 Lox66配列をトランスポゾンベクターに挿入する組合せも 同様に効率が良い。また、挿入反応を期待する場合には、 Lox71— Lox66の組合せ が最も良い。この場合、 Lox71配列をトランスポゾン側に、 Lox66配列をドナープラスミ ド側に挿入してもよぐまたその逆であってもよい。
[0083] 上述した変異 Lox配列の存在により、効率的に遺伝子を置換、挿入するには Cre-L ox組換えシステムが最良であることから、以下には本組換えシステムの利用を前提と しての最良の形態を示すが、 Hp— FRT等の他の組換えシステムも利用可能である。
[0084] Lox配列が挿入された改変トランスベクターは、トランスポゾン遺伝子の 5,側 TIR配 列又は 3 '側 TIR配列を有する核酸断片を铸型として、 Lox配列が挿入されたプライマ 一を用いて PCRを行うことにより構築できる。より具体的には、例えば、 IR/DR-NTA-A d/pSPを铸型として、 SP6プライマー(配列番号 27)と Lox71配列を有するプライマー Ps /Lx71R (配列番号 28)を用いて PCRを行い、約 200bpの DNA断片を得、 この DNA断 片を TOPO ΤΑ Cloning kit (INVITROGEN社)を用いてー且クローニングした後、制 限酵素 PshAIと Xholで消化し、予め同じ制限酵素で消化後、 BAP処理をした IR/DR- NTA-Ad/pSPに挿入することにより、 5,側 TIR配列に内在する 2つの DR配列の間に Lo x71配列が挿入された改変トランスポゾンベクター IR/DR-Ad/5, Lxpが構築される。
[0085] 3,側 TIR配列に内在する 2つの DR配列の間に LoxP配列が挿入されたトランスポゾン ベクター 3,IR/DR- Lxp/pSPは、 IR/DR- NTA- Ad/pSPを制限酵素 Sailと Bglllで消化し 、予め同じ制限酵素で消化後、 BAP処理をした pSP72 (プロメガ社)にクローユングし て 3' IR/DR-Ad/pSPを構築し、これを铸型として、 SP6プライマー(配列番号 27)と Lox P配列を挿入したプライマー Af/LxpR (配列番号 29)を用いて PCRを行 、、 3,側 TIR配 列内に LoxP配列が付カ卩された約 400bpの DNA断片を得、この DNA断片を TOPO TA Cloning kit (INVITROGEN社)を用いてー且クローニングした後、制限酵素 A11IIと Sail で消化し、予め同じ制限酵素で消化後、 BAP処理をした 3' IR/DR-Ad/pSPに挿入す ることにより得ることがでさる。
[0086] トランスポゾンの 5 '側 TIR配列と 3 '側 TIR配列の両方に Lox配列を挿入する場合は、 IR/DR-Ad/5, Lxpの 3,側 TIR配列部分を 3, IR/DR-Ad/pSPと入れ替えることで構築可 能である。例えば、 3' IR/DR-Lxp/pSPを制限酵素 Bglllと Sailで消化し、予め同じ酵素 で消化後、 BAP処理した IR/DR-Ad/5' Lxpに挿入することにより、 5'側 TIR配列内に 変異 Lox配列(Lox71)、 3'側 TIR配列内に LoxP配列を有する改変トランスポゾンべク ター IR/DR-Ad/LxDbを構築することができる。
[0087] また、動物細胞において外来遺伝子の安定的な発現には翻訳領域の下流にポリ A 付加シグナル配列が必要である。逆に、ポリ A付加シグナル配列がなければ、遺伝子 より転写される mRNAは不安定となり、結果的に最終産物である蛋白質の発現が低下 する。この原理を利用して、例えば相同組み換えにおいて、用いる薬剤選択マーカ 一遺伝子の下流にポリ A付加シグナル配列を連結せずに細胞に導入し、 目的の位 置に挿入されたときにのみ薬剤マーカー遺伝子の下流にポリ A付加シグナル配列が 存在するように設計し、相同組み換えを起こした細胞を効率よく選択する手法、ポリ A トラップ法が開発されている。先に述べた変異 Lox配列の利用に加え、この手法を応 用することでより置換効率の高い改変トランスポゾンベクターの構築が可能である。こ の目的のために、 3'側 TIR配列に挿入された Lox配列の下流にポリ Aシグナル配列を 付カロすることちできる。
[0088] このような改変トランスポゾンベクターは、例えば、 3' IR/DR-Lxp/pSPを铸型として、 SP6プライマーと LoxP配列の下流にゥシ成長ホルモン由来のポリ A付加シグナル配列 が付カ卩したプライマー Af/LxpAR (配列番号 30)を用いて PCRを行 、、 3 '側 TIR配列内 に LoxP配列及びその LoxPの下流にポリ A付カ卩シグナル配列が付カ卩した約 400bpの D NA断片を増幅'回収し、この DNA断片を TOPO TA Cloning kit (INVITROGEN社)を 用いてー且クローニングした後、制限酵素 A11IIと Sailで消化し、予め同じ制限酵素で 消化後、 BAP処理した 3' IR/DR-Lxp/pSPに挿入することにより得ることができる(3' IR /DR- LxpA/pSP)。さらに、 3' IR/DR- LxpA/pSPを制限酵素 Bglllと Sailで消化し、予め 同じ酵素で消化後、 BAP処理した IR/DR-Ad/5' Lxpに挿入することにより、 5'側 TIR 配列内に変異 Lox配列(Lox71)を有し、 3'側 TIR配列内に LoxP配列とその下流にポ リ A付カ卩シグナル配列を有する改変トランスポゾンベクター IR/DR-Ad/LxpADbを構 築することができる。
[0089] 本発明の改変トランスポゾンベクター IR/DR-Ad/5, Lxp、 IR/DR-Ad/LxDb及び IR/ DR-Ad/LxpADbは、数種の制限酵素認識部位を有するので、この制限酵素切断部 位に適当な外来遺伝子発現カセットを挿入することにより、外来遺伝子発現プラスミ ドを構築することができる。斯かる外来遺伝子発現プラスミドを適当な方法により個体 化可能な細胞を含む種々の細胞に導入することにより、外来蛋白産生細胞及び外来 蛋白産生動物を作製することができる。ここで、外来遺伝子発現カセットは、外来遺 伝子に適当なプロモーター、終止コドン、ポリ A付加シグナル配列、 Kozak配列、分泌 シグナルなどを付加した核酸断片と定義される。これを適当な細胞に導入すること〖こ より、外来遺伝子を該細胞内に発現させることができる。このような核酸断片は、外来 遺伝子を、既に市販されている種々の発現ベクター(又は発現プラスミド)に添付の プロコールに従って挿入した後、適当な制限酵素を用いて当該核酸断片部分を切り 出すことにより容易に調製することができる。例えば、市販品として、動物細胞で発現 させる場合は pSI、 pCI-neo (プロメガ社)、酵母では pPICZ (インビトロジェン社)、 pESP -1 (ストラタジーン社)、昆虫細胞では BacPAK6 (クロンテック社)、 pBAC (ノバジェン社 )、細菌では pET (ストラタジーン社)などが挙げられる力 これらは、使用目的に合わ せて適宜使用される。
[0090] (2)ドナープラスミド(pLx/GFP/neo/pA(- ))の構築
Cre-Lox組換えシステムを利用した遺伝子置換に用いるドナープラスミドは以下の 方法に従って構築できる。外来遺伝子発現カセットには、その両末端に Lox配列が付 加される。該 Lox配列は、トランスポゾンベクターの 5 '側 TIR配列及び 3 '側 TIR配列に 挿入した Lox配列の 、ずれも使用できる力 Cre-Lox組換えシステムにお 、てより高 V、置換効率を得るには、前述したように Lox71配列 Lox66配列または Lox2272配列 -Lox2272配列の組合せが好まし!/、。
[0091] 具体的には、先ず、 5'側に Xhol認識配列と内部に Lox66配列を有するプライマー L x66/LxP-F (配列番号 31)と 5'側に Bglll認識配列と内部に LoxP配列を有するプライ マー Lx66/LxP-R (配列番号 32)を混合し、铸型となる DNAをカ卩えずに PCRを行い(Lx 66/LxP-Fの 3,側末端の 25塩基と Lx66/LxP-Rの 3,側末端の 25塩基は、互!、に相補 的な配列を有する)、 Lox66配列と LoxP配列力もなる約 120bpの断片を得る。次に、こ の断片の間に、動物細胞用発現べクターpCAGn-mcs-polyA (特願平8— 165249) 力も得られるプロモーターの下流に GFP遺伝子を挿入した発現カセットを挿入する。 さらに、マーカー遺伝子として、 GFP遺伝子の下流にポリ A付加シグナル配列のない neo遺伝子発現カセットを挿入する。こうして、 GFP遺伝子と neo遺伝子を発現すること ができる発現カセットの 5 '側末端に Lox66配列、 3 '側末端に LoxP配列が付加した、ド ナープラスミド pLx/GFP/neo/pA(- ) (図 6)が構築される。
[0092] (3) Cre遺伝子発現プラスミド (pCAGGS/Cre)の構築
Cre-Lox組換えシステムに使用する Cre遺伝子は、上述のドナープラスミドが標的 細胞内に導入された際に、同じ細胞内で機能発現する必要がある。その方法として、 Cre遺伝子を適当な発現ベクターに組み込み、細胞に導入する方法がある。この方 法では、ドナープラスミドと同じプラスミドに Cre遺伝子を保有させる方法と別々のブラ スミドにする方法が実施可能である。さらに Creの RNAを合成して導入する方法、さら には発現蛋白質を直接細胞内に注入する方法でも、 Cre活性を細胞内で発揮させる 方法であれば、本発明の要件を満たす。そのような望ましい Cre遺伝子を動物細胞で 発現させることができるプラスミド(以下、「Cre発現プラスミド」と称することもある)とし て、熊本大学遺伝子実験施設の荒木助教授より供与されたプラスミド pCAGGS/Cre が挙げられる。該 pCAGGS/Creは、文献(Proc. Natl. Acad. Sci. USA, 92, 160-164, 1995)に記載の方法により得られる。簡単には、 pCAGGS発現ベクターの制限酵素 Sa I I認識配列部に Creをコードする遺伝子を挿入することにより得られる。
[0093] 3. トランスポゼース(Transposase)
トランスポゾンベクターとともに使用するトランスポゼースはトランスポゾン活性をトラ ンスポゾンベクターに付与するものであればどの様なトランスポゼースでも使用可能 であるが、トランスポゾンベクターと対になったものが望ましい。トランスポゼースは、ト ランスポゾンベクターが標的細胞内に導入された際に、同じ細胞内で機能発現する 必要がある。その方法として、トランスポゼース遺伝子を適当な発現ベクターに組み 込み、細胞に導入する方法がある。この方法では、トランスポゾンベクターと同じブラ スミドにトランスポゼース遺伝子を保有させる方法と別々のプラスミドにする方法が実 施可能である。さらにトランスポゼース RNAを合成して導入する方法、さらには発現蛋 白質を直接細胞内に注入する方法でも、トランスポゼース活性を細胞内で発揮させ る方法であれば、本発明の要件を満たす。
[0094] (1)トランスポゼース(Transposase)遺伝子の単離
トランスポゼースをコードする遺伝子は、サケでは不活性ィ匕され、発現していないこ とから、組織より抽出したゲノム DNAを出発材料として、 Sambrookらが述べている一 般的な遺伝子糸且換え技術 (Molecular Cloning, A Laboratory Manual Second Edition . Cold Spring Harbor Laboratory Press, N.Y., 1989)に従って調製することができる。 実際には、市販のキットが使用される。例えば、 DNAの抽出には、 Wizard Purification System (プロメガ社)、 ISOTISSUE (-ツボンジーン社)、 DNA Extraction Kit (東洋紡 ;)、 Genomic- tip System (キアゲン社)などが使用される。
[0095] より具体的には、サケの精子由来 DNA (二ツボンジーン社)を铸型として LA-Taq (Ta KaRa社)及び添付の試薬を用いて PCRを行 、、トランスポゼース遺伝子の増幅が行 われる。 PCRのプライマーには合成 DNAが使用される。例えば、サケのトランスポゼー ス遺伝子(EMBLZGenBank accession No. L12206)の塩基配列に基づく 5,側プライ マー(配列番号 33)及び-ジマスのトランスポゼース遺伝子(EMBLZGenBank acces sion No. L12209)の塩基配列に基づく 3 '側プライマー(配列番号 34)を用いることに より、約 lkbpのトランスポゼース遺伝子を増幅することができる。 PCRは、反応溶液を 、通常の PCR条件下(96°C、 20秒間の変性反応、 68°C、 1.5分のアニーリング ·伸長反 応を 40サイクル)でサーマルサイクラ一 PC-800 (アステック社)に力けることにより行わ れる。
