WO2007000517A2 - Composition d'ensimage pour granules de fils de verre a forte teneur en verre - Google Patents

Composition d'ensimage pour granules de fils de verre a forte teneur en verre Download PDF

Info

Publication number
WO2007000517A2
WO2007000517A2 PCT/FR2006/050405 FR2006050405W WO2007000517A2 WO 2007000517 A2 WO2007000517 A2 WO 2007000517A2 FR 2006050405 W FR2006050405 W FR 2006050405W WO 2007000517 A2 WO2007000517 A2 WO 2007000517A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass
composition according
granules
weight
polypropylene
Prior art date
Application number
PCT/FR2006/050405
Other languages
English (en)
Other versions
WO2007000517A3 (fr
Inventor
Yohann Barnaud
Jean-Philippe Gasca
Original Assignee
Saint-Gobain Vetrotex France S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Vetrotex France S.A. filed Critical Saint-Gobain Vetrotex France S.A.
Priority to CN2006800150869A priority Critical patent/CN101171314B/zh
Priority to JP2008509485A priority patent/JP2008540306A/ja
Priority to EP06794392A priority patent/EP1885809A2/fr
Priority to BRPI0610729-0A priority patent/BRPI0610729A2/pt
Priority to US11/913,109 priority patent/US20080254290A1/en
Publication of WO2007000517A2 publication Critical patent/WO2007000517A2/fr
Publication of WO2007000517A3 publication Critical patent/WO2007000517A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/30Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Definitions

