WO2006137375A1 - マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア伝送方式を用いた送信方法及び受信方法 - Google Patents

マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア伝送方式を用いた送信方法及び受信方法 Download PDF

Info

Publication number
WO2006137375A1
WO2006137375A1 PCT/JP2006/312280 JP2006312280W WO2006137375A1 WO 2006137375 A1 WO2006137375 A1 WO 2006137375A1 JP 2006312280 W JP2006312280 W JP 2006312280W WO 2006137375 A1 WO2006137375 A1 WO 2006137375A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
vector
multicarrier
unit
carrier
Prior art date
Application number
PCT/JP2006/312280
Other languages
English (en)
French (fr)
Inventor
Tomohiro Kimura
Yukihiro Omoto
Kenichi Mori
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007522281A priority Critical patent/JP4898674B2/ja
Priority to CN2006800224580A priority patent/CN101204032B/zh
Priority to EP06766941.6A priority patent/EP1876742A4/en
Priority to US11/915,444 priority patent/US8090034B2/en
Publication of WO2006137375A1 publication Critical patent/WO2006137375A1/ja
Priority to US13/307,470 priority patent/US8199838B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding

Definitions

  • Multi-carrier transmission system transmission apparatus and reception apparatus and multi-carrier transmission system transmission method and reception method
  • the present invention relates to a multi-carrier transmission system, and more specifically, reduces inter-carrier interference caused by fluctuations in transmission path response in mobile communication and phase noise generated in a transmission / reception apparatus. It is related to the technology.
  • Orthogonal Frequency Division Multiplexing is a method for performing stable communication over transmission paths with multipath delay dispersion, such as terrestrial digital television broadcasting and wireless local area networks (LAN).
  • Multiple-carrier transmission schemes represented by multiple transmission schemes (hereinafter referred to as OFDM transmission schemes) are widely used.
  • OFDM transmission schemes represented by multiple transmission schemes (hereinafter referred to as OFDM transmission schemes) are widely used.
  • frequency variation due to the Doppler phenomenon and amplitude variation of the received signal due to delay dispersion due to multipath occur.
  • phase variation may occur due to phase noise of the oscillation circuit in the frequency converter of the transmission device or the reception device.
  • the OFDM transmission method is a method in which the modulated waves of each subcarrier are densely multiplexed and transmitted so that their frequency spectra overlap each other. Therefore, when the OFDM transmission method is used for mobile communication, the orthogonality between subcarriers is lost due to the above-mentioned frequency fluctuation, amplitude fluctuation, or phase fluctuation, and intercarrier interference occurs between subcarriers. There is a problem that communication quality deteriorates.
  • Non-Patent Document 1 As a conventional inter-carrier interference reduction technique in the OFDM transmission method, a method described in Non-Patent Document 1 (hereinafter referred to as a self-cancellation method) is known. This self-cancellation method divides a plurality of subcarriers in the OFDM transmission system into a plurality of groups each having L subcarriers (L is an integer of 2 or more) in which the frequency allocation is continuous. A specific correlation is given to the modulation of L subcarriers. Thereby, the inter-carrier interference is canceled and suppressed.
  • L an integer of 2 or more
  • FIG. 11 is a block diagram showing a configuration of a transmission device and a reception device in the OFDM transmission method using the self-cancellation method.
  • Figure 12 shows (a) the arrangement state of the modulation vectors when the modulation vectors are arranged on the subcarrier frequency axis, and (b) the modulation vectors and the carriers in the OFDM transmission system using the self-cancellation method. It is a figure which shows each signal point arrangement
  • transmitting apparatus 101 receives transmission data, performs OFDM modulation on a carrier based on the input transmission data, generates an OFDM signal, and transmits the OFDM signal.
  • the OFDM signal transmitted from the transmission apparatus 101 is received by the reception apparatus 102 via the transmission path 103.
  • Receiving apparatus 102 demodulates the OFDM signal received via transmission path 103 and outputs received data.
  • Transmitting apparatus 101 includes vector modulation section 111, canceling modulation section 112, IDFT (Inverse Discrete Fourier Transform) section 113, guard interval-equipped guard section 114, and frequency conversion section 115.
  • IDFT Inverse Discrete Fourier Transform
  • the IDFT unit 113 and the guard interval adding unit 114 constitute a multicarrier modulation unit 126. The operation of each part of transmitting apparatus 101 will be described below. In order to briefly explain the gist of the prior art, the operation per symbol in the OFDM transmission system will be described.
  • K-bit transmission data is input to transmission apparatus 101 for each symbol in the OFDM transmission scheme.
  • Transmission data input to the transmission apparatus 101 is supplied to the vector modulation unit 111.
  • Vector modulation section 111 inputs K-bit transmission data.
  • Vector modulation section 111 divides input K-bit transmission data into G groups, generates G modulation vectors based on (KZG) -bit transmission data given to each group, and outputs the generated modulation vectors.
  • Each modulation vector output by the vector modulation unit 111 includes (KZG) -bit transmission data.
  • K and G are integers greater than 0.
  • is a multiple of G.
  • the G modulation vectors output from vector modulation section 111 are supplied to canceling modulation section 112.
  • Canceling modulation section 112 assigns the input G modulation vectors to G subcarrier groups, respectively.
  • G subcarrier groups are obtained by dividing N subcarriers into G groups for each of L subcarriers having a continuous frequency arrangement.
  • N GXL holds.
  • the polynomial of the discrete filter represents the impulse response of the filter.
  • the expansion is expressed as a polynomial for D. If the coefficients of each order of D are P, P, P, ..., P in order from 0, the expansion formula is P (
  • 0 1 2 (L- 1) 0 1 2 (L- can be represented by P (where 0 ⁇ i ⁇ (L—1) and i is an integer)).
  • Each of the G subcarrier groups as described above has L subcarriers.
  • the L subcarriers are numbered from 0 to (L 1) in order of increasing frequency.
  • Canceling modulation section 112 generates a modulation vector with a coefficient that performs multicarrier modulation on the i-th (0 ⁇ i ⁇ (L-1) and i is an integer) sub-carrier group.
  • a modulation vector with a coefficient is obtained by multiplying the modulation vector assigned to each group by the coefficient P.
  • IDFT section 113 constituting multicarrier modulation section 126 inputs N modulation vectors with coefficients output from canceling modulation section 112.
  • IDFT part 113 Inverse Fourier transform is applied to the modulation vector with coefficients.
  • IDFT section 113 outputs the signal after inverse Fourier transform as a baseband OFDM signal.
  • the guard section with guard interval 114 receives the baseband OFDM signal output from the IDFT section 113.
  • the guard interval adding unit 114 adds a guard interval signal to the input baseband OFDM signal and outputs it.
  • Frequency conversion section 115 receives a baseband OFDM signal to which a guard interval signal is added. Frequency conversion section 115 converts the frequency of the input baseband OFDM signal into a signal in the radio frequency band, and outputs an OFDM signal in the radio frequency band. The OFDM signal output from the frequency converter 115 is supplied as an OFDM signal output from the transmission apparatus 101 to the transmission path 103 via the antenna.
  • the OFDM signal that has passed through the transmission path 103 is supplied to the receiving apparatus 102 via an antenna.
  • the receiving apparatus 102 includes a frequency conversion unit 121, a guard interval removal unit 122, a DFT (Discrete Fourier Transform) unit 123, a canceling demodulation unit 124, and a vector demodulation unit 125.
  • the guard interval removal unit 122 and the DFT unit 123 constitute a multi-carrier demodulation unit 127.
  • the operation of each part of the receiving apparatus 102 will be described below. In order to briefly explain the gist of the conventional technology, the operation per symbol in the OFDM transmission system will be described.
  • the OFDM signal received by the receiving apparatus 102 via the transmission path 103 is supplied to the frequency conversion unit 121.
  • Frequency conversion section 121 receives an OFDM signal in the radio frequency band received by receiving apparatus 102.
  • the frequency converter 121 down-converts the input OFDM signal to generate a baseband OFDM signal and outputs it.
  • the guard interval removal unit 122 is a baseband OF output from the frequency conversion unit 121.
  • the guard interval remover 122 receives the input baseband O
  • the guard interval signal is removed from the FDM signal and output.
  • DFT section 123 constituting multicarrier demodulation section 127 inputs a baseband OFDM signal from which the guard interval signal has been removed.
  • the DFT unit 123 Demodulates the OFDM signal with N coefficients and outputs it.
  • Canceling demodulation section 124 inputs N demodulation vectors with coefficients.
  • Canceling demodulation section 124 first divides the input N demodulated vectors with coefficients into G groups. Next, for each group, the canceling demodulation unit 124 multiplies the i-th coefficient (0 ⁇ i ⁇ (L — 1)) of the coefficient-by-group demodulation vector by the inverse of the coefficient P to remove the coefficient P. The sum of those with the coefficient P removed is obtained to generate a demodulated vector and output it.
  • a demodulated vector is generated and output for each subcarrier group. Therefore, G demodulated vectors are generated and output for all subcarrier groups.
  • Vector demodulation section 125 inputs G demodulation vectors output from canceling demodulation section 124.
  • the vector demodulator 125 determines and outputs K demodulated data from the input G demodulated vectors.
  • the K pieces of demodulated data output from the vector demodulator 125 are output from the receiving apparatus 102 as demodulated data.
  • intercarrier interference occurs between the subcarrier and a plurality of other subcarriers.
  • the interference component of intercarrier interference has a large correlation between adjacent subcarriers in the frequency axis direction.
  • S (ik) be the interference coefficient of inter-carrier interference that occurs between the subcarrier and the kth subcarrier due to the frequency variation of the i-th subcarrier, and the frequency variation of the (i + 1) th subcarrier
  • S (ik) S (i + 1 -k)
  • the canceling demodulator 124 constituting the receiving apparatus 102 cancels the inter-carrier interference based on the above principle.
  • Non-Patent Literature 1 Y. Zhao and S. — G. Haggman, Inter carrier Interferenc e Self- Cancellation Scheme for OFDM Mobile Communication Sy stems, IEEE Transactions on Communications, vol. 49, No. 7, pp. 11 85-1191 , July 2001
  • Non-Patent Document 2 J. G. Proakis, "DIGITAL COMMUNICATIONS second edition", pp. 536-544, McGraw— Hill
  • Patent Document 3 A. J. Viterbi, "Convolutional Codes and Their Performan ce in Communication Systems, IEEE Transactions on communicati ons, Vol. COM— 19, pp. 751-772, 1971
  • Non-Patent Document 4 LR Bahl, J. Cocke, F. Jelinek, J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate, IEEE Transactions on Information Theory, Vol. 20, pp. 284-287, 1974
  • the above conventional technique has a problem that the transmission efficiency is reduced compared to a normal OFDM transmission system in which modulation vectors are independently assigned to all subcarriers, and the transmission efficiency is reduced. .
  • the vector modulation unit 111! when trying to achieve the same transmission efficiency as the normal OFDM transmission method, the vector modulation unit 111! Therefore, it is necessary to include L times the transmission data for one modulation vector compared to the normal OFDM transmission system. In this case, the distance between signal points of transmission data is shortened. The distance between signal points indicates the tolerance to noise.
  • 16QAM can transmit 4 bits of information per modulation vector.
  • canceling modulation section 112 cancels each of two adjacent subcarriers by using a modulation vector whose polarities are inverted from each other based on the filtering polynomial P (D). Apply modulation.
  • the time response waveform of the baseband OFDM signal output from the IDFT unit 113 concentrates high-power signals at the time of the symbol center, and the signal amplitude at the center of the symbol is It becomes larger (see the lower part of Fig. 13).
  • the upper part of Fig. 13 shows the power time response of a normal OFDM signal, and the lower part of Fig.
  • the horizontal axis represents the sampling time in the symbol
  • the vertical axis represents the instantaneous power value when the average power is 1.
  • the OF DM transmission system has a problem that a high-frequency power amplifier having a high transmission peak power and a high maximum output power with respect to the transmission average power is required.
  • the self-cancellation method when used, the transmission peak power is further increased in the central part of the symbol.
  • the above-described conventional technique has a problem that it requires a high-frequency power amplifier whose maximum output power is higher than that of a normal OFDM transmission system. For example, in the self-cancellation method, when the number of subcarriers L is 2, the transmission peak power is twice that of the normal OFDM transmission method (see Fig. 13).
  • Canceling demodulation is performed by subtraction of demodulation vectors corresponding to adjacent subcarriers based on the above-described intercarrier interference characteristics.
  • the signal point with reversed polarity moves to a point-symmetrical position around the origin in the signal point layout diagram (see Fig. 12 (b)). Therefore, even if the demodulation vectors corresponding to adjacent subcarriers are subtracted, the size of the vector is doubled, that is, the position of the signal point is only shifted outward on the signal point arrangement. The number of signal points does not change before and after canceling demodulation as shown in Fig. 12 (b).
  • FIG. 14 (a) when a modulation vector that does not perform polarity inversion is used, the number of signal points increases after canceling demodulation. When polarity inversion is not performed, all the modulation vectors have directions corresponding to corresponding transmission data. In FIG. 14 (a), for the convenience of illustration, the directions of all the modulation vectors are shown aligned. In the example shown in Fig. 14 (b), the number of signal points of the modulation vector is 4 (number of X marks), while the number of signal points of the demodulated vector demodulated by cancellation is 9 (number of ⁇ ). Become. This is because the signal points are subtracted between the four signal points, resulting in nine signal points. In this case, the original transmission data cannot be uniquely restored on the receiving side unless some measures are taken. This means that data cannot be transmitted accurately means.
  • the present invention solves the above-described conventional problems, and multicarrier transmission that can reduce inter-carrier interference that occurs due to frequency fluctuation, amplitude fluctuation, or phase fluctuation without reducing transmission efficiency.
  • the purpose is to provide a method.
  • a transmission apparatus in a transmission scheme according to the present invention is a transmission apparatus in a multicarrier transmission scheme that performs multicarrier modulation on mutually orthogonal subcarriers and transmits digital data
  • a precoding unit that inputs transmission data, precodes the transmission data to generate precoded modulation information, and outputs the precoded modulation information
  • a beta modulator that converts the precoded modulation information into a modulation vector on a complex plane and outputs the modulation vector
  • a multicarrier modulation unit that modulates the subcarrier with the modulation vector to generate a multicarrier modulation signal and outputs the multicarrier modulation signal;
  • the multicarrier modulation unit modulates the subcarriers in a one-to-one relationship with the modulation vector
  • the filtered demodulated vector obtained by the filtering process is It uniquely corresponds to the modulation information that has been coded.
  • OFDM Orthogonal Frequency Division Multiplexing Modulation
  • wavelet modulation or the like is also included.
  • the precoding unit performs precoding processing on transmission data.
  • This precoding process is performed in advance on the transmission data so that the demodulation vector subjected to the filtering process for canceling the inter-carrier interference in the receiving apparatus uniquely corresponds to the modulation information precoded in the transmitting apparatus.
  • Encoding processing By performing the precoding process, even if the number of signal points is increased by the filtering process in the receiving device, the precoded modulation information can be uniquely derived in the receiving device. If precoded modulation information can be uniquely derived, transmission data can be accurately restored based on the modulation information.
  • multicarrier modulation power subcarriers are modulated in a one-to-one relationship using the modulation vector. Therefore, transmission data is carried on each subcarrier individually, and transmission efficiency does not decrease.
  • the present invention it is possible to reduce inter-carrier interference that occurs due to frequency fluctuation, amplitude fluctuation, or phase fluctuation without reducing transmission efficiency, and to accurately restore transmission data in a receiving apparatus. .
  • the precoding unit divides the transmission data into a plurality of groups, uses the transmission data included in each group as temporary modulation information, and performs the precoding.
  • Part (L1) pieces of modulation information X ′ which are required when precoding processing is performed on the first information X of the temporary modulation information according to the equation (1) for performing precoding processing.