[0096] 増幅した DNA断片は、ー且、 TOPO TA Cloning kit (INVITROGEN社)を用いてプ ラスミド (PCR2.1)にクローユングされる。 DNA断片の全塩基配列は、アプライドバイオ ンスァムス (ABI)社の BigDye Terminator Cycle sequencing FS Ready Reaction Kit 及び ABI PRISM 310 Genetic Analyzerを用いて決定することができる。サケ由来のト ランスポゼースは、アミノ酸変異の蓄積により転移活性を有しな 、不活性型で存在し ているため、得られた DNA断片の塩基配列から予測されるアミノ酸配列は、 Iviesら(C ell, 91, 501-, 1997)により報告された転移活性を有するトランスポゼース(Sleeping B eauty Transposase;以下、「SBトランスポゼース」と称する)のアミノ酸配列と比較され る。 SBトランスポゼースのアミノ酸配列と異なるアミノ酸配列は、 SBトランスポゼースの アミノ酸配列と同じ配列になるように修復が行われる。アミノ酸配列の相同性の比較 には、遺伝子情報処理ソフト GENETYX (ゼネティックス社)が用いられる。また塩基配 列の修復には、サイトダイレクテイドミュータジエネシス法を使用するのが一般的であ る。実際には、本技術を応用した Takara社の Site- Directed Mutagenesis System (Mut an- Super Express Km、 Mutan- Express Km、 Mutan- Kなど)、 Stratagene社の QuickC hange Multi Site-Directed Mutagenesis Kit、 QuickChange XL Site-Directed Mutage nesis Kit、 Invitrogen社の GeneTailor Site-Directed Mutagenesis Systemなどの巿販 のキットを用い添付のプロトコールに従って行われる。本発明では、 PCRを利用した 変異導入法(Iviesらの方法: Cell, 91, 501-, 1997)により塩基配列を修復し、 SBトラン スポゼース遺伝子と同じアミノ酸配列をコードする塩基配列を有する核酸断片が挿入 されたプラスミド (SB/pSP)を得た。
[0097] (2)トランスポゼース発現プラスミド pCAGG/SBの構築
こうして得られる SBトランスポゼース遺伝子を適当な発現ベクターに組み込み、当 該発現ベクターを宿主に導入することによって、 SBトランスポゼースを当該宿主に発 現させることができる。 SBトランスポゼースを発現させるための宿主として、外来遺伝 子の発現に常用される細菌、酵母、動物細胞、植物細胞及び昆虫細胞などを使用 することが可能である力 宿主はそれぞれの研究 ·開発目的に合わせて適宜選択さ れる。好ましくは、宿主として動物細胞が使用される。この場合、発現効率を上げるた めに SBトランスポゼースの 5'側に Kozak配列を付加することがある。発現ベクターは、 動物細胞発現用に種々のものが開発 ·市販されて 、るのでこれらの中から適宜選択 して使用すればよい。より具体的には、 SBトランスポゼース遺伝子断片がクローニン グされたプラスミド (SB/pSP)を铸型とし、配列番号 35及び 36記載の合成 DNAを使用 し、 SBトランスポゼース遺伝子を増幅する。これらのプライマーには、 SBトランスポゼ ース遺伝子 5 '側に相当する配列番号 33に Xholと Kozak配列、 3 '側に相当する配列 番号 34に Sail及び Bglllの制限酵素認識部位が付加される。得られた cDNA断片を制 限酵素 Xholと Bglllで消化し、これを予め同じ制限酵素で消化し、脱リン酸化 (BAP)し たクロー-ングベクター pSP72 (プロメガ社)にクローユングして、プラスミド SB/XSを得 る。次いで、動物細胞用発現べクターpCAGn-mcs-polyA(特願平8— 165249)をー 部改変した PCAGGS-DN5を制限酵素 Sailで消化後、 BAP処理し、これに SB/XSを制 限酵素 Xholと Sailで消化して得られるトランスポゼース遺伝子を含む DNA断片を挿入 し、トランスポゼース発現プラスミド (pCAGG/SB)を構築する。
4. トランスポゾンベクターの細胞への導人
(1)動物細胞への各種トランスポゾンベクターの導入
トランスポゾンベクターの動物細胞への導入は以下の方法に従って行われる。動物 細胞として、株化細胞(HeLa、 Vero、 CHO、 293、 BHK、 SP2/0などのミエローマ細胞 など)、初代細胞 (CE、 HUVECなど)、個体化可能細胞 (ES細胞、 EG細胞、受精卵か ら胚盤胞期までの細胞及び始原生殖細胞 (PGC)など)が挙げられるが、 目的に合わ せて選択すればよい。動物細胞への遺伝子導入方法にも特段の制約はなぐ例え ば、リン酸カルシウム法、 DEAEデキストラン法、リポフエクチン系のリボソームを用いる 方法、プロトプラストポリエチレングリコール融合法、エレクト口ポレーシヨン法などが利 用でき、使用する宿主細胞により適当な方法を選択すればよい (Molecular Cloning ( 3rd Ed.), Vol 3, Cold Spring Harbor Laboratory Press (2001))。培養に用いる培地と して、その形状から寒天培地、液体培地、その種類から DMEM、 RPMI、 a MEMなど が使用されるが、細胞や培養目的、或いは培養段階に応じて適宜選択すればよい。 それぞれの培地のプロトコールに従って、血清、アミノ酸、ビタミン、糖、抗生物質、 p H調整用緩衝液などを添加したものが使用される。培地の pHは 6〜8、培養温度は 30 °C〜39°Cの範囲が設定される。培地の量、添加物及び培養時間は、培養スケール に合わせて適宜調節される。
[0099] 例えば、 Optト MEM I Reduced-Serum Medium (INVITROGEN社)に Trans- IT LT1 ( TaKaRa社)を加え攪拌し、室温で 10分間静置した後、トランスポゼース発現プラスミド pCAGGS/SBと遺伝子発現カセットを持ったトランスポゾンベクターをカ卩ぇ攪拌し、更 に室温に 15分間静置する。これを、前日に調製した HeLa細胞に添加し、 37°Cで 6時 間培養した後、上清を除いて 10%のゥシ胎児血清と 1/100量のペニシリン-ストレプトマ イシン液を含む DMEM培地(以下、「10% complete DMEM」と称することもある)2ml/w ellを添カ卩し、 5%CO存在下、 37°Cで 2日間培養する。さらに、使用した選択マーカー
2
遺伝子に合わせた薬剤を含有した培地で培養を継続することにより、薬剤耐性細胞 を得ることができる。得られた細胞は、通常の形質転換細胞と同様に限外希釈法等 によりクローンィ匕される。
[0100] (2)改変トランスポゾンベクター形質転換細胞へのドナープラスミド及び Cre遺伝子 発現プラスミドの導入
前述の改変トランスポゾンベクター形質転換細胞に外来遺伝子を挿入したドナープ ラスミドと Cre遺伝子発現プラスミドを導入することにより、ドナープラスミドの外来遺伝 子発現カセットを Lox配列部分で置換することができる。導入方法は先に述べた方法 を使用することが可能である。選択マーカー遺伝子を使用する場合には、改変トラン スポゾンベクターで使用したマーカーとは別のマーカー遺伝子を使用する必要があ る。交換反応の場合には、選択マーカー遺伝子を使用せずに、薬剤耐性が無くなつ たことで、外来遺伝子の挿入された細胞を選ぶことが可能である。さらに、 GFP遺伝 子を挿入している改変トランスポゾンベクターで形質転換された細胞では GFP遺伝子 の発現が励起波長の紫外線照射により発生する蛍光の観察により容易に確認できる 力 Cre-Lox組換えシステムによって新たな外来遺伝子と置換された場合、その蛍光 発色を失うことから選択することが可能である。例えば、セルソーターを用いた選別に より、容易かつ迅速に置換細胞とそうでない細胞を分けることも可能である。
[0101] Cre-Lox組換えシステムに基づく外来遺伝子発現カセットの置換により、染色体 DN A上に挿入された改変トランスポゾンベクターの 5,側 TIR配列及び 3,側 TIR配列の各 内側 DR領域 1個を含む配列の一部が除去される。これにより、改変トランスポゾンべ クタ一の細胞内染色体 DNAへの導入効率が大きく低下する。この現象は、 5'側 TIR 配列又は 3,側 TIR配列の ヽずれか一方の内側配列が除去された場合も認められる。 したがって、トランスポゾンの導入活性を保持するには、 TIR配列が欠如されることなく 、その特定の場所、具体的には TIR配列内に存在する 2つの DR領域の間に Lox配列 を挿入することが必要である。逆に、 5 '側 TIR配列又は 3 '側 TIR配列の内側の DR領 域の除去により、トランスポゾンとしての宿命である染色体 DNAへの挿入後の転移能 を確実に抑えることが期待される。
[0102] また、 TIR配列の破壊例としては、 Cre-Loxシステムを利用した遺伝子の置換 '挿入 以外に、以下に示す脱落による方法が可能である。例えば、内部の制限酵素認識部 位に LoxP配列等の組換え反応が生じる場の配列を挿入し、これを 5,側 TIR配列又は 3'側 TIR配列のどちらか一方の DR領域の間にもう一つの同じ組換え反応が生じる場 の配列を挿入したトランスポゾンベクター細胞に導入する。得られる形質転換細胞に 、挿入した組換え反応が生じる場の配列に対応した組換え反応を担う酵素の発現プ ラスミド (LoxP配列を利用する場合には Cre)、当該酵素の mRNA又は当該酵素そのも ののうちのいずれかを導入することにより組換え反応が生じる場の配列で挟まれた領 域の脱落反応を引き起こし、結果的に 5,側 TIR配列又は 3,側 TIR配列 、ずれか一方 の 2個存在する DR配列のうちの 1個を取り除くことで、トランスポゾン活性を破壊するこ とがでさる。
[0103] 以下、実施例にて具体例を示すが、本発明はこれら実施例に限られるものではな い。なお、特に断りのない限り、和光純薬、ナカライテスタ社の試薬を使用した。
実施例 1
[0104] 活'! ^を有するトランスポゼース (Trans_posase_)の単離 サケの精子由来 DNA (二ツボンジーン社)を铸型として PCRを行い、トランスポゼース 遺伝子を含む約 lkbpの DNA断片を増幅した。具体的には、 TaKaRa社の LA-Taq及 び添付の試薬を用いて、サケの精子由来 DNA0.5 μ g、 dATP、 dCTP、 dGTP及び dT TP (各 400 μ M)、塩化マグネシウム(2.5mM)、サケのトランスポゼース遺伝子(EMBL /GenBank accession No. L12206)の塩基配列に基づく 5'側プライマー(配列番号 3 3)及び-ジマスのトランスポゼース遺伝子(EMBLZGenBank accession No. L12209 )の塩基配列に基づく 3'側プライマー(配列番号 34) (各 800nM)、 LA-Taq (50 unit/m 1)を含む反応液 25 μ 1を調製し、これをサーマルサイクラ一 PC-800 (アステック社)に かけ、変性反応 (96°C、 20秒)とアニーリング ·伸長反応 (68°C、 1.5分を 40サイクル)を 行った。
[0105] 増幅した DNA断片を TOPO TA Cloning kit (INVITROGEN社)を用いてプラスミド(p CR2.1)にクロー-ングし、そのクローンの DNA断片の全塩基配列をアプライドバイオ ンスァムス (ABI)社の BigDye Terminator Cycle bequenceing FS Ready Reaction Kit 及び ABI PRISM 310 Genetic Analyzerを用いて決定した。
[0106] 遺伝子情報処理ソフト GENETYX (ゼネティックス社)を用いて、得られた DNA断片 の塩基配列から予測されるアミノ酸配列と Iviesら(Cell, 91, 501-, 1997)が報告した S Bトランスポゼースのアミノ酸配列間の相同性を比較した。その結果、予想通り、数多 くの変異が認められたため、 PCRを利用した変異導入法(Iviesらの方法: Cell, 91, 50 1-, 1997)によりそれぞれの変異箇所を SBトランスポゼースと同じアミノ酸配列をコー ドする塩基配列となるように修復した。すなわち、変異箇所を修復するために必要な 各種プライマーを合成し、これらのプライマーを利用して増幅した DNA断片と、変異 の存在する領域とを入れ替えることにより修復後の SBトランスポゼース遺伝子断片が 挿入されたプラスミド (SB/pSP)を得た。該 SBトランスポゼース遺伝子の塩基配列及び アミノ酸配列をそれぞれ図 7と図 8に示す。
実施例 2
[0107] トランスポゼース発現プラスミド DCAGG/SBの構築
PCRにより、 SBトランスポゼースをコードする遺伝子の 5'側に Kozak配列を付カ卩した 後、これを動物用発現ベクターに挿入した。まず、実施例 1で得た SB/pSPを铸型とし て、 5 '側プライマー(配列番号 35)と 3 '側プライマー(配列番号 36)を用いて PCRを行 い、トランスポゼース遺伝子の 5'側末端に制限酵素 Xholの認識配列と Kozak配列、 3 ,側末端に制限酵素 Sail及び Bglllの認識配列が付加した DNA断片を増幅した。 PCR は、実施例 1に準じて行った。これを制限酵素 Xholと Bglllで消化後、同じ制限酵素で 消化して脱リン酸化 (BAP)処理したクローユングベクター pSP72 (プロメガ社)に挿入 した(以下、得られたクローユングベクターを「SB/XS」と称する)。
[0108] 次に、動物細胞用発現ベクター pCAGn-mcs- polyA (特願平 8— 165249)を一部 改変したベクター PCAGGS-DN5を制限酵素 Sailで消化後、 BAP処理し、これに SB/X Sを制限酵素 Xholと Sailで消化して得たトランスポゼース遺伝子を含む DNA断片を挿 入し、トランスポゼース発現プラスミド pCAGG/SBを構築した。
実施例 3