  • the invention relates to a sizing composition for glass strands that can be used to form granules with a high glass content. These granules are intended more particularly to manufacture molded parts made of thermoplastic material reinforced with glass threads known under the name
  • TPA (abbreviation of "reinforced thermoplastic”).
  • Such parts can be manufactured in different ways, in particular by the technique of "injection molding".
  • the injection molding of TPA parts is carried out in an installation comprising an injection press associated with a mold.
  • the injection press comprises an assembly formed of a heated sheath and an injection screw, generally of "single-screw" type, surmounted by a feed hopper made of thermoplastic material and glass threads.
  • thermoplastic material and the glass threads are introduced separately into the hopper and then mixed into the sleeve-screw assembly where the thermoplastic material is melted and plasticized (i.e. transformed into a viscous injectable material) and the same time the glass son are impregnated with the thermoplastic material and dispersed therein.
  • thermoplastic-glass mixture is then injected into the mold.
  • the injection takes place in three phases:
  • filling the mixture pushed by the injection screw serving as a piston fills the cavity of the mold. If necessary, a pressure can be applied on the mold at the end of filling,
  • the polymer is frozen and the TPA piece is ejected when its rigidity is sufficient.
  • the aforementioned molding technique does not allow the use of conventional cut glass yarns directly in the hopper; the yarns intermingle and form entanglements that quickly block the flow of granulated thermoplastic material and threads to the injection screw. To ensure a proper implementation, the glass son are therefore converted into granules.
  • Granules are known in which the glass threads of variable length are associated with thermoplastic material.
  • the "short" wire granules are formed from thermoplastic material and cut glass son in an extruder equipped with a "twin-screw” type screw, and cutting of the rod formed into granules of the desired length.
  • the high shear induced by this type of extrusion screw makes it possible to separate the glass filaments and consequently to sufficiently impregnate them with the thermoplastic material and to disperse them correctly therein. Nevertheless, the level of reinforcement is not very high because of the short length of the glass strands.
  • the "long" glass fiber granules are obtained by passing one or more continuous glass strands, for example in the form of a roving, in a die fed with the molten thermoplastic material and then cutting the cooled glass wire to the required length.
  • This type of granulate known as
  • the invention is particularly interested in the latter type of granules with a high glass content.
  • the glass strands that make up these granules consist of a multitude of individual filaments (of the order of 1,000 to 100,000 filaments per basic thread), of 5 to 24 ⁇ m in diameter, for example from 10 ⁇ m to 17 ⁇ m. ⁇ m and length generally not exceeding 30 mm.
  • the glass filaments are coated with a sizing: in addition to the protection against abrasion that it brings to the filaments during the elaboration of the son, it is important that the size also confers additional properties specific to the intended application.
  • the size must be able to bind the filaments together to give a wire capable of being cut into elements of identical length with a quantity of "fines", that is to say of smaller particles, which is the weakest possible.
  • the sizing must also provide the glass fiber granules with the capacity to withstand the major mechanical stresses resulting from the friction of the wires with each other and against the walls of the transport pipes which cause a bursting of the threads and the release of the filaments of glass that constitute them (we speak of "filamentisation”). The filaments then form "flock” which obstructs the pipes.
  • the sizing must further contribute to bond the glass strands during granulation to form high density granules which can flow easily into the metering device and into the feed hopper of the injection screw. Indeed, most metering devices are gravimetric metering based on a constant flow that operate by opening traps releasing granules, the opening time being calculated and adjusted as and when metered dosages. It is therefore important that the granule shape factor defined by the ratio of the length to the diameter remains constant, that the glass threads remain sufficiently cohesive and that they can not be released and become entangled forming "bridges" which disturb or block the flow of materials to the injection screw.
  • the object of the present invention is to provide a sizing composition capable of coating glass yarns to form chopped yarn granules, in particular suitable for injection molding, which have a high glass content and a better dispersion in the matrix. thermoplastic to reinforce.
  • the sizing composition which is the subject of the invention is an aqueous composition comprising the constituents below, in the following weight contents expressed as percentages of the solids:
  • the copolymer makes it possible to modulate the speed of impregnation of the threads with the thermoplastic material. It results from the polymerization of ethylene and at least one monomer selected from vinyl acetate, acrylic acid and methacrylic acid.
  • the copolymer has an ethylene content of at least 50% by weight, preferably at least 65% and more preferably at least 80%, which makes it possible to have good compatibility with the thermoplastic matrix at to reinforce.
  • the melting point of the copolymer is generally less than
  • the copolymer has a melting point of less than 160 ° C., preferably less than 140 ° C. and advantageously of the order of 110 ° C.
  • the coupling agent makes it possible to hang the size on the surface of the glass filaments.
  • the coupling agent is generally chosen from silanes such as gamma-glycidoxypropyltrimethoxysilane, gamma-acryloxypropyltrimethoxysilane, gamma-methacryloxypropyltrimethoxysilane, gamma-aminopropyltriethoxysilane, vinyltrimethoxysilane, phenylaminopropyltrimethoxysilane, styrylaminoethylaminopropyltrimethoxysilane or terbutylcarbanoylpropyltrimethoxysilane, and siloxanes. titanates, zirconates and mixtures of these compounds.
  • the silanes are chosen, advantageously the aminosilanes.
  • the grafted polypropylene according to the invention comprises at least one side chain bonded to the polypropylene main chain, the side chain being a unit derived from at least one monomer containing one or more functions that can react with the coupling agent.
  • the monomer is chosen from vinyl monomers and monomers carrying at least one alcohol, carboxylic acid, acid anhydride, especially carboxylic acid, amide or epoxide functional group.
  • the degree of grafting of the polypropylene (ratio of the mass of grafted monomer to the weight of the graft polymer x 100) is between 0.2 and 8%, preferably between 0.5 and 5%.
  • the polypropylene is grafted with maleic anhydride.
  • the maleic anhydride content in the grafted polypropylene ranges from 0.2 to 6%, preferably from 0.5 to 4%.
  • the melting point of the grafted polypropylene is generally greater than the melting point of the copolymer according to the invention described above.
  • the sizing composition obtained in the context of the invention may be in the form of a solution, suspension, dispersion or aqueous emulsion. Most often, the sizing composition is an emulsion.
  • the sizing composition comprises the constituents below, in the following weight contents expressed as percentages of solids:
  • At least one coupling agent preferably a silane and advantageously an aminosilane-10 to 60% grafted polypropylene, preferably with maleic anhydride.
  • the sizing composition may further comprise one or more components (hereinafter referred to as "additives").
  • the composition may comprise at least one film-forming agent chosen from polyurethanes, epoxies, polyesters and polyvinyl acetate.
  • the content of film-forming agent may be up to 40% by weight of the sizing composition, preferably up to 10%.
  • the composition may also comprise, as additive, at least one surfactant or lubricant which helps to protect the filaments from abrasion and contributes to limiting the formation of flock during fiber drawing and wire cutting.
  • the surfactant or lubricant is chosen from fatty acid esters such as decyl laurate, isopropyl palmitate, cetyl palmitate, isopropyl stearate, ethylene glycol adipate or trimethylolpropane trioctanoate. , and alkoxylated derivatives, especially ethoxylated derivatives of these esters, glycols derivatives such as polyethylene glycols or polypropylene glycols, optionally containing alkoxy groups, especially ethoxy, and mixtures of these compounds.
  • the sizing composition may include an antistatic agent such as a quaternary ammonium salt.
  • the sizing composition may further comprise as an additive an anti-foaming agent, for example a polyalkylsiloxane such as polydimethylsiloxane.
  • an anti-foaming agent for example a polyalkylsiloxane such as polydimethylsiloxane.
  • the content of each of the abovementioned additives, except for the film-forming agent does not exceed 3% by weight of the composition, the total content of these additives remaining less than 5%.
  • the sizing composition generally has a solids content of between 2 and 20%, preferably 4 and 15% and advantageously of the order of 10%.
  • the application of the sizing composition according to the invention to the glass filaments is carried out under the usual conditions known in the art.
  • the threads of molten glass flowing from orifices arranged at the base of one or more dies are drawn in the form of one or more plies of continuous filaments, and then the filaments are gathered in one or more threads.
  • the deposition of the size is performed on the filaments being stretched under the die.
