WO2006137440A1 - Measuring apparatus, exposure apparatus, and device manufacturing method - Google Patents

Measuring apparatus, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
WO2006137440A1
WO2006137440A1 PCT/JP2006/312414 JP2006312414W WO2006137440A1 WO 2006137440 A1 WO2006137440 A1 WO 2006137440A1 JP 2006312414 W JP2006312414 W JP 2006312414W WO 2006137440 A1 WO2006137440 A1 WO 2006137440A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
light
exposure
substrate stage
Prior art date
Application number
PCT/JP2006/312414
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuo Hikima
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007522316A priority Critical patent/JPWO2006137440A1/en
Publication of WO2006137440A1 publication Critical patent/WO2006137440A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • the present invention relates to a measurement device that measures information related to exposure light, an exposure device that exposes a substrate through a liquid, and a device manufacturing method.
  • photolithography which is one of the manufacturing steps of micro devices (such as electronic devices) such as semiconductor devices
  • an exposure apparatus that exposes a pattern image onto a photosensitive substrate is used.
  • the following patent documents disclose an example of a technique for matching exposure amounts among exposure devices using an illuminance meter capable of measuring relative illuminance among a plurality of exposure devices.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-92722
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-260706
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-338868
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a measuring apparatus capable of smoothly measuring information on exposure light of each of a plurality of immersion exposure apparatuses. Do. Another object of the present invention is to provide an exposure apparatus in which information on exposure light is measured by the measurement apparatus, and a device manufacturing method using the exposure apparatus.
  • the present invention adopts the following configuration corresponding to each drawing shown in the embodiment.
  • parenthesized symbols attached to each element are merely examples of the element, and do not limit each element.
  • a measurement device for measuring information related to exposure light (EL), wherein a substrate (P) to which exposure light (EL) is irradiated via liquid (LQ) And a light receiving system (32) for receiving the exposure light (EL) through the liquid (LQ) while being detachable from the substrate stage (4) holding the light and being held by the substrate stage (4).
  • a measuring device provided is provided
  • information on exposure light of each of a plurality of immersion exposure apparatuses can be measured smoothly through a liquid.
  • the measurement apparatus (30) of the above aspect can be detachably attached. Movable body to hold (
  • An exposure apparatus (EX) comprising the fourth aspect is provided.
  • exposure processing can be performed with high accuracy using the measurement results of the measurement apparatus of the above aspect.
  • a device manufacturing method using the exposure apparatus (EX) of the above aspect there is provided a device manufacturing method using the exposure apparatus (EX) of the above aspect.
  • the third aspect of the present invention it is possible to manufacture a device by using an exposure apparatus capable of performing exposure processing with high accuracy.
  • FIG. 1 is a schematic configuration view showing an exposure apparatus according to a first embodiment.
  • FIG. 2 is a side cross sectional view showing the measuring apparatus according to the first embodiment.
  • FIG. 3 A plan view showing a measuring device according to the first embodiment.
  • FIG. 4 is a flowchart for explaining an example of a measurement procedure using a measurement device.
  • FIG. 5 is a schematic view showing an example of measurement operation using a measurement device.
  • FIG. 6 is a schematic view showing an example of the measurement operation using the measurement device.
  • FIG. 7 is a side sectional view showing a measuring device according to a second embodiment.
  • FIG. 8 is a side sectional view showing a measuring device according to a third embodiment.
  • FIG. 9 is a flowchart for explaining an example of a manufacturing process of a micro device. Explanation of sign
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XY Z orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is in the horizontal direction, in the horizontal plane!
  • the direction orthogonal to the X-axis direction is taken as the Y-axis direction
  • the direction (ie vertical direction) orthogonal to each of the X-axis direction and the Y-axis direction is taken as the Z-axis direction.
  • the rotation (tilt) directions about the X axis, Y axis, and Z axis be ⁇ X, ⁇ Y, and 0 Z directions, respectively.
  • FIG. 1 is a schematic configuration view showing an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX exposes the mask stage 3 movable by holding the mask M, the substrate stage 4 movable by holding the substrate P, and the mask M held by the mask stage 3
  • the exposure apparatus EX for example, as disclosed in Japanese Patent Laid-Open No. 7-240366 (corresponding to US Pat. No. 6,707,528), transport apparatus 8 for transporting the substrate P to the substrate stage 4.
  • the base substrate includes one obtained by applying a photosensitive material (resist) on a base material such as a semiconductor wafer, and the mask includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
  • a force reflection type mask using a transmission type mask may be used as the mask.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and to substantially widen the depth of focus.
  • the liquid immersion mechanism 1 is provided to fill the optical path space K of the exposure light EL on the image plane side of the projection optical system PL with the liquid LQ to form the liquid immersion area LR of the liquid LQ on the substrate P.
  • the exposure apparatus EX fills the optical path space K of the exposure light EL with the liquid LQ using the immersion mechanism 1 while projecting at least the pattern image of the mask M onto the substrate P.
  • the exposure apparatus EX irradiates the substrate P with the exposure light EL that has passed through the mask M through the projection optical system PL and the liquid LQ filled in the optical path space K, so that the pattern image of the mask M is applied to the substrate P.
  • the liquid LQ filled in the optical path space K is larger than the projection area AR in a partial area on the substrate P including the projection area AR of the projection optical system PL and the substrate Liquid smaller than P Liquid immersion area of LQ Adopting a local immersion system that forms locally LR!
  • pure water is used as the liquid LQ.
  • the illumination optical system IL illuminates a predetermined illumination area on the mask M with the exposure light EL having a uniform illuminance distribution.
  • Illumination optical system Exposure light from which also IL power is emitted for example, far ultraviolet light (DUV light) such as a bright line (g line, h line, i line) and KrF excimer laser light (wavelength 248 nm) etc. , ArF excimer laser light (wavelength 193 nm) and F laser light (DUV light) such as a bright line (g line, h line, i line) and KrF excimer laser light (wavelength 248 nm) etc. , ArF excimer laser light (wavelength 193 nm) and F laser light (DUV light) such as a bright line (g line, h line, i line) and KrF excimer laser light (wavelength 248 nm) etc. , ArF excimer laser light (wavelength 193 nm) and F laser
  • Vacuum ultraviolet light such as a wavelength of 157 nm is used.
  • ArF excimer laser light is used.
  • the mask stage 3 is movable in the X-axis, Y-axis, and ⁇ Z directions while holding the mask M by driving of a mask stage drive device 3D including an actuator such as a linear motor.
  • Position information of the mask stage 3 ((! /, Mask M) is measured by the laser interferometer 3L.
  • the laser interferometer 3 L measures the positional information of the mask stage 3 using the movable mirror 3 K provided on the mask stage 3.
  • the control unit 7 drives the mask stage drive unit 3D based on the measurement result of the laser interferometer 3L and is held by the mask stage 3. Perform position control of the mask M.
  • the movable mirror 3 K may include corner cubes (retroreflectors) as well as the flat mirror, and instead of fixing the movable mirror 3 K to the mask stage 3, for example, the end face of the mask stage 3 A reflective surface formed by mirror-finishing) may be used. Further, the mask stage 3 may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Application Laid-Open No. 8-130179 (Corresponding US Patent No. 6, 721, 034).
  • the projection optical system PL projects a pattern image of the mask M onto the substrate P with a predetermined projection magnification, and has a plurality of optical elements, which are held by the barrel PK. ing.
  • the projection optical system PL of this embodiment is a reduction system whose projection magnification is, for example, 1Z4, 1/5, 1/8, etc., and forms a reduced image of the mask pattern in the projection area AR conjugate to the above-mentioned illumination area.
  • the projection optical system PL may be any of a reduction system, an equal magnification system and a magnification system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form either an inverted image or an erected image. In the present embodiment, among the plurality of optical elements of the projection optical system PL, only the last optical element FL closest to the image plane of the projection optical system PL contacts the liquid LQ in the optical path space K.
  • the substrate stage 4 has a substrate holder 4 H for holding the substrate P, and is movable on the base member 5 by holding the substrate P on the substrate holder 4 H.
  • the substrate holder 4H is disposed in the recess 4R provided on the substrate stage 4, and the upper surface 4F of the substrate stage 4 other than the recess 4R is substantially the same as the surface of the substrate P held by the substrate holder 4H. It is a flat surface that is at the same height. This is because, for example, during the exposure operation of the substrate P, a part of the liquid immersion area LR protrudes from the surface of the substrate P and is formed on the upper surface 4F.
  • the upper surface 4F of the substrate stage 4 has liquid repellency to the liquid LQ.
  • the upper surface 4F is made of a liquid repellent material such as a fluorine-based material such as polytetrafluorinated ethylene (Teflon (registered trademark)) or an acrylic material.
  • a step may be present between the surface of the substrate P held by the substrate holder 4H and the upper surface 4F of the substrate stage 4.
  • the substrate holder 4H may be integrally formed with a part of the substrate stage 4, in the present embodiment, the substrate holder 4H and the substrate stage 4 are separately configured, and for example, the substrate is formed by vacuum suction or the like.
  • the holder 4H is fixed to the recess 4R.
  • the substrate stage 4 has an inner surface 4S that faces the side surface of the substrate P held by the substrate holder 4H.
  • the inner side surface 4S is an inner surface of the recess 4R.
  • a gap G of, for example, about 0.1 to 1 mm is formed between the side surface of the substrate P held by the substrate holder 4 H and the inner side surface 4 S of the substrate stage 4.
  • the upper surface 4 F of the substrate stage 4 is liquid repellent, this also prevents the gap G liquid LQ from invading the inside of the substrate stage 4 or the back surface side of the substrate P.
  • the inner side surface 4S may have liquid repellency.
  • Substrate stage 4 holds substrate P by driving substrate stage drive device 4 D including actuators such as a linear motor, and X axis, Y axis, Z axis, 0 axis, ⁇ , ⁇ ⁇ It can move in the direction of six degrees of freedom. Position information of the substrate stage 4 (and consequently the substrate ⁇ ) is measured by the laser interferometer 4L.
  • the laser interferometer 4 L uses the movable mirror 4 provided on the substrate stage 4 to measure positional information on the substrate stage 4 in the X axis, the wedge axis, and the ⁇ wedge direction.
  • surface position information (position information regarding the direction of the ⁇ axis, ⁇ X, and ⁇ ⁇ ) of the surface of the substrate held by the substrate stage 4 is detected by a focus' leveling detection system (not shown).
  • the control device 7 drives the substrate stage drive device 4D based on the measurement result of the laser interferometer 4L and the detection result of the force level detection system, and the position of the substrate ⁇ held by the substrate stage 4 Take control.
  • the laser interferometer 4L can measure the position of the substrate stage 4 in the direction of the ⁇ axis and also the rotation information in the 0 X, 0 ⁇ directions, and the details thereof are described in, for example, JP-A 2001-510577. Corresponding WO 1999Z28790)). Furthermore, instead of fixing the movable mirror 4 to the substrate stage 4, for example, a reflective surface formed by mirror-finishing a part of the substrate stage 4 (such as a side surface) may be used.
  • the focus and leveling detection system measures the direction of the axis of the substrate at each of the plurality of measurement points.
  • the tilt information (rotation angle) in the ⁇ X and ⁇ Y directions of the substrate P is detected, but at least a part of the plurality of measurement points is the liquid immersion area LR ( Alternatively, they may be set within the projection area AR), or all of them may be set outside the immersion area LR.
  • the laser interferometer 4L can measure the position information of the substrate P in the Z axis, ⁇ X and ⁇ Y directions, it is possible to measure the position information in the Z axis direction during the exposure operation of the substrate P.
  • the position control of the substrate P in the Z-axis, ⁇ X, and 0 Y directions is performed using the measurement results of the laser interferometer 4 L during the exposure operation even if the focus' repelling detection system is not provided. Let me see.
  • the liquid immersion mechanism 1 is provided between the substrate P held by the substrate stage 4 and the final optical element FL of the projection optical system PL which is provided at a position facing the substrate P and through which the exposure light EL passes. Fill the optical path space K with liquid LQ.
  • the immersion mechanism 1 is provided in the vicinity of the optical path space K, and has a nozzle member 6 having a supply port 12 for supplying the liquid LQ to the optical path space K and a recovery port 22 for recovering the liquid LQ; And a liquid supply device 11 for supplying the liquid LQ through the supply port 12 of the nozzle member 6, and a liquid recovery device 21 for recovering the liquid LQ through the recovery port 22 of the nozzle member 6 and the recovery pipe 23. ing.
  • the nozzle member 6 is an annular member provided to surround at least one optical element (in this example, the final optical element FL of the projection optical system PL) disposed on the image plane side of the projection optical system PL.
  • the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ are formed in the lower surface 6A of the nozzle member 6.
  • a flow path connecting the supply port 12 and the supply pipe 13, and a flow path connecting the recovery port 22 and the recovery pipe 23 are formed inside the nozzle member 6, a flow path connecting the recovery port 22 and the recovery pipe 23 are formed.
  • the supply port 12 is provided at each of a plurality of predetermined positions on the lower surface 6A of the nozzle member 6 so as to surround the final optical element FL (optical path space K) of the projection optical system PL.
  • the recovery port 22 is provided on the lower surface 6A of the nozzle member 6 outside the supply port 12 with respect to the final optical element FL, and is annularly provided to surround the final optical element FL and the supply port 12 It is done.
  • a mesh member made of, for example, titanium or stainless steel (for example, SUS316) or a porous member made of ceramic is disposed in the recovery port 22!
  • the operation of the liquid supply device 11 and the liquid recovery device 21 is controlled by the control device 7.
  • Liquid supply The supply device 11 can deliver the clean and temperature-controlled liquid LQ, and the liquid recovery device 21 including a vacuum system and the like can recover the liquid LQ.
  • the controller 7 controls the liquid immersion mechanism 1 to perform the liquid supply operation by the liquid supply device 11 and the liquid recovery operation by the liquid recovery device 21 in parallel, thereby filling the optical path space K with the liquid LQ,
  • the immersion area LR of the liquid LQ is locally formed in a partial area on the substrate P.
  • the configuration of the liquid immersion mechanism 1 (the structure of the nozzle member 6 and the like) is not limited to the above-described one, as long as a desired liquid immersion area LR is formed.
  • the liquid immersion mechanism disclosed in Japanese Patent Application Laid-Open No. 2004-289126 (corresponding US Pat. No. 6,952, 253) can also be used.
  • FIG. 2 is a cross-sectional view showing an example of a measurement apparatus for measuring information on exposure light EL
  • FIG. 3 is a plan view.
  • an illuminance sensor that measures the illuminance of the exposure light EL will be described as an example of a measurement device that measures information related to the exposure light EL.
  • the illuminance sensor 30 is for measuring information related to the illuminance of the exposure light EL via the liquid LQ, and is attached to and detached from the substrate stage 4 capable of holding the substrate P. It is possible.
  • the illuminance sensor 30 of the present embodiment is a substrate type sensor (wafer type sensor) having substantially the same outer shape as the substrate P, and is attachable to and detachable from the substrate holder 4 H provided on the substrate stage 4.
  • the illuminance sensor 30 includes a base 31 and a light receiving system 32 which is held by the base 31 and receives the exposure light EL through the liquid LQ.
  • the light receiving system 32 has a transmitting member 33 capable of transmitting (passing) the exposure light EL, and a light receiving element 34 for receiving the exposure light EL transmitted through the transmitting member 33.
  • the base 31 is made of a predetermined material such as stainless steel, for example.
  • the base material 31 holds the transmitting member 33 and has an internal space 36 in which the light receiving element 34 can be disposed.
  • a recess 38 is formed in a part of the upper surface 37 of the substrate 31, and the transmitting member 33 is disposed in the recess 38.
  • An inner space 36 is formed by disposing the transmitting member 33 in the recess 38 of the substrate 31.
  • the transmitting member 33 is made of, for example, quartz, and can transmit (passable) the exposure light EL.
  • the upper surface 37A of the transmitting member 33 held by the base 31 and the upper surface 37B of the base 31 holding the transmitting member 33 are substantially flush with each other.
  • the transmitting member 3 The upper surface 37A formed by 3 is appropriately referred to as a first surface 37A, and the upper surface 37B formed by the base 31 is appropriately referred to as a second surface 37B.
  • the entire top surface of the light sensor 30 including the first surface 37A and the second surface 37B is appropriately referred to as the top surface 37.
  • the second surface 37B is disposed around the first surface 37A and provided so as to surround the first surface 37A.
  • the internal space 36 is formed between the base 31 and the transmitting member 33 held by the base 31.
  • the light receiving element 34 is disposed in the internal space 36.
  • the light (exposure light EL) that has passed through the transmitting member 31 reaches the light receiving element 34, and the light receiving element 34 can receive the light (exposure light EL) that has passed through the transmitting member 33.
  • An optical system (lens system) may be disposed between the transmitting member 33 and the light receiving element 34.
  • the numerical aperture of the projection optical system PL is large (for example, when the numerical aperture NA is 1.0 or more), if a gas is present between the transmitting member 33 and the light receiving element 34, one of the exposure light EL
  • the light of the portion, that is, the incident angle to the transmitting member 33 is large, and there is a possibility that the light is totally reflected by the lower surface (light emitting surface) of the transmitting member 33. Therefore, the transmitting member 33 and the light receiving element 34 may be in close contact with each other so that no gas intervenes between the transmitting member 33 and the light receiving element 34, or the exposure may be performed between the transmitting member 33 and the light receiving element 34.
  • a liquid or the like having a refractive index higher than that of gas (air) with respect to the light EL may be interposed, or a light receiving element may be formed directly (patterning) on the lower surface of the transmitting member 33.
  • the light receiving element 34 includes, for example, a light conversion element, and outputs an electric signal according to the incident energy of the irradiated exposure light EL.
  • a light conversion element utilizing a photovoltaic effect, a Schottky effect, a photoelectromagnetic effect, a photoconductive effect, a photoelectron emitting effect, a pyroelectric effect or the like can be used.
  • the illuminance sensor 30 has a circuit element 35 connected to the light receiving element 34.
  • the circuit element 35 is connected to the light receiving element 34, and includes a holding device for holding the light reception result received by the light receiving element 34.
  • the circuit element 35 includes an amplifier circuit (amplifier) to which the signal (illuminance signal) from the light receiving element 34 is output through the wiring, an amplification factor storage device storing the amplification factor of the amplifier circuit, and the illuminance amplified by the amplifier circuit. It has a peak hold circuit for holding the peak value of the signal, a storage element for storing the signal output from the light receiving element 34, and the like.
  • the peripheral region of the illumination sensor 30 is liquid repellent to the liquid LQ (the contact angle with the liquid LQ is 90 degrees Or higher).
  • the second surface 37B of the illuminance sensor 30 has liquid repellency.
  • a film 41 having liquid repellency is formed on the second surface 37B, and the film 41 imparts liquid repellency to the second surface 37B.
  • the film 41 includes, for example, a fluorine-based material such as polytetrafluorinated ethylene (Teflon (registered trademark)) or an acrylic material.
  • Teflon polytetrafluorinated ethylene
  • the film 41 is not formed on the first surface 37A.
  • a liquid repellent film may be formed on the side surface 40 of the illuminance sensor 30 (substrate 31) so that each of the second surface 37B and the side surface 40 has liquid repellency to the liquid LQ.
  • the illuminance sensor 30 has substantially the same outer shape as the substrate P, and the transport device 8 can transport the illuminance sensor 30 to the substrate stage 4.
  • the control device 7 loads (loads) the illuminance sensor 30 onto the substrate holder 4H of the substrate stage 4 using the transport device 8 (step SA1) .
  • the control device 7 holds the illuminance sensor 30 carried by the transfer device 8 by the substrate holder 4H.
  • the substrate holder 4H holds the lower surface 43 of the illuminance sensor 30 (step SA2).
  • FIG. 5 is a view showing the illuminance sensor 30 in a state of being held by the substrate holder 4H.
  • the substrate holder 4H of the present embodiment is provided on the base material 50 and the upper surface of the base material 50, and a plurality of pin-like members that support the lower surface 43 of the illuminance sensor 30; It has an upper surface opposite to the lower surface 43 and is provided with a peripheral wall portion (rim portion) 52 provided so as to surround the support portion 51.
  • an intake port 53 connected to a vacuum system (not shown) is provided on the upper surface of the base material 50.
  • the controller 7 drives the vacuum system to suck the gas in the space 54 formed by the base 50, the peripheral wall 52 and the lower surface 43 of the illuminance sensor 30 supported by the support 51 through the air inlet 53.
  • the space 54 negative pressure by pulling
  • the lower surface 43 of the illuminance sensor 30 is adsorbed and held by the support portion 51.
  • the substrate holder 4H of the present embodiment is provided with a so-called pinch chucking mechanism, and can adsorb and hold the illuminance sensor 30 and the substrate P, respectively.
  • the control device 7 can release the illuminance sensor 30 (substrate P) from the substrate holder 4 H by releasing the suction operation via the air inlet 53.
  • the substrate holder 4H provided on the substrate stage 4 detachably holds each of the illuminance sensor 30 and the substrate P. To have.
  • the upper surface 4F of the substrate stage 4 is disposed around the upper surface 37 (second surface 37B) of the illuminance sensor 30 held by the substrate holder 4H.
  • the upper surface 37 (second surface 37B) of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4 are substantially flush with each other.
  • the inner side surface 4S of the recess 4R of the substrate stage 4 is disposed at a position facing the side surface 40 of the light sensor 30 held by the substrate holder 4H.
  • a predetermined gap G ′ is formed between the side surface 40 of the illuminance sensor 30 and the inner side surface 4S of the substrate stage 4.
  • the illuminance sensor 30 Since the illuminance sensor 30 has substantially the same outer shape as the substrate P, a gap G 'formed between the side surface 40 of the illuminance sensor 30 held by the substrate holder 4H and the inner surface 4S of the substrate stage 4
  • the gap G formed between the side surface of the substrate P held by the substrate holder 4H and the inner side surface 4S of the substrate stage 4 is substantially the same (about 0.1 to 1 mm). Therefore, the force between the upper surface 37 of the illumination sensor 30 and the upper surface 4 F of the substrate stage 4 is also suppressed from the liquid LQ entering the inside of the substrate stage 4 or the lower surface 43 side of the illumination sensor 30.
  • the second surface 37 B which is the peripheral region of the upper surface 4 F of the substrate stage 4 and the upper surface 37 of the illuminance sensor 30, is liquid repellent, the liquid LQ is on the inside of the substrate stage 4 or the lower surface 43 of the Infiltration is suppressed. If the inner side surface 4S and Z or the side surface 40 has liquid repellency, the liquid LQ can be more reliably prevented from infiltrating.
  • the control device 7 controls the substrate stage 4 to move the illuminance sensor 30 held in the substrate holder 4 H of the substrate stage 4 to the measurement position ( Step SA3). That is, the control device 7 sets the substrate stage 4 so that the final optical element FL of the projection optical system PL and the first surface 37 A, which is the upper surface of the transmitting member 33 of the illuminance sensor 30 held by the substrate holder 4H, face each other. Move. Then, the control device 7 uses the liquid immersion mechanism 1 in a state where the final optical element FL of the projection optical system PL and the first surface 37A of the illuminance sensor 30 held by the substrate holder 4H are opposed to each other.
  • the operation to form the immersion area LR of the liquid LQ on the first surface 37A of 30 is started. That is, the liquid immersion mechanism 1 starts the supply operation of the liquid LQ from the supply port 12 for forming the liquid immersion area LR on the upper surface 37 (first surface 37A) of the illuminance sensor 30 (step SA4).
  • the optical path space K in the initial state is filled with the liquid LQ.
  • the operation of supplying the liquid LQ to the optical path space K is referred to as an initial filling operation as appropriate. That is, the initial filling operation is an operation of forming the liquid immersion area LR on the upper surface 37 by supplying the liquid LQ to the upper surface 37 in the absence of the liquid LQ.
  • the control device 7 At the start of the initial filling operation, the control device 7 almost stops the substrate stage 4. That is, when the controller 7 starts the initial filling operation to form the immersion area LR using the immersion mechanism 1, it is held by the final optical element FL of the projection optical system PL and the substrate holder 4H. Maintain the relative position with the illumination sensor 30. Then, the control device 7 performs the supply operation and the recovery operation of the liquid LQ by the immersion mechanism 1 in parallel with the substrate stage 4 substantially stationary, as shown in FIG. Form the immersion area LR of the liquid LQ on the first surface 37A.
  • the control device 7 exposes the exposure light EL from the illumination optical system IL.
  • the exposure light EL is irradiated to the illuminance sensor 30 held by the substrate holder 4H via the projection optical system PL and the liquid LQ.
  • the illuminance sensor 30 receives the exposure light EL through the liquid LQ by the light receiving system 32 while being held by the substrate holder 4 H of the substrate stage 4.
  • the illuminance sensor 30 measures information on the illuminance of the exposure light EL by receiving the exposure light EL via the liquid LQ (step SA5).
  • the light receiving result received by the light receiving element 34 of the light receiving system 32 is held (stored) in the circuit element 35 (step SA6).
  • the control device 7 receives the light receiving surface (first surface 37A) of the illuminance sensor 30, the projection optical system PL, and the liquid LQ. The positional relationship between them is adjusted so as to substantially coincide with the formed image plane. Further, when the control device 7 measures the illuminance of the exposure light EL using the illuminance sensor 30, the control unit 7 performs the supply operation and the recovery operation of the liquid LQ by the liquid immersion mechanism 1 in parallel.
  • the immersion area LR of the liquid LQ which is always clean and temperature controlled, and the illuminance sensor 30 receives the exposure light EL by the light receiving element 34 through the liquid LQ whose clean and temperature is adjusted. can do.