[0109] トランスポゾンベクター (!R/DR-NTA-Ad/pSP)の構築
トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の内側に数種の制限酵素認識 部位を有するトランスポゾンベクター (iR/DR-NTA-Ad/pSP)を以下の手順に従って 構築した。
[0110] (1) 5'側 TIR配列及び 3 '側 TIR配列の単離
サケの精子由来の DNA (二ツボンジーン社)を铸型として、 A.D.Radiceら(Mol. Gen. Genet. 244, 606-, 1994)が報告したプライマー(配列番号 8)を用いて PCRを行い、ト ランスポゼース遺伝子及びその 5,側と 3,側の両方の TIR配列を含む約 1.6kbpの DNA 断片を増幅した。得られた DNA断片を、実施例 1と同様に、 pCR2.1にクローユングし た。該クローンが保持するプラスミド(以下、「Salmon Tcl」と称する)の 1.6kbp DNA断 片部分の全塩基配列を決定し、更に Iviesら(Cell, 91, 501-, 1997)が報告した Tanich thys Albonubes (日本名;ァカヒレ)由来の TIR配列(EMBLZGenBank accession No. L48685)と同じ塩基配列となるように図 9のスキームに従って修復した。
[0111] 先ず、単離した Salmon Telを制限酵素 EcoRIと Acclで消化し、得られた約 0.4kbpと 約 1.2kbpの DNA断片を 1.5%ァガロースゲル上でプラスミド由来の DNA断片と分離した 。これら 2つの DNA断片を GFX PCR DNA and Gel Band Purification Kit (アマシャム バイオサイエンス社)を用いて回収した後、予め EcoRIと Acclで消化後、 BAP処理した クロー-ングベクター pSP72 (プロメガ社)にサブクローユングした(以下、得られたベタ ターを各々「5' Rg/pSP」、「3' Rg/pSP」と称する)。
[0112] 5 '側 TIR配列の修復は以下の通り行った。 5, Rg/pSPを铸型として修復プライマー IR /DR rFl (配列番号 9)と IR/DR rRl (配列番号 10)を用いて PCRを行い、約 0.3kbpの D NA断片を増幅し、回収した。これを、 TOPO TA Cloning kit (INVITROGEN社)を用 いてプラスミド(PCR2.1)にクローユング後、制限酵素 EcoRIと Hindlllで消化し、ァガロ ースゲル上で分離した。得られた断片を、予め同じ制限酵素で消化後、 BAP処理し た 5,Rg/pSPに挿入して 5,RgDR/pSPを構築した。さらに、この 5, RgDR/pSPを铸型とし て、修復プライマー IR/DR-5' /Fl (配列番号 11)と IR/DR-5' /Rl (配列番号 12)の組 合せ、及び IR/DR-5 ' /F2 (配列番号 13)と IR/DR-5 ' /R2 (配列番号 14)の組合せによ る PCRを行い、各々約 lOObpと約 160bpの DNA断片を増幅し、回収した。これらを等量 混合し、変性反応(70°C、 10分間)後、室温に戻るまで徐々に冷却することによりァ- 一リング処理した。本操作により両 DNA断片の相同配列部分でアニーリングした DNA を铸型として、先のプライマー IR/DR- 5, /F1と IR/DR- 5, /R2を用いて再度 PCRを行!ヽ 、増幅した約 240bpの DNA断片を TOPO TA Cloning kit (INVITROGEN社)によりクロ 一ユングした。これを制限酵素 A11IIと Hindlllで消化し、予め同じ制限酵素で消化後、 BAP処理した 5, RgDR/pSPに挿入し、 5,側 TIR配列を有するプラスミド 5, IR/DR- Nを 構築した。
[0113] 一方、 3'側 TIR配列の修復は以下の通り行った。 3' Rg/pSPを铸型として、修復ブラ イマ一 IR/DR rF2 (配列番号 15)と IR/DR rR2 (配列番号 16)の組合せ、及び IR/DR rF 3 (配列番号 17)と IR/DR rR3 (配列番号 18)の組合せによる PCRを行 、、各々約 200b pの DNA断片を増幅し、回収した。これらを等量混合して上述と同様にアニーリング処 理した。この DNAを铸型として、先のプライマー IR/DR rF2と IR/DR rR3を用いて再度 PCRを行い、増幅した約 370bpの DNA断片を TOPO TA Cloning kit (INVITROGEN社 )によりクローユングした。これを制限酵素 EcoRIと Msdで消化した後、予め同じ制限 酵素で消化後、 BAP処理した 3, Rg/pSPに挿入して 3,側 TIR配列を有するプラスミド 3, RgDR/pSPを構築した。このようにして得られた 5,側 TIR配列及び 3,側 TIR配列の 2つ の DR領域の塩基配列を実施例 1記載の方法により決定した。その結果、変異が修復 された 5 '側 TIR及び 3 '側 TIRの DR領域の塩基配列は、それぞれ配列番号 19及び配 列番号 20記載の配列であった。
[0114] (2)トランスポゾンベクター(IR/DR- NTA- Ad/pSP)の構築
先ず、 5, IR/DR-Nを制限酵素 Hindlllと EcoRVで消化して得られる 5'側 TIR配列を含 む DNA断片を、制限酵素 Hindlllと PvuIIで消化後、 BAP処理した、 3'側 TIR配列を含 む 3' RgDR/pSPに挿入することによって、 5'側と 3'側の両方の TIR配列を有する IR/D R-Nを構築した(図 10)。
[0115] 次に、 IR/DR-Nの Hindlll切断部位に数種の制限酵素切断部位を有するアダプタ 一を挿入した。 5 '側末端をリン酸ィ匕したプライマー 5 ' IR/DR-AdF (配列番号 21)と 5 ' I R/DR-AdR (配列番号 22)を等量混合し、実施例 3 (1)で行ったのと同様にァユーリン グ処理することにより、両プライマーがアニーリングしたアダプター 5' IR/DR-Adを得 た。同様にして 3 ' IR/DR-AdF (配列番号 23)と 3 ' IR/DR-AdR (配列番号 24)をァニー リング処理したアダプター 3, IR/DR-Adを得た。 5, IR/DR-Adと 3, IR/DR-Adを等量混 合し、 DNA Ligation Kit (TaKaRa社)を用いて 16°C、 30分反応した後、エタノール沈 殿法により両アダプターが結合した DNA断片を回収した (IR/DR-Ad)。これを制限酵 素 Hindlllで消化し、先に構築した IR/DR-Nの Hindlll部位に挿入して IR/DR-N-Adを 構築した。
[0116] 5,側及び 3,側の両 TIR配列末端への制限酵素認識部位の付カ卩は、以下のとおり行 つた。得られた IR/DR-N-Adを A11IIで消化後、 pSP72ベクター部分を含む約 2.5kbpの DNA断片と約 630bpの DNA断片を回収した。 2.5kbpの DNA断片については、 DNA Li gation Kit (TaKaRa社)を用いて環状化(16°C、 30分)した後、これを铸型として、 5' IR /DRTA-Fs (配列番号 25)と 3, IR/DRTA-R (配列番号 26)を用いて PCRを行 ヽ、 5 '側 及び 3'側の末端に制限酵素認識部位が付加した約 150bpの DNA断片を増幅した。こ れを TOPO TA Cloning kit (INVITROGEN社)によりクローユングし(以下、得られたク ローンのプラスミドを「TA-Fs/R」と称する)、 150bpの DNA断片部分の塩基配列を確 認した。 TA-Fs/Rを制限酵素 Xholと Bglllで消化し、予め同じ制限酵素で消化後、 BA P処理したクローユングベクター PSP72に挿入することにより、 TA-Fs/R-pSPを構築し た。該 TA-FsR-pSPを制限酵素 A11IIで消化後、 BAP処理し、これに先の 630bpの DNA 断片を挿入した。このようにして、転移に必要な 5'側と 3'側の 2つの TIR配列間に制 限酵素(Stul、 NotI、 Sail及び Mscl)認識部位、両 TIR配列の外側に制限酵素(Xhol及 び Bglll)認識部位を有するトランスポゾンベクター IR/DR-NTA-Ad/pSPを得た(図 11
) o
実施例 4
[0117] トランスポゾン活件確認用プラスミド' (TR/DR-nuro)の構篛
実施例 3 (2)で得たトランスポゾンベクター IR/DR-NTA-Ad/pSPのトランスポゾン活 性を確認する為に、該トランスポゾンの Sail部位に、 PGKプロモーター(Adra CN, Gen e, 60, 65-74, 1987)調節下にピューロマイシン而性酵素遺伝子(Gomez LEら, Nuclei c Acids Res., 19, 3465, 1991)及び PGK由来のポリ A付カ卩シグナル配列を連結した発 現プラスミド pPGKpuroを制限酵素 Sailで消化して得られる約 1.7kbpの DNA断片を揷 入することにより、ピューロマイシン耐性酵素遺伝子が挿入されたトランスポゾン活性 確認用プラスミド (IR/DR-puro)を構築した(図 12)。
実施例 5
[0118] Lox配列を揷入した改変トランスポゾンベクターの構築
以下、本実施例では、置換反応に使用する組換えシステムとして Cre-Lox組換えシ ステムを利用するために必要なベクター、ドナープラスミド、組換え反応を担う酵素 Cr eの発現プラスミドの構築及び置換反応の例を示す力 S、他の組換えシステムの利用も 可能である。
[0119] (1)変異型 Lox配列を挿入した改変トランスポゾンベクター(IR/DR-Ad/5' Lxp)の構 築
実施例 3 (2)で構築した IR/DR-NTA-Ad/pSPを铸型として、 SP6プライマー(配列番 号 27)と LoxP配列の変異型である Lox71の配列を挿入したプライマー Ps/Lx71R (配 列番号 28)を用いて PCRを行 、、 5 '側 TIR配列内に Lox71配列が付加された約 200bp の DNA断片を増幅し、回収した。 PCRは、変性反応 (94°C、 1分)、アニーリング反応 (55°C、 2分)及び伸長反応(72°C、 2分を 35サイクル)以外は、実施例 1に準じて行つ た。この DNA断片を TOPO TA Cloning kit (INVITROGEN社)を用いてー且クロー- ングした後、制限酵素 PshAIと Xholで消化し、予め同じ制限酵素で消化後、 BAP処理 をした IR/DR-NTA-Ad/pSPに挿入することにより、 5,側 TIR配列に内在する 2つの DR 配列の間に変異型 Lox71配列を有するトランスポゾンベクター IR/DR-Ad/5' Lxpを構 築した(図 13)。なお、 5'側 TIR配列への変異型 Lox71配列の挿入に際しては、 2つの DR配列間の距離 (DNA内の塩基数)が変わらないように、挿入する Lox71配列と置換 されるオリジナルの配列の長さが同じになるようにプライマーをデザインした。
[0120] (2) 3'側 TIR配列への LoxP配列の挿入
実施例 3 (2)で構築した IR/DR-NTA-Ad/pSPを制限酵素 Sailと Bglllで消化し、予め 同じ制限酵素で消化後、 BAP処理をした pSP72 (プロメガ社)にサブクローユングして 3 ,IR/DR-Ad/pSPを構築した。次に、この 3,IR/DR-Ad/pSPを铸型として、 SP6プライマ 一(配列番号 27)と LoxP配列を挿入したプライマー Af/LxpR (配列番号 29)を用いて 実施例 5 (1)と同じ条件で PCRを行い、 3'側 TIR配列内に LoxP配列が付加された約 4 OObpの DNA断片を増幅し、回収した。この DNA断片を TOPO TA Cloning kit (lNVIT ROGEN社)を用いてー且クローニングした後、制限酵素 A11IIと Sailで消化し、予め同 じ制限酵素で消化後、 BAP処理をした 3' IR/DR-Ad/pSPに挿入することにより、 3'側 TIR配列内に存在する 2つの DR配列の間に LoxP配列を有する改変トランスポゾンべ クタ一 3, IR/DR- Lxp/pSPを構築した(図 14)。こうして得られた 3, IR/DR- Lxp/pSPの 3 ,側 TIR配列には、内在する 2つの DR間の距離(DNA内の塩基数)が変わらないように 実施例 5 ( 1 )と同様の処理が行われて 、る。
[0121] (3) 3,側 TIR配列への LoxP配列 Zポリ Aシグナル配列の挿入
実施例 5 (2)で構築した 3, IR/DR- Lxp/pSPを铸型として、 SP6プライマーと LoxP配 列の下流にゥシ成長ホルモン由来のポリ A付加シグナル配列が付カ卩したプライマー A f/LxpAR (配列番号 30)を用いて実施例 5 (1)と同じ条件で PCRを行い、 3'側 TIR配列 内に LoxP配列及びその LoxPの下流にポリ A付カ卩シグナル配列が付カ卩した約 400bpの DNA断片を増幅し、回収した。この DNA断片を TOPO TA Cloning kit (INVITROGEN 社)を用いてー且クローニングした後、制限酵素 A11IIと Sailで消化し、予め同じ制限酵 素で消化後、 BAP処理した 3' IR/DR-Lxp/pSPに挿入することにより、 LoxP配列とその 下流にポリ A付カ卩シグナルを有するトランスポゾンベクター 3 ' IR/DR-LxpA/pSPを構 築した(図 15)。こうして得られた 3' IR/DR-LxpA/pSPの 3'側 TIR配列には、内在する 2つの DR間の距離 (DNA内の塩基数)が変わらな 、ように実施例 5 (1)と同様の処理 が行われている。
