WO2007001052A1 - 無線通信装置、無線通信方法及び無線通信プログラム - Google Patents

無線通信装置、無線通信方法及び無線通信プログラム Download PDF

Info

Publication number
WO2007001052A1
WO2007001052A1 PCT/JP2006/313001 JP2006313001W WO2007001052A1 WO 2007001052 A1 WO2007001052 A1 WO 2007001052A1 JP 2006313001 W JP2006313001 W JP 2006313001W WO 2007001052 A1 WO2007001052 A1 WO 2007001052A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
multiple access
division multiple
phase change
space division
Prior art date
Application number
PCT/JP2006/313001
Other languages
English (en)
French (fr)
Inventor
Shigeru Kimura
Yoshihiko Akaiwa
Original Assignee
Kyocera Corporation
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation, Kyushu University, National University Corporation filed Critical Kyocera Corporation
Priority to JP2007523997A priority Critical patent/JPWO2007001052A1/ja
Priority to EP06767618A priority patent/EP1901446A1/en
Priority to US11/994,110 priority patent/US20090296638A1/en
Priority to CN2006800222509A priority patent/CN101204027B/zh
Publication of WO2007001052A1 publication Critical patent/WO2007001052A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • Wireless communication apparatus Wireless communication method, and wireless communication program
  • the above-described conventional technique has a problem that a load caused by calculating a response vector of the mobile station is large. This is because the calculation formula of the response vector is complicated, and an arithmetic processing device that can perform calculation of the calculation formula is expensive. In addition, the amount of computation is large, which increases power consumption.
  • the mobile station in calculating the response vector of the mobile station, the mobile station extracted from the received signal of the base station The power to use the transmitted signal If there is an error in the extracted signal, the calculation of the response vector may fail.
  • a wireless communication apparatus includes a plurality of antenna elements, and generates a weighting coefficient for weighting a signal for each antenna element for each wireless station.
  • a wireless communication apparatus that includes an adaptive array antenna that forms a directivity pattern and wirelessly communicates with a plurality of the wireless stations, the phase change amount detecting means for detecting a phase change amount of the weighting factor, and the weighting factor
  • a fading speed estimating means for estimating a fading speed of the radio station based on a phase change amount of the wireless communication station, and a communication control means for performing control for allocating a channel for space division multiple access based on the estimation. It is characterized by having.
  • the communication control means is the same as the number of channels capable of simultaneously performing space division multiple access in the order of the wireless station power in which the estimated value of the fading speed is small. It is characterized by assigning control.
  • the radio communication method uses a adaptive array antenna having a plurality of antenna elements to generate a weighting factor for weighting a signal for each antenna element for each radio station, thereby directivity.
  • a wireless communication method for forming a pattern and performing wireless communication with a plurality of the wireless stations, wherein a process of detecting a phase change amount of the weighting factor and a phase change amount of the weighting factor includes a step of estimating a fusing speed and a step of assigning a channel for space division multiple access based on the estimation.
  • the above-described wireless communication apparatus can be realized using a computer.
  • the fading speed of each radio station can be estimated based on the weighting factor for forming the directivity pattern for each radio station (for example, a mobile station) as a communication partner.
  • the weighting factor for forming the directivity pattern for each radio station for example, a mobile station
  • FIG. 1 is a block diagram showing a configuration of a radio base station (radio communication apparatus) according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a forging speed estimation unit shown in FIG. 1.
  • FIG. 4 is a flowchart of communication control processing according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration example of a radio communication system according to an embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining an example of communication control according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing another configuration example of the wireless communication system according to the embodiment of the present invention. It is.
  • Each terminal m processing unit 6 (where m is an integer from 1 to M) performs wireless communication processing for each wireless communication terminal (hereinafter simply referred to as "terminal") as a wireless station serving as a communication partner. Do.
  • the terminal m processing unit 6 receives baseband signals X to x.
  • Terminal m processing unit 6 is
  • Terminal m Received data is output.
  • terminal m processing unit 6 receives terminal m transmission data.
  • Terminal m processing unit 6 Terminal m Performs adaptive array antenna adaptive transmission processing on transmission data and outputs baseband signals z to z corresponding to antenna elements Antl to AntN, respectively.
  • Each terminal m processor 6 Baseband signals z to z after output are the antenna elements Antl to A
  • the reception weight generation unit 24 receives the baseband signals X to x and the weighting synthesis unit 20
  • the reception weight generation unit 24 converts the baseband signals X to x, the reference signal r, and the array output signal y.
  • MMSE Minimum Mean Square Error
  • LMs Least Mean Square
  • RLS Recursive Least 3 ⁇ 4 quares
  • SMI Sample Matrix Inversion
  • the transmission weight generation unit 26 corrects variations in gain and gain on the phase between the transmission paths from the transmission directivity forming unit 28 to the antenna elements Antl to AntN.