  • the control device 7 holds the substrate stage 4 substantially stationary, and is held by the final optical element FL of the projection optical system PL and the substrate holder 4H. Relative position with the illuminance sensor 30, and hence relative position between the immersion area LR and the transmitting member 33. Maintain the position.
  • the size of the first surface 37A of the transmitting member 33 is sufficiently larger than the size of the liquid immersion area LR, and the liquid immersion area LR can be smoothly formed inside the first surface 37A of the transmitting member 33.
  • the size of the liquid immersion area LR it is possible to provide the illumination sensor 30 with the transmitting member 33 having the first surface 37A larger than the liquid immersion area LR.
  • the liquid immersion area LR is formed smaller than the first surface 37A of the transmissive member 33. I see.
  • the transmitting member 33 (upper surface 37A) has a substantially circular outer shape as shown in FIG. 3, but the transmitting member 33 (upper surface 37A) is adjusted to the shape and Z or size of the liquid immersion area LR. Other shapes are also possible.
  • the liquid repellent film 41 is formed on the second surface 37 B of the base material 31 disposed around the first surface 37 A of the transmission member 33, It is suppressed that the liquid LQ of the immersion area LR formed on the first surface 37A flows out of the first surface 37A.
  • the liquid repellent film 41 is not formed on the first surface 37A of the transmission member 33 on which the liquid immersion area LR of the liquid LQ is formed, deterioration in measurement accuracy can be suppressed. That is, since the liquid repellent film 41 may be deteriorated by the irradiation of the exposure light EL, the liquid repellent film 41 is formed on the first surface 37A of the transmitting member 33 to which the exposure light EL is irradiated. If this is done, irradiation of the exposure light EL may change the state of the film 41.
  • the state of the film 41 changes, there is a possibility that the light receiving state of the light receiving element 34 changes, such as the illuminance (light amount) of the exposure light EL reaching the light receiving element 34 changes.
  • the light receiving state of the light receiving element 34 changes, such as the illuminance (light amount) of the exposure light EL reaching the light receiving element 34 changes.
  • the surface of the film 41 is roughened by the irradiation of the exposure light EL, the exposure light EL irradiated to the film 41 may be scattered. If such a situation occurs, the measurement accuracy of the illuminance sensor 30 may be degraded.
  • the liquid immersion area LR is formed, and the film 41 is not formed on the first surface 37A of the transmitting member 33 to which the exposure light EL is irradiated, so that the occurrence of the above-mentioned inconvenience can be suppressed.
  • the liquid immersion area LR is When the immersion area LR of the liquid LQ is formed on the first surface 37A of the transmission member 33 smaller than the first surface 37A of the transmission member 33 of the illumination sensor 30, the immersion region LR and the transmission member 33 Since the relative position with the first surface 37A of the light source is maintained (as the substrate stage 4 is almost stationary), the outflow of the liquid LQ in the immersion area LR from the first surface 37A of the illuminance sensor 30 is suppressed. It is controlled.
  • the control device 7 removes the liquid immersion area LR from the upper surface 37 of the illuminance sensor 30.
  • the controller 7 stops the liquid supply operation through the supply port 12 and continues the liquid recovery operation through the recovery port 22 for a predetermined time. Do.
  • all the liquid LQ in the immersion area LR can be recovered (removed) (step SA7).
  • total recovery operation an operation for recovering all the liquid LQ filling the optical path space K (liquid LQ in the liquid immersion area LR) will be appropriately referred to as “total recovery operation”.
  • the force may be that a thin film or a minute droplet of the liquid LQ may remain on the first surface 37A after performing the full recovery operation.
  • the apparatus 7 determines that the entire recovery operation of the liquid immersion mechanism 1 is completed when the recovery amount of the liquid LQ from the recovery port 22 of the nozzle member 6 becomes less than a predetermined amount (approximately zero).
  • control device 7 uses the transfer device 8 to unload (unload) the light intensity sensor 30 from the substrate stage 4 (step SA8).
  • Substrate Stage 4 Force The unloaded illuminance sensor 30 is extracted (read out) by the analysis device in which the stored information held in the holding device (storage device) 35 is placed at a predetermined position (step SA 9).
  • a plurality of immersion exposure apparatuses EX1 to EX4 are used in combination.
  • the plurality of exposure devices EX1 to EX4 are connected to the same host computer EM, and the operation status and the like of each are monitored to control production.
  • the illuminance of each of these exposure devices EX1 to EX4 is measured by the illuminance sensor 30 as a reference illuminance meter, and is used to match the exposure amount between the exposure devices. Therefore, the stored information stored and held in the circuit element 35 of the illuminance sensor 30 is extracted by the analyzer connected to the host computer EM.
  • the measurement result in each of the exposure apparatuses is extracted by the analyzer connected to the host computer EM.
  • the sensor 30 may hold information indicating which exposure apparatus is the measurement data together with the measurement data! / ⁇ .
  • the measurement result in each of the exposure apparatuses is extracted by the analyzer connected to the host computer EM.
  • the measurement data held by the illuminance sensor 30 may be extracted by an analyzer disposed at a predetermined position every time measurement by one exposure apparatus is completed, and may be sent to the host computer EM.
  • the analyzer when the analyzer also sends measurement data to the host computer, it may send information indicating whether it is measurement data of the exposure apparatus with deviation V or not together!
  • the illuminance sensor 30 wirelessly transmits the measurement data to the control device 7, and the control device 7 transmits the measurement data to the host computer EM in association with the identification information of the exposure device (for example, the machine number etc.).
  • the identification information of the exposure device for example, the machine number etc.
  • the manufacturing system of FIG. 6 is provided with four immersion exposure apparatuses E X1 to EX4.
  • the number and type of force exposure apparatuses are not limited thereto. For example, not a liquid immersion type, but a normal exposure apparatus It is also possible to include.
  • the conveyance of the illuminance sensor 30 between the two exposure apparatuses may be performed by using a conveyance system which conveys the substrate P, or may be performed by an operator.
  • a constant illuminance sensor (not shown) is provided on the substrate stage 4 of each of the exposure apparatuses EX1 to EX4.
  • the illuminance with which the correspondence with the other exposure apparatus is taken is derived from the measurement result of the permanent illumination sensor. be able to.
  • the illuminance sensor 30 which can be attached to and detached from the substrate stage 4 can smoothly measure the information on the illuminance between the exposure devices via the liquid LQ.
  • the illuminance sensor 30 can be smoothly transported to the substrate stage 4 using the transport device 8. Since the projection optical system PL and various precision devices (members) are disposed in the vicinity of the substrate stage 4, for example, when the operator manually detaches the illuminance sensor 30 from the substrate stage 4, smooth operation is performed. Makes it difficult or hurts precision equipment etc. Problems such as changing the environment (cleanness, temperature, humidity, etc.) in which the exposure apparatus is placed.
  • the illuminance sensor 30 is attached to and detached from the substrate holder 4H by using the transport device 8 which has the illuminance sensor 30 substantially the same outer shape as the substrate P and loads and unloads the substrate P on the substrate holder 4H.
  • the illuminance sensor 30 can be smoothly attached to and detached from the substrate stage 4. Further, since the interruption time of the exposure processing accompanying the measurement of the illuminance can be shortened, the operation rate of the exposure apparatus EX can be improved.
  • illuminance sensor 30 has substantially the same outer shape as substrate P, and can be attached to and detached from substrate holder 4 H. Therefore, almost the same conditions as when forming liquid immersion area LR on substrate P In (operation), the liquid immersion area LR can be formed on the upper surface 37 of the illuminance sensor 30 to calculate information on the illuminance.
  • the film 41 is not formed on the first surface 37A of the transmission member 33 where the liquid immersion area LR is formed, and the film 41 is formed on the second surface 37B disposed around the first surface 37A. Therefore, it is possible to suppress the outflow of the liquid LQ and maintain the measurement accuracy of the illuminance sensor 30.
  • the illuminance sensor 30 measures the exposure light EL
  • immersion is performed.
  • the region LR is formed on the first surface 37A. That is, during the measurement operation using the illumination sensor 30, the liquid immersion area LR is always formed on the first surface 37A. Therefore, even if there is a gap between the transmitting member 33 and the base 31, it is possible to suppress the liquid LQ from entering the internal space 36 from the gap.
  • the immersion area LR is not formed in the gap G ′ between the upper surface 37 of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4, the liquid LQ intrudes into the substrate stage 4 through the gap G ′. Can be prevented.
  • the second surface 37B of the illumination sensor 30 and the upper surface 4F of the substrate stage 4 are substantially flush, and the upper surface 4F of the substrate stage 4 disposed around the second surface 37B and the second surface 37B is repellent Since it is liquid, even if the liquid immersion area LR is formed across the gap G ′, the occurrence of problems such as the outflow of the liquid LQ can be suppressed.
  • the initial filling operation is not started on the upper surface 37 of the illumination sensor 30, and the other objects are not
  • the initial filling operation is started on the upper surface of the substrate stage 4 such as the upper surface 4F of the substrate stage 4 and the immersion area LR is formed on the upper surface 4F
  • the supply operation and recovery operation of the liquid LQ by the immersion mechanism 1 are continued.
  • the substrate stage 4 may be moved in the XY plane to move the immersion area LR formed on the upper surface 4F of the substrate stage 4 to the upper surface 37 of the illuminance sensor 30.
  • the gap G ′ is minute, and the top surface 4F of the substrate stage 4 and the top surface 37 (second surface 37B) of the illuminance sensor 30 are liquid repellent, so that it is possible to prevent the outflow or penetration of the liquid LQ.
  • the immersion area LR is moved between the second surface 37B of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4, the movement of the immersion area LR while suppressing the outflow of the liquid LQ. Can be done smoothly.
  • the other object may be a measurement stage or the like that is movable independently of the substrate stage 4.
  • the entire recovery operation of the liquid LQ in the liquid immersion area LR formed on the upper surface 37 of the illuminance sensor 30 is performed. While the liquid LQ is supplied and recovered by the immersion mechanism 1 without completely recovering the liquid LQ, the substrate sensor 4 is moved in the XY plane to move the immersion area LR to the illuminance sensor 30. It is also possible to move, for example, from the upper surface 37 of the substrate stage 4 to the upper surface 4F of the substrate stage 4 or an object other than the substrate stage 4 (including the measurement stage etc.).
  • the light receiving element 34 and the circuit element 35 are integrally provided on the base material 31, the light receiving element 34 is provided on the base material 31, and the circuit element 35 is the base material 31. It may be provided outside the The light receiving element 34 and the circuit element 35 may be connected by a flexible connection cable, for example. Alternatively, wireless transmission may be performed between the light receiving element 34 and the circuit element 35.
  • the illuminance sensor 30 includes a substrate 31, a transmitting member 33 held by the substrate 31, a light receiving element 34 disposed in the internal space 36, and a circuit element connected to the light receiving element 34. It has 35 'and.
  • the circuit element 35 'of the present embodiment is connected to the light receiving element 34, and the light receiving element 3
  • a transmitter for wirelessly transmitting the light reception result received in 4 is provided.
  • the exposure apparatus EX further includes a receiving device 56 for receiving a wireless signal including the measurement result transmitted from the circuit element (transmitting device) 35 'of the illumination sensor 30.
  • the illuminance sensor 30 of the present embodiment also has substantially the same outer shape as the substrate P, and is attachable to and detachable from the substrate holder 4H. Further, in the present embodiment, the measurement result received by the receiving device 56 is displayed on the display device 57.
  • the film 41 ′ is formed on the entire upper surface 37 including the first surface 37A and the second surface 37B of the illuminance sensor 30.
  • the film 41 ' is made of a material having liquid repellency, high transparency to the exposure light EL, and resistance to the exposure light EL (ultraviolet light).
  • the membrane 41 ' is formed of "Cytop” manufactured by Asahi Glass Co., Ltd.
  • the light reception result received by the light receiving element 34 can be wirelessly transmitted.
  • cables for transmitting the light reception result can be omitted.
  • the top surface 37 of the illuminance sensor 30 can be made liquid repellent by providing the film 41 ′ that also has the cytop equal force, and the outflow or the remaining of the liquid LQ can be prevented. Can.
  • a step 58 is provided between the first surface 37A of the transmitting member 33 and the second surface 37B of the base 31.
  • the size (diameter) of the transmission member 33 is larger than the size (diameter) of the recess 38 of the base material 31, and the peripheral region of the lower surface of the transmission member 33 is a part of the upper surface 37 B of the base material 31. It is held.
  • the base material 31 is formed of a liquid repellent material (such as fluorine resin), and the liquid repellent property of the surface of the second surface 37 B without the liquid repellent film. Can be maintained.
  • the second surface 37B which is a peripheral region of the upper surface 37 of the illuminance sensor 30 held by the substrate holder 4H, and the upper surface 4F of the substrate stage 4 disposed therearound are substantially flush.
  • the initial filling operation of the liquid LQ on the first surface 37A and the operation as in the above-described embodiment Perform all recovery operations If this is done, the liquid LQ is prevented from remaining in the step 58.
  • the transmissive member 33 on a part of the upper surface 37B of the base material 31, the internal space 36 can be enlarged, and the design freedom of the illuminance sensor 30 is improved. can do.
  • the liquid LQ may be inside the substrate stage 4 or the illuminance sensor via the gap G '. It can be prevented from infiltrating to the lower surface 43 side of 30.
  • the step 58 is small (for example, 2 mm or less), and the immersion area LR is moved to the second surface 37B of the illumination sensor 30 to move the immersion area LR formed on another object onto the first surface 37A. Even when moving between the substrate stage 4 and the upper surface 4F, the movement of the liquid immersion area LR can be smoothly performed while suppressing the outflow of the liquid LQ.
  • the entire first surface 37A of the transmitting member 33 need not be able to transmit the exposure light EL, so the first surface 37A of the transmitting member 33 transmits the exposure light EL. It may be coated with a material that does not have to be used, and an aperture (opening) through which the exposure light EL passes may be formed in part of it.
  • the first surface 37A of the transmissive member 33 may be covered with a liquid repellent material capable of transmitting the exposure light EL, or the first surface 37A of the transmissive member 33 does not transmit the exposure light EL.
  • a liquid repellent film is formed only on the surface of the region coated with the material, and a liquid repellent film is not formed on the surface of the region where the aperture (opening) through which the exposure light EL passes is formed.
  • the present invention is not limited to this.
  • the heights of the second surface 37 B and the upper surface 4 F of the substrate stage 4 may be made different.
  • the illuminance sensor 30 and the substrate P have different thicknesses
  • the substrate holder 4H the heights of the upper surface 37 of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4 are different. become .
  • the gap between the upper surface 37 of the illumination sensor 30 and the upper surface 4F of the substrate stage 4 becomes extremely large, for example, the substrate holder 4H can be finely moved in the Z-axis direction to make its gap smaller. Or as zero.
  • the support 51 and the peripheral wall 52 of the substrate holder 4 H have substantially the same height.
  • the height of the peripheral wall 52 may be a support Closer than 51 May be low on force.
  • a pin whose tip is disposed on the same plane as the support portion 51 (a plurality of pin-like members) may be provided on the upper end surface of the peripheral wall portion 52.
  • the substrate holder 4H has a plurality of pin-like members surrounded by one peripheral wall 52.
  • the mounting surface of the substrate holder 4H is divided into a plurality of blocks, and a plurality of blocks are provided for each block.
  • the pin-shaped member may be surrounded by a peripheral wall portion.
  • the substrate holder 4H is of the pin chuck type, the present invention is not limited to this.
  • a holder having a plurality of concentric convex portions may be used.
  • a pin member movable in the Z-axis direction is provided on the substrate stage 4 via the through hole of the substrate holder 4H, and the transfer device Delivery of the substrate P and the illuminance sensor 30 is performed between 8 and the substrate stage 4! /.
  • the illuminance sensor 30 is detachably provided to the substrate holder 4 H of the substrate stage 4, for example, the upper surface 4 F of the substrate stage 4.
  • a dedicated mounting area may be provided in the vicinity of the substrate holder 4H or the like, and may be detachably provided to the mounting area.
  • the size and the outer shape of the illuminance sensor 30 may not be the same as that of the substrate P as long as they can be transported by the transport device 8, for example.
  • the outer shape of the illuminance sensor 30 is substantially the same circular plate as the substrate P (Ueno), but, for example, in an exposure apparatus for manufacturing a liquid crystal display device, It may be formed in substantially the same shape as the glass substrate as the exposure target, that is, in the form of a rectangular plate.
  • the illuminance sensor 30 has substantially the same outer shape as the substrate (wafer), but is detachable from the substrate stage 4 (substrate holder 4H). Light Light It may be shaped differently from the substrate (wafer) as long as it can measure information on EL. Similarly, the illumination sensor 30 may differ in size from the substrate (wafer).
  • the illuminance sensor 30 may form a light receiving element (light receiving system) on a semiconductor wafer using, for example, a photolithography method.
  • the light receiving system may be provided detachably to the semiconductor wafer.
  • an illuminance sensor for measuring the illuminance of the exposure light EL has been described as an example of a measurement device for measuring information related to the exposure light EL.
  • a measuring device which measures information arbitrary constitutions, such as a nonuniformity sensor which measures illumination nonuniformity of exposure light EL, a space image measurement sensor which measures a space image (projected image), can be adopted.
  • the interferometer system (3 L, 4 L) is used to measure the positional information of the mask stage 3 and the substrate stage 4 without being limited thereto.
  • You may use an encoder system to detect the provided scale (diffraction grating).
  • position control of the stage may be performed using switching between the interferometer system and the encoder system, or both of them.
  • the liquid LQ in each of the above embodiments is composed of pure water.
  • Pure water can be easily obtained in large quantities in semiconductor manufacturing plants etc., and has the advantage that it does not adversely affect the photoresist on the substrate P, optical elements (lenses) and the like.
  • pure water since pure water has no adverse effect on the environment and the content of impurities is extremely low, the function of cleaning the surface of the substrate P and the surface of the optical element provided on the tip surface of the projection optical system PL is also expected. it can.
  • the refractive index n of pure water (water) for exposure light EL having a wavelength of about 193 nm is approximately 1.44, and ArF excimer laser light (wavelength 193 nm) is used as a light source for exposure light EL.
  • the wavelength is shortened to 1 Zn, that is, about 134 nm to obtain high resolution.
  • the projection optical system should be able to ensure the same depth of focus as in air.
  • the numerical aperture of PL can be further increased, which also improves the resolution.
  • the optical element FL is attached to the tip of the projection optical system PL, and the optical characteristic of the projection optical system PL, for example, an aberration (spherical aberration, comatic aberration, etc.) by this optical element. Adjustments can be made.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used to adjust the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate (cover glass etc.) capable of transmitting exposure light EL.
  • the pressure between the optical element at the tip of the projection optical system PL and the substrate P generated by the flow of the liquid LQ is large, the optical element is not replaceable but the pressure is not optical. The element does not move, it may be fixed as firmly.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover formed of a plane parallel plate on the surface of the substrate P The liquid LQ may be filled with the glass attached.
  • the projection optical system of the above-described embodiment fills the light path space on the image plane side of the optical element at the tip with the liquid, as disclosed in WO 2004Z01918 pamphlet, It is possible to adopt a projection optical system in which the optical path space on the object plane side of the optical element is also filled with the liquid.
  • the liquid LQ in each of the above embodiments is water (pure water), it may be a liquid other than water.
  • the light source of the exposure light EL is an F laser
  • this F laser may be used. Light penetrates the water
  • liquid LQ for example, perfluorinated
  • the portion in contact with the liquid LQ is subjected to lyophilic treatment, for example, by forming a thin film of a substance of molecular structure with a small polarity containing fluorine.
  • the liquid LQ there is also a liquid LQ that is stable against the photoresist applied on the surface of the projection optical system PL and the substrate P that is as high as possible in the refractive index because it is transparent to the exposure light EL (for example, It is also possible to use oil).
  • the liquid LQ one having a refractive index of about 1.6 to 1.8 may be used.
  • the optical element FL may be formed of a material having a refractive index (eg, 1.6 or more) higher than that of quartz or fluorite. It is also possible to use various liquids, for example supercritical fluids, as the liquid LQ.
  • the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices, but also for glass substrates for display devices, ceramic thin films for thin film magnetic heads, or exposure devices.
  • a mask or reticle original plate (synthetic quartz, silicon wafer) or the like is applied.
  • a step-and- 'scan type scanning exposure apparatus scanning step
  • the mask M and the substrate P are synchronously moved to scan the pattern of the mask M in addition to the mask
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (step) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • the exposure apparatus EX with the first pattern and the substrate P substantially stationary, a reduction image of the first pattern is projected onto a projection optical system (for example, a reflective element is not included at a 1Z8 reduction ratio
  • the present invention can also be applied to an exposure apparatus of a method of collectively exposing a substrate P using a projection optical system).
  • a reduced image of the second pattern is partially overlapped with the first pattern using the projection optical system, and is collectively exposed on the substrate P.
  • the invention can also be applied to a batch exposure apparatus of the stitch method.
  • the exposure method of the stitch method it is also applicable to a step-and-stitch method exposure device in which at least two patterns are partially overlapped and transferred on the substrate P and the substrate P is sequentially moved.
  • the exposure apparatus including the projection optical system PL has been described as an example, but the present invention is applied to an exposure apparatus and an exposure method that do not use the projection optical system PL.
  • the exposure light is irradiated to the substrate through an optical member such as a mask or a lens, and a liquid immersion area is formed in a predetermined space between such an optical member and the substrate.
  • the present invention is disclosed, for example, in JP-A-10-163099 and JP-A-10-214783 (Corresponding US Patent No. 6,590, 634) and JP-A 2000-505958 (Corresponding US Patent No.
  • the present invention can also be applied to a twin-stage type exposure apparatus provided with a plurality of substrate stages as disclosed in US Pat. No. 5, 969, 441), US Pat. No. 6, 208, 407 and the like.
  • the present invention can also be applied to an exposure apparatus provided with a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and a measurement stage on which Z or various photoelectric sensors are mounted.
  • the liquid locally between the projection optical system PL and the substrate P in the present invention, the exposure apparatus disclosed in, for example, Japanese Patent Laid-Open Nos. 6-124873, 10-303114, and US Pat. No. 5, 825, 043 is used.
  • the present invention is also applicable to an immersion / exposure apparatus that performs exposure while the entire surface of the target substrate is immersed in liquid and swirls.
  • the type of exposure apparatus EX is not limited to the exposure apparatus for producing a semiconductor element that exposes a semiconductor element pattern on a substrate P, and an exposure apparatus for producing a liquid crystal display element or a display, a thin film magnetic head, imaging It can be widely applied to an exposure apparatus for manufacturing a device (CCD), a micromachine, a MEMS, a DNA chip, or a reticle or a mask.
  • the force using a light transmission type mask in which a predetermined light shielding pattern (or phase pattern 'light reduction pattern) is formed on a light transmitting substrate is replaced with this mask.
  • a predetermined light shielding pattern or phase pattern 'light reduction pattern
  • an electronic mask variant shaped mask that forms a transmission pattern or a reflection pattern or a light emission pattern based on the electronic data of a pattern to be exposed
  • DMD Digital Micro-mirror Device
  • DMD Digital Micro-mirror Device
  • an exposure apparatus that exposes a line 'and' space pattern on a substrate P by forming interference fringes on the substrate P (lithography
  • the present invention can also be applied to
  • JP-A-2004-519850 Corresponding US Pat. No. 6,611, 316
  • two mask patterns are combined on a substrate via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that double-exposures one shot area on a substrate substantially simultaneously by one scan exposure.
  • the exposure apparatus EX has various mechanical systems including the respective constituent elements recited in the claims of the present application, with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep the degree. In order to ensure these various accuracies, before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, various electrical systems Adjustments will be made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, wiring connection of electric circuits, piping connection of pressure circuits, etc. among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the process for assembling the various subsystems into the exposure apparatus.
  • a micro device such as a semiconductor device has a step 201 of performing function / performance design of the micro device, a step 202 of manufacturing a mask (reticle) based on this design step, and 202 Step 203 of manufacturing a substrate which is a base material, step of exposing the mask pattern onto the substrate by the exposure apparatus EX of the embodiment described above, step of developing the exposed substrate, heating (curing) and etching step of the developed substrate And the like, a device assembly step (including a processing step such as a dicing step, a bonding step, and a packaging step) 205, an inspection step 206, and the like.
  • a processing step such as a dicing step, a bonding step, and a packaging step
  • the present invention information on exposure light in a liquid immersion exposure apparatus can be measured smoothly, and exposure processing can be performed with high accuracy. Therefore, the present invention, therefore, the present invention produces a wide range of products, such as semiconductor devices, liquid crystal display devices or displays, thin film magnetic heads, CCDs, micromachines, MEMS, DNA chips, reticles (masks). It is extremely useful for an exposure method and apparatus for