[0122] (4)変異型 Lox配列及び LoxP配列を挿入した改変トランスポゾンベクター(IR/DR- Ad/LxDb)の構築
3' IR/DR-Lxp/pSP (実施例 5 (2)で構築)を制限酵素 Bglllと Sailで消化し、予め同じ 酵素で消化後、 BAP処理した IR/DR-Ad/5' Lxp (実施例 5 (1)で構築)に挿入して、 5 '側 TIR配列内に Lox71配列を有し、 3 '側 TIR配列内に LoxP配列を有するトランスポゾ ンベクター IR/DR- Ad/LxDbを構築した(図 16)。
[0123] (5)変異型 Lox配列及び LoxP配列 Zポリ A付加シグナル配列を挿入した改変トラン スポゾンベクター(IR/DR-Ad/LxpADb)の構築
3' IR/DR-LxpA/pSP (実施例 5 (3)で構築)を制限酵素 Bglllと Sailで消化し、予め同 じ酵素で消化後、 BAP処理した IR/DR-Ad/5' Lxp (実施例 5 (1)で構築)に挿入して、 5,側 TIR配列内に変異型 Lox71を有し、 3,側 TIR配列内に LoxP配列とその下流にポリ A付カ卩シグナル配列を有する改変トランスポゾンベクター IR/DR-Ad/LxpADbを構築 した(図 16)。
実施例 6
[0124] Lox配列を揷人した己 栾トランスポゾン活件確認用プラスミドの構築
IR/DR-Ad/5 ' Lxp (実施例 5 (1)で構築)、 IR/DR- Ad/LxDb (実施例 5 (4)で構築) 及び IR/DR-Ad/LxpADb (実施例 5 (5)で構築)のトランスポゾン活性を確認する為に 、それぞれの Sail部位に、 PGKプロモーター調節下にピューロマイシン耐性酵素遺伝 子と PGK由来のポリ A付加シグナル配列を連結した発現プラスミド pPGKpuroを制限 酵素 Sailで消化して得られる約 1.7kbpの DNA断片を挿入することにより、ピュー口マイ シン耐性酵素遺伝子発現カセットが挿入されたトランスポゾン活性確認用プラスミド IR /DR- puro/5,Lxp、 IR/DR- puro/LxDb及び IR/DR- puro/LxpADbを構築した(図 17) 実施例 7
[0125] HeLa細胞を用いた各種トランスポゾン活性確認用プラスミドの導入効率の比較
(1)各種トランスポゾン活性確認用プラスミドの精製 実施例 2で構築したトランスポゼース発現プラスミド pCAGGS/SB及び、実施例 4と 6 で構築したトランスポゾン活性確認用プラスミド(IR/DR-puro、 IR/DR- puro/5,Lxp、 I R/DR- puro/LxDb及び IR/DR- puro/LxpAD)を添付のプロトコールに従って、コンビ テントセル JM109 (TOYOBO社)に導入し、各プラスミドを保持した組換え体を作製し た。これらを 50mg/mlアンピシリン含有 L-Broth培地で一夜培養し、得られた各組換え 体の培養液を Plasmid Maxi Kit (キアゲン社)を使用して添付のプロトコールに従って 精製した。精製した各プラスミドはオートクレープ処理した蒸留水に溶解し、波長 260 nmの吸光度を測定してその濃度を決定し、使用時まで- 20°Cで保存した。
[0126] (2) HeLa細胞への各種トランスポゾン活性確認用プラスミドの導入
各種トランスポゾン活性確認用プラスミドの HeLa細胞への導入は以下のように行つ た。 Opti— MEM I Reduced-Serum Medium (INVITROGEN社) 250 μ 1に Trans— IT LT1 ( TaKaRa社) 10 1をカ卩ぇ攪拌し、室温に 10分間静置した後、実施例 2で調製した pCA GGS/SB1.5 μ gと実施例 4及び 6で調製したトランスポゾン活性確認用プラスミド (IR/ DR— puro、 IR/DR— puro/5,Lxpゝ IR/DR— puro /LxDb又は IR/DR— puro/LxpADbのい ずれか一つ) 1.5 μ gをカ卩ぇ攪拌し、更に室温に 15分間静置し、 DNA/Trans-IT LT1 複合体を形成させた。これをトランスフエクシヨン直前に調製した HeLa細胞に添加し、 37°Cで 6時間培養した後、上清を除いて 10% complete DMEM 2ml/wellを添カ卩し、 5% CO存在下、 37°Cで 2日間培養した。
2
[0127] 上記の HeLa細胞は、 10%のゥシ胎児血清(ハイクローン社)と 1/100量のペニシリン- ストレプトマイシン液(INVITROGEN社)を含む DMEM (シグマ社)(以下、「10% comple te DMEMJと称することもある)で培養 ·維持したヒト子宫頸部癌由来の HeLa細胞(大 日本製薬社) 1.7 X 105個 /2 ml/wellを 6- well plate (コ一-ング社)に播種し、約 1日培 養した後、培養上清を除き、ダルベッコリン酸緩衝液 (シグマ社)で洗浄後、 Optト ME M I Reduced-Serum Medium 0.8mlを添カロしたものを使用した。 pCAGGS/SBを添カロ せず、トランスポゾン活性確認用プラスミドを単独で HeLa細胞に導入したものをコント ロールとした。
[0128] (3)各種トランスポゾン活性確認用プラスミド導入効率の評価
実施例 7 (2)の各種トランスポゾン活性確認用プラスミドの導入処理を行なった HeL a細胞をダルベッコリン酸緩衝液 (シグマ社)で洗浄し、 0.05%トリプシン溶液 (INVITR OGEN社) 200 1で 37°C、 3分間放置した後、 10% complete DMEM2mlをカ卩えて酵素 反応を停止した。この細胞溶液をピペッティングにより分散した後、 20 1を取り、等量 のトリパンブルー染色液 (INVITROGEN社)を加えて血球計算板により細胞数を測定 した。同細胞懸濁液力 3.8 X 104個の細胞を取り、予め 1 g/mlピューロマイシン(B D Bioscience社)含有 10% complete DMEM 10mlを入れた直径 10cmの dish (コ一-ン グ社)に加え、 5%CO存在下、 37°Cで培養した。培養期間中には、 1 μ g/mlピュー口
2
マイシン含有 10% complete DMEMで少なくとも 1回培地交換を行った。 10〜14日間の 培養後上清を除き、ダルベッコリン酸緩衝液で dishを洗浄し、 0.2%クリスタルバイオレ ット(キシダ化学) Z20%メタノール (和光純薬社)溶液 lml/dishを加え、室温で 30分間 、細胞を染色 '固定した。その後、水道水で dishを洗浄し、自然乾燥後そのコロニー 数を測定した。
[0129] pCAGGS/SBと各種トランスポゾン活性確認用プラスミドを一緒に導入して得られた ピューロマイシン耐性細胞のコロニー数 (C )と各種トランスポゾン活性確認用プラス
SB
ミドの単独導入により得られたピューロマイシン耐性細胞のコロニー数 (C )の比(C
N SB
/C )を算出し、これをトランスポゾン活性確認用プラスミドの導入効率の指標とした。
N
[0130] 各種トランスポゾン活性確認用プラスミドは、何れも HeLa細胞の染色体に高率に組 み込まれており、その導入効率は、各種トランスポゾン活性確認用プラスミド単独で 導入したときよりも 15〜50倍高力つた (表 3)。この結果は、 TIR内に存在する 2つの DR 領域間の距離 (塩基数)を変えずに Lox配列を挿入してもトランスポゾン活性による細 胞への導入効率にほとんど影響しないことを示すものである。
[0131] [表 3] 各種活性確認用プラスミドのトランスポゾン活性
Lox Sequence
Plasmid ― cSB/cN
STIR 3 IR
IR/DR-puro 0 0 20.7
IR/DR-puro/5'Lxp 1 0 49.3
IR/DR-puro/LxDb 1 1 15.4
IR/DR-pu ro/LxpA D b 1 1 19.9
実施例 8
[0132] Cre-Lox組換えシステムによる外来遣伝子の置換
(1)トランスポゾンベクター(IR/DR- puro/LxpADb)導入 HeLa細胞のクロー-ング 実施例 7 (2)の方法に従って、 IR/DR- puro/LxpADbを HeLa細胞に導入し、培養 2 日目に直径 10cmの dish (コーユング社)に継代し、 1 μ g/mlピューロマイシン(BD Bio science社)含有 10% complete DMEMで 2週間培養した。 dishをリン酸緩衝液(シグマ 社)で洗浄し、 0.5%EDTA (和光純薬社)含有ダルベッコリン酸緩衝液 10mlを加えて、 室温に 5分間静置した。ノィォガードフード内に配置した顕微鏡下で dish上に生じた HeLa細胞の単一コロニーを物理的にはがし、これを、予め 1 μ g/mlピューロマイシン (BD Bioscience社)含有 10% complete DMEM 500 μ 1を入れた 48- well plateに加え、 5 %CO存在下、 37°Cで培養した。こうしてクローン化したピューロマイシン耐性 HeLa細
2
胞(以下、「HeLa/puro細胞」と称することもある)を、最終的に直径 10cm dish培養ま で順次拡張した。フルシート状に増殖した時点で、ダルベッコリン酸緩衝液 (シグマ社 )で洗浄後、トリプシン処理し、細胞を回収した。該細胞 106個を液体窒素に保存し、 残りを以降の染色体 DNAの抽出に用いた。
[0133] (2)遺伝子置換用プラスミド (ドナープラスミドと Cre発現プラスミド)の構築
(ィ)ドナープラスミド (pLx/GFP/ne0/pA(- ))の構築 図 18のスキームに従って Lox配列で GFP遺伝子の発現カセットと neo遺伝子の発現 カセットが挟まれたドナープラスミド pLx/GFP/neo/pA (-)を構築した。まず、動物細胞 用発現べクターpCAGn-mcs-polyA(特願平8— 165249)を制限酵素 Sailで消化した 後、 DNA Blunting Kit (TaKaRa社)で切断末端を平滑化してそのまま結合することに より、 Sail認識配列を欠失させた。これを EcoRIで消化し、 DNA Blunting Kit (TaKaRa 社)で切断末端を平滑化した後、制限酵素 BamHIで消化して約 1.5kbpの DNA断片を 得た。これを、予め制限酵素 SacIIで消化後、切断末端を同様に平滑ィ匕して制限酵素 BamHIで消化 ·ΒΑΡ処理した GFP遺伝子を有する pEGFP-Nl (BD Bioscience社)に揷 入して pCAG/GFP-Nlを構築した。これを制限酵素 Milで消化後、末端を平滑化し、 さらに制限酵素 EcoRIで消化し、約 2.8kbpの DNA断片を回収した。
[0134] 一方、 5 '側に Xhol認識配列と内部に Lox66配列を有するプライマー Lx66/LxP-F ( 配列番号 31)と 5'側に Bglll認識配列と内部に LoxP配列を有するプライマー Lx66/Lx P-R (配列番号 32)を混合し、铸型となる DNAをカ卩えずに PCRを行った(Lx66/LxP-F の 3,側末端の 25塩基と Lx66/LxP-Rの 3,側末端の 25塩基は、互いに相補的な配列 を有する)。増幅した約 120bpの断片を制限酵素 Xholと Bglllで消化した後、予め同じ 酵素で消化後、 BAP処理したクロー-ングベクター pSP72に挿入し、 Lx66/LxP/pSPを 構築した。
[0135] 次に、上記の約 2.8kbpDNA断片を、 EcoRIと Msclで消化後、 BAP処理した Lx66/Lx P/pSPに挿入して pLx/CAG/GFPを構築した。さらに、 pMClneo (STRATAGENE社) を制限酵素 BamHIと Xholで消化後、末端を平滑ィ匕した約 l.lkbpの DNA断片を回収し 、予め制限酵素 Msdで消化した後、 BAP処理した pLx/CAG/GFPに挿入し、外来遺 伝子発現カセット (GFP)及び neo遺伝子発現カセット(ただし、本カセットには先に述 ベたポリ Aトラップ法の利用のために、ポリ A付加シグナル配列はない)が LoxP配列で 挟まれたドナープラスミド pLx/GFP/neo/pA (-)を構築した。
[0136] (口) Cre遺伝子発現プラスミド(pCAGGS/Cre)の入手
Cre遺伝子発現プラスミド pCAGGS/Creは、熊本大学遺伝子実験施設の荒木助教 授より供与された。
[0137] (3) HeLa/puro細胞へのドナープラスミド及び Cre遺伝子発現プラスミドの導入 実施例 8 (2)で構築'入手した pLx/GFP/neo/pA (-)及び pCAGGS/Creの各 1.5 μ g を実施例 8 ( 1)で得た HeLa/puro細胞 2 X 105個/ wellに実施例 7 (2)の方法に従って 導入した。培養 2日目に、細胞をダルベッコリン酸緩衝液 (シグマ社)で洗浄し、 0.05 %トリプシン溶液(INVITROGEN社) 200 /z lで 37°C、 3分間処理した後、 10% complete DMEM 2mlを加えて反応を停止した。この細胞の懸濁液を直径 10cmの dish (コーニン グ社)に継代し、 750 μ g/mlG418 (TaKaRa社)含有 10% complete DMEM培地で 10〜1 4日間培養を続けた。実施例 8 ( 1)の方法に準じて、 G418耐性の単一コロニーを回収 し、 750 μ g/ml G418含有 10% complete培地中で維持'継代し、 48- well plate (コ一- ング社)でほぼフルシート状になるまで培養した。このようにしてクローン化した G418 耐性細胞を 24-well plate上で 2つに分け、一方は同じ 750 μ g/ml G418含有 10% com plete培地中で、もう一方は 1 μ g/mlピューロマイシン含有 10% complete培地中で約 1 週間培養し、 750 μ g/ml G418含有培地中で増殖し、かつ 1 μ g/mlピューロマイシン 含有培地中で死滅するクローンを選択した。 G418耐性、且つピューロマイシン非耐 性クローン (以下、「HeLa/neo細胞」と称することもある)が GFP発現による緑色の蛍光 を発することを蛍光顕微鏡下で確認した後、該 HeLa/neo細胞を直径 10cm dishまで 拡張後、回収した。その 106個の細胞を液体窒素中で保存し、残りを以下の染色体 D NA調製に用いた。
