WO2006137550A2 - 癌診断方法及び肺癌診断方法 - Google Patents

癌診断方法及び肺癌診断方法 Download PDF

Info

Publication number
WO2006137550A2
WO2006137550A2 PCT/JP2006/312671 JP2006312671W WO2006137550A2 WO 2006137550 A2 WO2006137550 A2 WO 2006137550A2 JP 2006312671 W JP2006312671 W JP 2006312671W WO 2006137550 A2 WO2006137550 A2 WO 2006137550A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
mrna
egfr
pcr
htert
Prior art date
Application number
PCT/JP2006/312671
Other languages
English (en)
French (fr)
Other versions
WO2006137550A1 (ja
Inventor
Goshi Shiota
Norimasa Miura
Original Assignee
Univ Tottori
Goshi Shiota
Norimasa Miura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tottori, Goshi Shiota, Norimasa Miura filed Critical Univ Tottori
Priority to JP2007522394A priority Critical patent/JPWO2006137550A1/ja
Publication of WO2006137550A2 publication Critical patent/WO2006137550A2/ja
Publication of WO2006137550A1 publication Critical patent/WO2006137550A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a cancer diagnosis method and a lung cancer diagnosis method, and in particular, is capable of diagnosing whether or not it is lung cancer at an early stage, and determining whether or not an anticancer agent is effective for a patient, and is highly sensitive and specific.
  • the present invention relates to a cancer diagnostic method and a lung cancer diagnostic method using such a cancer diagnostic method.
  • Lung cancer remains the leading cause of malignancy-related deaths, although there have been minor changes in survival rates over the past 20 years.
  • NSCLC Non-Small Cell Lung Cancer
  • This tumor marker is generally used as a diagnostic or therapeutic indicator for cancer.
  • NSE Neuron-specific enolase
  • proGRP Pro—gastorin—releasing peptide, hereinafter, rproGRPJ.
  • Non-small cell lung cancer NSCLC
  • CEAj carcinoembryonic antigen
  • SCCJ squamous cell carcinoma
  • cytokeratin 2.1—1 fragment CYFRA 21-1)
  • CYFRA cytokeratin 19 fragment
  • SLX Lex— f ⁇ ⁇
  • CA19-9 carbohydrate antig en 19 1-9, hereafter simply referred to as “CA19-9J”
  • CA19-9 is generally used for diagnosis and is selected at least as a group of CEA, SCC and CYFRA 1 If one marker force is positive, 70% of patients are considered non-small cell carcinoma (NSCLE) patients.
  • the rate of positive for both CEA and CYFRA is higher in patients with aden ocarcinoma
  • the rate of positive for both CYFRA and SCC is the squamous cell carcinoma squ amous It is said that the cell carcinoma) has been laid out.
  • X-ray examinations diagnosis using conventional tumor markers, and standard techniques such as bronchial lavage (BL) are important for the detection of lung cancer.
  • This method has the problem that it is not sufficient for detecting lung cancer in the early clinical stage.
  • EGFR epidermal growth factor receptor
  • Gefitinib trade name: "Iressa J (registered trademark), sales company” : Aslorazene force Co., Ltd.
  • the EGFR tyrosine kinase inhibitory action of Gefitinib (trade name: “Iressa” (registered trademark), sales company: Aslorazene Riki Co., Ltd.) is an extremely effective drug in some patients. Power;
  • EGFR is an expression force in 80% of NSCLC tissue specimens. Its expression is observed in the progressive type of small cell lung carcinoma (SCLC). It is an excellent biomarker for lung cancer, and EFFR targeted therapy (EGF R—targeted molecular molecular determinants).
  • RGFRT can be used like a tumor marker, it will be easier for doctors to decide whether or not to prescribe Gefitinib to patients, and for patients to use Gefitinib. Even after prescribing, it is easy to follow up whether Gefitinib is effective against tumors.
  • the present inventors also have a process of obtaining a sample containing only RNA as a somatic cell-cancer cell component from a patient's body fluid, and a reverse transcriptase reaction that generates cDNA using reverse transcriptase.
  • PCR is performed using a primer set that detects the presence of hTERT mRNA, and the PCR product amplified by PCR is quantitatively measured using a fluorescent dye combined with the PCR product.
  • a cancer diagnostic method has already been proposed.
  • Non-Patent Document 1 Greenlee RT, Hill— Harmon MB, Murray T, Thun M. Cancer statistics. CA cancer J Clin 2005; 51: 15—d6.
  • Non-Patent Literature 3 Johnson BE, Grayson J, Makuch RW, et al. Ten— year survi val of patients with small— cell lung cancer treated with combination chem otherapy with or without irradiation. J Clin Oncol 1990; 8: 396 -401.
  • Non-Patent Document 4 Morina R, Filella X, Auge JM. ProGRP: a new biomarker for small cell lung cancer. Clinical Biochemistry
  • Non-Patent Document 6 Schneider J, Philipp M, Velcovsky HG, Morr H, Katz N. P ro— gastrin— releasing peptide (ProGRP), neuron specific enolase (NSE), c arcinoembryonic antigen (CEA), and cyto keratin 19 — Fragments (CYFRA 2 1— 1) in patients with lung cancer in comparison to other lung diseases. Anticancer Res 2003; 23: 885-93.
  • Non-Patent Document 7 Tagliaferri P, Tassone P, Blotta S, et al. Antitumor therapeutic strategies based on the targeting of epidermal growth factor- induced survival pathways. Curr Drug Targets 2005; 6: 289-300.
  • Non-Patent Document 8 Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epiaermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129-39 .
  • Non-Patent Document 9 Gamou S, Hunts J, Harigai H, et al. Molecular evidence for the lack of epidermal growth factor receptor gene expression in small cell 1 ung carcinoma cell.Cancer Res 1987; 47: 2668- 73.
  • Non-Patent Document 10 Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to Gefitinib therapy. Science 2004; 304: 1497-500.
  • Patent Document 11 WO2005049864 Disclosure of Invention
  • the present invention has been made to solve the above-mentioned problems and the demands of doctors and the like, and more specifically, cancer, more specifically, the presence of cancer cells can be detected in blood at an early stage of lung cancer.
  • a cancer diagnosis is made to determine whether or not the patient is a cancer, the number of patients who are judged to be negative even though they are lung cancer patients and that they are judged to be positive even if they are not lung cancer patients is significantly reduced. Therefore, an object of the present invention is to provide a cancer diagnosis method and a lung cancer diagnosis method using such a cancer diagnosis method.
  • the method for diagnosing cancer comprises a step of obtaining a sample containing only RNA as a somatic cell component from a body fluid of a patient, and a sample force containing only RNA.
  • Generating cDNA with reverse transcriptase PCR using reverse transcription enzyme reaction and fluorescent dye, primer set to detect the presence of EGFR mRNA A first cancer diagnosis method comprising the steps of: quantitatively measuring a PCR product amplified by PCR using a fluorescent dye combined with the PCR product; and from the body fluid of the patient, The process of obtaining a sample containing only RNA as a somatic cell component, and the ability of a sample containing only RNA Reverse transcriptase reaction to generate cDNA with reverse transcriptase and PCR using fluorescent dye, presence of hTERT mRNA
  • a second method for diagnosing cancer comprising the steps of: using a set of primers, and quantitatively measuring a PCR product amplified by PCR using a fluorescent dye combined with the PCR product.
  • the cancer diagnostic method according to claim 2 is the primer set for detecting the presence of EGFR mRNA used in the cancer diagnostic method according to claim 1, wherein the upstream primer is AACTGTGAGGTGGTCCTTGG and the downstream primer is GTTGAGGGCAATGAGGACAT It is.
  • the method for diagnosing cancer according to claim 3 is used in the method for diagnosing cancer according to claim 1 or claim 2.
  • the primer for detecting the presence of hTE RT mRNA, the upstream primer, the upstream primer is CGGAAGAGTGTCTGGAGCAA
  • the downstream primer is GGATGAAGCGGAGTC TGGA.