  • the sized yarns which constitute another object of the invention, are generally collected in the form of windings on rotating supports or are cut before collection by a member also serving to stretch them, most often disposed under the Faculty.
  • the son obtained can thus be in different forms after collection, for example in the form of continuous yarn coils (cakes, rovings comprising a thread or several basic threads ("roving" assembled), "cops", etc. ) or chopped wires.
  • the glass filaments constituting these threads have a diameter that can vary to a large extent, most often from 5 to 30 ⁇ m, preferably 8 to 20 ⁇ m.
  • the base yarns generally consist of 100 to 10,000 filaments, preferably 200 to 5,000, and preferably of the order of 1,000.
  • the amount of sizing coating the glass son does not exceed 2% of the weight of the yarn and preferably is between 0.2 and 1.8%, and preferably between 0.5 and 1.5% .
  • the size coating the glass son has the particular that it softens at a lower temperature than the melting temperature of the material to be reinforced.
  • the size begins to flow before the thermoplastic material, which makes it possible to have a kneading effective material and a homogeneous distribution of son in the mixture to be injected.
  • the softening of the size occurs at a temperature a few degrees Celsius higher than the melting temperature of the sizing compound having the lowest melting point, and at least 10 ° C lower, preferably at least 20 ° C and preferably at least 50 ° C at the melting temperature of the thermoplastic material to be reinforced.
  • the sized glass strands which constitute another object of the invention, are used to form granules of cut glass strands with a high glass content.
  • the granules can be obtained according to any method known to those skilled in the art, in particular described in WO-A-96/40595, WO-A-98/43920, WO-A-01/05722 and WO-A-03/097543.
  • the granules can be obtained by the process of cutting the glass strands to a length of between 6 and 30 mm, preferably directly under the spinneret as indicated above, and subjecting them to stirring in a suitable device. in order to agglomerate them. Under these conditions, the cut son are wet and generally contain 5 to 25% by weight of water.
  • the cut glass yarns to which, if appropriate, water has been added so as to have a water content of between 10 and 25% by weight, are treated in a brewing apparatus for a sufficient period of time up to obtaining granules containing at least 50% by weight of glass.
  • the granules are then dried to remove water.
  • additives may be introduced during the stirring in a proportion not exceeding 3% of the total weight of the mixture.
  • the additives are chosen from the coupling agents with the matrix to be reinforced, for example polypropylene grafted with maleic anhydride, the anti-aging agents making it possible to improve the heat resistance or the light resistance, the fillers, for example the carbon black.
  • the dried granules are composed of juxtaposed cut threads and have a length substantially equal to that of the cut glass starting threads, from 6 to 30 mm, preferably from 8 to 25 mm and advantageously from 9 to
  • the diameter of the granules is generally between 0.5 and 4 mm, preferably 1 and 3 mm.
  • the granules have a glass content ranging from 95% to 99.8% by weight, preferably 98 to 99.5%.
  • the granules have a loss on ignition of less than 2% by weight, preferably less than 1.8%, and preferably ranging from 0.5 to 1.5%.
  • the granules can be used for the reinforcement of thermoplastic materials such as polyolefins, for example polyethylene and polypropylene, polyamides, polyalkylene terephthalates, for example PET polyethylene terephthalate and PBT polybutylene terephthalate, styrene polymers, for example acrylonitrile-butadiene-styrene (ABS), phenylene polysulfide PPS, polycarbonates and polyacetals, for example polyethylene oxide POM.
  • polypropylene is particularly preferred.
  • the glass content in the final molded part is between 10 and 60%, advantageously 20 and 30%
  • the granules obtained from the glass strands coated with the composition according to the invention can be used in combination with any thermoplastic matrix. This is an advantage over known injection molding granules which contain a substantial amount of thermoplastic material (at least 30 and up to 80% by weight depending on the type of granule) which may be some incompatibility with the material to reinforce.
  • thermoplastic material at least 30 and up to 80% by weight depending on the type of granule
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-acrylic acid
  • Michem Prime 4983R ethylene-acrylic acid
  • weight content of ethylene 80%; weight average molecular weight: 8400; acid number: 156 - - gamma-aminopropyltriethoxysilane (silane): sold under the reference "Silquest ® A-1 100" by GENERAL ELECTRIC;
  • PU polyurethane
  • the preparation of the sizing composition is carried out as follows: The ethoxy groups of the silane (3) are hydrolyzed in deionized water kept stirring, and then the other constituents are added, still with stirring. The final pH is of the order of 10.
  • the weight content of solids in the sizing composition is equal to 10%.
  • the sizing compositions are used to coat, in a known manner, glass filaments E of about 17 ⁇ m in diameter drawn from glass threads flowing from the orifices of a die which are gathered together into 500 filament yarns. each.
  • the glass strands of Examples 1 to 13 are cut to an average length of 12 mm ⁇ 1 mm and granulated in the granulation device described in the patent application WO 03/097543.
  • the granules have a length of 12 mm ⁇ 1 mm, a diameter of 2.5 mm, a density of 0.8 and a glass content greater than 98%.
  • the granules obtained are analyzed under the following conditions: the quantity of fines, that is to say of rods or of free glass filaments, is measured on a sample of 500 g of granules placed in a hopper whose chute of outlet is located 4 mm from a vibrating corridor allowing the flow and a homogeneous spreading of the granules.
  • the fines are collected in a trap located above the vibrating corridor, by means of a suction device.
  • the quantity of fines, expressed in mg / kg is measured on the granules before and after the transport test (see following paragraph).
  • the quantity of flock after the pneumatic transport of the granules is measured as follows: 2 kg of granules contained in a storage tank are sucked through a critical circuit up to the pneumatic injection hopper. a conventional injection press. The formed filament wad is collected on the filter of the pneumatic hopper and weighed. The amount of flock is expressed in mg / kg.
  • the granules are subjected to a PSI (Pneumatic Stress Integrity) test representing a pneumatic transport of the granules under high pressure under more severe stress conditions than the current industrial conditions.
  • PSI Pressure Integrity
  • 50 g of granules are rotated in a stainless closed circuit at a pressure of 5 bar (0.5 MPa) for 45 seconds.
  • the granules are recovered and sieved to recover the flock.
  • the percentage of flock is given as a function of the initial mass of granules.
  • the flow of the granules or fibers, expressed in seconds / kilogram, is measured as follows: the product (5 kg) is placed in a hopper whose discharge orifice is located 28.5 mm from a corridor Vibrating flow with an amplitude of 1 mm.
  • the granules of Examples 14 to 26 have a flowability of less than 15 s / kg, compatible with use in an injection molding device.
  • the granules according to the invention have good mechanical strength properties during transport.
  • the granules of Examples 14 to 20 and 22 to 24 have a smaller amount of fines before and after the pneumatic transport, and less fuzz under the conditions of the injection (transport test) and under more severe conditions ( PSI test) than the granules of Examples 25 and 26 compared.
  • the granules of Example 21 have intermediate strength properties compared to comparative examples which remain acceptable for the intended application.
  • the granules of Examples 14 to 26 are used to make composite parts by the injection molding technique.
  • the granules of cut glass yarns and the granulated thermoplastic material (polypropylene) are transported pneumatically to a gravimetric doser overlying an injection molding machine equipped with a single injection screw.
  • the mixture is injected into a mold allowing the production of a 2 mm thick plate.
  • the amount of glass represents 30% of the total weight of the plate.
  • the plates were formed under the following conditions:
  • a pressure of 120 bar (12 MPa) is applied to the injection screw operating at the speed of 130 rotations per minute, the speed being reduced to 80 rotations per minute at the end of the dosage, which allows slightly increase the mixing time of the materials and obtain better impregnation of the son by the thermoplastic material.
  • the plates thus formed are placed on a lighting device making it possible to visualize the clusters of cut yarns that are not dispersed in the thermoplastic matrix.
  • An image processing software (Mesurim) of the plate makes it possible to calculate the percentage of the surface containing nondispersed cut glass threads (% defects).
  • the plates obtained from the granules according to the invention have a better dispersion of the glass threads in the matrix and therefore a lower percentage of defects than with the known granules (comparative examples 38 and 39). ).
  • the molding performed under conditions 2 leads to better dispersion without significantly affecting the length of the fibers and therefore the level of performance in terms of reinforcement.
  • the mechanical properties of the plates reinforced by the glass strands coated with the size according to the invention are comparable to those of Examples 38 and 39, in particular the impact resistance (Charpy and IZOD tests) and the bending stress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

L'invention concerne une composition d'ensimage pour fils de verre comprenant les constituants ci-après, dans les teneurs pondérales suivantes exprimées en pourcentages des matières solides : 10 à 99 % d'au moins un copolymère choisi parmi les copolymères d'éthylène et d'acétate de vinyle ou d'acide acrylique ou méthacrylique ; 1 à 40 % d'au moins un agent de couplage ; 0 à 90 % de polypropylène greffé par au moins un motif dérivé d'au moins un monomère renfermant une ou plusieurs fonctions pouvant réagir avec l'agent de couplage. Les fils de verre obtenus sont destinés à la réalisation de granulés de fils de verre à forte teneur en verre pour la réalisation de pièces composites à matrice thermoplastique renforcée par des fils de verre coupés selon la technique de moulage par injection.

Description

COMPOSITION D'ENSIMAGE POUR GRANULES DE FILS DE VERRE A
FORTE TENEUR EN VERRE
L'invention concerne une composition d'ensimage pour des fils de verre utilisables pour former des granulés à forte teneur en verre. Ces granulés sont destinés plus particulièrement à fabriquer des pièces moulées en matière thermoplastique renforcée par des fils de verre connue sous la dénomination
TPA (abréviation de « thermoplastique armé »).
De telles pièces peuvent être fabriquées de différentes manières, notamment par la technique de « moulage par injection ».
De manière générale, le moulage par injection de pièces TPA est effectué dans une installation comprenant une presse à injection associée à un moule. La presse à injection comprend un ensemble formé d'un fourreau chauffé et d'une vis d'injection, généralement de type « mono-vis », surmonté d'une trémie d'alimentation en matière thermoplastique et en fils de verre.
La matière thermoplastique et les fils de verre sont introduits séparément dans la trémie, puis sont mélangés dans l'ensemble fourreau-vis où la matière thermoplastique est fondue et plastifiée (c'est-à-dire transformée en une matière visqueuse injectable) et dans le même temps les fils de verre sont imprégnés par la matière thermoplastique et dispersés dans celle-ci.
Le mélange thermoplastique-verre obtenu est ensuite injecté dans le moule. L'injection se déroule en trois phases :
- remplissage (ou injection) : le mélange poussé par la vis d'injection servant de piston remplit la cavité du moule. Le cas échéant, une pression peut être appliquée sur le moule à la fin du remplissage,
- compactage : le mélange est maintenu en pression pendant le refroidissement,
- refroidissement : le polymère est figé et la pièce TPA est éjectée quand sa rigidité est suffisante. La technique de moulage précitée n'autorise pas l'usage de fils de verre coupés classiques directement dans la trémie ; les fils s'entremêlent et forment des enchevêtrements qui bloquent rapidement l'écoulement de la matière thermoplastique granulée et des fils vers la vis d'injection. Pour assurer une mise en œuvre convenable, les fils de verre sont par conséquent transformés en granulés.
On connaît des granulés dans lesquels les fils de verre de longueur variable sont associés à de la matière thermoplastique. Les granulés de fils « courts », de longueur inférieure à 1 mm, sont formés à partir de matière thermoplastique et de fils de verre coupés dans une extrudeuse équipée d'une vis de type « bi-vis », et découpe du jonc formé en granulés de la longueur désirée. Le fort cisaillement induit par ce type de vis d'extrusion permet de désolidariser les filaments de verre et par conséquent de les imprégner suffisamment par la matière thermoplastique et de les disperser correctement dans celle-ci. Néanmoins, le niveau de renforcement n'est pas très élevé du fait de la faible longueur des fils de verre.
Les granulés de fils de verre « longs », typiquement de plus de 6 mm, sont obtenus en faisant passer un ou plusieurs fils de verre continus, par exemple sous forme de stratifil (« roving » en anglais), dans une filière alimentée par de la matière thermoplastique fondue, puis en découpant le fil de verre refroidi à la longueur requise. Ce type de granulé, connu sous le terme de
« pellet » en anglais, contient des fils de verre de même longueur que celle du granulé ; il confère aux pièces moulées de meilleures propriétés mécaniques. D'autres granulés à teneur en verre élevée, supérieure à 90 % en poids sont connus de WO 03/097543. Cependant, ces granulés ne sont pas entièrement satisfaisants car les fils de verre qu'ils contiennent ne se dispersent pas correctement dans la matière thermoplastique à renforcer. La présence d'amas de fils au sein de la matrice nuit à la qualité des pièces moulées dont les performances mécaniques sont diminuées.
L'invention s'intéresse particulièrement à ce dernier type de granulés à forte teneur en verre.
Les fils de verre qui composent ces granulés sont constitués d'une multitude de filaments individuels (de l'ordre de 1 000 à 100 000 filaments par fil de base), de 5 à 24 μm de diamètre, par exemple de 10 μm à 17 μm et de longueur n'excédant généralement pas 30 mm.
De manière générale, les filaments de verre sont revêtus d'un ensimage : outre la protection contre l'abrasion qu'il apporte aux filaments lors de l'élaboration des fils, il est important que l'ensimage confère aussi des propriétés supplémentaires propres à l'application visée.
L'ensimage doit pouvoir lier les filaments entre eux pour donner un fil apte à être coupé en éléments de longueur identique avec une quantité de « fines », c'est-à-dire de particules de plus faible dimension, qui soit la plus faible possible.
Parce que le transport est le plus souvent effectué par voie pneumatique, l'ensimage doit aussi apporter aux granulés de fils de verre la capacité de résister aux sollicitations mécaniques importantes résultant des frottements des fils entre eux et contre les parois des conduites de transport qui provoquent un éclatement des fils et la libération des filaments de verre qui les constituent (on parle de « filamentisation »). Les filaments forment alors de la « bourre » qui obstrue les conduites.
L'ensimage doit encore contribuer à lier les fils de verre pendant la granulation pour former des granulés à densité élevée pouvant s'écouler facilement dans le dispositif de dosage et dans la trémie d'alimentation de la vis d'injection. En effet, la plupart des dispositifs de dosage sont des doseurs gravi métriques basés sur un écoulement constant qui fonctionnent par ouverture de trappes libérant les granulés, le temps d'ouverture étant calculé et ajusté au fur et à mesure des dosages réalisés. Il est donc important que le facteur de forme du granulé défini par le rapport de la longueur au diamètre demeure constant, que les fils de verre restent suffisamment cohésifs et qu'ils ne puissent pas être libérés et s'enchevêtrer en formant des « ponts » qui perturbent voire bloquent l'écoulement des matières vers la vis d'injection. La présente invention a pour but de fournir une composition d'ensimage apte à revêtir des fils de verre pour former des granulés de fils coupés, en particulier adaptés au moulage par injection, qui présentent une forte teneur en verre et une meilleure dispersion dans la matrice thermoplastique à renforcer.
La composition d'ensimage objet de l'invention est une composition aqueuse comprenant les constituants ci-après, dans les teneurs pondérales suivantes exprimées en pourcentages des matières solides :
- 10 à 99 % d'au moins un copolymère choisi parmi les copolymères d'éthylène et d'acétate de vinyle ou d'acide acrylique ou méthacrylique - 1 à 40 % d'au moins un agent de couplage
- O à 90 % de polypropylène greffé par au moins un motif dérivé d'au moins un monomère renfermant une ou plusieurs fonctions pouvant réagir avec l'agent de couplage. Le copolymère permet de moduler la vitesse d'imprégnation des fils par la matière thermoplastique. Il résulte de la polymérisation de l'éthylène et d'au moins un monomère choisi parmi l'acétate de vinyle, l'acide acrylique et l'acide méthacrylique.
Avantageusement, le copolymère présente une teneur en éthylène au moins égale à 50 % en poids, de préférence au moins égale à 65 % et mieux encore au moins égale à 80 %, ce qui permet d'avoir une bonne compatibilité avec la matrice thermoplastique à renforcer.
Le point de fusion du copolymère est généralement inférieur d'au moins
30°C au point de fusion de la matière à renforcer, de préférence d'au moins 50°C. En règle générale lorsque la matière à renforcer est du polypropylène, le copolymère possède un point de fusion inférieur à 160°C, de préférence inférieur à 140°C et avantageusement de l'ordre de 1 10°C.
L'agent de couplage permet d'accrocher l'ensimage à la surface des filaments de verre. L'agent de couplage est généralement choisi parmi les silanes tels que le gamma-glycidoxypropyltriméthoxysilane, le gamma- acryloxypropyltriméthoxysilane, le gamma-méthacryloxypropyltriméthoxysilane, le gamma-aminopropyltriéthoxysilane, le vinyltriméthoxysilane, le phényl- aminopropyltriméthoxysilane, le styrylaminoéthylaminopropyltriméthoxysilane ou le terbutylcarbanoylpropyltriméthoxysilane, les siloxanes, les titanates, les zirconates et les mélanges de ces composés. De préférence, on choisit les silanes, avantageusement les aminosilanes.
Le polypropylène greffé conforme à l'invention comprend au moins une chaîne latérale liée à la chaîne principale de polypropylène, la chaîne latérale étant un motif dérivé d'au moins un monomère renfermant une ou plusieurs fonctions pouvant réagir avec l'agent de couplage. De préférence, le monomère est choisi parmi les monomères vinyliques et les monomères portant au moins une fonction alcool, acide carboxylique, anhydride d'acide, notamment carboxylique, amide ou epoxyde. Le taux de greffage du polypropylène (rapport de la masse de monomère greffé à la masse du polymère greffé x 100) est compris entre 0,2 et 8 %, de préférence entre 0,5 et 5 %.
De manière avantageuse, le polypropylène est greffé par de l'anhydride maléique. En règle générale, le taux d'anhydride maléique dans le polypropylène greffé varie de 0,2 à 6 %, de préférence de 0,5 à 4 %.
Le point de fusion du polypropylène greffé est généralement supérieur au point de fusion du copolymère selon l'invention décrit précédemment.
La composition d'ensimage obtenue dans le cadre de l'invention peut se présenter sous la forme d'une solution, d'une suspension, d'une dispersion ou d'une émulsion aqueuse. Le plus souvent, la composition d'ensimage est une émulsion.
De préférence, la composition d'ensimage comprend les constituants ci- après, dans les teneurs pondérales suivantes exprimées en pourcentages des matières solides :
- 40 à 90 % d'au moins un copolymère d'éthylène et d'acétate de vinyle ou d'acide acrylique
- 5 à 20 % d'au moins un agent de couplage, de préférence un silane et avantageusement un aminosilane - 10 à 60 % de polypropylène greffé, de préférence par de l'anhydride maléique.
La composition d'ensimage peut comprendre en outre un ou plusieurs composants (ci-après désignés par « additifs »).
Ainsi, la composition peut comprendre au moins un agent filmogène choisi parmi les polyuréthanes, les epoxy, les polyesters et les polyacétates de vinyle. La teneur en agent filmogène peut aller jusqu'à 40 % en poids de la composition d'ensimage, de préférence jusqu'à 10 %.
La composition peut aussi comprendre à titre d'additif, au moins un agent tensioactif ou lubrifiant qui aide à protéger les filaments de l'abrasion et contribue à limiter la formation de bourre lors du fibrage et de la coupe du fil. L'agent tensioactif ou lubrifiant est choisi parmi les esters d'acide gras tels que le laurate de décyle, le palmitate d'isopropyle, le palmitate de cétyle, le stéarate d'isopropyle, l'adipate d'éthylèneglycol ou le trioctanoate de triméthylolpropane, et les dérivés alkoxylés, notamment éthoxylés, de ces esters, les dérivés de glycols tels que les polyéthylèneglycols ou les polypropylèneglycols, éventuellement renfermant des groupes alkoxy, notamment éthoxy, et les mélanges de ces composés. Toujours à titre d'additifs, la composition d'ensimage peut comprendre un agent antistatique tel qu'un sel d'ammonium quaternaire.
La composition d'ensimage peut encore comprendre en tant qu'additif un agent anti-mousse, par exemple un polyalkylsiloxane tel que le polydiméthylsiloxane. De préférence, la teneur en chacun des additifs précités, excepté l'agent filmogène, n'excède pas 3 % en poids de la composition, la teneur totale en ces additifs demeurant inférieure 5 %.
La composition d'ensimage présente généralement une teneur en matières solides comprise entre 2 et 20 %, de préférence 4 et 15 % et avantageusement de l'ordre de 10 %.
L'application de la composition d'ensimage selon l'invention sur les filaments de verre est réalisée dans les conditions habituelles connues dans le domaine. On étire les filets de verre fondu s'écoulant d'orifices disposés à la base d'une ou plusieurs filières sous la forme d'une ou plusieurs nappes de filaments continus, puis on rassemble les filaments en un ou plusieurs fils. Le dépôt de l'ensimage est effectué sur les filaments en cours d'étirement, sous la filière.
Les fils ensimés, lesquels constituent un autre objet de l'invention, sont généralement collectés sous la forme d'enroulements sur des supports en rotation ou sont coupés avant la collecte par un organe servant à également à les étirer, le plus souvent disposé sous la filière. Les fils obtenus peuvent ainsi se trouver sous différentes formes après la collecte, par exemple sous la forme de bobines de fils continus (gâteaux, stratifils comprenant un fil ou plusieurs fils de base (« roving » assemblé), « cops », ...) ou de fils coupés. Les filaments de verre constituant ces fils ont un diamètre qui peut varier dans une large mesure, le plus souvent de 5 à 30 μm, de préférence 8 à 20 μm.
Ils peuvent être constitués de n'importe quel verre, par exemple E, C, AR
(alcali-résistant) ou à taux de bore réduit (moins de 5 %). Les fils de base sont généralement constitués de 100 à 10 000 filaments, de préférence 200 à 5 000, et avantageusement de l'ordre de 1 000.
En général, la quantité d'ensimage revêtant les fils de verre n'excède pas 2 % du poids du fil et de préférence est comprise entre 0,2 et 1 ,8 %, et avantageusement comprise entre 0,5 et 1 ,5 %.
L'ensimage revêtant les fils de verre a ceci de particulier qu'il se ramollit à une température plus basse que la température de fusion de la matière à renforcer. Ainsi, dans les conditions du moulage, lorsque le mélange des granulés de fils de verre et de matière thermoplastique pénètre dans la mono- vis d'injection, l'ensimage commence à fluer avant la matière thermoplastique, ce qui permet d'avoir un malaxage efficace des matières et une répartition homogène des fils dans le mélange à injecter.
De manière générale, le ramollissement de l'ensimage intervient à une température supérieure de quelques degrés Celsius la température de fusion du composé de l'ensimage ayant le point de fusion le plus bas, et inférieure d'au moins 10°C, de préférence d'au moins 20°C et avantageusement d'au moins 50°C, à la température de fusion de la matière thermoplastique à renforcer.
Les fils de verre ensimés, lesquels constituent un autre objet de l'invention, sont utilisés pour former des granulés de fils de verre coupés à forte teneur en verre.
Les granulés peuvent être obtenus selon toute méthode connue de l'homme du métier, notamment décrite dans WO-A-96/40595, WO-A-98/43920, WO-A-01/05722 et WO-A-03/097543. Par exemple, les granulés peuvent être obtenus selon le procédé qui consiste à couper les fils de verre à une longueur comprise entre 6 et 30 mm, de préférence directement sous la filière comme indiqué précédemment, et à les soumettre à un brassage dans un dispositif approprié afin de les agglomérer. Dans ces conditions, les fils coupés sont humides et contiennent généralement 5 à 25 % en poids d'eau.
Les fils de verre coupés auxquels le cas échéant de l'eau a été ajoutée de manière à avoir une teneur en eau comprise entre 10 et 25 % en poids, sont traités dans un appareil de brassage pendant une durée suffisante jusqu'à l'obtention de granulés contenant au moins 50 % en poids de verre. Les granulés sont ensuite séchés pour éliminer l'eau.
Avantageusement, des additifs peuvent être introduits au cours du brassage en une proportion n'excédant pas 3 % du poids total du mélange. Les additifs sont choisis parmi les agents de couplage avec la matrice à renforcer, par exemple du polypropylène greffé par de l'anhydride maléique, les agents anti-vieillissement permettant d'améliorer la résistance thermique ou à la lumière, les charges, par exemple le noir de carbone.
Les granulés séchés sont composés de fils coupés juxtaposés et présentent une longueur sensiblement égale à celle des fils de verre coupés de départ, de 6 à 30 mm, de préférence de 8 à 25 mm et avantageusement de 9 à
15 mm. Le diamètre des granulés est généralement compris entre 0,5 et 4 mm, de préférence 1 et 3 mm.
Les granulés ont une teneur en verre qui varie de 95 % à 99,8 % en poids, de préférence 98 à 99,5 %.
Les granulés présentent une perte au feu inférieure à 2 % en poids, de préférence inférieure à 1 ,8 %, et avantageusement qui varie de 0,5 à 1 ,5 %.
Les granulés peuvent être utilisés pour le renforcement de matières thermoplastiques telles que les polyoléfines, par exemple le polyéthylène et le polypropylène, les polyamides, les polyalkylène téréphtalates, par exemple le polyéthylène téréphtalate PET et le polybutylène téréphtalate PBT, les polymères styréniques, par exemple l'acrylonitrile-butadiène-styrène (ABS), le polysulfure de phénylène PPS, les polycarbonates et les polyacétals, par exemple le polyoxyde de méthylène POM. Le polypropylène est particulièrement préféré.
De manière générale, la teneur en verre dans la pièce moulée finale est comprise entre 10 et 60 %, avantageusement 20 et 30 %
Du fait de leur teneur élevée en verre, les granulés obtenus à partir des fils de verre revêtus de la composition selon l'invention peuvent être utilisés en association avec n'importe quelle matrice thermoplastique. Ceci est un avantage par rapport aux granulés connus pour le moulage par injection qui contiennent une matière thermoplastique en quantité importante (au moins 30 et jusqu'à 80 % en poids selon le type de granulé) pouvant présenter une certaine incompatibilité avec la matière à renforcer. Les exemples qui suivent permettent d'illustrer l'invention sans toutefois la limiter.
EXEMPLES 1 A 12 a) préparation de la composition d'ensimaqe On prépare une composition d'ensimage aqueuse comprenant les composés ci-après, dans les teneurs pondérales données dans le tableau 1 , en % des matières solides :
- copolymère éthylène-acétate de vinyle (EVA) : Commercialisé sous la référence « EVA X®-28 » par MICHELMAN ; teneur pondérale en éthylène : 82 % ;
- copolymère éthylène-acide acrylique (EAA) : commercialisé sous la référence « Michem® Prime 4983R » par MICHELMAN; teneur pondérale en éthylène : 80 % ; masse moléculaire moyenne en poids : 8400 ; indice d'acide : 156 - - gamma-aminopropyltriéthoxysilane (silane) : commercialisé sous la référence « Silquest® A-1 100 » par GENERAL ELECTRIC ;
- polypropylène greffé anhydride maléique (PPgMAH) : commercialisé sous la référence « Michem® 43040 » par MICHELMAN ; taux de greffage : 4 % en poids ; nombre d'acide : 45, masse moléculaire moyenne en poids : 9100 ;
- polyuréthane (PU) : commercialisé sous la référence « Baybond® PU401 » par BAYER.
La préparation de la composition d'ensimage est réalisée de la manière suivante : On procède à l'hydrolyse des groupes éthoxy du silane(3) dans de l'eau déminéralisée maintenue sous agitation, puis on ajoute les autres constituants, toujours sous agitation. Le pH final est de l'ordre de 10.
La teneur pondérale en matières solides dans la composition d'ensimage est égale à 10 %. TABLEAU 1
Figure imgf000011_0001
b) obtention des fils ensimés
Les compositions d'ensimage sont utilisées pour revêtir, de manière connue, des filaments de verre E d'environ 17 μm de diamètre étirés à partir de filets de verre s'écoulant des orifices d'une filière qui sont rassemblés en fils de 500 filaments chacun.
EXEMPLES 14 A 26-
Les fils de verre des exemples 1 à 13 sont coupés à une longueur moyenne de 12 mm ± 1 mm et granulés dans le dispositif de granulation décrit dans la demande de brevet WO 03/097543. Les granulés présentent une longueur de 12 mm ± 1 mm, un diamètre de 2,5 mm, une densité égale à 0,8 et une teneur en verre supérieure à 98 %.
Les granulés obtenus sont analysés dans les conditions suivantes : - la quantité de fines, c'est-à-dire de bâtonnets ou de filaments de verre libres, est mesurée sur un échantillon de 500 g de granulés placés dans une trémie dont la goulotte de sortie est située à 4 mm d'un couloir vibrant permettant l'écoulement et un étalement homogène des granulés. Les fines sont collectées dans un piège situé au-dessus du couloir vibrant, au moyen d'un dispositif d'aspiration. La quantité de fines, exprimée en mg/kg, est mesurée sur les granulés avant et après le test de transport (voir paragraphe suivant).
- la quantité de bourre après le transport pneumatique des granulés (test de transport) est mesurée comme suit : 2 kg de granulés contenus dans une citerne de stockage sont aspirés au travers d'un circuit critique jusqu'à la trémie d'injection pneumatique d'une presse à injecter conventionnelle. La bourre de filaments formée est récupérée sur le filtre de la trémie pneumatique et pesée. La quantité de bourre est exprimée en mg/kg.
- les granulés sont soumis à un test PSI (« Pneumatic Stress Integrity » en anglais) représentatif d'un transport pneumatique des granulés sous forte pression dans des conditions de sollicitations plus sévères que les conditions industrielles actuelles. 50 g de granulés sont mis en rotation dans un circuit fermé en inox sous une pression de 5 bars (0,5 MPa) pendant 45 secondes. Les granulés sont récupérés et tamisés pour récupérer la bourre. On donne le pourcentage de bourre en fonction de la masse initiale de granulés.
- la perte au feu, en pourcentage, est mesurée dans les conditions de la norme ISO 1887,
- l'écoulement des granulés ou des fibres, exprimé en seconde/kilogramme, est mesuré comme suit : le produit (5 kg) est placé dans une trémie dont l'orifice d'évacuation est situé à 28,5 mm d'un couloir d'écoulement vibrant avec une amplitude de 1 mm.
Les caractéristiques des granulés sont données dans le tableau 2.
TABLEAU 2
Figure imgf000013_0001
Les granulés des exemples 14 à 26 présentent une coulabilité inférieure à 15 s/kg, compatible avec un usage dans un dispositif de moulage par injection.
Les granulés selon l'invention présentent de bonnes propriétés de résistance mécanique durant le transport. Notamment, les granulés des exemples 14 à 20 et 22 à 24 présentent une plus faible quantité de fines avant et après le transport pneumatique, et moins de bourre dans les conditions de l'injection (Test de transport) et dans des conditions plus sévères (Test PSI) que les granulés des exemples 25 et 26 comparatifs. Le pourcentage de bourre très faible obtenu avec les exemples selon l'invention, réduit d'un facteur 10 et 30 comparés aux exemples 25 et 26 respectivement, traduit une forte intégrité des fils de verre dû à l'ensimage. Les granulés de l'exemple 21 ont des propriétés de résistance intermédiaires par rapport aux exemples comparatifs qui restent acceptables pour l'application visée. A titre de comparaison, il est précisé que des fils de verre revêtus de l'ensimage selon l'exemple 13 coupés (longueur : 12 mm ; perte au feu : 0,75 %), non granulés (densité : 0,4), ne peuvent pas être analysés dans les conditions des tests mentionnés : les fils s'enchevêtrent rapidement et forment des « ponts » qui bloquent l'écoulement dans le circuit de transport et/ou dans la trémie. Ces fils présentent en outre une mauvaise résistance à l'abrasion.
EXEMPLES 27 A 39
Les granulés des exemples 14 à 26 sont utilisés pour fabriquer des pièces composites par la technique de moulage par injection. Les granulés de fils de verre coupés et la matière thermoplastique granulée (polypropylène) sont transportés par voie pneumatique vers un doseur gravimétrique surmontant une presse à injecter équipée d'une mono-vis d'injection. Le mélange est injecté dans un moule permettant la réalisation d'une plaque de 2 mm d'épaisseur. La quantité de verre représente 30 % du poids total de la plaque. Les plaques ont été formées dans les conditions suivantes :
- Conditions 1 : aucune pression n'est appliquée sur la vis d'injection fonctionnant à la vitesse de 130 rotations par minute.
- Conditions 2 : une pression de 120 bars (12 MPa) est appliquée sur la vis d'injection fonctionnant à la vitesse de 130 rotations par minute, la vitesse étant réduite à 80 rotations par minute en fin de dosage, ce qui permet d'augmenter légèrement le temps de malaxage des matières et d'obtenir une meilleure imprégnation des fils par la matière thermoplastique.
Les plaques ainsi formées sont placées sur un dispositif d'éclairage permettant de visualiser les amas de fils coupés non dispersés dans la matrice thermoplastique. Un logiciel de traitement de l'image (Mesurim) de la plaque permet de calculer le pourcentage de la surface contenant des fils de verre coupés non dispersés (% de défauts).
Les caractéristiques des pièces composites sont données dans le tableau 3. TABLEAU 3
Figure imgf000015_0001
Quelles que soient les conditions du moulage, les plaques obtenues à partir des granulés selon l'invention présentent une meilleure dispersion des fils de verre dans la matrice et donc un pourcentage de défauts plus faibles qu'avec les granulés connus (exemples 38 et 39 comparatifs).
Le moulage effectué dans les conditions 2 conduit à une meilleure dispersion sans affecter notablement la longueur des fibres et donc le niveau de performance en terme de renforcement.
Les propriétés mécaniques des plaques renforcées par les fils de verre revêtus de l'ensimage selon l'invention sont comparables à celles des exemples 38 et 39, notamment la résistance au choc (essais Charpy et IZOD) et la contrainte de flexion.

Claims

REVENDICATIONS
1. Composition d'ensimage pour fils de verre caractérisée en ce qu'elle comprend les constituants ci-après, dans les teneurs pondérales suivantes exprimées en pourcentages des matières solides : - 10 à 99 % d'au moins un copolymère choisi parmi les copolymères d'éthylène et d'acétate de vinyle ou d'acide acrylique ou méthacrylique - 1 à 40 % d'au moins un agent de couplage
- 0 à 90 % de polypropylène greffé par au moins un motif dérivé d'au moins un monomère renfermant un ou plusieurs fonctions pouvant réagir avec l'agent de couplage.
2. Composition selon la revendication 1 , caractérisée en ce que le copolymère présente une teneur en éthylène au moins égale à 50 % en poids, de préférence au moins égale à 65 % et avantageusement au moins égale à 80 %.
3. Composition selon la revendication 1 ou 2, caractérisée en ce que le copolymère présente un point de fusion inférieur à 160°C, de préférence inférieur à 140°C et avantageusement de l'ordre de 1 10°C.
4. Composition selon l'une des revendications 1 à 3, caractérisée en ce que l'agent de couplage est choisi parmi les silanes tels que le gamma- glycidoxypropyltriméthoxysilane, le gamma-acryloxypropyltriméthoxysilane, le gamma-méthacryloxypropyltriméthoxysilane, le gamma-aminopropyltri- éthoxysilane, le vinyltriméthoxysilane, le phényl-aminopropyltriméthoxysilane, le styrylaminoéthylaminopropyltriméthoxysilane ou le terbutylcarbanoylpropyl- triméthoxysilane, les siloxanes, les titanates, les zirconates et les mélanges de ces composés.
5. Composition selon la revendication 4, caractérisée en ce que l'agent de couplage est un silane, de préférence un aminosilane.
6. Composition selon l'une des revendications 1 à 5, caractérisée en ce que le polypropylène greffé renferme au moins un motif dérivé d'au moins un monomère choisi parmi les monomères vinyliques et les monomères portant au moins une fonction alcool, acide carboxylique, anhydride d'acide, amide ou epoxyde.
7. Composition selon la revendication 6, caractérisée en ce que le polypropylène greffé présente un taux de greffage compris entre 0,2 et 8 %, de préférence 0,5 et 5 %.
8. Composition selon l'une des revendications 1 à 7, caractérisée en ce que le polypropylène présente point de fusion supérieur au point de fusion du copolymère.
9. Composition selon l'une des revendications 1 à 8, caractérisée en ce qu'elle comprend :
- 40 à 90 % d'au moins un copolymère d'éthylène et d'acétate de vinyle ou d'acide acrylique ou méthacrylique
- 5 à 20 % d'au moins un agent de couplage, de préférence un silane
- 10 à 60 % de polypropylène greffé, de préférence par de l'anhydride maléique.
10. Composition selon la revendication 9, caractérisée en ce que le polypropylène greffé présente un taux de greffage en anhydride maléique variant de 0,2 à 6 %, de préférence de 0,5 à 4 %.
11. Composition selon l'une des revendications 1 à 10, caractérisée en ce que la composition comprend en outre au moins un agent filmogène choisi parmi les polyuréthanes, les epoxy, les polyesters et les polyacétates de vinyle.
12. Composition selon la revendication 1 1 , caractérisée en ce que la teneur en agent filmogène n'excède pas 40 % en poids de la composition d'ensimage, de préférence 10 %.
13. Composition selon l'une des revendications 1 à 12, caractérisée en ce qu'elle présente une teneur en matières solides comprise entre 2 et 20
%, de préférence 4et 15 % et avantageusement de l'ordre de 10 %.
14. Fil de verre revêtu d'une composition d'ensimage selon l'une des revendications 1 à 13.
15. Fil de verre selon la revendication 14, caractérisé en ce qu'il est constitué de 100 à 10 000 filaments, de préférence 200 à 5 000, et avantageusement de l'ordre de 1 000.
16. Fil de verre selon la revendication 14 ou 15, caractérisé en ce qu'il est revêtu d'une quantité d'ensimage n'excédant pas 2 % du poids du fil et de préférence comprise entre 0,2 et 1 ,8 %, et avantageusement comprise entre 0,5 et 1 ,5 %.
17. Granulé de fils de verre coupés, caractérisé en ce qu'il est constitué de fils de verre selon l'une des revendications 14 à 16.
18. Granulé selon la revendication 17, caractérisé en ce qu'il contient
95 % à 99,8 % en poids de verre, de préférence 98 à 99,5 %.
19. Granulé selon la revendication 17 ou 18, caractérisé en ce qu'il présente une perte au feu inférieure à 2 % en poids, de préférence inférieure à 1 ,8 %, et variant avantageusement de 0,5 à 1 ,5 %.
20. Granulé selon l'une des revendications 17 à 19, caractérisé en ce qu'il présente une longueur de 6 à 30 mm, de préférence 8 à 25 mm, et avantageusement de 9 à 15 mm.
21. Granulé selon l'une des revendications 17 à 20, caractérisé en ce qu'il présente un diamètre compris entre 0,5 et 4 mm, de préférence 1 à 3 mm.
22. Utilisation des granulés selon l'une des revendications 17 à 21 pour l'obtention de pièces composites comprenant des fils de verre coupés et une matière thermoplastique par la technique de moulage par injection.
23. Utilisation selon la revendication 22, caractérisée en ce que la matière thermoplastique est choisie parmi les polyoléfines, les polyamides, les polyalkylène téréphtalates, les polymères styréniques, les polycarbonates et les polyacétals.
24. Utilisation selon la revendication 23, caractérisée en ce que la matière thermoplastique est le polypropylène.
PCT/FR2006/050405 2005-05-04 2006-05-02 Composition d'ensimage pour granules de fils de verre a forte teneur en verre WO2007000517A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800150869A CN101171314B (zh) 2005-05-04 2006-05-02 具有高玻璃含量的玻璃丝束微粒的施胶组合物
JP2008509485A JP2008540306A (ja) 2005-05-04 2006-05-02 高ガラス含有率を有するガラスストランド顆粒のためのサイジング組成物
EP06794392A EP1885809A2 (fr) 2005-05-04 2006-05-02 Composition d'ensimage pour granules de fils de verre a forte teneur en verre
BRPI0610729-0A BRPI0610729A2 (pt) 2005-05-04 2006-05-02 composição de encolamento para fios de vidro, fio de vidro, granulado de fios de vidro cortados e utilização de granulados
US11/913,109 US20080254290A1 (en) 2005-05-04 2006-05-02 Sizing Composition for Glass Fibre Granules with a High Glass Content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551178A FR2885362B1 (fr) 2005-05-04 2005-05-04 Composition d'ensimage pour granules de fils de verre a forte teneur en verre
FR0551178 2005-05-04

Publications (2)

Publication Number Publication Date
WO2007000517A2 true WO2007000517A2 (fr) 2007-01-04
WO2007000517A3 WO2007000517A3 (fr) 2007-04-12

Family

ID=35219633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050405 WO2007000517A2 (fr) 2005-05-04 2006-05-02 Composition d'ensimage pour granules de fils de verre a forte teneur en verre

Country Status (10)

Country Link
US (1) US20080254290A1 (fr)
EP (1) EP1885809A2 (fr)
JP (1) JP2008540306A (fr)
KR (1) KR20080004573A (fr)
CN (1) CN101171314B (fr)
BR (1) BRPI0610729A2 (fr)
FR (1) FR2885362B1 (fr)
TW (1) TW200710144A (fr)
WO (1) WO2007000517A2 (fr)
ZA (1) ZA200709426B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052748B (zh) * 2010-08-05 2015-01-21 松本油脂制药株式会社 强化纤维用施胶剂、合成纤维束及纤维强化复合材料
EP3359602A1 (fr) * 2015-10-08 2018-08-15 OCV Intellectual Capital, LLC Composition de post-revêtement pour fibres de renforcement
JP2020125575A (ja) * 2019-02-05 2020-08-20 旭化成株式会社 樹脂強化用ガラス繊維および熱可塑性樹脂組成物
CN112723759A (zh) * 2021-01-06 2021-04-30 泰山玻璃纤维有限公司 低气味玻璃纤维浸润剂及其制备方法和应用
WO2024099922A1 (fr) * 2022-11-07 2024-05-16 Sabic Global Technologies B.V. Composition thermoplastique renforcée par des fibres de verre présentant une résistance aux chocs améliorée

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097543A2 (fr) 2002-05-22 2003-11-27 Saint-Gobain Vetrotex France S.A. Granules de fils de verre de forte densite

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655353A (en) * 1969-05-21 1972-04-11 Ppg Industries Inc Glass fiber size
NL152902C (nl) * 1970-04-16 1977-09-15 Sumitomo Chemical Co Werkwijze voor het bereiden van een vormmassa uit gewapend polypropeen alsmede gevormde voorwerpen bestaande uit of bekleed met dit polypropeen
US3935344A (en) * 1970-10-15 1976-01-27 Owens-Corning Fiberglas Corporation Sizing composition and glass fibers treated therewith
JPS531319B1 (fr) * 1971-03-16 1978-01-18
SE382133B (sv) * 1972-07-20 1976-01-12 Licentia Gmbh Metallkapslad, tryckgasisolerad hogspenningsledning
US3904805A (en) * 1973-01-22 1975-09-09 Union Carbide Corp Sizing organic fibers
US3882194A (en) * 1973-01-26 1975-05-06 Chemplex Co Cografted copolymers of a polyolefin, an acid or acid anhydride and an ester monomer
US4173680A (en) * 1975-07-18 1979-11-06 Eastman Kodak Company Hot melt sizing compositions and fibrous articles sized therewith
US4136069A (en) * 1975-07-18 1979-01-23 Eastman Kodak Company Hot melt sizing compositions and fibrous articles sized therewith
ZA766854B (en) * 1975-12-31 1977-10-26 Owens Corning Fiberglass Corp Sizing for glass fibers
US4178412A (en) * 1976-12-20 1979-12-11 Owens-Corning Fiberglas Corporation Glass size compositions and glass fibers coated therewith
DE2811550A1 (de) * 1978-03-16 1979-09-20 Bayer Ag Elastomere thermoplastische mischungen aus polypropylen und aethylen- vinylacetat-copolymerisaten
US4222913A (en) * 1978-11-16 1980-09-16 Bemis Company, Inc. Stretch pallet wrap film materials
US4271229A (en) * 1979-09-04 1981-06-02 Ppg Industries, Inc. Sizing composition to yield sized glass fibers with improved UV stability
US4341877A (en) * 1980-06-04 1982-07-27 Ppg Industries, Inc. Sizing composition and sized glass fibers and process
US4436863A (en) * 1981-05-01 1984-03-13 Allied Corporation Use of ethylene-vinyl acetate copolymers and oxidized high density polyethylene homopolymers as processing aids for talc filled polypropylene compounds
US4603153A (en) * 1983-06-08 1986-07-29 Mitsubishi Petrochemical Co., Ltd. Glass fiber reinforced resin composition
US4609591A (en) * 1985-05-10 1986-09-02 Owens-Corning Fiberglas Corporation Non-aqueous coating for glass fibers and glass fibers coated therewith
US4764546A (en) * 1986-04-25 1988-08-16 Sumitomo Chemical Co., Ltd. Filler-containing polypropylene resin composition and process for producing the same
DE3884002T2 (de) * 1987-02-07 1994-04-21 Idemitsu Petrochemical Co Glasfaserverstärkte Polyolefin-Zusammensetzung.
DE3855729T2 (de) * 1987-09-17 1997-04-30 Tonen Sekiyukagaku Kk Thermoplastische Zusammensetzung
GB9000865D0 (en) * 1990-01-15 1990-03-14 Exxon Chemical Patents Inc Polymer composition
US5268050A (en) * 1991-06-05 1993-12-07 Ferro Corporation Process for using an extruder die assembly for the production of fiber reinforced thermoplastic pellets, tapes and similar products
JP3268813B2 (ja) * 1992-03-13 2002-03-25 日本合成化学工業株式会社 樹脂組成物及びその製造法
FR2691112B1 (fr) * 1992-05-14 1995-07-21 Saint Gobain Vitrage Int Procede d'encapsulation d'un vitrage et vitrage ainsi obtenu.
DE4322108C2 (de) * 1992-07-03 2001-08-09 Toyoda Gosei Kk Verstärkte Polypropylenharzmischung und daraus hergestellte Radkappe
FR2707976B1 (fr) * 1993-07-22 1995-09-22 Vetrotex France Sa Fibres de verre destinées au renforcement de matrices organiques.
JPH111348A (ja) * 1997-06-11 1999-01-06 Nippon Electric Glass Co Ltd ガラス繊維用集束剤及びそれで表面処理されたガラス繊維
US5998029A (en) * 1997-06-30 1999-12-07 Owens Corning Fiberglas Technology, Inc. Nonaqueous sizing system for glass fibers and injection moldable polymers
CZ302375B6 (cs) * 1998-06-22 2011-04-20 General Electric Company Termoplastická vulkanizacní kompozice a zpusob její prípravy
US20010016259A1 (en) * 1999-02-16 2001-08-23 Les E. Campbell Sizing composition for glass fibers used to reinforce thermoplastic or thermosetting matrix polymers
EP1460166B1 (fr) * 2001-12-27 2015-10-21 Fiber Glass Japan Kabushiki Kaisha Liant pour fibre de verre, fibre de verre utilisee pour renforcer une resine olefinique et procede de production d'une composition de resine olefinique destinee a un moulage renforce par des fibres
KR100777355B1 (ko) * 2003-05-23 2007-11-28 듀폰-미츠이 폴리케미칼 가부시키가이샤 중합체 조성물, 그 중합체 조성물의 제조 방법, 및 자동차외장용 성형품
US20070299181A1 (en) * 2003-05-23 2007-12-27 Du Pont-Mitsui Polychemicals Co., Ltd. Polymer composition, process for producing the polymer composition, and molded articles for automobile exterior trim
JP4901099B2 (ja) * 2004-12-24 2012-03-21 オーウェンスコーニング製造株式会社 強化用ガラス繊維およびそれを用いた繊維強化不飽和ポリエステル樹脂組成物
FR2885316B1 (fr) * 2005-05-04 2007-08-31 Saint Gobain Vetrotex Procede de fabrication d'une piece composite a partir de granules haute densite de verre
WO2007035506A1 (fr) * 2005-09-16 2007-03-29 E. I. Du Pont De Nemours And Company Résines de polypropylène modifié contenant une matière de charge
US20080118728A1 (en) * 2006-10-20 2008-05-22 Dow Global Technologies Inc. Aqueous dispersions disposed on glass-based fibers and glass-containing substrates
US20080255303A1 (en) * 2007-04-13 2008-10-16 Chou Richard T Blends of polyolefins, polar ethylene copolymers and functionalized ethylene copolymers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097543A2 (fr) 2002-05-22 2003-11-27 Saint-Gobain Vetrotex France S.A. Granules de fils de verre de forte densite

Also Published As

Publication number Publication date
CN101171314A (zh) 2008-04-30
ZA200709426B (en) 2008-12-31
JP2008540306A (ja) 2008-11-20
CN101171314B (zh) 2011-12-14
WO2007000517A3 (fr) 2007-04-12
FR2885362B1 (fr) 2007-06-08
KR20080004573A (ko) 2008-01-09
EP1885809A2 (fr) 2008-02-13
FR2885362A1 (fr) 2006-11-10
TW200710144A (en) 2007-03-16
US20080254290A1 (en) 2008-10-16
BRPI0610729A2 (pt) 2012-10-30

Similar Documents

Publication Publication Date Title
KR100522280B1 (ko) 유리 섬유용 비수성 사이징 장치 및 사출성형 가능한중합체
EP0635462B1 (fr) Fibres de verre destinées au renforcement de matrices organiques
CA2585753A1 (fr) Concentre thermoplastique renforce de longue fibre et procedes de preparation de celui-ci
EP1885809A2 (fr) Composition d'ensimage pour granules de fils de verre a forte teneur en verre
FR2877001A1 (fr) Fils de verre ensimes electro-conducteurs.
JP3493774B2 (ja) ガラス長繊維強化ポリプロピレンとポリプロピレンとの溶融成形用混合物およびその成形品
WO2007000516A2 (fr) Procede de fabrication d'une piece composite a partir de granules haute densite de verre
EP0819189B1 (fr) Procede de fabrication d'un mat de verre et produit en resultant
WO2005058771A2 (fr) Fils de verre ensimes a impregnation rapide pour le renforcement de matieres polymeres
FR2839967A1 (fr) Granules de fils de verre de forte densite
EP0657490A1 (fr) Procédé de fabrication d'un matériau composite et matériau en résultant
EP4087828B1 (fr) Procédé de fabrication de produits d'isolation à base de laine minérale
EP0519828A1 (fr) Renforcement de polymeres par de la laine minerale
JP2003530242A (ja) プラスチック粒状物
EP0444991A1 (fr) Matériau composite à matrice thermoplastique contenant des fibres d'origine animale, son procédé de fabrication et son utilisation
WO2007090973A1 (fr) Procede de fabrication de batonnets de renforts concentres , batonnets et dispositif de mise en oeuvre du procede

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006794392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3943/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008509485

Country of ref document: JP

Ref document number: 200680015086.9

Country of ref document: CN

Ref document number: 1020077025548

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06794392

Country of ref document: EP

Kind code of ref document: A2

WWP Wipo information: published in national office

Ref document number: 2006794392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11913109

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0610729

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071018