(4) HeLa/puro細胞及び HeLa/neo細胞からの染色体 DNAの調製
実施例 8 ( 1)及び(3)で取得した HeLa/puro細胞と HeLa/neo細胞(各 5〜10 X 106個 )を 1500回転で 5分間遠心分離し、細胞を回収した。これに 10mM Tris-HCl/lmM ED TA溶液(以下、「TE」と称する) 220 1をカ卩えて懸濁し、リシスバッファー(10mM Tris- HC1、 0.1MEDTA、 0.5%SDS、終濃度 20 g/ml RNase (シグマ社)、 pH8.0)を 106個あ たり 200 1カ卩えて 37°Cで静置した。 1時間後、終濃度 100 g/mlの proteinase K (イン ビトロジェン社)を加え、攪拌して 50°Cでさらに 3時間反応した。反応後、 TEで飽和し たフエノールを等量加えて室温で 10分間振とうし、遠心分離して分離した水層を回収 した。この操作を中間層が出なくなるまで繰り返し、最終的に回収した水層に 1/5容 量の 10M塩ィ匕アンモ-ゥムと 2容量のエタノールをカ卩えてガラス棒で攪拌した。攪拌 の過程で沈殿する糸状の染色体 DNAをガラス棒に巻き取り、 70%エタノールで洗浄後 室温にて 10分間自然乾燥し、 200 1の TEに溶解した。溶解後、波長 260nmの吸光度 力も DNA濃度を算出した。
[0139] (5)サザンブロットによる HeLa/puro細胞及び HeLa/neo細胞染色体 DNAの遺伝子 置換の確認
先ず、 neo遺伝子及びピューロマイシン耐性酵素遺伝子を検出する為の RI標識プロ ーブを調製した。 Neo遺伝子検出用プローブ(neoプローブ)は、 pMClneo (STRATA GENE社)を铸型として、プライマー neo/1072F (配列番号 37)と neo/1501R (配列番号 38)を用いて、また、ピューロマイシン耐性酵素遺伝子検出用プローブ (puroプローブ )は pPGKpuroを铸型として、 puro In/S (配列番号 39)と puro 2 (配列番号 40)を用いて PCRを行い、ァガロースゲル電気泳動にかけた。 目的の DNA断片を GFX PCR DNA and Gel Band Purification Kit (アマシャムバイオサイエンス社)を用いて回収した。次 にこれらの DNA断片 100〜200ngを铸型として、 BcaBEST Dideoxy Sequencing Kit (Ta KaRa社)を用い、添付のプロトコールに従って、〔α— 32P〕dCTP (アマシャムバイオ サイエンス社)で標識し、 neoプローブ及び puroプローブを得た。
[0140] これらのプローブを用いてサザンブロッドを行った。実施例 8 (4)で調製した HeLa/p uro細胞と HeLa/neo細胞由来の染色体 DNA (各 20 g)、及び実施例 6で構築した IR /DR-puro/LxpADbと実施例 8 (2)で構築した pLx/GFP/neo/pA (-) (各 2ng)を、それ ぞれ制限酵素 A11IIで消化し、 0.7%ァガロースゲル(BioRAD社)上で分離した。これを 0 .4M NaOH溶液中で毛細管現象を利用して一夜 Hybond-N+フィルター(アマシャム バイオサイエンス社)に転写し、 Rapid Hybバッファー(アマシャムバイオサイエンス社) 中で 65°C、 1時間反応した後、該フィルターを新たな Rapid Hybバッファーに移した。 これに、 100°C、 5分間煮沸した後氷中で急冷した neoプローブ又は puroプローブを加 え、さらに 65°Cで一夜反応した。フィルターを回収し、 0.5%SDS含有 2 X SSC (0.3M塩 化ナトリウム、 0.03Mクェン酸ナトリウム)溶液中でリンスした後、同溶液中で室温、 15 分間洗浄した。続いて、 0.1%SDS含有 0.1 X SSC溶液中で 65°C、 30分間の洗浄を 2〜 3回行い、最後に 0.1 X SSCでリンスしてろ紙上で水分を除いた。これをサランラップ( 旭化成社)で包み、オートラジオグラフィー用のカセットに入れ、 BioMax MSフィルム( Kodak社)に 4日間露光した。 [0141] その結果を図 19に示す。遺伝子置換前の IR/DR-puro/LxpADbを導入した HeLa/ puro細胞(No.2;ァクセプタークローン)では neoプローブと反応するシグナルは認め られな 、が、その細胞にドナープラスミド pLx/GFP/neo/pA (-)と pCAGGS/Creを導入 した HeLa/neo細胞では約 4.3kbpのシグナルが検出された(No.l及び No.2)。また、陽 性コントロールとした pLx/GFP/neo/pA (-)は消化に用いた制限酵素 Milの認識配列 が存在しな 、ため、シグナルは検出されるがそのサイズは HeLa/neo細胞とは異なる ものであった。一方、 puroプローブを用いた場合、遺伝子置換前の HeLa/puro細胞 では陽性コントロールの IR/DR-puro/LxpADbと同じ、約 2.4kbpのシグナルが検出さ れるが、遺伝子置換後の HeLa/neo細胞ではシグナルは検出されなかった (No.l、 No .2及び No.9)。この結果から、染色体 DNAに挿入された IR/DR-puro/LxpADbのピュ 一口マイシン耐性酵素遺伝子が neo遺伝子及び GFP遺伝子に置換したことが推測さ れる(図 20)。
[0142] (6) HeLa/neo細胞染色体 DNAの遺伝子置換部位の確認
図 20に示した遺伝子置換がまさに Lox配列上で起こっていることを確認する為に、 BD GenomeWalker Universal Kit (BD Bioscience社)を用いて PCRを行った後、両末 端 TIR配列内に挿入された Lox配列近傍の塩基配列を決定した (以下、「Genome Wa lking」と称することもある)。まず、実施例 8 (4)で精製した HeLa/neo細胞の染色体 DN Aを切断末端が平滑となる制限酵素 EcoRV、 PvuII、 Sspl及び Naelの何れかで消化し 、キットに添付のプロトコールに従って添付のアダプターを結合した。これを以下に行 なう PCRの铸型として用いた。
[0143] 5,側の挿入位置を確認するために、アダプター配列由来の APIプライマー(配列番 号 41)と CAGプロモーター配列に基づき作製したプライマー CAG/GSP2 (配列番号 42 )を用いて第一段階の PCRを行った。続いて PCRの反応液 1 1をとり、アダプター配 列由来の AP2プライマー(配列番号 43)と CAGプロモーター配列から作製したプライ マー CAG/GSP4 (配列番号 44)を用いて第二段階の PCRを行った。
[0144] 一方、 3'側の挿入位置を確認するために、 APIプライマーと neo遺伝子配列に基づ き作製したプライマー neo/1306F (配列番号 45)を用いて 25 μ 1の反応液量で第一段 階の PCRを行い、さらに、 ΑΡ2プライマーと neo遺伝子配列から作製したプライマー ne o/1389F (配列番号 46)を用いて第二段階の PCRを行った。
[0145] 第二段階後の PCR液の全量を 1%ァガロースゲル(BioRAD社)電気泳動にかけ、増 幅した DNA断片を分離した後、該 DNA断片を GFX PCR DNA and Gel Band Purificat ion Kit (アマシャムバイオサイエンス社)を用いてァガロースゲルから回収し、 TOPO TA Cloning kit (INVITROGEN社)を用いてプラスミド pCR2.1にクローユングした。増 幅 DNA断片部分の塩基配列をアプライドバイオシステムズ (ABI)社の BigDye Terrain atorし ycle Sequenceing Fb Ready Reaction Kit及び ABI PRISM ό ΐθ Genetic Analyze rを用いて決定した。
[0146] その結果、 5'側 TIR配列内に挿入された Lox配列の外側は最初に導入した IR/DR- puro/LxpADbの配列と一致し、その内側は置換のために導入した pLx/GFP/neo/pA (-)の配列と一致した。同様に、 3'側 TIR配列内に挿入された Lox配列の外側は最初 に導入した IR/DR-puro/LxpADbの配列と一致し、その内側は置換のために導入した pLx/GFP/neo/pA (-)の配列と一致した。さらに、確認された 5 '側 TIR配列内の Lox配 列は、外側の Cre結合部の配列は最初に導入した IR/DR-puro/LxpADbに用 、た Lo x71の配列であり、内側の Cre結合部の配列は置換のために導入した pLx/GFP/neo/ pA (-)に用いた Lox66の配列であった。該塩基配列から、 HeLa/neo細胞は、 IR/DR-p uro/LxpADbの導入によって得られた HeLa/puro力 ¾CAGGS/Creと pLx/GFP/neo/p A (-)の同時導入によって Lox配列上で組換えを起こし、その Lox配列で挟まれた領域 (ピューロマイシン耐性酵素遺伝子発現カセット)が PLx/GFP/neo/pA (-)の Lox配列 で挟まれた領域 (GFP及び neo遺伝子発現カセット)に置換されたことによって得られ たものであることが確認できる(図 21)。
[0147] また、 HeLa/neo細胞染色体 DNA上の GFP及び neo遺伝子発現カセットの挿入位置 は、 Lox配列力 外側の TIR配列末端のジヌクレオチド TAまでの配列は、 5 '側及び 3 ' 側ともに最初に導入した IR/DR-puro/LxpADb由来の配列と同一であった。しかし、 そのさらに外側の配列は、米国の NCBIの核酸配列データベース(GeneBank)に登録 されているヒト第 3番染色体上の配列と一致した。この結果は、 HeLa細胞に導入され たトランスポゾンベクター IR/DR-puro/LxpADbが、同時に細胞内に導入されたトラン スポゼース発現プラスミドにより発現したトランスポゼースの作用により惹起されたトラ ンスポゾン活性により該 HeLa細胞の第 3番染色体に転移 '挿入されたことを示すもの である(図 22)。
[0148] 以上の結果は、トランスポゾンの 5 '側 TIR配列内及び 3 '側 TIR配列内に Lox配列を 挿入したトランスポゾンベクターを用いて、トランスポゾン活性によりー且遺伝子を染 色体 DNAに挿入した後、該 TIR内の Lox配列を介した Cre-Lox組み換えシステムによ り、別の遺伝子に置換することが可能であることを示す。さらに、この遺伝子置換反応 を利用することにより、先に導入したトランスポゾンベクターの 5'側 TIR配列内及び 3' 側 TIR配列に内在する 2つの DR領域のうち、各々内側の DR領域を取り除くことが可 能であることを示すものである。
実施例 9
[0149] 遣伝早置橼による TTRffi列破璩後のトランスポゾン活件の評
(l) HeLa細胞への IR/DR- puro/LxpADbの単独導入とドナープラスミドによる遺伝 子置換
実施例 7 (2)の方法に従って、 IR/DR-puro/LxpADbのみを導入し、実施例 8 (1)の 方法に従って、クローンィ匕したピューロマイシン耐性酵素 HeLa細胞(以下、「単独 ZH eLa/puro細胞」と称することもある)を、 6- well plateでフルシートになるまで培養後、 回収し、 106個を液体窒素に保存した。残りの細胞 1.7 X 105個/ wellを 6-well plateに播 種し、一夜培養した後、これに、実施例 7 (2)の方法に従って、 pLx/GFP/neo/pA (-) と pCAGGS/Creを導入した。培養 2日後に細胞を回収し、 750 gG418含有 10% com plete培地 10mlに懸濁して直径 10cmの dishに播種し、約 10日間培養した。実施例 8 (1 )の方法に従ってクローン化した G418耐性 HeLa細胞(以下、「単独 ZHeLa/neo細胞 」と称することもある)を、最終的に直径 10 cmの dishでほぼフルシートになるまで培養 し、回収した。該細胞から、実施例 8 (5)の方法に従って、染色体 DNAを精製し、 OD
2 の吸光度より DNA濃度を算出した後、 -20°Cで保存した。
60
[0150] (2)単独 ZHeLa/neo細胞染色体 DNAの遺伝子置換部位の確認