  • the cancer diagnosis method according to claim 4 is humoral blood or lymph used in the cancer diagnosis method according to any one of claims 1 to 3. '
  • the lung cancer diagnosis method according to claim 5 uses the cancer diagnosis method according to any one of claims 1 to 4.
  • the method for diagnosing cancer according to the present invention can detect evidence of the presence of cancer cells in the blood at an early stage of cancer. Therefore, it becomes possible to eradicate cancer cells by early medical practice.
  • both the first cancer diagnostic method and the second cancer diagnostic method are determined to be positive, it is determined to be cancer.
  • a person is mistakenly judged to be cancerous, or is not cancerous despite being a cancer.
  • FIG. 1 is an explanatory diagram for schematically explaining the cancer diagnostic method and its object according to the present invention.
  • FIG. 2 is a diagram for explaining a primer set used in the method for diagnosing cancer according to the present invention.
  • FIG. 3 shows the full-length base sequence.
  • FIG. 4 shows the full-length base sequence of EGFR.
  • FIG. 5 shows the full-length base sequence of EGFR.
  • Fig. 6 is a graph showing the correlation between each tissue of hTERT mRNA and EGFR mRNA and serum
  • Fig. 6 (a) shows the correlation between the tissue of hTERT mRNA and serum
  • FIG. 6 (b) is a graph showing the correlation between the tissue of EGFR mRNA and serum.
  • FIG. 7 is a diagram showing the results of multivariate analysis regarding clinical factors of one tumor marker.
  • Fig. 8 is a graph showing the results of ROC curve analyses.
  • FIG. 9 is a diagram for explaining the sensitivity and specificity of various tumor markers for lung cancer.
  • FIG. 1 is an explanatory diagram schematically illustrating the cancer diagnosis method according to the present invention and its target.
  • the average patient age was 63 years (22 to 90 years).
  • Clinicopathological findings [Studies such as gender, age, diagnosis, tumor size, number of tumors, CEA, SCC, CYFRA, pro GRP, NSE (Neuron specific enolase), ⁇ (tissue polypeptide antigeru and ⁇ , SLX Marker screening, presence of hepatitis virus (presence of active hepatitis virus), smoke history (estimated by Pack—Year index), presence of metastasis or recurrence (presen ce of metastasis or recurrence) and clinical stage (IA to IV) (clinical stage (IA to IV))] was evaluated.
  • As a control group comparativative example, 27 healthy persons including 12 women (22 to 78 years old: average age 53 years) were used.
  • telomerase reverse transcriptase (abbreviated as hTERT) mRNA and EGFR (epidermal growth factor recept or) mRNA in lung cancer patients was quantitatively analyzed.
  • the patient's body fluid in this example, blood
  • blood about 1 to 2 ml
  • 3 stages 800xg, lOOOxg, 1500xg.
  • serum samples were obtained in which the presence of lymphocytes was reduced to a negligible amount.
  • DNase DNase
  • Serum samples 200 ⁇ l of the extracted RNA was dissolved in nuclease-free water (H 2 O).
  • Quantitative RT-PCR Real-time polymerase chain reaction
  • RT-PCR kit One Step RT-PCR kit
  • SYBR Green I SYBR Green I
  • RNA from HCC tissue was performed using TRIzol (registered trademark) reagent (Reagent) according to the manufacturer's instructions (Invitrogen Corp., Carlsbad, CA, USA). '
  • Figure 2 shows the primers and target base sequences used in this experiment.
  • the upstream primer (EGFR-F) was AACTGTGAGGTGGTCCTTGG
  • the downstream primer (EGFR-R) was GTTGAGGGCAATGAGGACAT.
  • the upstream primer is set in the forward direction of the target base sequence (5 ' ⁇ 3')
  • the downstream primer is a complementary sequence to the strand corresponding to the forward direction of the upstream primer of the target base sequence. And set in the opposite direction.
  • 3 to 5 show the full-length base sequence of EGFR.
  • This amplification target was an EGFR tyrosine kinase phosphorylation site of EGFR, and this primer had no mutation in its base sequence.
  • the upstream primer (hTERT-F) was set as CGGAAGAGTGTCTGGAGCM and the downstream primer (hTERT-R) was set as GGATGAAGCGGAGTCTGGA as a set of primers for detecting hTERT.
  • the upstream primer (2-microglob in-F) was TGAGTGCTGTCTCCATGTTTGA
  • the downstream primer (2-microglobin-R) was TCTGCTCCCCACCTCTAAGTTG.
  • Real-time PCR (RT-PCR) conditions are as follows: the first reverse transcription reaction is performed at 50 ° C for 30 minutes, and then kept at 95 ° C for 12 minutes as the reaction activation stage, and then 50 cycles of the PCR reaction. (95 ° C (0 sec), 55 ° C (10 sec), then 72 ° C (15 sec)) and heat denatured at 40 ° C for 20 sec.
  • RT—PCR real-time PCR
  • the excised tissue was processed for embedding in paraffin.
  • 3 patients (12 patients in total) with strong protein expression of tumor markers in serum were selected, hTERT, EGFR, SCC (manufactured by Sigma) and CYFRA (A lung cancer cross-sectional study was conducted using antibodies that identify each of Sigma.
  • liver tissues fixed in 4% paraformaldehyde were embedded in paraffin.
  • the following antibodies are put into consecutive sections ( ⁇ sections) :! 3 ⁇ 4 But; a mouse monoclonal antibody 5-micron-thick section of a lung excised specimen is a series of xylene bath deparaffins. A series of xylene baths and these samples were graded: rehydrated in graded alcohols. ⁇
  • slides were used at 98 ° C, 10-mmol / litter citrate buffer, and with H6. Pre-treated for 90 minutes.
  • Sections were then cultured in 2.5% blocking serum to reduce non-specific binding. Following this, samples were obtained at 37 ° C at the primary monoclonal mouse hTERT (H-231) sc—7212 antibody (primary monoclonal mouse hTERT (H—231) sc—7212 antibody (Santa Cruz Biotechnology, Santa Cruz, CA). , USA)) Using hu man EGFR (1005), sc-03 antibody (Sc-03 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA)), 1:50 on paraffin section Incubated at a dilution of These sections are processed with standard avidin-biotin immunochemistry as recommended by the company (Vector Laboratories, 'Burlingame, CA, USA).
  • SPSS II SPSS Corp., Tokyo, Japan was used to make important clinicopathological findings affecting hTERT, EGFR and other markers.
  • hTERT mRNA and EGFR mRNA gradually increased as the disease progressed, and the quantitative values were significantly higher in lung cancer than in healthy individuals (P 0). 0 1).
  • Fig. 6 is a graph showing the correlation between each tissue of hTERT mRNA and EGFR mRNA and serum
  • Fig. 6 (a) is a graph showing the correlation between the tissue of hTERT mRNA and serum.
  • FIG. 6 (b) is a graph showing the correlation between the tissue of EGFR mRNA and serum.
  • hTERT mRNA and EGFR mRNA in serum are derived from lung cancer tissue.
  • Multivariate analysis revealed that there was a strong relationship between the expression of hTERT and EGFR in serum as a clinicopathological finding (see Figure 7).
  • Fig. 8 is a graph showing the results of ROC curve analyses.
  • the positive predictive value (PPV) / negative predictive value (NPV) at the time of cancer formation is 0.775 / 0.667 for hTERT mRNA, and 0 for EGFR mRNA. 667/0.
  • the positive predictive value (PPV) and Z negative predictive value (NPV) for cancer formation of CYFRA, SCC and CEA are 0. 650/0. 500, 0. 207/0. 875, and 0. 650/0, respectively. It was 391.
  • the postoperative quantitative values of hTERT mRNA and EGFR mRNA were lower than the preoperative quantitative values.
  • RNA is stable within 24 hours after blood collection.
  • hTERT expression is very weak in the serum of healthy individuals.
  • hTERT mRNA expression in the serum of patients with hepatocellular carcinoma (HCC) Z-specific power better than other conventional tumor markers.
  • EGFR is involved in carcinogenic processes such as cell proliferation, apoptosis, angiogenesis, cell death and metastasis.
  • EGFR expression and proliferation potential are independent prognostic factors (parameters) for non-small cell cancer patients.