  • the precoding process can be reliably performed.
  • the precoding section includes a remainder, and the impulse response is represented by 1Z (1-D) (L_1) (L is an integer of 2 or more) with a delay element as D IIR (Infinite Inpul se Response) It is preferable to be composed of filters! /.
  • a multicarrier transmission system receiver is a multicarrier transmission system receiver that performs multicarrier modulation on a plurality of subcarriers orthogonal to each other and transmits digital data,
  • a multicarrier demodulator that inputs a received multicarrier modulation signal, demodulates the input multicarrier modulation signal, and outputs a demodulated vector obtained by demodulation;
  • the demodulated vector is input, filtering processing that cancels inter-carrier interference is performed on the demodulated vector corresponding to each of the subcarriers adjacent in the frequency axis direction, and the filtered demodulated vector obtained by the filtering processing is obtained.
  • the filtered demodulated vector force comprises a vector demodulator that determines and outputs received data
  • the multi-carrier demodulating unit demodulates the modulation spectrum obtained by modulating the sub-carrier in a one-to-one relationship
  • the filtered demodulated vector uniquely corresponds to the precoded modulation information obtained by performing precoding processing on the transmission data in the transmitting device, and the correspondence relationship can be determined by the vector demodulating unit. It is characterized by that.
  • the filtering process for canceling the canceling filter force between carriers is performed. Therefore, inter-carrier interference is reduced. Further, the filtered demodulation vector uniquely corresponds to the modulation information precoded in the transmission apparatus.
  • the vector demodulator can determine the correspondence. Therefore, even if the number of signal points is increased by the filtering process, the vector demodulator can accurately restore the transmission data corresponding to the filtered demodulated vector.
  • the multicarrier demodulator demodulates the modulation vector obtained by modulating the subcarriers in a one-to-one relationship. Since transmission data is placed on each subcarrier individually, transmission efficiency does not decrease.
  • inter-carrier interference caused by frequency fluctuation, amplitude fluctuation, or phase fluctuation without reducing transmission efficiency is reduced, and transmission data is accurately restored in the receiving apparatus. It becomes possible.
  • the filtering unit (L 1) required for the filtering process on the first value Y of the demodulation vector according to the expression (2) for performing the filtering process (L 1) the demodulation vectors Y 1,. ⁇ , Y as the initial value before input of the demodulation vector Y
  • the intercarrier interference canceling process can be reliably performed.
  • the present invention further includes a fluctuation amount estimation unit that estimates at least one fluctuation amount among frequency fluctuation, amplitude fluctuation, and phase fluctuation of the received multicarrier modulation signal.
  • the fluctuation amount estimation unit controls a filter coefficient of the canceling filter unit according to the estimated fluctuation amount.
  • the canceling filter unit includes a delay device whose delay response is D and the impulse response is represented by (1-D) (L_1) (L is an integer of 2 or more). Having a FIR (Finite Impulse Response) filter is preferred!
  • the present invention further includes a moving speed measuring unit that detects a moving speed of the receiving device,
  • the receiving device includes a velocity pulse generator of a moving body
  • the moving speed measuring unit obtains moving speed information of the receiving device based on a speed pulse output from the speed pulse generating unit.
  • the moving speed measurement unit obtains position information of the receiving apparatus at a predetermined time interval, and obtains moving speed information of the receiving apparatus based on the position information and the time interval. Is preferred.
  • a multicarrier transmission system receiver is a multicarrier transmission system receiver that performs multicarrier modulation on subcarriers orthogonal to each other and transmits digital data.
  • a multi-carrier demodulator that inputs a received multi-carrier modulation signal, demodulates the multi-carrier modulation signal, and outputs a demodulated vector obtained by demodulating, and inputs the demodulated vector in the frequency axis direction.
  • a filtering filter unit that performs filtering processing to cancel inter-carrier interference on the demodulation vectors corresponding to the adjacent subcarriers, and outputs a filtered demodulation vector obtained by the filtering processing;
  • the filtered demodulated vector is input, and the filtered demodulated vector is decoded based on the trellis transition using the state variable of the filtering process, and the received data obtained by the decoding process is received.
  • An output trellis decoding unit wherein the multicarrier demodulation unit demodulates the modulation vector obtained by modulating the subcarrier in a one-to-one relationship.
  • the filtering process for canceling the canceling filter unit force inter-carrier interference is performed. Therefore, inter-carrier interference is reduced.
  • the trellis decoding unit inputs the filtered demodulated vector, decodes the filtered demodulated vector based on the trellis transition using the state variable of the filtering process, and receives the reception obtained by the decoding process. Output data. Therefore, even if the number of signal points is increased by the filtering process, the transmission data can be accurately restored in the reception apparatus without performing the precoding process on the transmission data in the transmission apparatus.
  • the multicarrier demodulator demodulates the modulation vector obtained by modulating the subcarriers in a one-to-one relationship. Since transmission data is put on each subcarrier individually, transmission efficiency does not decrease.
  • the present invention frequency fluctuations, amplitude fluctuations, and the like without reducing transmission efficiency, Alternatively, it is possible to reduce inter-carrier interference that occurs due to phase fluctuation or the like, and to accurately restore transmission data to the receiving apparatus.
  • the signal can also be received from a general transmission device that does not include a precoding portion, and these effects can be achieved.
  • all subcarriers are independently modulated. Therefore, it is possible to realize high-quality mobile communication by reducing inter-carrier interference caused by frequency fluctuation, amplitude fluctuation, or phase fluctuation without degrading transmission efficiency.
  • FIG. 1 is a block diagram showing a configuration of a multicarrier transmission scheme transmission apparatus and reception apparatus in Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of a canceling filter unit in the first embodiment of the present invention.
  • FIG. 3 shows (a) the arrangement state of the modulation vectors when the modulation vectors are arranged on the frequency axis of the subcarrier, and (b) the modulation vectors and It is a figure which shows each signal point arrangement
  • FIG. 4 is a block diagram showing a configuration example of a precoding unit in Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing a configuration example of a multicarrier modulation unit in Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram showing a configuration example of a multicarrier demodulation unit in Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing the calculation of the precoding unit and the calculation of the canceling filter unit in the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a multicarrier transmission system receiver in Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing part of the configuration of a multicarrier transmission system receiver in Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram showing a part of a configuration of a receiving apparatus of a multicarrier transmission scheme in Embodiment 4 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a conventional OFDM transmission scheme transmitter and receiver using the self-cancellation method.
  • FIG. 12 shows (a) the arrangement state of the modulation vectors when the modulation vectors are arranged on the frequency axis of the subcarrier in the conventional OFDM transmission system using the self-cancellation method
  • FIG. 7B is a diagram showing the signal point arrangement (on the complex plane) of the modulation vector and the demodulation vector demodulated by canceling demodulation.
  • FIG. 13 is a diagram showing a power time response of a conventional OFDM transmission system using the self-cancellation method.
  • FIG. 14 shows (a) the modulation vectors arranged on the subcarrier frequency axis when the polarity of the modulation vector is not inverted in the conventional OFDM transmission system using the self-cancellation method.
  • FIG. 6 is a diagram showing the arrangement state of the modulation vectors at the time, and (b) signal point arrangements (on the complex plane) of the modulation vectors and the demodulation vectors demodulated by cancellation.
  • FIG. 1 is a block configuration diagram showing configurations of a transmission device and a reception device based on the multicarrier transmission scheme in Embodiment 1 of the present invention.
  • Transmitting apparatus 201 receives transmission data, performs multicarrier modulation based on the input transmission data, and generates and transmits a multicarrier signal.
  • the multicarrier signal transmitted from the transmission apparatus 201 is given to the reception apparatus 202 via the transmission path 203.
  • Receiving device 202 demodulates the multicarrier signal received via transmission path 203 and outputs received data.
  • Transmitting apparatus 201 includes precoding section 211, vector modulation section 212, multicarrier modulation section 213, and frequency conversion section 214. The operation of each part of transmitting apparatus 201 will be described below, but in order to briefly explain the gist of the present invention, the operation per symbol in multicarrier transmission will be described.
  • K-bit transmission data is input to transmission apparatus 201 for each symbol.
  • the transmission data input to the transmission apparatus 201 is supplied to the precoding unit 211.
  • the precoding process in the precoding unit 211 is for allowing the vector demodulation unit 224 of the receiving apparatus 102 to easily determine the demodulated data from the demodulated vector.
  • the precoding unit 211 inputs K-bit transmission data, and divides the input K-bit transmission data into N groups. Temporary modulation information is generated by this division processing. Precoding section 211 performs precoding processing to be described later on (KZN) -bit transmission data of each group, that is, temporary modulation information, and generates and outputs N pieces of modulation information. Here, the precoding unit 211 performs precoding processing corresponding to the processing of the canceling filter unit 223 of the reception device 202. K and ⁇ are integers greater than 0. In describing the first embodiment, there is no problem even if ⁇ is a multiple of ⁇ , so in the following description, ⁇ is a multiple of ⁇ .
  • Vector modulation section 212 receives the number of precoded modulation information output from precoding section 211.
  • the vector modulation unit 212 generates a modulation vector based on the input modulation information, and outputs the number of modulation vectors.
  • Multicarrier modulation section 213 receives N modulation vectors output from vector modulation section 212. Multicarrier modulation section 213 modulates each of N subcarriers with the N modulation vectors to generate a baseband multicarrier modulation signal and outputs it.
  • Frequency conversion section 214 receives the baseband multi-carrier modulation signal output from multi-carrier modulation section 213.
  • the frequency conversion unit 214 converts the frequency of the input baseband multicarrier modulation signal into a signal of a predetermined radio frequency band, and outputs the frequency-converted signal as a multicarrier modulation signal.
  • the multicarrier modulation signal output from the frequency conversion unit 214 is supplied to the transmission line 203 via the antenna as a multicarrier modulation signal output from the transmission apparatus 201.
  • the multi-carrier modulation signal that has passed through the transmission path 203 is supplied to the receiving apparatus 202 via an antenna.
  • the receiving apparatus 202 includes a frequency conversion unit 221, a multicarrier demodulation unit 222, a canceling filter unit 223, and a vector demodulation unit 224.
  • the operation of each part of the receiving apparatus 202 will be described below. In order to briefly explain the gist of the present invention, the operation per symbol in multicarrier transmission will be described.
  • the multicarrier modulation signal received by receiving apparatus 202 via transmission path 203 is supplied to frequency conversion section 221.
  • Frequency conversion section 221 inputs the multicarrier modulation signal received by receiving apparatus 202.
  • Frequency converter 221 converts the frequency of the input multicarrier modulation signal into a baseband signal, and outputs the frequency-converted signal as a baseband multicarrier modulation signal.
  • Multicarrier demodulation section 222 receives the baseband multicarrier modulation signal output from frequency conversion section 221. Multicarrier demodulation section 222 demodulates each multicarrier modulation signal corresponding to N subcarriers, generates N demodulation vectors, and outputs them.
  • Canceling filter section 223 inputs N demodulation vectors output from multicarrier demodulation section 222. Although the details will be described later, the canceling filter unit 223 is adjacent. Each demodulated vector corresponding to each subcarrier is individually filtered, and N filtered demodulated vectors are generated and output.
  • Vector demodulation section 224 receives N filtered demodulation vectors output from canceling filter section 223.
  • the vector demodulation unit 224 determines and outputs K-bit demodulated data from the filtered demodulation vector.
  • the K-bit demodulated data output from the vector demodulator 224 is output from the receiving apparatus 102 as demodulated data.
  • FIG. 2 is a block diagram showing a configuration example of the canceling filter unit 223 of the receiving apparatus 102 according to Embodiment 1 of the present invention.
  • FIG. 3 (a) is a diagram showing an arrangement state of the modulation vectors when the modulation vectors in Embodiment 1 of the present invention are arranged on the frequency axis of the subcarrier.
  • FIG. 3 (b) is a diagram showing each signal point arrangement (on the complex plane) of the modulation vector and the demodulation vector subjected to the canceling filter process in the first embodiment.
  • X represents an example of a modulation vector output from the vector modulation unit 212 as a signal point.
  • a thumbprint represents an example of a filtered demodulated vector output from the canceling filter unit 223 by a signal point.
  • Canceling filter section 223 shown in FIG. 2 sequentially inputs N demodulated vectors from multicarrier demodulation section 222.
  • the canceling filter unit 223 associates N subcarriers in a one-to-one relationship with the input N decoding vectors (see FIG. 3). Note that the process of multicarrier modulation of subcarriers with a modulation vector is performed by the multicarrier modulation section 213. In the example shown in Fig. 3 (a), the directions of the modulation vectors are all aligned in one direction, but this is convenient, and the signal points (see Fig. 3 (b)) depend on the transmission data. Different positions have different modulation vector orientations.
  • the N subcarriers are numbered up to No. 1 N in order of their arrangement in the frequency axis direction.
  • the N demodulated vectors are represented in sequence as Y, Y, ..., Y.
  • the canceling filter unit 223 is used for filtering.
  • the canceling filter unit 223 obtains N filtered demodulated vectors ⁇ ,, ⁇ ,, ⁇ , ⁇ , using the following equation (1). Canceling filter part 223 The obtained demodulated vectors are sequentially output.
  • FIR Finite Impulse Response
  • the canceling filter unit 223 includes a delay unit 301, coefficient adders 302 and 303, and an adder 304.
  • the canceling filter unit 223 sequentially inputs N demodulated vectors Y from the multicarrier demodulator 222.
  • the delay device 301 delays the sequentially input demodulation vector Y by one sample and outputs it.
  • Delay device 301 outputs demodulated vector Y one sample before the time when demodulated vector Y is input.
  • the adder 304 the sum of the demodulating scales obtained by multiplying the coefficient by the coefficient adder 302 and the coefficient adder 303 is obtained. Thereby, the filtered demodulated vector Y ′ is sequentially obtained.
  • the canceling filter unit 223 sequentially outputs the filtered demodulation vector Y.
  • inter-carrier interference between the i-th subcarrier and the k-th subcarrier and between the (i + 1) th subcarrier and the k-th subcarrier The sum of inter-carrier interference is substantially zero, and these inter-carrier interferences cancel each other. Therefore, the demodulated vector ⁇ ′ filtered by the canceling filter unit 223 has substantially zero interference component.
  • the inter-carrier interference that each adjacent sub-carrier has on each other sub-carrier is canceled by the filtering action based on the polynomial P (D). Therefore, inter-carrier interference caused by frequency fluctuation, amplitude fluctuation, phase fluctuation, or the like can be reduced by the canceling filter unit 223.
  • N modulation vectors are allocated to N subcarriers, the modulation vectors and subcarriers correspond one-to-one. Therefore, unlike the above prior art, the transmission efficiency does not decrease.
  • FIG. 4 is a block diagram showing a configuration example of precoding section 211 of transmitting apparatus 201 in Embodiment 1 of the present invention.