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

A substrate stage (4) holds a substrate whereupon an exposure beam is applied through a liquid (LQ). A measuring apparatus (30) measures information relating to the exposure beam and has a light receiving system which can be removed from the substrate stage (4). The light receiving system receives the exposure beam through the liquid (LQ) by being held by the substrate stage (4).

Description

計測装置及び露光装置、並びにデバイス製造方法  Measurement apparatus, exposure apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、露光光に関する情報を計測する計測装置、及び液体を介して基板を露 光する露光装置、並びにデバイス製造方法に関するものである。  The present invention relates to a measurement device that measures information related to exposure light, an exposure device that exposes a substrate through a liquid, and a device manufacturing method.
本願は、 2005年 6月 22日に出願された特願 2005— 181712号に基づき優先権 を主張し、その内容をここに援用する。  Priority is claimed on Japanese Patent Application No. 2005-18171, filed Jun. 22, 2005, the content of which is incorporated herein by reference.
背景技術  Background art
[0002] 半導体デバイス等のマイクロデバイス (電子デバイスなど)の製造工程の一つである フォトリソグラフイエ程では、パターン像を感光性の基板上に露光する露光装置が用 いられる。マイクロデバイスの製造ラインにおいて、複数の露光装置を併用する場合 、各露光装置で製造される製品のばらつき等を低減するために、各露光装置間の露 光量 (ドーズ量)をマッチングさせる必要がある。下記特許文献には、複数の露光装 置間での相対照度を計測可能な照度計を用いて、各露光装置間の露光量をマッチ ングさせる技術の一例が開示されている。  In photolithography, which is one of the manufacturing steps of micro devices (such as electronic devices) such as semiconductor devices, an exposure apparatus that exposes a pattern image onto a photosensitive substrate is used. In the case of using a plurality of exposure apparatuses in combination in a microdevice manufacturing line, it is necessary to match the exposure light amount (dose amount) between the exposure apparatuses in order to reduce the variation and the like of products manufactured by each exposure apparatus. . The following patent documents disclose an example of a technique for matching exposure amounts among exposure devices using an illuminance meter capable of measuring relative illuminance among a plurality of exposure devices.
特許文献 1:特開平 10— 92722号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 10-92722
特許文献 2:特開平 11― 260706号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 11-260706
特許文献 3:特開 2001— 338868号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2001-338868
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0003] ところで、露光装置の更なる高解像度化等を目的として、液体を介して基板を露光 する液浸露光装置が案出されて ヽるが、マイクロデバイスの製造ラインで複数の液浸 露光装置を併用する場合においても、各液浸露光装置間の露光量をマッチングさせ る必要がある。そのため、複数の液浸露光装置それぞれの露光光に関する情報を円 滑に計測できる技術の案出が望まれる。  By the way, although an immersion exposure apparatus for exposing a substrate through a liquid has been proposed for the purpose of further increasing the resolution of an exposure apparatus, etc., a plurality of immersion exposures in a microdevice manufacturing line are being developed. Even in the case of using the apparatus in combination, it is necessary to match the exposure amount between the respective immersion exposure apparatuses. Therefore, it is desirable to devise a technology that can measure information on exposure light of each of a plurality of immersion exposure apparatuses in a smooth manner.
[0004] 本発明はこのような事情に鑑みてなされたものであって、複数の液浸露光装置それ ぞれの露光光に関する情報を円滑に計測可能な計測装置を提供することを目的と する。また、その計測装置によって露光光に関する情報が計測される露光装置、並 びにその露光装置を用いるデバイス製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a measuring apparatus capable of smoothly measuring information on exposure light of each of a plurality of immersion exposure apparatuses. Do. Another object of the present invention is to provide an exposure apparatus in which information on exposure light is measured by the measurement apparatus, and a device manufacturing method using the exposure apparatus.
課題を解決するための手段  Means to solve the problem
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。  In order to solve the above-mentioned problems, the present invention adopts the following configuration corresponding to each drawing shown in the embodiment. However, parenthesized symbols attached to each element are merely examples of the element, and do not limit each element.
[0006] 本発明の第 1の態様に従えば、露光光 (EL)に関する情報を計測する計測装置で あって、液体 (LQ)を介して露光光 (EL)が照射される基板 (P)を保持する基板ステ ージ (4)に対して着脱可能であるとともに基板ステージ (4)に保持された状態で液体 (LQ)を介して露光光 (EL)を受光する受光系(32)を備える計測装置が提供される  According to a first aspect of the present invention, there is provided a measurement device for measuring information related to exposure light (EL), wherein a substrate (P) to which exposure light (EL) is irradiated via liquid (LQ) And a light receiving system (32) for receiving the exposure light (EL) through the liquid (LQ) while being detachable from the substrate stage (4) holding the light and being held by the substrate stage (4). A measuring device provided is provided
[0007] 本発明の第 1の態様によれば、例えば複数の液浸露光装置それぞれの露光光に 関する情報を液体を介して円滑に計測することができる。 According to the first aspect of the present invention, for example, information on exposure light of each of a plurality of immersion exposure apparatuses can be measured smoothly through a liquid.
[0008] 本発明の第 2の態様に従えば、液体 (LQ)を介して露光光 (EL)で基板 (P)を露光 する露光装置において、上記態様の計測装置 (30)を着脱可能に保持する可動体(According to the second aspect of the present invention, in the exposure apparatus which exposes the substrate (P) with the exposure light (EL) through the liquid (LQ), the measurement apparatus (30) of the above aspect can be detachably attached. Movable body to hold (
4)を備える露光装置 (EX)が提供される。 An exposure apparatus (EX) comprising the fourth aspect is provided.
[0009] 本発明の第 2の態様によれば、上記態様の計測装置の計測結果を用いて露光処 理を精度良く行うことができる。 According to the second aspect of the present invention, exposure processing can be performed with high accuracy using the measurement results of the measurement apparatus of the above aspect.
[0010] 本発明の第 3の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。 According to a third aspect of the present invention, there is provided a device manufacturing method using the exposure apparatus (EX) of the above aspect.
[0011] 本発明の第 3の態様によれば、露光処理を精度良く行うことができる露光装置を用 V、てデバイスを製造することができる。  According to the third aspect of the present invention, it is possible to manufacture a device by using an exposure apparatus capable of performing exposure processing with high accuracy.
図面の簡単な説明  Brief description of the drawings
[0012] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。 FIG. 1 is a schematic configuration view showing an exposure apparatus according to a first embodiment.
[図 2]第 1実施形態に係る計測装置を示す側断面図である。  FIG. 2 is a side cross sectional view showing the measuring apparatus according to the first embodiment.
[図 3]第 1実施形態に係る計測装置を示す平面図である。  [FIG. 3] A plan view showing a measuring device according to the first embodiment.
[図 4]計測装置を用いた計測手順の一例を説明するためのフローチャート図である。  FIG. 4 is a flowchart for explaining an example of a measurement procedure using a measurement device.
[図 5]計測装置を用いた計測動作の一例を示す模式図である。 [図 6]計測装置を用いた計測動作の一例を示す模式図である。 FIG. 5 is a schematic view showing an example of measurement operation using a measurement device. FIG. 6 is a schematic view showing an example of the measurement operation using the measurement device.
[図 7]第 2実施形態に係る計測装置を示す側断面図である。  FIG. 7 is a side sectional view showing a measuring device according to a second embodiment.
[図 8]第 3実施形態に係る計測装置を示す側断面図である。  FIG. 8 is a side sectional view showing a measuring device according to a third embodiment.
[図 9]マイクロデバイスの製造工程の一例を説明するためのフローチャート図である。 符号の説明  FIG. 9 is a flowchart for explaining an example of a manufacturing process of a micro device. Explanation of sign
[0013] 1…液浸機構、 4…基板ステージ、 4F…上面 (第 3面)、 4H…基板ホルダ、 4S…内 側面、 8…搬送装置、 30· ··照度センサ (計測装置)、 31…基材、 32…受光系、 33· ·· 透過部材、 34· ··受光素子 (受光器)、 35· ··回路素子 (保持装置)、 35'…回路素子( 送信装置)、 36…内部空間、 37…上面、 37A…第 1面、 37B…第 2面、 40…側面、 41 · ··膜、 58…段差、 EL…露光光、 EX…露光装置、 G、 G,…ギャップ、 LQ…液体、 LR…液浸領域、 P…基板  [0013] 1 ... immersion mechanism, 4 ... substrate stage, 4F ... top surface (third surface), 4H ... substrate holder, 4S ... inside surface, 8 ... transport device, 30 · · illuminance sensor (measuring device), 31 ... base material, 32 ... light receiving system, 33 · · · transparent member, 34 · · · light receiving element (light receiver), 35 · · circuit element (holding device), 35 '... circuit element (transmitting device), 36 ... Internal space, 37: upper surface, 37A: first surface, 37B: second surface, 40: side surface, 41 · · · film, 58: step, EL: exposure light, EX: exposure device, G, G, ... gap, LQ: liquid, LR: immersion area, P: substrate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Y軸方 向、 X軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸 方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 θ Y,及び 0 Z方向とする。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XY Z orthogonal coordinate system. Then, the predetermined direction in the horizontal plane is in the horizontal direction, in the horizontal plane! Thus, the direction orthogonal to the X-axis direction is taken as the Y-axis direction, and the direction (ie vertical direction) orthogonal to each of the X-axis direction and the Y-axis direction is taken as the Z-axis direction. Also, let the rotation (tilt) directions about the X axis, Y axis, and Z axis be Θ X, θ Y, and 0 Z directions, respectively.
[0015] <第 1実施形態 >  First Embodiment
第 1実施形態について説明する。図 1は第 1実施形態に係る露光装置 EXを示す概 略構成図である。図 1において、露光装置 EXは、マスク Mを保持して移動可能なマ スクステージ 3と、基板 Pを保持して移動可能な基板ステージ 4と、マスクステージ 3に 保持されているマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 ELで照明 されたマスク Mのパターン像を基板 P上に投影する投影光学系 PLと、露光装置 EX 全体の動作を制御する制御装置 7とを備えている。また、露光装置 EXは、例えば特 開平 7— 240366号公報(対応米国特許第 6, 707, 528号)に開示されているような 、基板ステージ 4に対して基板 Pを搬送する搬送装置 8を備えて 、る。 [0016] なお、ここで ヽぅ基板は半導体ウェハ等の基材上に感光材 (レジスト)を塗布したも のを含み、マスクは基板上に縮小投影されるデバイスパターンを形成されたレチクル を含む。また、本実施形態においては、マスクとして透過型のマスクを用いる力 反射 型のマスクを用いてもよい。 The first embodiment will be described. FIG. 1 is a schematic configuration view showing an exposure apparatus EX according to the first embodiment. In FIG. 1, the exposure apparatus EX exposes the mask stage 3 movable by holding the mask M, the substrate stage 4 movable by holding the substrate P, and the mask M held by the mask stage 3 The illumination optical system IL illuminated by the light EL, the projection optical system PL projecting the pattern image of the mask M illuminated by the exposure light EL onto the substrate P, and the control device 7 controlling the overall operation of the exposure apparatus EX Have. In addition, the exposure apparatus EX, for example, as disclosed in Japanese Patent Laid-Open No. 7-240366 (corresponding to US Pat. No. 6,707,528), transport apparatus 8 for transporting the substrate P to the substrate stage 4. Prepare. Here, the base substrate includes one obtained by applying a photosensitive material (resist) on a base material such as a semiconductor wafer, and the mask includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed. . Further, in the present embodiment, a force reflection type mask using a transmission type mask may be used as the mask.
[0017] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 投影光学系 PLの像面側の露光光 ELの光路空間 Kを液体 LQで満たし、基板 P上に 液体 LQの液浸領域 LRを形成する液浸機構 1を備えている。露光装置 EXは、少なく ともマスク Mのパターン像を基板 Pに投影している間、液浸機構 1を使って、露光光 E Lの光路空間 Kを液体 LQで満たす。露光装置 EXは、投影光学系 PLと光路空間 K に満たされた液体 LQとを介してマスク Mを通過した露光光 ELを基板 P上に照射する ことによって、マスク Mのパターン像を基板 Pに投影する。また、本実施形態の露光 装置 EXは、光路空間 Kに満たされた液体 LQが、投影光学系 PLの投影領域 ARを 含む基板 P上の一部の領域に、投影領域 ARよりも大きく且つ基板 Pよりも小さい液体 LQの液浸領域 LRを局所的に形成する局所液浸方式を採用して!ヽる。本実施形態 においては、液体 LQとして純水を用いる。  The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and to substantially widen the depth of focus. The liquid immersion mechanism 1 is provided to fill the optical path space K of the exposure light EL on the image plane side of the projection optical system PL with the liquid LQ to form the liquid immersion area LR of the liquid LQ on the substrate P. The exposure apparatus EX fills the optical path space K of the exposure light EL with the liquid LQ using the immersion mechanism 1 while projecting at least the pattern image of the mask M onto the substrate P. The exposure apparatus EX irradiates the substrate P with the exposure light EL that has passed through the mask M through the projection optical system PL and the liquid LQ filled in the optical path space K, so that the pattern image of the mask M is applied to the substrate P. Project Further, in the exposure apparatus EX of this embodiment, the liquid LQ filled in the optical path space K is larger than the projection area AR in a partial area on the substrate P including the projection area AR of the projection optical system PL and the substrate Liquid smaller than P Liquid immersion area of LQ Adopting a local immersion system that forms locally LR! In the present embodiment, pure water is used as the liquid LQ.
[0018] 照明光学系 ILは、マスク M上の所定の照明領域を均一な照度分布の露光光 ELで 照明するものである。照明光学系 IL力も射出される露光光 ELとしては、例えば水銀 ランプ力も射出される輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光(波長 248nm )等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波長 193nm)及び Fレーザ光(  The illumination optical system IL illuminates a predetermined illumination area on the mask M with the exposure light EL having a uniform illuminance distribution. Illumination optical system Exposure light from which also IL power is emitted, for example, far ultraviolet light (DUV light) such as a bright line (g line, h line, i line) and KrF excimer laser light (wavelength 248 nm) etc. , ArF excimer laser light (wavelength 193 nm) and F laser light (
2 波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本実施形態にぉ 、ては ArFエキシマレーザ光が用いられる。  2) Vacuum ultraviolet light (VUV light) such as a wavelength of 157 nm is used. In the present embodiment, ArF excimer laser light is used.
[0019] マスクステージ 3は、リニアモータ等のァクチユエータを含むマスクステージ駆動装 置 3Dの駆動により、マスク Mを保持した状態で、 X軸、 Y軸、及び θ Z方向に移動可 能である。マスクステージ 3 (ひ!/、てはマスク M)の位置情報はレーザ干渉計 3Lによつ て計測される。レーザ干渉計 3Lはマスクステージ 3上に設けられた移動鏡 3Kを用い てマスクステージ 3の位置情報を計測する。制御装置 7は、レーザ干渉計 3Lの計測 結果に基づ 、てマスクステージ駆動装置 3Dを駆動し、マスクステージ 3に保持され て!、るマスク Mの位置制御を行う。 The mask stage 3 is movable in the X-axis, Y-axis, and θZ directions while holding the mask M by driving of a mask stage drive device 3D including an actuator such as a linear motor. Position information of the mask stage 3 ((! /, Mask M) is measured by the laser interferometer 3L. The laser interferometer 3 L measures the positional information of the mask stage 3 using the movable mirror 3 K provided on the mask stage 3. The control unit 7 drives the mask stage drive unit 3D based on the measurement result of the laser interferometer 3L and is held by the mask stage 3. Perform position control of the mask M.
[0020] なお、移動鏡 3Kは平面鏡のみでなくコーナーキューブ(レトロリフレクタ)を含むも のとしてもよいし、移動鏡 3Kをマスクステージ 3に固設する代わりに、例えばマスクス テージ 3の端面 (側面)を鏡面加工して形成される反射面を用いてもよい。また、マス クステージ 3は、例えば特開平 8— 130179号公報 (対応米国特許第 6, 721, 034 号)に開示される粗微動可能な構成としてもよい。  The movable mirror 3 K may include corner cubes (retroreflectors) as well as the flat mirror, and instead of fixing the movable mirror 3 K to the mask stage 3, for example, the end face of the mask stage 3 A reflective surface formed by mirror-finishing) may be used. Further, the mask stage 3 may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Application Laid-Open No. 8-130179 (Corresponding US Patent No. 6, 721, 034).
[0021] 投影光学系 PLは、マスク Mのパターン像を所定の投影倍率で基板 Pに投影するも のであって、複数の光学素子を有しており、それら光学素子は鏡筒 PKで保持されて いる。本実施形態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/5, 1/8 等の縮小系であり、前述の照明領域と共役な投影領域 ARにマスクパターンの縮小 像を形成する。なお、投影光学系 PLは縮小系、等倍系及び拡大系のいずれでもよ い。また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含ま ない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであって もよい。また、投影光学系 PLは、倒立像と正立像とのいずれを形成してもよい。本実 施形態においては、投影光学系 PLの複数の光学素子のうち、投影光学系 PLの像 面に最も近い最終光学素子 FLのみが光路空間 Kの液体 LQと接触する。  The projection optical system PL projects a pattern image of the mask M onto the substrate P with a predetermined projection magnification, and has a plurality of optical elements, which are held by the barrel PK. ing. The projection optical system PL of this embodiment is a reduction system whose projection magnification is, for example, 1Z4, 1/5, 1/8, etc., and forms a reduced image of the mask pattern in the projection area AR conjugate to the above-mentioned illumination area. . The projection optical system PL may be any of a reduction system, an equal magnification system and a magnification system. In addition, the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. The projection optical system PL may form either an inverted image or an erected image. In the present embodiment, among the plurality of optical elements of the projection optical system PL, only the last optical element FL closest to the image plane of the projection optical system PL contacts the liquid LQ in the optical path space K.
[0022] 基板ステージ 4は、基板 Pを保持する基板ホルダ 4Hを有しており、ベース部材 5上 で、基板ホルダ 4Hに基板 Pを保持して移動可能である。基板ホルダ 4Hは、基板ステ ージ 4上に設けられた凹部 4Rに配置されており、基板ステージ 4のうち凹部 4R以外 の上面 4Fは、基板ホルダ 4Hに保持された基板 Pの表面とほぼ同じ高さ(面一)にな るような平坦面となっている。これは、例えば基板 Pの露光動作時、液浸領域 LRの一 部が基板 Pの表面からはみ出して上面 4Fに形成されるためである。なお、基板ステ ージ 4の上面 4Fの一部、例えば基板 Pを囲む所定領域 (液浸領域 LRがはみ出す範 囲を含む)のみ、基板 Pの表面とほぼ同じ高さとしてもよい。基板ステージ 4の上面 4F は、液体 LQに対して撥液性を有している。本実施形態においては、上面 4Fは、例 えばポリ四フッ化工チレン (テフロン (登録商標) )等のフッ素系材料ある 、はアクリル 系材料などの撥液性を有する材料によって形成されている。なお、基板ホルダ 4Hに 保持された基板 Pの表面と基板ステージ 4の上面 4Fとの間に段差があってもよい。さ らに、基板ホルダ 4Hを基板ステージ 4の一部と一体に形成してもよいが、本実施形 態では基板ホルダ 4Hと基板ステージ 4とを別々に構成し、例えば真空吸着などによ つて基板ホルダ 4Hを凹部 4Rに固定している。 The substrate stage 4 has a substrate holder 4 H for holding the substrate P, and is movable on the base member 5 by holding the substrate P on the substrate holder 4 H. The substrate holder 4H is disposed in the recess 4R provided on the substrate stage 4, and the upper surface 4F of the substrate stage 4 other than the recess 4R is substantially the same as the surface of the substrate P held by the substrate holder 4H. It is a flat surface that is at the same height. This is because, for example, during the exposure operation of the substrate P, a part of the liquid immersion area LR protrudes from the surface of the substrate P and is formed on the upper surface 4F. Note that only a part of the upper surface 4F of the substrate stage 4, for example, a predetermined area surrounding the substrate P (including the range where the liquid immersion area LR protrudes) may be substantially the same height as the surface of the substrate P. The upper surface 4F of the substrate stage 4 has liquid repellency to the liquid LQ. In the present embodiment, the upper surface 4F is made of a liquid repellent material such as a fluorine-based material such as polytetrafluorinated ethylene (Teflon (registered trademark)) or an acrylic material. A step may be present between the surface of the substrate P held by the substrate holder 4H and the upper surface 4F of the substrate stage 4. The Furthermore, although the substrate holder 4H may be integrally formed with a part of the substrate stage 4, in the present embodiment, the substrate holder 4H and the substrate stage 4 are separately configured, and for example, the substrate is formed by vacuum suction or the like. The holder 4H is fixed to the recess 4R.
[0023] また、基板ステージ 4は、基板ホルダ 4Hに保持された基板 Pの側面と対向する内側 面 4Sを有している。内側面 4Sは、凹部 4Rの内側の面である。そして、基板ホルダ 4 Hに保持された基板 Pの側面と基板ステージ 4の内側面 4Sとの間には例えば 0. 1〜 lmm程度のギャップ Gが形成される。ギャップ Gを所定値以下にすることにより、基板 Pの表面と基板ステージ 4の上面 4Fとの間力も液体 LQが基板ステージ 4の内部ある いは基板 Pの裏面側に浸入することが抑制されている。また、基板ステージ 4の上面 4 Fが撥液性なので、これによつても、ギャップ Gカゝら液体 LQが基板ステージ 4の内部 あるいは基板 Pの裏面側に浸入することが抑制されている。なお、内側面 4Sが撥液 性を有していてもよい。 The substrate stage 4 has an inner surface 4S that faces the side surface of the substrate P held by the substrate holder 4H. The inner side surface 4S is an inner surface of the recess 4R. Then, a gap G of, for example, about 0.1 to 1 mm is formed between the side surface of the substrate P held by the substrate holder 4 H and the inner side surface 4 S of the substrate stage 4. By setting the gap G to a predetermined value or less, the force between the front surface of the substrate P and the upper surface 4F of the substrate stage 4 and the liquid LQ are suppressed from invading the inside of the substrate stage 4 or the back side of the substrate P. There is. In addition, since the upper surface 4 F of the substrate stage 4 is liquid repellent, this also prevents the gap G liquid LQ from invading the inside of the substrate stage 4 or the back surface side of the substrate P. The inner side surface 4S may have liquid repellency.