  • EGFR is expressed in glioblastoma (33%), colorectal cancer (70%), cervical neoplasia, head and neck SCC (41%), melanoma .
  • SCC, CYFRA, CEA, NSE, proGRP, TP A and SLX are reliable markers that are widely used for lung cancer, including adenomas, scaly cell carcinomas, small cell lung cancers, and other pathological types. is there. -However, by this test, hTERT mRNA and EGFR mRNA are based on ROC curve analysis (sensitivity Z specificity), PPV / NPV and calculated cut-off point. In other words, it was found to be superior to others overall (see Figures 8 and 9).
  • hTERT mRNA and EGFR mRNA in serum and tumor tissue indicate that hTERT mRNA detected in serum is particularly derived from tumor cells (see Figure 6).
  • lung cancer in which the expression of EGFR mRNA in serum, that is, on / off of EGFR mRNA, is clear because the comparative sample is insufficient and the level of inflammation does not mediate the expression of this sample. This is a force that can only be detected by the organization.
  • the method for diagnosing cancer according to the present invention enables this by detecting this expression before any treatment in serum, and sheds light on this point.
  • hTERT mRNA showed a higher sensitivity and specificity compared with other patients who had lung cancer.
  • hTERT and EGFR are not necessarily specific for lung cancer, the clinical application of such biomarkers will help with easier diagnosis and evaluation in the clinical phase.
  • hTERT mRNA has a close correlation with tumor size and number of tumors, which improves both sensitivity and specificity.
  • lung cancer recurs repeatedly after treatment, so the measurement of sera of hTERT mRNA and EGFR mRNA has the same effect as recurrence and therapeutic effects as in one-point diagnosis. It is possible to grasp.
  • hTERT mRNA and EGFR mRNA showed higher levels, sensitivity and specificity in patients with lung cancer than EGFR mRNA.
  • the cancer diagnosis method according to the present invention can detect evidence of the presence of cancer cells from the blood in the early stage of cancer, and thus can eradicate cancer cells by early medical practice.
  • a sample containing mRNA for body fluid force is obtained, so that the presence or absence of cancer cells can be detected more accurately than when EGFR is detected in tumor tissue tumor formation and metastasis after metastasis. .
  • primers used for PCR it has become possible to detect blood force in the early stages of cancer.
  • the cancer diagnosis method according to the present invention makes it easy for a doctor to determine whether or not to prescribe an EGFR tyrosine kinase inhibitor such as gefitinib to a patient. Even after prescribing an EGFR tyrosine kinase inhibitor, such as Gefitinib, to patients, whether an EGFR tyrosine kinase inhibitor, such as Gefitinib, is effective against the tumor Survey is easy.
  • a step of obtaining a sample containing only RNA as a somatic cell component of cancer cells from a body fluid of a patient, and a sample force containing only RNA are reversed.
  • Perform PCR using a reverse transcriptase reaction and fluorescent dye to produce cDNA with a transcriptase detect the presence of EGFR mRNA, use a primer set, PCR product amplified by PCR and the PCR product
  • a first cancer diagnosis method comprising a step of quantitatively measuring using a bound fluorescent dye, and a step of obtaining a sample containing only RNA as a somatic cell component of a cancer cell from the body fluid of the patient.
  • PCR was performed using a reverse transcriptase reaction to generate cDNA from a sample containing only RNA using reverse transcriptase and a fluorescent dye, using a primer set to detect the presence of hTERT mRNA and amplified by the PCR.
  • PCR product was combined with the PCR product
  • a second cancer diagnostic method comprising a step of quantitatively measuring using a photopigment, and the results of both the first cancer diagnostic method and the second cancer diagnostic method are determined to be positive Because it is judged as cancer, it is judged that it is negative even though it is a patient with lung cancer. Also, it is markedly reduced that it is judged positive even though it is not a patient with lung cancer. .
  • a force showing an example in which blood force RNA is extracted is extracted.
  • the extraction is not limited to RNA extraction, and humoral RNA other than blood may be extracted.
  • the cancer diagnosis method and lung cancer diagnosis method according to the present invention can detect evidence of the presence of cancer cells in the blood at the early stage of cancer, it becomes possible to eradicate cancer cells by early medical action.
  • the cancer diagnosis method and lung cancer diagnosis method according to the present invention are performed before prescribing to a patient, based on the results, whether or not the anticancer agent is effective, and after prescribing the anticancer agent to the patient, When a patient is treated, the cancer diagnostic method and lung cancer diagnostic method according to the present invention can be performed to determine whether or not an anticancer drug prescribed for the patient is effective. Because it becomes possible, industrial applicability is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明細書 癌診断方法及び肺癌診断方法 技術分野
本発明は、癌.診断方法及び肺癌診断方法に関し、特に、早期に肺癌か否かの診断ができ、ま た、抗癌剤が患者に有効か否かの判断をできる、高感受性且つ特異性のある癌診断方法及びそ のような癌診断方法を用いた肺癌診断方法に関する。 背景技術
肺癌は、過去 20年間において、生存率において少しの変化があったものの、依然として、悪性 腫瘍関連死の主要な原因となっている。
そして、非小細胞肺癌(NSCLC (non— small cell lung cancer) )は、現在、総肺癌患者 の 3/4を占めており、多くの患者が、新規な治療方法や外科的腫瘍学の進歩にもかかわらず、 進行性かつ転移性の病気によって死に続けている。
また、メスなどを用いなレ、、診断ツールとして、 B重瘍マーカーがある。
この腫瘍マーカ一は、一般に、癌の診断や、治療指標として用レヽられている。
腫瘍マ一カーとしては、小細胞癌の診断には、例えば、 NSE (Neuron -specific enolase, 以下、単に、「NSE」という。)や proGRP (Pro— gastorin— releasing peptide,以下、単に、 rproGRPJとレ、う。)が有効なマ一力一とされてレ、る。
非小細胞癌(NSCLC (non— small cell lung cancer)、以下、単に、「NSCLC」とレヽう。) や、癌胎児性抗原(CEA (carcinoembryonic antigen)、以下、単に、「CEAjという。;)や、扁 平上皮癌(SCC (squamous cell carcinoma)、以下、単に、「SCCJという。)や、サイトケラチ ン 2.1— 1フラグメント(シフラ 21 - 1) (CYFRA(cytokeratin 19 fragment)、以下、単に、「CY FRA」とレ、う。)や、 シァリ /レ LeX— f几原 (SLX (sialyl Le antigen such as sialyl stage 一 specific antigen— 1)、以下、単に、「SLX」とレ、う。)や、 CA19 - 9 (carbohydrate antig en 19一 9、以下、単に、「CA19— 9Jという。 )は、一般に、診断に用いられており、少なくとも、 CEA、 SCC及ぴ CYFRAの群力 選択される 1つのマーカー力 陽性の場合、 70%の患者が、 非小細胞癌 (NSCLE)の患者である、とされてレ、る。
また、組織学的カテゴリーに基づけば、 CEAと CYFRAとの双方が陽性の割合は、腺癌(aden ocarcinoma)の患者において高ぐ CYFRAと SCCとの双方が陽性の割合は、扁平上皮癌 squ amous cell carcinoma) の唐、者におレヽて レヽ、とされてレヽる。
また、 X線診断 (X— ray examinations)や、従来の腫瘍マーカーを用いた診断や、気管支 洗浄(bronchial lavage (BL)のような標準的な手法は、肺癌の発見に重要であるが、これらの 手法は、臨床の初期段階における肺癌の発見には十分では無レ、、という問題がある。
また、上皮成長因子受容体(EGFR (epidermal' growth factor receptor)、以下、単に、 「EGFR」という。)のチロシンキナーゼ活性(Tyrosine kinase activity)は、腫瘍細胞の増殖 や、細胞生存や、血管形成や、滲出や、転移に関与し、また、合成ァニリノキナゾリン (a synthet ic anilinoquinazoline)、ゲフイチニブ (Gefitinib) (商品名:「ィレッサ J (登録商標)、販売会社 :ァスロラゼネ力株式会社)の EGFRチロシンキナーゼ阻害作用をうける作用点でもある。
ゲフイチニブ(Gefitinib) (商品名:「ィレッサ」(登録商標)、販売会社:ァスロラゼネ力株式会 社)の EGFRチロシンキナ一ゼ阻害作用は、患者によっては、極めて有効な薬剤である力 他方、 副作用の問題力;ある。
EGFRは、 NSCLCの組織標本の 80%に発現する力 その発現は、小細胞癌(small cell lu ng carcinoma (SCLC)の進行性タイプ(progress type)に観察される。この意味において、 E GFRは、優れた肺癌の生体用マーカー(biomaker)であり、そして、 EFFRターゲット療法(EGF R— targeted therapies)に月里¾反応 (tumor responseリする分子決定因" 、molecular de taerminants でめ" o。
RGFRTが、腫瘍マーカーのように利用できれば、医師が、患者に対し、ゲフイチ-ブ(Gefitini b)を処方するか否かの判断するのが容易となり、また、患者に対し、ゲフイチニブ(Gefitinib)を 処方後においても、ゲフイチ-ブ (Gefitinib)が腫瘍に有効であるか否力の追跡調査が容易に行 える。
また、本発明者等は、患者の体液中から、体細胞-癌細胞成分として、 RNAのみを含む試料を 得る工程と、 RNAのみを含む試料力 逆転写酵素で cDNAを生成する逆転写酵素反応と蛍光 色素を用いた PCRを、 hTERT mRNAの存在を検出する、プライマーセットを用いて行い、 PC Rにより増幅された PCR産物を前記 PCR産物と結合した蛍光色素を用い、定量的に計測するェ 程とを備える、癌診断方法を既に提案している。
しかしながら、この癌診断方法だけを用いて、例えば、肺癌か否かの癌診断をした場合、肺癌 患者であるにも力かわらず、陰性と判断したり、また、肺癌患者でないにも力、かわらず、陽性と判 断したりする場合が全く無い、とは言い切れない、という問題がある。
【非特許文献 1】 Greenlee RT, Hill— Harmon MB, Murray T, Thun M. Cance r statistics. CA cancer J Clin 2005;51 : 15— d6.