実施例 9 (1)で得た単独 ZHeLa/neo細胞染色体 DNAを実施例 8 (6)の方法に従つ て、遺伝子置換部位の塩基配列を決定した (Genome Walking)。その結果、単独/ H eLa/neo細胞は、トランスポゾンベクター IR/DR-puro/LxpADb単独の導入によって得 られた単独 ZHeLa/puroが pCAGGS/Creと pLx/GFP/neo/pA (-)の同時導入によつ て Lox配列上で組換えを起こし、その Lox配列で挟まれた領域 (ピューロマイシン耐性 酵素遺伝子発現カセット)が pLx/GFP/neo/pA (-)の Lox配列で挟まれた領域 (GFP及 び neo遺伝子発現カセット)に置換されたことによって得られたものであった。
[0151] また、単独 ZHeLa/neo細胞の染色体 DNAに挿入された 5 '側及び 3 '側 TIR配列末 端より外側の配列は IR/DR-puro/LxpADb由来の配列と一致した。さらにその外側は 、米国の NCBIの核酸配列データベース(GeneBank)に登録されているヒト第 12番染 色体上の配列と一致した。この結果は、 HeLa細胞に導入されたトランスポゾンベクタ 一 IR/DR-puro/LxpADbが、細胞内で生じる通常の組換え機構により、該 HeLa細胞 の第 12番染色体に組み込まれたことによって単独 ZHeLa/puro細胞が得られ、さら に Cre-Lox組換えシステムによって単独 ZHeLa/neo細胞が得られたことを示すもの である。
[0152] 以上の結果は、トランスポゾンの 5 '側 TIR配列内及び 3 '側 TIR配列内に Lox配列を 挿入したトランスポゾンベクターを単独で用いて、該トランスポゾンベクターを染色体 D NAにランダムに挿入した後、該 TIR内の Lox配列を介した Cre-Lox組換えシステムに より、別の遺伝子に置換することが可能であることを示唆するものである(図 23)。
[0153] (3) TIR配列を破壊した改変トランスポゾンベクター及び改変トランスポゾン活性評 価用プラスミドの構築
実施例 9 (2)の Genome Walkingにより得られた、 Cre- Lox組換えシステムによる置 換を起こした 5,側 TIR配列の一部を有する DNA断片及び 3,側 TIR配列の一部を有す る DNA断片をそれぞれ保持するクローン (2B— No.2と 2B— No.6)は、置換反応により TIR配列が破壊された構造を有する。この 2つのクローンを利用して、図 24に示すス キームに従 、、 5,側 TIR配列が破壊されたトランスポゾンベクターと 5,側 TIR配列及び 3,側 TIR配列の両方が破壊されたトランスポゾンベクター 2種類を構築した。
[0154] 先ず、 2B— No.6を制限酵素 Sailと Bglllで消化して得られる約 170bpの断片を、予め 同じ制限酵素で消化して BAP処理した IR/DR-Ad/LxpADbに挿入することにより、 3, 側 TIR配列のみを破壊したトランスポゾンベクター IR/DR-3 ' IR/pSPを得た。続!、て、 制限酵素 Sailで消化後、 BAP処理した IR/DR-3' IR/pSPに、 pPGKpuroの同制限酵素 消化により得られる約 1.7kbpの DNA断片を挿入することにより、トランスポゾン活性評 価用プラスミド IR/DR- 3, IR/puroを構築した。
[0155] 次に、 2B— No.2を制限酵素 Xholと Sailで消化して得られる約 160bpの断片を、予め 同じ酵素で消化後、 BAP処理したクローユングベクター pSP72に挿入することにより、 5 ' IR/pSPを得た。続いて、制限酵素 Sailと Bglllで消化後、 BAP処理した 5' IR/pSPに、 2 B— No.6を同制限酵素消化により得られる約 170bpの DNA断片を挿入し、 5'側 TIR配 列及び 3,側 TIR配列の両方を破壊した改変トランスポゾンベクター 5, +3, IR/pSPを構 築した。さらに、 HeLa細胞でのトランスポゾン活性を評価するために、 5 ' +3 ' IR/pSPを 制限酵素 Sailで消化後、 BAP処理したものに、 pPGKpuroの同制限酵素消化により得 られる約 1.7kbpの DNA断片を挿入してトランスポゾン活性評価用プラスミド 5' +3' IR/p uroを構築した。
[0156] (4) TIR配列の破壊によるトランスポゾン活性の影響
3,側の TIR配列を破壊した IR/DR- 3, IR/puro (実施例 9 (3)で構築)、 5,側と 3,側の 両方の TIR配列を破壊した 5, +3, IR/puro (実施例 9 (3)で構築)及び遺伝子置換前の TIR配列を保持した IR/DR- Ad/LxpADb (実施例 5 (5)で構築)を、トランスポゼース発 現プラスミド pCAGGS/SB (実施例 2で構築)と共に、実施例 7 (2)に示した方法で HeL a細胞に導入した。導入後 2日目にトリプシン処理により細胞を回収し、直径 10cm dis h当たり 5 X 105個の細胞を播種し、 1 μ g/mlのピューロマイシンを含む 10% Complete培 地での薬剤選択を開始した。薬剤選択開始から 10日後、ダルベッコリン酸緩衝液で d ishを洗浄し、 0.2%クリスタルバイオレット(キシダ化学) Z20%メタノール(和光純薬社) 溶液 lml/dishを加え、室温で 30分間、細胞を染色 ·固定した。その後、水道水中で dis hを洗浄し、自然乾燥後そのコロニー数を比較した。
[0157] IR/DR- puro/LxpADbとトランスポゼース発現プラスミド pCAGGS/SBを導入した HeL a細胞では、該 IR/DR-puro/LxpADbを単独導入した場合に比べてピューロマイシン 耐性コロニーの出現率が有意に上昇したのに対し、 IR/DR-3, IR/puro及び 5, +3, IR/ puroを導入した HeLa細胞ではいずれもピューロマイシン耐性コロニーの出現率の上 昇が認められな力つた(表 4)。この結果は、 Cre-Lox遺伝子発現システム下に Lox配 列を介した遺伝子の置換により TIR配列が破壊され、この破壊によりトランスポゾン活 性が消失することを示す。また、該トランスポゾン活性の消失は、 5'側 TIR配列及又は 3'側 TIR配列いずれか一方の破壊により起こる得ることを示す。なお、表 4中の C は
SB
、各プラスミドと pCAGGS/SBを同時に導入した際に得られたコロニー数を示し、 Cは
N
、各プラスミド単独で導入した際に得られたコロニー数を示す。
[0158] [表 4]
Figure imgf000051_0001
(注 )〇:保存; X :破壊
[0159] 以上の結果から、本発明の改変トランスポゾンベクターは、(1)高率に外来遺伝子 を細胞に導入することができる、(2)トランスポゾン活性により、染色体 DNA上の特定 部位 (TA配列)に外来遺伝子を挿入することができる、(3) Cre-Lox組換えシステム により大きなサイズの遺伝子を挿入又は置換することができる、(4)トランスポゾンとし ての宿命である染色体 DNA上の導入遺伝子の転移能を確実に抑えることができる等 の特徴を有するものである。
実施例 10
[0160] ニヮトリ始原生殖細胞(PGC)への改変トランスポゾンベクターシステムの利用と個体 化
(1) PGC導入用改変トランスポゾンプラスミドの構築
実施例 5 (5)で構築した改変トランスポゾンベクター IR/DR-Ad/LxpADbに以下に示 す手順に従って、 GFP発現カセット及び neomycin耐性遺伝子の発現カセットを挿入し た IR/DR- GFP/neo/LxpADbを構築した(図 25)。
[0161] 実施例 8 (2)で構築した pCAG/GFP-Nlを制限酵素 ΜΠで消化後、末端を平滑ィ匕 し、さらに制限酵素 Sailで消化し、約 2.8kbpの DNA断片を回収した。これを制限酵素 S tulと Sailで消化後 BAP処理した IR/DR- Ad/LxpADbに挿入し、 IR/DR- GFP/LxpADb を構築した。次に pMClneo PolyA(STRATAGENE社)を制限酵素 Xholと Sailで消化 後回収した約 1.2kbpの DNA断片を、 Sail消化後 BAP処理した IR/DR-GFP/LxpADbに 挿入し、 IR/DR- GFP/neo/LxpADbを構築した。
[0162] (2) -ヮトリ PGCの分離.培養
購入した産卵直後の受精卵(日生研)を孵卵器 (昭和フランキ社)にて培養し、培養 開始から 2〜3日後の、ハンバーガ一'ハミルトンの分類 (J. Morphol., 88, 49-92, 195 1)でステージ 12〜15の-ヮトリ胚の血液を採取し、 Zhaoらの方法(Br. Poult. Sci., 44, 30-35, 2003)に従って分離した。なお、分離した PGCは、抗 SSEA-1抗体との反応性 により PGCの性状を保持していることを確認した。分離後の PGCは国際特許出願 (W 0 9606160)に開示された培養方法に従って維持 ·培養した。
[0163] (3) PGCへの改変トランスポゾンプラスミドの導入
実施例 2で構築したトランスポゼース発現プラスミド pCAGGS/SBと(1)で構築した IR /DR- GFP/neo/LxpADbの PGCへの導入は以下のように行った。 pCAGGS/SB2.5 μ g と IR/DR— GFP/neo/LxpADb2.5 μ gを Opti— MEM I Reduced-Serum Medium (INVITR OGEN社)250 1に添力卩*希釈し、 Opti-MEM I Reduced-Serum Medium (INVITROG EN社) 250 μ 1に LF2000 (INVITROGEN社) 10 μ 1をカ卩ぇ攪拌し、室温に 5分間静置し た溶液にカ卩えてさらに室温で 20分間静置した。これを抗生剤のみを除!、た培地に再 懸濁した PGCに添カ卩し、 5%CO存在下、 37°Cで 2
2 〜3日間培養した。その後 PGCを回 収し、 100 μ g /mlの G418 (TaKaRa社)を含む培地で培養し、而性クローンのセレクシ ヨンを開始した。
[0164] 約 2週間のセレクションの後、増殖した PGCの GFP発現及び PGCのマーカーとなる 抗 SSEA-1抗体に対する反応性を確認した(図 26)。その結果、図 26に示すように、 1 次抗体の抗 SSEA-1抗体 (コスモバイオ社)との反応に続くテキサスレッド標識抗マウ ス抗体 (コスモバイオ社)との反応により、ほとんどの細胞が赤い蛍光を発し、得られ た細胞が PGCの性状を維持していることが確認できた。さらに、得られた PGCの約半 分に改変トランスポゾンプラスミド IR/DR-GFP/neo/LxpADbに由来する GFPの発現が 認められた。
[0165] (4)改変トランスポゾンプラスミド導入 PGCの-ヮトリ胚への注入と生殖巣原基への 移動能確認
(3)で得られた、改変トランスポゾンプラスミドを導入した G418耐性、 GFP発現 PGC を桑名らの方法(実験医学; 12(2)増刊, 154-159, 1994)に従って、ステージ 12〜13 の-ヮトリ胚に注入した。簡単に述べると、約 50〜60時間培養の受精卵の卵殻を操 作可能な範囲まで取り除き、ニヮトリ胚の胚外血管 (周縁静脈)を実体顕微鏡下で観 察できるようにした。培地で約 500個 Z 1に懸濁した改変トランスポゾンプラスミドを導 入した G418耐性、 GFP発現 PGCを胚外血管 (周縁静脈)よりも細く伸ばしたガラス管( キヤビラリ一管)に約 2 1取り、実体顕微鏡下で胚外血管 (周縁静脈)に血流方向に 沿って刺し、注入した。注入後、血管からの逆流を防ぐためにさらに泡を注入し、キヤ ピラリーを血管より抜き、卵殻を取り除いた部位をブックテープでシールした。これを 孵卵器に移し、転卵しながら培養した。
[0166] このようにして注入操作後培養した改変トランスポゾンプラスミド導入 PGCの注入胚 について、注入から 1日後にその胚を切り取り、将来生殖巣に分化すると推定される 領域 (生殖巣原基)への移動能を調べた。その結果、図 27に示すように、生殖原基 への GFP発現細胞、即ち改変トランスポゾンプラスミド導入 PGCの移動が確認できた
[0167] (5)改変トランスポゾンプラスミド導入 PGC注入卵の孵化と生殖巣の GFP発現確認
(4)で改変トランスポゾンプラスミド導入 PGCを注入した 16胚を、孵卵器での培養開 始から 17日後に孵ィ匕器 (MURAI INCUBATOR社)に移し、さらに 3日間培養した。孵 ィ匕器での 3日間の培養の後、 16胚カも 8羽のヒナが孵化した。これら 8羽のヒナ力もそ の生殖巣を取り、 GFPの発現を調べたところ 5羽に GFPの発現が確認された (表 5、図 28)。
[0168] [表 5]
IR/DR-GFP/neo/LxpADb導入 PGC注入胚ょリ孵
化したヒナ生殖巣の GFP発現 個体 No. 性別 GFP
1 雄
2 雌
3 雌
4 雌
5 雌
6 雌
8 雄
[0169] さらに、(4)に示す方法で 4回の改変トランスポゾンプラスミド導入 PGCの胚への注 無無有有有有有無
入操作を実施し、計 131胚への注入と培養により、新たに 6羽のヒナが誕生した。これ ら 6羽のヒナ以外の孵化直前に死亡した胚 15羽の生殖巣を取り、 GFP発現の有無を 蛍光顕微鏡により観察した。その結果、 8羽の胚の生殖巣に改変トランスポゾンプラス ミド導入 PGC由来の GFP発現が観察された (表 6)。
[0170] [表 6]
IR/DR-GFP/neo/LxpADb導入 PGC注入後孵化直 前に死亡した胚生殖巣の GFP発現
GFP発現率 観察胚数 GFP発現胚数
(%)
1 5 8 53.3