  • the precoding unit 211 can be configured as described in Non-Patent Document 2, regarding the canceling filter unit 223 as a partial response filter.
  • the precoding unit 211 is for facilitating the determination of the demodulated data of the filtered demodulated vector force output from the canceling filter unit 223 in the vector demodulating unit 224.
  • the precoding unit 211 encodes transmission data in advance corresponding to the processing in the canceling filter unit 223.
  • the configuration and operation of the precoding unit 211 will be described in detail.
  • the precoding unit 211 divides input K-bit transmission data into N groups to generate temporary modulation information X 1, X 2,.
  • the precoding unit 211 has the following formula (2)
  • Provisional modulation information X, X,..., X is encoded.
  • the precoding unit 211 corresponding to the canceling filter unit 223 is shown in FIG. It can be configured as shown.
  • the precoding unit 211 includes a divider 401, an adder 402, a remainder unit 403, and a delay unit 404.
  • the divider 401 inputs K-bit transmission data input by the precoding unit 211.
  • the divider 401 divides the input transmission data into N groups and converts the provisional modulation information X 1, X 2,.
  • the temporary modulation information can be expressed as X (l ⁇ i ⁇ N, i is an integer).
  • the delay unit 404 inputs the precoded modulation information X, which is sequentially output by the precoding unit 211, and outputs the input information with a delay of one sample.
  • the modulation information one sample before is represented as X '.
  • the adder 402 includes the provisional modulation information X output from the divider 401 and the delay unit 40. Find the sum of the precoded modulation information X ' ;
  • the remainder unit 4003 obtains a remainder obtained by dividing the addition result output from the adder 402 by the multi-value number ⁇ ( ⁇ is an integer of 2 or more).
  • the remainder unit 403 outputs the obtained remainder as precoded modulation information X.
  • provisional modulation information X and precoded modulation information X are M real values. It is represented by A remainder unit 403 obtains a remainder obtained by dividing each of M real values by M.
  • the modulation rule is binary PAM, which is equivalent to BPSK (Binary Phase Shift Keying).
  • the remainder unit 403 obtains a remainder obtained by dividing the real part value and the imaginary part value by M, respectively.
  • the modulation rule is 4-value QAM, which is equivalent to Q PSK (Quadrature Phase Shift Keying).
  • the precoding unit 211 has N pieces of modulation information X, 1, X ′,..., X according to the above equation (2).
  • the precoding unit 211 converts the modulation information X, 2,..., X, into the modulation information X, 1, ⁇ , 2,.
  • one piece of modulation information X ′ is required in advance as a value output from the delay unit 404.
  • the delay unit 404 outputs the modulation information X ′.
  • modulation information X ′ is set as a known value to delay device 404 in advance.
  • the modulation information X ′ may be output from the delay unit 404 in synchronization with the provision of the provisional modulation information X by the divider 401.
  • the N-number of filtered restorations are performed by the canceling filter unit 223 according to the equation (1).
  • the 202 receives the demodulated vectors ⁇ ,..., ⁇ from the transmitter 201 in advance, and receives them.
  • delay unit 301 outputs demodulated vector ⁇ .
  • the demodulating vector ⁇ should be received and input to the delay unit 301 before the demodulating vector ⁇ is input to the canceling filter unit 223!
  • precoding section 211 in transmitting apparatus 201 divides transmission data into a plurality of groups and performs precoding processing on the divided data to generate a plurality of pieces of modulation information.
  • Vector modulation section 212 generates ⁇ modulation information power ⁇ modulation vectors.
  • Multi-carrier modulation section 213 multi-carrier modulates each of ⁇ ⁇ subcarriers using ⁇ ⁇ modulation vectors. Therefore, transmission data is not placed on all of the subcarriers, so transmission efficiency does not decrease.
  • canceling filter section 223 in receiving apparatus 202 performs filtering processing based on inter-carrier interference characteristics between adjacent subcarriers to cancel inter-carrier interference.
  • the transmission apparatus 201 when the subcarriers are grouped into two groups as in the past and the polarity of the modulation vector assigned to each group is inverted between adjacent subcarriers, no processing is performed. Therefore, the time response waveform of the multicarrier modulation signal output from the multicarrier modulation unit 213 is relatively flat as shown in the upper side of FIG. As in the above prior art, there is no inconvenience that high output signals are concentrated at the time of the central part of the symbol and the signal amplitude of the central part of the symbol is increased.
  • the high frequency in the transmission device 201 It is not necessary to increase the maximum output power of the wave power amplifier. Also, as shown in the examples described later, even if the number of signal points increases due to cancellation processing, the original transmission data is uniquely restored on the reception side by performing precoding processing on the transmission side. be able to.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the multicarrier modulation section 213 and the multicarrier demodulation section 222 can be configured as shown in FIGS. 5 and 6, respectively.
  • multicarrier modulation section 213 includes IDFT section 231 and guard interval adding section 232.
  • the IDFT unit 231 receives the N modulation vectors input to the multicarrier modulation unit 213, performs inverse Fourier transform on the input modulation vector, generates a baseband OFDM signal, and outputs it.
  • the guard interval adding unit 232 inputs the baseband band OFDM signal output from the IDFT unit 231 and adds a guard interval signal whose period is extended to the input baseband band OFDM signal.
  • the guard interval adding unit 232 outputs, from the multicarrier modulation unit 213, a multiband modulation signal in the baseband band with the guard interval signal added thereto.
  • multicarrier demodulation section 222 includes guard interval removal section 241 and DFT section 242.
  • the guard interval removal unit 241 removes and outputs the signal of the multi-carrier modulation signal power guard interval in the baseband band input by the multi-carrier demodulation unit 222.
  • the DFT unit 242 performs Fourier transform on the signal output from the guard interval removal unit 241 to obtain N demodulated vectors. Next, DFT section 242 outputs N demodulation vectors from multicarrier demodulation section 222.
  • FIG. 7 is a diagram showing the arithmetic processing performed in the precoding unit 211 and the arithmetic processing performed in the canceling filter unit 223 side by side.
  • the multi-level number M of the multicarrier modulation scheme is 4.
  • the specific modulation method is not particularly limited. QAM can be used.
  • FIG. 7 shows all combinations of operations for obtaining the i-th modulation information X ′ and the i-th demodulation vector ⁇ ′.
  • each column indicates X, X, _, X '., ⁇ , ⁇ , Y' in order from the leftmost column! /
  • transmission data input to precoding section 211 is first input to divider 401.
  • Divider 401 divides the input transmission data into two bits, and assigns the divided two bits to one symbol.
  • the transmission data is encoded into 4 values.
  • the transmission data is converted into temporary modulation information X having four values [0, 1, 2, 3] (that is, multi-value number 4), and is output from divider 401.
  • the adder 402 adds the ith provisional modulation information X and the (i ⁇ 1) th modulation information X ′ held in the delay unit 404.
  • the (i-1) th modulation information X ' also has four values [0, 1, 2, 3].
  • the sum is input to the remainder unit 403.
  • the remainder unit 403 divides the input total value by the multi-value number 4 to obtain the remainder.
  • the remainder obtained by the remainder unit 403 is output from the precoding unit 211 as the i-th modulation information X ′.
  • the i-th modulation information X ′ is the remainder obtained by dividing by the multivalue number 4 in the remainder unit 403, it has four values [0, 1, 2, 3] as shown in FIG. . That is, the modulation information X of the square is obtained from the temporary modulation information X of the square and the (i ⁇ 1) -th modulation information X ′ ._. vector
  • the signal is converted into a modulation vector on the complex plane by the modulation unit 212.
  • the obtained modulation vector is used for multicarrier modulation of subcarriers in multicarrier modulation section 213.
  • the obtained multicarrier modulation signal is frequency converted into a signal in a frequency band suitable for radio communication by the frequency conversion unit 214 and transmitted from the transmission device 201.
  • the multicarrier modulation signal transmitted from transmitting apparatus 201 is received by receiving apparatus 202.
  • the multicarrier modulation signal is converted to a baseband band multicarrier modulation signal by V in frequency converter 221.
  • the multicarrier modulation signal in the baseband band is demodulated by the multicarrier demodulator 222.
  • the demodulated signal is subjected to filtering processing in a canceling filter unit 223.
  • the delay unit 301 already holds the (i ⁇ 1) -th demodulated vector Y.
  • the vector is multiplied by the filter coefficient “1” in the coefficient adder 302, and the (i ⁇ 1) -th demodulated vector Y is multiplied by the filter coefficient “1” in the coefficient adder 303.
  • Y and Y multiplied by the filter coefficients are added together by adder 304.
  • the summation result obtained by the adder 304 is output from the canceling filter unit 223 as the i-th filtered demodulated vector Y. That is, the i th filtered demodulated vector ⁇ , is obtained by subtracting the (i ⁇ 1) th demodulated vector Y_ from the i th demodulated vector Y. This means that two demodulation vectors respectively corresponding to adjacent subcarriers are subtracted.
  • the i-th demodulation vector ⁇ ⁇ ⁇ is equal to the i-th modulation information X
  • the (i ⁇ 1) -th demodulation vector Y is equal to the (i ⁇ 1) -th modulation information X.
  • the i-th filtered demodulated vector Y ′ has a value as shown in the rightmost column of FIG.
  • the demodulated vector Y, which has been filtered, is the output of the canceling filter unit 223. From Fig.
  • the transmitted i-th filtered demodulated vector Y if the i-th filtered demodulated vector Y 'is observed, the transmitted i-th
  • the provisional modulation information X can be uniquely estimated, and if the provisional modulation information X is uniquely obtained, transmission data corresponding to the provisional modulation information X can be obtained. 1, even if the number of signal points increases immediately after canceling demodulation as shown in FIG. 3B, the vector demodulator 224 can easily and uniquely restore the transmission data.
  • the i-th filtered demodulation vector Y ′ is obtained based on the (i ⁇ l) -th demodulation vector Y_.
  • the precoding unit 211 by the action of the precoding unit 211, the (i ⁇ l) th demodulated vector ⁇ , that is, the (i ⁇ l) th modulation information X, whatever the value, the i th filtering
  • the i-th provisional modulation information X transmitted from the demodulated demodulator Y can be uniquely estimated.
  • the subcarriers are grouped into L pieces as in the prior art described above, and the relationship between the modulation vectors is unique among adjacent subcarriers constituting each group. It can be seen that the transmission data can be accurately restored without being determined by the receiving side. Therefore, in Embodiment 1, the transmission efficiency does not decrease as the signal transmission efficiency does not become 1ZL as in the prior art.
  • FIG. 8 is a block diagram showing the configuration of a multicarrier transmission system receiver in Embodiment 2 of the present invention.
  • receiving apparatus 2020 includes a frequency conversion unit 221, a multicarrier decoding unit 222, a canceling filter unit 223, and a trellis decoding unit 225.
  • Receiving apparatus 2020 is obtained by replacing vector demodulation section 224 of receiving apparatus 202 (see FIG. 1) in Embodiment 1 with trellis decoding section 225, and the other configurations can be the same.
  • the same components as those in Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • Trellis decoding section 225 receives N filtered demodulated vectors output from canceling filter section 223.
  • the trellis decoding unit 225 performs trellis decoding on the filtered demodulation vector to generate and output K pieces of demodulated data.
  • the K demodulated data output from trellis decoding section 225 is output from receiving apparatus 2020.
  • Trellis decoding section 225 estimates the likelihood from the input demodulation vector based on the trellis transition having (L-1) number of demodulation vectors held by delay element 301 of canceling filter section 223 as a state variable. Find a certain transition.
  • the trellis decoding unit 225 obtains data that causes a transition that is likely to occur as demodulated data.
  • the trellis decoding unit 225 can be configured by using, for example, a Viterbi algorithm (Non-patent document 3), a BCJR algorithm (Non-patent document 4), a MAP (maximum posterior probability) decoding, or the like as a decoding algorithm.
  • the canceling filter unit 223 performs the filtering process, and the trellis decoding unit 225 decodes the state transition of the canceling filter unit 223. Therefore, the receiving device 2020 reduces inter-carrier interference caused by frequency fluctuation, amplitude fluctuation, or phase fluctuation without degrading the signal transmission efficiency, and accurately transmits data. Can be restored. Further, the transmitting apparatus 201 does not perform a process of reversing the polarities of the modulation vectors for modulating two adjacent subcarriers as in the conventional case. Therefore, the time response waveform of the multicarrier modulation signal output from multicarrier modulation section 213 is relatively flat. Therefore, it is not necessary to increase the maximum output power of the high frequency power amplifier in the transmission apparatus 201.
  • the transmission apparatus 201 may not perform the brick process.
  • a divider 401 may be provided in place of the precoding unit 211.
  • a device provided with a divider 401 in place of the precoding unit 211 already exists as a general transmission device for OFDM transmission. Therefore, a general transmission apparatus can be used instead of transmission apparatus 201 according to the present embodiment. As a result, even if the general transmission device is used, the above-described excellent effect in the first embodiment can be obtained.
  • the second embodiment is particularly effective when there is a restriction in providing the precoding unit 211 as in a broadcasting transmission device or the like.
  • FIG. 9 is a block diagram showing a part of a multicarrier transmission system receiving apparatus according to Embodiment 3 of the present invention.
  • the receiving apparatus (not shown) in the third embodiment is implemented in that a variation estimation unit 226 is connected to the coefficient assigning units 302 and 303 of the canceling filter unit 223 as shown in FIG.
  • the other configurations are the same as those of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • Variation estimation unit 226 is connected to the coefficient assigning units 302 and 303 of the canceling filter unit 223 as shown in FIG.
  • the fluctuation amount estimation unit 226 estimates a variation such as frequency variation, amplitude variation, or phase variation. For example, the fluctuation amount estimation unit 226 estimates a transmission line response from a known pilot signal added to the multicarrier modulation signal, and the fluctuation quantity such as frequency fluctuation, amplitude fluctuation, or phase fluctuation from the temporal fluctuation of the transmission path response. Is estimated. Based on the fluctuation amount estimated by the fluctuation amount estimation unit 226, the canceling filter unit 223 can control the coefficients of the coefficient adders 302 and 303.
  • FIG. 10 is a block diagram showing a part of a multicarrier transmission system receiver in Embodiment 4 of the present invention.
  • the moving speed measuring section 227 is connected to the coefficient applying sections 302 and 303 of the canceling filter section 223 as shown in FIG.
  • the other configuration is the same as in the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the moving speed measurement unit 227 is installed assuming that the receiving device 202 is installed on a moving body such as an automobile or the receiving device 202 is carried by a person.
  • the moving speed measuring means in the moving speed measuring unit 227 is not particularly limited.
  • the moving speed of the receiving device 202 can be detected using a speed pulse generator of a moving object such as a vehicle speed pulse generator. it can.
  • the moving speed measuring unit 227 may measure the current position of the moving body at a predetermined time interval using a position measuring technique such as GPS, and may calculate the moving speed based on the distance force moved at the predetermined time. .
  • the inter-carrier interference caused by the Doppler phenomenon has a high correlation with the moving speed of the transmission device or the reception device. Therefore, on the basis of the moving speed information of the receiving device 202 obtained from the moving speed measuring unit 227, the coefficients of the coefficient adders 302 and 303 of the canceling filter unit 223 are controlled to further reduce the influence of frequency fluctuations in particular. can do.
  • the above LSI includes various LSIs such as an IC, a system LSI, a super LSI, and an ultra LSI depending on the degree of integration.
  • each embodiment is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • FPGA Field Programmable Gate Array
  • the transmission device and the reception device in the multi-carrier transmission system that are effective in the present invention can reduce inter-carrier interference that occurs due to frequency fluctuations caused by the Doppler phenomenon, and are useful for mobile communication and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)