【非特言午乂'献 2】 aaccone G. Clinical impact of novel treatment strategies. O ncogene 2002;21:6970-81.
【非特言午文献 3】 Johnson BE, Grayson J, Makuch RW, et al. Ten— year survi val of patients with small— cell lung cancer treated with combination chem otherapy with or without irradiation. J Clin Oncol 1990;8:396-401.
【非特許文献 4】 Morina R, Filella X, Auge JM. ProGRP: a new biomarker fo r small cell lung cancer. Clinical Biochemistry
2004;37:505-11..
【非特許文献 5】 Sugio K, Sugaya M, Hanagin T, Yasumoto K. Tumor mark er in primary lung cancer. JUOEH 2004; 1 :473— 9,
【非特許文献 6】 Schneider J, Philipp M, Velcovsky HG, Morr H, Katz N. P ro— gastrin— releasing peptide (ProGRP), neuron specific enolase (NSE) , c arcinoembryonic antigen (CEA) , and cyto keratin 19— fragments (CYFRA 2 1— 1) in patients with lung cancer in comparison to other lung diseases. Anticancer Res 2003;23:885-93.
【非特許文献 7】 Tagliaferri P, Tassone P, Blotta S, et al. Antitumor therape utic strategies based on the targeting of epidermal growth factor― induced survival pathways. Curr Drug Targets 2005;6:289-300. 【非特許文献 8】 Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epiaermal growth factor receptor underlying responsiveness of non— small -cell lung cancer to gefitinib. N Engl J Med 2004 ; 350 : 2129 - 39.
【非特許文献 9】 Gamou S, Hunts J, Harigai H, et al. Molecular evidence for the lack of epidermal growth factor receptor gene expression in small cell 1 ung carcinoma cell. Cancer Res 1987 ;47 : 2668— 73.
【非特許文献 10】 Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lun g cancer: correlation with clinical response to Gefitinib therapy. Science 2004 ; 304 : 1497 - 500.
【特許文献 11】WO2005049864号 発明の開示
本発明は、上記した問題や医師等の要望を解決するためになされたものであって、癌、より具体 的に説明すると、肺癌の初期において、癌細胞の存在証拠を血液中力 検出でき、し力も、癌か 否かの癌診断をした場合、肺癌患者であるにもかかわらず、陰性と判断したり、また、肺癌患者で ないにもかかわらず、陽性と判断したりする場合を著しく低減した、癌診断方法及びそのような癌 診断方法を用レヽた肺癌診断方法を提供することを目的としてレ、る。
請求項 1に記載の癌診断方法は、ある患者の体液中から、体細胞'癌細胞成分として、 RNAの みを含む試料を得る工程と、 RNAのみを含む試料力 逆転写酵素で cDNAを生成する逆転写 酵素反応と蛍光色素を用いた PCRを、 EGFR mRNAの存在を検出する、プライマーセットを用 いて行い、 PCRにより増幅された PCR産物を PCR産物と結合した蛍光色素を用レ、、定量的に計 測する工程とを備える、第一の癌診断方法と、前記ある患者の体液中から、体細胞'癌細胞成分 として、 RNAのみを含む試料を得る工程と、 RNAのみを含む試料力 逆転写酵素で cDNAを生 成する逆転写酵素反応と蛍光色素を用いた PCRを、 hTERT mRNAの存在を検出する、ブラ イマ一セットを用いて行レ、、 PCRにより増幅された PCR産物を PCR産物と結合した蛍光色素を用 い、定量的に計測する工程とを備える、第二の癌診断方法とを行い、第一の癌診断方法の結果 が、陽性と判定され、且つ、第二の癌診断方法の結果が、陽性と判定された場合、癌と判断する。 請求項 2に記載の癌診断方法は、請求項 1に記載の癌診断方法で用いる、 EGFR mRNAの 存在を検出する、プライマーセットの、上流側プライマーが、 AACTGTGAGGTGGTCCTTGG で あり、下流側プライマーが、 GTTGAGGGCAATGAGGACATである。
請求項 3に記載の癌診断方法は、請求項 1又は請求項 2に記載の癌診断方法で用いる、 hTE RTmRNAの存在を検出する、プライマーセットの、上流側プライマーが、上流側プライマーが、 CGGAAGAGTGTCTGGAGCAAであり、下流側プライマ一が、 GGATGAAGCGGAGTC TGGAである。
請求項 4に記載の癌診断方法は、請求項 1〜3のいずれかに記載の癌診断方法で用いる、体 液力 血液またはリンパ液である。 '
請求項 5に記載の肺癌診断方法は、請求項 1〜4のいずれかに記載の癌診断方法を用いた。 発明の効果
本発明に係る癌診断方法は、癌の初期において癌細胞の存在証拠を血液中力 検出できる ので、早期医療行為によって癌細胞を根絶することが可能になる。
また、体液中力 mRNAを含む試料を得るようにしたので、癌組織腫瘍形成、転移後の切除 組織中力 EGFRを検出するような場合に比べ、癌細胞の有無を正確に検出することができる。
また、 PCRを行う際に使用するプライマーを工夫することにより、癌の初期において癌細胞の 存在証拠を血液中力 検出できるようになった。
また、本発明に係る癌診断方法では、第一の癌診断方法と第二の癌診断方法の両方が、陽性 と判断された場合を、癌と判断するようにしてレ、るので、癌でない者を誤って癌と誤って判断したり、 癌であるにも力 わらず癌では無レ、と誤って判断することがない。 図面の簡単な説明
第 1図は、本発明に係る癌診断方法と、その対象とを概略的に説明する説明図である。
第 2図は、本発明に係る癌診断方法で使用するプライマーセットを説明する図である。
第 3図は、全長塩基配列を示す図である。
第 4図は、 EGFRの全長塩基配列を示す図である。
第 5図は、 EGFRの全長塩基配列を示す図である。
第 6図は、 hTERT mRNA及び EGFR mRNAの各々の組織と血清との間の相関関係を表 すグラフであり、図 6 (a)は、 hTERT mRNAの組織と血清との間の相関関係を表すグラフであり、 また、図 6 (b)は、 EGFR mRNAの組織と血清との間の相関関係を表すグラフである。
第 7図は、腫瘍マーカ一の臨床因子に関する多変量解析結果を示す図である。 第 8図は、ロックカーブ解析 (ROC curve analyses)の結果を示すグラフである。
第 9図は、各種の腫瘍マーカ一の肺癌に対する感受性と特異性とを説明する図である。 発明を実施するための最良の形態
以下、本発明に係る癌診断方法の一例を更に詳しく説明する。
1.患者と標本の収集
図 1は、本発明に係る癌診断方法と、その対象とを概略的に説明する説明図である。
図 1に示す試験を行うために、 2003年 7月〜2004年 12月の期間、国立米子病院に許可され た、 89人の肺癌患者を登録した。
患者の平均年齢は 63歳(22歳〜 90歳)であった。
これらの患者について、血清試験、胸部 X線、(ヘリカル)コンピュータ断層撮影法 (CT)、胸部 又は脳の磁気共鳴映像法、細胞学的試験、経気管支、経皮、又は胸腔鏡下肺生体組織検査の 後に外科的切除標本の病理的評価を診断した。
