WO2022260166A1 - 癌診断用キット及びその使用 - Google Patents

癌診断用キット及びその使用 Download PDF

Info

Publication number
WO2022260166A1
WO2022260166A1 PCT/JP2022/023474 JP2022023474W WO2022260166A1 WO 2022260166 A1 WO2022260166 A1 WO 2022260166A1 JP 2022023474 W JP2022023474 W JP 2022023474W WO 2022260166 A1 WO2022260166 A1 WO 2022260166A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
spsb2
protein
gene
expression level
Prior art date
Application number
PCT/JP2022/023474
Other languages
English (en)
French (fr)
Inventor
和将 松本
雄一 佐藤
統之 天野
ユリ子 田代
正嗣 岩村
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Priority to CN202280040408.4A priority Critical patent/CN117425827A/zh
Priority to EP22820344.4A priority patent/EP4354143A1/en
Publication of WO2022260166A1 publication Critical patent/WO2022260166A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a cancer diagnostic kit and its use. More specifically, the present invention provides a cancer diagnosis kit, a prognosis determination kit for cancer patients, a method for determining a biological sample, a method for collecting data for determining whether a subject is suffering from cancer, a cancer
  • the present invention relates to a method for predicting patient prognosis and a method for screening anticancer agents.
  • Non-Patent Document 1 Treatments for bladder cancer include surgery, chemotherapy, and radiation therapy. However, response rates to treatment of bladder cancer have been disappointing. One reason for this is the lack of useful cancer markers and follow-up markers.
  • the purpose of the present invention is to provide a new cancer diagnostic technique.
  • the present invention includes the following aspects.
  • a specific binding substance for SPRY domain-containing SOCS box protein 2 (SPSB2) protein, a primer set capable of amplifying SPSB2 gene cDNA, or a probe that specifically hybridizes to SPSB2 gene mRNA Cancer diagnostic kit.
  • a kit for determining the prognosis of cancer patients comprising a specific binding substance for SPSB2 protein, a primer set capable of amplifying SPSB2 gene cDNA, or a probe that specifically hybridizes to SPSB2 gene mRNA.
  • [5] comprising the step of measuring the expression level of an SPSB2 protein or SPSB2 gene in a biological sample, wherein the measured expression level of the protein or gene is greater than that of a control, wherein the biological sample is derived from a cancer patient; A method for determining a biological sample, which indicates that the biological sample is of [6] The determination method according to [5], wherein the cancer is bladder cancer, pancreatic cancer or hepatocellular carcinoma.
  • a method for collecting data for determining whether a subject is suffering from cancer comprising the step of measuring the expression level of SPSB2 protein or SPSB2 gene in a biological sample derived from the subject, A method (excluding medical practice by a doctor), wherein the measured expression level data of the protein or gene is data for determining whether or not the subject is suffering from cancer.
  • the cancer is bladder cancer, pancreatic cancer or hepatocellular carcinoma.
  • a method for predicting the prognosis of a cancer patient comprising the step of measuring the expression level of the SPSB2 protein or SPSB2 gene in a biological sample derived from the cancer patient, wherein the measured expression level of the protein or gene is , greater than a control indicates a poor prognosis for said cancer patient.
  • the cancer is bladder cancer, pancreatic cancer or hepatocellular carcinoma.
  • a step of measuring the expression level of SPSB2 protein or SPSB2 gene in cancer cells cultured in the presence of a test substance, wherein the expression level is the expression of SPSB2 protein or SPSB2 gene in the absence of the test substance A method for screening an anticancer agent, wherein a significant decrease compared to the amount indicates that the test substance is an anticancer agent.
  • the cancer cells are derived from bladder cancer, pancreatic cancer or hepatocellular carcinoma.
  • a new cancer diagnostic technique can be provided by the present invention.
  • FIG. 1 is a graph showing the results of Experimental Example 2.
  • FIG. 2(a) to (c) are photographs showing typical results of immunostaining in Experimental Example 3.
  • FIG. 3 is a graph showing the results of Experimental Example 5.
  • FIG. 4 is a graph showing the results of Experimental Example 5.
  • FIG. 5(a) to (d) are photographs showing typical results of immunostaining in Experimental Example 6.
  • FIG. 6 is a graph showing the results of Experimental Example 7.
  • FIG. 7 is a graph showing the results of Experimental Example 7.
  • FIG. 8 is a photograph showing the results of Western blotting in Experimental Example 8.
  • FIG. 9 is a photograph showing the results of Western blotting in Experimental Example 8.
  • FIG. 10 is a graph showing quantitative values of SPSB2 protein in urine samples measured in Experimental Example 9.
  • FIG. 11 is a graph showing quantitative values of SPSB2 protein in urine samples measured in Experimental Example 9.
  • FIG. 12 is a graph showing quantitative values of SPSB2 protein in urine samples measured in Experimental Example 9.
  • FIG. 13 is a graph showing quantitative values of SPSB2 protein in urine samples measured in Experimental Example 9.
  • FIG. 14 is an ROC curve created in Experimental Example 10.
  • FIG. 15 is an ROC curve created in Experimental Example 10.
  • FIG. 16 is a graph showing the results of cancer-specific survival analysis in Experimental Example 10.
  • FIG. 17 is a graph showing the results of analyzing the progression-free survival rate in Experimental Example 10.
  • FIG. FIG. 18(a) is a photograph showing the results of Western blotting in Experimental Example 11.
  • FIG.18(b) is a graph which shows the result of Fig.18 (a).
  • the present invention provides a cancer diagnostic kit comprising a specific binding substance to the SPSB2 protein, a primer set capable of amplifying the cDNA of the SPSB2 gene, or a probe that specifically hybridizes to the mRNA of the SPSB2 gene. I will provide a.
  • the inventors have clarified that the SPSB2 protein or SPSB2 gene can be used as a cancer marker.
  • the inventors also revealed that the SPSB2 protein or SPSB2 gene is useful as a marker not only for bladder cancer but also for pancreatic cancer and hepatocellular carcinoma. Therefore, in the cancer diagnostic kit of the present embodiment, examples of cancer include bladder cancer, pancreatic cancer, and hepatocellular carcinoma.
  • kits of the present embodiment it is possible to measure the expression level of the SPSB2 protein or SPSB2 gene in a biological sample derived from a subject, and determine whether or not the subject is suffering from cancer.
  • Biological samples include serum, plasma, urine, tissue, and the like.
  • examples of the biological sample include urine, tissue, and the like.
  • urinary exosomes may be extracted and used as a biological sample.
  • the cancer diagnostic kit of this embodiment can also be said to be a prognostic kit.
  • poor prognosis may include a low survival rate, a short progression-free survival period, and the like.
  • the present invention provides a prognostic kit for cancer patients, comprising a specific binding substance for the SPSB2 protein, a primer set capable of amplifying the cDNA of the SPSB2 gene, or a probe that specifically hybridizes to the mRNA of the SPSB2 gene. It can also be said that it provides In the cancer patient prognosis determination kit (cancer patient prognosis prediction kit), examples of cancer include bladder cancer, pancreatic cancer, and hepatocellular carcinoma.
  • NCBI accession numbers for human SPSB2 proteins are NP_001139788.1, NP_001306599.1, NP_116030.1, and so on.
  • the NCBI accession numbers of the human SPSB2 gene mRNA are NM_001146316.2, NM_001146317.1, NM_001319670.2, NM_032641.4, and the like.
  • the kit of this embodiment may contain a specific binding substance for SPSB2 protein.
  • specific binding substances include antibodies, antibody fragments, aptamers, and the like.
  • Antibody fragments include F(ab') 2 , Fab', Fab, Fv, scFv and the like.
  • the above antibodies or antibody fragments may be polyclonal or monoclonal. Aptamers are not particularly limited as long as they are substances having specific binding ability to SPSB2 protein, and include nucleic acid aptamers, peptide aptamers, and the like.
  • the expression level of SPSB2 protein can be measured by immunostaining a fixed tissue section using the above specific binding substance. Measurement of the expression level of the SPSB2 protein is not limited to immunostaining, and may be performed by extracting the protein from the test sample and performing Western blotting or ELISA.
  • a higher SPSB2 protein expression level in the test sample compared to the control indicates that the test sample is derived from a cancer patient.
  • "more than the control” is preferably a statistically significant more than the control.
  • the control includes, for example, the expression level of SPSB2 protein measured using a normal tissue-derived sample.
  • the cancer diagnostic kit of this embodiment may contain a primer set for amplifying the cDNA of the SPSB2 gene.
  • the sequence of the primer set is not particularly limited as long as it can amplify at least part of the cDNA of the SPSB2 gene.
  • a higher expression level of the SPSB2 gene in the test sample compared to the control indicates that the test sample is derived from a cancer patient.
  • the control includes, for example, the expression level of the SPSB2 gene measured using a normal tissue-derived sample.
  • the kit of this embodiment may contain a probe that specifically hybridizes to the mRNA of the SPSB2 gene.
  • the probe may be, for example, a nucleic acid fragment having a nucleotide sequence complementary to the nucleotide sequence of at least part of the mRNA of the SPSB2 gene.
  • the probe may have various chemical modifications for the purpose of improving stability, specificity during hybridization, and the like.
  • phosphate residues may be substituted with chemically modified phosphate residues such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc., in order to inhibit degradation by hydrolases such as nucleases.
  • at least a part thereof may be composed of a nucleic acid analogue such as peptide nucleic acid (PNA).
  • PNA peptide nucleic acid
  • the probe may be immobilized on a solid phase.
  • Solid phases include, for example, beads, plate-like substrates, membranes, and the like.
  • the probes may be immobilized on the surface of a plate-like substrate to form a microarray.
  • the expression of the SPSB2 gene in the test sample is detected by extracting RNA from the test sample, labeling it with a fluorescent substance, hybridizing with the microarray, and detecting the RNA bound to the probes on the microarray. be able to.
  • a higher expression level of the SPSB2 gene in the test sample compared to the control indicates that the test sample is derived from a cancer patient.
  • the control includes, for example, the expression level of the SPSB2 gene measured using a normal tissue-derived sample.
  • the present invention comprises the step of measuring the expression level of the SPSB2 protein or gene in a biological sample, wherein the measured expression level of the protein or gene is greater than that of a control, Provided is a method for determining a biological sample that indicates that the sample is from a cancer patient.
  • the inventors have clarified that the SPSB2 protein or SPSB2 gene can be used as a cancer marker.
  • the inventors also revealed that the SPSB2 protein or SPSB2 gene is useful as a marker not only for bladder cancer but also for pancreatic cancer and hepatocellular carcinoma. Therefore, according to the method of this embodiment, it can be determined whether or not a biological sample is derived from a cancer patient.
  • examples of cancer include bladder cancer, pancreatic cancer, and hepatocellular carcinoma.
  • serum, plasma, urine, tissue, etc. derived from subjects can be used as biological samples.
  • the cancer is bladder cancer
  • examples of the biological sample include urine, tissue, and the like.
  • urinary exosomes may be extracted and used as a biological sample.
  • the term "higher than the control" is statistically significantly higher than the control, as described above.
  • Controls include, for example, the expression level of SPSB2 protein or SPSB2 gene measured using a normal tissue-derived sample.
  • the determination method of this embodiment can also be said to be a method of collecting data for determining whether a biological sample is derived from a cancer patient.
  • the method of collecting data does not involve medical intervention by a physician.
  • the present invention provides a method for collecting data for determining whether a biological sample is derived from a cancer patient, comprising the step of measuring the expression level of the SPSB2 protein or gene in the biological sample. It can also be said that the present invention provides a method in which the measured expression level of the protein or gene is data for determining whether or not the biological sample is derived from a cancer patient. A high SPSB2 protein or gene expression level in a biological sample compared to a control indicates that the biological sample is derived from a cancer patient.
  • the present invention provides a method for collecting data for determining whether a subject is suffering from cancer, comprising the step of measuring the expression level of the SPSB2 protein or gene in a biological sample derived from the subject. It can also be said that the present invention provides a method in which the measured expression level of the protein or gene is data for determining whether or not the subject is suffering from cancer. A higher SPSB2 protein or gene expression level in a subject-derived biological sample compared to a control indicates that the subject is suffering from cancer.
  • cancers include bladder cancer, pancreatic cancer, hepatocellular carcinoma, and the like.
  • the determination method of this embodiment can also be said to be a prognosis prediction method.
  • the present invention provides a method for predicting the prognosis of a cancer patient, comprising the step of measuring the expression level of the SPSB2 protein or SPSB2 gene in a biological sample derived from the cancer patient, It can also be said that the fact that the expression level is high compared to controls provides a method of indicating that the prognosis of the cancer patient is poor.
  • examples of cancer include bladder cancer, pancreatic cancer, and hepatocellular carcinoma.
  • the present invention comprises a step of measuring the expression level of SPSB2 protein or SPSB2 gene in cancer cells cultured in the presence of a test substance, wherein the expression level is SPSB2 in the absence of the test substance
  • a screening method for an anticancer agent wherein a significant decrease in protein or SPSB2 gene expression level indicates that the test substance is an anticancer agent.
  • test substance that reduces the expression level of the SPSB2 protein or SPSB2 gene is a candidate substance for an anticancer drug.
  • test substance is not particularly limited, and examples include natural compound libraries, synthetic compound libraries, existing drug libraries, metabolite libraries, and the like.
  • cancer cells may be cancer cells derived from bladder cancer, pancreatic cancer, hepatocellular carcinoma, and the like.
  • the cancer cells may also be cisplatin-resistant strains obtained by culturing in the presence of cisplatin at increasing concentrations. Cisplatin-resistant strains tend to be resistant to anticancer agents other than cisplatin, and tend to be highly malignant.
  • the present invention is a step of measuring the expression level of the SPSB2 protein or SPSB2 gene in a subject-derived biological sample, wherein the expression level is higher than a control, the subject has cancer Including the step of indicating that the subject is afflicted, and the step of surgically removing cancer tissue from the subject if the subject has cancer, or administering anticancer drug treatment to the subject. , provides a method of treating cancer.
  • examples of cancer include bladder cancer, pancreatic cancer, and hepatocellular carcinoma.
  • Biological samples include serum, plasma, urine, tissue, and the like.
  • the cancer is bladder cancer, the biological sample includes urine, tissue, and the like.
  • urinary exosomes may be extracted and used as a biological sample.
  • the expression level of SPSB2 protein or SPSB2 gene may be high not only in cancer patients but also in urinary tract infection patients.
  • a urine culture test or the like can be used to diagnose whether or not the subject has a urinary tract infection. That is, a subject with a high SPSB2 protein or SPSB2 gene expression level and no urinary tract infection can be diagnosed as having cancer.
  • the anticancer agents include cisplatin, M-VAC (combination of methotrexate, vinblastine, adriamycin, and cisplatin), GC (combination of cisplatin and Gemzar), and an antibody-drug conjugate targeting Nectin-4.
  • ADC enfortumab vedotin, padoceb, keytruda (penprolizumab) and the like.
  • anticancer drugs are commonly administered intravenously.
  • the dosage of these anticancer agents varies depending on the patient's symptoms, body weight, age, sex, etc., but those skilled in the art can appropriately select an appropriate dosage.
  • Example 1 The inventors have already produced a large number of bladder cancer-specific antibodies in previous studies. In addition, we have already established a technology for identifying target proteins using autoantibodies in serum by the dot blot method, and have successfully identified a large number of autoantibodies against bladder cancer. The reactivity of these produced bladder cancer-specific antibodies and autoantibodies against bladder cancer with serum and tumor tissues collected from a large number of bladder cancer patients was examined. As a result, SPSB2 protein or SPSB2 gene was identified as a new cancer marker candidate.
  • FIG. 1 is a graph showing the study results.
  • the vertical axis indicates the expression level of the SPSB2 gene.
  • “Normal” indicates the expression level of the SPSB2 gene in normal tissues
  • "Primary tumor” indicates the expression level of the SPSB2 gene in bladder cancer tissues.
  • Evaluation criteria 0 to 1 were classified into the SPSB2 protein low expression group, evaluation criteria 2 was classified into the SPSB2 protein high expression group, and the following analysis was performed.
  • FIG. 2(a) to (c) are photographs showing typical results of immunostaining.
  • FIG. 2(a) is a photograph showing the results of immunostaining of normal urothelial tissue.
  • FIG. 2(b) is a photograph showing the results of immunostaining of bladder cancer tissue classified as the SPSB2 protein low expression group.
  • FIG. 2(c) is a photograph showing the results of immunostaining of bladder cancer tissue classified as the SPSB2 protein high expression group.
  • Table 2 shows the results of examining the correlation between the expression of S100A8 protein, S100A9 protein, Uroplakin III protein, and HNRNPA3 protein, which are reported to be bladder cancer markers, and the expression of SPSB2 protein.
  • p-value indicates the p-value calculated by Fisher's exact test. A p ⁇ 0.05 was considered significant. Bold indicates significant difference.
  • the expression of the SPSB2 protein correlated with the expression of the S100A8 protein, S100A9 protein, Uroplakin III protein, and HNRNPA3 protein.
  • FIG. 3 is a graph showing the results of cancer-specific survival analysis by the Kaplan-Meier method.
  • SPSB2 low indicates the result of the SPSB2 protein low expression group
  • SPSB2 high indicates the result of the SPSB2 protein high expression group
  • Numberer at risk indicates the number of survivors at each time point. As a result, it was revealed that the SPSB2 protein high expression group had a significantly higher risk of death from bladder cancer.
  • FIG. 4 is a graph showing the results of analyzing the progression-free survival rate by the Kaplan-Meier method based on the results of Experimental Example 3.
  • SPSB2 low indicates the result of the SPSB2 protein low expression group
  • SPSB2 high indicates the result of the SPSB2 protein high expression group.
  • Numberer at risk indicates the number of progression-free survivors at each time point. As a result, it was revealed that the SPSB2 protein high expression group had a significantly shorter period of time until recurrence of bladder cancer.
  • Table 3 shows the results of univariate analysis and multivariate analysis based on the Cox proportional hazards model for cancer-specific survival rates.
  • Table 4 shows the results of univariate analysis and multivariate analysis based on the Cox proportional hazards model for progression-free survival.
  • "HR” indicates hazard ratio and "95% CI” indicates 95% confidence interval.
  • a p ⁇ 0.05 was considered significant.
  • Bold indicates significant difference.
  • SPSB2 protein is an independent factor of cancer-specific survival rate and progression-free survival rate along with lymph node metastasis.
  • FIGS. 5(a) to 5(c) are photographs showing representative results of immunostaining tissue sections of pancreatic cancer, hepatocellular carcinoma, and ovarian cancer with anti-SPSB2 antibody.
  • FIG. 5(a) shows the results of pancreatic cancer tissue sections
  • FIG. 5(b) shows the results of hepatocellular carcinoma tissue sections
  • FIG. 5(c) shows the results of ovarian cancer tissue sections.
  • 5(d) is the result of a tissue section of pancreas normal tissue.
  • the SPSB2 protein was strongly expressed in pancreatic cancer, and moderately expressed in hepatocellular carcinoma and ovarian cancer.
  • the SPSB2 protein was weakly expressed or not expressed in renal cancer, prostate cancer, esophageal cancer, gastric cancer, colon cancer, breast cancer, and lung cancer.
  • FIG. 6 is a graph showing the study results.
  • the vertical axis indicates the expression level of the SPSB2 gene.
  • Normal indicates the expression level of the SPSB2 gene in normal tissues
  • Primary tumor indicates the expression level of the SPSB2 gene in hepatocellular carcinoma tissues.
  • FIG. 7 is a graph showing the relationship between the expression level of the SPSB2 gene and prognosis in hepatocellular carcinoma in TCGA samples.
  • “High expression” indicates the result of the SPSB2 protein high expression group
  • “Low/Medium-expression” indicates the result of the SPSB2 protein low to medium expression group.
  • exosomes were extracted from serum and urine samples using Total Exosome Isolation Reagent (Thermo Fisher Scientific).
  • the SPSB2 protein was detected using the extracted exosomes.
  • exosomes could be extracted by Western blotting of CD9, which is one of the exosome markers.
  • the molecular weight of SPSB2 protein is about 26 kDa, and the molecular weight of CD9 is about 24 kDa.
  • Figure 8 is a photograph showing the results of Western blotting for exosomes in serum.
  • C indicates that exosomes derived from healthy subjects
  • T indicates that exosomes derived from bladder cancer patients.
  • Figure 9 is a photograph showing the results of Western blotting for urinary exosomes.
  • C indicates that exosomes derived from healthy individuals
  • T indicates that exosomes derived from bladder cancer patients.
  • bladder cancer patients As for bladder cancer patients, 91 cases of urine collection immediately before transurethral bladder tumor resection at Kitasato University Hospital from 2009 to 2015 were targeted. Table 5 below shows the background of bladder cancer patients. In Table 5, “NMIBC” indicates non-muscle-invasive bladder cancer, and “MIBC” indicates muscle-invasive bladder cancer. All urine samples were corrected for urine specific gravity to 1.002 and SPSB2 protein abundance was determined by ELISA.
  • FIG. 10 is a graph showing quantitative values of SPSB2 protein in urine samples of each group.
  • FIG. 10 also shows the analysis results of the Mann-Whitney U test.
  • BC indicates results for bladder cancer patients
  • Healthy indicates results for healthy subjects
  • Stone indicates results for urinary stone patients
  • UTI indicates results from patients with urinary tract infections.
  • FIG. 11 is a graph showing quantitative values of SPSB2 protein in urine samples from non-muscle-invasive bladder cancer patients and muscle-invasive bladder cancer patients.
  • FIG. 11 also shows the analysis results of the Mann-Whitney U test.
  • “NMIBC” indicates non-muscle-invasive bladder cancer
  • “MIBC” indicates muscle-invasive bladder cancer.
  • FIG. 12 is a graph showing quantitative values of SPSB2 protein in urine samples of pathological grade 1 and 2 bladder cancer patients and pathological grade 3 bladder cancer patients.
  • FIG. 12 also shows the analysis results of the Mann-Whitney U test.
  • FIG. 13 is a graph showing quantitative values of SPSB2 protein in urine samples from muscle-invasive bladder cancer patients and urinary tract infection patients.
  • FIG. 13 also shows the analysis results of the Mann-Whitney U test.
  • MIBC indicates muscle-invasive bladder cancer
  • UTI indicates results from urinary tract infection patients.
  • Urinary tract infections can be diagnosed by a urine culture test or the like.
  • FIG. 15 is an ROC curve created based on the quantitative values of SPSB2 protein in urine samples of muscle-invasive bladder cancer patients and healthy subjects measured in Experimental Example 9. As a result, the area under the ROC curve (AUC) was found to be 0.8699.
  • the cutoff value was set at 162.8 ng/mL (sensitivity 58.2%, specificity 80.0%), and urinary SPSB2 protein abundance of less than 162.8 ng/mL was Survival analysis was performed for the SPSB2 protein low expression group and the SPSB2 protein high expression group for 162.8 ng/mL or more.
  • FIG. 16 is a graph showing the results of cancer-specific survival analysis by the Kaplan-Meier method.
  • SPSB2 Low indicates the result of the SPSB2 protein low expression group
  • SPSB2 High indicates the result of the SPSB2 protein high expression group
  • Numberer at risk indicates the number of survivors at each time point. As a result, it was revealed that the SPSB2 protein high expression group had a significantly higher risk of death from bladder cancer.
  • FIG. 17 is a graph showing the results of analyzing the progression-free survival rate by the Kaplan-Meier method.
  • SPSB2 Low indicates the result of the SPSB2 protein low expression group
  • SPSB2 High indicates the result of the SPSB2 protein high expression group
  • Numberer at risk indicates the number of progression-free survivors at each time point. As a result, no significant difference was observed between the SPSB2 protein low expression group and the SPSB2 protein high expression group in the period until recurrence of bladder cancer.
  • Table 6 shows the results of univariate analysis and multivariate analysis based on the Cox proportional hazards model for cancer-specific survival rates.
  • NMIBC non-muscle-invasive bladder cancer
  • MIBC muscle-invasive bladder cancer
  • G3 indicates grade 3
  • G1,2 indicates grade 1 or 2.
  • HR indicates hazard ratio and "95% CI” indicates 95% confidence interval. A p ⁇ 0.05 was considered significant. Bold indicates significant difference.
  • the expression of the SPSB2 protein is a prognostic factor for cancer-specific survival along with the depth of cancer invasion.
  • T24CDDPR and 5637CDDPR Human bladder cancer cell lines T24 and 5637 were cultured in the presence of increasing concentrations of cisplatin to obtain cisplatin-resistant lines, T24CDDPR and 5637CDDPR, respectively.
  • T24CDDPR and 5637CDDPR are considered to be more malignant cancers than T24 and 5637.
  • the expression level of SPSB2 protein was measured by Western blotting of each of the T24, T24CDDPR, 5637, and 5637CDDPR cell lines. Also, as a control, the expression level of ⁇ -actin protein was measured.
  • FIG. 18(a) is a photograph showing the results of Western blotting. Moreover, FIG.18(b) makes the result of Fig.18 (a) the graph.
  • the vertical axis in FIG. 18(b) shows the expression level of SPSB2 with respect to the expression level of ⁇ -actin, "*" indicates a significant difference at p ⁇ 0.05, and "**" indicates p ⁇ 0. 0.01 indicates a significant difference.
  • T24CDDPR and 5637CDDPR have significantly higher expression levels of SPSB2 than T24 and 5637, respectively.
  • a new cancer diagnostic technique can be provided by the present invention.

Abstract

SPRY domain-containing SOCS box protein 2(SPSB2)タンパク質に対する特異的結合物質、SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は、SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブを含む、癌診断用キット、癌患者の予後判定用キット、生体試料の判定方法、被験者が癌に罹患しているか否かを判定するためのデータを収集する方法、及び、癌患者の予後を予測する方法。

Description

癌診断用キット及びその使用
 本発明は、癌診断用キット及びその使用に関する。より詳細には、本発明は、癌診断用キット、癌患者の予後判定用キット、生体試料の判定方法、被験者が癌に罹患しているか否かを判定するためのデータを収集する方法、癌患者の予後を予測する方法、及び、抗癌剤のスクリーニング方法に関する。本願は、2021年6月10日に、日本に出願された特願2021-097456号、及び、2021年12月10日に、日本に出願された特願2021-201094号に基づき優先権を主張し、それらの内容をここに援用する。
 癌の中でも膀胱癌の罹患率、死亡率は増加の一途を辿っている(例えば、非特許文献1を参照。)。膀胱癌の治療法としては、手術、化学療法、放射線療法が挙げられる。しかしながら、膀胱癌の治療に対する奏効率は芳しいものではない。この原因として、有用な癌マーカー、フォローアップマーカーが存在しないことが挙げられる。
Fitzmaurice C., et al., Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study, JAMA Oncol., 5 (12), 1749-1768, 2019.
 本発明は、新たな癌の診断技術を提供することを目的とする。
 本発明は、以下の態様を含む。
[1]SPRY domain-containing SOCS box protein 2(SPSB2)タンパク質に対する特異的結合物質、SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は、SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブ、を含む、癌診断用キット。
[2]前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、[1]に記載の癌診断用キット。
[3]SPSB2タンパク質に対する特異的結合物質、SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は、SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブ、を含む、癌患者の予後判定用キット。
[4]前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、[3]に記載の予後判定用キット。
[5]生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量が、対照と比較して多いことが、前記生体試料が癌患者由来のものであることを示す、生体試料の判定方法。
[6]前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、[5]に記載の判定方法。
[7]被験者が癌に罹患しているか否かを判定するためのデータを収集する方法であって、前記被験者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量のデータが、前記被験者が癌に罹患しているか否かを判定するためのデータである、方法(医師による医療行為を除く。)。
[8]前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、[7]に記載の方法。
[9]癌患者の予後を予測する方法であって、前記癌患者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量が、対照と比較して多いことが、前記癌患者の予後が不良であることを示す、方法。
[10]前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、[9]に記載の方法。
[11]被験物質の存在下で培養した癌細胞における、SPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、前記発現量が、前記被験物質の非存在下におけるSPSB2タンパク質又はSPSB2遺伝子の発現量と比較して有意に低下したことが、前記被験物質が抗癌剤であることを示す、抗癌剤のスクリーニング方法。
[12]前記癌細胞が、膀胱癌、膵臓癌又は肝細胞癌に由来する癌細胞である、[11]に記載の方法。
 本発明により、新たな癌の診断技術を提供することができる。
図1は、実験例2の結果を示すグラフである。 図2(a)~(c)は、実験例3における代表的な免疫染色の結果を示す写真である。 図3は、実験例5の結果を示すグラフである。 図4は、実験例5の結果を示すグラフである。 図5(a)~(d)は、実験例6における代表的な免疫染色の結果を示す写真である。 図6は、実験例7の結果を示すグラフである。 図7は、実験例7の結果を示すグラフである。 図8は、実験例8におけるウエスタンブロッティングの結果を示す写真である。 図9は、実験例8におけるウエスタンブロッティングの結果を示す写真である。 図10は、実験例9において測定した、尿試料中のSPSB2タンパク質の定量値を示すグラフである。 図11は、実験例9において測定した、尿試料中のSPSB2タンパク質の定量値を示すグラフである。 図12は、実験例9において測定した、尿試料中のSPSB2タンパク質の定量値を示すグラフである。 図13は、実験例9において測定した、尿試料中のSPSB2タンパク質の定量値を示すグラフである。 図14は、実験例10で作成したROC曲線である。 図15は、実験例10で作成したROC曲線である。 図16は、実験例10において癌特異的生存率を解析した結果を示すグラフである。 図17は、実験例10において無増悪生存率を解析した結果を示すグラフである。 図18(a)は、実験例11におけるウエスタンブロッティングの結果を示す写真である。また、図18(b)は、図18(a)の結果を示すグラフである。
[癌診断用キット、癌患者の予後判定用キット]
 1実施形態において、本発明は、SPSB2タンパク質に対する特異的結合物質、SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は、SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブ、を含む、癌診断用キットを提供する。
 実施例において後述するように、発明者らは、SPSB2タンパク質又はSPSB2遺伝子を癌のマーカーとして用いることができることを明らかにした。また、発明者らは、SPSB2タンパク質又はSPSB2遺伝子は、膀胱癌のみならず、膵臓癌、肝細胞癌のマーカーとしても有用であることを明らかにした。したがって、本実施形態の癌診断用キットにおいて、癌としては、膀胱癌、膵臓癌、肝細胞癌等が挙げられる。
 本実施形態のキットを用いて、被験者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定し、被験者が癌に罹患しているか否かを判定することができる。生体試料としては、血清、血漿、尿、組織等が挙げられる。また、特に、癌が膀胱癌である場合、生体試料としては、尿、組織等が挙げられる。ここで、尿については、尿中エクソソームを抽出して生体試料としてもよい。
 また、実施例において後述するように、発明者らは、膀胱癌患者及び肝細胞癌患者を解析し、SPSB2タンパク質又はSPSB2遺伝子が高発現であると、予後が悪い傾向にあることを明らかにした。したがって、本実施形態の癌診断用キットは、予後判定用キットであるということもできる。本明細書において、予後が悪いとは、生存率が低いこと、無増悪生存期間が短いこと等であってよい。
 すなわち、本発明は、SPSB2タンパク質に対する特異的結合物質、SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は、SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブ、を含む、癌患者の予後判定用キットを提供するものであるということもできる。癌患者の予後判定用キット(癌患者の予後予測用キット)において、癌としては、膀胱癌、膵臓癌、肝細胞癌等が挙げられる。
 ヒトSPSB2タンパク質のNCBIアクセッション番号は、NP_001139788.1、NP_001306599.1、NP_116030.1等である。また、ヒトSPSB2遺伝子のmDNAのNCBIアクセッション番号は、NM_001146316.2、NM_001146317.1、NM_001319670.2、NM_032641.4等である。
(特異的結合物質)
 本実施形態のキットは、SPSB2タンパク質に対する特異的結合物質を含んでいてもよい。特異的結合物質としては、例えば、抗体、抗体断片、アプタマー等が挙げられる。抗体断片としては、F(ab’)、Fab’、Fab、Fv、scFv等が挙げられる。上記の抗体又は抗体断片は、ポリクローナルであってもよく、モノクローナルであってもよい。アプタマーとしては、SPSB2タンパク質に対する特異的結合能を有する物質であれば特に限定されず、核酸アプタマー、ペプチドアプタマー等が挙げられる。
 例えば、固定した組織切片を上記の特異的結合物質を用いて免疫染色することにより、SPSB2タンパク質の発現量を測定することができる。SPSB2タンパク質の発現量の測定は、免疫染色に限られず、被験試料からタンパク質を抽出し、ウエスタンブロッティング法により行ってもよいし、ELISA法により行ってもよい。
 被験試料中のSPSB2タンパク質の発現量が、対照と比較して多いことは、被験試料が癌患者に由来することを示す。本明細書において、「対照と比較して多い」とは、対照と比較して統計学的に有意に多いことであることが好ましい。ここで、対照としては、例えば、正常組織由来試料を用いて測定したSPSB2タンパク質の発現量が挙げられる。
(プライマーセット)
 本実施形態の癌診断用キットは、SPSB2遺伝子のcDNAを増幅するためのプライマーセットを含んでいてもよい。プライマーセットは、SPSB2遺伝子のcDNAの少なくとも1部を増幅することができれば、その配列は特に限定されない。
 被験試料中のSPSB2遺伝子の発現量が、対照と比較して多いことは、被験試料が癌患者に由来することを示す。また、対照としては、例えば、正常組織由来試料を用いて測定したSPSB2遺伝子の発現量が挙げられる。
(プローブ)
 本実施形態のキットは、SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブを含んでいてもよい。
 プローブは、例えばSPSB2遺伝子のmRNAの少なくとも1部の塩基配列に相補的な塩基配列を有する核酸断片であってもよい。また、プローブは、安定性やハイブリダイゼーション時の特異性等を向上させる等の目的で、種々の化学修飾を有していてもよい。例えば、ヌクレアーゼ等の加水分解酵素による分解を抑制するために、リン酸残基を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸残基に置換してもよい。また、少なくとも一部がペプチド核酸(PNA)等の核酸類似体により構成されていてもよい。
 プローブは固相上に固定されていてもよい。固相としては、例えば、ビーズ、板状基板、膜等が挙げられる。プローブは、例えば、板状基板の表面に固定されてマイクロアレイを形成していてもよい。この場合、例えば、被験試料からRNAを抽出して蛍光物質で標識し、マイクロアレイとハイブリダイゼーションさせてマイクロアレイ上のプローブに結合したRNAを検出することにより、被験試料中のSPSB2遺伝子の発現を検出することができる。
 被験試料中のSPSB2遺伝子の発現量が、対照と比較して多いことは、被験試料が癌患者に由来することを示す。ここで、対照としては、例えば、正常組織由来試料を用いて測定したSPSB2遺伝子の発現量が挙げられる。
[生体試料の判定方法、被験者が癌に罹患しているか否かを判定するためのデータを収集する方法、癌患者の予後を予測する方法]
 1実施形態において、本発明は、生体試料中のSPSB2タンパク質又は遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量が、対照と比較して多いことが、前記生体試料が癌患者由来のものであることを示す、生体試料の判定方法を提供する。
 実施例において後述するように、発明者らは、SPSB2タンパク質又はSPSB2遺伝子を癌のマーカーとして用いることができることを明らかにした。また、発明者らは、SPSB2タンパク質又はSPSB2遺伝子は、膀胱癌のみならず、膵臓癌、肝細胞癌のマーカーとしても有用であることを明らかにした。したがって、本実施形態の方法により、生体試料が癌患者由来のものであるか否かを判定することができる。本実施形態の判定方法において、癌としては、膀胱癌、膵臓癌、肝細胞癌等が挙げられる。
 上述したように、生体試料としては、被験者由来の血清、血漿、尿、組織等を用いることができる。また、特に、癌が膀胱癌である場合、生体試料としては、尿、組織等が挙げられる。ここで、尿については、尿中エクソソームを抽出して生体試料としてもよい。また、「対照と比較して多い」とは、上述したものと同様に、対照と比較して統計学的に有意に多いことであることが好ましい。また、対照としては、例えば、正常組織由来試料を用いて測定した、SPSB2タンパク質又はSPSB2遺伝子の発現量が挙げられる。
 本実施形態の判定方法は、生体試料が癌患者由来のものであるか否かを判定するためのデータを収集する方法であるということもできる。データを収集する方法は、医師による医療行為を含まない。
 すなわち、本発明は、生体試料が癌患者由来のものであるか否かを判定するためのデータを収集する方法であって、前記生体試料中のSPSB2タンパク質又は遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量が、生体試料が癌患者由来のものであるか否かを判定するためのデータである方法を提供するものであるということもできる。生体試料中のSPSB2タンパク質又は遺伝子の発現量が、対照と比較して多いことは、前記生体試料が癌患者由来のものであることを示す。
 あるいは、本発明は、被験者が癌に罹患しているか否かを判定するためのデータを収集する方法であって、前記被験者由来の生体試料中のSPSB2タンパク質又は遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量が、被験者が癌に罹患しているか否かを判定するためのデータである方法を提供するものであるということもできる。被験者由来の生体試料中のSPSB2タンパク質又は遺伝子の発現量が、対照と比較して多いことは、前記被験者が癌に罹患していることを示す。データを収集する方法において、癌としては、膀胱癌、膵臓癌、肝細胞癌等が挙げられる。
 また、実施例において後述するように、発明者らは、膀胱癌患者及び肝細胞癌患者を解析し、SPSB2タンパク質又はSPSB2遺伝子が高発現であると、予後が悪い傾向にあることを明らかにした。したがって、本実施形態の判定方法は、予後の予測方法であるということもできる。
 すなわち、本発明は、癌患者の予後を予測する方法であって、前記癌患者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量が、対照と比較して多いことが、前記癌患者の予後が不良であることを示す方法を提供するものであるということもできる。癌患者の予後を予測する方法において、癌としては、膀胱癌、膵臓癌、肝細胞癌等が挙げられる。
[抗癌剤のスクリーニング方法]
 1実施形態において、本発明は、被験物質の存在下で培養した癌細胞における、SPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、前記発現量が、前記被験物質の非存在下におけるSPSB2タンパク質又はSPSB2遺伝子の発現量と比較して有意に低下したことが、前記被験物質が抗癌剤であることを示す、抗癌剤のスクリーニング方法を提供する。
 実施例において後述するように、悪性度が高い癌細胞ほど、SPSB2タンパク質又はSPSB2遺伝子の発現量が高い傾向にある。したがって、SPSB2タンパク質又はSPSB2遺伝子の発現量を低下させる被験物質は、抗癌剤の候補物質であるということができる。
 本実施形態のスクリーニング方法において、被験物質としては特に制限されず、例えば、天然化合物ライブラリ、合成化合物ライブラリ、既存薬ライブラリ、代謝物ライブラリ等が挙げられる。
 本実施形態のスクリーニング方法において、癌細胞は、膀胱癌、膵臓癌、肝細胞癌に由来する癌細胞等であってよい。
 また、癌細胞は、濃度を漸増しながらシスプラチンの存在下で培養して得たシスプラチン耐性株であってもよい。シスプラチン耐性株は、シスプラチン以外の抗癌剤に対しても耐性である傾向があり、悪性度が高い傾向がある。
[その他の実施形態]
 一実施形態において、本発明は、被験者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程であって、前記発現量が対照と比較して高いことが、前記被験者が癌に罹患していることを示す工程と、前記被験者が癌に罹患していた場合に、外科的手術により被験者から癌組織を摘出するか、又は、被験者に対して抗癌剤治療を行う工程と、を含む、癌の治療方法を提供する。
 本実施形態の治療方法において、癌としては、膀胱癌、膵臓癌、肝細胞癌等が挙げられる。また、生体試料としては、血清、血漿、尿、組織等が挙げられる。特に、癌が膀胱癌である場合、生体試料としては、尿、組織等が挙げられる。ここで、尿については、尿中エクソソームを抽出して生体試料としてもよい。
 なお、実施例において後述するように、生体試料として、尿を利用する場合、癌患者だけでなく、尿路感染症患者においてもSPSB2タンパク質又はSPSB2遺伝子の発現量が高値となる場合がある。この場合、尿培養試験等により、被験者が尿路感染症であるか否かを診断することができる。すなわち、SPSB2タンパク質又はSPSB2遺伝子の発現量が高値であり、尿路感染症でない被験者は、癌に罹患していると診断することができる。
 本実施形態の治療方法において、抗癌剤としては、シスプラチン、M-VAC(メソトレキセート、ビンブラスチン、アドリアマイシン、シスプラチンの組み合わせ)、GC(シスプラチンとジェムザールの組み合わせ)、ネクチン-4を標的とする抗体-薬物複合体(ADC)であるエンホルツマブ ベドチン、パドセブ、キイトルーダ(ペンプロリズマブ)等が挙げられる。
 これらの抗癌剤は、点滴静注されることが一般的である。また、これらの抗癌剤の投与量は、患者の症状、体重、年齢、性別等により変動するが、当業者であれば適当な投与量を適宜選択することが可能である。
 次に実験例を示して本発明を更に詳細に説明するが、本発明は以下の実験例に限定されるものではない。
[実験例1]
 発明者らは、これまでの研究で、多数の膀胱癌特異的抗体をすでに作製済みである。また、ドットブロット法による血清中の自己抗体を用いた対象タンパク質の同定技術を確立済みであり、膀胱癌に対する多数の自己抗体の同定に成功している。これらの作製済みの膀胱癌特異的抗体及び膀胱癌に対する自己抗体に対して、収集済みの多数例の膀胱癌患者血清・腫瘍組織との反応性を検討した。その結果、SPSB2タンパク質又はSPSB2遺伝子を新たな癌マーカーの候補として特定した。
[実験例2]
 公開データベースであるThe Cancer Genome Atlas(TCGA)を用いて、膀胱癌組織におけるSPSB2遺伝子の発現量を検討した。図1は、検討結果を示すグラフである。図1中、縦軸はSPSB2遺伝子の発現量を示す。また、「Normal」は正常組織におけるSPSB2遺伝子の発現量であることを示し、「Primary tumor」は膀胱癌組織におけるSPSB2遺伝子の発現量であることを示す。その結果、膀胱癌組織において、SPSB2遺伝子の発現量が有意に増加していることが明らかとなった。
[実験例3]
 膀胱全摘標本から作製した組織切片を、抗SPSB2抗体で免疫染色した。膀胱全摘標本としては、1990年から2015年までに北里大学病院で膀胱全摘術を施行された126例の標本を対象とした。免疫染色には、Bond-MAX自動免疫染色装置(ライカ社)を使用した。
 組織切片における腫瘍細胞の抗SPSB2抗体による核染色の強度を周囲細胞の抗SPSB2抗体による核染色の強度と比較し、以下の評価基準にしたがって3段階に評価した。評価基準0~1をSPSB2タンパク質低発現群に分類し、評価基準2をSPSB2タンパク質高発現群に分類して以下の解析を行った。
(評価基準)
 0:低発現
 1:同等
 2:高発現
 図2(a)~(c)は代表的な免疫染色の結果を示す写真である。図2(a)は正常尿路上皮組織の免疫染色の結果を示す写真である。また、図2(b)は、SPSB2タンパク質低発現群と分類された膀胱癌組織の免疫染色の結果を示す写真である。また、図2(c)は、SPSB2タンパク質高発現群と分類された膀胱癌組織の免疫染色の結果を示す写真である。
[実験例4]
 実験例3の結果に基づいて、SPSB2タンパク質の発現と臨床病理学的因子の関連性を解析した。下記表1に解析結果を示す。表1中、「p値」はフィッシャーの正確確率検定により算出されたp値を示す。p<0.05を有意差ありと判断した。太字は有意差があることを示す。その結果、SPSB2タンパク質の発現は、性別、深達度(pTステージ)、異型度、脈管浸潤と相関があることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
 下記表2に、膀胱癌マーカーであることが報告されている、S100A8タンパク質、S100A9タンパク質、Uroplakin IIIタンパク質、HNRNPA3タンパク質の発現とSPSB2タンパク質の発現との相関を検討した結果を示す。表2中、「p値」はフィッシャーの正確確率検定により算出されたp値を示す。p<0.05を有意差ありと判断した。太字は有意差があることを示す。
 その結果、SPSB2タンパク質の発現は、S100A8タンパク質、S100A9タンパク質、Uroplakin IIIタンパク質、HNRNPA3タンパク質の発現とそれぞれ相関があることが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
[実験例5]
 実験例3の結果に基づいて、SPSB2タンパク質の発現と予後との関連を解析した。図3は、カプラン・マイヤー法により、癌特異的生存率を解析した結果を示すグラフである。図3中、「SPSB2 low」はSPSB2タンパク質低発現群の結果であることを示し、「SPSB2 high」はSPSB2タンパク質高発現群の結果であることを示す。また、「Number at risk」は各時点における生存者の数を示す。その結果、SPSB2タンパク質高発現群は、膀胱癌による死亡のリスクが有意に高いことが明らかとなった。
 図4は、実験例3の結果に基づいて、カプラン・マイヤー法により、無増悪生存率を解析した結果を示すグラフである。図4中、「SPSB2 low」はSPSB2タンパク質低発現群の結果であることを示し、「SPSB2 high」はSPSB2タンパク質高発現群の結果であることを示す。また、「Number at risk」は各時点における無増悪生存者の数を示す。その結果、SPSB2タンパク質高発現群は、膀胱癌再発までの期間が有意に短いことが明らかとなった。
 下記表3に、癌特異的生存率について、Cox比例ハザードモデルに基づく単変量解析及び多変量解析を行った結果を示す。また、下記表4に、無増悪生存率について、Cox比例ハザードモデルに基づく単変量解析及び多変量解析を行った結果を示す。表3及び4中、「HR」はハザード比を示し、「95%CI」は95%信頼区間を示す。p<0.05を有意差ありと判断した。太字は有意差があることを示す。
 その結果、SPSB2タンパク質の発現は、リンパ節転移と共に、癌特異的生存率及び無増悪生存率の独立した因子であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[実験例6]
 膀胱癌以外の癌種におけるSPSB2タンパク質の発現を検討した。図5(a)~(c)は、膵臓癌、肝細胞癌、卵巣癌の各組織切片を抗SPSB2抗体で免疫染色した代表的な結果を示す写真である。図5(a)は膵臓癌の組織切片の結果であり、図5(b)は肝細胞癌の組織切片の結果であり、図5(c)は卵巣癌の組織切片の結果であり、図5(d)は膵臓の正常組織の組織切片の結果である。
 その結果、SPSB2タンパク質は、膵臓癌で強発現が認められ、肝細胞癌、卵巣癌で中程度の発現が認められることが明らかとなった。一方で、SPSB2タンパク質は、腎癌、前立腺癌、食道癌、胃癌、大腸癌、乳癌、肺癌では、弱発現又は無発現であった。
[実験例7]
 公開データベースであるThe Cancer Genome Atlas(TCGA)を用いて、肝細胞癌組織におけるSPSB2遺伝子の発現量を検討した。図6は、検討結果を示すグラフである。図6中、縦軸はSPSB2遺伝子の発現量を示す。また、「Normal」は正常組織におけるSPSB2遺伝子の発現量であることを示し、「Primary tumor」は肝細胞癌組織におけるSPSB2遺伝子の発現量であることを示す。
 その結果、肝細胞癌組織において、SPSB2遺伝子の発現量が有意に増加していることが明らかとなった。
 図7は、TCGAサンプルにおける肝細胞癌でのSPSB2遺伝子の発現量と予後との関連を示すグラフである。図7中、「High expression」はSPSB2タンパク質高発現群の結果であることを示し、「Low/Medium-expression」はSPSB2タンパク質低発現~中発現群の結果であることを示す。その結果、肝細胞癌のSPSB2遺伝子高発現群は有意に予後が不良であることが明らかとなった。
[実験例8]
 健常人及び膀胱癌患者由来の血清中エクソソーム及び尿中エクソソームにおける、SPSB2タンパク質の存在量を、ウエスタンブロッティングにより検討した。
 まず、血清試料及び尿試料から、Total Exosome Isolation Reagent(サーモフィッシャーサイエンティフィック社)を用いてエクソソームを抽出した。
 続いて、抽出したエクソソームを用いて、SPSB2タンパク質を検出した。また、エクソソームマーカーの1種であるCD9のウエスタンブロッティングにより、エクソソームを抽出できたことを確認した。なお、SPSB2タンパク質の分子量は約26kDaであり、CD9の分子量は約24kDaである。
 図8は、血清中エクソソームについてのウエスタンブロッティングの結果を示す写真である。図8中、「C」は健常人由来のエクソソームであることを示し、「T」は膀胱癌患者由来のエクソソームであることを示す。
 その結果、CD9が検出できたことから、エクソソームが抽出できていることが確認された。また、健常人及び膀胱癌患者のいずれにおいても、血清中エクソソーム中にはSPSB2タンパク質の存在が認められないことが明らかとなった。
 図9は、尿中エクソソームについてのウエスタンブロッティングの結果を示す写真である。図9中、「C」は健常人由来のエクソソームであることを示し、「T」は膀胱癌患者由来のエクソソームであることを示す。
 その結果、CD9が検出できたことから、エクソソームが抽出できていることが確認された。また、健常人由来の血清中エクソソーム中にはSPSB2タンパク質の存在が認められなかったのに対し、膀胱癌患者由来の尿中エクソソーム中にはSPSB2タンパク質の存在が検出された。
[実験例9]
 健常人、尿路結石患者、尿路感染症患者及び膀胱癌患者由来の尿における、SPSB2タンパク質の存在量を、ELISA(酵素結合免疫吸着測定法)により定量し、検討した。
 膀胱癌患者としては、2009年から2015年までに北里大学病院において経尿道的膀胱腫瘍切除術直前に尿採取を行った91例を対象とした。下記表5に、膀胱癌患者の背景を示す。表5中、「NMIBC」は筋層非浸潤性膀胱癌を示し、「MIBC」は筋層浸潤膀胱癌を示す。全ての尿試料の尿比重を1.002に補正し、ELISAによりSPSB2タンパク質の存在量を測定した。
Figure JPOXMLDOC01-appb-T000005
 図10は、各群の尿試料中のSPSB2タンパク質の定量値を示すグラフである。また、図10には、マン・ホイットニーのU検定による解析結果も示す。図10中、「BC」は膀胱癌患者の結果であることを示し、「Healthy」は健常人の結果であることを示し、「Stone」は尿路結石患者の結果であることを示し、「UTI」は尿路感染症患者の結果であることを示す。
 その結果、膀胱癌患者の尿中SBSP2タンパク質の存在量は、健常者及び尿路結石患者よりは高値であったが、尿路感染症患者よりは低い結果となった。なお、尿路感染症は尿培養試験等により診断可能である。
 図11は、筋層非浸潤性膀胱癌患者及び筋層浸潤膀胱癌患者の尿試料中のSPSB2タンパク質の定量値を示すグラフである。また、図11には、マン・ホイットニーのU検定による解析結果も示す。図11中、「NMIBC」は筋層非浸潤性膀胱癌を示し、「MIBC」は筋層浸潤膀胱癌を示す。
 その結果、膀胱癌患者の尿中SBSP2タンパク質の存在量は、筋層浸潤膀胱癌でより高値を示すことが明らかとなった。
 図12は、病理学的グレード1及び2の膀胱癌患者及び病理学的グレード3の膀胱癌患者の尿試料中のSPSB2タンパク質の定量値を示すグラフである。また、図12には、マン・ホイットニーのU検定による解析結果も示す。
 その結果、病理学的グレード3の膀胱癌患者の尿中SBSP2タンパク質の存在量は、病理学的グレード1及び2の膀胱癌患者よりも高値を示す傾向にあることが明らかとなった。
 図13は、筋層浸潤膀胱癌患者及び尿路感染症患者の尿試料中のSPSB2タンパク質の定量値を示すグラフである。また、図13には、マン・ホイットニーのU検定による解析結果も示す。図13中、「MIBC」は筋層浸潤膀胱癌を示し、「UTI」は尿路感染症患者の結果であることを示す。
 その結果、筋層浸潤膀胱癌及び尿路感染症患者の尿中SBSP2タンパク質の存在量には有意差は認められなかった。なお、尿路感染症は尿培養試験等により診断可能である。
[実験例10]
 実験例9の結果に基づいて、SPSB2タンパク質の発現と予後との関連を解析した。図14は、実験例9で測定した、膀胱癌患者及び健常人の尿試料中のSPSB2タンパク質の定量値に基づいて作成したROC曲線である。その結果、ROC曲線下面積(AUC:area under the curve)は0.7791であることが明らかとなった。
 図15は、実験例9で測定した、筋層浸潤膀胱癌患者及び健常人の尿試料中のSPSB2タンパク質の定量値に基づいて作成したROC曲線である。その結果、ROC曲線下面積(AUC)は0.8699であることが明らかとなった。
 続いて、ROC曲線に基づいて、カットオフ値を162.8ng/mL(感度58.2%、特異度80.0%)に設定し、尿中SPSB2タンパク質の存在量162.8ng/mL未満をSPSB2タンパク質低発現群、162.8ng/mL以上をSPSB2タンパク質高発現群として、生存分析を行った。
 図16は、カプラン・マイヤー法により、癌特異的生存率を解析した結果を示すグラフである。図16中、「SPSB2 Low」はSPSB2タンパク質低発現群の結果であることを示し、「SPSB2 High」はSPSB2タンパク質高発現群の結果であることを示す。また、「Number at risk」は各時点における生存者の数を示す。その結果、SPSB2タンパク質高発現群は、膀胱癌による死亡のリスクが有意に高いことが明らかとなった。
 図17は、カプラン・マイヤー法により、無増悪生存率を解析した結果を示すグラフである。図17中、「SPSB2 Low」はSPSB2タンパク質低発現群の結果であることを示し、「SPSB2 High」はSPSB2タンパク質高発現群の結果であることを示す。また、「Number at risk」は各時点における無増悪生存者の数を示す。その結果、SPSB2タンパク質低発現群とSPSB2タンパク質高発現群の間で、膀胱癌再発までの期間に有意な差は認められなかった。
 下記表6に、癌特異的生存率について、Cox比例ハザードモデルに基づく単変量解析及び多変量解析を行った結果を示す。表6中、「NMIBC」は筋層非浸潤性膀胱癌を示し、「MIBC」は筋層浸潤膀胱癌を示し、「G3」はグレード3を示し、「G1,2」はグレード1又は2を示し、「HR」はハザード比を示し、「95%CI」は95%信頼区間を示す。p<0.05を有意差ありと判断した。太字は有意差があることを示す。
 その結果、SPSB2タンパク質の発現は、癌の深達度と共に、癌特異的生存率の予後因子であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000006
[実験例11]
 ヒト膀胱癌細胞株であるT24及び5637を、濃度を漸増しながらシスプラチンの存在下で培養し、それぞれシスプラチン耐性株である、T24CDDPR及び5637CDDPRを取得した。T24CDDPR及び5637CDDPRは、T24及び5637と比較して、癌の悪性度が高いと考えられる。
 続いて、T24、T24CDDPR、5637、5637CDDPRの各細胞株のウエスタンブロッティングにより、SPSB2タンパク質の発現量を測定した。また、対照として、β-アクチンタンパク質の発現量を測定した。
 図18(a)は、ウエスタンブロッティングの結果を示す写真である。また、図18(b)は、図18(a)の結果をグラフにしたものである。図18(b)の縦軸は、β-アクチンの発現量に対するSPSB2の発現量を示し、「*」はp<0.05で有意差があることを示し、「**」はp<0.01で有意差があることを示す。
 その結果、T24CDDPR及び5637CDDPRは、それぞれT24及び5637よりもSPSB2の発現量が有意に高いことが明らかとなった。
 この結果は、癌の悪性度が高いほど、癌細胞におけるSPSB2の発現量が高いことを示す。
 本発明により、新たな癌の診断技術を提供することができる。

Claims (12)

  1.  SPRY domain-containing SOCS box protein 2(SPSB2)タンパク質に対する特異的結合物質、
     SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は
     SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブ、
     を含む、癌診断用キット。
  2.  前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、請求項1に記載の癌診断用キット。
  3.  SPSB2タンパク質に対する特異的結合物質、
    SPSB2遺伝子のcDNAを増幅可能なプライマーセット、又は、
     SPSB2遺伝子のmRNAに特異的にハイブリダイズするプローブ、
     を含む、癌患者の予後判定用キット。
  4.  前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、請求項3に記載の予後判定用キット。
  5.  生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、
     測定された前記タンパク質又は遺伝子の発現量が、対照と比較して多いことが、前記生体試料が癌患者由来のものであることを示す、生体試料の判定方法。
  6.  前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、請求項5に記載の判定方法。
  7.  被験者が癌に罹患しているか否かを判定するためのデータを収集する方法であって、前記被験者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、測定された前記タンパク質又は遺伝子の発現量のデータが、前記被験者が癌に罹患しているか否かを判定するためのデータである、方法(医師による医療行為を除く。)。
  8.  前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、請求項7に記載の方法。
  9.  癌患者の予後を予測する方法であって、前記癌患者由来の生体試料中のSPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、
     測定された前記タンパク質又は遺伝子の発現量が、対照と比較して多いことが、前記癌患者の予後が不良であることを示す、方法。
  10.  前記癌が、膀胱癌、膵臓癌又は肝細胞癌である、請求項9に記載の方法。
  11.  被験物質の存在下で培養した癌細胞における、SPSB2タンパク質又はSPSB2遺伝子の発現量を測定する工程を含み、
     前記発現量が、前記被験物質の非存在下におけるSPSB2タンパク質又はSPSB2遺伝子の発現量と比較して有意に低下したことが、前記被験物質が抗癌剤であることを示す、抗癌剤のスクリーニング方法。
  12.  前記癌細胞が、膀胱癌、膵臓癌又は肝細胞癌に由来する癌細胞である、請求項11に記載の方法。
PCT/JP2022/023474 2021-06-10 2022-06-10 癌診断用キット及びその使用 WO2022260166A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280040408.4A CN117425827A (zh) 2021-06-10 2022-06-10 用于诊断癌症的试剂盒及其用途
EP22820344.4A EP4354143A1 (en) 2021-06-10 2022-06-10 Kit for diagnosis of cancer and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-097456 2021-06-10
JP2021097456 2021-06-10
JP2021201094 2021-12-10
JP2021-201094 2021-12-10

Publications (1)

Publication Number Publication Date
WO2022260166A1 true WO2022260166A1 (ja) 2022-12-15

Family

ID=84424615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023474 WO2022260166A1 (ja) 2021-06-10 2022-06-10 癌診断用キット及びその使用

Country Status (2)

Country Link
EP (1) EP4354143A1 (ja)
WO (1) WO2022260166A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113674A1 (ja) * 2008-03-14 2009-09-17 学校法人北里研究所 膀胱癌の診断
US20130196876A1 (en) * 2010-10-01 2013-08-01 Universitatsklinikum Schleswig-Holstein Differential diagnosis of pancreatic adenomas
JP2016526009A (ja) * 2013-04-12 2016-09-01 ヴィヴェンティア バイオ インコーポレイテッド 肝細胞癌の検出および治療のための組成物および方法
JP2016211913A (ja) * 2015-05-01 2016-12-15 学校法人北里研究所 膀胱癌細胞のシスプラチン耐性マーカー及びその使用
JP2018533724A (ja) * 2015-09-28 2018-11-15 アボットジャパン株式会社 肝細胞癌および膵臓がんを診断するためのラミニン2の使用
JP2021097456A (ja) 2019-12-13 2021-06-24 トヨタ自動車株式会社 非接触充電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113674A1 (ja) * 2008-03-14 2009-09-17 学校法人北里研究所 膀胱癌の診断
US20130196876A1 (en) * 2010-10-01 2013-08-01 Universitatsklinikum Schleswig-Holstein Differential diagnosis of pancreatic adenomas
JP2016526009A (ja) * 2013-04-12 2016-09-01 ヴィヴェンティア バイオ インコーポレイテッド 肝細胞癌の検出および治療のための組成物および方法
JP2016211913A (ja) * 2015-05-01 2016-12-15 学校法人北里研究所 膀胱癌細胞のシスプラチン耐性マーカー及びその使用
JP2018533724A (ja) * 2015-09-28 2018-11-15 アボットジャパン株式会社 肝細胞癌および膵臓がんを診断するためのラミニン2の使用
JP2021097456A (ja) 2019-12-13 2021-06-24 トヨタ自動車株式会社 非接触充電システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"NCBI", Database accession no. NM_001319670.2
BEOW KEAT YAP, ELEANOR W. W. LEUNG, HIROMASA YAGI, CHARLES A. GALEA, SANDEEP CHHABRA, DAVID K. CHALMERS, SANDRA E. NICHOLSON, PHIL: "A Potent Cyclic Peptide Targeting SPSB2 Protein as a Potential Anti-infective Agent", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 57, no. 16, 28 August 2014 (2014-08-28), US , pages 7006 - 7015, XP055252156, ISSN: 0022-2623, DOI: 10.1021/jm500596j *
FITZMAURICE C. ET AL.: "Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study", JAMA ONCOL., vol. 5, no. 12, 2019, pages 1749 - 1768

Also Published As

Publication number Publication date
EP4354143A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP6630766B2 (ja) 膵臓癌診断用組成物およびこれを用いた膵臓癌診断方法
De Salins et al. Discordance between immunochemistry of mismatch repair proteins and molecular testing of microsatellite instability in colorectal cancer
Kanda et al. The expression of melanoma-associated antigen D2 both in surgically resected and serum samples serves as clinically relevant biomarker of gastric cancer progression
Fujioka et al. Expression of minichromosome maintenance 7 (MCM7) in small lung adenocarcinomas (pT1): Prognostic implication
US20150275307A1 (en) Compositions and methods for detecting sessile serrated adenomas/polyps
WO2022053065A1 (zh) 用于预测或评估肺癌患者的生物标志物、检测方法及应用
Isono et al. ADP-ribosylation factor-like 4C is a predictive biomarker of poor prognosis in patients with renal cell carcinoma
WO2022260166A1 (ja) 癌診断用キット及びその使用
KR101334123B1 (ko) 소세포폐암 진단용 조성물 및 소세포폐암 진단키트
JP2010526996A (ja) チオレドキシン発現に基づいた化学療法後の非小細胞肺癌の無進行期間の決定方法
Sanganeria et al. Molecular Diagnostics in Renal Cancer
Shinozuka et al. Identification of stromal cell-derived factor 4 as a liquid biopsy-based diagnostic marker in solid cancers
CN117604111B (zh) 用于小细胞肺癌诊断和预后判断的生物标志物及其应用
CN117425827A (zh) 用于诊断癌症的试剂盒及其用途
CN117604112B (zh) 用于胰腺癌诊断和预后判断的生物标志物及其应用
CN117625792B (zh) 用于胃癌诊断和预后判断的生物标志物及其应用
KR102416614B1 (ko) 방사선 저항성 지표 단백질 및 이의 검출방법
CN117604106B (zh) 用于非小细胞肺癌诊断和预后判断的生物标志物及其应用
WO2013010140A9 (en) Methods of diagnosing cancer
KR102382674B1 (ko) 직장 신경내분비종양의 예후 예측 방법
KR102416607B1 (ko) 방사선 저항성 지표 단백질 및 이의 검출방법
AU2020332349A1 (en) Protein panels for the early diagnosis/prognosis and treatment of aggressive prostate cancer
EP3948291A1 (en) Biomarker with therapeutic implications for peritoneal carcinomatosis
Mirus Antibody Microarray Interrogation of Tissue and Plasma for the Improved Early Detection of Pancreas Cancer
WO2016060382A1 (ko) 췌장암 진단용 조성물 및 이를 이용한 췌장암 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820344

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023527944

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022820344

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820344

Country of ref document: EP

Effective date: 20240110