Abstract

 伝送効率を低下させずに、周波数変動、振幅変動、または位相変動などで発生するキャリア間干渉を軽減することを目的とする。受信側にキャンセリングフィルタ部(223)を備え、フィルタリング処理によって周波数変動、振幅変動、または位相変動などで発生したキャリア間干渉を軽減する。送信側にプリコード部(211)を備え、プリコード処理によって受信側のベクトル復調部(224)における復調データの判定を容易にする。または、受信側にトレリス復号部(225)を備え、トレリス復号処理によって復調データを復号する。

Description

マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア 伝送方式を用いた送信方法及び受信方法
技術分野
[0001] 本発明はマルチキャリア伝送方式に関するものであり、より特定的には、移動体通 信における伝送路応答の変動及び送受信装置内で発生する位相雑音等に起因す るキャリア間干渉を軽減する技術に関するものである。
背景技術
[0002] 地上波ディジタルテレビジョン放送や無線 LAN (Local Area Network)など、マ ルチパスによる遅延分散を伴う伝送路を介して安定に通信を行う方法として、直交周 波数分割多重(OFDM : Orthogonal Frequency Division Multiplex)伝送方 式(以下、 OFDM伝送方式という)に代表されるマルチキャリア伝送方式が広く用い られている。一方、送信装置或いは受信装置又はその両方が移動しながら通信を行 う移動体通信においては、ドッブラ現象による周波数変動、マルチパスによる遅延分 散に起因する受信信号の振幅変動が発生する。また、送信装置または受信装置の 周波数変換部において、発振回路の位相雑音によって位相変動が発生する場合も ある。 OFDM伝送方式は、各サブキャリアの変調波をその周波数スペクトルが互い に重なり合うように密に多重して伝送する方式である。よって、 OFDM伝送方式を移 動体通信に用いた場合、前述の周波数変動、振幅変動、または位相変動などによつ てサブキャリア間の直交性が損なわれ、サブキャリア間でキャリア間干渉が発生し、通 信品質が劣化するという問題がある。
[0003] OFDM伝送方式における従来のキャリア間干渉軽減技術としては、非特許文献 1 に記載されている方法(以下、セルフキャンセレーシヨン法という)が知られている。こ のセルフキャンセレーシヨン法は、 OFDM伝送方式における複数のサブキャリアを、 周波数配置が連続する L個のサブキャリア (Lは 2以上の整数)を各々有する複数の グループに分割し、同一グループの L個のサブキャリアの変調に特定の相関を持た せる。これにより、キャリア間干渉が相殺抑圧される。 [0004] 以下に図面を参照しながら、従来のキャリア間干渉軽減技術であるセルフキャンセ レーシヨン法について具体的に説明する。
[0005] 図 11は、上記セルフキャンセレーシヨン法を用いた OFDM伝送方式における送信 装置および受信装置の構成を示すブロック図である。図 12は、セルフキャンセレーシ ヨン法を用いた OFDM伝送方式における、(a)変調ベクトルをサブキャリアの周波数 軸上に並べたときの該変調ベクトルの配置状態、並びに、(b)変調ベクトル及びキヤ ンセリング復調された復調ベクトルの各信号点配置 (複素平面上)を示す図である。 図 11において、送信装置 101は、送信データを入力し、その入力された送信データ に基づいて搬送波に OFDM変調を施し、 OFDM信号を生成して送出する。送信装 置 101から送出された OFDM信号は伝送路 103を介して受信装置 102で受信され る。受信装置 102は、伝送路 103を経て受信した OFDM信号を復調し、受信データ を出力する。
[0006] 送信装置 101は、ベクトル変調部 111と、キャンセリング変調部 112と、 IDFT(lnve rse Discrete Fourier Transform)部 113と、ガードインターバル付カ卩部 114と、 周波数変換部 115とを備えて 、る。 IDFT部 113とガードインターバル付加部 114は 、マルチキャリア変調部 126を構成する。以下に送信装置 101の各部の動作を説明 するが、従来技術の要旨を簡潔に説明するために、 OFDM伝送方式における 1シン ボル当たりの動作について説明する。
[0007] OFDM伝送方式における 1シンボルごとに、 Kビットの送信データが送信装置 101 に入力される。送信装置 101に入力された送信データはベクトル変調部 111に供給 される。
[0008] ベクトル変調部 111は、 Kビットの送信データを入力する。ベクトル変調部 111は、 入力した Kビットの送信データを G個のグループに分割し、各グループに与えられた (KZG)ビットの送信データに基づいて G個の変調ベクトルを生成し、出力する。ベタ トル変調部 111が出力する各変調ベクトルは (KZG)ビットの送信データを含むこと になる。ここで、 K、 Gは 0より大きい整数である。なお、セルフキャンセレーシヨン法を 説明するに当たり、 Κを Gの倍数としても問題は生じないので、以降の説明では Κは Gの倍数とする。 [0009] ベクトル変調部 111が出力する G個の変調ベクトルは、キャンセリング変調部 112に 供給される。キャンセリング変調部 112は、入力された G個の変調ベクトルを G個のサ ブキャリアグループにそれぞれ割り当てる。ここで、 G個のサブキャリアグループは、 N 個のサブキャリアを、周波数配置が連続する L個のサブキャリアごとに G個のグルー プに分割して得られるものである。 N = G X Lの関係が成り立つ。
[0010] キャンセリング変調部 112は、遅延要素を Dとする離散フィルタの多項式 P (D) = ( 1 -D) に基づき、フィルタの係数を定めている。上記離散フィルタの多項式は、 フィルタのインパルス応答を表すものである。フィルタの係数は、式 P (D) = (1 -D) (L _ 1)を展開することで得られる。その展開式は、 Dについての多項式として表される。 D の各次数の係数を、次数 0から順に P、 P、 P、 · · ·、 P とすると、展開式は、 P (
0 1 2 (L- 1)
D) =P +P D + P ϋ2+ · · · +Ρ D(L_1)と表される。なお、 P、 P、 P、 · · ·、 P
0 1 2 (L- 1) 0 1 2 (L- は各々、 P (但し、 0≤i≤ (L—1)で且つ iは整数)で表すことができる。
1) i
[0011] 上記の如ぐ G個のサブキャリアグループは、各々、 L個のサブキャリアを有する。 L 個のサブキャリアには、周波数が小さいもの力 順に 0番から (L 1)番の番号が付さ れている。キャンセリング変調部 112は、各サブキャリアグループを構成する i番目(0 ≤i≤ (L- 1)で且つ iは整数)のサブキャリアにマルチキャリア変調を施す係数付き変 調ベクトルを生成する。係数付き変調ベクトルは、各グループに割り当てられた上記 変調ベクトルに上記係数 Pを乗じることで得られる。これにより、キャンセリング変調部 112は、入力した G個の変調ベクトルと、サブキャリアごとに割り当てられた L個の係 数 Pとに基づき、 N個(N = G X L)の係数付き変調ベクトルを生成し、出力する。
[0012] なお、 Lが 2の場合には P (D) = 1— Dとなる(すなわち、 P = 1、P =— 1)ので、隣
0 1
接する 2つのサブキャリアを各々変調する変調ベクトルの極性を互いに反転させる( 図 12 (a)参照)。これにより、互いに極性が反転した変調ベクトルの対が構成される。 対を構成する 2つの変調ベクトルには、同じ送信データが乗せられるものとする。また 、 Lが 2の場合には、隣接する 2つのサブキャリアを 1グループとして、 G=NZ2個の グループが構成される。
[0013] マルチキャリア変調部 126を構成する IDFT部 113は、キャンセリング変調部 112が 出力する N個の係数付き変調ベクトルを入力する。 IDFT部 113は、入力した N個の 係数付き変調ベクトルに逆フーリエ変換を施す。 IDFT部 113は、逆フーリエ変換後 の信号をベースバンド OFDM信号として出力する。
[0014] ガードインターバル付カ卩部 114は、 IDFT部 113が出力するベースバンド OFDM 信号を入力する。ガードインターバル付加部 114は、入力したベースバンド OFDM 信号にガードインターバルの信号を付加し、出力する。
[0015] 周波数変換部 115は、ガードインターバル信号を付加したベースバンド OFDM信 号を入力する。周波数変換部 115は、入力したベースバンド OFDM信号を無線周 波数帯域の信号に周波数変換し、無線周波数帯域の OFDM信号を出力する。周波 数変換部 115が出力する OFDM信号は、送信装置 101の出力する OFDM信号と して、空中線を介して伝送路 103に供給される。
[0016] 伝送路 103を経由した上記 OFDM信号は、空中線を介して受信装置 102に供給 される。
[0017] 受信装置 102は、周波数変換部 121、ガードインターバル除去部 122、 DFT(Dis crete Fourier Transform)部 123、キャンセリング復調部 124、および、ベクトル 復調部 125からなる。ガードインターバル除去部 122と DFT部 123は、マルチキヤリ ァ復調部 127を構成する。以下に受信装置 102の各部の動作を説明する。なお、従 来技術の要旨を簡潔に説明するために、 OFDM伝送方式における 1シンボル当たり の動作について説明する。
[0018] 受信装置 102が伝送路 103を経由して受信した OFDM信号は、周波数変換部 12 1に供給される。
[0019] 周波数変換部 121は、受信装置 102が受信した無線周波数帯域の OFDM信号を 入力する。周波数変換部 121は、入力した OFDM信号をダウンコンバージョンして ベースバンド OFDM信号を生成し、出力する。
[0020] ガードインターバル除去部 122は、周波数変換部 121が出力するベースバンド OF
DM信号を入力する。ガードインターバル除去部 122は、入力されたベースバンド O
FDM信号からガードインターバル信号を除去し、出力する。
[0021] マルチキャリア復調部 127を構成する DFT部 123は、ガードインターバル信号が除 去されたベースバンド OFDM信号を入力する。 DFT部 123は、入力したベースバン ド OFDM信号にフーリエ変換を施して N個の係数付き復調ベクトルを生成し、出力 する。
[0022] キャンセリング復調部 124は、 N個の係数付き復調ベクトルを入力する。キャンセリ ング復調部 124は、まず、入力した N個の係数付き復調ベクトルを G個のグループに 分割する。次いで、キャンセリング復調部 124は、各グループ毎に、各グループの i番 目(0≤i≤ (L— 1) )の係数付き復調ベクトルに上記係数 Pの逆数を乗じて係数 Pを 取り去り、係数 Pを取り去ったものの総和を求めて復調ベクトルを生成し、出力する。 復調ベクトルは、サブキャリアグループごとに 1つのベクトルが生成され、出力される。 よって、全てのサブキャリアグループについては G個の復調ベクトルが生成され、出 力される。
[0023] ベクトル復調部 125は、キャンセリング復調部 124が出力する G個の復調ベクトルを 入力する。ベクトル復調部 125は、入力した G個の復調ベクトルから K個の復調デー タを判定し出力する。
[0024] ベクトル復調部 125が出力する K個の復調データは、受信装置 102から復調デー タとして出力される。
[0025] ここで、セルフキャンセレーシヨン法によるキャリア間干渉軽減技術の原理を説明す る。
[0026] ドッブラ現象により或るサブキャリアに周波数変動が生じた場合、そのサブキャリアと 他の複数のサブキャリアとの間にキャリア間干渉が生じる。キャリア間干渉の干渉成 分は周波数軸方向に隣接するサブキャリアの間で相関が大きい。すなわち、 i番目の サブキャリアの周波数変動により該サブキャリアと k番目のサブキャリアの間に生じる キャリア間干渉の干渉係数を S (i-k)とし、 (i+ 1)番目のサブキャリアの周波数変動 により該サブキャリアと k番目のサブキャリアの間に生じるキャリア間干渉の干渉係数 を S (i+ 1 -k)とすると、干渉係数同士の間に S (i-k) =S (i+ l -k)なる関係が存 在することが知られて 、る(詳細は非特許文献 1に記載されて 、る)。
[0027] 最も簡単な例として、上記グループを構成するサブキャリアの数 Lが 2である場合に ついて説明する。 L = 2の場合、上記多項式 P (D)の展開式は P (D) = 1— Dとなり、 P = 1、P =— 1となる。或るサブキャリアグループを構成する i番目と (i+ 1)番目の 2 つのサブキャリアで伝送される変調ベクトル (ベクトル変調部 111から与えられる)を X (i)とする。 P = 1、P =—1であるから、キャンセリング変調部 112は i番目のサブキヤ
0 1
リアに P X(i) =X(i)を、 (i+ l)番目のサブキャリアには P X(i) =—X(i)を割り当て
0 1
てキャンセリング変調を行う。ここで、周波数変動した i番目及び (i+ l)番目の 2つの サブキャリアと、 k番目のサブキャリアとの間に生じるキャリア間干渉量の差 Scは、 Sc =X(i) S (i-k) -X(i) S (i+ l -k)となる。右辺を X(i)で括ると、 Sc=X(i) (S (i-k )— S (i+ 1— k) )となる。キャリア間干渉の干渉係数 S (i-k)と S (i + 1— k)の間には 上記の如く S (i— k) S (i+ l— k)の関係があり、右辺を左辺に移項すると、 S (i-k) -S (i+ l -k) 0となる。よって、上記キャリア間干渉量の差は実質的にゼロ(Sc 0)となる。つまり、 i番目のサブキャリアと k番目のサブキャリア間に生じるキャリア間干 渉量と、 (i+ 1)番目のサブキャリアと k番目のサブキャリア間に生じるキャリア間干渉 量の差は実質的にゼロとなり、これらキャリア間干渉量は互いに相殺し合うことになる 。よって、キャリア間干渉の発生が軽減される。
受信装置 102を構成するキャンセリング復調部 124は、以上の原理に基づいてキヤ リア間干渉を相殺する。
非特干文献 1 :Y. Zhao and S. — G. Haggman, Inter carrier Interferenc e Self― Cancellation Scheme for OFDM Mobile Communication Sy stems , IEEE Transactions on Communications, vol. 49, No. 7, pp. 11 85 - 1191, July 2001
非特許文献 2 :J. G. Proakis, "DIGITAL COMMUNICATIONS second ed ition", pp. 536- 544, McGra w— Hill
特許文献 3 :A. J. Viterbi, "Convolutional Codes and Their Performan ce in Communication Systems , IEEE Transactions on communicati ons, Vol. COM— 19, pp. 751 - 772, 1971
非特許文献 4: L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, "Optimal decod ing of linear codes for minimizing symbol error rate , IEEE Transa ctions on Information Theory, Vol. 20, pp. 284— 287, 1974
発明の開示 発明が解決しょうとする課題
[0029] し力しながら上記従来の技術では、キャンセリング変調部 112において、 L個のサ ブキャリアを 1つのサブキャリアグループとし、各グループにっき、同じ送信データが 乗った 1つの変調ベクトルし力 f云送しない。よって、上記従来の技術は、全サブキヤリ ァに各々独立に変調ベクトルを割り当てる通常の OFDM伝送方式に比べて信号伝 送効率力 分の一になり、伝送効率が低下するという課題を有していた。また、通常 の OFDM伝送方式と同じ伝送効率を実現しょうとすると、ベクトル変調部 111にお!/、 て、 1つの変調ベクトルに対して通常の OFDM伝送方式に比べて L倍の送信データ を含めなければならない。この場合、送信データの信号点間距離が短くなる。信号点 間距離は、雑音に対する耐性を示すものである。信号点間距離が大きい程、雑音に 強い。よって、送信データを多く含めることは信号点間距離を小さくすることに繋がり 、伝送品質の劣化を招くという課題を有していた。例えば、 16QAMは、 1個の変調 ベクトルあたり 4ビットの情報を伝送可能である。この 16QAMを用いて通常の OFD M伝送を行う場合と同じ伝送効率を上記従来技術で実現しょうとすると、 L = 2として も 1個の変調ベクトルあたり 8ビット伝送可能な 256QAMを用いる必要がある。この場 合、伝送品質が劣化することは容易に理解できる。
[0030] また、上記従来技術では、キャンセリング変調部 112において、フィルタリングの多 項式 P (D)に基づき極性を互いに反転させた変調ベクトルにより、隣接する 2つのサ ブキャリアに対して各々キャンセリング変調を施す。この場合、キャンセリング変調部 1 12のフィルタリング効果によって、 IDFT部 113が出力するベースバンド OFDM信号 の時間応答波形はシンボル中央部の時間に高出力の信号が集中し、シンボル中央 部の信号振幅が大きくなる(図 13下段参照)。図 13上段に通常の OFDM信号の電 力 時間応答、図 13下段に上記従来技術 (セルフキャンセレーシヨン法)を用いた 場合の OFDM信号の電力一時間応答を示す。図 13において、横軸はシンボル内 のサンプリング時間、縦軸は平均電力を 1としたときの瞬時電力値である。一般に OF DM伝送方式は送信平均電力に対して送信ピーク電力が高ぐ最大出力電力が高 い高周波電力増幅器が必要であるという課題を有している。ところが、セルフキャンセ レーション法を用 、るとシンボル中央部において更に送信ピーク電力が高くなる。よ つて、上記従来技術は最大出力電力が通常の OFDM伝送方式よりも高い高周波電 力増幅器を必要とするという課題を有している。例えば、セルフキャンセレーシヨン法 にお 、て上記サブキャリア数 Lを 2とした場合、送信ピーク電力は通常の OFDM伝送 方式に比べて 2倍になる(図 13参照)。
[0031] また、上記従来技術では、図 12 (a)に例示する如ぐ極性が反転し且つ同一の送 信データが乗った変調ベクトルの対を構成する。これは、変調ベクトルの信号点数( 信号点配置を表す複素平面上の)に対し、キャンセリング復調された復調ベクトルの 信号点数を増加させな 、ためである(図 12 (b)参照)。信号点数を増加させなければ 、信号点を送信側と受信側とで 1対 1で得ることができ(図 12 (b)参照)、受信側で容 易に送信データを復元することができる。図 12 (b)に示される例では、変調ベクトル の信号点数力 ( X印の数)であり、キャンセリング復調後の復調ベクトルの信号点数 も 4 (參の数)である。
[0032] キャンセリング復調は、上記したキャリア間干渉の特性に基づき、隣接するサブキヤ リアに対応する復調ベクトル同士の引き算により行われる。極性を反転させた信号点 は、信号点配置図の原点を中心とした点対称の位置に移る(図 12 (b)参照)。よって 、隣接するサブキャリアに対応する復調ベクトル同士の引き算をしても、ベクトルの大 きさが 2倍になる、すなわち、信号点配置上は信号点の位置が外側にずれるだけで ある。図 12 (b)に示される如ぐキャンセリング復調の前後で信号点の数は変化しな い。
[0033] 一方、図 14 (a)に示されるように極性の反転を行わない変調ベクトルを使用すると、 キャンセリング復調後に信号点数が増加する。なお、極性の反転を行わない場合、 全ての変調ベクトルは各々、対応する送信データに応じた向きを有する。図 14 (a)で は、図示の便宜上、全ての変調ベクトルの向きを揃えて図示している。図 14 (b)に示 される例では、変調ベクトルの信号点数が 4 ( X印の数)であるのに対し、キャンセリン グ復調された復調ベクトルの信号点数が 9 (參の数)となる。これは、 4個の信号点に つき、各信号点同士のベ外ルの引き算を行うため、結果として 9個の信号点が現れ るのである。この場合、何らかの手段を講じない限り、受信側において元の送信デー タを一義的に復元することができない。これは、データの正確な伝送ができないことを 意味する。
[0034] このような理由により、従来、キャリア間干渉の軽減を行うために、各グループに割り 当てられるサブキャリア数 Lが例えば 2の場合には、各サブキャリアグループにっき極 性が反転した変調ベクトルの対を構成していた。し力しながら、サブキャリアをグルー プ分けした場合、各グループのサブキャリアに同じ送信データし力乗せな 、ことから、 伝送効率が 1ZLになってしまうことは上述の通りである。なお、上記信号点の増加は 、キャリア間干渉の軽減のためにキャンセリング復調を行った場合に生じるものであつ て、キャンセリング復調を行わな 、場合には生じな 、。
[0035] 本発明は、上記従来の課題を解決するもので、伝送効率を低下させることなぐ周 波数変動、振幅変動、または位相変動などで発生するキャリア間干渉を軽減すること ができるマルチキャリア伝送方式を提供することを目的とする。
課題を解決するための手段
[0036] 本発明に係る伝送方式における送信装置は、互いに直交するサブキャリアにマル チキャリア変調を施してディジタルデータを伝送するマルチキャリア伝送方式におけ る送信装置であって、
送信データを入力し、上記送信データにプリコード処理を施してプリコードされた変 調情報を生成し、該プリコードされた変調情報を出力するプリコード部と、
上記プリコードされた変調情報を複素平面上の変調ベクトルに変換して出力するべ タトル変調部と、
上記変調ベクトルで上記サブキャリアに変調を施してマルチキャリア変調信号を生 成し、該マルチキャリア変調信号を出力するマルチキャリア変調部とを備え、
上記マルチキャリア変調部は、上記サブキャリアを上記変調ベクトルにより 1対 1の 関係で変調し、
受信装置で上記マルチキャリア変調信号がマルチキャリア復調され、該復調により 得られる復調ベクトルにキャリア間干渉を相殺するフィルタリング処理が施されたとき 、該フィルタリング処理により得られるフィルタリングされた復調ベクトルは、上記ブリコ ードされた変調情報に一義的に対応する、ことを特徴とする。
[0037] 本発明におけるマルチキャリア伝送には、 OFDM (直交周波数分割多重変調)伝 送の他、ウェーブレット変調等を用いた伝送も含まれる。
本発明によれば、プリコード部が送信データにプリコード処理を施す。このプリコー ド処理は、受信装置においてキャリア間干渉を相殺するフィルタリング処理が施され た復調ベクトルが、送信装置においてプリコードされた変調情報に一義的に対応す るように、送信データに予め施しておく符号化処理である。プリコード処理を行うこと で、受信装置におけるフィルタリング処理によって信号点の数が増力 tlしても、受信装 置において、プリコードされた変調情報を一義的に導出することができる。プリコード された変調情報を一義的に導出できれば、該変調情報に基づいて、送信データを正 確に復元することができる。また、マルチキャリア変調部力 サブキャリアを変調べタト ルにより 1対 1の関係で変調する。よって、各サブキャリアに個別に送信データが乗る ことになり、伝送効率が低下しない。
従って、本発明によれば、伝送効率を低下させることなぐ周波数変動、振幅変動、 または位相変動などで発生するキャリア間干渉を軽減し、受信装置において正確に 送信データを復元することが可能となる。
[0038] 本発明においては、上記プリコード処理の開始に当たり、上記プリコード部は、上記 送信データを複数のグループに分割し、各グループが有する上記送信データを仮の 変調情報とし、上記プリコード部は、プリコード処理を行うための式(1)に従い上記仮 の変調情報の最初の情報 Xにプリコード処理を施す際に必要とされる (L 1)個の 変調情報 X' ,
2-L …, X'
0を、変調情報 Xの
1 入力前に初期値として予め入力し保持 しておくことが好ましい。
式 (1)
Figure imgf000012_0001
この場合、プリコード部に所定の初期値を予め入力しておくので、確実にプリコード 処理を行うことができる。
[0039] 本発明においては、上記プリコード部は、剰余器を含み且つ遅延要素を Dとしてィ ンパルス応答が 1Z (1— D) (L_1) (Lは 2以上の整数)で表される IIR (Infinite Inpul se Response)フィルタで構成されることが好まし!/、。 [0040] 本発明に係るマルチキャリア伝送方式の受信装置は、互いに直交する複数のサブ キャリアにマルチキャリア変調を施してディジタルデータを伝送するマルチキャリア伝 送方式における受信装置であって、
受信したマルチキャリア変調信号を入力し、入力したマルチキャリア変調信号を復 調し、復調して得られた復調ベクトルを出力するマルチキャリア復調部と、
上記復調ベクトルを入力し、周波数軸方向に隣接する上記サブキャリアに各々対 応する上記復調ベクトルにキャリア間干渉を相殺するフィルタリング処理を施し、該フ ィルタリング処理により得られたフィルタリングされた復調ベクトルを出力するキャンセ リングフィルタ部と、
上記フィルタリングされた復調ベクトル力 受信データを判定して出力するベクトル 復調部とを備え、
上記マルチキャリア復調部は、上記サブキャリアを 1対 1の関係で変調した上記変 調べクトノレを復調し、
上記フィルタリングされた復調ベクトルは、送信装置で送信データにプリコード処理 を施して得られたプリコードされた変調情報に一義的に対応し、且つ、その対応関係 を上記ベクトル復調部で判定可能である、ことを特徴とする。
[0041] 本発明によれば、キャンセリングフィルタ部力 キャリア間干渉を相殺するフィルタリ ング処理を施す。よって、キャリア間干渉が低減する。また、フィルタリングされた復調 ベクトルは、送信装置においてプリコードされた変調情報に一義的に対応する。ベタ トル復調部は、その対応関係を判定可能である。よって、フィルタリング処理により信 号点の数が増加しても、ベクトル復調部は、フィルタリングされた復調ベクトルに対応 する送信データを正確に復元することができる。また、マルチキャリア復調部は、サブ キャリアを 1対 1の関係で変調した変調ベクトルを復調する。各サブキャリアに個別に 送信データが乗るので、伝送効率が低下しない。
従って、本発明によれば、伝送効率を低下させることなぐ周波数変動、振幅変動、 または位相変動などで発生するキャリア間干渉を軽減し、該受信装置にお!、て正確 に送信データを復元することが可能となる。
[0042] 本発明においては、上記フィルタリング処理を開始するに当たり、上記キャンセリン グフィルタ部は、フィルタリング処理を行うための式(2)に従い上記復調ベクトルの最 初の値 Yにフィルタリング処理を施す際に必要とされる(L 1)個の上記復調べタト ル Y , · · · , Yを、上記復調ベクトル Yの入力前に初期値として予め送信装置か
2-L 0 1
ら受信入力し保持しておくことが好ましい。
式 (2)
1=0
この場合、キャンセリングフィルタ部に所定の初期値を予め受信入力しておくので、 確実にキャリア間干渉のキャンセリング処理を行うことができる。
[0043] 本発明にお 、ては、受信した上記マルチキャリア変調信号の周波数変動、振幅変 動、または位相変動のうち少なくともいずれか一つの変動量を推定する変動量推定 部を更に備え、
上記変動量推定部は、上記推定された変動量に応じて、上記キャンセリングフィル タ部のフィルタ係数を制御することが好ま 、。
この場合、周波数変動、位相変動、または振幅変動などの変動によって生じる伝送 路応答のずれを補正し、変動の影響を更に軽減することができる。
[0044] 本発明にお 、ては、上記キャンセリングフィルタ部は、遅延要素を Dとしてインパル ス応答が(l— D) (L_1) (Lは 2以上の整数)で表される遅延器を有する FIR (Finite I npulse Response)フィルタを含むことが好まし!、。
[0045] 本発明においては、上記受信装置が移動する速度を検出する移動速度測定部を 更に備え、
上記移動速度測定部により得られた移動速度情報に応じて、上記キャンセリングフ ィルタ部のフィルタ係数を制御することが好ましい。
この場合、特に周波数変動の影響を更に軽減することができる。
[0046] 本発明にお 、ては、上記受信装置は、移動体の速度パルス発生部を含み、
上記移動速度測定部は、上記速度パルス発生部が出力する速度パルスに基づき 、上記受信装置の移動速度情報を求めることが好ましい。
この場合、特に周波数変動の影響を更に軽減することができる。 [0047] 本発明においては、上記移動速度測定部は、所定の時間間隔で上記受信装置の 位置情報を取得し、上記位置情報と上記時間間隔に基づき、上記受信装置の移動 速度情報を求めることが好まし 、。
この場合、特に周波数変動の影響を更に軽減することができる。
[0048] 本発明に係るマルチキャリア伝送方式の受信装置は、互いに直交するサブキャリア にマルチキャリア変調を施してディジタルデータを伝送するマルチキャリア伝送方式 における受信装置であって、
送信装置力 受信したマルチキャリア変調信号を入力し、上記マルチキャリア変調 信号を復調し、復調して得られた復調ベクトルを出力するマルチキャリア復調部と、 上記復調ベクトルを入力し、周波数軸方向に隣接する上記サブキャリアに各々対 応する上記復調ベクトルに対してキャリア間干渉を相殺するフィルタリング処理を施し 、該フィルタリング処理により得られたフィルタリングされた復調ベクトルを出力するキ ヤンセリングフィルタ部と、
上記フィルタリングされた復調ベクトルを入力し、上記フィルタリング処理の状態変 数を用いたトレリス遷移に基づ 、て上記フィルタリングされた復調ベクトルの復号処理 を行 ヽ、該復号処理により得られた受信データを出力するトレリス復号部とを備え、 上記マルチキャリア復調部は、上記サブキャリアを 1対 1の関係で変調した上記変 調ベクトルを復調する、ことを特徴とする。
[0049] 本発明によれば、キャンセリングフィルタ部力 キャリア間干渉を相殺するフィルタリ ング処理を施す。よって、キャリア間干渉が低減する。また、トレリス復号部が、フィル タリングされた復調ベクトルを入力し、フィルタリング処理の状態変数を用いたトレリス 遷移に基づいて、フィルタリングされた復調ベクトルの復号処理を行い、該復号処理 により得られた受信データを出力する。よって、フィルタリング処理により信号点の数 が増加しても、送信装置において送信データにプリコード処理を施すことなぐ受信 装置において送信データを正確に復元することができる。また、マルチキャリア復調 部は、サブキャリアを 1対 1の関係で変調した変調ベクトルを復調する。各サブキヤリ ァに個別に送信データが乗るので、伝送効率が低下しな 、。
従って、本発明によれば、伝送効率を低下させることなぐ周波数変動、振幅変動、 または位相変動などで発生するキャリア間干渉を軽減し、該受信装置にお!、て正確 に送信データを復元することが可能となる。し力も、プリコード部を含まない一般の送 信装置から信号を受信し、これらの効果を奏することができる。
発明の効果
[0050] 本発明によれば、全てのサブキャリアに各々独立に変調を施す。よって、伝送効率 を劣化させずに、周波数変動、振幅変動、または位相変動などで発生するキャリア間 干渉を軽減し、高品質な移動体通信を実現することができる。
図面の簡単な説明
[0051] [図 1]図 1は、本発明の実施の形態 1における、マルチキャリア伝送方式の送信装置 および受信装置の構成を示すブロック図である。
[図 2]図 2は、本発明の実施の形態 1における、キャンセリングフィルタ部の構成例を 示すブロック図である。
[図 3]図 3は、本発明の実施の形態 1における、(a)変調ベクトルをサブキャリアの周 波数軸上に並べたときの該変調ベクトルの配置状態、並びに、(b)変調ベクトル及び キャンセリングフィルタ処理された復調ベクトルの各信号点配置 (複素平面上)を示す 図である。
[図 4]図 4は、本発明の実施の形態 1における、プリコード部の構成例を示すブロック 図である。
[図 5]図 5は、本発明の実施の形態 1における、マルチキャリア変調部の構成例を示 すブロック図である。
[図 6]図 6は、本発明の実施の形態 1における、マルチキャリア復調部の構成例を示 すブロック図である。
[図 7]図 7は、本発明の実施の形態 1における、プリコード部の演算及びキャンセリン グフィルタ部の演算を示す図である。
[図 8]図 8は、本発明の実施の形態 2における、マルチキャリア伝送方式の受信装置 の構成を示すブロック図である。
[図 9]図 9は、本発明の実施の形態 3における、マルチキャリア伝送方式の受信装置 の構成の一部を示すブロック図である。 [図 10]図 10は、本発明の実施の形態 4における、マルチキャリア伝送方式の受信装 置の構成の一部を示すブロック図である。
[図 11]図 11は、セルフキャンセレーシヨン法を用 、た従来の OFDM伝送方式の送信 装置および受信装置の構成を示すブロック図である。
[図 12]図 12は、セルフキャンセレーシヨン法を用いた従来の OFDM伝送方式におけ る、 (a)変調ベクトルをサブキャリアの周波数軸上に並べたときの該変調ベクトルの配 置状態、並びに、(b)変調ベクトル及びキャンセリング復調された復調ベクトルの各信 号点配置 (複素平面上)を示す図である。
[図 13]図 13は、セルフキャンセレーシヨン法を用 、た従来の OFDM伝送方式の電力 時間応答を示す図である。
[図 14]図 14は、セルフキャンセレーシヨン法を用いた従来の OFDM伝送方式におい て変調ベクトルの極性を反転させな ヽ場合の、 (a)変調ベクトルをサブキャリアの周 波数軸上に並べたときの該変調ベクトルの配置状態、並びに、(b)変調ベクトル及び キャンセリング復調された復調ベクトルの各信号点配置 (複素平面上)を示す図であ る。
符号の説明
201 送信装置
202、 2020 受信装置
211 プリコード部
212 ベクトル変調部
213 マルチキャリア変調部
222 マルチキャリア復調部
223 キャンセリングフィルタ部
224 ベクトル復調部
225 トレリス復号部
226 変動量推定部
227 移動速度測定部
発明を実施するための最良の形態 [0053] 以下本発明の実施の形態について、図面を参照しながら説明する。
[0054] (実施の形態 1)
図 1は、本発明の実施の形態 1におけるマルチキャリア伝送方式に基づいた送信装 置および受信装置の構成を示すブロック構成図である。
[0055] 送信装置 201は、送信データを入力し、入力された送信データに基づいてマルチ キャリア変調を施し、マルチキャリア信号を生成して送出するものである。送信装置 2 01から送出されたマルチキャリア信号は伝送路 203を介して受信装置 202に与えら れる。受信装置 202は、伝送路 203を経て受信したマルチキャリア信号を復調し、受 信データを出力する。
[0056] 送信装置 201は、プリコード部 211と、ベクトル変調部 212と、マルチキャリア変調 部 213、及び周波数変換部 214を備えている。以下に送信装置 201の各部の動作 を説明するが、本発明の要旨を簡潔に説明するために、マルチキャリア伝送におけ る 1シンボルあたりの動作について説明する。
[0057] 1シンボルごとに、 Kビットの送信データが送信装置 201に入力される。送信装置 2 01に入力された送信データはプリコード部 211に供給される。
[0058] プリコード部 211におけるプリコード処理は、受信装置 102のベクトル復調部 224が 復調ベクトルから復調データを容易に判定できるようにするためのものである。
[0059] プリコード部 211は、 Kビットの送信データを入力し、入力された Kビットの送信デー タを N個のグループに分割する。この分割処理により仮の変調情報が生成される。プ リコード部 211は、各グループが有する (KZN)ビットの送信データ、すなわち仮の 変調情報に後述するプリコード処理を施し、 N個の変調情報を生成して出力する。こ こで、プリコード部 211は、受信装置 202のキャンセリングフィルタ部 223の処理に対 応するプリコード処理を行う。 K、 Νは 0より大きい整数である。本実施の形態 1を説明 するに当たって、 Κを Νの倍数としても問題は生じないので、以降の説明では Κは Ν の倍数とする。
[0060] ベクトル変調部 212は、プリコード部 211が出力する Ν個のプリコードされた変調情 報を入力する。ベクトル変調部 212は、入力した変調情報に基づき変調ベクトルを生 成し、該 Ν個の変調ベクトルを出力する。 [0061] マルチキャリア変調部 213は、ベクトル変調部 212が出力する N個の変調ベクトル を入力する。マルチキャリア変調部 213は、その N個の変調ベクトルで N個のサブキ ャリアに各々変調を施してベースバンドのマルチキャリア変調信号を生成し、出力す る。
[0062] 周波数変換部 214は、マルチキャリア変調部 213が出力するベースバンドのマル チキャリア変調信号を入力する。周波数変換部 214は、入力されたベースバンドのマ ルチキャリア変調信号を所定の無線周波数帯の信号に周波数変換し、周波数変換 した信号をマルチキャリア変調信号として出力する。周波数変換部 214が出力するマ ルチキャリア変調信号は、送信装置 201の出力するマルチキャリア変調信号として、 空中線を介して伝送路 203に供給される。
[0063] 伝送路 203を経由した上記マルチキャリア変調信号は、空中線を介して受信装置 2 02に供給される。
[0064] 受信装置 202は、周波数変換部 221、マルチキャリア復調部 222、キャンセリングフ ィルタ部 223、及びベクトル復調部 224を備えている。以下に受信装置 202の各部の 動作を説明する。本発明の要旨を簡潔に説明するために、マルチキャリア伝送にお ける 1シンボルあたりの動作について説明する。
[0065] 受信装置 202が伝送路 203を経由して受信したマルチキャリア変調信号は、周波 数変換部 221に供給される。
[0066] 周波数変換部 221は、受信装置 202が受信したマルチキャリア変調信号を入力す る。周波数変換部 221は、入力されたマルチキャリア変調信号をベースバンド帯域の 信号に周波数変換し、周波数変換した信号をベースバンドのマルチキャリア変調信 号として出力する。
[0067] マルチキャリア復調部 222は、周波数変換部 221が出力するベースバンドのマル チキャリア変調信号を入力する。マルチキャリア復調部 222は、 N個のサブキャリアに 対応するマルチキャリア変調信号を各々復調して N個の復調ベクトルを生成し、出力 する。
[0068] キャンセリングフィルタ部 223は、マルチキャリア復調部 222が出力する N個の復調 ベクトルを入力する。詳細は後述するが、キャンセリングフィルタ部 223は、隣接する サブキャリアに各々対応する復調ベクトルに個別にフィルタリング処理を施し、これに より N個のフィルタリングされた復調ベクトルを生成し、出力する。
[0069] ベクトル復調部 224は、キャンセリングフィルタ部 223が出力する N個のフィルタリン グされた復調ベクトルを入力する。ベクトル復調部 224は、そのフィルタリングされた 復調ベクトルから Kビットの復調データを判定し、出力する。
[0070] ベクトル復調部 224の出力する Kビットの復調データは、受信装置 102から復調デ ータとして出力される。
[0071] 図 2は、本発明の実施の形態 1における受信装置 102のキャンセリングフィルタ部 2 23の構成例を示すブロック図である。図 3 (a)は、本発明の実施の形態 1における変 調ベクトルをサブキャリアの周波数軸上に並べたときの該変調ベクトルの配置状態を 示す図である。図 3 (b)は、実施の形態 1における変調ベクトル及びキャンセリングフ ィルタ処理された復調ベクトルの各信号点配置 (複素平面上)を示す図である。なお 、図 3 (b)において、 X印は、ベクトル変調部 212から出力される変調ベクトルの一例 を信号点で表したものである。參印は、キャンセリングフィルタ部 223から出力される フィルタリング処理された復調ベクトルの一例を信号点で表したものである。
[0072] 図 2に示されるキャンセリングフィルタ部 223は、マルチキャリア復調部 222から N個 の復調ベクトルを順次入力する。キャンセリングフィルタ部 223は、入力した N個の復 調ベクトル(図 3参照)に、 1対 1の関係で N個のサブキャリアを対応させる。なお、サ ブキャリアを変調ベクトルでマルチキャリア変調する処理は、マルチキャリア変調部 2 13で行われる。図 3 (a)に示す例では、変調ベクトルの向きを全て一方向に揃えてい るが、これは便宜的なものであって、送信データに応じて信号点(図 3 (b)参照)の位 置が異なれば変調ベクトルの向きも異なる。 N個のサブキャリアには、その周波数軸 方向の配置順に 1番力 N番までの番号が付されている。 N個の復調ベクトルは、順 に Y、 Y、 · · ·、 Y と表される。キャンセリングフィルタ部 223は、フィルタリングのため
1 2 N
にフィルタリングの式 P (D) = (1— D — " (Lは 2以上の整数)を用いる。式 P (D) = (1— D) (L_ 1)を展開すると、多項式 P (D) =P +P D + P ϋ2+ · · · +Ρ D(L_1)
0 1 2 (L- l) が得られる。キャンセリングフィルタ部 223は以下の式(1)を用いて N個のフィルタリン グされた復調ベクトル Υ, 、Υ, 、 · · ·、Υ, を求める。キャンセリングフィルタ部 223は 、求めた復調ベクトルを順次出力する。
[0073] 式(1) (特許請求の範囲に記載した式(2)に相当)
;=ο
[0074] キャンセリングフィルタ部 223は FIR (Finite Impulse Response)型フィルタとし て構成することができる。例えば、上記フィルタリングの式 P (D) = (1 -D) にお いてフィルタ長 Lを 2とすると、 P (D) = (1 -D)となる。すなわち、式 P (D)の展開式に おいて P = 1、 P =— 1となる。この場合、キャンセリングフィルタ部 223は図 2に示さ
0 1
れるように構成することができる。図 2に示されるように、キャンセリングフィルタ部 223 は、遅延器 301と、係数付与器 302及び 303と、加算器 304とを含む。キャンセリング フィルタ部 223は、マルチキャリア復調部 222から N個の復調ベクトル Yを順次入力 する。遅延器 301は、順次入力された復調ベクトル Yを 1サンプル分遅延させて出力 する。遅延器 301は、復調ベクトル Yが入力されている時刻に 1サンプル前の復調べ タトル Y を出力する。入力された復調ベクトル Yには、係数付与器 302でフィルタ 係数" 1"が乗算される。この係数は「P = 1」に基づき設定されるものである。遅延器
0
301が出力する復調ベクトル Y には、係数付与器 303でフィルタ係数"— 1"が乗 算される。この係数は「P =— 1」に基づき設定されるものである。加算器 304におい て、係数付与器 302と係数付与器 303で各々係数が乗算された復調べ外ルの和が 求められる。これにより、フィルタリングされた復調ベクトル Y'が順次求められる。キヤ ンセリングフィルタ部 223は、フィルタリングされた復調ベクトル Y,を順次出力する。
[0075] 背景技術の欄で述べたように、 i番目のサブキャリアと k番目のサブキャリア間に生じ るキャリア間干渉と、 (i+ 1)番目のサブキャリアと k番目のサブキャリア間に生じるキヤ リア間干渉の和は実質的にゼロとなり、これらキャリア間干渉は互いに相殺し合う。よ つて、キャンセリングフィルタ部 223においてフィルタリングされた復調ベクトル Υ' .は 干渉成分が実質的にゼロとなる。つまり、隣接するサブキャリアが各々他のサブキヤリ ァに及ぼすキャリア間干渉は、多項式 P (D)に基づくフィルタリング作用で互いに相 殺される。従って、周波数変動、振幅変動、または位相変動などで発生するキャリア 間干渉は、キャンセリングフィルタ部 223において軽減することができる。また、実施 の形態 1では、 N個の変調ベクトルを N個のサブキャリアに各々割り当てるので、変調 ベクトルとサブキャリアが 1対 1に対応する。よって、上記従来技術と異なり、伝送効率 が低下しない。
[0076] 図 4は、本発明の実施の形態 1における送信装置 201のプリコード部 211の構成例 を示すブロック図である。プリコード部 211は、キャンセリングフィルタ部 223をパーシ ャルレスポンスフィルタとみなして非特許文献 2に記載されるように構成することがで きる。プリコード部 211は、ベクトル復調部 224においてキャンセリングフィルタ部 223 が出力するフィルタリングされた復調ベクトル力も復調データを判定する際に、その判 定を容易にするためのものである。プリコード部 211は、キャンセリングフィルタ部 223 での処理に対応して送信データを予め符号化する。以下、プリコード部 211の構成 及び動作を詳細に説明する。
[0077] プリコード部 211は、まず、入力された Kビットの送信データを N個のグループに分 割して仮の変調情報 X , X , · · · , Xを生成する。プリコード部 211は、以下の式(2)
1 2 N
に従って仮の変調情報 X , X , · · · , Xの符号化を行う。これにより、プリコード部 21
1 2 N
1は、 N個の変調情報 X, , X' , · · · , X' を生成し、出力する。
1 2 N
[0078] 式(2) (特許請求の範囲に記載した式(1)に相当)
X; = P。X,— (mod M)
Figure imgf000022_0001
[0079] 例えば、キャンセリングフィルタ部 223のフィルタ長 Lを 2としてフィルタリングの式 P ( D) = (1— D)とした場合、キャンセリングフィルタ部 223に対応するプリコード部 211 は図 4に示されるように構成することができる。図 4に示されるように、プリコード部 211 は、分割器 401と、加算器 402と、剰余器 403と、遅延器 404とを含む。分割器 401 は、プリコード部 211が入力する Kビットの送信データを入力する。分割器 401は、入 力された送信データを N個のグループに分割して仮の変調情報 X , X , · · · , Xを
1 2 N 生成し、順次出力する。仮の変調情報は、 X (l≤i≤N、 iは整数)と表すことができる 。遅延器 404は、プリコード部 211が順次出力するプリコードされた変調情報 X,を入 力し、入力した情報を 1サンプル分遅延して出力する。 1サンプル前の変調情報は X ' と表される。加算器 402は、分割器 401が出力する仮の変調情報 Xと遅延器 40 4が出力する 1サンプル前のプリコードされた変調情報 X' ; ιの和を求める。剰余器 4 03は、加算器 402が出力する加算結果を多値数 Μ (Μは 2以上の整数)で割った剰 余を求める。剰余器 403は、求めた剰余をプリコードされた変調情報 X,として出力す る。
[0080] ベクトル変調部 212における変調規則に Μ値 P AM (Pulse Amplitude Modula tion)などの振幅変調を用いる場合、仮の変調情報 Xおよびプリコードされた変調情 報 X,は M個の実数値で表される。剰余器 403は、 M個の実数値を各々 Mで割った 剰余を求める。なお Mが 2の場合、変調規則は 2値 PAMとなり、 BPSK (Binary Ph ase Shift Keying)と等価となる。
[0081] ベクトル変調部 212における変調規則に M値 QAM (Quadrature Amplitude Modulation)などの直交振幅変調を用いる場合、仮の変調情報 Xおよび変調情報 X'は、 m個の実数部と m個の虚数部とを有する m2個の複素数値で表される。なお、 M=m2である。剰余器 403は、実数部の値および虚数部の値を各々 Mで割った剰 余を求める。なお、 mが 2 (すなわち、 Mが 4)の場合、変調規則は 4値 QAMとなり、 Q PSK (Quadrature Phase Shift Keying)と等価となる。
[0082] ここで、プリコード部 211が上記式(2)に従って N個の変調情報 X, 1, X' , · · · , X
2 , X'
Nを順次求める際、最初に変調情報 X'
1を求める。変調情報 1を求めるには、遅延 器 404が出力する値として予め(L—1)個の変調情報 X, , · · · , X, が必要となる
2-L 0
。そこで、変調情報 X, · · ·, X
2-L, , 0には、予め既知の値が与えられるものとする。プ リコード部 211はそれらの変調情報 X, 2 , · · ·, X, を変調情報 X, 1、Χ,2, · · ·, X
-L 0 , N に先行して入力保持し、送出すればよい。例えば、 L = 2の場合を想定した図 4に示 されるプリコード部 211においては、 N個の変調情報 X, , X' , · · · , X' を求める際
1 2 N
に、遅延器 404が出力する値として 1個の変調情報 X' が予め必要となる。すなわち
0
、分割器 401が仮の変調情報 Xを出力するのと同時に遅延器 404が変調情報 X'
1 0 を出力する必要がある。この場合、変調情報 X' を既知の値として予め遅延器 404に
0
保持しておくとともに、分割器 401が仮の変調情報 Xを出力するのと同期して遅延器 404から変調情報 X' を出力すればよい。
0
[0083] また、キャンセリングフィルタ部 223で式(1)に従って N個のフィルタリングされた復 調ベクトル Y, 、Υ, 、 · · ·、Υ, を求める際、最初にフィルタリングされた復調ベクトル
1 2 Ν
Y' を求める。復調ベクトル Υ, を求めるには、遅延器 301が出力する値として予め( L— 1)個の復調ベクトル Υ , · · · , Υが必要となる。そこで、プリコード部 211が送
2-L 0
出する既知の上記 (L 1)個の変調情報 X, , · · · , X' に対応する復調ベクトル Υ
2-L 0
、 · · ·、 Υを、キャンセリングフィルタ部 223が予め入力しておけばよい。受信装置
2-L 0
202は、復調ベクトル Υ 、 · · ·、 Υを送信装置 201から予め受信しておき、その受
2-L 0
信した復調ベクトルをキャンセリングフィルタ部 223が入力する。例えば、 L = 2の場 合を想定した図 2に示されるキャンセリングフィルタ部 223においては、 N個のフィル タリングされた復調ベクトル Υ, 、Υ' 、 · · ·、Υ, を順次求める際に、遅延器 301が出
1 2 Ν
力する値として復調ベクトル Υが予め必要となる。すなわち、キャンセリングフィルタ
0
部 223が復調ベクトル Υを入力するのと同時に遅延器 301が復調ベクトル Υを出力
1 0 する必要がある。この場合、キャンセリングフィルタ部 223に復調ベクトル Υが入力さ れるまでに遅延器 301に復調ベクトル Υを先行して受信し入力しておけばよ!、。
0
以上の構成によれば、送信装置 201におけるプリコード部 211は、送信データを Ν 個のグループに分割し、分割したデータにプリコード処理を施して Ν個の変調情報を 生成する。ベクトル変調部 212は、 Ν個の変調情報力 Ν個の変調ベクトルを生成す る。マルチキャリア変調部 213は、 Ν個の変調ベクトルにより Ν個のサブキャリアを各 々マルチキャリア変調する。よって、 Ν個のサブキャリア全てに各々独立に送信デー タが乗せられるため、伝送効率が低下しない。また、受信装置 202におけるキャンセ リングフィルタ部 223は、隣接するサブキャリア間のキャリア間干渉特性に基づきフィ ルタリング処理を施し、キャリア間干渉を相殺する。よって、周波数変動、振幅変動、 または位相変動などで発生するキャリア間干渉を軽減することができる。また、送信 装置 201において、従来の如くサブキャリアを 2個ずつにグループ分けし、各グルー プに割り当てられる変調ベクトルの極性を隣接するサブキャリア間で反転させると 、つ た処理をしない。よって、マルチキャリア変調部 213から出力されるマルチキャリア変 調信号の時間応答波形は,図 13上側に示されるように比較的平坦となる。上記従来 技術の如くシンボル中央部の時間に高出力の信号が集中し、シンボル中央部の信 号振幅が大きくなるといった不都合は生じない。従って、送信装置 201における高周 波電力増幅器の最大出力電力を上げずに済む。また、後述の実施例で示すように、 キャンセリング処理を行って信号点数が増加しても、送信側でプリコード処理を行うこ とにより、受信側で一意的に元の送信データを復元することができる。
[0085] なお、本実施の形態においては、マルチキャリア伝送方式の一例として OFDM (O rthogonal Frequency Division Multiplexing) is送方式 举げること力 Sでさる 。 OFDM伝送方式を用いた場合は、マルチキャリア変調部 213およびマルチキヤリ ァ復調部 222を各々、図 5および図 6に示されるように構成することができる。
[0086] 図 5に示されるように、マルチキャリア変調部 213は、 IDFT部 231と、ガードインタ 一バル付加部 232とを含んでいる。 IDFT部 231は、マルチキャリア変調部 213に入 力された N個の変調ベクトルを入力し、入力された変調ベクトルに逆フーリエ変換を 施してベースバンド帯域の OFDM信号を生成し、出力する。ガードインターバル付 加部 232は、 IDFT部 231が出力するベースバンド帯域の OFDM信号を入力し、入 力したベースバンド帯域の OFDM信号に周期拡張したガードインターバルの信号を 付加する。ガードインターバル付加部 232は、ガードインターバルの信号を付カ卩した ベースバンド帯域のマルチキャリア変調信号をマルチキャリア変調部 213から出力す る。
[0087] 図 6に示されるように、マルチキャリア復調部 222は、ガードインターバル除去部 24 1と、 DFT部 242とを含む。ガードインターバル除去部 241は、マルチキャリア復調部 222が入力するベースバンド帯域のマルチキャリア変調信号力 ガードインターバル の信号を除去して出力する。 DFT部 242は、ガードインターバル除去部 241が出力 する信号をフーリエ変換して N個の復調ベクトルを求める。次いで DFT部 242は、 N 個の復調ベクトルをマルチキャリア復調部 222から出力する。
[0088] (実施例)
以下、実施の形態 1についての実施例を紹介する。プリコード部 211及びキャンセリ ングフィルタ部 223の作用を、図 2、 3、 4、及び 7を参照しつつ説明する。図 7は、プリ コード部 211で行われる演算処理と、キャンセリングフィルタ部 223で行われる演算 処理とを並べて示す図である。この例では、マルチキャリア変調方式の多値数 Mが 4 である場合を想定する。具体的な変調方式は特に限定されるものではないが、例え ば、 QAMを用いることができる。キャンセリングフィルタ部 223のフィルタ長 Lを 2とし 、フィルタの多項式 P (D) = (1—D)とする。図 7は、 i番目の変調情報 X'及び i番目 の復調ベクトル Υ' .を求める演算のすべての組み合わせを示している。図 7では、各 々の列が、左端列から順に、 X、 X, _、 X' .、 Υ、 Υ 、 Y'を示して!/、る。
[0089] 図 4において、プリコード部 211に入力された送信データは、まず分割器 401に入 力される。分割器 401は、入力した送信データを 2ビットずつに分割し、分割した 2ビ ットを 1シンボルに割り当てる。送信データを 2ビットずつに分割することで、送信デー タは 4個の値に符号ィ匕される。これにより、送信データは、 [0, 1, 2, 3]の 4値 (すな わち多値数 4)を持つ仮の変調情報 Xに変換され、分割器 401から出力される。加算 器 402は、 i番目の仮の変調情報 Xと、遅延器 404に保持されている(i— 1)番目の 変調情報 X' とを合算する。(i— 1)番目の変調情報 X' も [0, 1, 2, 3]の 4個の 値を持つ。その合算値は、剰余器 403に入力される。剰余器 403は、入力された合 算値を多値数 4で割って余りを求める。剰余器 403で求められた余りは、 i番目の変 調情報 X'としてプリコード部 211から出力される。ここで、 i番目の変調情報 X'は剰 余器 403において多値数 4で割った余りであるため、図 11に示される如く [0, 1, 2, 3]の 4個の値を持つ。すなわち、潘目の仮の変調情報 Xと (i— 1)番目の変調情報 X' ._とから潘目の変調情報 X,が得られる。 ベクトル
Figure imgf000026_0001
変調 部 212において複素平面上の変調ベクトルに変換される。得られた変調ベクトルは、 マルチキャリア変調部 213においてサブキャリアのマルチキャリア変調に用いられる。 得られたマルチキャリア変調信号は、周波数変換部 214にお 、て無線通信に適した 周波数帯域の信号に周波数変換され、送信装置 201から送出される。
[0090] 送信装置 201から送出されたマルチキャリア変調信号は、受信装置 202で受信さ れる。受信装置 202において、マルチキャリア変調信号は、周波数変換器 221にお V、てベースバンド帯域のマルチキャリア変調信号に変換される。ベースバンド帯域の マルチキャリア変調信号は、マルチキャリア復調器 222において復調される。復調さ れた信号は、キャンセリングフィルタ部 223においてフィルタリング処理される。図 2に おいて、キャンセリングフィルタ部 223に i番目の復調ベクトル Yが入力されるとき、遅 延器 301には既に (i—1)番目の復調ベクトル Y が保持されている。 i番目の復調 ベクトル には係数付与器 302でフィルタ係数" 1"が乗算され、(i— 1)番目の復調 ベクトル Y には係数付与器 303でフィルタ係数" 1"が乗算される。各々フィルタ 係数が乗算された Yと Y は、加算器 304で合算される。加算器 304で得られた合 算結果は、 i番目のフィルタリングされた復調ベクトル Y,としてキャンセリングフィルタ 部 223から出力される。すなわち、 i番目のフィルタリングされた復調ベクトル Υ,は、 i 番目の復調ベクトル Yから(i—1)番目の復調ベクトル Y _を減算したものになる。こ れは、隣接するサブキャリアに各々対応する 2つの復調ベクトル同士の引き算をして いることを意味する。
[0091] 送信装置 201と受信装置 202間の伝送においてキャリア間干渉以外に伝送誤りが ないものとする。つまり、 i番目の復調ベクトル Υは i番目の変調情報 X,と等しく、(i— 1)番目の復調ベクトル Y は (i— 1)番目の変調情報 X, と等し 、ものとする。この 場合、 i番目のフィルタリングされた復調ベクトル Y'は図 7の右端列に示されるような 値となる。フィルタリングされた復調ベクトル Y,は、キャンセリングフィルタ部 223の出 力である。図 7から、 i番目のフィルタリングされた復調ベクトル Υ,力 S"0"の場合は、左 端列に示されるように i番目の仮の変調情報 Xとして" 0"が送信されたことが分力ゝる。 同様に、 3"の場合は Xとして "1"が送信されたことが分かる。 Y
Figure imgf000027_0001
, 力 S"2"または" 2"の場合は Xとして" 2"が送信されたことが分かる。 Y'力 '3"または "— 1"の場合は Xとして" 3"が送信されたことが分かる。すなわち、 i番目のフィルタリ ングされた復調ベクトル Y'を観測すれば、送信された i番目の仮の変調情報 Xを一 意に推定することができる。仮の変調情報 Xを一意に求まれば、該仮の変調情報 X に対応する送信データを求めることができる。従って、実施の形態 1では、図 3 (b)に 示される如くキャンセリング復調直後に信号点の数が増加しても、ベクトル復調部 22 4において、容易且つ一意に送信データを復元することができる。
[0092] キャンセリングフィルタ部 223の処理では、 i番目のフィルタリングされた復調べタト ル Y'は、(i—l)番目の復調ベクトル Y _に基づき求められる。本実施例においては 、プリコード部 211の作用によって、(i—l)番目の復調ベクトル Υ すなわち(i—l) 番目の変調情報 X, がどのような値であっても、 i番目のフィルタリングされた復調べ タトル Yから送信された i番目の仮の変調情報 Xを一義的に推定することができる。以 上の説明により、送信装置においてプリコード処理を行うことで、上記従来技術の如 くサブキャリアを L個ずつにグループ分けし、各グループを構成する隣接サブキャリア 間で変調ベクトルの関係を一意に決定させなくても、受信側にぉ 、て正確に送信デ ータを復元できることが分かる。よって、実施の形態 1は、上記従来技術の如く信号の 伝送効率が 1ZLになってしまうことがなぐ伝送効率が低下しない。
[0093] (実施の形態 2)
図 8は、本発明の実施の形態 2におけるマルチキャリア伝送方式の受信装置の構 成を示すブロック図である。
[0094] 図 8に示されるように、受信装置 2020は、周波数変換部 221と、マルチキャリア復 調部 222と、キャンセリングフィルタ部 223と、トレリス復号部 225とを含む。受信装置 2020は、実施の形態 1における受信装置 202 (図 1参照)のベクトル復調部 224を、 トレリス復号部 225に置き換えたものであり、その他の構成については同一とすること ができる。以下の説明では、実施の形態 1と同じ構成については同一の参照符号を 付してその説明を省略する。
[0095] トレリス復号部 225は、キャンセリングフィルタ部 223が出力する N個のフィルタリン グされた復調ベクトルを入力する。トレリス復号部 225は、フィルタリングされた復調べ タトルのトレリス復号を行って K個の復調データを生成し、出力する。トレリス復号部 2 25から出力された K個の復調データは、受信装置 2020から出力される。
[0096] トレリス復号部 225は、キャンセリングフィルタ部 223の遅延器 301が保持する(L— 1)個の復調ベクトルを状態変数とするトレリス遷移に基づいて、入力された復調べク トルから尤も確からしい遷移を求める。トレリス復号部 225は、その尤も確からしい遷 移を生起するデータを、復調データとして得る。トレリス復号部 225は、復号アルゴリ ズムとして例えば、ビタビアルゴリズム (非特許文献 3)、 BCJRアルゴリズム (非特許文 献 4)、 MAP (最大事後確率)復号などを用いることで構成することができる。
[0097] この受信装置 2020によれば、キャンセリングフィルタ部 223でフィルタリング処理を 施し、トレリス復号部 225でキャンセリングフィルタ部 223の状態遷移を復号する。よつ て、受信装置 2020は、信号の伝送効率を劣化させることなぐ周波数変動、振幅変 動、または位相変動などにより発生するキャリア間干渉を低減し、送信データを正確 に復元することができる。また、送信装置 201において従来の如く隣接する 2つのサ ブキャリアを各々変調する変調ベクトルの極性を互いに反転させるといった処理をし ない。よって、マルチキャリア変調部 213から出力されるマルチキャリア変調信号の時 間応答波形は比較的平坦となる。従って、送信装置 201における高周波電力増幅 器の最大出力電力を上げずに済む。
[0098] なお、受信装置 202にトレリス復号部 225を用いる場合は、送信装置 201でブリコ ード処理を行わなくてもよい。この場合、プリコード部 211に代えて、分割器 401を設 ければよい。プリコード部 211に代えて、分割器 401を設けたものは、 OFDM伝送用 の一般の送信装置として既に存在する。よって、本実施の形態に係る送信装置 201 に代えて、一般の送信装置を使用することができる。これにより、その一般の送信装 置を使用しても、実施の形態 1における上記の優れた効果を奏することができる。実 施の形態 2は、放送用送信装置等の如くプリコード部 211を設けることに制約がある 場合に特に有効である。
[0099] (実施の形態 3)
図 9は、本発明の実施の形態 3におけるマルチキャリア伝送方式の受信装置の一 部を示すブロック図である。
[0100] 実施の形態 3における受信装置(図示せず)は、図 9に示される如ぐキャンセリング フィルタ部 223の係数付与部 302、 303に変動量推定部 226が接続されている点が 実施の形態 1と異なっており、他の構成は実施の形態 1と同一である。実施の形態 1 と同一の構成については同じ参照符号を付してその説明を省略する。変動量推定部
226は、周波数変動、振幅変動、または位相変動などの変動量を推定する。変動量 推定部 226は、例えば、マルチキャリア変調信号に付加された既知のパイロット信号 から伝送路応答を推定し、その伝送路応答の時間変動から周波数変動、振幅変動、 または位相変動などの変動量を推定する。変動量推定部 226で推定された変動量 に基づき、キャンセリングフィルタ部 223は、その係数付与器 302、 303の係数を制 御することができる。
[0101] 変動量推定部 226で推定された変動量に応じて係数付与器 302、 303の係数を制 御することで、周波数変動、位相変動、または振幅変動などの変動によって生じる伝 送路応答のずれを補正し、変動の影響を更に軽減することができる。
[0102] (実施の形態 4)
図 10は、本発明の実施の形態 4におけるマルチキャリア伝送方式の受信装置の一 部を示すブロック図である。実施の形態 4における受信装置(図示せず)は、図 10に 示される如ぐキャンセリングフィルタ部 223の係数付与部 302、 303に移動速度測 定部 227が接続されている点が実施の形態 1と異なっており、他の構成は実施の形 態 1と同一である。実施の形態 1と同一の構成については同じ参照符号を付してその 説明を省略する。移動速度測定部 227は、例えば、受信装置 202が自動車等の移 動体上に設置され、或いは、受信装置 202が人に持ち運びされる場合を想定して設 けられている。移動速度測定部 227における移動速度測定手段は特に限定されるも のではないが、例えば、車速パルス発生器等、移動体の速度パルス発生器を用いて 受信装置 202の移動速度を検出することができる。或いは、移動速度測定部 227は 、 GPS等の位置測定技術を用いて、所定の時間間隔で移動体の現在位置を測定し 、その所定の時間に移動した距離力も移動速度を算出してもよい。
[0103] 一般に、ドッブラ現象に起因するキャリア間干渉は、送信装置或いは受信装置の移 動速度との相関が高い。よって、移動速度測定部 227より得られた受信装置 202の 移動速度情報に基づいて、キャンセリングフィルタ部 223の係数付与器 302、 303の 係数を制御することで、特に周波数変動の影響を更に軽減することができる。
[0104] なお、以上に述べた全実施の形態は、集積回路である LSIとして実現することがで きる。各実施の形態は、個別に 1チップィ匕されてもよいし、或いは、全実施の形態を 含むように 1チップィ匕されてもょ 、。
[0105] なお、上記 LSIは、集積度の違いにより、 IC、システム LSI、スーパー LSI、ウルトラ LSI等の各種 LSIを含むものとする。
[0106] また、各実施の形態の集積回路化の手法は LSIに限るものではなぐ専用回路又 は汎用プロセッサで実現してもよい。或いは、 LSI製造後にプログラミングすることが 可能な FPGA (Field Programmable Gate Array)や、 LSI内部の回路セルの 接続或 、は設定を再構成可能なリコンフィギユラブル ·プロセッサを利用しても良 、。
[0107] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って もよ 、。バイオ技術の適応等が可能性としてあり得る。
産業上の利用可能性
本発明に力かるマルチキャリア伝送方式における送信装置および受信装置は、ドッ ブラ現象による周波数変動などで発生するキャリア間干渉を軽減することができ、移 動体通信等にお 、て有用である。