臨床病理学的所見 [性別、年齢、診断、腫瘍の大きさ、腫瘍の数、 CEA、 SCC、 CYFRA, pro GRP、 NSE (Neuron specific enolase)、 ΓΡΑ (tissue polypeptide antigeru及 Ό、 SLXと いった腫瘍マ一カー検查、肝炎ウィルスの有無(presence of active hepatitis virus) , 喫 煙暦 (smoke history (estimated by Pack— Year index)、 転移や再発の有無 (presen ce of metastasis or recurrence)及び臨床病期 (IA〜IV) (clinical stage (IA〜IV) ) ]を 評価した。 また、対照群 (比較例)として、 12人の女性を含む 27人の健常人(22歳〜 78歳:平均年齢 53 歳)を用いた。
更に、同じ患者に関して、外科的処置の前と後(手術後 3週間後)の血清中の興味のある遺伝 子を調べるため、また、腫瘍マ一カーとしての能力を決定するため、我々は、肺癌患者のヒトテロ メラーゼ逆転写酵素 (hTERT と略) mRNAと、 EGFR (epidermal growth factor recept or) mRNAとの発現を計量的に分析した。
この試験を行うに際し、患者力 インフォ一ムドコンセントを得て、且つ、研究プロトコール (計画 案)は、 1975年のヘルシンキ宣言の倫理的ガイドラインに従ったものとした。
且つ、鳥取大学の倫理委貝会 (the human research committee of Tottori Univers y)の承認を得た(承認番号第 138、 No. 138— 1 , 2001年(approval No. 138, No. 1 38- 1 , 2001) )。
本発明に係る癌診断方法では、まず、被験者 (患者)の血液を採取した。 ■
次に、血液中から RNAを含む試料を得た。
より具体的に説明すると、患者力 採取した体液 (この例では、血液)(約 l〜2ml)について、 1 0°Cで 10分間、 3段階 (800xg、 lOOOxg, 1500xg)の遠心分離操作を行うことにより、リンパ球 (lymphocyte)の存在を無視できる量になるまで 少させた血清(上澄み)(serum samples) を得た。
この血清(上澄み)(serum samples)中の hTERT mRNAと EGFR mRNA力 肺の悪性 腫瘍(pulmonary malignancies)に起源を発しそこ力 放出されたものであるかを調べるため、 23名の肺癌患者の外科的切除肺組織と漿液 (sera)とを採取した。
2. RN Aの抽出と Real— time quantitative RT— PCR.
次に、 RNAを、従来公知の方法で、血清(上澄み) (serum samples)から、デォキシリボヌク レアーゼ (DNase; deoxyribonuclease)処理 (treatment)を用レ、て抽出した。
血清(上澄み) (serum samples) 200 μ 1中力ら抽出した RNAをヌクレアーゼフリーの水(H2 O)に溶角军した。
次に、定量的リアルタイムポリメラーゼ連鎖反応(quantitative RT- PCR (real time poly merase chain reaction)を、ワンステップ RT— PCRキット(One Step RT— PCR kit) (Qiagen社製)の中に、 の RNA抽出物と 2 1の SYBR Green I (Roche, Basel, Sw itzerland)とを使用して、行った。
RNAは、同じ容量の血清を使用し HCC組織を用いて抽出し、その後、 20倍の濃度になるま で乾燥させた。 .
HCC組織からの RNAの抽出は、 TRIzol (登録商標)試薬 (Reagent)を使用し、この試薬の 製造販売会社 (Invitrogen Corp. , Carlsbad, CA, USA)の使用説明書に従って行つ た。 '
この実験に使用したプライマー及び標的塩基配 を、図 2に示す。
即ち、 EGFRを検出するためのプライマーセットとして、上流側プライマ一(EGFR— F)を、 AACTGTGAGGTGGTCCTTGG と し、 下流側プライマー ( E G F R — R ) を、 GTTGAGGGCAATGAGGACATとした。 尚、上流側プライマーは、標的塩基配列の順方向(5'→3')に設定し、下流側プライマーは、 標的塩基配列の上流側プライマーの順方向に相当する鎖に対し、相補的配列で且つ逆方向に 設定したものである。
図 3〜図 5に、 EGFRの全長塩基配列を示す。
この増幅ターゲットは、 EGFRのチロシンキナーゼ加リン酸サイト(a tyrosine kinase pho sphorylation site of EGFR)であり、また、 このプライマーは、その塩基配列中に変異を含 んでいなレ、ものとした。
また、比較のため、 hTERTを検出するプライマ一セットとして、上流側プライマー(hTERT- F) を、 CGGAAGAGTGTCTGGAGCM とし、 下流側プライマ一(hTERT— R)を、 GGATGAAGCGGAGTCTGGAとした。
また、 2— microglobinでは、上流側プライマー( 2— microgl ob in— F )を、 TGAGTGCTGTCTCCATGTTTGA とし、下流側プライマー( 2— microglobin— R)を、 TCTGCTCCCCACCTCTAAGTTGとした。
リアルタイム PCR(RT— PCR)の条件は、最初の逆転写反応を、 50°Cで 30分間行い、その後、 反応活性化段階として、 95°Cに、 12分間保ち、その後、 PCR反応を 50サイクル(95°C (0秒)、 55°C (10秒)次いで 72°C (15秒)行レ、、そして、 40°Cで 20秒間、熱変性した。
hTERT mRNAと EGFR mRNAに対するリアルタイム PCR (RT— PCR) 分析の射程範囲 は、この分析では、約 5コピーであり、そして、我々は、患者と比較例からの血清試料中、誤って陰 性とする可能性を排除することができた。 この PCRは、 hTERTに対し、 131 bpの産出物を、 EGFRに対し、 1 14 bpの産出物を、また、 β 2-microglobin RNA に対し、 88bpの産出物を、各々、産生した。
この RT-PCR分析は、 2回、繰り返し、この定量化については、ライトサイクラ一(LightCycler (登 録商標) (ロッシュ社 (Roche, Basel, Switzerland) )を用レ、ることで、繰り返し再現性がある ことを確かめた。
3.免疫組織学的検討(Immunohistochemistrv)
切除組織をパラフィン中に包埋する(paraffin embedding)ための処理をした。免疫組織研究 のため、血清中に腫瘍マーカーの強い蛋白質発現を有する、患者を 3人ずつ(全員で 12名の患 者)選び出し、 hTERT, EGFR, SCC (シグマ(Sigma)社製)及び CYFRA (シグマ(Sigma) 社製) の各々を識別する抗体を用レ、て、肺癌横断研究を行った。
免疫組織研究において、 4%パラホルムアルデヒド中に固定した肝臓組織 (liver tissues)を パラフィンに包埋(embedded)した。免疫組織分析のため、次に示す抗体を連続したセクション (^sections)に:! ¾· しに;肺の切除標本の a mouse monoclonal antibody 5— micron— th ick sectionsが、一連のキシレン浴脱パラフィン化(a series of xylene baths)され、また、 これらの試料は、等級に分けら: Hたアルコール(graded alcohols)中で再水和化(rehydrate d)された。 ·
染色された全てのセクション(sections)は、電子レンジを用レ、、 600Wで、 15分間、 10 mmo 1/litterのクェン酸ナトリゥム緩衝液中で加熱処理された。
PBS (phosphate buffered saline リン酸〔塩〕)緩衝生理的食塩水の略)中で洗浄後、これ らの切断面は、 avidin― biotin― eroxidase complex (Vector Laboratories, Burlinga me, CA)によって染色された。
ェピトープ(epitope、抗原決定基)エキスポ一ジャー(exposure)を高める(enhance)するた めに、スライドを、 98°Cで、 10— mmol/litterのクェン酸緩衝液(citrate buffer)用い、 H6 で、 90分間、前処理した。