[0171] PGCは将来生殖細胞、即ち精子または卵子に分ィ匕することが運命付けられた細胞 であることから、改変トランスポゾンプラスミド導入 PGCが胚の生殖巣に定着し、かつ 導入した遺伝子の発現を維持して!/ヽたと!ヽぅ事実は、次世代に導入遺伝子が受け継 力 Sれることを意味する。したがって、本発明によって得られた 6羽のヒナから、改変トラ ンスポゾンプラスミドを導入した PGCから遺伝子組換え-ヮトリを作製することが可能 であることを意味するものである。さら〖こ、改変トランスポゾンプラスミドを導入した遺伝 子組換え-ヮトリの生産する受精卵から、新たに PGCを得ることで Cre-Lox組換えシ ステムにより新たな外来遺伝子の挿入または置換が可能である。
産業上の利用可能性
本発明の改変トランスポゾンベクターを利用して得られる GFP産生細胞は GFP蛋白 の原材料として利用される。大量培養した当該細胞の培養液又は細胞破砕物から適 当な精製方法を用いて GFP蛋白を製造することができる。また、 GFP遺伝子の代わり に他の外来遺伝子を挿入することにより、種々の外来蛋白産生細胞或いは外来蛋白 産生動物を得ることができ、これらの外来蛋白製造の材料となり得る。

Claims

請求の範囲
[1] 下記 (ィ)〜(口)又は (ィ)〜 (ハ)の特徴を有する核酸断片が挿入された改変トラン スポゾンベクター:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する
DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
[2] トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1及び
2である請求項 1記載の改変トランスポゾンベクター。
[3] 組み換え反応が生じる場の配列が Lox配列又は FRT配列である請求項 1又は 2の 何れか一項記載の改変トランスポゾンベクター。
[4] 該 Lox配列の少なくとも一個が変異型の Lox配列である請求項 3記載の改変トランス ポゾンベクター。
[5] 該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列か らなる群より選択される請求項 4記載の改変トランスポゾンベクター。
[6] LoxP配列、 Lox71配列、 Lox66配列、 Lox2272及び Lox511配列がそれぞれ配列番 号 3、 4、 5、 6及び 7である請求項 4又は 5の何れか一項記載の改変トランスポゾンべ クタ一。
[7] 下記 (ィ)〜 (ハ)の特徴を有する核酸断片が挿入された改変トランスポゾンベクター を細胞に導入し、得られる外来遺伝子発現細胞を培養し、ついで発現された外来蛋 白を回収することからなる外来蛋白の生産方法:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
[8] 下記(1)〜 (4)の工程により得られる外来遺伝子発現細胞を培養することからなる 外来蛋白の生産方法:
(1)下記 (ィ)〜(口)又は (ィ)〜 (ハ)の特徴を有する核酸断片が挿入された改変トラ ンスポゾンベクターを細胞に導入する工程、
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列力もなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在す る DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入さ れた;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された;
(2)得られる形質転換細胞をクローユングする工程、
(3)両末端又は何れか一方の末端に前記(1) (口)と同じ組換え反応が生じる場の配 列を付加した外来遺伝子発現カセットを前記クローン化形質転換細胞に導入するェ 程、及び
(4)外来遺伝子発現細胞を培養する工程。
[9] トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1及び
2である請求項 7ないし 8の何れか一項記載の方法。
[10] 組み換え反応が生じる場の配列が Lox配列又は FRT配列である請求項 7ないし 9の 何れか一項記載の方法。
[11] 該 Lox配列の少なくとも一個が変異型の Lox配列である請求項 10記載の方法。
[12] 該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列か らなる群より選択される請求項 11記載の方法。
[13] LoxP配列、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列がそれぞれ配 列番号 3、 4、 5、 6及び 7である請求項 11又は 12の何れか一項記載の方法。
[14] 前記改変トランスポゾンベクターとトランスポゼース遺伝子発現プラスミドとを一緒に 細胞に導入することを特徴とする請求項 7ないし 13の何れか一項記載の方法。
[15] トランスポゼース遺伝子発現カセットが組み込まれた前記改変トランスポゾンベクタ 一を用いること特徴とする請求項 7ないし 13の何れか一項記載の方法。
[16] 前記外来遺伝子発現カセットと Cre遺伝子発現プラスミドとを一緒に導入することを 特徴とする請求項 8ないし 15の何れか一項記載の方法。
[17] Cre遺伝子発現カセットが組み込まれた前記外来遺伝子発現カセットを用いること を特徴とする請求項 8ないし 15の何れか一項記載の方法。
[18] 該外来遺伝子発現細胞が、 HeLa細胞、 Vero細胞、 CHO細胞、 293細胞、 BHK細胞 及び SP2/0細胞力もなる群より選択された細胞である請求項 7ないし 17の何れか一 項記載の方法。
[19] 下記 (ィ)〜(口)若しくは (ィ)〜 (ハ)の特徴を有する核酸断片を有する改変トランス ポゾンベクターが組み込まれた形質転換細胞、又は当該形質転換細胞に、更に両 末端又は何れか一方の末端に下記 (口)と同じ組換え反応が生じる場の配列を付カロ した外来遺伝子発現カセットが組み込まれた形質転換細胞:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
[20] 外来遺伝子を発現する請求項 19記載の形質転換細胞。
[21] トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1及び 2である請求項 19又は 20の何れか一項記載の形質転換細胞。
[22] 組み換え反応が生じる場の配列が Lox配列又は FRT配列である請求項 19ないし 2 1の何れか一項記載の形質転換細胞。
[23] 該 Lox配列の少なくとも一個が変異型の Lox配列である請求項 22記載の形質転換 細胞。
[24] 該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列か らなる群より選択される請求項 23記載の形質転換細胞。
[25] LoxP配列、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列がそれぞれ配 列番号 3、 4、 5、 6及び 7である請求項 23又は 24の何れか一項記載の形質転換細 胞。
[26] 該外来遺伝子発現細胞が、 HeLa細胞、 Vero細胞、 CHO細胞、 293細胞、 BHK細胞 及び SP2/0細胞力もなる群より選択された細胞である請求項 19ないし 25の何れか一 項記載の形質転換細胞。
[27] 個体ィ匕可能な細胞である請求項 19な 、し 25の何れか一項記載の形質転換細胞。
[28] 該個体化可能な細胞が、哺乳類、鳥類、魚類及び非脊椎動物由来の受精卵、胚 盤胞期までの卵割細胞、 ES細胞、 EG細胞並びに始原生殖細胞 (PGC)力 なる群よ り選択される請求項 27記載の形質転換細胞。
[29] 下記 (ィ)〜 (ハ)の特徴を有する核酸断片を有する改変トランスポゾンベクターが組 み込まれた外来遺伝子を発現する個体化可能な形質転換細胞、又は
下記 (ィ)〜(口)若しくは (ィ)〜 (ハ)の特徴を有する核酸断片を有する改変トランスポ ゾンベクターが組み込まれた個体ィ匕可能な形質転換細胞に、更に両末端又は何れ か一方の末端に下記 (口)と同じ組換え反応が生じる場の配列を付加した外来遺伝 子発現カセットが組み込まれた、外来遺伝子を発現する個体化可能な形質転換細 胞を用いて作出された遺伝子組換え動物:
(ィ)トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列からなる;
(口)トランスポゾン遺伝子の 5,側 TIR配列又は 3,側 TIR配列に各々 2つずつ存在する
DR領域の少なくとも一方の DR領域の間に組換え反応が生じる場の配列が挿入され た;
(ハ)トランスポゾン遺伝子の 5,側 TIR配列と 3,側 TIR配列の間に制限酵素認識部位 又は外来遺伝子発現カセットが挿入された。
[30] トランスポゾン遺伝子の 5 '側 TIR配列及び 3 '側 TIR配列がそれぞれ配列番号 1及び
2である請求項 29記載の遺伝子組換え動物。
[31] 組み換え反応が生じる場の配列が Lox配列又は FRT配列である請求項 29又は 30 の何れか一項記載の遺伝子組換え動物。
[32] 該 Lox配列の少なくとも一個が変異型の Lox配列である請求項 31記載の遺伝子組 換え動物。
[33] 該変異型の Lox配列が、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列か らなる群より選択される請求項 32記載の遺伝子組換え動物。
[34] LoxP配列、 Lox71配列、 Lox66配列、 Lox2272配列及び Lox511配列がそれぞれ配 列番号 3、 4、 5、 6及び 7である請求項 32又は 33の何れか一項記載の遺伝子組換え 動物。
[35] 該個体ィ匕可能な細胞が、哺乳類、鳥類、魚類及び非脊椎動物由来の受精卵、胚 盤胞期までの卵割細胞、 ES細胞、 EG細胞並びに PGCからなる群より選択される請求 項 29ないし 34の何れか一項記載の遺伝子組換え動物。
[36] -ヮトリである請求項 29な 、し 35の何れか一項記載の遺伝子組換え動物。
PCT/JP2006/313302 2005-07-05 2006-07-04 改変トランスポゾンベクター及びその利用方法 WO2007004642A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/994,982 US9175295B2 (en) 2005-07-05 2006-07-04 Modified transposon vector and its use
EP06780756A EP1921140B1 (en) 2005-07-05 2006-07-04 Mutant transposon vector and use thereof
JP2007524072A JP4927730B2 (ja) 2005-07-05 2006-07-04 改変トランスポゾンベクター及びその利用方法
AT06780756T ATE537254T1 (de) 2005-07-05 2006-07-04 Mutanter transposonvektor und verwendung davon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005196398 2005-07-05
JP2005-196398 2005-07-05
JP2005-196957 2005-07-06
JP2005196957 2005-07-06

Publications (1)

Publication Number Publication Date
WO2007004642A1 true WO2007004642A1 (ja) 2007-01-11

Family

ID=37604503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313302 WO2007004642A1 (ja) 2005-07-05 2006-07-04 改変トランスポゾンベクター及びその利用方法

Country Status (5)

Country Link
US (1) US9175295B2 (ja)
EP (2) EP2392657B1 (ja)
JP (1) JP4927730B2 (ja)
AT (1) ATE537254T1 (ja)
WO (1) WO2007004642A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226541A (ja) * 2009-06-11 2015-12-17 大学共同利用機関法人情報・システム研究機構 タンパク質の生産方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20150376609A1 (en) 2014-06-26 2015-12-31 10X Genomics, Inc. Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
MX364957B (es) 2012-08-14 2019-05-15 10X Genomics Inc Composiciones y metodos para microcapsulas.
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA2894694C (en) 2012-12-14 2023-04-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA2900481A1 (en) 2013-02-08 2014-08-14 10X Genomics, Inc. Polynucleotide barcode generation