Claims

請求の範囲
[1] 互いに直交するサブキャリアにマルチキャリア変調を施してディジタルデータを伝送 するマルチキャリア伝送方式における送信装置であって、
送信データを入力し、前記送信データにプリコード処理を施してプリコードされた変 調情報を生成し、該プリコードされた変調情報を出力するプリコード部と、
前記プリコードされた変調情報を複素平面上の変調べ外ルに変換して出力するべ タトル変調部と、
前記変調ベクトルで前記サブキャリアに変調を施してマルチキャリア変調信号を生 成し、該マルチキャリア変調信号を出力するマルチキャリア変調部とを備え、
前記マルチキャリア変調部は、前記サブキャリアを前記変調ベクトルにより 1対 1の 関係で変調し、
受信装置で前記マルチキャリア変調信号がマルチキャリア復調され、該復調により 得られる復調ベクトルにキャリア間干渉を相殺するフィルタリング処理が施されたとき 、該フィルタリング処理により得られるフィルタリングされた復調ベクトルは、前記ブリコ ードされた変調情報に一義的に対応する、ことを特徴とするマルチキャリア伝送方式 における送信装置。
[2] 前記プリコード処理の開始に当たり、前記プリコード部は、前記送信データを複数 のグループに分割し、各グループが有する前記送信データを仮の変調情報とし、前 記プリコード部は、プリコード処理を行うための式(1)に従い前記仮の変調情報の最 初の情報 Xにプリコード処理を施す際に必要とされる (L 1)個の変調情報 X' ,
1 2-L
• · · , X, 0を、変調情報 Xの
1 入力前に初期値として予め入力し保持しておくことを特 徴とする請求項 1記載のマルチキャリア伝送方式の送信装置。
式 (1)
Figure imgf000032_0001
[3] 前記プリコード部は、剰余器を含み且つ遅延要素を Dとしてインパルス応答が 1Z ( 1 -D) (L_ 1) (Lは 2以上の整数)で表される IIR (Infinite Inpulse Response)フィ ルタで構成されることを特徴とする請求項 1記載のマルチキャリア伝送方式の送信装 置。
[4] 互いに直交する複数のサブキャリアにマルチキャリア変調を施してディジタルデー タを伝送するマルチキャリア伝送方式における受信装置であって、
受信したマルチキャリア変調信号を入力し、入力したマルチキャリア変調信号を復 調し、復調して得られた復調ベクトルを出力するマルチキャリア復調部と、
前記復調ベクトルを入力し、周波数軸方向に隣接する前記サブキャリアに各々対 応する前記復調ベクトルにキャリア間干渉を相殺するフィルタリング処理を施し、該フ ィルタリング処理により得られたフィルタリングされた復調ベクトルを出力するキャンセ リングフィルタ部と、
前記フィルタリングされた復調ベクトル力 受信データを判定して出力するベクトル 復調部とを備え、
前記マルチキャリア復調部は、前記サブキャリアを 1対 1の関係で変調した前記変 調べクトノレを復調し、
前記フィルタリングされた復調ベクトルは、送信装置で送信データにプリコード処理 を施して得られたプリコードされた変調情報に一義的に対応し、且つ、その対応関係 を前記ベクトル復調部で判定可能である、ことを特徴とするマルチキャリア伝送方式 の受信装置。
[5] 前記フィルタリング処理を開始するに当たり、前記キャンセリングフィルタ部は、フィ ルタリング処理を行うための式(2)に従い前記復調ベクトルの最初の値 Yにフィルタ リング処理を施す際に必要とされる (L 1)個の前記復調ベクトル Y , · · · , Yを、
2-L 0 前記復調ベクトル Yの入力前に初期値として予め送信装置力 受信入力し保持して おくことを特徴とする請求項 4記載のマルチキャリア伝送方式の受信装置。
式 (2)
Figure imgf000033_0001
1=0
[6] 受信した前記マルチキャリア変調信号の周波数変動、振幅変動、または位相変動 のうち少なくともいずれか一つの変動量を推定する変動量推定部を更に備え、 前記変動量推定部は、前記推定された変動量に応じて、前記キャンセリングフィル タ部のフィルタ係数を制御することを特徴とする請求項 4記載のマルチキャリア伝送 方式の受信装置。
[7] 前記キャンセリングフィルタ部は、遅延要素を Dとしてインパルス応答が(1—D) (L_1 ) (Lは 2以上の整数)で表される FIR (Finite Inpulse Response)フィルタで構成さ れることを特徴とする請求項 4記載のマルチキャリア伝送方式の受信装置。
[8] 前記受信装置が移動する速度を検出する移動速度測定部を更に備え、
前記移動速度測定部により得られた移動速度情報に応じて、前記キャンセリングフ ィルタ部のフィルタ係数を制御することを特徴とする請求項 4記載のマルチキャリア伝 送方式の受信装置。
[9] 前記受信装置は、移動体の速度パルス発生部を含み、
前記移動速度測定部は、前記速度パルス発生部が出力する速度パルスに基づき 、前記受信装置の移動速度情報を求めることを特徴とする請求項 8記載の受信装置
[10] 前記移動速度測定部は、所定の時間間隔で前記受信装置の位置情報を取得し、 前記位置情報と前記時間間隔に基づき、前記受信装置の移動速度情報を求めるこ とを特徴とする請求項 8記載の受信装置。
[11] 互いに直交するサブキャリアにマルチキャリア変調を施してディジタルデータを伝送 するマルチキャリア伝送方式における受信装置であって、
送信装置力 受信したマルチキャリア変調信号を入力し、前記マルチキャリア変調 信号を復調し、復調して得られた復調ベクトルを出力するマルチキャリア復調部と、 前記復調ベクトルを入力し、周波数軸方向に隣接する前記サブキャリアに各々対 応する前記復調ベクトルに対してキャリア間干渉を相殺するフィルタリング処理を施し 、該フィルタリング処理により得られたフィルタリングされた復調ベクトルを出力するキ ヤンセリングフィルタ部と、
前記フィルタリングされた復調ベクトルを入力し、前記フィルタリング処理の状態変 数を用いたトレリス遷移に基づ 、て前記フィルタリングされた復調ベクトルの復号処理 を行 ヽ、該復号処理により得られた受信データを出力するトレリス復号部とを備え、 前記マルチキャリア復調部は、前記サブキャリアを 1対 1の関係で変調した前記変 調ベクトルを復調する、ことを特徴とするマルチキャリア伝送方式の受信装置。
[12] 前記フィルタリング処理を開始するに当たり、前記キャンセリングフィルタ部は、フィ ルタリング処理を行うための式(2)に従い前記復調ベクトルの最初の値 Yにフィルタ リング処理を施す際に必要とされる (L 1)個の前記復調ベクトル Y , · · · , Yを、
2-L 0 前記復調ベクトル Yの入力前に初期値として予め送信装置力 受信入力し保持して おくことを特徴とする請求項 11記載のマルチキャリア伝送方式の受信装置。
式 (2) =∑^-ι
1=0
[13] 受信した前記マルチキャリア変調信号の周波数変動、振幅変動、または位相変動 のうち少なくともいずれか一つの変動量を推定する変動量推定部を更に備え、 前記変動量推定部は、前記推定された変動量に応じて、前記キャンセリングフィル タ部のフィルタ係数を制御することを特徴とする請求項 11記載のマルチキャリア伝送 方式の受信装置。
[14] 前記キャンセリングフィルタ部は、遅延要素を Dとしてインパルス応答が(l— D) (L_1 ) (Lは 2以上の整数)で表される FIR (Finite Inpulse Response)フィルタで構成さ れることを特徴とする請求項 11記載のマルチキャリア伝送方式の受信装置。
[15] 前記受信装置が移動する速度を検出する移動速度測定部を更に備え、
前記移動速度測定部により得られた移動速度情報に基づき、前記キャンセリングフ ィルタ部のフィルタ係数を制御することを特徴とする請求項 11記載のマルチキャリア 伝送方式の受信装置。
[16] 前記受信装置は、移動体の速度パルス発生部を含み、
前記移動速度測定部は、前記速度パルス発生部が出力する速度パルスに基づき 、前記受信装置の移動速度情報を求めることを特徴とする請求項 15記載の受信装 置。
[17] 前記移動速度測定部は、所定の時間間隔で前記受信装置の位置情報を取得し、 前記位置情報と前記時間間隔に基づき、前記受信装置の移動速度情報を求めるこ とを特徴とする請求項 15記載の受信装置。
[18] 互いに直交するサブキャリアにマルチキャリア変調を施してディジタルデータを伝送 するマルチキャリア伝送方式を用いた送信方法であって、
送信データを入力し、前記送信データにプリコード処理を施してプリコードされた変 調情報を生成し、該プリコードされた変調情報を出力するプリコード段階と、 前記プリコードされた変調情報を複素平面上の変調べ外ルに変換して出力するべ タトル変調段階と、
前記変調ベクトルで前記サブキャリアに変調を施してマルチキャリア変調信号を生 成し、該マルチキャリア変調信号を出力するマルチキャリア変調段階とを備え、 前記マルチキャリア変調段階は、前記サブキャリアを前記変調ベクトルにより 1対 1 の関係で変調し、
受信装置で前記マルチキャリア変調信号がマルチキャリア復調され、該復調により 得られる復調ベクトルにキャリア間干渉を相殺するフィルタリング処理が施されたとき 、該フィルタリング処理により得られるフィルタリングされた復調ベクトルは、前記ブリコ ードされた変調情報に一義的に対応する、ことを特徴とするマルチキャリア伝送方式 を用いた送信方法。
[19] 互いに直交するサブキャリアにマルチキャリア変調を施してディジタルデータを伝送 するマルチキャリア伝送方式を用いた受信方法であって、
受信したマルチキャリア変調信号を入力し、入力したマルチキャリア変調信号を復 調し、復調して得られた復調ベクトルを出力するマルチキャリア復調段階と、 前記復調ベクトルを入力し、周波数軸方向に隣接する前記サブキャリアに各々対 応する前記復調ベクトルにキャリア間干渉を相殺するフィルタリング処理を施し、該フ ィルタリング処理により得られたフィルタリングされた復調ベクトルを出力するキャンセ リングフィルタ段階と、
前記フィルタリングされた復調ベクトル力 受信データを判定して出力するベクトル 復調段階とを備え、
前記マルチキャリア復調段階は、前記サブキャリアを 1対 1の関係で変調した前記 変調ベクトルを復調し、
前記フィルタリングされた復調ベクトルは、送信装置で送信データにプリコード処理 を施して得られたプリコードされた変調情報に一義的に対応し、且つ、その対応関係 を前記ベクトル復調段階で判定可能である、ことを特徴とするマルチキャリア伝送方 式を用いた受信方法。
互いに直交するサブキャリアにマルチキャリア変調を施してディジタルデータを伝送 するマルチキャリア伝送方式を用いた受信方法であって、
送信装置力 受信したマルチキャリア変調信号を入力し、前記マルチキャリア変調 信号を復調し、復調して得られた復調ベクトルを出力するマルチキャリア復調段階と 前記復調ベクトルを入力し、周波数軸方向に隣接する前記サブキャリアに各々対 応する前記復調ベクトルに対してキャリア間干渉を相殺するフィルタリング処理を施し 、該フィルタリング処理により得られたフィルタリングされた復調ベクトルを出力するキ ヤンセリングフィルタ段階と、
前記フィルタリングされた復調ベクトルを入力し、前記フィルタリング処理の状態変 数を用いたトレリス遷移に基づ 、て前記フィルタリングされた復調ベクトルの復号処理 を行 ヽ、該復号処理により得られた受信データを出力するトレリス復号段階とを備え、 前記マルチキャリア復調段階は、前記サブキャリアを 1対 1の関係で変調した前記 変調ベクトルを復調する、ことを特徴とするマルチキャリア伝送方式を用いた受信方 法。
PCT/JP2006/312280 2005-06-22 2006-06-20 マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア伝送方式を用いた送信方法及び受信方法 WO2006137375A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007522281A JP4898674B2 (ja) 2005-06-22 2006-06-20 マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア伝送方式を用いた送信方法及び受信方法
CN2006800224580A CN101204032B (zh) 2005-06-22 2006-06-20 多载波传送方式的发送及接收装置和方法
EP06766941.6A EP1876742A4 (en) 2005-06-22 2006-06-20 TRANSMISSION APPARATUS AND APPARATUS FOR A MULTI-CARRIER TRANSMISSION SYSTEM AND METHOD OF TRANSMITTING AND RECEIVING METHOD USING MULTI-CARRIER TRANSMISSION SYSTEM
US11/915,444 US8090034B2 (en) 2005-06-22 2006-06-20 Transmission apparatus and a reception apparatus in a multicarrier transmission system and a transmission method and a reception method using the multicarrier transmission system
US13/307,470 US8199838B2 (en) 2005-06-22 2011-11-30 Transmission apparatus and a reception apparatus in a multicarrier transmission system and a transmission method and a reception method using the multicarrier transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005181939 2005-06-22
JP2005-181939 2005-06-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/915,444 A-371-Of-International US8090034B2 (en) 2005-06-22 2006-06-20 Transmission apparatus and a reception apparatus in a multicarrier transmission system and a transmission method and a reception method using the multicarrier transmission system
US13/307,470 Division US8199838B2 (en) 2005-06-22 2011-11-30 Transmission apparatus and a reception apparatus in a multicarrier transmission system and a transmission method and a reception method using the multicarrier transmission system

Publications (1)

Publication Number Publication Date
WO2006137375A1 true WO2006137375A1 (ja) 2006-12-28

Family

ID=37570404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312280 WO2006137375A1 (ja) 2005-06-22 2006-06-20 マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア伝送方式を用いた送信方法及び受信方法

Country Status (5)

Country Link
US (2) US8090034B2 (ja)
EP (1) EP1876742A4 (ja)
JP (1) JP4898674B2 (ja)
CN (1) CN101204032B (ja)
WO (1) WO2006137375A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500556A (ja) * 2008-08-20 2012-01-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信システムのためのプリコーダ、及びその通信システムで用いられる方法
JP2012506648A (ja) * 2008-10-21 2012-03-15 エスティー‐エリクソン グレノーブル エスエーエス ドップラー効果を補正する装置を備える受信機
JP2013062612A (ja) * 2011-09-12 2013-04-04 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、及び無線通信方法
JP2013223082A (ja) * 2012-04-16 2013-10-28 Tokyo Institute Of Technology Ofdm(直交周波数分割多重)復調器およびofdm伝送システムならびにofdm復調方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998594B (zh) * 2009-08-08 2014-04-30 中兴通讯股份有限公司 降低多载波相互干扰的方法与装置
CN102006144B (zh) 2009-09-01 2014-01-08 华为技术有限公司 预编码方法、装置及频域均衡方法、装置
JP5212316B2 (ja) * 2009-09-03 2013-06-19 富士通株式会社 無線通信装置及び無線通信方法
JP5578619B2 (ja) 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
CN103297953B (zh) * 2012-02-24 2016-06-01 华为技术有限公司 物理小区标识配置、逻辑根序列索引配置方法及基站设备
EP2865122A4 (en) * 2012-06-20 2016-01-06 Magnacom Ltd IN A HIGH SPEED SPECTRUM EFFICIENT TRANSMISSION BY OFDM
US9130624B2 (en) * 2012-09-21 2015-09-08 Kratos Integral Holdings, Llc Envelope feedback interference reduction and data throughput maximization
US9219631B2 (en) 2012-09-21 2015-12-22 Kratos Integral Holdings, Llc System and method for increasing spot beam satellite bandwidth
CN104813595A (zh) * 2012-11-15 2015-07-29 诺韦尔萨特有限公司 通信收发器中的回波消除
CN104956613B (zh) * 2013-03-15 2016-11-02 华为技术有限公司 一种发送设备和接收设备参数的调整方法及终端设备
CN104658545B (zh) * 2013-11-25 2018-04-24 宏碁股份有限公司 声音数据传输系统与声音数据传输方法
US9496900B2 (en) 2014-05-06 2016-11-15 MagnaCom Ltd. Signal acquisition in a multimode environment
TWI568210B (zh) * 2015-10-08 2017-01-21 財團法人工業技術研究院 干擾抑制方法及應用其之網路伺服器
US9967021B2 (en) 2016-07-14 2018-05-08 Suntrust Bank Systems and methods for signal cancellation in satellite communication
US10200071B1 (en) * 2017-08-07 2019-02-05 Kratos Integral Holdings, Llc System and method for interference reduction in radio communications
CN115412411B (zh) * 2021-05-26 2024-05-03 华为技术有限公司 一种数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188847A (ja) * 2001-09-27 2003-07-04 Toyota Central Res & Dev Lab Inc マルチキャリア復調方法及びマルチキャリア復調装置
JP2003524337A (ja) * 2000-02-21 2003-08-12 テラブス オーワイ デジタル通信経路上において適応型チャネル等化のトレーニング段階を実施するための方法および装置
WO2004077734A2 (en) * 2003-02-27 2004-09-10 Intel Corporation An apparatus and associated methods to introduce diversity in a multicarrier channel
JP2005510939A (ja) * 2001-11-29 2005-04-21 クゥアルコム・インコーポレイテッド プリコーディングで対数−尤度比を決定するための方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL125242A0 (en) * 1998-07-06 1999-03-12 Metalink Ltd Channel precoder using an infinite impulse response filter
US20020048333A1 (en) * 2000-05-25 2002-04-25 Nadeem Ahmed Joint detection in OFDM systems
US7298785B2 (en) * 2001-07-04 2007-11-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Multicarrier demodulation method and apparatus, and multicarrier modulation method and apparatus
CN1290280C (zh) * 2002-12-31 2006-12-13 上海贝尔阿尔卡特股份有限公司 自适应载波间干扰自消除的方法与收发信机
TWI247496B (en) * 2003-02-27 2006-01-11 Intel Corp An apparatus and associated methods to introduce diversity in a multicarrier channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524337A (ja) * 2000-02-21 2003-08-12 テラブス オーワイ デジタル通信経路上において適応型チャネル等化のトレーニング段階を実施するための方法および装置
JP2003188847A (ja) * 2001-09-27 2003-07-04 Toyota Central Res & Dev Lab Inc マルチキャリア復調方法及びマルチキャリア復調装置
JP2005510939A (ja) * 2001-11-29 2005-04-21 クゥアルコム・インコーポレイテッド プリコーディングで対数−尤度比を決定するための方法および装置
WO2004077734A2 (en) * 2003-02-27 2004-09-10 Intel Corporation An apparatus and associated methods to introduce diversity in a multicarrier channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876742A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500556A (ja) * 2008-08-20 2012-01-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信システムのためのプリコーダ、及びその通信システムで用いられる方法
US8848811B2 (en) 2008-08-20 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Precoder for a communication system and methods used in said communication system
JP2012506648A (ja) * 2008-10-21 2012-03-15 エスティー‐エリクソン グレノーブル エスエーエス ドップラー効果を補正する装置を備える受信機
US8948315B2 (en) 2008-10-21 2015-02-03 Stmicroelectronics International N.V. Receiver comprising a device for correcting doppler effect
JP2013062612A (ja) * 2011-09-12 2013-04-04 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、及び無線通信方法
JP2013223082A (ja) * 2012-04-16 2013-10-28 Tokyo Institute Of Technology Ofdm(直交周波数分割多重)復調器およびofdm伝送システムならびにofdm復調方法

Also Published As

Publication number Publication date
JP4898674B2 (ja) 2012-03-21
US8090034B2 (en) 2012-01-03
CN101204032A (zh) 2008-06-18
US20090180566A1 (en) 2009-07-16
JPWO2006137375A1 (ja) 2009-01-15
EP1876742A4 (en) 2014-07-16
US20120076220A1 (en) 2012-03-29
CN101204032B (zh) 2013-04-10
US8199838B2 (en) 2012-06-12
EP1876742A1 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
WO2006137375A1 (ja) マルチキャリア伝送方式の送信装置及び受信装置並びにマルチキャリア伝送方式を用いた送信方法及び受信方法
JP4746809B2 (ja) Ofdmにおける2つの伝搬チャネルの推定
JP6300992B2 (ja) 送信装置
KR101301402B1 (ko) 도플러 주파수 산출 장치와 방법 및 직교 주파수 분할 다중복조 장치
JP3429746B2 (ja) マルチキャリア復調システムにおけるエコー位相オフセット補正
JP2008505587A (ja) 周波数ホッピングされるifdma通信システム
JP2008541524A (ja) 複素数値を有するシンボルを用いたofdm/oqam信号の符号化方法、対応する信号、デバイス、及びコンピュータプログラム
US7974358B2 (en) Orthogonal frequency division multiplexing (OFDM) encoding and decoding methods and systems
US10404498B2 (en) Precompensation of interference induced by an OFDM/OQAM modulation that is faster than Nyquist
JP6743327B2 (ja) 無線通信システム、無線送信装置および無線受信装置
CN113595953B (zh) 发送装置
JP6414850B2 (ja) 送信装置、受信装置、送信方法および受信方法
JP2008512013A (ja) 通信路伝達関数を反復的に推定する装置及び方法
Ogundile et al. Improved reliability information for OFDM systems on time-varying frequency-selective fading channels
TAşPINAR et al. Channel estimation techniques in OFDM-IDMA systems
Anusuya et al. Design of multiwavelet filter bank for 4G wireless communications
Ogundile et al. Improved distance metric technique for deriving soft reliability information over Rayleigh Fading Channel
WO2018163359A1 (ja) 送信装置、受信装置、通信システムおよび送信方法
Batabyal et al. A code set for a robust 8.25 Mb/s data rate for IEEE 802.11 b WLANs
JP2011024160A (ja) 受信装置及び軟判定誤り訂正復号方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022458.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522281

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006766941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11915444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006766941

Country of ref document: EP