[0024] 基板ステージ 4は、リニアモータ等のァクチユエータを含む基板ステージ駆動装置 4 Dの駆動により、基板 Pを保持した状態で、 X軸、 Y軸、 Z軸、 0 Χ、 Θ Υ、 Χ θ Ζ 向の 6自由度の方向に移動可能である。基板ステージ 4 (ひいては基板 Ρ)の位置情 報はレーザ干渉計 4Lによって計測される。レーザ干渉計 4Lは基板ステージ 4に設け られた移動鏡 4Κを用いて基板ステージ 4の X軸、 Υ軸、及び θ Ζ方向に関する位置 情報を計測する。また、基板ステージ 4に保持されている基板 Ρの表面の面位置情報 (Ζ軸、 Θ X、及び θ Υ方向に関する位置情報)は、不図示のフォーカス'レベリング検 出系によって検出される。制御装置 7は、レーザ干渉計 4Lの計測結果及びフォー力 ス 'レべリング検出系の検出結果に基づいて基板ステージ駆動装置 4Dを駆動し、基 板ステージ 4に保持されている基板 Ρの位置制御を行う。  Substrate stage 4 holds substrate P by driving substrate stage drive device 4 D including actuators such as a linear motor, and X axis, Y axis, Z axis, 0 axis, Υ, θ θ It can move in the direction of six degrees of freedom. Position information of the substrate stage 4 (and consequently the substrate Ρ) is measured by the laser interferometer 4L. The laser interferometer 4 L uses the movable mirror 4 provided on the substrate stage 4 to measure positional information on the substrate stage 4 in the X axis, the wedge axis, and the θ wedge direction. Further, surface position information (position information regarding the direction of the Ζ axis, Θ X, and θ Υ) of the surface of the substrate held by the substrate stage 4 is detected by a focus' leveling detection system (not shown). The control device 7 drives the substrate stage drive device 4D based on the measurement result of the laser interferometer 4L and the detection result of the force level detection system, and the position of the substrate に held by the substrate stage 4 Take control.
[0025] なお、レーザ干渉計 4Lは基板ステージ 4の Ζ軸方向の位置、及び 0 X、 0 Υ方向の 回転情報をも計測可能としてよぐその詳細は、例えば特表 2001— 510577号公報 (対応国際公開第 1999Z28790号パンフレット)に開示されている。さらに、移動鏡 4Κを基板ステージ 4に固設する代わりに、例えば基板ステージ 4の一部 (側面など) を鏡面加工して形成される反射面を用いてもよ!ヽ。  [0025] The laser interferometer 4L can measure the position of the substrate stage 4 in the direction of the 、 axis and also the rotation information in the 0 X, 0 Υ directions, and the details thereof are described in, for example, JP-A 2001-510577. Corresponding WO 1999Z28790)). Furthermore, instead of fixing the movable mirror 4 to the substrate stage 4, for example, a reflective surface formed by mirror-finishing a part of the substrate stage 4 (such as a side surface) may be used.
[0026] また、フォーカス ·レべリング検出系はその複数の計測点でそれぞれ基板 Ρの Ζ軸方 向の位置情報を計測することで、基板 Pの Θ X及び Θ Y方向の傾斜情報(回転角)を 検出するものであるが、この複数の計測点はその少なくとも一部が液浸領域 LR (又 は投影領域 AR)内に設定されてもよいし、あるいはその全てが液浸領域 LRの外側 に設定されてもよい。さらに、例えばレーザ干渉計 4Lが基板 Pの Z軸、 θ X及び θ Y 方向の位置情報を計測可能であるときは、基板 Pの露光動作中にその Z軸方向の位 置情報が計測可能となるようにフォーカス'レペリング検出系を設けなくてもよぐ少な くとも露光動作中はレーザ干渉計 4Lの計測結果を用いて Z軸、 θ X及び 0 Y方向に 関する基板 Pの位置制御を行うようにしてもょ 、。 In addition, the focus and leveling detection system measures the direction of the axis of the substrate at each of the plurality of measurement points. By measuring the position information in the direction, the tilt information (rotation angle) in the Θ X and Θ Y directions of the substrate P is detected, but at least a part of the plurality of measurement points is the liquid immersion area LR ( Alternatively, they may be set within the projection area AR), or all of them may be set outside the immersion area LR. Furthermore, for example, when the laser interferometer 4L can measure the position information of the substrate P in the Z axis, θ X and θ Y directions, it is possible to measure the position information in the Z axis direction during the exposure operation of the substrate P. As described above, the position control of the substrate P in the Z-axis, θ X, and 0 Y directions is performed using the measurement results of the laser interferometer 4 L during the exposure operation even if the focus' repelling detection system is not provided. Let me see.
[0027] 液浸機構 1は、基板ステージ 4に保持された基板 Pと、その基板 Pと対向する位置に 設けられ、露光光 ELが通過する投影光学系 PLの最終光学素子 FLとの間の光路空 間 Kを液体 LQで満たす。液浸機構 1は、光路空間 Kの近傍に設けられ、光路空間 K に対して液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22を有するノ ズル部材 6と、供給管 13、及びノズル部材 6の供給口 12を介して液体 LQを供給する 液体供給装置 11と、ノズル部材 6の回収口 22、及び回収管 23を介して液体 LQを回 収する液体回収装置 21とを備えている。ノズル部材 6は、投影光学系 PLの像面側に 配置される少なくとも 1つの光学素子 (本例では、投影光学系 PLの最終光学素子 FL )を囲むように設けられた環状部材である。本実施形態においては、液体 LQを供給 する供給口 12及び液体 LQを回収する回収口 22はノズル部材 6の下面 6Aに形成さ れている。また、ノズル部材 6の内部には、供給口 12と供給管 13とを接続する流路、 及び回収口 22と回収管 23とを接続する流路が形成されている。供給口 12は、ノズ ル部材 6の下面 6Aにお 、て、投影光学系 PLの最終光学素子 FL (光路空間 K)を囲 むように、複数の所定位置のそれぞれに設けられている。また、回収口 22は、ノズル 部材 6の下面 6Aにおいて、最終光学素子 FLに対して供給口 12よりも外側に設けら れており、最終光学素子 FL及び供給口 12を囲むように環状に設けられている。なお 本実施形態においては、回収口 22には、例えばチタン製またはステンレス鋼 (例え ば SUS316)製のメッシュ部材、あるいはセラミックス製の多孔部材が配置されて!、る The liquid immersion mechanism 1 is provided between the substrate P held by the substrate stage 4 and the final optical element FL of the projection optical system PL which is provided at a position facing the substrate P and through which the exposure light EL passes. Fill the optical path space K with liquid LQ. The immersion mechanism 1 is provided in the vicinity of the optical path space K, and has a nozzle member 6 having a supply port 12 for supplying the liquid LQ to the optical path space K and a recovery port 22 for recovering the liquid LQ; And a liquid supply device 11 for supplying the liquid LQ through the supply port 12 of the nozzle member 6, and a liquid recovery device 21 for recovering the liquid LQ through the recovery port 22 of the nozzle member 6 and the recovery pipe 23. ing. The nozzle member 6 is an annular member provided to surround at least one optical element (in this example, the final optical element FL of the projection optical system PL) disposed on the image plane side of the projection optical system PL. In the present embodiment, the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ are formed in the lower surface 6A of the nozzle member 6. Further, inside the nozzle member 6, a flow path connecting the supply port 12 and the supply pipe 13, and a flow path connecting the recovery port 22 and the recovery pipe 23 are formed. The supply port 12 is provided at each of a plurality of predetermined positions on the lower surface 6A of the nozzle member 6 so as to surround the final optical element FL (optical path space K) of the projection optical system PL. Further, the recovery port 22 is provided on the lower surface 6A of the nozzle member 6 outside the supply port 12 with respect to the final optical element FL, and is annularly provided to surround the final optical element FL and the supply port 12 It is done. In the present embodiment, a mesh member made of, for example, titanium or stainless steel (for example, SUS316) or a porous member made of ceramic is disposed in the recovery port 22!
[0028] 液体供給装置 11及び液体回収装置 21の動作は制御装置 7に制御される。液体供 給装置 11は清浄で温度調整された液体 LQを送出可能であり、真空系等を含む液 体回収装置 21は液体 LQを回収可能である。制御装置 7は、液浸機構 1を制御して、 液体供給装置 11による液体供給動作と液体回収装置 21による液体回収動作とを並 行して行うことで、光路空間 Kを液体 LQで満たし、基板 P上の一部の領域に液体 LQ の液浸領域 LRを局所的に形成する。 The operation of the liquid supply device 11 and the liquid recovery device 21 is controlled by the control device 7. Liquid supply The supply device 11 can deliver the clean and temperature-controlled liquid LQ, and the liquid recovery device 21 including a vacuum system and the like can recover the liquid LQ. The controller 7 controls the liquid immersion mechanism 1 to perform the liquid supply operation by the liquid supply device 11 and the liquid recovery operation by the liquid recovery device 21 in parallel, thereby filling the optical path space K with the liquid LQ, The immersion area LR of the liquid LQ is locally formed in a partial area on the substrate P.
[0029] なお、液浸機構 1の構成 (ノズル部材 6の構造など)は、上述したものに限られず、 所望の液浸領域 LRが形成される構成であればよい。例えば、特開 2004— 289126 号公報 (対応米国特許第 6, 952, 253号)に開示されている液浸機構を用いることも できる。 The configuration of the liquid immersion mechanism 1 (the structure of the nozzle member 6 and the like) is not limited to the above-described one, as long as a desired liquid immersion area LR is formed. For example, the liquid immersion mechanism disclosed in Japanese Patent Application Laid-Open No. 2004-289126 (corresponding US Pat. No. 6,952, 253) can also be used.
[0030] 図 2は露光光 ELに関する情報を計測する計測装置の一例を示す断面図、図 3は 平面図である。本実施形態では、露光光 ELに関する情報を計測する計測装置とし て、露光光 ELの照度を計測する照度センサを例にして説明する。  FIG. 2 is a cross-sectional view showing an example of a measurement apparatus for measuring information on exposure light EL, and FIG. 3 is a plan view. In the present embodiment, an illuminance sensor that measures the illuminance of the exposure light EL will be described as an example of a measurement device that measures information related to the exposure light EL.
[0031] 図 2及び図 3において、照度センサ 30は、液体 LQを介して露光光 ELの照度に関 する情報を計測するためのものであって、基板 Pを保持可能な基板ステージ 4に着脱 可能である。本実施形態の照度センサ 30は、基板 Pとほぼ同じ外形を有した基板型 センサ(ウェハ型センサ)であり、基板ステージ 4に設けられた基板ホルダ 4Hに着脱 可能である。照度センサ 30は、基材 31と、基材 31に保持され、露光光 ELを液体 LQ を介して受光する受光系 32とを備えている。受光系 32は、露光光 ELを透過(通過) 可能な透過部材 33と、透過部材 33を透過した露光光 ELを受光する受光素子 34と を有している。基材 31は、例えばステンレス鋼等の所定の材料によって形成されてい る。  In FIG. 2 and FIG. 3, the illuminance sensor 30 is for measuring information related to the illuminance of the exposure light EL via the liquid LQ, and is attached to and detached from the substrate stage 4 capable of holding the substrate P. It is possible. The illuminance sensor 30 of the present embodiment is a substrate type sensor (wafer type sensor) having substantially the same outer shape as the substrate P, and is attachable to and detachable from the substrate holder 4 H provided on the substrate stage 4. The illuminance sensor 30 includes a base 31 and a light receiving system 32 which is held by the base 31 and receives the exposure light EL through the liquid LQ. The light receiving system 32 has a transmitting member 33 capable of transmitting (passing) the exposure light EL, and a light receiving element 34 for receiving the exposure light EL transmitted through the transmitting member 33. The base 31 is made of a predetermined material such as stainless steel, for example.
[0032] 基材 31は、透過部材 33を保持するとともに、受光素子 34を配置可能な内部空間 3 6を有している。基材 31の上面 37の一部には凹部 38が形成されており、その凹部 3 8に透過部材 33が配置されている。透過部材 33が基材 31の凹部 38に配置されるこ とによって、内部空間 36が形成される。透過部材 33は、例えば石英によって形成さ れており、露光光 ELを透過可能 (通過可能)である。そして、基材 31に保持された透 過部材 33の上面 37Aと、その透過部材 33を保持した基材 31の上面 37Bとはほぼ 面一となつている。以下の説明においては、照度センサ 30の上面のうち、透過部材 3 3によって形成される上面 37Aを適宜、第 1面 37Aと称し、基材 31によって形成され る上面 37Bを適宜、第 2面 37Bと称する。また、第 1面 37A及び第 2面 37Bを含む照 度センサ 30の上面全体を適宜、上面 37と称する。第 2面 37Bは、第 1面 37Aの周囲 に配置され、その第 1面 37Aを囲むように設けられて 、る。 The base material 31 holds the transmitting member 33 and has an internal space 36 in which the light receiving element 34 can be disposed. A recess 38 is formed in a part of the upper surface 37 of the substrate 31, and the transmitting member 33 is disposed in the recess 38. An inner space 36 is formed by disposing the transmitting member 33 in the recess 38 of the substrate 31. The transmitting member 33 is made of, for example, quartz, and can transmit (passable) the exposure light EL. The upper surface 37A of the transmitting member 33 held by the base 31 and the upper surface 37B of the base 31 holding the transmitting member 33 are substantially flush with each other. In the following description, of the upper surface of the illumination sensor 30, the transmitting member 3 The upper surface 37A formed by 3 is appropriately referred to as a first surface 37A, and the upper surface 37B formed by the base 31 is appropriately referred to as a second surface 37B. In addition, the entire top surface of the light sensor 30 including the first surface 37A and the second surface 37B is appropriately referred to as the top surface 37. The second surface 37B is disposed around the first surface 37A and provided so as to surround the first surface 37A.
[0033] 内部空間 36は、基材 31とその基材 31に保持された透過部材 33との間に形成され ている。受光素子 34は内部空間 36に配置されている。透過部材 31を通過した光( 露光光 EL)は、受光素子 34に達し、受光素子 34は、透過部材 33を透過した光 (露 光光 EL)を受光可能である。なお、透過部材 33と受光素子 34との間に光学系(レン ズ系)が配置されてもよい。  The internal space 36 is formed between the base 31 and the transmitting member 33 held by the base 31. The light receiving element 34 is disposed in the internal space 36. The light (exposure light EL) that has passed through the transmitting member 31 reaches the light receiving element 34, and the light receiving element 34 can receive the light (exposure light EL) that has passed through the transmitting member 33. An optical system (lens system) may be disposed between the transmitting member 33 and the light receiving element 34.
[0034] また、投影光学系 PLの開口数が大きい場合 (例えば開口数 NAが 1. 0以上の場合 )、透過部材 33と受光素子 34との間に気体が存在すると、露光光 ELの一部の光、 すなわち透過部材 33への入射角が大き ヽ光が透過部材 33の下面 (光射出面)で全 反射してしまう可能性がある。したがって、透過部材 33と受光素子 34との間に気体 が介在しないように、透過部材 33と受光素子 34とを密着させてもよいし、透過部材 3 3と受光素子 34との間に、露光光 ELに対する屈折率が気体 (空気)よりも大きい液体 などを介在させてもよいし、あるいは透過部材 33の下面に受光素子を直接形成 (パ ターニング)してもよい。  When the numerical aperture of the projection optical system PL is large (for example, when the numerical aperture NA is 1.0 or more), if a gas is present between the transmitting member 33 and the light receiving element 34, one of the exposure light EL The light of the portion, that is, the incident angle to the transmitting member 33 is large, and there is a possibility that the light is totally reflected by the lower surface (light emitting surface) of the transmitting member 33. Therefore, the transmitting member 33 and the light receiving element 34 may be in close contact with each other so that no gas intervenes between the transmitting member 33 and the light receiving element 34, or the exposure may be performed between the transmitting member 33 and the light receiving element 34. A liquid or the like having a refractive index higher than that of gas (air) with respect to the light EL may be interposed, or a light receiving element may be formed directly (patterning) on the lower surface of the transmitting member 33.
[0035] 受光素子 34は、例えば光変換素子を含み、照射された露光光 ELの入射エネルギ 一に応じて電気信号を出力する。受光素子 34としては、光起電力効果、ショットキー 効果、光電磁効果、光導電効果、光電子放出効果、あるいは焦電効果等を利用した 光変換素子を用いることができる。  The light receiving element 34 includes, for example, a light conversion element, and outputs an electric signal according to the incident energy of the irradiated exposure light EL. As the light receiving element 34, a light conversion element utilizing a photovoltaic effect, a Schottky effect, a photoelectromagnetic effect, a photoconductive effect, a photoelectron emitting effect, a pyroelectric effect or the like can be used.
[0036] また、照度センサ 30は、受光素子 34に接続された回路素子 35を有している。回路 素子 35は、受光素子 34に接続され、受光素子 34で受光した受光結果を保持する 保持装置を備えている。回路素子 35は、配線を介して受光素子 34からの信号 (照度 信号)が出力される増幅回路 (アンプ)、増幅回路の増幅率を記憶した増幅率記憶装 置、増幅回路で増幅された照度信号のピーク値をホールドするピークホールド回路、 受光素子 34から出力された信号を記憶する記憶素子等を有する。  Further, the illuminance sensor 30 has a circuit element 35 connected to the light receiving element 34. The circuit element 35 is connected to the light receiving element 34, and includes a holding device for holding the light reception result received by the light receiving element 34. The circuit element 35 includes an amplifier circuit (amplifier) to which the signal (illuminance signal) from the light receiving element 34 is output through the wiring, an amplification factor storage device storing the amplification factor of the amplifier circuit, and the illuminance amplified by the amplifier circuit. It has a peak hold circuit for holding the peak value of the signal, a storage element for storing the signal output from the light receiving element 34, and the like.
[0037] 照度センサ 30の周縁領域は液体 LQに対して撥液性 (液体 LQとの接触角が 90度 以上)を有している。本実施形態においては、照度センサ 30の第 2面 37Bが撥液性 を有している。第 2面 37Bには撥液性を有する膜 41が形成され、この膜 41によって、 第 2面 37Bに撥液性が付与されている。膜 41は、例えばポリ四フッ化工チレン (テフ ロン (登録商標))等のフッ素系材料あるいはアクリル系材料を含む。一方、第 1面 37 Aには膜 41は形成されない。なお、照度センサ 30 (基材 31)の側面 40にも撥液性の 膜を形成し、第 2面 37B及び側面 40のそれぞれが液体 LQに対して撥液性を有する ようにしてもよい。 The peripheral region of the illumination sensor 30 is liquid repellent to the liquid LQ (the contact angle with the liquid LQ is 90 degrees Or higher). In the present embodiment, the second surface 37B of the illuminance sensor 30 has liquid repellency. A film 41 having liquid repellency is formed on the second surface 37B, and the film 41 imparts liquid repellency to the second surface 37B. The film 41 includes, for example, a fluorine-based material such as polytetrafluorinated ethylene (Teflon (registered trademark)) or an acrylic material. On the other hand, the film 41 is not formed on the first surface 37A. A liquid repellent film may be formed on the side surface 40 of the illuminance sensor 30 (substrate 31) so that each of the second surface 37B and the side surface 40 has liquid repellency to the liquid LQ.
[0038] 次に、上述の構成を有する照度センサ 30を用いて露光光 ELの照度を計測する手 順について図 4のフローチャート図を参照しながら説明する。  Next, a procedure of measuring the illuminance of the exposure light EL using the illuminance sensor 30 having the above-described configuration will be described with reference to the flow chart of FIG.
[0039] 上述のように、照度センサ 30は基板 Pとほぼ同じ外形を有しており、搬送装置 8は、 基板ステージ 4に対して照度センサ 30を搬送可能である。露光光 ELの照度を照度 センサ 30を用いて計測するために、制御装置 7は、搬送装置 8を用いて、照度センサ 30を基板ステージ 4の基板ホルダ 4Hに搬入 (ロード)する (ステップ SA1)。制御装置 7は、搬送装置 8によって搬入された照度センサ 30を基板ホルダ 4Hで保持する。基 板ホルダ 4Hは、照度センサ 30の下面 43を保持する(ステップ SA2)。  As described above, the illuminance sensor 30 has substantially the same outer shape as the substrate P, and the transport device 8 can transport the illuminance sensor 30 to the substrate stage 4. In order to measure the illuminance of the exposure light EL using the illuminance sensor 30, the control device 7 loads (loads) the illuminance sensor 30 onto the substrate holder 4H of the substrate stage 4 using the transport device 8 (step SA1) . The control device 7 holds the illuminance sensor 30 carried by the transfer device 8 by the substrate holder 4H. The substrate holder 4H holds the lower surface 43 of the illuminance sensor 30 (step SA2).
[0040] 図 5は基板ホルダ 4Hに保持された状態の照度センサ 30を示す図である。本実施 形態の基板ホルダ 4Hは、基材 50と、基材 50の上面に設けられ、照度センサ 30の下 面 43を支持する複数のピン状部材カもなる支持部 51と、照度センサ 30の下面 43と 対向する上面を有し、支持部 51を囲むように設けられた周壁部(リム部) 52とを備え ている。また、基材 50の上面には、不図示の真空系と接続された吸気口 53が設けら れている。制御装置 7は、真空系を駆動し、基材 50と周壁部 52と支持部 51に支持さ れた照度センサ 30の下面 43とで形成される空間 54の気体を吸気口 53を介して吸 引することによってその空間 54を負圧にすることにより、照度センサ 30の下面 43を 支持部 51で吸着保持する。すなわち、本実施形態の基板ホルダ 4Hは、所謂ピンチ ャック機構を備え、照度センサ 30及び基板 Pのそれぞれを吸着保持可能である。ま た、制御装置 7は、吸気口 53を介した吸引動作を解除することにより、基板ホルダ 4 Hに対して照度センサ 30 (基板 P)を離すことができる。このように、基板ステージ 4に 設けられた基板ホルダ 4Hは、照度センサ 30及び基板 Pのそれぞれを着脱可能に保 持する。 FIG. 5 is a view showing the illuminance sensor 30 in a state of being held by the substrate holder 4H. The substrate holder 4H of the present embodiment is provided on the base material 50 and the upper surface of the base material 50, and a plurality of pin-like members that support the lower surface 43 of the illuminance sensor 30; It has an upper surface opposite to the lower surface 43 and is provided with a peripheral wall portion (rim portion) 52 provided so as to surround the support portion 51. In addition, an intake port 53 connected to a vacuum system (not shown) is provided on the upper surface of the base material 50. The controller 7 drives the vacuum system to suck the gas in the space 54 formed by the base 50, the peripheral wall 52 and the lower surface 43 of the illuminance sensor 30 supported by the support 51 through the air inlet 53. By making the space 54 negative pressure by pulling, the lower surface 43 of the illuminance sensor 30 is adsorbed and held by the support portion 51. That is, the substrate holder 4H of the present embodiment is provided with a so-called pinch chucking mechanism, and can adsorb and hold the illuminance sensor 30 and the substrate P, respectively. Further, the control device 7 can release the illuminance sensor 30 (substrate P) from the substrate holder 4 H by releasing the suction operation via the air inlet 53. Thus, the substrate holder 4H provided on the substrate stage 4 detachably holds each of the illuminance sensor 30 and the substrate P. To have.
[0041] 基板ホルダ 4Hに保持された照度センサ 30の上面 37 (第 2面 37B)の周囲には、基 板ステージ 4の上面 4Fが配置される。照度センサ 30の上面 37 (第 2面 37B)と基板ス テージ 4の上面 4Fとはほぼ面一となつている。また、基板ホルダ 4Hに保持された照 度センサ 30の側面 40と対向する位置には、基板ステージ 4の凹部 4Rの内側面 4S が配置されている。照度センサ 30の側面 40と基板ステージ 4の内側面 4Sとの間には 所定のギャップ G'が形成されている。照度センサ 30は基板 Pとほぼ同じ外形を有し て ヽるため、基板ホルダ 4Hに保持された照度センサ 30の側面 40と基板ステージ 4 の内側面 4Sとの間に形成されるギャップ G'と、基板ホルダ 4Hに保持された基板 Pの 側面と基板ステージ 4の内側面 4Sとの間に形成されるギャップ Gとはほぼ同じ (0. 1 〜 lmm程度)である。したがって、照度センサ 30の上面 37と基板ステージ 4の上面 4 Fとの間力も液体 LQが基板ステージ 4の内部あるいは照度センサ 30の下面 43側に 浸入することが抑制されている。また、基板ステージ 4の上面 4F及び照度センサ 30 の上面 37の周縁領域である第 2面 37Bは撥液性であるので、液体 LQが基板ステー ジ 4の内部あるいは照度センサ 30の下面 43側に浸入することが抑制されている。な お、内側面 4S及び Z又は側面 40が撥液性を有していれば、より確実に液体 LQの 浸入を防止できる。  The upper surface 4F of the substrate stage 4 is disposed around the upper surface 37 (second surface 37B) of the illuminance sensor 30 held by the substrate holder 4H. The upper surface 37 (second surface 37B) of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4 are substantially flush with each other. Further, the inner side surface 4S of the recess 4R of the substrate stage 4 is disposed at a position facing the side surface 40 of the light sensor 30 held by the substrate holder 4H. A predetermined gap G ′ is formed between the side surface 40 of the illuminance sensor 30 and the inner side surface 4S of the substrate stage 4. Since the illuminance sensor 30 has substantially the same outer shape as the substrate P, a gap G 'formed between the side surface 40 of the illuminance sensor 30 held by the substrate holder 4H and the inner surface 4S of the substrate stage 4 The gap G formed between the side surface of the substrate P held by the substrate holder 4H and the inner side surface 4S of the substrate stage 4 is substantially the same (about 0.1 to 1 mm). Therefore, the force between the upper surface 37 of the illumination sensor 30 and the upper surface 4 F of the substrate stage 4 is also suppressed from the liquid LQ entering the inside of the substrate stage 4 or the lower surface 43 side of the illumination sensor 30. Further, since the second surface 37 B, which is the peripheral region of the upper surface 4 F of the substrate stage 4 and the upper surface 37 of the illuminance sensor 30, is liquid repellent, the liquid LQ is on the inside of the substrate stage 4 or the lower surface 43 of the Infiltration is suppressed. If the inner side surface 4S and Z or the side surface 40 has liquid repellency, the liquid LQ can be more reliably prevented from infiltrating.
[0042] 基板ホルダ 4Hに照度センサ 30を保持した後、制御装置 7は、基板ステージ 4を制 御して、基板ステージ 4の基板ホルダ 4Hに保持された照度センサ 30を計測位置に 移動する (ステップ SA3)。すなわち、制御装置 7は、投影光学系 PLの最終光学素子 FLと基板ホルダ 4Hに保持された照度センサ 30の透過部材 33の上面である第 1面 3 7Aとが対向するように、基板ステージ 4を動かす。そして、制御装置 7は、投影光学 系 PLの最終光学素子 FLと基板ホルダ 4Hに保持された照度センサ 30の第 1面 37A とを対向させた状態で、液浸機構 1を用いて、照度センサ 30の第 1面 37Aに液体 LQ の液浸領域 LRを形成する動作を開始する。すなわち、液浸機構 1は、液浸領域 LR を形成するための供給口 12からの液体 LQの供給動作を、照度センサ 30の上面 37 (第 1面 37A)において開始する(ステップ SA4)。以下の説明においては、液体 LQ が存在して 、な 、初期状態 (空の状態)における光路空間 Kを液体 LQで満たすため に、その光路空間 Kに対して液体 LQを供給する動作を適宜、初期満たし動作と称 する。すなわち、初期満たし動作とは、液体 LQが無い状態の上面 37に対して液体 L Qを供給することによって、その上面 37に液浸領域 LRを形成する動作を言う。 After holding the illuminance sensor 30 in the substrate holder 4 H, the control device 7 controls the substrate stage 4 to move the illuminance sensor 30 held in the substrate holder 4 H of the substrate stage 4 to the measurement position ( Step SA3). That is, the control device 7 sets the substrate stage 4 so that the final optical element FL of the projection optical system PL and the first surface 37 A, which is the upper surface of the transmitting member 33 of the illuminance sensor 30 held by the substrate holder 4H, face each other. Move. Then, the control device 7 uses the liquid immersion mechanism 1 in a state where the final optical element FL of the projection optical system PL and the first surface 37A of the illuminance sensor 30 held by the substrate holder 4H are opposed to each other. The operation to form the immersion area LR of the liquid LQ on the first surface 37A of 30 is started. That is, the liquid immersion mechanism 1 starts the supply operation of the liquid LQ from the supply port 12 for forming the liquid immersion area LR on the upper surface 37 (first surface 37A) of the illuminance sensor 30 (step SA4). In the following description, since the liquid LQ is present, the optical path space K in the initial state (empty state) is filled with the liquid LQ. The operation of supplying the liquid LQ to the optical path space K is referred to as an initial filling operation as appropriate. That is, the initial filling operation is an operation of forming the liquid immersion area LR on the upper surface 37 by supplying the liquid LQ to the upper surface 37 in the absence of the liquid LQ.
[0043] 初期満たし動作を開始するとき、制御装置 7は、基板ステージ 4をほぼ静止する。す なわち、制御装置 7は、液浸機構 1を用いて液浸領域 LRを形成するための初期満た し動作を開始するとき、投影光学系 PLの最終光学素子 FLと基板ホルダ 4Hに保持さ れた照度センサ 30との相対位置を維持する。そして、制御装置 7は、基板ステージ 4 をほぼ静止した状態で、液浸機構 1による液体 LQの供給動作と回収動作とを並行し て行うことにより、図 5に示すように、照度センサ 30の第 1面 37Aに液体 LQの液浸領 域 LRを形成する。 At the start of the initial filling operation, the control device 7 almost stops the substrate stage 4. That is, when the controller 7 starts the initial filling operation to form the immersion area LR using the immersion mechanism 1, it is held by the final optical element FL of the projection optical system PL and the substrate holder 4H. Maintain the relative position with the illumination sensor 30. Then, the control device 7 performs the supply operation and the recovery operation of the liquid LQ by the immersion mechanism 1 in parallel with the substrate stage 4 substantially stationary, as shown in FIG. Form the immersion area LR of the liquid LQ on the first surface 37A.
[0044] そして、制御装置 7は、基板ステージ 4の基板ホルダ 4Hに保持された照度センサ 3 0の第 1面 37Aに液浸領域 LRを形成した状態で、照明光学系 ILより露光光 ELを射 出する。露光光 ELは、投影光学系 PL及び液体 LQを介して、基板ホルダ 4Hに保持 されている照度センサ 30に照射される。照度センサ 30は、基板ステージ 4の基板ホ ルダ 4Hに保持された状態で、受光系 32によって、露光光 ELを液体 LQを介して受 光する。照度センサ 30は、液体 LQを介して露光光 ELを受光することによって、露光 光 ELの照度に関する情報を計測する (ステップ SA5)。受光系 32の受光素子 34で 受光した受光結果は回路素子 35に保持 (記憶)される (ステップ SA6)。  Then, in a state where the immersion area LR is formed on the first surface 37A of the illuminance sensor 30 held by the substrate holder 4H of the substrate stage 4, the control device 7 exposes the exposure light EL from the illumination optical system IL. Launch. The exposure light EL is irradiated to the illuminance sensor 30 held by the substrate holder 4H via the projection optical system PL and the liquid LQ. The illuminance sensor 30 receives the exposure light EL through the liquid LQ by the light receiving system 32 while being held by the substrate holder 4 H of the substrate stage 4. The illuminance sensor 30 measures information on the illuminance of the exposure light EL by receiving the exposure light EL via the liquid LQ (step SA5). The light receiving result received by the light receiving element 34 of the light receiving system 32 is held (stored) in the circuit element 35 (step SA6).
[0045] なお、制御装置 7は、照度センサ 30を用いて露光光 ELの照度を計測するとき、照 度センサ 30の受光面 (第 1面 37A)と投影光学系 PL及び液体 LQを介して形成され る像面とがほぼ一致するように、それらの位置関係を調整する。また、制御装置 7は、 照度センサ 30を用いて露光光 ELの照度を計測して 、るとき、液浸機構 1による液体 LQの供給動作と回収動作とを並行して行う。これにより、常に清浄で温度調整され た液体 LQの液浸領域 LRを形成することができ、照度センサ 30は、その清浄で温度 調整された液体 LQを介して露光光 ELを受光素子 34で受光することができる。また、 制御装置 7は、照度センサ 30が露光光 ELの照度を計測しているとき、基板ステージ 4をほぼ静止しており、投影光学系 PLの最終光学素子 FLと基板ホルダ 4Hに保持さ れた照度センサ 30との相対位置、ひいては、液浸領域 LRと透過部材 33との相対位 置を維持する。 Note that, when the illuminance of the exposure light EL is measured using the illuminance sensor 30, the control device 7 receives the light receiving surface (first surface 37A) of the illuminance sensor 30, the projection optical system PL, and the liquid LQ. The positional relationship between them is adjusted so as to substantially coincide with the formed image plane. Further, when the control device 7 measures the illuminance of the exposure light EL using the illuminance sensor 30, the control unit 7 performs the supply operation and the recovery operation of the liquid LQ by the liquid immersion mechanism 1 in parallel. Thereby, it is possible to form the immersion area LR of the liquid LQ which is always clean and temperature controlled, and the illuminance sensor 30 receives the exposure light EL by the light receiving element 34 through the liquid LQ whose clean and temperature is adjusted. can do. In addition, when the illuminance sensor 30 measures the illuminance of the exposure light EL, the control device 7 holds the substrate stage 4 substantially stationary, and is held by the final optical element FL of the projection optical system PL and the substrate holder 4H. Relative position with the illuminance sensor 30, and hence relative position between the immersion area LR and the transmitting member 33. Maintain the position.
[0046] 透過部材 33の第 1面 37Aの大きさは、液浸領域 LRの大きさより十分大きぐ液浸 領域 LRは透過部材 33の第 1面 37Aの内側に円滑に形成することができる。形成さ れる液浸領域 LRの大きさを予め実験あるいはシミュレーションによって求めておくこ とにより、液浸領域 LRよりも大きい第 1面 37Aを有する透過部材 33を照度センサ 30 に設けることができる。なお、液浸機構 1による液体供給動作及び Z又は回収動作、 あるいはノズル部材 6の形態を適宜調整することによって、透過部材 33の第 1面 37A よりも小さ 、液浸領域 LRを形成するようにしてもょ 、。  The size of the first surface 37A of the transmitting member 33 is sufficiently larger than the size of the liquid immersion area LR, and the liquid immersion area LR can be smoothly formed inside the first surface 37A of the transmitting member 33. By previously determining the size of the liquid immersion area LR to be formed by experiment or simulation, it is possible to provide the illumination sensor 30 with the transmitting member 33 having the first surface 37A larger than the liquid immersion area LR. In addition, by appropriately adjusting the liquid supply operation and Z or recovery operation by the liquid immersion mechanism 1 or the form of the nozzle member 6, the liquid immersion area LR is formed smaller than the first surface 37A of the transmissive member 33. I see.
[0047] なお、本実施形態においては、透過部材 33 (上面 37A)は、図 3に示すようにほぼ 円形の外形を有しているが、液浸領域 LRの形状及び Z又は大きさに合わせて、他 の形状にすることもできる。  In the present embodiment, the transmitting member 33 (upper surface 37A) has a substantially circular outer shape as shown in FIG. 3, but the transmitting member 33 (upper surface 37A) is adjusted to the shape and Z or size of the liquid immersion area LR. Other shapes are also possible.
[0048] 本実施形態においては、透過部材 33の第 1面 37Aの周囲に配置された基材 31の 第 2面 37Bには撥液性の膜 41が形成されているため、透過部材 33の第 1面 37Aに 形成された液浸領域 LRの液体 LQが第 1面 37Aの外側に流出することが抑制されて いる。  In the present embodiment, since the liquid repellent film 41 is formed on the second surface 37 B of the base material 31 disposed around the first surface 37 A of the transmission member 33, It is suppressed that the liquid LQ of the immersion area LR formed on the first surface 37A flows out of the first surface 37A.
[0049] また、液体 LQの液浸領域 LRが形成される透過部材 33の第 1面 37Aには撥液性 の膜 41が形成されていないため、計測精度の劣化を抑止することができる。すなわ ち、撥液性の膜 41は、露光光 ELの照射によって劣化する可能性があるため、露光 光 ELが照射される透過部材 33の第 1面 37Aに撥液性の膜 41を形成しておくと、露 光光 ELの照射により、膜 41の状態が変化する可能性がある。膜 41の状態が変化し た場合、受光素子 34に到達する露光光 ELの照度 (光量)が変化するなど、受光素 子 34の受光状態が変化する可能性がある。また、露光光 ELの照射によって膜 41の 表面が荒れた場合、その膜 41に照射された露光光 ELが散乱する可能性もある。こ のような状況が生じた場合、照度センサ 30の計測精度の劣化を招く可能性がある。 本実施形態においては、液浸領域 LRが形成され、露光光 ELが照射される透過部 材 33の第 1面 37Aには膜 41を形成しないことにより、上述の不都合の発生を抑制で きる。  Further, since the liquid repellent film 41 is not formed on the first surface 37A of the transmission member 33 on which the liquid immersion area LR of the liquid LQ is formed, deterioration in measurement accuracy can be suppressed. That is, since the liquid repellent film 41 may be deteriorated by the irradiation of the exposure light EL, the liquid repellent film 41 is formed on the first surface 37A of the transmitting member 33 to which the exposure light EL is irradiated. If this is done, irradiation of the exposure light EL may change the state of the film 41. When the state of the film 41 changes, there is a possibility that the light receiving state of the light receiving element 34 changes, such as the illuminance (light amount) of the exposure light EL reaching the light receiving element 34 changes. In addition, when the surface of the film 41 is roughened by the irradiation of the exposure light EL, the exposure light EL irradiated to the film 41 may be scattered. If such a situation occurs, the measurement accuracy of the illuminance sensor 30 may be degraded. In the present embodiment, the liquid immersion area LR is formed, and the film 41 is not formed on the first surface 37A of the transmitting member 33 to which the exposure light EL is irradiated, so that the occurrence of the above-mentioned inconvenience can be suppressed.
[0050] また、透過部材 33の第 1面 37Aには膜 41が形成されていないが、液浸領域 LRは 照度センサ 30の透過部材 33の第 1面 37Aよりも小さぐまた透過部材 33の第 1面 37 Aに液体 LQの液浸領域 LRを形成して ヽるときには、液浸領域 LRと透過部材 33の 第 1面 37Aとの相対位置は維持されているので (基板ステージ 4はほぼ静止している ので)、照度センサ 30の第 1面 37Aより液浸領域 LRの液体 LQが流出することが抑 制されている。 In addition, although the film 41 is not formed on the first surface 37A of the transmitting member 33, the liquid immersion area LR is When the immersion area LR of the liquid LQ is formed on the first surface 37A of the transmission member 33 smaller than the first surface 37A of the transmission member 33 of the illumination sensor 30, the immersion region LR and the transmission member 33 Since the relative position with the first surface 37A of the light source is maintained (as the substrate stage 4 is almost stationary), the outflow of the liquid LQ in the immersion area LR from the first surface 37A of the illuminance sensor 30 is suppressed. It is controlled.
[0051] 照度センサ 30を用いた計測が終了した後、制御装置 7は、液浸領域 LRを照度セ ンサ 30の上面 37から除去する。液浸領域 LRを照度センサ 30の上面 37から除去す る場合には、制御装置 7は、供給口 12を介した液体供給動作を停止し、回収口 22を 介した液体回収動作を所定時間継続する。これにより、液浸領域 LRの液体 LQを全 て回収(除去)することができる (ステップ SA7)。以下の説明においては、光路空間 Kを満たして ヽる液体 LQ (液浸領域 LRの液体 LQ)を全て回収する動作を適宜、「全 回収動作」と称する。  After the measurement using the illuminance sensor 30 is completed, the control device 7 removes the liquid immersion area LR from the upper surface 37 of the illuminance sensor 30. When removing the immersion area LR from the upper surface 37 of the illuminance sensor 30, the controller 7 stops the liquid supply operation through the supply port 12 and continues the liquid recovery operation through the recovery port 22 for a predetermined time. Do. As a result, all the liquid LQ in the immersion area LR can be recovered (removed) (step SA7). In the following description, an operation for recovering all the liquid LQ filling the optical path space K (liquid LQ in the liquid immersion area LR) will be appropriately referred to as “total recovery operation”.
[0052] なお、第 1面 37Aは撥液性を有していないため、全回収動作を実行した後に、第 1 面 37Aに液体 LQの薄膜あるいは微小な滴が残留する可能性がある力 制御装置 7 は、ノズル部材 6の回収口 22からの液体 LQの回収量が所定量以下(ほぼ零)になつ た時点で、液浸機構 1の全回収動作が完了したと判断する。  It should be noted that since the first surface 37A does not have liquid repellency, the force may be that a thin film or a minute droplet of the liquid LQ may remain on the first surface 37A after performing the full recovery operation. The apparatus 7 determines that the entire recovery operation of the liquid immersion mechanism 1 is completed when the recovery amount of the liquid LQ from the recovery port 22 of the nozzle member 6 becomes less than a predetermined amount (approximately zero).
[0053] 液浸領域 LRの液体 LQを全回収した後、制御装置 7は、搬送装置 8を用いて、照 度センサ 30を基板ステージ 4力も搬出(アンロード)する (ステップ SA8)。  After the liquid LQ in the liquid immersion area LR has been completely recovered, the control device 7 uses the transfer device 8 to unload (unload) the light intensity sensor 30 from the substrate stage 4 (step SA8).
[0054] 基板ステージ 4力 アンロードされた照度センサ 30は、保持装置 (記憶装置) 35に 記憶保持した記憶情報が所定位置に配置された解析装置に抽出 (読み出し)される (ステップ SA9)。  Substrate Stage 4 Force The unloaded illuminance sensor 30 is extracted (read out) by the analysis device in which the stored information held in the holding device (storage device) 35 is placed at a predetermined position (step SA 9).
[0055] 本実施形態のマイクロデバイス(半導体装置)の製造システムにお 、ては、図 6の模 式図に示すように、複数の液浸露光装置 EX1〜EX4が併用される。これら複数の露 光装置 EX1〜EX4は、同一のホストコンピュータ EMに接続されており、それぞれの 稼働状況等がモニターされ、生産管理されている。これらの各露光装置 EX1〜EX4 の照度が、基準照度計としての照度センサ 30により計測され、露光装置間の露光量 をマッチング等させるために使用される。したがって、照度センサ 30の回路素子 35に 記憶保持された記憶情報はホストコンピュータ EMに接続された解析装置で抽出さ れる。 In the micro device (semiconductor device) manufacturing system of the present embodiment, as shown in the schematic view of FIG. 6, a plurality of immersion exposure apparatuses EX1 to EX4 are used in combination. The plurality of exposure devices EX1 to EX4 are connected to the same host computer EM, and the operation status and the like of each are monitored to control production. The illuminance of each of these exposure devices EX1 to EX4 is measured by the illuminance sensor 30 as a reference illuminance meter, and is used to match the exposure amount between the exposure devices. Therefore, the stored information stored and held in the circuit element 35 of the illuminance sensor 30 is extracted by the analyzer connected to the host computer EM. Be
[0056] なお、図 6の模式図においては、各露光装置 EX1〜EX4での計測が完了した後に 、ホストコンピュータ EMに接続された解析装置で各露光装置での計測結果を抽出 するので、照度センサ 30に計測データと一緒に、いずれの露光装置の計測データで あるかを示す情報を保持してもよ!/ヽ。  In the schematic view of FIG. 6, after the measurement in each of the exposure apparatuses EX1 to EX4 is completed, the measurement result in each of the exposure apparatuses is extracted by the analyzer connected to the host computer EM. The sensor 30 may hold information indicating which exposure apparatus is the measurement data together with the measurement data! / ヽ.
[0057] また、図 6の模式図においては、各露光装置 EX1〜EX4での計測か完了した後に 、ホストコンピュータ EMに接続された解析装置で各露光装置での計測結果を抽出し ているが、一つの露光装置での計測完了毎に、所定位置に配置された解析装置で 照度センサ 30に保持された計測データを抽出して、ホストコンピュータ EMに送出し てもよい。この場合、解析装置力もホストコンピュータへ計測データを送出するときに 、 V、ずれの露光装置の計測データであるかを示す情報を一緒に送出してもよ!/、。  Further, in the schematic view of FIG. 6, after the measurement in each of the exposure apparatuses EX1 to EX4 is completed, the measurement result in each of the exposure apparatuses is extracted by the analyzer connected to the host computer EM. The measurement data held by the illuminance sensor 30 may be extracted by an analyzer disposed at a predetermined position every time measurement by one exposure apparatus is completed, and may be sent to the host computer EM. In this case, when the analyzer also sends measurement data to the host computer, it may send information indicating whether it is measurement data of the exposure apparatus with deviation V or not together!
[0058] また、照度センサ 30がその計測データを制御装置 7に無線伝送し、制御装置 7が 露光装置の識別情報 (例えば号機番号など)に対応付けてその計測データをホストコ ンピュータ EMに送出してもよい。なお、図 6の製造システムは 4台の液浸露光装置 E X1〜EX4を備えるものとした力 露光装置の台数、種類はこれ限られるものではなく 、例えば液浸型でな 、通常の露光装置を含むこととしてもょ 、。  Further, the illuminance sensor 30 wirelessly transmits the measurement data to the control device 7, and the control device 7 transmits the measurement data to the host computer EM in association with the identification information of the exposure device (for example, the machine number etc.). May be The manufacturing system of FIG. 6 is provided with four immersion exposure apparatuses E X1 to EX4. The number and type of force exposure apparatuses are not limited thereto. For example, not a liquid immersion type, but a normal exposure apparatus It is also possible to include.
[0059] また、二つの露光装置間における照度センサ 30の搬送は、基板 Pを搬送する搬送 システムを用いてもよ 、し、オペレータが行ってもよ 、。  Further, the conveyance of the illuminance sensor 30 between the two exposure apparatuses may be performed by using a conveyance system which conveys the substrate P, or may be performed by an operator.
[0060] また、各露光装置 EX1〜EX4のそれぞれの基板ステージ 4上には、常設の照度セ ンサ (不図示)が設けられている。常設の照度センサの計測結果を、着脱可能な照度 センサ 30の計測結果を用いて補正することで、常設の照度センサの計測結果から、 他の露光装置との対応が取られた照度を導出することができる。  In addition, on the substrate stage 4 of each of the exposure apparatuses EX1 to EX4, a constant illuminance sensor (not shown) is provided. By correcting the measurement result of the permanent illumination sensor using the measurement result of the detachable illumination sensor 30, the illuminance with which the correspondence with the other exposure apparatus is taken is derived from the measurement result of the permanent illumination sensor. be able to.
[0061] 以上説明したように、基板ステージ 4に対して着脱可能な照度センサ 30によって、 各露光装置間の照度に関する情報を液体 LQを介して円滑に計測することができる。 そして、搬送装置 8を用いて、基板ステージ 4に対して照度センサ 30を円滑に搬送す ることができる。基板ステージ 4の近傍には投影光学系 PL及び各種精密機器 (部材) が配置されているため、例えば作業者が手動によって照度センサ 30を基板ステージ 4に着脱する構成の場合、円滑な作業を行うことが困難となったり、精密機器等を傷 付けてしまったり、露光装置が置かれている環境 (クリーン度、温度、湿度など)を変 動させてしまう等の不都合が生じる。本実施形態では、照度センサ 30を基板 Pとほぼ 同じ外形とし、基板 Pを基板ホルダ 4Hにロード'アンロードする搬送装置 8を用いて、 その照度センサ 30を基板ホルダ 4Hに対して着脱するようにしたので、照度センサ 30 を基板ステージ 4に円滑に着脱することができる。また、照度計測に伴う露光処理の 中断時間を短くすることができるため、露光装置 EXの稼動率を向上することができる As described above, the illuminance sensor 30 which can be attached to and detached from the substrate stage 4 can smoothly measure the information on the illuminance between the exposure devices via the liquid LQ. The illuminance sensor 30 can be smoothly transported to the substrate stage 4 using the transport device 8. Since the projection optical system PL and various precision devices (members) are disposed in the vicinity of the substrate stage 4, for example, when the operator manually detaches the illuminance sensor 30 from the substrate stage 4, smooth operation is performed. Makes it difficult or hurts precision equipment etc. Problems such as changing the environment (cleanness, temperature, humidity, etc.) in which the exposure apparatus is placed. In this embodiment, the illuminance sensor 30 is attached to and detached from the substrate holder 4H by using the transport device 8 which has the illuminance sensor 30 substantially the same outer shape as the substrate P and loads and unloads the substrate P on the substrate holder 4H. Thus, the illuminance sensor 30 can be smoothly attached to and detached from the substrate stage 4. Further, since the interruption time of the exposure processing accompanying the measurement of the illuminance can be shortened, the operation rate of the exposure apparatus EX can be improved.
[0062] また、照度センサ 30は、基板 Pとほぼ同じ外形を有しており、基板ホルダ 4Hに対し て着脱可能であるため、基板 P上に液浸領域 LRを形成するときとほぼ同じ条件 (動 作)で、照度センサ 30の上面 37に液浸領域 LRを形成して、照度に関する情報を計 柳』することができる。 Further, illuminance sensor 30 has substantially the same outer shape as substrate P, and can be attached to and detached from substrate holder 4 H. Therefore, almost the same conditions as when forming liquid immersion area LR on substrate P In (operation), the liquid immersion area LR can be formed on the upper surface 37 of the illuminance sensor 30 to calculate information on the illuminance.
[0063] また、透過部材 33のうち液浸領域 LRが形成される第 1面 37Aには膜 41を形成せ ず、その第 1面 37Aの周囲に配置された第 2面 37Bには膜 41を形成したので、液体 LQの流出を抑え、照度センサ 30の計測精度を維持することができる。  In addition, the film 41 is not formed on the first surface 37A of the transmission member 33 where the liquid immersion area LR is formed, and the film 41 is formed on the second surface 37B disposed around the first surface 37A. Therefore, it is possible to suppress the outflow of the liquid LQ and maintain the measurement accuracy of the illuminance sensor 30.
[0064] また、本実施形態においては、初期満たし動作を照度センサ 30の上面 37 (第 1面 3 7A)において開始し、照度センサ 30が露光光 ELを計測しているときにも、液浸領域 LRは第 1面 37Aに形成されている。すなわち、照度センサ 30を用いた計測動作中、 液浸領域 LRは常に第 1面 37A上に形成されている。したがって、透過部材 33と基 材 31との間に隙間があっても、その隙間から内部空間 36に液体 LQが浸入すること を抑制することができる。  Further, in the present embodiment, even when the initial filling operation is started on the upper surface 37 (the first surface 37 A) of the illuminance sensor 30 and the illuminance sensor 30 measures the exposure light EL, immersion is performed. The region LR is formed on the first surface 37A. That is, during the measurement operation using the illumination sensor 30, the liquid immersion area LR is always formed on the first surface 37A. Therefore, even if there is a gap between the transmitting member 33 and the base 31, it is possible to suppress the liquid LQ from entering the internal space 36 from the gap.
[0065] また、照度センサ 30の上面 37と基板ステージ 4の上面 4Fとのギャップ G'には液浸 領域 LRが形成されないので、ギャップ G'を介して液体 LQが基板ステージ 4の内部 に浸入することを防止することができる。また、照度センサ 30の第 2面 37Bと基板ステ ージ 4の上面 4Fとはほぼ面一であり、第 2面 37B及び第 2面 37Bの周囲に配置され た基板ステージ 4の上面 4Fは撥液性なので、仮に、液浸領域 LRがギャップ G'を跨 るように形成された場合でも、液体 LQの流出などの不都合の発生を抑制することが できる。  Further, since the immersion area LR is not formed in the gap G ′ between the upper surface 37 of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4, the liquid LQ intrudes into the substrate stage 4 through the gap G ′. Can be prevented. Further, the second surface 37B of the illumination sensor 30 and the upper surface 4F of the substrate stage 4 are substantially flush, and the upper surface 4F of the substrate stage 4 disposed around the second surface 37B and the second surface 37B is repellent Since it is liquid, even if the liquid immersion area LR is formed across the gap G ′, the occurrence of problems such as the outflow of the liquid LQ can be suppressed.
[0066] なお、初期満たし動作を、照度センサ 30の上面 37において開始せず、他の物体 の上面、例えば基板ステージ 4の上面 4Fにおいて初期満たし動作を開始し、その上 面 4Fに液浸領域 LRを形成した後、液浸機構 1による液体 LQの供給動作と回収動 作とを継続して行 、つつ基板ステージ 4を XY平面内で動かし、基板ステージ 4の上 面 4Fに形成されている液浸領域 LRを照度センサ 30の上面 37に移動するようにして もよい。ギャップ G'は微小であり、基板ステージ 4の上面 4F及び照度センサ 30の上 面 37 (第 2面 37B)は撥液性なので、液体 LQの流出あるいは浸入を防止することが できる。また、液浸領域 LRを照度センサ 30の第 2面 37Bと基板ステージ 4の上面 4F との間で移動する場合にぉ 、ても、液体 LQの流出を抑制しつつ液浸領域 LRの移 動を円滑に行うことができる。なお、他の物体は、基板ステージ 4とは独立に可動な計 測ステージなどであってもよ 、。 Note that the initial filling operation is not started on the upper surface 37 of the illumination sensor 30, and the other objects are not After the initial filling operation is started on the upper surface of the substrate stage 4 such as the upper surface 4F of the substrate stage 4 and the immersion area LR is formed on the upper surface 4F, the supply operation and recovery operation of the liquid LQ by the immersion mechanism 1 are continued. Alternatively, the substrate stage 4 may be moved in the XY plane to move the immersion area LR formed on the upper surface 4F of the substrate stage 4 to the upper surface 37 of the illuminance sensor 30. The gap G ′ is minute, and the top surface 4F of the substrate stage 4 and the top surface 37 (second surface 37B) of the illuminance sensor 30 are liquid repellent, so that it is possible to prevent the outflow or penetration of the liquid LQ. In addition, even when the immersion area LR is moved between the second surface 37B of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4, the movement of the immersion area LR while suppressing the outflow of the liquid LQ. Can be done smoothly. The other object may be a measurement stage or the like that is movable independently of the substrate stage 4.
[0067] また、本実施形態においては、照度センサ 30の計測動作が終了した後、照度セン サ 30の上面 37に形成された液浸領域 LRの液体 LQの全回収動作を行っているが、 液体 LQを全回収せずに、液浸機構 1による液体 LQの供給動作と回収動作とを行 、 つつ、基板ステージ 4を XY平面内で移動することによって、液浸領域 LRを照度セン サ 30の上面 37から例えば基板ステージ 4の上面 4Fあるいは基板ステージ 4以外の 物体 (計測ステージなどを含む)上に移動することもできる。  Further, in the present embodiment, after the measurement operation of the illuminance sensor 30 is completed, the entire recovery operation of the liquid LQ in the liquid immersion area LR formed on the upper surface 37 of the illuminance sensor 30 is performed. While the liquid LQ is supplied and recovered by the immersion mechanism 1 without completely recovering the liquid LQ, the substrate sensor 4 is moved in the XY plane to move the immersion area LR to the illuminance sensor 30. It is also possible to move, for example, from the upper surface 37 of the substrate stage 4 to the upper surface 4F of the substrate stage 4 or an object other than the substrate stage 4 (including the measurement stage etc.).
[0068] なお、本実施形態においては、受光素子 34と回路素子 35とが基材 31に一体的に 設けられているが、基材 31に受光素子 34を設け、回路素子 35は基材 31の外側に 設けてもよい。そして、受光素子 34と回路素子 35とを例えば柔軟性を有する接続ケ 一ブルで接続するようにしてもよい。あるいは、受光素子 34と回路素子 35との間で無 線伝送を行ってもよい。  In the present embodiment, although the light receiving element 34 and the circuit element 35 are integrally provided on the base material 31, the light receiving element 34 is provided on the base material 31, and the circuit element 35 is the base material 31. It may be provided outside the The light receiving element 34 and the circuit element 35 may be connected by a flexible connection cable, for example. Alternatively, wireless transmission may be performed between the light receiving element 34 and the circuit element 35.
[0069] <第 2実施形態 >  Second Embodiment
次に、第 2実施形態について図 7を参照しながら説明する。上述の実施形態と同一 又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略 する。  Next, a second embodiment will be described with reference to FIG. The same or equivalent components as or to those of the embodiment described above are designated by the same reference numerals, and the description thereof will be simplified or omitted.
[0070] 図 7において、照度センサ 30は、基材 31と、基材 31に保持された透過部材 33と、 内部空間 36に配置された受光素子 34と、受光素子 34に接続された回路素子 35'と を備えている。本実施形態の回路素子 35'は、受光素子 34に接続され、受光素子 3 4で受光した受光結果を無線送信する送信装置を備えている。また、露光装置 EXは 、照度センサ 30の回路素子 (送信装置) 35'から送信された計測結果を含む無線信 号を受信する受信装置 56を備えている。本実施形態の照度センサ 30も、基板 Pとほ ぼ同じ外形を有し、基板ホルダ 4Hに着脱可能である。また、本実施形態においては 、受信装置 56で受信された計測結果が表示装置 57で表示されるようになっている。 In FIG. 7, the illuminance sensor 30 includes a substrate 31, a transmitting member 33 held by the substrate 31, a light receiving element 34 disposed in the internal space 36, and a circuit element connected to the light receiving element 34. It has 35 'and. The circuit element 35 'of the present embodiment is connected to the light receiving element 34, and the light receiving element 3 A transmitter for wirelessly transmitting the light reception result received in 4 is provided. The exposure apparatus EX further includes a receiving device 56 for receiving a wireless signal including the measurement result transmitted from the circuit element (transmitting device) 35 'of the illumination sensor 30. The illuminance sensor 30 of the present embodiment also has substantially the same outer shape as the substrate P, and is attachable to and detachable from the substrate holder 4H. Further, in the present embodiment, the measurement result received by the receiving device 56 is displayed on the display device 57.
[0071] また、本実施形態においては、照度センサ 30の第 1面 37A及び第 2面 37Bのそれ ぞれを含む上面 37全体に膜 41 'が形成されている。膜 41 'は、撥液性を有するととも に、露光光 ELに対して高い透過性を有し、露光光 EL (紫外光)に対して耐性を有す る材料によって形成されている。本実施形態では、膜 41 'は旭硝子社製「サイトップ」 によって形成されている。  Further, in the present embodiment, the film 41 ′ is formed on the entire upper surface 37 including the first surface 37A and the second surface 37B of the illuminance sensor 30. The film 41 'is made of a material having liquid repellency, high transparency to the exposure light EL, and resistance to the exposure light EL (ultraviolet light). In the present embodiment, the membrane 41 'is formed of "Cytop" manufactured by Asahi Glass Co., Ltd.
[0072] このように、受光素子 34で受光した受光結果を無線送信することもできる。これによ り、例えば受光結果を送信するためのケーブル類を省略することができる。また、本 実施形態のように、サイトップ等力もなる膜 41 'を設けることにより、照度センサ 30の 上面 37を撥液性にすることができ、液体 LQの流出あるいは残留を防止することがで きる。  As described above, the light reception result received by the light receiving element 34 can be wirelessly transmitted. By this, for example, cables for transmitting the light reception result can be omitted. Further, as in the present embodiment, the top surface 37 of the illuminance sensor 30 can be made liquid repellent by providing the film 41 ′ that also has the cytop equal force, and the outflow or the remaining of the liquid LQ can be prevented. Can.
[0073] <第 3実施形態 >  Third Embodiment
次に、第 3実施形態について図 8を参照しながら説明する。以下の説明において、 上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説 明を簡略若しくは省略する。図 8において、透過部材 33の第 1面 37Aと基材 31の第 2面 37Bとの間に段差 58が設けられている。透過部材 33の大きさ(径)は、基材 31の 凹部 38の大きさ (径)よりも大きく形成されており、透過部材 33の下面の周縁領域が 基材 31の上面 37Bの一部に保持されている。また、本実施形態においては、基材 3 1が撥液性を有する材料 (フッ素系榭脂など)で形成されており、撥液性の膜なしに、 第 2面 37Bの表面の撥液性を維持することができる。また、基板ホルダ 4Hに保持さ れた照度センサ 30の上面 37の周縁領域である第 2面 37Bと、その周囲に配置され た基板ステージ 4の上面 4Fとはほぼ面一となつている。  Next, a third embodiment will be described with reference to FIG. In the following description, the component parts identical or equivalent to those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted. In FIG. 8, a step 58 is provided between the first surface 37A of the transmitting member 33 and the second surface 37B of the base 31. The size (diameter) of the transmission member 33 is larger than the size (diameter) of the recess 38 of the base material 31, and the peripheral region of the lower surface of the transmission member 33 is a part of the upper surface 37 B of the base material 31. It is held. Further, in the present embodiment, the base material 31 is formed of a liquid repellent material (such as fluorine resin), and the liquid repellent property of the surface of the second surface 37 B without the liquid repellent film. Can be maintained. Further, the second surface 37B, which is a peripheral region of the upper surface 37 of the illuminance sensor 30 held by the substrate holder 4H, and the upper surface 4F of the substrate stage 4 disposed therearound are substantially flush.
[0074] このように、第 1面 37Aと第 2面 37Bとの間に段差 58が形成されていても、上述の 実施形態と同様に、第 1面 37A上で液体 LQの初期満たし動作及び全回収動作を実 行すれば、その段差 58に液体 LQが残留することが防止される。また、図 8に示すよう に、基材 31の上面 37Bの一部に透過部材 33を載せるように設けることにより、内部 空間 36を大きくすることができ、照度センサ 30の設計の自由度を向上することができ る。また、基板ホルダ 4Hに保持された照度センサ 30の第 2面 37Bと、基板ステージ 4 の上面 4Fとはほぼ面一なので、ギャップ G'を介して液体 LQが基板ステージ 4の内 部あるいは照度センサ 30の下面 43側に浸入することを防止することができる。また、 段差 58が小さく(例えば 2mm以下)、他の物体上で形成した液浸領域 LRを第 1面 3 7A上へ移動するために、液浸領域 LRを照度センサ 30の第 2面 37Bと基板ステージ 4の上面 4Fとの間で移動する場合においても、液体 LQの流出を抑制しつつ液浸領 域 LRの移動を円滑に行うことができる。 Thus, even if the step 58 is formed between the first surface 37A and the second surface 37B, the initial filling operation of the liquid LQ on the first surface 37A and the operation as in the above-described embodiment Perform all recovery operations If this is done, the liquid LQ is prevented from remaining in the step 58. Further, as shown in FIG. 8, by providing the transmissive member 33 on a part of the upper surface 37B of the base material 31, the internal space 36 can be enlarged, and the design freedom of the illuminance sensor 30 is improved. can do. In addition, since the second surface 37B of the illuminance sensor 30 held by the substrate holder 4H and the upper surface 4F of the substrate stage 4 are substantially flush, the liquid LQ may be inside the substrate stage 4 or the illuminance sensor via the gap G '. It can be prevented from infiltrating to the lower surface 43 side of 30. Also, the step 58 is small (for example, 2 mm or less), and the immersion area LR is moved to the second surface 37B of the illumination sensor 30 to move the immersion area LR formed on another object onto the first surface 37A. Even when moving between the substrate stage 4 and the upper surface 4F, the movement of the liquid immersion area LR can be smoothly performed while suppressing the outflow of the liquid LQ.
[0075] なお、上述の各実施形態において、透過部材 33の第 1面 37Aの全体が露光光 EL を透過可能である必要はないので、透過部材 33の第 1面 37Aを露光光 ELを透過し ない材料でコーティングするとともに、その一部に露光光 ELが通過するアパーチャ( 開口)を形成してもよい。この場合、透過部材 33の第 1面 37Aを露光光 ELを透過可 能な撥液性の材料で覆ってもよいし、透過部材 33の第 1面 37Aのうち露光光 ELを 透過しな 、材料でコーティングされた領域の表面のみ撥液性の膜を形成し、露光光 ELが通過するアパーチャ(開口)が形成されている領域の表面に撥液性の膜を形成 しなくてちょい。 In each of the embodiments described above, the entire first surface 37A of the transmitting member 33 need not be able to transmit the exposure light EL, so the first surface 37A of the transmitting member 33 transmits the exposure light EL. It may be coated with a material that does not have to be used, and an aperture (opening) through which the exposure light EL passes may be formed in part of it. In this case, the first surface 37A of the transmissive member 33 may be covered with a liquid repellent material capable of transmitting the exposure light EL, or the first surface 37A of the transmissive member 33 does not transmit the exposure light EL. A liquid repellent film is formed only on the surface of the region coated with the material, and a liquid repellent film is not formed on the surface of the region where the aperture (opening) through which the exposure light EL passes is formed.
[0076] なお、上述の実施形態では照度センサ 30の第 2面 37Bと基板ステージ 4の上面 4F とが面一(同一の高さ)であるものとしたが、これに限らず、照度センサ 30の第 2面 37 Bと基板ステージ 4の上面 4Fとでその高さを異ならせてもよい。例えば、照度センサ 3 0と基板 Pとでその厚さが異なる場合、照度センサ 30を基板ホルダ 4Hで保持すると、 照度センサ 30の上面 37と基板ステージ 4の上面 4Fとでその高さが異なることになる 。なお、照度センサ 30の上面 37と基板ステージ 4の上面 4Fとのギャップが極端に大 きくなる場合は、例えば基板ホルダ 4Hを Z軸方向に微動可能に構成して、そのギヤッ プを小さくする、あるいは零にすることとしてもょ 、。  Although the second surface 37B of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4 are flush (the same height) in the above embodiment, the present invention is not limited to this. The heights of the second surface 37 B and the upper surface 4 F of the substrate stage 4 may be made different. For example, when the illuminance sensor 30 and the substrate P have different thicknesses, when the illuminance sensor 30 is held by the substrate holder 4H, the heights of the upper surface 37 of the illuminance sensor 30 and the upper surface 4F of the substrate stage 4 are different. become . If the gap between the upper surface 37 of the illumination sensor 30 and the upper surface 4F of the substrate stage 4 becomes extremely large, for example, the substrate holder 4H can be finely moved in the Z-axis direction to make its gap smaller. Or as zero.
[0077] また、上述の各実施形態では基板ホルダ 4Hの支持部 51と周壁部 52とがほぼ同じ 高さであるものとしたが、これに限らず、例えば周壁部 52の高さを支持部 51よりも僅 力に低くしてもよい。この場合、周壁部 52の上端面に、先端が支持部 51 (複数のピン 状部材)と同一平面に配置されるピンを設けてもよい。さらに、基板ホルダ 4Hはその 複数のピン状部材が 1つの周壁部 52によって囲まれるものとした力 これに限らず、 例えば基板ホルダ 4Hの載置面を複数のブロックに分け、ブロック毎に複数のピン状 部材を周壁部で囲むようにしてもよい。また、基板ホルダ 4Hはピンチャック方式であ るものとしたが、これに限らず、例えば複数の同心円状の凸部を有するホルダなどで もよい。なお、上述の各実施形態では図示していないが、例えば基板ホルダ 4Hの貫 通孔を介して Z軸方向に可動なピン部材が基板ステージ 4に設けられており、このピ ン部材によって搬送装置 8と基板ステージ 4との間で基板 P及び照度センサ 30の受 け渡しが行われるようになって!/、る。 In each of the above-described embodiments, the support 51 and the peripheral wall 52 of the substrate holder 4 H have substantially the same height. However, the present invention is not limited to this. For example, the height of the peripheral wall 52 may be a support Closer than 51 May be low on force. In this case, a pin whose tip is disposed on the same plane as the support portion 51 (a plurality of pin-like members) may be provided on the upper end surface of the peripheral wall portion 52. Furthermore, the substrate holder 4H has a plurality of pin-like members surrounded by one peripheral wall 52. Not limited to this, for example, the mounting surface of the substrate holder 4H is divided into a plurality of blocks, and a plurality of blocks are provided for each block. The pin-shaped member may be surrounded by a peripheral wall portion. In addition, although the substrate holder 4H is of the pin chuck type, the present invention is not limited to this. For example, a holder having a plurality of concentric convex portions may be used. Although not shown in the above-described embodiments, for example, a pin member movable in the Z-axis direction is provided on the substrate stage 4 via the through hole of the substrate holder 4H, and the transfer device Delivery of the substrate P and the illuminance sensor 30 is performed between 8 and the substrate stage 4! /.
[0078] なお、上述の各実施形態にお!、ては、照度センサ 30は、基板ステージ 4の基板ホ ルダ 4Hに対して着脱可能に設けられて 、るが、例えば基板ステージ 4の上面 4Fの 基板ホルダ 4Hの近傍などに専用の装着領域設け、その装着領域に対して着脱可能 に設けられてもよい。この場合、例えば搬送装置 8によって搬送可能であれば、照度 センサ 30はその大きさ、外形などが基板 Pと同一でなくてもよい。  In each of the embodiments described above, the illuminance sensor 30 is detachably provided to the substrate holder 4 H of the substrate stage 4, for example, the upper surface 4 F of the substrate stage 4. A dedicated mounting area may be provided in the vicinity of the substrate holder 4H or the like, and may be detachably provided to the mounting area. In this case, for example, the size and the outer shape of the illuminance sensor 30 may not be the same as that of the substrate P as long as they can be transported by the transport device 8, for example.
[0079] なお、上述の各実施形態においては、照度センサ 30の外形は、基板 P (ウエノ、)と 同じほぼ円形板状であるが、例えば、液晶表示デバイスを製造する露光装置におい ては、その露光対象としてのガラス基板と略同一形状、即ち、矩形板状に形成された ものであってもよい。  In each of the above-described embodiments, the outer shape of the illuminance sensor 30 is substantially the same circular plate as the substrate P (Ueno), but, for example, in an exposure apparatus for manufacturing a liquid crystal display device, It may be formed in substantially the same shape as the glass substrate as the exposure target, that is, in the form of a rectangular plate.
[0080] なお、上述の各実施形態においては、照度センサ 30は、基板 (ウェハ)とほぼ同じ 外形を有しているが、基板ステージ 4 (基板ホルダ 4H)に対して着脱可能であり、露 光光 ELに関する情報を計測可能であれば、基板 (ウェハ)と異なる形状であってもよ い。同様に、照度センサ 30はその大きさが基板 (ウェハ)と異なってもよい。  In each of the above-described embodiments, the illuminance sensor 30 has substantially the same outer shape as the substrate (wafer), but is detachable from the substrate stage 4 (substrate holder 4H). Light Light It may be shaped differently from the substrate (wafer) as long as it can measure information on EL. Similarly, the illumination sensor 30 may differ in size from the substrate (wafer).
[0081] なお、照度センサ 30は、例えば、フォトリソグラフィの手法を用いて、半導体ウェハ に受光素子 (受光系)を形成するようにしてもよい。また、半導体ウェハに対して受光 系が着脱可能に設けられてもよい。  The illuminance sensor 30 may form a light receiving element (light receiving system) on a semiconductor wafer using, for example, a photolithography method. In addition, the light receiving system may be provided detachably to the semiconductor wafer.
[0082] 上述の各実施形態では、露光光 ELに関する情報を計測する計測装置として、露 光光 ELの照度を計測する照度センサを例にして説明したが、露光光 ELに関する情 報を計測する計測装置としては、露光光 ELの照度むらを計測するむらセンサ、空間 像 (投影像)を計測する空間像計測センサなど、任意の構成を採用することができる In each of the above-described embodiments, an illuminance sensor for measuring the illuminance of the exposure light EL has been described as an example of a measurement device for measuring information related to the exposure light EL. As a measuring device which measures information, arbitrary constitutions, such as a nonuniformity sensor which measures illumination nonuniformity of exposure light EL, a space image measurement sensor which measures a space image (projected image), can be adopted.
[0083] また、上記各実施形態では干渉計システム(3L、 4L)を用いてマスクステージ 3及 び基板ステージ 4の各位置情報を計測するものとした力 これに限らず、例えばステ ージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもょ ヽ 。この場合、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステム とし、干渉計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キ ヤリブレーシヨン)を行うことが好ましい。また、干渉計システムとエンコーダシステムと を切り替えて用いる、あるいはその両方を用いて、ステージの位置制御を行うようにし てもよい。 In each of the above-described embodiments, the interferometer system (3 L, 4 L) is used to measure the positional information of the mask stage 3 and the substrate stage 4 without being limited thereto. You may use an encoder system to detect the provided scale (diffraction grating). In this case, it is preferable to use a hybrid system including both an interferometer system and an encoder system, and perform calibration (calibration) of the measurement results of the encoder system using the measurement results of the interferometer system. In addition, position control of the stage may be performed using switching between the interferometer system and the encoder system, or both of them.
[0084] 上述したように、上記各実施形態における液体 LQは純水により構成されている。純 水は、半導体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジ スト及び光学素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境 に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、 及び投影光学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期 待できる。  As described above, the liquid LQ in each of the above embodiments is composed of pure water. Pure water can be easily obtained in large quantities in semiconductor manufacturing plants etc., and has the advantage that it does not adversely affect the photoresist on the substrate P, optical elements (lenses) and the like. In addition, since pure water has no adverse effect on the environment and the content of impurities is extremely low, the function of cleaning the surface of the substrate P and the surface of the optical element provided on the tip surface of the projection optical system PL is also expected. it can.
[0085] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4であり、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 、た場合 、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が得られる。 更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大されるため、 空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光 学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。  The refractive index n of pure water (water) for exposure light EL having a wavelength of about 193 nm is approximately 1.44, and ArF excimer laser light (wavelength 193 nm) is used as a light source for exposure light EL. In the case, on the substrate P, the wavelength is shortened to 1 Zn, that is, about 134 nm to obtain high resolution. Furthermore, since the depth of focus is expanded by about n times, that is, by about 1.44 times in air, the projection optical system should be able to ensure the same depth of focus as in air. The numerical aperture of PL can be further increased, which also improves the resolution.
[0086] また、上記各実施形態では、投影光学系 PLの先端に光学素子 FLが取り付けられ ており、この光学素子により投影光学系 PLの光学特性、例えば収差 (球面収差、コ マ収差等)の調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学 素子としては、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよ V、。あるいは露光光 ELを透過可能な平行平面板 (カバーガラスなど)であってもよ ヽ [0087] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。 Further, in each of the above embodiments, the optical element FL is attached to the tip of the projection optical system PL, and the optical characteristic of the projection optical system PL, for example, an aberration (spherical aberration, comatic aberration, etc.) by this optical element. Adjustments can be made. The optical element attached to the tip of the projection optical system PL may be an optical plate used to adjust the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate (cover glass etc.) capable of transmitting exposure light EL. When the pressure between the optical element at the tip of the projection optical system PL and the substrate P generated by the flow of the liquid LQ is large, the optical element is not replaceable but the pressure is not optical. The element does not move, it may be fixed as firmly.
[0088] なお、上記各実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満た されて ヽる構成であるが、例えば基板 Pの表面に平行平面板カゝらなるカバーガラスを 取り付けた状態で液体 LQを満たす構成であってもよい。 In each of the above-described embodiments, the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ. For example, a cover formed of a plane parallel plate on the surface of the substrate P The liquid LQ may be filled with the glass attached.
[0089] また、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間を 液体で満たしているが、国際公開第 2004Z019128号パンフレットに開示されてい るように、先端の光学素子の物体面側の光路空間も液体で満たす投影光学系を採 用することちでさる。 In addition, although the projection optical system of the above-described embodiment fills the light path space on the image plane side of the optical element at the tip with the liquid, as disclosed in WO 2004Z01918 pamphlet, It is possible to adopt a projection optical system in which the optical path space on the object plane side of the optical element is also filled with the liquid.
[0090] なお、上記各実施形態の液体 LQは水(純水)であるが、水以外の液体であってもよ い、例えば、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過し  Although the liquid LQ in each of the above embodiments is water (pure water), it may be a liquid other than water. For example, when the light source of the exposure light EL is an F laser, this F laser may be used. Light penetrates the water
2 2  twenty two
ないので、液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル(  As the liquid LQ, for example, perfluorinated
2  2
PFPE)、あるいはフッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜 を形成することで親液化処理する。また、液体 LQとしては、その他にも、露光光 EL に対する透過性があってできるだけ屈折率が高ぐ投影光学系 PL及び基板 P表面に 塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可 能である。  It may be a fluorinated fluid such as PFPE) or a fluorinated oil. In this case, the portion in contact with the liquid LQ is subjected to lyophilic treatment, for example, by forming a thin film of a substance of molecular structure with a small polarity containing fluorine. In addition, as the liquid LQ, there is also a liquid LQ that is stable against the photoresist applied on the surface of the projection optical system PL and the substrate P that is as high as possible in the refractive index because it is transparent to the exposure light EL (for example, It is also possible to use oil).
[0091] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。更に、 石英あるいは蛍石よりも屈折率が高い(例えば 1. 6以上)材料で光学素子 FLを形成 してもよい。液体 LQとして、種々の液体、例えば、超臨界流体を用いることも可能で ある。  In addition, as the liquid LQ, one having a refractive index of about 1.6 to 1.8 may be used. Furthermore, the optical element FL may be formed of a material having a refractive index (eg, 1.6 or more) higher than that of quartz or fluorite. It is also possible to use various liquids, for example supercritical fluids, as the liquid LQ.
[0092] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)等が適用される。 [0093] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。 The substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices, but also for glass substrates for display devices, ceramic thin films for thin film magnetic heads, or exposure devices. A mask or reticle original plate (synthetic quartz, silicon wafer) or the like is applied. [0093] As the exposure apparatus EX, a step-and- 'scan type scanning exposure apparatus (scanning step) in which the mask M and the substrate P are synchronously moved to scan the pattern of the mask M in addition to the mask The present invention can also be applied to a step-and-repeat projection exposure apparatus (step) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
[0094] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。  In addition, as the exposure apparatus EX, with the first pattern and the substrate P substantially stationary, a reduction image of the first pattern is projected onto a projection optical system (for example, a reflective element is not included at a 1Z8 reduction ratio, The present invention can also be applied to an exposure apparatus of a method of collectively exposing a substrate P using a projection optical system). In this case, further, after the second pattern and the substrate P are substantially stationary, a reduced image of the second pattern is partially overlapped with the first pattern using the projection optical system, and is collectively exposed on the substrate P. The invention can also be applied to a batch exposure apparatus of the stitch method. In addition, as the exposure method of the stitch method, it is also applicable to a step-and-stitch method exposure device in which at least two patterns are partially overlapped and transferred on the substrate P and the substrate P is sequentially moved.
[0095] また、上記各実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明し てきたが、投影光学系 PLを用いない露光装置及び露光方法に本発明を適用するこ とができる。投影光学系を用いない場合であっても、露光光はマスク又はレンズなど の光学部材を介して基板に照射され、そのような光学部材と基板との間の所定空間 に液浸領域が形成される。  In each of the above embodiments, the exposure apparatus including the projection optical system PL has been described as an example, but the present invention is applied to an exposure apparatus and an exposure method that do not use the projection optical system PL. Can. Even when the projection optical system is not used, the exposure light is irradiated to the substrate through an optical member such as a mask or a lens, and a liquid immersion area is formed in a predetermined space between such an optical member and the substrate. Ru.
[0096] また、本発明は、例えば特開平 10— 163099号公報及び特開平 10— 214783号 公報(対応米国特許第 6, 590, 634号)、特表 2000— 505958号公報(対応米国 特許第 5, 969, 441号)、米国特許第 6, 208, 407号などに開示されているような複 数の基板ステージを備えたツインステージ型の露光装置にも適用できる。  Further, the present invention is disclosed, for example, in JP-A-10-163099 and JP-A-10-214783 (Corresponding US Patent No. 6,590, 634) and JP-A 2000-505958 (Corresponding US Patent No. The present invention can also be applied to a twin-stage type exposure apparatus provided with a plurality of substrate stages as disclosed in US Pat. No. 5, 969, 441), US Pat. No. 6, 208, 407 and the like.
[0097] 更に、例えば特開平 11— 135400号公報(対応国際公開 1999/23692)、ある いは特開 2000— 164504号公報(対応米国特許第 6, 897, 963号)に開示されて V、るように、基板を保持する基板ステージと基準マークが形成された基準部材及び Z又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を 適用することができる。  Furthermore, for example, as disclosed in JP-A-11-135400 (Corresponding International Publication 1999/23692) or JP-A 2000-164504 (Corresponding US Patent No. 6, 897, 963), V, The present invention can also be applied to an exposure apparatus provided with a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and a measurement stage on which Z or various photoelectric sensors are mounted.
[0098] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体 を満たす露光装置を採用しているが、本発明は、例えば特開平 6— 124873号公報 、特開平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されているよ うな露光対象の基板の表面全体が液体中に浸かって ヽる状態で露光を行う液浸露 光装置にも適用可能である。 Further, in the above embodiment, the liquid locally between the projection optical system PL and the substrate P In the present invention, the exposure apparatus disclosed in, for example, Japanese Patent Laid-Open Nos. 6-124873, 10-303114, and US Pat. No. 5, 825, 043 is used. The present invention is also applicable to an immersion / exposure apparatus that performs exposure while the entire surface of the target substrate is immersed in liquid and swirls.
[0099] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。 The type of exposure apparatus EX is not limited to the exposure apparatus for producing a semiconductor element that exposes a semiconductor element pattern on a substrate P, and an exposure apparatus for producing a liquid crystal display element or a display, a thin film magnetic head, imaging It can be widely applied to an exposure apparatus for manufacturing a device (CCD), a micromachine, a MEMS, a DNA chip, or a reticle or a mask.
[0100] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 む)を用いてもよい。  In the above-described embodiment, the force using a light transmission type mask in which a predetermined light shielding pattern (or phase pattern 'light reduction pattern) is formed on a light transmitting substrate is replaced with this mask. For example, as disclosed in US Pat. No. 6,778,257, an electronic mask (variable shaped mask) that forms a transmission pattern or a reflection pattern or a light emission pattern based on the electronic data of a pattern to be exposed It is also possible to use, for example, DMD (Digital Micro-mirror Device), which is a type of non-light emitting type image display device (spatial light modulator), and the like.
[0101] また、例えば国際公開第 2001Z035168号パンフレットに開示されているように、 干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパター ンを露光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。  Also, as disclosed in, for example, WO 2001Z035168, an exposure apparatus that exposes a line 'and' space pattern on a substrate P by forming interference fringes on the substrate P (lithography The present invention can also be applied to
[0102] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に 開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合 成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ同時に二重露光 する露光装置にも本発明を適用することができる。  Furthermore, as disclosed in, for example, JP-A-2004-519850 (Corresponding US Pat. No. 6,611, 316), two mask patterns are combined on a substrate via a projection optical system. The present invention can also be applied to an exposure apparatus that double-exposures one shot area on a substrate substantially simultaneously by one scan exposure.
[0103] なお、本国際出願で指定又は選択された国の法令で許容される限りにおいて、上 記各実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び 米国特許の開示を援用して本文の記載の一部とする。  As long as the laws of the country designated or selected in this international application permit, the disclosures of all the published publications and US patents relating to the exposure apparatus and the like cited in the above embodiments and modifications are incorporated. And be part of the text.
[0104] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。 As described above, the exposure apparatus EX according to the embodiment of the present invention has various mechanical systems including the respective constituent elements recited in the claims of the present application, with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep the degree. In order to ensure these various accuracies, before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, various electrical systems Adjustments will be made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, wiring connection of electric circuits, piping connection of pressure circuits, etc. among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the process for assembling the various subsystems into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, general adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable that the manufacturing of the exposure apparatus be performed in a clean room in which the temperature, the clean degree, etc. are controlled.
[0105] 半導体デバイス等のマイクロデバイスは、図 9に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光した基 板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などの基板処 理プロセスを含むステップ 204、デバイス組み立てステップ(ダイシング工程、ボンデ イング工程、ノ ッケージ工程などの加工プロセスを含む) 205、検査ステップ 206等を 経て製造される。  [0105] As shown in FIG. 9, a micro device such as a semiconductor device has a step 201 of performing function / performance design of the micro device, a step 202 of manufacturing a mask (reticle) based on this design step, and 202 Step 203 of manufacturing a substrate which is a base material, step of exposing the mask pattern onto the substrate by the exposure apparatus EX of the embodiment described above, step of developing the exposed substrate, heating (curing) and etching step of the developed substrate And the like, a device assembly step (including a processing step such as a dicing step, a bonding step, and a packaging step) 205, an inspection step 206, and the like.
産業上の利用可能性  Industrial applicability
[0106] 本発明によれば、液浸露光装置における露光光に関する情報を円滑に計測するこ とができ、露光処理を精度良く行うことができる。それゆえ、本発明は、それゆえ、本 発明は、例えば半導体素子、液晶表示素子又はディスプレイ、薄膜磁気ヘッド、 CC D、マイクロマシン、 MEMS, DNAチップ、レチクル(マスク)のような広範囲な製品を 製造するための露光方法及び装置に極めて有用となる。 According to the present invention, information on exposure light in a liquid immersion exposure apparatus can be measured smoothly, and exposure processing can be performed with high accuracy. Therefore, the present invention, therefore, the present invention produces a wide range of products, such as semiconductor devices, liquid crystal display devices or displays, thin film magnetic heads, CCDs, micromachines, MEMS, DNA chips, reticles (masks). It is extremely useful for an exposure method and apparatus for

Claims

請求の範囲  The scope of the claims
[I] 露光光に関する情報を計測する計測装置であって、  [I] A measuring device for measuring information related to exposure light,
液体を介して前記露光光が照射される基板を保持する基板ステージに対して着脱 可能であるとともに前記基板ステージに保持された状態で液体を介して前記露光光 を受光する受光系を備える計測装置。  A measuring apparatus comprising: a light receiving system which is attachable to and detachable from a substrate stage holding a substrate to which the exposure light is irradiated via a liquid, and which receives the exposure light via the liquid while being held by the substrate stage .
[2] 前記受光系は、前記基板ステージに設けられた前記基板を保持するための基板ホ ルダに対して着脱可能である請求項 1記載の計測装置。  [2] The measurement apparatus according to claim 1, wherein the light receiving system is attachable to and detachable from a substrate holder for holding the substrate provided on the substrate stage.
[3] 前記受光系は、前記基板とほぼ同じ外形を有する請求項 1又は 2記載の計測装置 [3] The measuring device according to claim 1 or 2, wherein the light receiving system has substantially the same outer shape as the substrate.
[4] 前記受光系は、前記液体に対して撥液性を有する領域を有する請求項 1〜3のい ずれか一項記載の計測装置。 [4] The measuring device according to any one of claims 1 to 3, wherein the light receiving system has a region having liquid repellency to the liquid.
[5] 前記受光系は、前記露光光が透過する透過部材と、前記透過部材を透過した前記 露光光を受光する受光器とを有する請求項 1〜4のいずれか一項記載の計測装置。 [5] The measurement apparatus according to any one of claims 1 to 4, wherein the light receiving system includes a transmitting member through which the exposure light is transmitted, and a light receiver which receives the exposure light transmitted through the transmitting member.
[6] 前記透過部材の上面に液浸領域が形成される請求項 5記載の計測装置。 [6] The measurement device according to claim 5, wherein a liquid immersion area is formed on the upper surface of the transmission member.
[7] 前記受光系は、前記透過部材を保持するとともに、前記受光器が配置される内部 空間を有する基材を有する請求項 5または 6記載の計測装置。 [7] The measuring device according to claim 5 or 6, wherein the light receiving system holds the transmission member and has a base having an internal space in which the light receiver is disposed.
[8] 前記受光系は、前記液体が配置される第 1面と、前記第 1面の外側に配置され、撥 液性を有する第 2面とを有する請求項 1から 7のいずれか一項記載の計測装置。 [8] The light receiving system according to any one of claims 1 to 7, having a first surface on which the liquid is disposed, and a second surface disposed outside the first surface and having liquid repellency. Measuring device as described.
[9] 前記第 1面と前記第 2面とはほぼ面一である請求項 8記載の計測装置。 [9] The measurement device according to claim 8, wherein the first surface and the second surface are substantially flush.
[10] 前記第 1面と前記第 2面との間に段差が設けられる請求項 8記載の計測装置。 [10] The measuring device according to claim 8, wherein a step is provided between the first surface and the second surface.
[II] 前記受光系の受光結果を保持する保持装置をさらに備えた請求項 1〜10のいず れか一項記載の計測装置。  [II] The measurement apparatus according to any one of claims 1 to 10, further comprising a holding device for holding the light reception result of the light reception system.
[12] 前記受光系の受光結果を無線送信する送信装置をさらに備えた請求項 1〜11の [12] The transmitter according to any one of claims 1 to 11, further comprising: a transmission device for wirelessly transmitting the light reception result of the light reception system
V、ずれか一項記載の計測装置。 V, measurement device according to one or more items.
[13] 前記露光光の照度が計測される請求項 1〜12のいずれか一項記載の計測装置。 [13] The measuring device according to any one of claims 1 to 12, wherein the illuminance of the exposure light is measured.
[14] 液体を介して露光光で基板を露光する露光装置にお!、て、 [14] An exposure apparatus that exposes a substrate with exposure light through a liquid!
請求項 1〜13のいずれか一項に記載の計測装置を着脱可能に保持する可動体を 備える露光装置。 An exposure apparatus comprising: a movable body that detachably holds the measurement apparatus according to any one of claims 1 to 13.
[15] 液体を介して基板を露光する露光装置であって、 [15] An exposure apparatus that exposes a substrate through a liquid,
前記基板を保持する基板ステージと、  A substrate stage for holding the substrate;
露光光に関する情報を計測する計測装置と、を備え、  And a measuring device for measuring information on exposure light,
前記計測装置は、前記基板ステージに対して着脱可能であり、かつ前記基板ステ ージに保持された状態で前記液体を介して前記露光光を受光する受光系を有する 露光装置。  An exposure apparatus comprising: a light receiving system that is detachable from the substrate stage and that receives the exposure light via the liquid in a state of being held by the substrate stage.
[16] 前記基板ステージに対して前記受光系を搬送する搬送装置をさらに備えた請求項 15記載の露光装置。  [16] The exposure apparatus according to claim 15, further comprising a transfer device for transferring the light receiving system to the substrate stage.
[17] 前記受光系の一面に液浸領域を形成する液浸機構をさらに備えた請求項 15又は 16記載の露光装置。  [17] The exposure apparatus according to [15] or [16], further comprising a liquid immersion mechanism that forms a liquid immersion area on one surface of the light receiving system.
[18] 前記液浸機構は、前記液浸領域を形成するための液体の供給動作を前記受光器 の前記一面において開始する請求項 17記載の露光装置。  18. The exposure apparatus according to claim 17, wherein the liquid immersion mechanism starts a liquid supply operation for forming the liquid immersion area on the one surface of the light receiver.
[19] 前記計測装置における前記露光光の計測に並行して、前記液浸機構における液 体の供給及び回収が行われる請求項 17又は 18記載の露光装置。 19. The exposure apparatus according to claim 17, wherein supply and recovery of the liquid in the liquid immersion mechanism are performed in parallel with the measurement of the exposure light in the measurement apparatus.
[20] 前記基板ステージは、前記受光系の外側に配置され、前記受光器における前記液 体が配置される面またはその外側の面とほぼ面一である第 3面を有する請求項 15〜[20] The substrate stage is disposed outside the light receiving system, and has a third surface that is substantially flush with the surface of the light receiver on which the liquid is disposed or the outer surface thereof.
19のいずれか一項記載の露光装置。 19. The exposure apparatus according to any one of 19.
[21] 前記基板ステージは、前記受光系の側面に対向し、前記受光系の側面との間に所 定のギャップが形成される内側面を有する請求項 15〜20のいずれか一項記載の露 光装置。 21. The substrate stage according to any one of claims 15 to 20, wherein the substrate stage has an inner side surface facing the side surface of the light receiving system and having a predetermined gap formed with the side surface of the light receiving system. Exposure device.
[22] 請求項 14〜21のいずれか一項記載の露光装置を用いるデバイス製造方法。  [22] A device manufacturing method using the exposure apparatus according to any one of claims 14 to 21.
PCT/JP2006/312414 2005-06-22 2006-06-21 Measuring apparatus, exposure apparatus, and device manufacturing method WO2006137440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522316A JPWO2006137440A1 (en) 2005-06-22 2006-06-21 Measuring apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005181712 2005-06-22
JP2005-181712 2005-06-22

Publications (1)

Publication Number Publication Date
WO2006137440A1 true WO2006137440A1 (en) 2006-12-28

Family

ID=37570468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312414 WO2006137440A1 (en) 2005-06-22 2006-06-21 Measuring apparatus, exposure apparatus, and device manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2006137440A1 (en)
KR (1) KR20080017299A (en)
TW (1) TW200705117A (en)
WO (1) WO2006137440A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017111A1 (en) * 2007-07-31 2009-02-05 Nikon Corporation Method for adjusting exposure apparatus, exposure apparatus and device manufacturing method
JP2010129602A (en) * 2008-11-25 2010-06-10 Shinko Electric Ind Co Ltd Light source controlling circuit and direct exposure equipment
CN104321702A (en) * 2012-05-22 2015-01-28 Asml荷兰有限公司 Sensor, lithographic apparatus and device manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160948B1 (en) * 2008-04-16 2012-06-28 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus
EP2131241B1 (en) * 2008-05-08 2019-07-31 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
EP2249205B1 (en) 2008-05-08 2012-03-07 ASML Netherlands BV Immersion lithographic apparatus, drying device, immersion metrology apparatus and device manufacturing method
US8817236B2 (en) * 2008-05-13 2014-08-26 Nikon Corporation Movable body system, movable body drive method, pattern formation apparatus, pattern formation method, exposure apparatus, exposure method, and device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2005012201A (en) * 2003-05-28 2005-01-13 Nikon Corp Exposure method, aligner and device manufacturing method
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JP2005093948A (en) * 2003-09-19 2005-04-07 Nikon Corp Aligner and its adjustment method, exposure method, and device manufacturing method
JP2005116570A (en) * 2003-10-02 2005-04-28 Nikon Corp Aligner and method of manufacturing device
JP2005129914A (en) * 2003-10-02 2005-05-19 Nikon Corp Aligner and exposure method, and method for manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2005012201A (en) * 2003-05-28 2005-01-13 Nikon Corp Exposure method, aligner and device manufacturing method
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JP2005093948A (en) * 2003-09-19 2005-04-07 Nikon Corp Aligner and its adjustment method, exposure method, and device manufacturing method
JP2005116570A (en) * 2003-10-02 2005-04-28 Nikon Corp Aligner and method of manufacturing device
JP2005129914A (en) * 2003-10-02 2005-05-19 Nikon Corp Aligner and exposure method, and method for manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017111A1 (en) * 2007-07-31 2009-02-05 Nikon Corporation Method for adjusting exposure apparatus, exposure apparatus and device manufacturing method
JP2010129602A (en) * 2008-11-25 2010-06-10 Shinko Electric Ind Co Ltd Light source controlling circuit and direct exposure equipment
CN104321702A (en) * 2012-05-22 2015-01-28 Asml荷兰有限公司 Sensor, lithographic apparatus and device manufacturing method
CN104321702B (en) * 2012-05-22 2016-11-23 Asml荷兰有限公司 Sensor, lithographic equipment and device making method

Also Published As

Publication number Publication date
TW200705117A (en) 2007-02-01
KR20080017299A (en) 2008-02-26
JPWO2006137440A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4888388B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP5273163B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US8243254B2 (en) Exposing method, exposure apparatus, and device fabricating method
JP2011044725A (en) Aligner and device manufacturing method
JP2005012201A (en) Exposure method, aligner and device manufacturing method
US20160124317A1 (en) Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
US7924416B2 (en) Measurement apparatus, exposure apparatus, and device manufacturing method
WO2006137440A1 (en) Measuring apparatus, exposure apparatus, and device manufacturing method
JP2011199316A (en) Exposure method
JP5655903B2 (en) Exposure apparatus adjustment method, exposure apparatus, and device manufacturing method
EP2392971B1 (en) Surface treatment method, surface treatment apparatus, exposure method and exposure apparatus
JP4544303B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR20170091789A (en) Stage apparatus, exposure apparatus, exposure method, and device fabrication method
US20080212047A1 (en) Exposure apparatus, exposing method, and device fabricating method
JP2005203681A (en) Aligner and exposure method, and device manufacturing method
JP2013105781A (en) Substrate holding device, exposure device, and device manufacturing method
JP5262455B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2013102029A (en) Exposure device, exposure method, manufacturing method of device, program, and recording medium
JP2010056453A (en) Exposure system, exposure method, and device manufacturing device
JP2009182110A (en) Exposure system, exposure method and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077024798

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007522316

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767073

Country of ref document: EP

Kind code of ref document: A1