セクション(sections )は、その際に、非特異性の結合を減じるために 2. 5 %の遮断血清 (blocking serum)中で培養された。これに引き続き、試料を、 37°Cで、プライマリーモノクロ一ルマ ウス hTERT (H - 231) sc— 7212 抗体(primary monoclonal mouse hTERT (H— 231) sc— 7212 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) ) hu man EGFR (1005)、 sc— 03抗体 (sc— 03 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) )を使用して、 90分間、パラフィンセクションの上で、 1 : 50の希釈 で、培養した。これらのセクシシヨン (sections)は、企業 (Vector Laboratories,' Burlingame, CA, USA)の推奨に従って、標準アビジン一ピオチン免疫化学(standard avidin -biotin immunochemistryjで処理されに。
最後に、色素原として、ジァミノベンゼンを用い、そして、核対比染色として、へマトキシリンを用 いた。陰性対象として、一時抗体を省略して染色処理を行った。結果をパーセンテージで表した。 核小体 (nucleolar) hTERTは、テロメァ機能と関係している。核小体染色された細胞だけが 分子計算器 (numerator)に含められた。免疫反応性は、蛍光色素接合 2次抗体を用いて視覚 化した。 hTERT染色は、陰性(く 50% of tumor cells positive at the nucleolar level)と 陽性(〉50% of them)とに分類した。
4.統計解析
SPSS II (SPSS Corp. , Tokyo, Japan)を使用して、 hTERT、 EGFR及びその他の マ一カーに影響する重要な臨床病理学的知見を行った。
各々の臨床因子 (パラメーター)における層別分類は、論理学的回帰分析モデノレを使用して、 多変量解析法によって評価した。
各々の腫瘍マーカ一について、多変量解析法によって、肺疾患の間に見られる重要な相違を 調べた。
hTERT mRNA, EGFR mRNA, 従来の腫瘍マ一カー及び臨床的因子(パラメ一ター)間 の相関を調べるために、ピアソンの相関係数 (Pearson' s relative index)を計算した。
この結果、 0. 05以下の確立で、統計上の差異があることが、判った。 .
診断試験(diagnostic tests)の正確さを査定(assess)するため、 SPSS II (SPSS Corp. , Tokyo, Japan)を使用して、 CEA, SCC, CYFRA, EGFR mRNA 及び hTERT m RNAの各々に関する、マッチ試:験(the matched data sets (肺癌患者と肺癌ではない患者 間 (patients with and without malignancies in lung) ) ¾ , ROC (receiver operator characteristic)カーフ' (curve)分析 (analysis)を行った。
この評価分析は、コピー数(copy number)と RNAコントロール(RNA controls) (r > 0. 9 9)を用いた PCRサイクノレ (PC cycles)との間に強い直線関係があることを示していた。肺組織 と血清との間の hTERT mRNA と EGFR mRNAとの相関関係は、 2点 試験法(Paired t test) 及びスペアマン試験(Spearman ' s test)の両方を使用して解析した。
各々の定量分析において、コピー数と RNAコントロール(RNA controls)を用いた PCRサイ クル(PCR cycles)との間には、強い直線関係が示された(r2>0. 99)。
hTERT mRNA及び EGFR mRNA の発現は、疾病の進行に伴って、徐々に、増加作用 を示し、また、その定量値は、健常人に比べ、肺癌において、有意に髙くなつていた(Pく 0. 0 1) 。
また、ピアソンの相関係数(Pearsons' relative index) によれば、 hTERT mRNA レべ ノレは、 EGFR mRNA レべノレ(level)、肺疾患、 TPA (tissue polypeptide antigen)、 SC C:、 及ぴ、腫瘍数と有意差を持って関係がなレ、ことが判った (各々、 P = 0. 015、 P = 0. 017、 P く 0. 001及び P= 0. 042)。
また、ピアソンの相関係数(Pearson' s relative index) によれば、 EGFR. mRNAは、(癌 に)占拠された肺葉 i (occupied lobular segment)の数, 転移、再発及び臨床病期と有意差 を持って相関関係があった (各々、 Ρ=0· 033、 Ρ=0. 043、 Ρ=0. 002及び Ρ<0. 001)。 スペアマン試験(Spearman' s test)は、肺癌組織における hTERT mRNAと EGFR mRN Aと、血清中の hTERT mRNA と EGFR mRNAとが強い関係があることを示していた (各 々、 P = 0. 021及ぴ P = 0. 002) 0
図 6は、 hTERT mRNA及び EGFR mRNAの各々の組織と血清との間の相関関係を表す グラフであり、図 6 (a)は、 hTERT mRNAの組織と血清との間の相関関係を表すグラフであり、 また、図 6 (b)は、 EGFR mRNAの組織と血清との間の相関関係を表すグラフである。
この組織と血清との間の相関は、血清中の hTERT mRNAと EGFR mRNAとが肺癌組織 から由来していることを示している 。
多変量解析によって、臨床病理学的知見として、血清中の hTERTおよび EGFRの発現には 強レ、関係があることが判った (図 7を参照)。
喫煙、腫瘍の大きさ、腫瘍数、転移や再発の有無は、 hTERT mRNA発現と強い関係がある こと力半 IJつた (各々、 P = 0. 029、 p = 0. 002、 P = 0. 003、 P = 0. 004及び P = 0. 013) ' 腫瘍数、腫瘍の大きさ、再発及び臨床ステージは、 EGFR mRNA発現と強い関係があること 力 S判った (各々、 P= 0. 047、 P= 0. 043、 P = 0. 037及び P = 0. 032)。
肺癌において、全ての腫瘍マーカーは、病因との関係を示さない。従来の腫瘍マーカーはどう かといえば、 CEAレベルは、喫煙や肺癌に占拠された肺葉の数と強い関係が有り(各々、 P = 0. 031)、 SCCレベルは、腫瘍数、腫瘍の大きさ及び転移と強い関係が有り(各々、 P = 0. 016、 P = 0. 015及び P - 0. 044)、また、 CYFRA レベルは、腫瘍数、腫瘍の大きさ、転移及ぴ再発と 強い関係がある (各々、 P= 0. 017、 P=0. 019, P=0. 045及び P=0. Oi l) (図 7を参 照)。 '
図 8は、ロックカーブ解析 (ROC curve analyses)の結果を示すグラフである。
図 8から、肺癌に対する hTERT mRNAと EGFR mRNA の感受性/特異性は、各々、 7 1. 8%/72. 5% 及ぴ 60. 8%/62. 5%,であることが判った (図 9を参照)。
hTERT mRNAと EGFR mRNAの発現のォプティマルカットオフ値(Optimal cut-off values) (ま、統計学的に、各々、 103. 76copies/0. 2 ml、 101. 21 copies/0. 2 mlで あるとして計算された。
また、癌形成時の陽性予見値 (PPV) /陰性予見値 (NPV)は、各々、 hTERT mRNAにお レヽて、 0. 775/0. 667であり、また、 EGFR mRNAこおレヽて、 0. 667/0. 407であった。
CYFRA、 SCC及び CEAの癌形成時の陽性予見値 (PPV) Z陰性予見値 (NPV)は、各々、 0. 650/0. 500、 0. 207/0. 875、及び、 0. 650/0. 391であった。
癌形成時の陽性予見値 (PPV) /陰性予見値 (NPV)についての感受性/特異性の比較によ つて、多くの患者の定量化を用いた正確なカットオフ値(cut— off value)の設定(set— up)によ り、 hTERT mRNAと EGFR mRNAの統計的な評価を更に改善できた。
次に、外科的処置の前と後(術後 3週間)の hTERT mRNAと EGFR mRNAの定量値につ いて説明する。
切除前と外科的処置後 3週間後との比較によれば、 hTERT mRNAと EGFR mRNAの術 後の定量値は、術前の定量値に比べ低くなつていた。
免疫組織学的試験において、 hTERT mRNA, EGFR mRNA、 SCC及び CYFRAの高 い発現は、 hTERT、 EGFR, SCC, CYFRA 蛋白質の高い発現を示しており、結果として、血 清中における測定値は、組織中における測定値と ¾全に互換できるものであった。
また、血清中と腫瘍組織との間にある hTERT mRNAと EGFR mRNAとの相関は、血清中 において見出された hTERT mRNA腫瘍細胞由来であることを強く示してレ、た。
また、 RNAは、採血後 24時間以内においては安定である。 ここで、 hTERT発現は、健常人の血清中において非常に、微弱である。
また、肝細胞癌(HCC)患者の血清中の hTERT mRNAの発現の感受性 Z特異性力;、他の 従来の腫瘍マーカ一よりも優れてレ、る。
一方、 EGFRは、細胞増殖、アポトーシス、血管新生、細胞死や、転移のような、発癌過程に関 係する。
即ち、 EGFR発現と増殖潜在能力とは、非小細胞癌患者には、独立の予後因子(パラメータ) である。
EGFRは、グリア芽細胞腫(33%)、結腸直腸癌 (70%)、頸部新生物(cervical neoplasia) , 頭部と類部 SCC (head and neck SCC) (41 %)、メラノーマに発現する。
SCC、 CYFRA、 CEA、 NSE、 proGRP、 TP Aおよび SLX は、腺腫、うろこ細胞癌 腫、小細胞肺癌、その他の病理的な種類を含む肺癌に、広く使われてレ、る信頼できるマーカ一で ある。 - しかしながら、この試験により、 hTERT mRNAと EGFR mRNA は、ロックカーブ解析 (ROC curve analysis (感受性 "特異性(sensitivityZspecificity) )、 PPV/NPV及び計 算したカットオフ値(calculated cut-off point)に基づけば、総合的に他のものより優れている、 とレ、うことが判った(図 8及び図 9を参照)。
hTERT mRNA は、癌細胞の発達においての、癌細胞それ自体の発現と、 EGFR mRNA に関連することが提案されてレヽるので、肺癌患者の hTERT mRNA の発現は、特に、 TPA, S CC、腫瘍の数、活動的な肝臓の炎症の発現 (各々、 P=0. 017、 Pく 0. 001、 P=0. 042及 び p = 0. 015)と関係が有り、そして、 EGFR mRNA の発現は、ピアソンの相関係数(Pearson s ' relative index)を用いれば、転移、再発の発現や、有意差のある、医学的な段階相関性が ある(各々、 P = 0. 043、 P= 0. 002及ぴ Pく 0. 001)。
さらに、多変量解析によれば、 hTERT mRNAは、特に、 腫瘍の大きさ、喫煙、転移の存在、 再 Sの存在と、 B重瘍の数に(各々、 P = 0. 002、 P = 0. 029、 P= 0. 004、 P = 0. 013及ぴ P=0. 003)、 EGFR mRNA,多かれ少なかれ、腫瘍の大きさ、再発、臨床ステージ、腫瘍の数 と、関系カある(各々、 P= 0. 043、 P= 0. 037、 P = 0. 032及び P = 0. 047)。
喫煙は、持続する炎症を引き起こす急激な細胞周期による発癌の危険性を増すことが示され、 CEA は、喫煙 (P = 0. 031 ) と相関関係があり、 hTERT mRNA は、 CEAよりは、喫煙とより 強い相関関係がある。
血清中と、腫瘍組織との間の hTERT mRNAと EGFR mRNAとの相関関係は、血清中で検 出される hTERT mRNA が特に腫瘍細胞に由来することを示している(図 6を参照。)。
一方、 EGFR mRNAは、 hTERT mRNAほど分散しなレヽ(各々、 Ρ= 0· 002及び Ρ= 0. 021)。
これは、比較試料が十分でなぐ且つ、炎症レベルがこのものの発現には介在しなレ、、という理由 で、血清中の EGFR mRNAの発現、即ち、 EGFR mRNAの on/offが明らかである肺癌 組織にだけ検出できる力 である。
EGFR陰性患者(19/89患者; 陽性割合は、 78. 7%)中に、我々は、共通する因子 (パラメ —タ)を見出ことは出来な力 た。 17名(17Z19)の患者に、いかなる発現も見ることが出来ず、 そして、一般に、 EGFR mRNAが不存在か存在するのかを区別するのは難しいと言われて いるように、 2名の患者の EGFR mRNAは、 cut— off value以下で発現した。
しかしながら、本発明に係る癌診断方法は、血清中に何ら力 ^処理をする前にこの発現を検出 することによって、このことを可能とし、この点に光を当てるものである。
これと同時に、 EGFR発現をターゲットする抗癌剤が有効か有効でないかについての適用と見 積もりの双方に決断することができる。
また、この試験により、 hTERT mRNAの発現が高い肺癌組織において、 11. 5% (3 26患 者)が、血清中において、カットオフ値 (cut— off)以下の低い発現を示してレ、ることを認識した。 また、今回の試験では、 89人の肺癌患者のうち 15人の患者は、陰性であった。血清中の hTE RT mRNAの計算された、陽性のものは、 81. 3%であり、間違って陰性としてレ、るものをカバー するための他の生体マーカーが必要である。
また、肺癌を持った患者の中で他のマ一力一と比較して、 hTERT mRNAは、'より高い感度お よび特異性を示した。
hTERTと EGFRは肺癌に対し必ずしも特異的ではないが、そのようなバイオマーカーの臨床 への適用は、臨床相におけるより簡単な診断おょぴ評価に役立つ。
また、肺癌の診断に、 hTERT mRNAと EGFR mRNAとの 2 つのバイオマ一カーを適応 させた場合には、その検知割合は、 87. 8% (78ノ 89患者)(Pく 0. 0001)になる、ことが判った。 また、 hTERT mRNAは、感度と特異性の両方を改善するだけでなぐ腫物サイズや腫瘍の数 と密接な相関性力 ¾ることが、判った。 生物学の特性として、肺癌は、処置後、繰り返し、再発するので、 hTERT mRNA及ぴ EGFR mRNAの血清の測定は、 1ポイント分析(one— point diagnosis)と同様、詳細に、再発や治療 効果を把握することを可能にするものである。
また、外科的処置前と外科的処理後 3週間後を比較すると、外科手術後において、両方のバイ ォマ一力一の定量値は、手術前の両方のバイオマーカーの定量値に比べ低くなつており、このこ とは、両方のバイオマーカー正確な腫瘍マ一カーでありえることを示唆していた。
今回の研究結果、次のことが明らかになった。
hTERT mRNA及ぴ EGFR mRNAは、肺癌を患者に対し、 EGFR mRNAと比較して、より 高レ、感受性と特異性を示した。
血清中の hTERT mRNAおよび EGFR mRNAの定量化することは、肺癌診断によって重 要な意味合いを持つ。
即ち、本発明に係る癌診断方法は、癌の初期において癌細胞の存在証拠を血液中から検出 できるので、早期医療行為によって癌細胞を根絶することが可能になる。
また、体液中力も mRNAを含む試料を得るようにしたので、癌組織腫瘍形成、転移後の切除組 織中力 EGFRを検出するよう 場合に比べ、癌細胞の有無を正確に検出することができる。 また、 PCRを行う際に使用するプライマーを工夫することにより、癌の初期において癌細胞の存 在証拠を血液中力 検出できるようになった。
また、本発明に係る癌診断方法を用いれば、医師が、患者に対し、ゲフイチニブ(Gefitinib) のような EGFRチロシンキナ一ゼ阻害作用剤を処方するか否かの判断するのが容易となり、また、 患者に対し、ゲフイチニブ(Gefitinib)のような EGFRチロシンキナーゼ阻害作用剤を処方後に おいても、ゲフイチ-ブ(Gefitinib)のような EGFRチロシンキナーゼ阻害作用剤が腫瘍に有効 であるか否かの追跡調査が容易に行える。
更に、本発明に係る癌診断方法及び肺癌診断方法では、ある患者の体液中から、体細胞 '癌細 胞成分として、 RNAのみを含む試料を得る工程と、 RNAのみを含む試料力、ら逆転写酵素で cD NAを生成する逆転写酵素反応と蛍光色素を用いた PCRを、 EGFR mRNAの存在を検出する、 プライマーセットを用いて行レ、、 PCRにより増幅された PCR産物を前記 PCR産物と結合した蛍光 色素を用い、定量的に計測する工程とを備える、第一の癌診断方法と、前記ある患者の体液中 から、体細胞'癌細胞成分として、 RNAのみを含む試料を得る工程と、 RNAのみを含む試料から 逆転写酵素で cDNAを生成する逆転写酵素反応と蛍光色素を用いた PCRを、 hTERT mRN Aの存在を検出する、プライマーセットを用いて行い、前記 PCRにより増幅された PCR産物を前 記 PCR産物と結合した蛍光色素を用い、定量的に計測する工程とを備える、第二の癌診断方法 とを行い、第一の癌診断方法と第二の癌診断方法の双方の結果が、陽性と判定された場合、癌と 判断するようにしてレ、るので、肺癌患者であるにもかかわらず、陰性と判断してしまったり、また、 肺癌患者でないにも力かわらず、陽性と判断する場合を著しく低減する。
尚、本明細書の、発明を実施するための最良の形態では、本発明に係る癌診断方法として、 血液中力 RNAを抽出した例を示した力 本発明に係る癌診断方法では、血液から RNAを抽 出する場合に限られず、血液以外の体液力 RNAを抽出するようにしてもよい。 産業上の利用可能性
本発明に係る癌診断方法及び肺癌診断方法は、癌の初期におレ、て癌細胞の存在証拠を血液 中力ら検出できるので、早期医療行為によって癌細胞を根絶することが可能になり、また、患者に 処方する前に、本発明に係る癌診断方法及び肺癌診断方法を行えば、その結果に基づいて、抗 癌剤が有効か否かの判断や、患者に抗癌剤を処方後に、その患者を治療する際に、本発明に係 る癌診断方法及び肺癌診断方法を行うことで、その患者に処方されている抗癌剤が有効か否か を判断できるので、癌治療の効果を高めることが可能になるので、産業上の利用可能性が髙ぃ。

Claims

青求の範囲
1.ある患者の体液中から、体細胞'癌細胞成分として、 RNAのみを含む試料を得る工程と、 前記 RNAのみを含む試料力、ら逆転写酵素で cDNAを生成する逆転写酵素反応と蛍光色素を 用いた PCRを、 EGFR mRNAの存在を検出する、プライマーセットを用いて行い、前記 PCRに より増幅された PCR産物を前記 PCR産物と結合した蛍光色素を用レ、、定量的に計測する工程と を備える、第一の癌診断方法と、
前記ある患者の体液中から、体細胞,癌細胞成分として、 RN Aのみを含む試料を得る工程と、 前記 RNAのみを含む試料力 逆転写酵素で cDNAを生成する逆転写酵素反応と蛍光色素を 用いた PCRを、 hTERT mRNAの存在を検出する、プライマーセットを用いて行い、前記 PCR により増幅された PCR産物を前記 PCR産物と結合した蛍光色素を用い、定量的に計測する工程 とを備える、第二の癌診断方法とを行い、
前記第一の癌診断方法の結果が、陽†生と判定され、且つ、前記第二の癌診断方法の結果が、 陽性と判定された場合、癌と判断する、癌診断方法。
2. 前記 EGFR mRNAの存在を検出する、プライマーセットが、上流側プライマーが、 AACTGTGAGGTGGTCCTTGG で あ り 、 下 流 側 プ ラ イ マ ー が 、 GTTGAGGGCAATGAGGACATである、請求の範囲第 1項記載の癌診断方法。
3.前記 hTERT mRNAの存在を検出する、プライマーセットが、上流側プライマ一が、 CGGA AGAGTGTCTGGAGCAAであり、下流側プライマーカ GGATGAAGCGGAGTCTGGA である、請求の範囲第 1項又は請求の範囲第 2項記載の癌診断方法。
4.前記体液が、血液である、請求の範囲第 1〜3項のいずれかに記載の癌診断方法。
5.請求の範囲第 1〜4項のいずれかに記載の癌診断方法を用いた、肺癌診断方法。
PCT/JP2006/312671 2005-06-20 2006-06-19 癌診断方法及び肺癌診断方法 WO2006137550A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522394A JPWO2006137550A1 (ja) 2005-06-20 2006-06-19 癌診断方法及び肺癌診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-179803 2005-06-20
JP2005179803 2005-06-20

Publications (2)

Publication Number Publication Date
WO2006137550A2 true WO2006137550A2 (ja) 2006-12-28
WO2006137550A1 WO2006137550A1 (ja) 2006-12-28

Family

ID=

Also Published As

Publication number Publication date
JPWO2006137550A1 (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
Miura et al. Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer
Shirakawa et al. Glypican‐3 expression is correlated with poor prognosis in hepatocellular carcinoma
JP6630766B2 (ja) 膵臓癌診断用組成物およびこれを用いた膵臓癌診断方法
KR101032607B1 (ko) 간암 진단용 단백질성 마커
Gao et al. Elevated serum CEA levels are associated with the explosive progression of lung adenocarcinoma harboring EGFR mutations
KR102561377B1 (ko) 마커 분자를 기반으로 화학요법으로 치료되어야 하는 개체를 식별하는 방법 및 관련 용도
Chung et al. Serum AGR2 as an early diagnostic and postoperative prognostic biomarker of human lung adenocarcinoma
Rahimi et al. Overexpression of receptor for advanced glycation end products (RAGE) in ovarian cancer
Song et al. Combined detection of HER2, Ki67, and GSTP1 genes on the diagnosis and prognosis of breast cancer
Zhao et al. Cortactin is a sensitive biomarker relative to the poor prognosis of human hepatocellular carcinoma
JP2013532489A5 (ja)
JP6361943B2 (ja) 補体因子bタンパク質に特異的に結合する抗体及び糖鎖抗原19−9タンパク質に特異的に結合する抗体を含む膵臓癌診断用キット
Qu et al. The predictors of response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer
US20180135133A1 (en) Method for predicting the benefit from inclusion of taxane in a chemotherapy regimen in patients with breast cancer
JP2022512634A (ja) Pde4d7及びdhx9発現に基づく術前のリスク層別化
Wang et al. RETRACTED ARTICLE: Survivin mRNA-circulating tumor cells are associated with prostate cancer metastasis
JP2022153482A (ja) 癌のバイオマーカーとしてのpd-ecgf
Liu et al. Correlation of thyroid stimulating hormone receptor mRNA expression levels in peripheral blood with undesirable clinicopathological features in papillary thyroid carcinoma patients
TW202242146A (zh) 肺癌的檢測方法
KR102164525B1 (ko) Gdf 15를 포함하는 갑상선 암 진단 또는 갑상선 암 예후 예측용 바이오마커 조성물
JP7237587B2 (ja) マーカー、ヒト精巣上体タンパク質4(he4)に基づく肺腺癌の再発を検出する方法および関連する使用
WO2006137550A2 (ja) 癌診断方法及び肺癌診断方法
WO2006137551A2 (ja) 癌診断方法及び肺癌診断方法
WO2022260166A1 (ja) 癌診断用キット及びその使用
Ellakwa et al. Target genes expression biomarkers in Egyptian bladder cancer patients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522394

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 06767288

Country of ref document: EP

Kind code of ref document: A2