  • the weight coefficient corrected by the transmission weight generation unit 26 is input to the transmission directivity forming unit 28.
  • the fading speed estimator 30 receives weight coefficients W to W. Fading
  • the suitability of space division multiple access for each terminal is determined.
  • FIG. 2 is a block diagram showing a configuration of fading speed estimation unit 30.
  • the fading speed estimation unit 30 includes a phase change amount detection unit 31 and a fading speed determination unit 3.
  • the ratio “h (n) j” of W (n) to W (n ⁇ 1) is calculated by the equation (1).
  • W. (n) represents a weighting coefficient generated by the reception weight generating unit 24 for the nth time.
  • the generation interval of the weight coefficient is constant.
  • N is the number of antenna elements.
  • Re [h (n)] is the real part of ( ⁇ )
  • Im [h (n)] is the imaginary part of ( ⁇ ).
  • ⁇ ( ⁇ ) represents the phase change of W ( ⁇ ) vs. W ( ⁇ – 1), and all are phase change amounts in the same direction.
  • P (n) represents the amount of phase change per predetermined time from the (n-1) th weighting factor W to W force to the nth weighting factor W to Wavg ININ.
  • the phase change amount detection unit 31 outputs the phase change amount P (n) calculated by the above equations (1) to (3) to the fusing speed determination unit 32.
  • the fading speed determination unit 32 determines the fading speed avg corresponding to the phase change amount P (n).
  • the degree is determined based on the fading speed table 33.
  • the fading speed table 33 stores in advance data indicating the correspondence between the phase change amount and the fading speed.
  • FIG. 3 is an example of data stored in the fading speed table 33. In the graph shown in Fig. 3, the vertical axis shows the amount of phase change and the horizontal axis shows the fading speed. Since the correspondence between the phase change amount and the fusing speed differs for each wireless communication system to be applied, the wireless communication system to be applied is specified and obtained in advance.
  • the fading speed determination unit 32 reads the fading speed value corresponding to the phase change amount P (n) received from the phase change amount detection unit 31 from the fading speed table 33.
  • the read value is output to the communication control unit 12 as an estimated value 101 of the fading speed.
  • FIG. 4 is a flowchart of the communication control process according to the present embodiment.
  • the communication control unit 12 inputs an estimated value 101 of the fading rate of each terminal from the fading rate estimation unit 30 of each terminal m processing unit 6 to the communication control unit 12 (step Sl).
  • the estimated values 101 are sorted in the order of fading speed (step S2).
  • each estimated value 101 is compared with a predetermined threshold Th, and a force is determined that has an estimated value 101 that is smaller than the threshold Th (step S3).
  • the communication control unit 12 allocates a conventional channel to all terminals (step S4).
  • the conventional channel refers to a carrier (frequency), a time slot or a spreading code, or a channel having a plurality of combinational powers when space division multiple access is not used. Therefore, if there is no estimated value 101 smaller than the threshold Th (NO in step S3), space division multiple access is not performed.
  • the communication control unit 12 selects all the terminals for which the estimated value 101 is smaller than the threshold Th, and selects the selected terminal.
  • the number of connected terminals is counted (step S5) Note that the estimated value 101 includes zero.
  • the communication control unit 12 compares the counted number of terminals with the maximum number of spatial channels “KJ” and determines whether the number of terminals is equal to or less than the maximum number of spatial channels “K” (step S6).
  • the maximum number of spatial channels refers to the maximum number of channels that can be simultaneously subjected to space division multiple access except for some conventional channels.
  • step S6 If the number of terminals is equal to or less than the maximum number of spatial channels “ ⁇ ” as a result of the determination in step S6, the communication control unit 12 performs spatial division multiple access to all terminals selected in step S5. Are assigned to the remaining terminals that have not been selected in step S5 (step S7).
  • the communication control unit 12 compares the estimated value 101 of the fading speed of each terminal with a predetermined threshold Th, and uses the terminal with the estimated value 101 smaller than the threshold Th as a reference.
  • the power for allocating a channel for space division multiple access In the present invention, the estimated value 101 of the fading speed is simply small without using the threshold value Th, not limited to such spatial channel allocation.
  • the terminal power may also be allocated in order to the terminals for the maximum number of channels that can be allocated spatial channels.
  • the communication control unit 12 may provide priority when assigning the same channel (frequency).
  • the higher the UTD the higher the priority.
  • communication control is performed.
  • Channel (frequency) allocation by control unit 12 is performed efficiently.
  • the communication control unit 12 may assign the channels (frequencies) a plurality of times.
  • Computer-readable recording medium refers to a flexible disk, a magneto-optical disk, a writable non-volatile memory such as a ROM and a flash memory, a portable medium such as a CD-ROM, and a hard disk built in a computer system. This is a storage device.
  • the program may be for realizing a part of the functions described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本願は、移動局の応答ベクトルを用いることなく、移動局のフェージング速度を推定して空間分割多元接続の適否を判断することを可能とするものである。本願の無線通信装置は、アダプティブアレーアンテナの重み係数の位相変化量を検出し、該重み係数の位相変化量に基づいて無線局のフェージング速度を推定するフェージング速度推定部(30)と、該推定に基づいて、空間分割多元接続用のチャネルを割り当てるように制御する通信制御部(12)とを備える。

Description

明 細 書
無線通信装置、無線通信方法及び無線通信プログラム
技術分野
[0001] 本発明は、空間分割多元接続(SDMA ; Spatial Division Multiple Access) 方式を用いた無線通信装置、無線通信方法及び無線通信プログラムに関する。 本願は、 2005年 6月 29日に出願された特願 2005— 190727号に対し優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 従来、空間分割多元接続方式を用いた移動通信システムにお 、て、基地局は、複 数の移動局との間で空間分割多元接続することの適否を判断する際に、当該移動 局の応答ベクトルを計算し、該応答ベクトル力 移動局のフェージング速度を推定し 、該フェージング速度の推定値力 空間分割多元接続する力否かを判断している( 例えば、特許文献 1参照)。移動局のフ ージング速度は当該移動局の移動速度を 示す一指標である。そして、移動局の移動速度が大き過ぎると、該移動局に対してァ ンテナの指向性パターンを追随させることが難しぐまた他の移動局の信号に干渉の 影響を与えやすいため、他の移動局と同時刻に空間多重するのには適さないことが 知られている(例えば、特許文献 1の [0040]段落参照)。このことから、従来より、フエ 一ジング速度が所定値より小さいと判定された場合に、当該移動局との空間分割多 元接続を行うようにしている(例えば、特許文献 1の請求項 3参照)。
特許文献 1:特許第 3574055号公報
発明の開示
発明が解決しょうとする課題
[0003] しかし、上述した従来技術では、移動局の応答ベクトルを計算することによる負荷が 大きいという問題がある。なぜならば、応答ベクトルの計算式は複雑であるので、その 計算式の演算を行うことができる演算処理装置は高コストとなるからである。さらに、そ の演算量は多 、ために消費電力が多くなる。
[0004] また、移動局の応答ベクトルの計算には、基地局の受信信号から抽出した移動局 の送信信号を使用する力 その抽出した信号にエラーがある場合には応答ベクトル の計算が失敗する可能性がある。
[0005] 本発明は、このような事情を考慮してなされたもので、その目的は、移動局の応答 ベクトルを用いることなぐ移動局のフェージング速度を推定して空間分割多元接続 の適否を判断することのできる無線通信装置、無線通信方法及び無線通信プロダラ ムを提供することにある。
課題を解決するための手段
[0006] 上記の課題を解決するために、本発明に係る無線通信装置は、複数のアンテナ素 子を有し、無線局毎に、前記アンテナ素子毎の信号を重み付けする重み係数を生成 して指向性パターンを形成するァダプティブアレーアンテナを備え、複数の前記無線 局と無線通信する無線通信装置であって、前記重み係数の位相変化量を検出する 位相変化量検出手段と、前記重み係数の位相変化量に基づいて、前記無線局のフ エージング速度を推定するフ ージング速度推定手段と、前記推定に基づいて、空 間分割多元接続用のチャネルを割り当てる制御をする通信制御手段と、を備えたこと を特徴とする。
[0007] 本発明に係る無線通信装置にお!、ては、前記通信制御手段は、前記フェージング 速度の推定値の小さい前記無線局力 順番に、同時に空間分割多元接続が可能な チャネル数分だけ割り当てる制御をする、ことを特徴とする。
[0008] 本発明に係る無線通信方法は、複数のアンテナ素子を有するァダプティブアレー アンテナを用いて、無線局毎に、前記アンテナ素子毎の信号を重み付けする重み係 数を生成して指向性パターンを形成し、複数の前記無線局と無線通信する無線通信 方法であって、前記重み係数の位相変化量を検出する過程と、前記重み係数の位 相変化量に基づいて、前記無線局のフ ージング速度を推定する過程と、前記推定 に基づいて、空間分割多元接続用のチャネルを割り当てる過程と、を含むことを特徴 とする。
[0009] 本発明に係る無線通信方法にお!、ては、前記フェージング速度の推定値の小さ ヽ 前記無線局から順番に、同時に空間分割多元接続が可能なチャネル数分だけ割り 当てる制御をする、ことを特徴とする。 [0010] 本発明に係る無線通信プログラムは、複数のアンテナ素子を有するァダプティブァ レーアンテナを用いて、無線局毎に、前記アンテナ素子毎の信号を重み付けする重 み係数を生成して指向性パターンを形成し、複数の前記無線局と無線通信するため の無線通信プログラムであって、前記重み係数の位相変化量を検出する処理と、前 記重み係数の位相変化量に基づ 、て、前記無線局のフェージング速度を推定する 処理と、前記推定に基づいて、空間分割多元接続用のチャネルを割り当てる処理と 、をコンピュータに実行させることを特徴とする。
[0011] 本発明に係る無線通信プログラムにおいては、前記空間分割多元接続用のチヤネ ルを割り当てる処理にぉ 、て、前記フェージング速度の推定値の小さ 、前記無線局 力も順番に、同時に空間分割多元接続が可能なチャネル数分だけ割り当てを行う、 ことを特徴とする。
これにより、前述の無線通信装置がコンピュータを利用して実現できるようになる。
[0012] 本発明によれば、通信相手となる無線局 (例えば移動局)毎の指向性パターンを形 成するための重み係数に基づき、各無線局のフェージング速度を推定することがで きる。これにより、移動局の応答ベクトルを用いることなぐ移動局のフ ージング速度 を推定して空間分割多元接続の適否を判断することができ、無線通信装置に備える 演算処理装置の低コストィ匕ゃ省電力化を測ることが可能となる。
図面の簡単な説明
[0013] [図 1]本発明の一実施形態に係る無線基地局 (無線通信装置)の構成を示すブロック 図である。
[図 2]図 1に示すフ ージング速度推定部の構成を示すブロック図である。
[図 3]図 2に示すフェージング速度テーブルに記憶されるデータの一例を示すグラフ 図である。
[図 4]本発明の一実施形態に係る通信制御処理のフロー図である。
[図 5]本発明の一実施形態に係る無線通信システムの構成例を示すブロック図であ る。
[図 6]本発明の一実施形態に係る通信制御例を説明するための説明図である。
[図 7]本発明の一実施形態に係る無線通信システムの他の構成例を示すブロック図 である。
符号の説明
[0014] 1 無線基地局 (無線通信装置)
6 端末 m処理部
12 通信制御部
20 重み付け合成部
22 データ受信部
24 受信重み生成部
26 送信重み生成部
28 送信指向性形成部
30 フ ージング速度推定部
31 位相変化量検出部
32 フ ージング速度判定部
33 フェージング速度テーブル
Antl〜AntN アンテナ素子
発明を実施するための最良の形態
[0015] 以下、図面を参照し、本発明の一実施形態について説明する。
図 1は、本発明の一実施形態に係る無線基地局 1 (無線通信装置)の構成を示す ブロック図である。図 1において、無線基地局 1は、複数 (N個;但し、 Nは 2以上の整 数)のアンテナ素子 Antl〜AntN力も成るアレーアンテナを有する。アンテナ素子 A ntl〜AntNで各々受信された信号は、デュプレクサ 2を介してダウンコンバータ 2に 入力され、ベースバンド信号 X〜x
1 Nに変換される。
[0016] 各端末 m処理部 6 (但し、 mは 1から Mまでの整数)は、通信相手となる無線局として の無線通信端末 (以下、単に「端末」と称する)毎の無線通信処理を行う。端末 m処 理部 6には、ベースバンド信号 X〜xが入力される。端末 m処理部 6は、ベースバン
1 N
ド信号 X〜x に対して、ァダプティブアレーアンテナ方式の適応受信処理を行い、
1 N
端末 m受信データを出力する。
[0017] また、端末 m処理部 6には、端末 m送信データが入力される。端末 m処理部 6は、 端末 m送信データに対して、ァダプティブアレーアンテナ方式の適応送信処理を行 い、アンテナ素子 Antl〜AntNに各々対応するベースバンド信号 z〜zを出力す
1 N
る。各端末 m処理部 6出力後のベースバンド信号 z〜z は、アンテナ素子 Antl〜A
1 N
ntN毎の加算器 8で各々加算された後に、アップコンバータ 10に入力され、 RF信号 に変換される。各 RF信号は、デュプレクサ 2を介してアンテナ素子 Antl〜AntNに 供給され、無線送信される。
通信制御部 12は、無線基地局 1の通信制御をつかさどる。
[0018] 端末 m処理部 6において、重み付け合成部 20には、受信重み生成部 24により生 成されたアンテナ素子 Antl〜AntNに各々対応する重み係数 W〜Wと、ベース
1 N
バンド信号 X〜xとが入力される。重み付け合成部 20は、重み係数 W〜W でべ
1 N 1 N 一 スバンド信号 X〜χ
1 Νを各々重み付けし、さらにその重み付け後の全信号を一つに合 成してアレー出力信号 yを出力する。アレー出力信号 yは、データ受信部 22で受信 処理され、端末 m受信データとして出力される。
[0019] 受信重み生成部 24には、ベースバンド信号 X〜xと、重み付け合成部 20からフィ
1 N
ードバックされるアレー出力信号 yと、予め設定された参照信号 rとが入力される。受 信重み生成部 24は、ベースバンド信号 X〜x、参照信号 r及びアレー出力信号 yに
1 N
基づいて、重み係数 W〜Wを算出する。重み係数 W〜Wは、アンテナ素子 Ant
I N I N
l〜AntN力も成るアレーアンテナの指向性パターンを、通信相手となる端末に追随 させるように生成される。重み係数 W〜W の算出処理では、適応アルゴリズムが用
1 N
いられる。適応アルゴリズムとしては、例えば、 MMSE (Minimum Mean Square Error)ベ ~~スの LMs (Least Mean Square)や RLS (Recursive Least ¾qu ares)、 SMI (Sample Matrix Inversion)などが利用可能である。
[0020] 送信重み生成部 26は、重み係数 W〜Wを送信用に補正する。具体的には、送
1 N
信重み生成部 26は、送信指向性形成部 28からアンテナ素子 Antl〜AntNまでの 各送信経路間の位相上、ゲイン上のばらつきを補正する。送信重み生成部 26による 補正後の重み係数は送信指向性形成部 28に入力される。
[0021] 送信指向性形成部 28には、その送信用に補正された重み係数と端末 m送信デー タとが入力される。送信指向性形成部 28は、補正後の各重み係数で端末 m送信デ ータをそれぞれ重み付けしたベースバンド信号 z〜zを出力する。
1 N
[0022] フェージング速度推定部 30には、重み係数 W〜Wが入力される。フェージング
1 N
速度推定部 30は、重み係数 W〜Wに基づいて端末のフェージング速度を推定し
1 N
、その推定値 101を出力する。フェージング速度の推定値 101は、通信制御部 12に 入力される。通信制御部 12は、各端末のフェージング速度の推定値 101に基づいて
、各端末の空間分割多元接続の適否を判断する。
[0023] 図 2は、フェージング速度推定部 30の構成を示すブロック図である。図 2において、 フェージング速度推定部 30は、位相変化量検出部 31と、フ ージング速度判定部 3
2と、フェージング速度テーブル 33とを有する。
[0024] 位相変化量検出部 31は、重み係数 W〜Wの位相変化量を検出する。この位相
1 N
変化量の検出処理では、まず、 (1)式により、 W (n)対 W (n— 1)の比「h (n) jを計 算する。
[0025] [数 1] ) = π— υ i=1 Ν ■■■("
[0026] 但し、 W. (n)は、受信重み生成部 24によって n回目に生成された重み係数を表す。
その重み係数の生成間隔は一定である。 Nはアンテナ素子数である。
[0027] 次いで、(2)式により、 h (n)の位相「ϋ (η)」を計算する。
[0028] [数 2]
/ 、 ί l m [h ; (n) ] I ,„、
) = arC叫 (nirト " ·'· (2)
[0029] 但し、 Re[h (n) ]は (η)の実部、 Im[h (n) ]は (η)の虚部である。
上記 ρ (η)は、 W (η)対 W (η— 1)の位相変化を表すが、全て同一方向の位相変 化量とする。
[0030] 次いで、(3)式により、 ρ 1 (η)の平均値「Ρ (η)」を計算する。
avg
[0031] [数 3]
ΡΗν6 (η) = -∑Ρ | (η) - (3)
M i =1 [0032] 上記 P (n)は、(n— 1)回目の重み係数 W〜W力 n回目の重み係数 W〜W avg I N I N までの所定時間あたりの位相の変化量を表す。位相変化量検出部 31は、上記(1) 〜(3)式により算出された位相変化量 P (n)をフ ージング速度判定部 32に出力 avg
する。
[0033] フェージング速度判定部 32は、その位相変化量 P (n)に対応するフェージング速 avg
度をフェージング速度テーブル 33に基づ 、て判定する。フェージング速度テーブル 33は、位相変化量とフェージング速度との対応関係を示すデータを予め記憶してい る。図 3は、フェージング速度テーブル 33に記憶されるデータの一例である。図 3に 示されるグラフ図において、縦軸は位相変化量、横軸はフェージング速度を示す。位 相変化量とフ ージング速度との対応関係は、適用する無線通信システム毎に異な つてくるので、適用する無線通信システムを特定して予め求める。
[0034] フ ージング速度判定部 32は、位相変化量検出部 31から受け取った位相変化量 P (n)に対応するフェージング速度の値を、フェージング速度テーブル 33から読み avg
取る。そして、その読み取った値をフェージング速度の推定値 101として通信制御部 12に出力する。
[0035] 次に、図 4を参照して、通信制御部 12の動作を説明する。図 4は、本実施形態に係 る通信制御処理のフロー図である。
図 4において、通信制御部 12は、各端末 m処理部 6のフェージング速度推定部 30 から、各端末のフ ージング速度の推定値 101を当該通信制御部 12に入力する (ス テツプ Sl)。次いで、それら推定値 101をフェージング速度順にソートする (ステップ S2)。次いで、各推定値 101を所定の閾値 Thと比較し、閾値 Thより小さい推定値 10 1がある力判断する(ステップ S3)。
[0036] ステップ S3の判断の結果、閾値 Thより小さい推定値 101がない場合には、前記通 信制御部 12は、全端末に対して、従来チャネルを割り当てる (ステップ S4)。ここで、 従来チャネルとは、空間分割多元接続されない場合のキャリア (周波数)、タイムス口 ット又は拡散コードのいずれか、或いは複数の組み合わせ力 成るチャネルのことを 指す。従って、閾値 Thより小さい推定値 101がない場合には (ステップ S3で NOの場 合)、空間分割多元接続は行われない。 [0037] 一方、閾値 Thより小さい推定値 101がある場合には (ステップ S3で YESの場合)、 前記通信制御部 12は、推定値 101が閾値 Thより小さい端末を全て選択し、その選 択した端末の数をカウントする (ステップ S5)。なお、推定値 101は 0も含むものである 。次いで、前記通信制御部 12は、そのカウントした端末の数を最大空間チャネル数「 KJと比較し、端末の数が最大空間チャネル数「K」以下であるか判断する (ステップ S 6)。ここで、最大空間チャネル数とは、本実施形態では、一部の従来チャネルを除い て、同時に空間分割多元接続することが可能な最大のチャネル数を指す。
[0038] ステップ S6の判断の結果、端末の数が最大空間チャネル数「Κ」以下である場合に は、前記通信制御部 12は、ステップ S5で選択した全端末に対して空間分割多元接 続用のチャネルを割り当てると共に、ステップ S5で選択しな力つた残りの端末に対し ては従来チャネルを割り当てる (ステップ S7)。
[0039] 一方、端末の数が最大空間チャネル数「Κ」を超える場合には (ステップ S6で NOの 場合)、選択した端末のうち、推定値 101の小さい方から K個を抽出し、その抽出した K個の端末に対して空間分割多元接続用のチャネルを割り当てる。そして、残りの端 末 (ステップ S5で選択されなカゝつた端末も含めて)に対しては、従来チャネルを割り 当てる (ステップ S 8)。
[0040] なお、本実施形態にぉ 、て、最大空間チャネル数「K」は、一部の従来チャネルを 除いて、同時に空間分割多元接続することが可能な最大のチャネル数を指すが、例 えば、全ての従来チャネルに基づいて同時に空間分割多元接続することができる数 、とすることも可能である。この場合、ステップ S8は、以下のようになる。すなわち、端 末の数が最大空間チャネル数「Κ」を超えるときには (ステップ S6で NOの場合)、前 記通信制御部 12は、選択した端末のうち、推定値 101の小さい方力も K個を抽出し 、その抽出した K個の端末に対して空間分割多元接続用のチャネルを割り当てる。 そして、残りの端末に対しては、チャネルの割り当てを行わない。
[0041] なお、上記した閾値 Thは、前記通信制御部 12が、端末のフ ージング速度に基づ いて、当該端末の空間分割多元接続の適否を判定するためのものである。前記閾値 Thは、無線基地局に適用される無線通信システム毎に異なるので、前記閾値は無 線通信システムに応じて予め決定される。つまり、無線基地局に適用される無線通信 システム毎に、空間多重するのに適する限界の端末の移動速度が判断され、その限 界の移動速度に対応するフ ージング速度力 前記閾値 Thが決定される。
[0042] また、無線基地局に適用される無線通信システムによっては、閾値を段階的に複数 設定し、細かな通信制御を行うようにしてもよい。例えば、前記通信制御部 12には、 閾値 Th<閾値 Tgなる 2つの閾値 Th、 Tgが設定される。そして、前記通信制御部 12 は、推定値 101が閾値 Thより小さい端末に対しては、空間分割多元接続用のチヤネ ルを割り当てる。次いで、推定値 101が閾値 Th以上閾値 Tg未満の端末の有無を判 断し、該当する端末がある場合には、さらに従来チャネルの空きが十分にある力判断 する。この判断の結果、従来チャネルの空きが十分にある場合には、推定値 101が 閾値 Th以上閾値 Tg未満の端末に対して、従来チャネルを割り当てる。一方、従来 チャネルの空きが十分ではない場合には、推定値 101が閾値 Th以上閾値 Tg未満 の端末に対しても、空間分割多元接続用のチャネルを割り当てる。
[0043] なお、本実施形態では、通信制御部 12が、各端末のフ ージング速度の推定値 1 01を所定の閾値 Thと比較し、当該閾値 Thよりも小さい推定値 101の端末を基準に して、空間分割多元接続用のチャネルを割り当てるようにしている力 本発明では、こ のような空間チャネルの割り当てに限らず、閾値 Thを用いずに、単に、フェージング 速度の推定値 101が小さい端末力も順に、空間チャネルの割り当てが可能な最大の チャネル数分の端末に対して割り当てるようにしてもょ 、。
[0044] また、通信制御部 12が空間分割多元接続用のチャネルを割り当てる際に、停止し ていると判断できる (フェージング速度の推定値 101が 0である)端末が複数ある場合 には、当該端末同士に同じチャネルを割り当てるようにすることが好ましい。例えば、 図 5に示されるように、デスクトップ型の端末 (UTD) 201とカード型の端末 (UTC) 20 2とが混在する場合、通信制御部 12は、 UTD201が停止していると判断できるので 、このような UTD201が複数ある場合には、通信制御部 12は、当該複数の UTD20 1に同一チャネル (周波数) f 1を割り当てる。
なお、図 6に示されるように、通信制御部 12が、同一チャネル (周波数)を割り当て る際の優先度を設けるようにしてもよい。図 6の例では、 UTDが多いほど、優先度が 高く設定されている。このような優先度に基づいたチャネルの割り当てにより、通信制 御部 12によるチャネル (周波数)割り当てが効率よく行われる。
なお、図 7に示されるように、複数のチャネル (周波数)が同一ユーザに割り当てら れるシステムの場合には、通信制御部 12がチャネル (周波数)の割り当てを複数回 行うようにするとよい。
[0045] また、図 1に示す無線基地局 1の機能を実現するためのプログラムは、コンピュータ 読み取り可能な記録媒体に記録され、この記録媒体に記録されたプログラムがコンビ ユータシステムに読み込まれて、実行されることにより無線通信処理が行われるように してもよい。なお、ここでいう「コンピュータシステム」とは、 OSや周辺機器等のハード ウェアを含むものであってもよ 、。
また、「コンピュータシステム」は、 WWWシステムを利用している場合であれば、ホ ームページ提供環境 (ある 、は表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気 ディスク、 ROM,フラッシュメモリ等の書き込み可能な不揮発性メモリ、 CD-ROM 等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のこと をいう。
[0046] さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワーク や電話回線等の通信回線を介してプログラムが送信された場合のサーバゃクライア ントとなるコンピュータシステム内部の揮発性メモリ(例えば DRAM (Dynamic Ran dom Access Memory) )のように、一定時間プログラムを保持しているものも含む ものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシス テムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータ システムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インター ネット等のネットワーク (通信網)や電話回線等の通信回線 (通信線)のように情報を 伝送する機能を有する媒体のことを ヽぅ。
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良 い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの 組み合わせで実現できるもの、 、わゆる差分ファイル (差分プログラム)であっても良 い。
[0047] 以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの 実施形態に限られるものではなぐ本発明の要旨を逸脱しない範囲の設計変更等も 含まれる。
産業上の利用可能性
[0048] 本発明は、通信相手となる無線局(例えば移動局)毎の指向性パターンを形成する ための重み係数に基づき、各無線局のフェージング速度を推定することができる無 線通信装置、無線通信方法及び無線通信プログラムを提供する。

Claims

請求の範囲
[1] 複数のアンテナ素子を有し、無線局毎に、前記アンテナ素子毎の信号を重み付け する重み係数を生成して指向性パターンを形成するァダプティブアレーアンテナを 備え、複数の前記無線局と無線通信する無線通信装置であって、
前記重み係数の位相変化量を検出する位相変化量検出手段と、
前記重み係数の位相変化量に基づ!、て、前記無線局のフェージング速度を推定 するフ ージング速度推定手段と、
前記推定に基づ!ヽて、空間分割多元接続用のチャネルを割り当てる制御をする通 信制御手段と、
を備えたことを特徴とする無線通信装置。
[2] 前記通信制御手段は、前記フ ージング速度の推定値の小さ!、前記無線局から順 番に、同時に空間分割多元接続が可能なチャネル数分だけ割り当てる制御をする、 ことを特徴とする請求項 1に記載の無線通信装置。
[3] 複数のアンテナ素子を有するァダプティブアレーアンテナを用いて、無線局毎に、 前記アンテナ素子毎の信号を重み付けする重み係数を生成して指向性パターンを 形成し、複数の前記無線局と無線通信する無線通信方法であって、
前記重み係数の位相変化量を検出する過程と、
前記重み係数の位相変化量に基づ!、て、前記無線局のフェージング速度を推定 する過程と、
前記推定に基づいて、空間分割多元接続用のチャネルを割り当てる過程と、 を含むことを特徴とする無線通信方法。
[4] 前記フ ージング速度の推定値の小さい前記無線局力も順番に、同時に空間分割 多元接続が可能なチャネル数分だけ割り当てる制御をする、
ことを特徴とする請求項 3に記載の無線通信方法。
[5] 複数のアンテナ素子を有するァダプティブアレーアンテナを用いて、無線局毎に、 前記アンテナ素子毎の信号を重み付けする重み係数を生成して指向性パターンを 形成し、複数の前記無線局と無線通信するための無線通信プログラムであって、 前記重み係数の位相変化量に基づ!、て、前記無線局のフェージング速度を推定 する処理と、
前記推定に基づ!ヽて、空間分割多元接続用のチャネルを割り当てる処理と、 をコンピュータに実行させることを特徴とする無線通信プログラム。
前記空間分割多元接続用のチャネルを割り当てる処理にぉ 、て、前記フェージン グ速度の推定値の小さ 、前記無線局から順番に、同時に空間分割多元接続が可能 なチャネル数分だけ割り当てを行う、ことを特徴とする請求項 5に記載の無線通信プ ログラム。
PCT/JP2006/313001 2005-06-29 2006-06-29 無線通信装置、無線通信方法及び無線通信プログラム WO2007001052A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007523997A JPWO2007001052A1 (ja) 2005-06-29 2006-06-29 無線通信装置、無線通信方法及び無線通信プログラム
EP06767618A EP1901446A1 (en) 2005-06-29 2006-06-29 Radio communication device, radio communication method, and radio communication program
US11/994,110 US20090296638A1 (en) 2005-06-29 2006-06-29 Wireless Communication Apparatus, Wireless Communication Method and Wireless Communication Program
CN2006800222509A CN101204027B (zh) 2005-06-29 2006-06-29 无线通信装置以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-190727 2005-06-29
JP2005190727 2005-06-29

Publications (1)

Publication Number Publication Date
WO2007001052A1 true WO2007001052A1 (ja) 2007-01-04

Family

ID=37595297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313001 WO2007001052A1 (ja) 2005-06-29 2006-06-29 無線通信装置、無線通信方法及び無線通信プログラム

Country Status (6)

Country Link
US (1) US20090296638A1 (ja)
EP (1) EP1901446A1 (ja)
JP (1) JPWO2007001052A1 (ja)
KR (1) KR100970519B1 (ja)
CN (1) CN101204027B (ja)
WO (1) WO2007001052A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136399A1 (ja) * 2007-04-26 2008-11-13 Kyocera Corporation 無線通信装置及び信号処理方法
WO2008152959A1 (ja) * 2007-06-13 2008-12-18 Kyocera Corporation 無線通信方法および無線通信装置
JP2009194881A (ja) * 2008-02-18 2009-08-27 Kddi R & D Laboratories Inc 無線基地局制御装置および無線基地局制御方法
JP2009231983A (ja) * 2008-03-19 2009-10-08 Kddi R & D Laboratories Inc 無線基地局制御装置および無線基地局制御方法
JP2013009386A (ja) * 2012-08-01 2013-01-10 Kyocera Corp 無線通信方法および無線通信装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8577296B2 (en) 2008-08-29 2013-11-05 Empire Technology Development, Llc Weighting factor adjustment in adaptive antenna arrays
CN101359967B (zh) * 2008-08-29 2011-06-01 北京天碁科技有限公司 一种应用于高速移动场景下急剧衰落的检测方法和装置
BRPI0921362A2 (pt) 2008-11-07 2019-09-24 Sumitomo Electric Industries aparelho de comunicacao
WO2011052575A1 (ja) 2009-10-26 2011-05-05 住友電気工業株式会社 無線通信装置
CN105577298B (zh) * 2014-11-05 2018-10-16 辰芯科技有限公司 一种自适应相位检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052751A1 (fr) * 2000-12-25 2002-07-04 Sanyo Electric Co., Ltd. Dispositif radio a directivite de transmission et procede de commande et programme de commande pour le dispositif radio
JP2003032167A (ja) * 2001-07-12 2003-01-31 Sanyo Electric Co Ltd 無線基地システムおよび送信指向性制御方法
WO2003026335A1 (fr) * 2001-09-14 2003-03-27 Fujitsu Limited Systeme de communication mobile, station mobile et station de base
JP2003198508A (ja) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd アダプティブアレイ無線装置
JP2003244070A (ja) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd 無線基地装置、送信電力制御方法、および送信電力制御プログラム
JP2005190727A (ja) 2003-12-24 2005-07-14 Honda Motor Co Ltd 燃料電池車

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913879B2 (ja) * 1998-02-03 2007-05-09 富士通株式会社 移動速度に基づく通信制御装置および方法
CN1202590C (zh) * 1998-07-13 2005-05-18 Ntt移动通信网株式会社 自适应阵列天线
JP3574055B2 (ja) * 2000-08-25 2004-10-06 三洋電機株式会社 無線基地局
JP2003101427A (ja) * 2001-09-21 2003-04-04 Sanyo Electric Co Ltd 無線装置および利得制御方法
JP4118599B2 (ja) * 2002-05-20 2008-07-16 三菱電機株式会社 ダイバーシチ受信機および受信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052751A1 (fr) * 2000-12-25 2002-07-04 Sanyo Electric Co., Ltd. Dispositif radio a directivite de transmission et procede de commande et programme de commande pour le dispositif radio
JP2003032167A (ja) * 2001-07-12 2003-01-31 Sanyo Electric Co Ltd 無線基地システムおよび送信指向性制御方法
WO2003026335A1 (fr) * 2001-09-14 2003-03-27 Fujitsu Limited Systeme de communication mobile, station mobile et station de base
JP2003198508A (ja) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd アダプティブアレイ無線装置
JP2003244070A (ja) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd 無線基地装置、送信電力制御方法、および送信電力制御プログラム
JP2005190727A (ja) 2003-12-24 2005-07-14 Honda Motor Co Ltd 燃料電池車

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136399A1 (ja) * 2007-04-26 2008-11-13 Kyocera Corporation 無線通信装置及び信号処理方法
US8565826B2 (en) 2007-04-26 2013-10-22 Kyocera Corporation Radio communication device and signal processing method
WO2008152959A1 (ja) * 2007-06-13 2008-12-18 Kyocera Corporation 無線通信方法および無線通信装置
JP2008311842A (ja) * 2007-06-13 2008-12-25 Kyocera Corp 無線通信方法および無線通信装置
US8339958B2 (en) 2007-06-13 2012-12-25 Kyocera Corporation Wireless communication method and wireless communication apparatus
JP2009194881A (ja) * 2008-02-18 2009-08-27 Kddi R & D Laboratories Inc 無線基地局制御装置および無線基地局制御方法
JP2009231983A (ja) * 2008-03-19 2009-10-08 Kddi R & D Laboratories Inc 無線基地局制御装置および無線基地局制御方法
JP2013009386A (ja) * 2012-08-01 2013-01-10 Kyocera Corp 無線通信方法および無線通信装置

Also Published As

Publication number Publication date
CN101204027A (zh) 2008-06-18
CN101204027B (zh) 2011-12-07
JPWO2007001052A1 (ja) 2009-01-22
KR20080031265A (ko) 2008-04-08
EP1901446A1 (en) 2008-03-19
US20090296638A1 (en) 2009-12-03
KR100970519B1 (ko) 2010-07-16

Similar Documents

Publication Publication Date Title
WO2007001052A1 (ja) 無線通信装置、無線通信方法及び無線通信プログラム
JP4744351B2 (ja) 無線送信局及び無線受信局
JP5075198B2 (ja) セル間干渉除去システム及びスケジューラ
JP5501470B2 (ja) ユーザ装置を選択する方法、アップリンクスケジューラ、基地局及びコンピュータプログラム
JP4059871B2 (ja) 異常検出方法およびそれを利用した基地局装置
JP2008219625A (ja) 通信方法および無線通信装置
WO2003007506A1 (fr) Systeme radio fixe, procede de transmission a commande directionnelle et programme de transmission a commande directionnelle
US7075909B1 (en) Radio spectrum management apparatus for base stations
US20090002235A1 (en) Radio Communication System, Transmission Apparatus, Transmission Method, Program and Recording Medium
US20080107085A1 (en) Apparatus and method for determining transmission mode in wireless communication system
US7853293B2 (en) Transmission method and radio apparatus utilizing the transmission method
WO2005076492A1 (ja) Rake受信装置およびrake受信方法
JP4457382B2 (ja) 無線通信基地局
JP2003259430A (ja) 無線基地装置、スロット割当方法、およびスロット割当プログラム
JP3889614B2 (ja) 通信チャネル割当装置及び無線基地局
US20170373742A1 (en) Methods and systems for transmitting information across a mimo channel from a transmitter to a receiver
US20070230589A1 (en) Method for allocation of power in multiuser orthogonal frequency division multiplexing
JP4074553B2 (ja) 通信装置及びそれにおける検査方法
JP4074552B2 (ja) 通信装置及びその検査方法
JP4177175B2 (ja) 通信装置及び通信方法
CN101420272B (zh) 一种干扰水平检测方法、系统和装置
JP5570372B2 (ja) 無線基地局および無線通信方法
KR20200072213A (ko) 비직교 다중 접속 시스템 및 그의 다중 유저 스케줄링 방법
JP2012518931A (ja) マルチキャリアシステムの処理遅延を割当てるための方法と装置
JP2013074450A (ja) 移動局選択装置、移動局選択方法、及び移動局選択プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022250.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523997

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000614

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006767618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11994110

Country of ref document: US