AU2014268710B2 (en) 2013-05-23 2018-10-18 The Board Of Trustees Of The Leland Stanford Junior University Transposition into native chromatin for personal epigenomics
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20160122817A1 (en) 2014-10-29 2016-05-05 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
SG11201705615UA (en) 2015-01-12 2017-08-30 10X Genomics Inc Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same
EP3262407B1 (en) 2015-02-24 2023-08-30 10X Genomics, Inc. Partition processing methods and systems
EP3262188B1 (en) 2015-02-24 2021-05-05 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
SG11201804086VA (en) 2015-12-04 2018-06-28 10X Genomics Inc Methods and compositions for nucleic acid analysis
WO2017176347A2 (en) * 2016-01-25 2017-10-12 The Regents Of The University Of Califorinia Pathway integration and expression in host cells
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
CA3047313A1 (en) 2016-12-16 2018-06-21 B-Mogen Biotechnologies, Inc. Enhanced hat family transposon-mediated gene transfer and associated compositions, systems, and methods
US11278570B2 (en) 2016-12-16 2022-03-22 B-Mogen Biotechnologies, Inc. Enhanced hAT family transposon-mediated gene transfer and associated compositions, systems, and methods
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
CN116064732A (zh) 2017-05-26 2023-05-05 10X基因组学有限公司 转座酶可接近性染色质的单细胞分析
SG11201913654QA (en) 2017-11-15 2020-01-30 10X Genomics Inc Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
SG11202009889VA (en) 2018-04-06 2020-11-27 10X Genomics Inc Systems and methods for quality control in single cell processing
WO2019246486A2 (en) 2018-06-21 2019-12-26 B-Mogen Biotechnologies, Inc. ENHANCED hAT FAMILY TRANSPOSON-MEDIATED GENE TRANSFER AND ASSOCIATED COMPOSITIONS, SYSTEMS, AND METHODS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031629A1 (en) * 2001-10-09 2003-04-17 Copyrat Pty Ltd Methods of preparing a targeting vector and uses thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824434B2 (ja) 1989-11-28 1998-11-11 財団法人化学及血清療法研究所 新規発現ベクター
EP0779359B1 (en) 1994-08-24 2002-02-13 Meiji Milk Products Company Limited Method of culturing avian cells
JPH08165249A (ja) 1994-12-14 1996-06-25 Snow Brand Milk Prod Co Ltd 骨強化作用を有する組成物
FR2737731B1 (fr) * 1995-08-07 1997-10-10 Pasteur Institut Sequence de retroelements naturels ou synthetiques ayant pour fonction de permettre l'insertion de sequences nucleotidiques dans une cellule eucaryote
US6140129A (en) * 1997-09-17 2000-10-31 Wisconsin Alumni Research Foundation Chromosomal targeting in bacteria using FLP recombinase
AU5898599A (en) * 1998-08-19 2000-03-14 Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for genomic modification
KR100459870B1 (ko) * 2002-02-22 2004-12-04 한국과학기술원 트랜스포존과 Cre/loxP 부위 특이적 재조합 방법을 이용하는 염색체의 특정부위가 제거된 미생물 변이주 제조방법
AU2003231048A1 (en) * 2002-04-22 2003-11-03 Regents Of The University Of Minnesota Transposon system and methods of use
GB2403475B (en) * 2003-07-01 2008-02-06 Oxitec Ltd Stable integrands

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031629A1 (en) * 2001-10-09 2003-04-17 Copyrat Pty Ltd Methods of preparing a targeting vector and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARAKI K. ET AL.: "Exchangeable gene trap using the Cre/mutated lox system", CELL MOL. BIOL., vol. 45, no. 5, July 1999 (1999-07-01), pages 737 - 750, XP000877476 *
CANESTRO C. ET AL.: "Isolation and characterization of the first non-autonomous transposable element in amphioxus, ATE-1", GENE, vol. 318, 2003, pages 69 - 73, XP004470271 *
CHATTERJEE P.K. ET AL.: "Selecting transpositions using phase P1 headful packaging: new markerless transposons for functionally mapping long-range regulatory sequences in bacterial artificial chromosomes and P1-derived artificial chromosomes", ANAL. BIOCHEM., vol. 335, no. 2, 2004, pages 305 - 315, XP004642089 *
IVICS Z. ET AL.: "Identification of functional domains and evaluation of Tcl-like transposable elements", PROC. NATL. ACAD. SCI. USA, vol. 93, no. 10, 14 May 1996 (1996-05-14), pages 5008 - 5013, XP002072767 *
SHIMIZU T. ET AL.: "Identification of cis-regulatory sequences in the human angiotensinogen gene by transgene coplacement and site-specific recombination", MOL. CELL BIOL., vol. 25, no. 8, April 2005 (2005-04-01), pages 2938 - 2945, XP003002683 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226541A (ja) * 2009-06-11 2015-12-17 大学共同利用機関法人情報・システム研究機構 タンパク質の生産方法

Also Published As

Publication number Publication date
EP1921140A1 (en) 2008-05-14
JPWO2007004642A1 (ja) 2009-01-29
ATE537254T1 (de) 2011-12-15
EP1921140A4 (en) 2009-05-06
US9175295B2 (en) 2015-11-03
US20100281551A1 (en) 2010-11-04
JP4927730B2 (ja) 2012-05-09
EP2392657A1 (en) 2011-12-07
EP2392657B1 (en) 2013-09-25
EP1921140B1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2007004642A1 (ja) 改変トランスポゾンベクター及びその利用方法
US20210037799A1 (en) Transgenic animals and methods of use
JP4436130B2 (ja) インビトロ直鎖化によるポリヌクレオチドのランダム組込
JP2018531003A (ja) 向上した耐暑性を有する遺伝子改変動物
EP2124535B1 (en) Transgenic pigs and methods for production thereof
JP2001513336A (ja) トランスジェニック動物の生産における「マリーナ」トランスポザンの使用
JP5020083B2 (ja) 栄養外胚葉細胞特異的遺伝子導入法
CN106978416B (zh) 一种基因定位整合表达系统及其应用
JP2005504552A (ja) ターゲティングベクターの調製方法およびその使用
US7883890B2 (en) Transposon transfer factor functioned in mammal
WO2021251493A1 (ja) 卵白タンパク質遺伝子における目的タンパク質をコードする遺伝子がノックインされた家禽細胞またはその製造方法
US7449562B2 (en) PERV screening method and use thereof
USH2056H1 (en) Model for von Hippel-Lindau disease
WO2008062904A1 (fr) Procédé permettant l'expression stable de transgène
Rubin Involvement of α-PDGF receptor in early embryonic development; Establishment of the technology of gene targeting
JP2007082446A (ja) トランスジェニック動物、その作出方法及びそのための核酸
JP2002191365A (ja) リコンビネースシステムを用いた両染色体への変異導入法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006780756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007524072

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11994982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE