WO2006137249A1 - Work transfer system - Google Patents

Work transfer system Download PDF

Info

Publication number
WO2006137249A1
WO2006137249A1 PCT/JP2006/310742 JP2006310742W WO2006137249A1 WO 2006137249 A1 WO2006137249 A1 WO 2006137249A1 JP 2006310742 W JP2006310742 W JP 2006310742W WO 2006137249 A1 WO2006137249 A1 WO 2006137249A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
belt
workpiece
transfer system
belt conveyors
Prior art date
Application number
PCT/JP2006/310742
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyoshi Tachibana
Original Assignee
Hirata Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirata Corporation filed Critical Hirata Corporation
Priority to CN2006800223728A priority Critical patent/CN101203445B/en
Priority to JP2007522226A priority patent/JP4629731B2/en
Priority to TW095120839A priority patent/TWI382951B/en
Publication of WO2006137249A1 publication Critical patent/WO2006137249A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/26Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising a series of co-operating units, e.g. interconnected by pivots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/52Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices
    • B65G47/53Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices between conveyors which cross one another
    • B65G47/54Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices between conveyors which cross one another at least one of which is a roller-way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/068Stacking or destacking devices; Means for preventing damage to stacked sheets, e.g. spaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor

Definitions

  • the present invention relates to a technique for conveying a workpiece such as a glass substrate.
  • a plurality of substrates typified by a thin glass substrate used in the manufacture of a thin display are stored in a substrate storage cassette. Then, at the time of the processing, the substrates are taken out one by one from the substrate storage cassette and transferred to the substrate processing apparatus, and after the processing, the substrate processing apparatus is loaded again into the substrate storage cassette.
  • a transport device that transports the substrates one by one between the substrate storage cassette and the processing equipment is required.
  • a transport apparatus for transporting a substrate for example, an apparatus using a single conveyor as described in Japanese Patent Application Laid-Open No. 2004-284772 has been proposed.
  • the substrate when a substrate is transported between the substrate storage cassette and the processing apparatus in the conventional transport device, the substrate may be inclined during the transport. If the substrate reaches the processing apparatus or the substrate storage cassette with the substrate tilted, the substrate may not be smoothly transferred from the transfer device to the processing apparatus or the substrate storage cassette.
  • An object of the present invention is to convey a workpiece in a state where the workpiece is positioned without being inclined during conveyance.
  • the first and second placement members placed across the square workpiece and the first placement member that moves the first placement member on the first linear track.
  • the control means for controlling and the first moving means move together with the first mounting member on the first linear track and abut the edge of the workpiece to define the position of the edge.
  • the first abutting portion and the second moving means move together with the second placement member on the second linear track, abut against the edge of the workpiece, and A second abutting portion for defining a position
  • the control means includes: initial control for controlling the first and second moving means so that the first and second contact portions are positioned at initial positions separated from each other by a width of the workpiece; When the workpiece is placed on the first and second placement parts between the first and second contact parts in the initial position, the first and second contact parts Positioning control for controlling at least one of the first moving means and the second moving means so that the distance between them becomes the width of the workpiece, and after the positioning control, the first and second placement members And a conveyance control for controlling the first and second moving means so that the first and second abutting portions travel in the same direction at a constant speed. Is provided.
  • the first and second abutting portions abut against the opposite end edges of the workpiece, respectively, and the workpiece can be positioned and positioned.
  • the workpiece can be transferred. Therefore, the workpiece can be conveyed in a positioned state without the workpiece being inclined during the conveyance.
  • the first and second belt conveyors are provided so that the running directions of the belts are parallel to each other, and the rectangular workpiece is the first and second belts.
  • a workpiece conveying system for placing and conveying the belt conveyor so as to straddle each belt, a control means for individually controlling the first and second belt conveyors, and the first and second belt conveyors.
  • Initial control for driving the first and second belt conveyors so that the contact portions of the first and second belt conveyors are positioned at an initial position separated from each other by the width of the workpiece, and the contact portion at the initial position.
  • the workpiece is placed on each belt between A positioning control for driving at least one of the first and second belt conveyors such that the distance between the contact portions is the width of the workpiece, and after each positioning control, each belt And a conveyance control for driving the first and second belt conveyors so that the first and second belt conveyors travel in the same direction at a constant speed.
  • the abutment portion abuts against both opposing edges of the workpiece, and the workpiece can be positioned and positioned.
  • the workpiece can be conveyed in the state. Therefore, the workpiece can be conveyed while being positioned without being inclined during the conveyance.
  • FIG. 1 is a plan view of a substrate transfer system A according to an embodiment of the present invention.
  • FIG. 2 is a front view of a substrate transfer system A.
  • FIG. 3-1 is an external view of the substrate storage cassette 100
  • FIG. 3-2 is a diagram showing an internal configuration of the substrate storage cassette 100.
  • FIG. 4-1 is a partially cutaway view showing the configuration of the lifting unit 20 on the side facing the substrate storage cassette 100, and FIGS. 4-2 to 4-4 show the lifting unit 20 and the transfer unit 30.
  • FIG. 6 is an operation explanatory view showing a substrate transport operation by the;
  • FIG. 5A and FIG. 5B are explanatory diagrams of the operation of the transfer unit 40.
  • Fig. 6-1 is a schematic side view of the belt conveyor 11
  • Fig. 6-2 is a schematic side view of the belt conveyor 12
  • Fig. 6-3 is a contact portion 14a and a protrusion 15a of the belt 11c.
  • Fig. 6-4 is a sectional view taken along line II in Fig. 1
  • Fig. 6-5 is a sectional view taken along line II II in Fig. 1.
  • FIG. 7 is a block diagram showing an example in which the driven pulley l ib is pivotally supported by a bearing having a tension adjusting mechanism
  • Fig. 7-2 is a cross-sectional view taken along line ⁇ - ⁇ in Fig. 7-1.
  • FIG. 7-3 is a block diagram of the control unit 70 that controls the substrate transfer system A.
  • FIG. 8 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 9 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 10 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 11 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 12 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 13 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 14 is an operation explanatory diagram of the substrate transfer system A.
  • FIG. 15 is a diagram showing another embodiment of the present invention.
  • FIG. 16 is a diagram showing another embodiment of the present invention.
  • FIG. 17 is a plan view of a substrate transfer system B according to another embodiment of the present invention.
  • FIG. 18 is a perspective view showing a configuration in the vicinity of moving units 2113 and 2123.
  • FIG. 19 is a plan view of a substrate transfer system C according to another embodiment of the present invention.
  • FIG. 20 is a perspective view showing a configuration in the vicinity of moving units 3113 and 3123.
  • FIG. 21 is a plan view of a substrate transfer system D according to another embodiment of the present invention.
  • FIG. 22 is a perspective view showing a configuration in the vicinity of moving units 4113 and 4123.
  • FIG. 23 is a plan view of a substrate transfer system E according to another embodiment of the present invention.
  • FIG. 24 is a perspective view showing a configuration in the vicinity of moving units 5113 and 5123.
  • FIG. 25 is a cross-sectional view (end view) taken along line IV—IV in FIG. 24.
  • FIG. 1 is a plan view of a substrate transport system A according to an embodiment of the present invention
  • FIG. 2 is a front view of the substrate transport system A.
  • the substrate transport system A is arranged on the side of the belt conveyor unit 10 with two belt conveyor units 10 each having a first belt conveyor 11 and a second belt conveyor 12, and is configured to store substrate storage cassettes 100a and 100b.
  • the substrate storage cassette 100 (Hereinafter collectively referred to as the “substrate storage cassette 100”), four lifting units 20 that move up and down, two fixed transfer units 30 arranged between the lifting units 20, and a transfer unit 30 And two lifting and lowering transfer units 40 disposed on the sides.
  • X and Y are the horizontal directions orthogonal to each other, and Z is the vertical direction.
  • the substrate transfer system A is provided on the side of the first belt conveyor 11 and the second belt conveyor 12 (
  • a substrate storage cassette for storing a plurality of substrates is arranged on the side of the first belt conveyor 11 and the second belt conveyor 12 (+ X direction) from the processing device 110 after the processing by the processing device 110 is completed.
  • FIG. 3A is an external view of the substrate storage cassette 100.
  • the substrate storage cassette 100 is a cassette capable of storing a plurality of rectangular substrates, and is a rectangular parallelepiped frame body composed of a plurality of members 101 extending in the vertical direction and a plurality of members 102 and 103 extending in the horizontal direction.
  • a wire 104 is stretched between the opposing members 101, and the substrate to be stored is stored on the wire 104 in a mounted state.
  • the wires 104 are arranged at a predetermined pitch in the vertical direction, and a plurality of slots for storing each substrate are formed in the vertical direction.
  • FIG. 4A is a partially cutaway view showing the configuration of the lifting unit 20 on the side facing the substrate storage cassette 100.
  • Each lifting unit 20 includes a pair of support columns 21 that are spaced apart in the X direction, and a plurality of beams 22 that are installed between the support columns 21.
  • a rail member 23 is provided on the side surface of the support column 21 on the substrate storage cassette 100 side.
  • a slide member 24 is slidably attached to the rail member 23, and the slide member 24 is guided by the rail member 23 and moves up and down.
  • a support member 25 (FIG. 4A is a partially broken view) is installed between the slide members 24, and a mounting plate 26 on which the substrate storage cassette 100 is mounted is fixed to the support member 25.
  • the substrate storage cassette 100 is also placed on the placement plate 26 of the pair of lifting units 20 with both side forces in the Y direction.
  • a motor 27 with a speed reducer is supported on the upper beam 22 and its output shaft is connected to the upper end of a ball screw 29 extending in the Z direction.
  • the upper and lower end portions of the ball screw 29 are rotatably supported by the upper and lower shaft support portions 28, and the ball screw 29 is rotated by the rotation of the motor 27.
  • a ball nut 29a is screwed onto the ball screw 29, and the ball nut 29a is coupled to the support member 25 via a coupling member 29b. But the ball The ball nut 29a moves up and down along the ball screw 29 by forward and reverse rotation of the screw 29, and the ball nut 29a, the connecting member 29b, the support member 25, the slide member 24, the mounting plate 26, and the substrate storage cassette 100 are integrated. It goes up and down.
  • the transfer unit 30 is a unit for transferring a substrate between the belt conveyor unit 10 and the substrate storage cassette 100.
  • a plurality of transfer units 30 here, 5
  • Roller conveyor 31 a support member 32 that supports each roller conveyor 31, and a base member 33 on which the support member 32 is erected.
  • each roller conveyor 31 includes a row of rollers.
  • the roller conveyor 31 is configured such that the rotation axis of a roller rotated by a driving means (not shown) such as a motor is set in the Y direction, and the substrate placed on the roller is conveyed in the X direction.
  • FIGS. 42 to 43 are operation explanatory views showing the substrate transfer operation by the elevating unit 20 and the transfer unit 30.
  • Each roller conveyor 31 and support member 32 are arranged below the substrate storage cassette 100 that is lifted and lowered by the lifting unit 20, and have a predetermined interval in the X direction so as not to interfere with the member 103 of the substrate storage cassette 100. Placed and placed.
  • the substrate storage cassette 100 When transporting the substrate V, which is stored in the substrate storage cassette 100, to the belt conveyor unit 10, it is transported from the lowermost substrate, and the substrate storage cassette 100 is lowered by the lifting unit 20 as shown in Fig. 4-3. Stops at the position where the lowermost substrate is placed on each roller conveyor 31. By rotating the rollers of the roller conveyor 31, the substrate is conveyed to the belt conveyor unit 10.
  • the lifting unit 20 lowers the substrate storage cassette 100 again by approximately one stage, and the lowermost substrate is placed on each roller conveyor 31. Stop at the position where it is placed.
  • the roller conveyor 31 sequentially enters the substrate storage cassette 100, and the substrates in the substrate storage cassette 100 are transported.
  • the operation is generally reversed.
  • the transfer of the substrate between the substrate storage cassette 100 and the belt conveyor unit 10 is performed at the height of the line L (referred to as transfer height) connecting the vertices of the rollers of the roller conveyors 31.
  • each transfer unit 40 is a unit for transferring a substrate between the belt unit 10 and the substrate storage cassette 100 together with the transfer unit 30.
  • the transfer unit 40 disposed on the processing apparatus 110 side also transfers the substrate between the belt conveyor unit 10 and the processing apparatus 110.
  • each transfer unit 40 includes a plurality (three in this case) of roller conveyors 41, a support member 42a that supports each roller conveyor 41, and a base member 42b on which the support member 42a is erected. Prepare.
  • each single conveyor 41 includes two rows of rollers. In the roller conveyor 41, the rotation axis of a roller that is driven to rotate by a driving means (not shown) such as a motor is set in the Y direction, and the substrate placed on the roller is conveyed in the X direction.
  • Each roller conveyor 41 and support member 42a are arranged at a predetermined interval in the X direction so as not to interfere with a belt of a belt conveyor unit 10 to be described later, and the central roller conveyor 41 is a belt conveyor unit. Between 10 is arranged.
  • the transfer unit 40 has an elevating function for elevating and lowering each conveyor 41.
  • FIGS. 5-1 and 5-2 are explanatory diagrams of the operation of the transfer unit 40.
  • the transfer unit 40 includes a base member 43 that supports the base member 42b via an extendable support member 44.
  • Each roller conveyor 41 can move up and down with respect to the base member 43 together with the support member 42a and the base member 42b.
  • On the base member 43 there is a plate cam 45a, a pinion 45b fixed to the rotation shaft of the plate cam 45a, a rack 45c that meshes with the pinion 45b, and a guide member 45d that guides the movement of the rack 45c.
  • an air cylinder 45e for moving the rack 45c.
  • the rack 45c is disposed such that the longitudinal direction thereof faces the X direction, and the air cylinder 45e extends and contracts in the X direction. As the air cylinder 45e expands and contracts, the rack 45c is guided by the guide member 45d and moves in the X direction. As the rack 45c moves, the pion 45b rotates and the plate force 45a also rotates.
  • the base member 43 is provided with a hole 43a for avoiding interference with the plate cam 45a.
  • a roller 42c that contacts the peripheral surface of the plate cam 45a is provided on the lower surface of the base member 42b.
  • the position on the peripheral surface of the plate cam 45a that the roller 42c contacts, the rotational axis of the plate cam 45a, and The roller conveyor 41 moves up and down due to fluctuations in the distance. Therefore, when transferring the substrate to / from the transfer unit 30, the transfer unit 40 connects the apexes of the rollers as shown in FIG.
  • the roller conveyor 41 is at a position where the roller conveyor 41 has been raised (hereinafter referred to as the raised position) at a position passing through the line L indicating the height.
  • the rotation of the plate cam 45a by extending the air cylinder 45e causes the rotation of each roller as shown in FIG.
  • the roller conveyor 41 descends to a position where the line connecting the vertices passes through a line L ′ below the line L indicating the transfer height (this position is hereinafter referred to as a lowered position;).
  • this position is hereinafter referred to as a lowered position;
  • the air cylinder 45e is contracted.
  • such an elevating mechanism is adopted, but it goes without saying that other elevating mechanisms can also be adopted.
  • FIG. 6-1 is a schematic side view of the belt conveyor 11
  • FIG. 6-2 is a schematic side view of the belt conveyor 12.
  • the belt conveyor unit 10 includes the first belt conveyor 11 and the second belt conveyor 12.
  • the two belt conveyor units 10 are separated in the X direction. It is provided in parallel.
  • the first belt conveyor 11 includes a driving pulley 11a, a driven pulley l ib, and an endless belt 11c wound around the driving pulley 11a and the driven pulley l ib, for example, a belt 11c.
  • This is a belt conveyor using a timing belt.
  • the driving pulley 11a and the driven pulley l ib are arranged apart from each other in the Y direction, and the traveling direction of the belt 11c is set in the Y direction.
  • the drive pulley 1 la is connected to a drive shaft l ie supported on the bearing 1 Id.
  • the first belt conveyors 11 of the two belt conveyor units 10 are driven synchronously. Therefore, each drive pulley 11a is connected to a common drive shaft 11e.
  • the end of the drive shaft 11e is connected to the output shaft of the motor 13a with a speed reducer, and the two drive pulleys 1la rotate synchronously by the rotational drive of the motor 13a.
  • the rotating shaft of the driven pulley l ib is supported by the bearing l lf and rotates freely.
  • the rotational axis of the driven pulley l ib passes between the upper and lower belts 12c of the second belt conveyor 12.
  • the driven pulley 1 lb (and a driven pulley 12b described later) can also be supported by a bearing having a tension adjusting mechanism.
  • Figure 7-1 shows that the driven boot is supported by a bearing with a tension adjustment mechanism.
  • Fig. 7-2 is a cross-sectional view taken along line IV-III in Fig. 7-1.
  • the driven pulley l ib is pivotally supported by the bearing 61 in a cantilever manner.
  • the bearing 61 is supported by a guide member 62 extending in the Y direction so as to be movable in the Y direction. End plates 63a and 63b are fixed to both ends of the guide member 62, and a shaft body 64 is rotatably mounted around the axis between the end plates 63a and 63b.
  • the shaft body 64 penetrates the bearing portion 61, and also penetrates the moving plate 65 supported by the guide member 62 so as to be movable in the Y direction.
  • a screw 64a is engraved on a part of the peripheral surface of the shaft body 64, and the moving plate 65 is provided with a screw hole (not shown) that engages with the screw.
  • the shaft body 64 and the bearing portion 61 are loosely fitted.
  • a coil spring 66 is installed between the moving plate 65 and the bearing portion 61, and urges the two so that they are always separated from each other.
  • the moving plate 65 moves in the Y direction.
  • FIG. 6-3 is an enlarged view of a portion of the belt 11c where the contact portion 14a and the protrusion 15a are provided.
  • the contact portion 14a has a substantially rectangular parallelepiped shape and protrudes on the belt 11c.
  • the contact portion 14a defines the position of the edge on the ⁇ Y side of the substrate.
  • the protrusions 15a are provided on the belt 11c where the substrate is placed. In the present embodiment, a plurality of the protrusions 15a are arranged in the Y direction.
  • the protrusion 15a functions as a mounting member on which the substrate is mounted.
  • the protrusion 15a has a curved upper surface, and makes the contact area with the substrate to be placed as small as possible. Further, it is desirable that the upper surface of the protrusion 15a is smooth.
  • the line connecting the vertices of the protrusions 15a passes between the line L ′ and the line L described above, and the upper surface of the contact part 14a is lower than the line L (transfer height) described above! The position of the belt conveyor unit 10 in the height direction is positioned so as to be positioned.
  • the protrusion 15a and the abutting portion 14a move on a linear track in the Y direction as the belt 11c travels. That is, the first belt conveyor 11 functions as a moving unit that moves the protrusion 15a and the contact portion 14a on a straight track in the Y direction.
  • the configuration of the second belt conveyor 12 is the same as the configuration of the first belt conveyor 11. That is, the second belt conveyor 12 includes a drive pulley 12a, a driven pulley 12b, and an endless belt 12c wound around the drive pulley 12a and the driven pulley 12b.
  • the driving pulley 12a and the driven pulley 12b are spaced apart in the Y direction, and the traveling direction of the belt 12c is set in the Y direction.
  • first belt conveyor 11 and the second belt conveyor 12 are arranged such that the traveling directions of the belts llc and 12c are parallel to each other.
  • the first belt conveyor 11 and the second belt conveyor 12 are relatively displaced in the Y direction, and the positions of the driving pulley 11a and the driven pulley l ib of the first belt conveyor 11 are the same.
  • the positions of the driving pulley 12a and the driven pulley 12b of the second belt conveyor 12 are reversed in the Y direction.
  • the drive pulley 12a is connected to a drive shaft 12e that is pivotally supported by a bearing 12d.
  • the drive pulleys 12a of the two belt conveyor units 10 are connected to a common drive shaft 12e.
  • the end of the drive shaft 12e is connected to the output shaft of the motor 13b with a speed reducer, and the two drive pulleys 12a rotate synchronously by the rotational drive of the motor 13b.
  • the rotating shaft of the driven pulley 12b is supported by the bearing 12f and freely rotates.
  • the rotating shaft of the driven pulley 12 b passes between the upper and lower belts 11 c of the first belt conveyor 11.
  • a contact part 14b that contacts the edge of the substrate and defines the position of the edge, and a plurality of protrusions 15b, which are the same as the contact part 14a and the protrusion part 15a referred to in FIG. 6-3.
  • the contact 14b defines the position of the + Y side edge of the substrate.
  • the protrusion 15b and the contact part 14b move on a linear track in the Y direction parallel to the linear track along which the protrusion 15a and the contact part 14a move as the belt 12c runs. That is, the second belt conveyor 12 functions as a moving means for moving the protrusion 15b and the contact portion 14b on a linear track in the Y direction.
  • the auxiliary unit 50 is disposed at a substantially middle position in the Y direction of 0.
  • the auxiliary unit 50 includes a support portion 51 and an auxiliary shaft 52.
  • Fig. 6-4 is a cross-sectional view taken along line ⁇ - ⁇ in Fig. 1
  • Fig. 6-5 is a cross-sectional view taken along line II II in Fig. 1.
  • the support portion 51 is a plate having a smooth surface, and is supported by the base 53 through leg portions 51a.
  • the support portion 51 is disposed below a portion of the belts llc and 12c that travels upward, and supports the belts llc and 12c by placing the portions.
  • the support 51 can be a shaft or the like instead of a smooth plate.
  • the auxiliary shaft 52 is a shaft body that functions as a tension roller, and is supported by the base 53 via a bearing portion 52a.
  • the auxiliary shaft 52 is disposed below a portion of the belt l lc, 12c that travels below, and pushes it upward to generate a constant tension on the belt l lc, 12c.
  • FIG. 7-3 is a block diagram of the control unit 70 that controls the substrate transfer system A.
  • the control unit 70 includes a CPU 71, a RAM 72, and a ROM 73.
  • the ROM 73 stores a control program for the substrate transfer system A and the like.
  • the RAM 72 and ROM 73 can also employ other storage means.
  • An input interface (IZF) 74 is connected to the CPU 71, and various sensors are connected to the input IZF74. Examples of this sensor include sensors that detect the rotation angles or rotation amounts of the motors 13a, 13b, and 27 and the substrate conveyance amount by the roller conveyor.
  • CPU71 obtains detection results of various sensors via input IZF74
  • An output IZF75 is connected to the CPU 71, and a motor and a control valve are connected to the output IZF75.
  • the motor is, for example, each of the motors 13a, 13b, 27, the roller conveyor drive motor described above, and the like.
  • the control valve is a valve that switches the supply and direction of air to the air cylinder 45e.
  • the CPU 71 outputs a control command to each of the actuators connected to the output IZF75 according to the detection results of various sensors connected to the input IZF74 to operate the substrate transfer system A.
  • the first belt conveyor 11 and the second belt conveyor 12 are individually and independently controlled by the control unit 70.
  • a communication I / F 78 is connected to the CPU 71, and data communication with the host computer 80 is performed.
  • the host computer 80 performs various settings and operation commands for the substrate transfer system A.
  • the first and second belt conveyors 11 and 12 are driven to run the belts llc and 12c, and the contact portions 14a of the first belt conveyor 11 and the second belt conveyor 12 are brought into contact with each other.
  • the contact portion 14b is positioned at a position (initial position) that is separated from the width of the substrate (initial control).
  • FIG. 8 shows a state in which the contact portions 14a and 14b are located at the initial position.
  • P1 indicates the position of the contact surface of the contact portion 14a on the substrate in the Y direction
  • P2 indicates the position of the contact surface of the contact portion 14b on the substrate in the Y direction.
  • P1 and P2 are separated by a distance dl, and the distance dl> the width in the Y direction of the substrate.
  • the substrate storage cassette 100 a is lowered by the elevating unit 20 and stopped at a position where the lowermost substrate is placed on each roller conveyor 31 of the transfer unit 30.
  • the substrate is moved in the X direction and moved to the belt compare unit 10 (Fig. 9).
  • the roller conveyor 41 is placed in the raised position in advance, and the rollers of the roller conveyor 41 are also driven to rotate. As a result, the substrate moves from the roller conveyor 31 to the roller conveyor 41, and the substrate moves onto the belt conveyor unit 10.
  • the rotation of the rollers of the roller conveyors 31 and 41 on the substrate storage cassette 100a side is stopped, and the roller conveyor 41 is lowered to the lowered position.
  • the substrate is placed on the belts l lc and 12 c of the belt conveyor unit 10.
  • the board is moved to a position over the belts l lc and 12c of the two belt conveyor units 10 and is transported in this state.
  • the substrate is placed across the protrusions 15a and 15b.
  • FIG. 10 is a diagram showing a state in which the substrate is positioned.
  • the abutting portion 14a and the abutting portion 14b also move the initial position force, and the distance between P1 and P2 changes from dl to d2.
  • Distance d2 The width of the board in the Y direction.
  • the contact portion 14a contacts the edge of the substrate on the -Y side
  • the contact portion 14b contacts the edge of the substrate on the + Y side.
  • the board slides on the protrusions 15a and 15b.
  • the substrate is gently sandwiched between the contact portions 14a and 14b, and the positioning force S in the Y direction is applied.
  • the first and second belt conveyors 11 and 12 are driven to move the belts l lc and 12c in the same direction (
  • FIG. 11 is a view showing a mode in which the substrate is conveyed.
  • the belts l lc and 12c By causing the belts l lc and 12c to travel in the same direction (+ Y direction) at a constant speed, the substrate is conveyed while being positioned between the contact portions 14a and 14b. Belts l lc and 12c are subjected to a downward load due to the weight of the substrate, but are supported by the support part 51, and the belts l lc and 12c are prevented from pinching downward to stably transport the substrate. be able to.
  • the roller conveyor 41 of the transfer unit 40 on the processing apparatus 110 side is positioned at the lowered position. As shown in FIG. 12, when the substrate reaches the transfer unit 40 on the processing apparatus 110 side, the driving of the first and second belt conveyors 11 and 12 is stopped, and the conveyance of the substrate is stopped. Then, the roller conveyor 41 of the transfer unit 40 on the processing apparatus 110 side is raised to the raised position, and the substrate is transferred from the belt conveyor unit 10 to the roller conveyor 41. After the transfer, the rollers of the roller conveyor 41 are driven to rotate, the substrate is moved in the ⁇ X direction, and the substrate is transferred to the processing apparatus 110 (FIG. 13). This completes the transfer of one unit of substrate.
  • the operation of transferring the next substrate from the substrate storage cassette 100a to the belt conveyor unit 10 can be started in parallel as shown in FIG. .
  • the belt conveyors 11 and 12 are also driven to move the contact portions 14a and 14b back to the initial positions.
  • the roller conveyor 41 of the transfer unit 40 on the processing apparatus 110 side is positioned at the raised position.
  • the lifting / lowering unit 20 lowers the substrate storage cassette 100b.
  • the stage for storing the substrates in the substrate storage cassette 100b is matched with the transfer height of the transfer unit 30.
  • the rollers 30 and 40 of the transfer units 30 and 40 on the processing apparatus 110 side are rotationally driven to stand by in a state where the substrate can be conveyed in the + X direction.
  • the transfer unit 40 ⁇ the transfer unit 30 and the substrate are transported and stored in the substrate storage cassette 100b as shown in FIG. While the processed substrate is transferred from the processing apparatus 110 to the substrate storage cassette 100b, the substrate is transferred from the substrate storage cassette 100a to the belt conveyor unit 10 and transferred to the processing apparatus 110 as shown in FIG. Can be prepared.
  • the contact portions 14a and 14b are in contact with the opposite end edges of the substrate, respectively, to position the substrate in the running direction (Y direction) of the belts llc and 12c.
  • the substrate can be transported in a positioned state. Therefore, the substrate can be transported in a state where the substrate is positioned without being inclined during the transport.
  • the substrate slides on the belts l lc and 12c.
  • a plurality of protrusions 15a and 15b are provided at the portion where the substrate is placed. Since the board is placed on the protrusions 15a and 15b, the belts l lc and 12c are hardly in contact with the board, reducing friction between them and preventing the board from being damaged. it can.
  • the transfer unit 30, 40 that transfers the substrate in the direction orthogonal to the traveling direction of the belts llc, 12c of the belt conveyor unit 10 is provided, so that the belt conveyor unit 10 A layout in which the substrate storage cassette 100 and the processing apparatus 110 are arranged on the side of the substrate along the longitudinal direction of the substrate can be adopted.
  • the roller conveyor 41 By allowing the roller conveyor 41 to move up and down, the abutting portions 14a and 14b do not interfere with the substrate when the substrate is transported while the roller conveyor 41 is positioned at the raised position. Therefore, while a certain substrate is being transported, another substrate from the substrate storage cassette 100 or the processing apparatus 110 can be placed on the belt conveyor unit 10 so that the substrate can be prepared for transfer and the transport efficiency can be improved. I'll do it.
  • the first and second belt conveyors 11 and 12 are used for positioning control.
  • the belts llc and 12c were driven to run in opposite directions so that the distance between the contact part 14a and the contact part 14b at the initial position was the width of the substrate.
  • the substrate can be positioned if one of the forces for positioning the substrate moves so as to approach the other.
  • the substrate can be positioned by driving at least one of the first and second belt conveyors 11 and 12 and controlling one of the contact portions 14a or 14b to approach the other. Further, in the positioning control, the contact portions 14a and 14b may be moved in the same direction at different speeds. For example, the force that moves the abutment portion 14a and the abutment portion 14b in the substrate transport direction (Y direction) as well as the moving speed of the abutment portion 14a is the same as the movement speed during transport control. The speed is slower than the movement speed during transfer control, and the movement speed of the contact part 14b is gradually increased to the movement speed during transfer control. As a result, the distance between the contact portion 14a and the contact portion 14b is reduced due to the difference in moving speed between the contact portion 14a and the contact portion 14b. In this method, the substrate can be positioned while the substrate is being transported.
  • a single substrate is placed and transported across the four belts llc and 12c.
  • One substrate may be transported by two belts l lc and 12 c. That is, if there is at least one belt conveyor unit 10, each control of the above embodiment can be performed.
  • FIG. 15 is a diagram showing an example in which four belt conveyor units 10 are used.
  • four belt conveyor units 10 By driving the belt conveyor units 10 independently and in synchronization, two boards can be transported in parallel. Further, by synchronously driving all four belt conveyor units 10, as shown in FIG. 16, it is possible to transport a substrate having a different size (larger) than the substrate of FIG. That is, there is an advantage that substrates of different sizes can be transported by the same system by appropriately setting the distance between the contact portions 14a and 14b in the initial control and the positioning control.
  • FIG. 17 is a plan view of a substrate transfer system B according to another embodiment of the present invention.
  • the substrate transport system B employs a drive unit 210 having a ball screw mechanism instead of the belt conveyor unit 10.
  • Each of the two drive units 210 includes a first ball screw mechanism 211, a second ball screw mechanism 212, and the like.
  • the first ball screw mechanism 211 includes a linear screw shaft 2111 and a guide member 2112 extending in the Y direction, and a moving unit 2113 that is guided by the guide member 2112 and moves along the screw shaft 2111.
  • the screw shaft 2111 is rotatably supported by a bearing 211 la near the both ends thereof.
  • the second ball screw mechanism 212 is disposed away from the first ball screw mechanism 211 in the X direction, and has the same configuration as the first ball screw mechanism 211. That is, the second ball screw mechanism 212 includes a linear screw shaft 2121 and a guide member 2122 extending in the Y direction, and a moving unit 2123 that is guided by the guide member 2122 and moves along the screw shaft 2121. .
  • the screw shaft 2121 is rotatably supported by bearings 2121a in the vicinity of both ends thereof.
  • a bevel gear 221 is attached to one end of each screw shaft 2111, 2121.
  • the force gear 221 is meshed with a bevel gear 222 that is rotationally driven by the motors 223a and 223b, and the forward rotations and reverse rotations of the motors 223a and 223b cause reverse rotation of the respective talent shafts 2111 and 2121.
  • each ball screw mechanism 211 is synchronously controlled by a motor 223a
  • each ball screw mechanism 212 is synchronously controlled by a motor 223b. Needless to say, the ball screw mechanism 211 and the ball screw mechanism 212 are individually controlled independently.
  • FIG. 18 is a perspective view showing a configuration in the vicinity of the moving units 2113 and 2123.
  • the moving unit 2123 includes a support plate 2123a provided with the above-described protrusion 15b and contact portion 14b on the upper surface, A pair of support blocks 2123b fixed to the lower surfaces of both ends of the support plate 2123a.
  • the support block 2123b has a ball nut that is screwed onto the screw shaft 2121, and the screw shaft 21 21 passes therethrough. Further, a groove that fits the guide member 2122 is formed on the lower surface of the support block 2123b.
  • the moving unit 2123 moves in the + Y direction or the Y direction depending on the rotation direction of the screw shaft 2121, and the protruding portion 15b and the contact portion 14b move on the straight track along the Y direction. It can be moved with.
  • the moving unit 2113 has the same configuration as that of the moving unit 2123, and the support plate 2113a having the protrusion 15a and the contact portion 14a described above provided on the upper surface, and a pair fixed to the lower surfaces of both ends of the support plate 2113a.
  • the support block 2113b has a ball nut that is screwed onto the screw shaft 2111, and the screw shaft 2111 passes therethrough. Further, a groove that fits the guide member 2122 is formed on the lower surface of the support block 2123b.
  • the moving unit 2113 moves in the + Y direction or the Y direction depending on the rotation direction of the screw shaft 2111, and the protrusion 15a and the contact portion 14a are connected to the protrusion 15b and the contact. It can be moved on a straight orbit along the Y direction, parallel to the straight orbit along which the part 14b moves.
  • the same substrate transport control as that of the substrate transport system A is possible.
  • FIG. 19 is a plan view of a substrate transfer system C according to another embodiment of the present invention.
  • the board transfer system C employs a drive unit 310 having a ball screw mechanism instead of the belt conveyor unit 10.
  • the drive unit 310 employs a Bonnole screw mechanism of a different form from the drive unit 210.
  • Each of the two drive units 310 includes a first ball screw mechanism 311, a second ball screw mechanism 312, and the like.
  • the first ball screw mechanism 311 includes a linear screw shaft 3111 and a guide member 3112 extending in the Y direction, and a moving unit 3113 that is guided by the guide member 3112 and moves along the screw shaft 3111.
  • the screw shaft 3111 is fixed by bearings 3111a in the vicinity of both ends thereof. In other words, in this example, the screw shaft 3111 is turned. Do not roll.
  • the second ball screw mechanism 312 is disposed away from the first ball screw mechanism 311 in the X direction, and has the same configuration as the first ball screw mechanism 311. That is, the second ball screw mechanism 312 includes a linear screw shaft 3121 and a guide member 3122 extending in the Y direction, and a moving unit 3123 that is guided by the guide member 3122 and moves along the screw shaft 3121. .
  • the screw shaft 3121 is fixed by bearings 3121a in the vicinity of both ends thereof.
  • FIG. 20 is a perspective view showing a configuration in the vicinity of the moving units 3113 and 3123.
  • the moving unit 3123 includes a support plate 3123a provided with the above-described protrusion 15b and contact portion 14b on the upper surface, and a pair of support blocks 3123b fixed to the lower surfaces of both ends of the support plate 3123a.
  • the support block 3123b includes a motor 31231, a sliding rod 31232, and a force.
  • the motor 31231 has a cylindrical output shaft 31231a, and has a ball nut screwed into the screw shaft 3121 therein, and the screw shaft 3121 passes therethrough. Further, the sliding portion 31 232 is fixed to the lower surface of the motor 31231, and a groove that fits the guide member 3122 is formed.
  • the motors 31231 of the pair of support blocks 3123b are synchronously controlled with each other.
  • the moving unit 3123 moves in the + Y direction or the ⁇ Y direction depending on the rotation direction of the output shaft 31231a, and moves the protrusion 15b and the contact portion 14b on a linear track along the Y direction. Can do.
  • the moving unit 3113 has the same configuration as that of the moving unit 3123, and a pair of support plates 3113a provided with the protrusions 15a and the abutting portions 14a described above on the upper surface and a pair of lower surfaces fixed to both ends of the support plate 3113a. Support block 3113b.
  • the support block 3113b is composed of a motor 31131, a sliding rod 31132, and a force.
  • the motor 31131 has an output shaft 31131a formed in a cylindrical shape, and has a ball nut screwed into the screw shaft 3111 therein, and the screw shaft 3111 passes therethrough. Further, the sliding portion 31 132 is fixed to the lower surface of the motor 31131, and a groove that fits the guide member 3112 is formed.
  • the motors 31131 of the pair of support blocks 3113b are synchronously controlled with each other.
  • the moving unit 3113 moves in the + Y direction or the Y direction depending on the rotation direction of the output shaft 31131a, and the protrusion 15b and the contact portion 14b move along the protrusion 15a and the contact portion 14a. It can be moved on a straight orbit along the Y direction, parallel to the straight orbit.
  • the same substrate transport control as that of the substrate transport system A is possible.
  • FIG. 21 is a plan view of a substrate transfer system D according to another embodiment of the present invention.
  • the substrate transfer system D employs a drive unit 410 having a rack-pinion mechanism instead of the belt conveyor unit 10.
  • Each of the two drive units 410 is also configured with a first rack-pion mechanism 411, a second rack-pion mechanism 412 and a force.
  • the first rack and pion mechanism 411 includes a linear rack 4111 and a guide member 4112 extending in the Y direction, and a moving unit 4113 that is guided by the guide member 4112 and moves along the rack 4111.
  • the second rack and one-pion mechanism 412 is disposed away from the first rack and one-pion mechanism 411 in the X direction.
  • the configuration is the same as 411. That is, the second rack-and-pion mechanism 412 includes a linear rack 4121 and a guide member 4122 extending in the Y direction, and a moving unit 4123 that is guided by the guide member 4122 and moves along the rack 4121. Prepare.
  • FIG. 22 is a perspective view showing a configuration in the vicinity of the moving units 4113 and 4123.
  • the moving unit 4123 includes a support plate 4123a provided with the above-described protrusion 15b and contact portion 14b on the upper surface, and a pair of support blocks 4123b fixed to the lower surfaces of both ends of the support plate 4123a.
  • the support block 4123b includes a motor, and a pinion 4123b ′ is attached to the output shaft (extending in the ⁇ X direction). Further, a groove that fits the guide member 4122 is formed on the lower surface of the support block 4123b.
  • the motors of the pair of support blocks 4123b are controlled synchronously with each other.
  • the moving unit 4123 is moved in the + Y direction or the Y direction depending on the rotation direction of the pione 4123b ′, and the protrusion 15b and the abutment are brought into contact.
  • the part 14b can be moved on a straight track along the Y direction.
  • the moving unit 4113 has the same configuration as that of the moving unit 4123, and the support plate 4113a having the protrusion 15a and the contact portion 14a described above provided on the upper surface, and a pair fixed to the lower surfaces of both ends of the support plate 4113a.
  • the support block 4113b includes a motor, and a pion (not shown) is attached to the output shaft (extending in the + X direction). Further, a groove that fits the guide member 4112 is formed on the lower surface of the support block 4113b.
  • the motors of the pair of support blocks 4113b are synchronously controlled with each other.
  • a pinion (not shown) is rotated by driving these motors, the moving arm 4113 moves in the + Y direction or the Y direction depending on the rotation direction of the pinion, and moves the protrusion 15a and the contact portion 14a.
  • the protrusion 15b and the contact portion 14b can be moved on a straight track along the Y direction parallel to the moving straight track.
  • the same substrate transport control as that of the substrate transport system A can be performed.
  • FIG. 23 is a plan view of a substrate transfer system E according to another embodiment of the present invention.
  • the board transport system E employs a drive unit 510 equipped with a linear motor in place of the belt conveyor unit 10.
  • Each of the two drive units 510 includes a first linear motor 511, a second linear motor 512, and the like.
  • the first linear motor 511 includes a linear stator unit 5111 extending in the Y direction, and a moving unit 5113 that moves along the stator unit 5111.
  • the second linear motor 512 is disposed away from the first linear motor 511 in the X direction, and has the same configuration as the first linear motor 511. That is, the second linear motor 512 includes a linear stator unit 5121 extending in the Y direction and a moving unit 5123 that moves along the stator unit 5121.
  • a guide member 513 is disposed between the first linear motor 511 and the second linear motor 512.
  • the guide member 513 guides the movement of the moving units 5113 and 5123.
  • FIG. 24 is a perspective view showing a configuration in the vicinity of the moving units 5113 and 5123.
  • FIG. 25 is a sectional view (end view) taken along line IV-IV in FIG.
  • the moving unit 5123 includes a support plate 5123a having the above-described protrusion 15b and contact portion 14b provided on the upper surface, and a yoke 5123b fixed to the lower surface of the support plate 5123a.
  • the yoke 5123b has a U-shaped cross section, and a plurality of permanent magnets 5123b ′ are arranged on the inner surfaces of the left and right side walls in the longitudinal direction (Y direction) of the yoke 5123b.
  • a sliding portion 5123b “that fits into a groove formed on the side surface of the guide member 513 is provided on the outer surface of one of the left and right side walls of the yoke 5123b.
  • the stator unit 5121 has an inverted T-shaped cross section, and the portion extending upward is located at a position to be inserted into the yoke 5123b, and the portion extending upward is An armature coil 5121a is incorporated. A plurality of armature coils 5121a are arranged in the longitudinal direction (Y direction) of the stator unit 5121.
  • the moving unit 5113 has the same configuration as that of the moving unit 5123, and includes a support plate 5113a provided with the above-described protrusion 15a and contact portion 14a on the upper surface, and a yoke 5113b fixed to the lower surface of the support plate 5113a.
  • the yoke 5113b has a U-shaped cross section, and a plurality of permanent magnets 5113b ′ are arranged on the inner surfaces of the left and right side walls in the longitudinal direction (Y direction) of the yoke 5113b.
  • a sliding portion 5113b “that fits into a groove formed on the side surface of the guide member 513 is provided on the outer surface of one of the left and right side walls of the yoke 5113b.
  • the stator unit 5111 has an inverted T-shaped cross section, and the portion extending upward is located at a position to be inserted into the yoke 5113b, and the portion extending upward is Armature coil 511 la is built in! A plurality of armature coils 511 la are arranged in the longitudinal direction (Y direction) of the stator unit 5 111.
  • the excitation of the plurality of armature coils 5111a of the stator unit 5111 is sequentially switched. Accordingly, the moving unit 5113 moves in the + Y direction or the heel direction according to the switching mode, and the projection 15a and the contact portion 14a are parallel to the linear track on which the projection 15b and the contact portion 14b move. It can be moved on a straight track along the Y direction.

Abstract

A work transfer system by which a work such as a substrate can be transferred in an aligned status, without having the work inclined during transfer. In the work transfer system, the work is aligned by permitting first and second abutting sections to abut to both facing edges of the work, respectively, and the work is transferred in the aligned status. Therefore, the work does not incline while being transferred, and the work can be transferred in the aligned status.

Description

明 細 書  Specification
ワーク搬送システム  Work transfer system
技術分野  Technical field
[0001] 本発明はガラス基板等のワークを搬送する技術に関するものである。  [0001] The present invention relates to a technique for conveying a workpiece such as a glass substrate.
背景技術  Background art
[0002] 薄型ディスプレイの製造において使用される薄板状のガラス基板に代表される基板 は一般に基板収納カセットに複数枚収納される。そして、その処理時には一枚ずつ 基板収納カセットから取り出されて基板処理装置へ搬送され、処理後には基板処理 装置カゝら再び基板収納カセットへ搬入される。この種の設備の場合、基板収納カセッ トと処理装置との間で基板を 1枚ずつ搬送する搬送装置が必要となる。基板を搬送 する搬送装置としては、例えば、特開 2004— 284772号公報に記載されるような、口 一ラコンベアを用いた装置が提案されて 、る。  [0002] Generally, a plurality of substrates typified by a thin glass substrate used in the manufacture of a thin display are stored in a substrate storage cassette. Then, at the time of the processing, the substrates are taken out one by one from the substrate storage cassette and transferred to the substrate processing apparatus, and after the processing, the substrate processing apparatus is loaded again into the substrate storage cassette. In the case of this type of equipment, a transport device that transports the substrates one by one between the substrate storage cassette and the processing equipment is required. As a transport apparatus for transporting a substrate, for example, an apparatus using a single conveyor as described in Japanese Patent Application Laid-Open No. 2004-284772 has been proposed.
[0003] ここで、従来の搬送装置では基板収納カセットと処理装置との間で基板を搬送する 際、搬送途中で基板が傾いてしまう場合がある。基板が傾いた状態で処理装置或い は基板収納カセットへ到達すると、搬送装置から処理装置或いは基板収納カセット へ基板を円滑に移載できない場合がある。  Here, when a substrate is transported between the substrate storage cassette and the processing apparatus in the conventional transport device, the substrate may be inclined during the transport. If the substrate reaches the processing apparatus or the substrate storage cassette with the substrate tilted, the substrate may not be smoothly transferred from the transfer device to the processing apparatus or the substrate storage cassette.
発明の開示  Disclosure of the invention
[0004] 本発明の目的は、搬送途中でワークが傾くことなぐ位置決めされた状態でワークを 搬送することにある。  [0004] An object of the present invention is to convey a workpiece in a state where the workpiece is positioned without being inclined during conveyance.
[0005] 本発明によれば、方形のワークが跨って載置される第 1及び第 2の載置部材と、前 記第 1の載置部材を第 1の直線軌道上で移動させる第 1の移動手段と、前記第 2の 載置部材を前記第 1の直線軌道と平行な第 2の直線軌道上で移動させる第 2の移動 手段と、前記第 1及び第 2の移動手段を個別に制御する制御手段と、前記第 1の移 動手段によって、前記第 1の直線軌道上を前記第 1の載置部材と共に移動し、前記 ワークの端縁に当接して当該端縁の位置を規定する第 1の当接部と、前記第 2の移 動手段によって、前記第 2の直線軌道上を前記第 2の載置部材と共に移動し、前記 ワークの端縁に当接して当該端縁の位置を規定する第 2の当接部と、を備え、前記 制御手段は、前記第 1及び第 2の当接部が相互に前記ワークの幅よりも離間した初 期位置に位置するように前記第 1及び第 2の移動手段を制御する初期制御と、前記 初期位置にある前記第 1及び第 2の当接部の間において前記第 1及び第 2の載置部 材上に前記ワークが載置された場合に、前記第 1及び第 2の当接部の間の距離が前 記ワークの幅となるように前記第 1及び第 2の移動手段の少なくともいずれかを制御 する位置決め制御と、前記位置決め制御の後、前記第 1及び第 2の載置部材及び前 記第 1及び第 2の当接部が同方向に等速で走行するように前記第 1及び第 2の移動 手段を制御する搬送制御と、を実行することを特徴とするワーク搬送システムが提供 される。 [0005] According to the present invention, the first and second placement members placed across the square workpiece and the first placement member that moves the first placement member on the first linear track. Each of the moving means, the second moving means for moving the second mounting member on a second linear track parallel to the first linear track, and the first and second moving devices individually. The control means for controlling and the first moving means move together with the first mounting member on the first linear track and abut the edge of the workpiece to define the position of the edge. The first abutting portion and the second moving means move together with the second placement member on the second linear track, abut against the edge of the workpiece, and A second abutting portion for defining a position, and The control means includes: initial control for controlling the first and second moving means so that the first and second contact portions are positioned at initial positions separated from each other by a width of the workpiece; When the workpiece is placed on the first and second placement parts between the first and second contact parts in the initial position, the first and second contact parts Positioning control for controlling at least one of the first moving means and the second moving means so that the distance between them becomes the width of the workpiece, and after the positioning control, the first and second placement members And a conveyance control for controlling the first and second moving means so that the first and second abutting portions travel in the same direction at a constant speed. Is provided.
[0006] このワーク搬送システムによれば、前記第 1及び第 2の当接部が前記ワークの対向 する両端縁にそれぞれ当接し、前記ワークの位置決めを行なうことができると共に、 位置決めされた状態でワークを搬送できる。従って、搬送途中でワークが傾くことなく 、位置決めされた状態でワークを搬送することができる。  [0006] According to this workpiece transfer system, the first and second abutting portions abut against the opposite end edges of the workpiece, respectively, and the workpiece can be positioned and positioned. The workpiece can be transferred. Therefore, the workpiece can be conveyed in a positioned state without the workpiece being inclined during the conveyance.
[0007] また、本発明によれば、ベルトの走行方向が相互に平行となるように配設された第 1 及び第 2のベルトコンベアを備え、方形のワークを前記第 1及び前記第 2のベルトコン ベアの各ベルト上に跨るように載置して搬送するワーク搬送システムであって、前記 第 1及び第 2のベルトコンベアを個別に制御する制御手段と、前記第 1及び第 2のべ ルトコンベアの各ベルト上にそれぞれ設けられ、前記ワークの端縁に当接して当該端 縁の位置を規定する当接部と、を備え、前記制御手段は、前記第 1及び第 2のベルト コンベアの各々の前記当接部が相互に前記ワークの幅よりも離間した初期位置に位 置するように前記第 1及び第 2のベルトコンベアを駆動する初期制御と、前記初期位 置にある前記当接部の間の各ベルト上に前記ワークが載置された場合に、前記当接 部の間の距離が前記ワークの幅となるように前記第 1及び第 2のベルトコンベアの少 なくともいずれかを駆動する位置決め制御と、前記位置決め制御の後、各ベルトが同 方向に等速で走行するように前記第 1及び第 2のベルトコンベアを駆動する搬送制 御と、を実行することを特徴とするワーク搬送システムが提供される。  [0007] According to the present invention, the first and second belt conveyors are provided so that the running directions of the belts are parallel to each other, and the rectangular workpiece is the first and second belts. A workpiece conveying system for placing and conveying the belt conveyor so as to straddle each belt, a control means for individually controlling the first and second belt conveyors, and the first and second belt conveyors. Each of the first and second belt conveyors, and a contact portion that abuts against an edge of the workpiece and defines a position of the edge. Initial control for driving the first and second belt conveyors so that the contact portions of the first and second belt conveyors are positioned at an initial position separated from each other by the width of the workpiece, and the contact portion at the initial position. The workpiece is placed on each belt between A positioning control for driving at least one of the first and second belt conveyors such that the distance between the contact portions is the width of the workpiece, and after each positioning control, each belt And a conveyance control for driving the first and second belt conveyors so that the first and second belt conveyors travel in the same direction at a constant speed.
[0008] このワーク搬送システムによれば、前記当接部が前記ワークの対向する両端縁にそ れぞれ当接し、前記ワークの位置決めを行なうことができると共に、位置決めされた 状態でワークを搬送できる。従って、搬送途中でワークが傾くことなぐ位置決めされ た状態でワークを搬送することができる。 [0008] According to this workpiece transfer system, the abutment portion abuts against both opposing edges of the workpiece, and the workpiece can be positioned and positioned. The workpiece can be conveyed in the state. Therefore, the workpiece can be conveyed while being positioned without being inclined during the conveyance.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の一実施形態に係る基板搬送システム Aの平面図である。 FIG. 1 is a plan view of a substrate transfer system A according to an embodiment of the present invention.
[図 2]基板搬送システム Aの正面図である。 FIG. 2 is a front view of a substrate transfer system A.
[図 3]図 3—1は基板収納カセット 100の外観図、図 3— 2は基板収納カセット 100の 内部の構成を示す図である。  [FIG. 3] FIG. 3-1 is an external view of the substrate storage cassette 100, and FIG. 3-2 is a diagram showing an internal configuration of the substrate storage cassette 100.
[図 4]図 4— 1は、昇降ユニット 20の基板収納カセット 100に面する側の構成を示す一 部破断図、図 4— 2乃至図 4— 4は昇降ユニット 20と移載ユニット 30とによる基板の搬 送動作を示す動作説明図である。  [FIG. 4] FIG. 4-1 is a partially cutaway view showing the configuration of the lifting unit 20 on the side facing the substrate storage cassette 100, and FIGS. 4-2 to 4-4 show the lifting unit 20 and the transfer unit 30. FIG. 6 is an operation explanatory view showing a substrate transport operation by the;
[図 5]図 5— 1及び図 5— 2は移載ユニット 40の動作説明図である。  FIG. 5A and FIG. 5B are explanatory diagrams of the operation of the transfer unit 40.
[図 6]図 6—1はベルトコンベア 11の概略側面視図、図 6— 2はベルトコンベア 12の概 略側面視図、図 6— 3はベルト 11cの、当接部 14aと突起部 15aが設けられた部位の 拡大図、図 6— 4は図 1の線 I Iに沿う断面図、図 6— 5は図 1の線 II IIに沿う断面 図である。 [Fig. 6] Fig. 6-1 is a schematic side view of the belt conveyor 11, Fig. 6-2 is a schematic side view of the belt conveyor 12, and Fig. 6-3 is a contact portion 14a and a protrusion 15a of the belt 11c. Fig. 6-4 is a sectional view taken along line II in Fig. 1, and Fig. 6-5 is a sectional view taken along line II II in Fig. 1.
[図 7]図 7—1は張力調整機構を有する軸受により従動プーリ l ibを軸支した例を示 す構成図、図 7— 2は図 7—1の線 ΠΙ—ΠΙに沿う断面図、図 7— 3は基板搬送システ ム Aを制御する制御部 70のブロック図である。  [Fig. 7] Fig. 7-1 is a block diagram showing an example in which the driven pulley l ib is pivotally supported by a bearing having a tension adjusting mechanism, and Fig. 7-2 is a cross-sectional view taken along line ΠΙ-ΠΙ in Fig. 7-1. FIG. 7-3 is a block diagram of the control unit 70 that controls the substrate transfer system A. FIG.
[図 8]基板搬送システム Aの動作説明図である。  FIG. 8 is an operation explanatory diagram of the substrate transfer system A.
[図 9]基板搬送システム Aの動作説明図である。  FIG. 9 is an operation explanatory diagram of the substrate transfer system A.
[図 10]基板搬送システム Aの動作説明図である。  FIG. 10 is an operation explanatory diagram of the substrate transfer system A.
[図 11]基板搬送システム Aの動作説明図である。  FIG. 11 is an operation explanatory diagram of the substrate transfer system A.
[図 12]基板搬送システム Aの動作説明図である。  FIG. 12 is an operation explanatory diagram of the substrate transfer system A.
[図 13]基板搬送システム Aの動作説明図である。  FIG. 13 is an operation explanatory diagram of the substrate transfer system A.
[図 14]基板搬送システム Aの動作説明図である。  FIG. 14 is an operation explanatory diagram of the substrate transfer system A.
[図 15]本発明の他の実施形態を示す図である。  FIG. 15 is a diagram showing another embodiment of the present invention.
[図 16]本発明の他の実施形態を示す図である。  FIG. 16 is a diagram showing another embodiment of the present invention.
[図 17]本発明の他の実施形態に係る基板搬送システム Bの平面図である。 [図 18]移動ユニット 2113、 2123近傍の構成を示す斜視図である。 FIG. 17 is a plan view of a substrate transfer system B according to another embodiment of the present invention. FIG. 18 is a perspective view showing a configuration in the vicinity of moving units 2113 and 2123.
[図 19]本発明の他の実施形態に係る基板搬送システム Cの平面図である。  FIG. 19 is a plan view of a substrate transfer system C according to another embodiment of the present invention.
[図 20]移動ユニット 3113、 3123近傍の構成を示す斜視図である。  FIG. 20 is a perspective view showing a configuration in the vicinity of moving units 3113 and 3123.
[図 21]本発明の他の実施形態に係る基板搬送システム Dの平面図である。  FIG. 21 is a plan view of a substrate transfer system D according to another embodiment of the present invention.
[図 22]移動ユニット 4113、 4123近傍の構成を示す斜視図である。  FIG. 22 is a perspective view showing a configuration in the vicinity of moving units 4113 and 4123.
[図 23]本発明の他の実施形態に係る基板搬送システム Eの平面図である。  FIG. 23 is a plan view of a substrate transfer system E according to another embodiment of the present invention.
[図 24]移動ユニット 5113、 5123近傍の構成を示す斜視図である。  FIG. 24 is a perspective view showing a configuration in the vicinity of moving units 5113 and 5123.
[図 25]図 24の線 IV— IVに沿う断面図(端面図)である。  FIG. 25 is a cross-sectional view (end view) taken along line IV—IV in FIG. 24.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] <第 1実施形態 > [0010] <First embodiment>
<システムの概略 >  <System overview>
図 1は本発明の一実施形態に係る基板搬送システム Aの平面視図、図 2は基板搬 送システム Aの正面視図である。本実施形態ではガラス基板等の基板を搬送するシ ステムに本発明を適用した例について説明するが、本発明は基板以外のワークの搬 送にも適用できる。基板搬送システム Aは、第 1のベルトコンベア 11と第 2のベルトコ ンベア 12とをそれぞれ備えた 2つのベルトコンベアユニット 10と、ベルトコンペァュ- ット 10の側方に配置され、基板収納カセット 100a及び 100b (以下、総称するときは 基板収納カセット 100という。)をそれぞれ昇降する 4つの昇降ユニット 20と、昇降ュ ニット 20間に配設された 2つの固定式の移載ユニット 30と、移載ユニット 30の側方に 配設された 2つの昇降式の移載ユニット 40と、を備える。図中、 X、 Yは相互に直交す る水平方向、 Zは鉛直方向を示す。  FIG. 1 is a plan view of a substrate transport system A according to an embodiment of the present invention, and FIG. 2 is a front view of the substrate transport system A. In this embodiment, an example in which the present invention is applied to a system that transports a substrate such as a glass substrate will be described. However, the present invention can also be applied to transport of a workpiece other than a substrate. The substrate transport system A is arranged on the side of the belt conveyor unit 10 with two belt conveyor units 10 each having a first belt conveyor 11 and a second belt conveyor 12, and is configured to store substrate storage cassettes 100a and 100b. (Hereinafter collectively referred to as the “substrate storage cassette 100”), four lifting units 20 that move up and down, two fixed transfer units 30 arranged between the lifting units 20, and a transfer unit 30 And two lifting and lowering transfer units 40 disposed on the sides. In the figure, X and Y are the horizontal directions orthogonal to each other, and Z is the vertical direction.
[0011] 基板搬送システム Aは、第 1のベルトコンベア 11と第 2のベルトコンベア 12の側方( [0011] The substrate transfer system A is provided on the side of the first belt conveyor 11 and the second belt conveyor 12 (
+X方向)に配置され、基板を複数枚収納する基板収納カセット 100aから、第 1のべ ルトコンベア 11と第 2のベルトコンベア 12の側方(—Y方向)に配置され、基板を処理 する処理装置 110へ基板を搬送するシステムである。また、処理装置 110による処理 を終えた基板を処理装置 110から第 1のベルトコンベア 11と第 2のベルトコンベア 12 の側方(+X方向)に配置され、基板を複数枚収納する基板収納カセット 100bへ搬 送するシステムである。なお、図 1及び図 2は基板収納カセット 100内に基板が未収 納である場合を示している。 + X direction) from the substrate storage cassette 100a, which stores multiple substrates, to the side of the first belt conveyor 11 and the second belt conveyor 12 (—Y direction) to process the substrate In this system, the substrate is transferred to the apparatus 110. In addition, a substrate storage cassette for storing a plurality of substrates is arranged on the side of the first belt conveyor 11 and the second belt conveyor 12 (+ X direction) from the processing device 110 after the processing by the processing device 110 is completed. This is a system to transport to 100b. 1 and 2 show that the substrate is not received in the substrate storage cassette 100. The case of payment is shown.
[0012] <基板収納カセット >  [0012] <Board storage cassette>
図 3— 1は基板収納カセット 100の外観図である。基板収納カセット 100は方形の 基板を複数枚収納可能なカセットであって、鉛直方向に延びる複数の部材 101と水 平方向に延びる複数の部材 102及び 103とから構成される直方体形状のフレーム体 を備える。図 3— 2に示すように、対向する部材 101間にはワイヤ 104が張設されてお り、収納される基板はこのワイヤ 104上に載置状態にて収納される。本実施形態では 、ワイヤ 104が鉛直方向に所定のピッチで配設されており、各基板を収納するスロット が鉛直方向に複数段形成される。ワイヤ 104の使用により、収納される基板間の間隔 を小さくすることができ、基板収納カセット 100の収納効率を高めることができる。  FIG. 3A is an external view of the substrate storage cassette 100. FIG. The substrate storage cassette 100 is a cassette capable of storing a plurality of rectangular substrates, and is a rectangular parallelepiped frame body composed of a plurality of members 101 extending in the vertical direction and a plurality of members 102 and 103 extending in the horizontal direction. Prepare. As shown in FIG. 3B, a wire 104 is stretched between the opposing members 101, and the substrate to be stored is stored on the wire 104 in a mounted state. In the present embodiment, the wires 104 are arranged at a predetermined pitch in the vertical direction, and a plurality of slots for storing each substrate are formed in the vertical direction. By using the wire 104, the interval between the substrates to be stored can be reduced, and the storage efficiency of the substrate storage cassette 100 can be increased.
[0013] <昇降ユニット >  [0013] <Elevating unit>
図 1を参照して、昇降ユニット 20は、 1つの基板収納カセット 100に対して 1対設け られ、 1対の昇降ユニット 20は、基板収納カセット 100を挟んで Y方向に離間して相 互に向かい合うように配設される。以下、図 2及び図 4—1を参照して昇降ユニット 20 の構成について説明する。図 4—1は、昇降ユニット 20の基板収納カセット 100に面 する側の構成を示す一部破断図である。  Referring to FIG. 1, one pair of lifting units 20 is provided for one substrate storage cassette 100, and one pair of lifting units 20 is separated from each other in the Y direction with the substrate storage cassette 100 interposed therebetween. Arranged to face each other. Hereinafter, the configuration of the lifting unit 20 will be described with reference to FIG. 2 and FIG. 4-1. FIG. 4A is a partially cutaway view showing the configuration of the lifting unit 20 on the side facing the substrate storage cassette 100.
[0014] 各昇降ユニット 20は、 X方向に離間した一対の支柱 21と、支柱 21間に架設された 複数の梁 22と、を備える。支柱 21の基板収納カセット 100側の側面にはレール部材 23が設けられている。レール部材 23にはスライド部材 24が摺動可能に取り付けられ ており、スライド部材 24はレール部材 23に案内されて上下に移動する。スライド部材 24間には支持部材 25 (図 4— 1は一部破断図)が架設されており、この支持部材 25 には基板収納カセット 100が搭載される載置板 26が固定されている。基板収納カセ ット 100は Y方向の両側力も一対の昇降ユニット 20の載置板 26上に載置される。  Each lifting unit 20 includes a pair of support columns 21 that are spaced apart in the X direction, and a plurality of beams 22 that are installed between the support columns 21. A rail member 23 is provided on the side surface of the support column 21 on the substrate storage cassette 100 side. A slide member 24 is slidably attached to the rail member 23, and the slide member 24 is guided by the rail member 23 and moves up and down. A support member 25 (FIG. 4A is a partially broken view) is installed between the slide members 24, and a mounting plate 26 on which the substrate storage cassette 100 is mounted is fixed to the support member 25. The substrate storage cassette 100 is also placed on the placement plate 26 of the pair of lifting units 20 with both side forces in the Y direction.
[0015] 上方の梁 22には減速機付きのモータ 27が支持されており、その出力軸は Z方向に 延びるボールネジ 29の上端部に接続されて!、る。ボールネジ 29の上下端部はそれ ぞれ上下の軸支部 28に回転可能に支持されており、モータ 27の回転によりボール ネジ 29が回転する。ボールネジ 29にはボールナット 29aが螺着されており、ボール ナット 29aは連結部材 29bを介して支持部材 25に連結されている。しかして、ボール ネジ 29の正転、逆転により、ボールナット 29aがボールネジ 29に沿って上下に移動 し、ボールナット 29a、連結部材 29b、支持部材 25、スライド部材 24、載置板 26及び 基板収納カセット 100は一体となって上下に昇降する。 A motor 27 with a speed reducer is supported on the upper beam 22 and its output shaft is connected to the upper end of a ball screw 29 extending in the Z direction. The upper and lower end portions of the ball screw 29 are rotatably supported by the upper and lower shaft support portions 28, and the ball screw 29 is rotated by the rotation of the motor 27. A ball nut 29a is screwed onto the ball screw 29, and the ball nut 29a is coupled to the support member 25 via a coupling member 29b. But the ball The ball nut 29a moves up and down along the ball screw 29 by forward and reverse rotation of the screw 29, and the ball nut 29a, the connecting member 29b, the support member 25, the slide member 24, the mounting plate 26, and the substrate storage cassette 100 are integrated. It goes up and down.
[0016] <移載ユニット 30 >  [0016] <Transfer unit 30>
図 1及び図 2を参照して移載ユニット 30はベルトコンベアユニット 10と基板収納カセ ット 100との間で基板の移載をするためのユニットであり、本実施形態では複数 (ここ では 5つ)のローラコンベア 31と、各ローラコンベア 31を支持する支持部材 32と、支 持部材 32が立設されたベース部材 33と、により構成されている。本実施形態の場合 、各ローラコンベア 31は一列のローラを備える。ローラコンベア 31はモータ等の不図 示の駆動手段により回転駆動されるローラの回転軸芯が Y方向に設定され、ローラ 上に載置される基板を X方向に搬送する。図 4 2乃至図 4 3は昇降ユニット 20と 移載ユニット 30とによる基板の搬送動作を示す動作説明図である。  1 and 2, the transfer unit 30 is a unit for transferring a substrate between the belt conveyor unit 10 and the substrate storage cassette 100. In this embodiment, a plurality of transfer units 30 (here, 5 ) Roller conveyor 31, a support member 32 that supports each roller conveyor 31, and a base member 33 on which the support member 32 is erected. In the case of this embodiment, each roller conveyor 31 includes a row of rollers. The roller conveyor 31 is configured such that the rotation axis of a roller rotated by a driving means (not shown) such as a motor is set in the Y direction, and the substrate placed on the roller is conveyed in the X direction. FIGS. 42 to 43 are operation explanatory views showing the substrate transfer operation by the elevating unit 20 and the transfer unit 30. FIG.
[0017] 各ローラコンベア 31及び支持部材 32は、昇降ユニット 20により昇降される基板収 納カセット 100の下方に配置され、基板収納カセット 100の部材 103と干渉しないよう に X方向に所定の間隔を置 、て配設されて 、る。基板収納カセット 100に収納されて V、る基板をベルトコンベアユニット 10へ搬送する場合、最下方の基板から搬送され、 図 4— 3に示すように昇降ユニット 20により基板収納カセット 100を降下させ、最下方 の基板が各ローラコンベア 31上に載置される位置にて停止する。ローラコンベア 31 のローラを回転駆動することにより、基板がベルトコンベアユニット 10へ搬送される。  [0017] Each roller conveyor 31 and support member 32 are arranged below the substrate storage cassette 100 that is lifted and lowered by the lifting unit 20, and have a predetermined interval in the X direction so as not to interfere with the member 103 of the substrate storage cassette 100. Placed and placed. When transporting the substrate V, which is stored in the substrate storage cassette 100, to the belt conveyor unit 10, it is transported from the lowermost substrate, and the substrate storage cassette 100 is lowered by the lifting unit 20 as shown in Fig. 4-3. Stops at the position where the lowermost substrate is placed on each roller conveyor 31. By rotating the rollers of the roller conveyor 31, the substrate is conveyed to the belt conveyor unit 10.
[0018] 次の基板を搬送する場合、図 4 4に示すように、昇降ユニット 20は略 1段分、再び 基板収納カセット 100を降下させ、最下方の基板が各ローラコンベア 31上に載置さ れる位置にて停止する。ローラコンベア 31のローラを回転駆動することにより、基板 がベルトコンベアユニット 10へ搬送される。以降同様にして順次ローラコンベア 31が 基板収納カセット 100内に入り込んでいき、基板収納カセット 100内の基板が搬送さ れる。ベルトコンベアユニット 10から基板収納カセット 100へ基板を搬送する場合に は概ねこの逆の動作となる。基板収納カセット 100とベルトコンベアユニット 10との間 の基板の移載は、各ローラコンベア 31の各ローラの頂点を結んだ線 Lの高さの位置( 移載高さという。)で行なわれる。 [0019] <移載ユニット 40 > When the next substrate is transported, as shown in FIG. 44, the lifting unit 20 lowers the substrate storage cassette 100 again by approximately one stage, and the lowermost substrate is placed on each roller conveyor 31. Stop at the position where it is placed. By rotating the rollers of the roller conveyor 31, the substrate is conveyed to the belt conveyor unit 10. Thereafter, similarly, the roller conveyor 31 sequentially enters the substrate storage cassette 100, and the substrates in the substrate storage cassette 100 are transported. When the substrate is transported from the belt conveyor unit 10 to the substrate storage cassette 100, the operation is generally reversed. The transfer of the substrate between the substrate storage cassette 100 and the belt conveyor unit 10 is performed at the height of the line L (referred to as transfer height) connecting the vertices of the rollers of the roller conveyors 31. [0019] <Transfer unit 40>
図 1及び図 2を参照して移載ユニット 40は、移載ユニット 30と共にベルトコンペァュ ニット 10と基板収納カセット 100との間で基板を移載するためのユニットである。また 、処理装置 110側に配設された移載ユニット 40はベルトコンベアユニット 10と処理装 置 110との間でも基板の移載を行なう。各移載ユニット 40は、本実施形態では複数( ここでは 3つ)のローラコンベア 41と、各ローラコンベア 41を支持する支持部材 42aと 、支持部材 42aが立設されたベース部材 42bと、を備える。本実施形態の場合、各口 一ラコンベア 41は二列のローラを備える。ローラコンベア 41はモータ等の不図示の 駆動手段により回転駆動されるローラの回転軸芯が Y方向に設定され、ローラ上に 載置される基板を X方向に搬送する。  1 and 2, the transfer unit 40 is a unit for transferring a substrate between the belt unit 10 and the substrate storage cassette 100 together with the transfer unit 30. In addition, the transfer unit 40 disposed on the processing apparatus 110 side also transfers the substrate between the belt conveyor unit 10 and the processing apparatus 110. In this embodiment, each transfer unit 40 includes a plurality (three in this case) of roller conveyors 41, a support member 42a that supports each roller conveyor 41, and a base member 42b on which the support member 42a is erected. Prepare. In the case of this embodiment, each single conveyor 41 includes two rows of rollers. In the roller conveyor 41, the rotation axis of a roller that is driven to rotate by a driving means (not shown) such as a motor is set in the Y direction, and the substrate placed on the roller is conveyed in the X direction.
[0020] 各ローラコンベア 41及び支持部材 42aは、後述するベルトコンベアユニット 10のべ ルトと干渉しないように X方向に所定の間隔を置いて配置され、また、中央のローラコ ンベア 41はベルトコンベアユニット 10間に配設されている。移載ユニット 40は、各口 一ラコンベア 41を昇降する昇降機能を備える。図 5—1及び図 5— 2は移載ユニット 4 0の動作説明図である。  [0020] Each roller conveyor 41 and support member 42a are arranged at a predetermined interval in the X direction so as not to interfere with a belt of a belt conveyor unit 10 to be described later, and the central roller conveyor 41 is a belt conveyor unit. Between 10 is arranged. The transfer unit 40 has an elevating function for elevating and lowering each conveyor 41. FIGS. 5-1 and 5-2 are explanatory diagrams of the operation of the transfer unit 40. FIG.
[0021] 移載ユニット 40は、伸縮自在な支持部材 44を介してベース部材 42bを支持するべ 一ス部材 43を備える。各ローラコンベア 41は支持部材 42a及びベース部材 42bと共 にベース部材 43に対して昇降可能となっている。ベース部材 43上には板カム 45aと 、板カム 45aの回転軸に固定されたピ-オン 45bと、ピ-オン 45bと嚙み合うラック 45 cと、ラック 45cの移動を案内するガイド部材 45dと、ラック 45cを移動させるエアシリン ダ 45eと、を備える。  The transfer unit 40 includes a base member 43 that supports the base member 42b via an extendable support member 44. Each roller conveyor 41 can move up and down with respect to the base member 43 together with the support member 42a and the base member 42b. On the base member 43, there is a plate cam 45a, a pinion 45b fixed to the rotation shaft of the plate cam 45a, a rack 45c that meshes with the pinion 45b, and a guide member 45d that guides the movement of the rack 45c. And an air cylinder 45e for moving the rack 45c.
[0022] ラック 45cはその長手方向が X方向を向くように配設されており、また、エアシリンダ 45eは X方向に伸縮する。エアシリンダ 45eの伸縮によりラック 45cはガイド部材 45d に案内されて X方向に移動する。ラック 45cの移動によりピ-オン 45bが回転し、板力 ム 45aも回転する。ベース部材 43には板カム 45aとの干渉を回避する穴 43aが設け られている。ベース部材 42bの下面には板カム 45aの周面と当接するローラ 42cが設 けられており、ローラ 42cが当接する板カム 45aの周面上の位置と、板カム 45aの回 転軸心との距離の変動によりローラコンベア 41が昇降する。 [0023] しかして、移載ユニット 40は、移載ユニット 30との間で基板を移載する場合には、 図 5—1に示すように各ローラの頂点を結び線が上記の移載高さを示す線 Lを通る位 置にローラコンベア 41が上昇した位置(以下、上昇位置という。)にある。一方、後述 するように移載ユニット 40からベルトコンベアユニット 10へ基板を移載する場合には 、エアシリンダ 45eを伸長することによる板カム 45aの回転により図 5— 2に示すように 各ローラの頂点を結び線が上記の移載高さを示す線 Lよりも下方の線 L'を通る位置 にローラコンベア 41が下降する(この位置を以下、下降位置という。;)。図 5— 2から図 5—1の態様に戻す場合にはエアシリンダ 45eを収縮させる。なお、本実施形態では このような昇降機構を採用するが、他の昇降機構も採用できることは言うまでもない。 [0022] The rack 45c is disposed such that the longitudinal direction thereof faces the X direction, and the air cylinder 45e extends and contracts in the X direction. As the air cylinder 45e expands and contracts, the rack 45c is guided by the guide member 45d and moves in the X direction. As the rack 45c moves, the pion 45b rotates and the plate force 45a also rotates. The base member 43 is provided with a hole 43a for avoiding interference with the plate cam 45a. A roller 42c that contacts the peripheral surface of the plate cam 45a is provided on the lower surface of the base member 42b. The position on the peripheral surface of the plate cam 45a that the roller 42c contacts, the rotational axis of the plate cam 45a, and The roller conveyor 41 moves up and down due to fluctuations in the distance. Therefore, when transferring the substrate to / from the transfer unit 30, the transfer unit 40 connects the apexes of the rollers as shown in FIG. The roller conveyor 41 is at a position where the roller conveyor 41 has been raised (hereinafter referred to as the raised position) at a position passing through the line L indicating the height. On the other hand, when the substrate is transferred from the transfer unit 40 to the belt conveyor unit 10 as described later, the rotation of the plate cam 45a by extending the air cylinder 45e causes the rotation of each roller as shown in FIG. The roller conveyor 41 descends to a position where the line connecting the vertices passes through a line L ′ below the line L indicating the transfer height (this position is hereinafter referred to as a lowered position;). When returning from the embodiment of FIG. 5-2 to the embodiment of FIG. 5-1, the air cylinder 45e is contracted. In this embodiment, such an elevating mechanism is adopted, but it goes without saying that other elevating mechanisms can also be adopted.
[0024] くベルトコンベアユニット >  [0024] belt conveyor unit>
図 1、図 2並びに図 6—1及び図 6— 2を参照してベルトコンベアユニット 10の構成 について説明する。図 6—1はベルトコンベア 11の概略側面視図、図 6— 2はベルト コンベア 12の概略側面視図である。上述した通り、ベルトコンベアユニット 10は、第 1 のベルトコンベア 11と第 2のベルトコンベア 12と、から構成されており、本実施形態の 場合、 X方向に離間して 2つのベルトコンベアユニット 10が平行に設けられている。  The configuration of the belt conveyor unit 10 will be described with reference to FIGS. 1, 2, 6-1, and 6-2. FIG. 6-1 is a schematic side view of the belt conveyor 11, and FIG. 6-2 is a schematic side view of the belt conveyor 12. As described above, the belt conveyor unit 10 includes the first belt conveyor 11 and the second belt conveyor 12. In the present embodiment, the two belt conveyor units 10 are separated in the X direction. It is provided in parallel.
[0025] 第 1のベルトコンベア 11は、駆動プーリ 11aと、従動プーリ l ibと、駆動プーリ 11aと 従動プーリ l ibとに巻き回された無端のベルト 11cと、を備え、例えば、ベルト 11cとし てタイミングベルトを用いたベルトコンベアである。  [0025] The first belt conveyor 11 includes a driving pulley 11a, a driven pulley l ib, and an endless belt 11c wound around the driving pulley 11a and the driven pulley l ib, for example, a belt 11c. This is a belt conveyor using a timing belt.
[0026] 駆動プーリ 11aと従動プーリ l ibとは Y方向に離間して配設されおり、ベルト 11cの 走行方向は Y方向に設定されて 、る。駆動プーリ 1 laは軸受 1 Idに軸支された駆動 軸 l ieに連結されている。本実施形態の場合、 2つのベルトコンベアユニット 10の第 1のベルトコンベア 11は同期的に駆動する。このため、各駆動プーリ 11aを共通の駆 動軸 11 eに連結して 、る。駆動軸 11 eの端部は減速機付きモータ 13aの出力軸に接 続されており、モータ 13aの回転駆動によりり 2つの駆動プーリ 1 laが同期回転する。 従動プーリ l ibはその回転軸が軸受 l lfに軸支されており、自由回転する。従動プ ーリ l ibの回転軸は第 2のベルトコンベア 12の上下のベルト 12c間を通過する。  [0026] The driving pulley 11a and the driven pulley l ib are arranged apart from each other in the Y direction, and the traveling direction of the belt 11c is set in the Y direction. The drive pulley 1 la is connected to a drive shaft l ie supported on the bearing 1 Id. In the present embodiment, the first belt conveyors 11 of the two belt conveyor units 10 are driven synchronously. Therefore, each drive pulley 11a is connected to a common drive shaft 11e. The end of the drive shaft 11e is connected to the output shaft of the motor 13a with a speed reducer, and the two drive pulleys 1la rotate synchronously by the rotational drive of the motor 13a. The rotating shaft of the driven pulley l ib is supported by the bearing l lf and rotates freely. The rotational axis of the driven pulley l ib passes between the upper and lower belts 12c of the second belt conveyor 12.
[0027] なお、従動プーリ 1 lb (及び後述する従動プーリ 12b)は張力調整機構を有する軸 受により軸支することもできる。図 7—1は張力調整機構を有する軸受により従動ブー リ 1 lbを軸支した例を示す構成図、図 7— 2は図 7—1の線 ΠΙ— IIIに沿う断面図であ る。従動プーリ l ibは軸受部 61により片持ちにて軸支される。軸受部 61は Y方向に 延びるガイド部材 62により Y方向に移動可能に支持されて 、る。ガイド部材 62の両 端部には端部板 63a及び 63bが固定されており、端部板 63a、 63b間には軸体 64が その軸芯回りに回転可能に取り付けられて 、る。 [0027] The driven pulley 1 lb (and a driven pulley 12b described later) can also be supported by a bearing having a tension adjusting mechanism. Figure 7-1 shows that the driven boot is supported by a bearing with a tension adjustment mechanism. Fig. 7-2 is a cross-sectional view taken along line IV-III in Fig. 7-1. The driven pulley l ib is pivotally supported by the bearing 61 in a cantilever manner. The bearing 61 is supported by a guide member 62 extending in the Y direction so as to be movable in the Y direction. End plates 63a and 63b are fixed to both ends of the guide member 62, and a shaft body 64 is rotatably mounted around the axis between the end plates 63a and 63b.
[0028] 軸体 64は軸受部 61を貫通すると共に、ガイド部材 62に Y方向に移動可能に支持 された移動板 65も貫通している。軸体 64の一部の周面にはネジ 64aが刻設されて おり、移動板 65はこのネジに螺合するネジ穴(不図示)が設けられている。軸体 64と 軸受部 61とは遊嵌である。移動板 65と軸受部 61との間にはコイルスプリング 66が装 填されており、両者を常時離間するように付勢する。しかして、軸体 64を回転すると 移動板 65が Y方向に移動する。移動板 65を軸受部 61側に移動するとベルト 11cを より緊張させることができる力 移動板 65と軸受部 61との間にはコイルスプリング 66 が装填されているため、過度に緊張することが抑制される。  The shaft body 64 penetrates the bearing portion 61, and also penetrates the moving plate 65 supported by the guide member 62 so as to be movable in the Y direction. A screw 64a is engraved on a part of the peripheral surface of the shaft body 64, and the moving plate 65 is provided with a screw hole (not shown) that engages with the screw. The shaft body 64 and the bearing portion 61 are loosely fitted. A coil spring 66 is installed between the moving plate 65 and the bearing portion 61, and urges the two so that they are always separated from each other. Thus, when the shaft body 64 is rotated, the moving plate 65 moves in the Y direction. The force that can further tension the belt 11c when the moving plate 65 is moved to the bearing 61 side. Since the coil spring 66 is loaded between the moving plate 65 and the bearing 61, excessive tension is suppressed. Is done.
[0029] ベルト 11cのうち、上方を走行するベルト 11c上には基板の端縁に当接して当該端 縁の位置を規定する当接部 14aと、複数の突起部 15aとが設けられている。図 6— 3 はベルト 11cの、当接部 14aと突起部 15aが設けられた部位の拡大図である。当接部 14aは本実施形態の場合、略直方体形状をなし、ベルト 11c上に突出している。当接 部 14aは基板の— Y側の端縁の位置を規定する。突起部 15aは、ベルト 11c上の、 基板が載置される部位に設けられており、本実施形態の場合、 Y方向に複数並べて 配置されている。この突起部 15aは基板が載置される載置部材として機能する。  [0029] Of the belt 11c, on the belt 11c traveling above, there are provided an abutting portion 14a that abuts the edge of the substrate and defines the position of the edge, and a plurality of protrusions 15a. . FIG. 6-3 is an enlarged view of a portion of the belt 11c where the contact portion 14a and the protrusion 15a are provided. In the case of this embodiment, the contact portion 14a has a substantially rectangular parallelepiped shape and protrudes on the belt 11c. The contact portion 14a defines the position of the edge on the −Y side of the substrate. The protrusions 15a are provided on the belt 11c where the substrate is placed. In the present embodiment, a plurality of the protrusions 15a are arranged in the Y direction. The protrusion 15a functions as a mounting member on which the substrate is mounted.
[0030] 突起部 15aは上面が曲形をなしており載置される基板との接触面積をできるだけ小 さくしている。また、突起部 15aの上面は平滑であることが望ましい。各突起部 15aの 頂点を結ぶ線は上述した線 L'と線 Lとの間を通過し、また、当接部 14aの上面は上 述した線 L (移載高さ)よりも低!、位置に位置するようにベルトコンベアユニット 10の高 さ方向の位置は位置決めされて 、る。  [0030] The protrusion 15a has a curved upper surface, and makes the contact area with the substrate to be placed as small as possible. Further, it is desirable that the upper surface of the protrusion 15a is smooth. The line connecting the vertices of the protrusions 15a passes between the line L ′ and the line L described above, and the upper surface of the contact part 14a is lower than the line L (transfer height) described above! The position of the belt conveyor unit 10 in the height direction is positioned so as to be positioned.
[0031] 突起部 15a及び当接部 14aは、ベルト 11cの走行により、 Y方向の直線軌道上を移 動する。つまり、第 1のベルトコンベア 11は突起部 15a及び当接部 14aを Y方向の直 線軌道上で移動させる移動手段として機能する。 [0032] 第 2のベルトコンベア 12の構成は第 1のベルトコンベア 11の構成と同様である。つ まり、第 2のベルトコンベア 12は、駆動プーリ 12aと、従動プーリ 12bと、駆動プーリ 12 aと従動プーリ 12bとに巻き回された無端のベルト 12cと、を備える。駆動プーリ 12aと 従動プーリ 12bとは Y方向に離間して配設されおり、ベルト 12cの走行方向は Y方向 に設定されている。つまり、第 1のベルトコンベア 11と第 2のベルトコンベア 12とは、 各々のベルト l lc、 12cの走行方向が相互に平行となるように配設されている。なお、 第 1のベルトコンベア 11と第 2のベルトコンベア 12とは相対的に Y方向にずれて配置 されており、かつ、第 1のベルトコンベア 11の駆動プーリ 11a及び従動プーリ l ibの 位置と、第 2のベルトコンベア 12の駆動プーリ 12a及び従動プーリ 12bの位置と、は Y方向に逆転している。 [0031] The protrusion 15a and the abutting portion 14a move on a linear track in the Y direction as the belt 11c travels. That is, the first belt conveyor 11 functions as a moving unit that moves the protrusion 15a and the contact portion 14a on a straight track in the Y direction. The configuration of the second belt conveyor 12 is the same as the configuration of the first belt conveyor 11. That is, the second belt conveyor 12 includes a drive pulley 12a, a driven pulley 12b, and an endless belt 12c wound around the drive pulley 12a and the driven pulley 12b. The driving pulley 12a and the driven pulley 12b are spaced apart in the Y direction, and the traveling direction of the belt 12c is set in the Y direction. That is, the first belt conveyor 11 and the second belt conveyor 12 are arranged such that the traveling directions of the belts llc and 12c are parallel to each other. The first belt conveyor 11 and the second belt conveyor 12 are relatively displaced in the Y direction, and the positions of the driving pulley 11a and the driven pulley l ib of the first belt conveyor 11 are the same. The positions of the driving pulley 12a and the driven pulley 12b of the second belt conveyor 12 are reversed in the Y direction.
[0033] 駆動プーリ 12aは軸受 12dに軸支された駆動軸 12eに連結されている。第 1のベル トコンベア 11の場合と同様に、 2つのベルトコンベアユニット 10の各駆動プーリ 12a は共通の駆動軸 12eに連結されて 、る。駆動軸 12eの端部は減速機付きモータ 13b の出力軸に接続されており、モータ 13bの回転駆動によりり 2つの駆動プーリ 12aが 同期回転する。この構成により、複数の第 1のベルトコンベア 11と複数の第 2のベルト コンベア 12とにそれぞれ 1つずつ駆動源 (モータ 13a、 13b)を設ければ足りる。従動 プーリ 12bはその回転軸が軸受 12fに軸支されており、自由回転する。従動プーリ 12 bの回転軸は第 1のベルトコンベア 11の上下のベルト 11c間を通過する。ベルト 12c のうち、上方を走行するベルト 12c上には第 1のベルトコンベア 11と同様に、基板の 端縁に当接して当該端縁の位置を規定する当接部 14bと、複数の突起部 15bとが設 けられており、これらは図 6— 3で参照した当接部 14a、突起部 15aと同様である。当 接部 14bは基板の +Y側の端縁の位置を規定する。  [0033] The drive pulley 12a is connected to a drive shaft 12e that is pivotally supported by a bearing 12d. As in the case of the first belt conveyor 11, the drive pulleys 12a of the two belt conveyor units 10 are connected to a common drive shaft 12e. The end of the drive shaft 12e is connected to the output shaft of the motor 13b with a speed reducer, and the two drive pulleys 12a rotate synchronously by the rotational drive of the motor 13b. With this configuration, it is only necessary to provide one drive source (motor 13a, 13b) for each of the plurality of first belt conveyors 11 and the plurality of second belt conveyors 12. The rotating shaft of the driven pulley 12b is supported by the bearing 12f and freely rotates. The rotating shaft of the driven pulley 12 b passes between the upper and lower belts 11 c of the first belt conveyor 11. Among the belts 12c, on the belt 12c that travels upward, like the first belt conveyor 11, a contact part 14b that contacts the edge of the substrate and defines the position of the edge, and a plurality of protrusions 15b, which are the same as the contact part 14a and the protrusion part 15a referred to in FIG. 6-3. The contact 14b defines the position of the + Y side edge of the substrate.
[0034] 突起部 15b及び当接部 14bは、ベルト 12cの走行により、突起部 15a及び当接部 1 4aが移動する直線軌道と平行な Y方向の直線軌道上を移動する。つまり、第 2のべ ルトコンベア 12は突起部 15b及び当接部 14bを Y方向の直線軌道上で移動させる 移動手段として機能する。  [0034] The protrusion 15b and the contact part 14b move on a linear track in the Y direction parallel to the linear track along which the protrusion 15a and the contact part 14a move as the belt 12c runs. That is, the second belt conveyor 12 functions as a moving means for moving the protrusion 15b and the contact portion 14b on a linear track in the Y direction.
[0035] <ネ甫助ユニット >  [0035] <Nesuke Support Unit>
図 1及び図 6— 1及び図 6— 2に示すように本実施形態ではベルトコンベアユニット 1 0の Y方向の略中間部位に補助ユニット 50が配設されている。補助ユニット 50は、支 持部 51と、補助軸 52と、を備える。図 6—4は図 1の線 Ι—Ιに沿う断面図、図 6— 5は 図 1の線 II IIに沿う断面図である。支持部 51は表面が平滑な板であり、脚部 51aを 介して台 53に支持されている。支持部 51はベルト l lc、 12cのうち、上方を走行する 部分の下に配設され、当該部分が載置されることにより、ベルト l lc、 12cを支持する 。この支持部 51は表面な平滑な板に代えて軸体等も採用できる。補助軸 52はテンシ ヨンローラとして機能する軸体であり、軸受部 52aを介して台 53に支持されている。補 助軸 52は、ベルト l lc、 12cのうち、下方を走行する部分の下に配設され、これを上 方へ押し上げることによりベルト l lc、 12cに一定の張力を発生させる。 As shown in FIGS. 1 and 6-1 and 6-2, in this embodiment, the belt conveyor unit 1 The auxiliary unit 50 is disposed at a substantially middle position in the Y direction of 0. The auxiliary unit 50 includes a support portion 51 and an auxiliary shaft 52. Fig. 6-4 is a cross-sectional view taken along line Ι-Ι in Fig. 1, and Fig. 6-5 is a cross-sectional view taken along line II II in Fig. 1. The support portion 51 is a plate having a smooth surface, and is supported by the base 53 through leg portions 51a. The support portion 51 is disposed below a portion of the belts llc and 12c that travels upward, and supports the belts llc and 12c by placing the portions. The support 51 can be a shaft or the like instead of a smooth plate. The auxiliary shaft 52 is a shaft body that functions as a tension roller, and is supported by the base 53 via a bearing portion 52a. The auxiliary shaft 52 is disposed below a portion of the belt l lc, 12c that travels below, and pushes it upward to generate a constant tension on the belt l lc, 12c.
[0036] <制御部 > [0036] <Control unit>
図 7— 3は基板搬送システム Aを制御する制御部 70のブロック図である。制御部 70 は CPU71と、 RAM72と、 ROM73とを備える。 ROM73には基板搬送システム Aの 制御プログラム等が格納される。 RAM72、 ROM73は他の記憶手段も採用可能で ある。 CPU71には入力インターフェース(IZF) 74が接続されており、入力 IZF74 には各種のセンサが接続されている。このセンサとしては、例えば、各モータ 13a、 1 3b、 27の回転角又は回転量、ローラコンベアによる基板の搬送量を検出するセンサ が挙げられる。各種のセンサの検出結果は入力 IZF74を介して CPU71が取得する  FIG. 7-3 is a block diagram of the control unit 70 that controls the substrate transfer system A. FIG. The control unit 70 includes a CPU 71, a RAM 72, and a ROM 73. The ROM 73 stores a control program for the substrate transfer system A and the like. The RAM 72 and ROM 73 can also employ other storage means. An input interface (IZF) 74 is connected to the CPU 71, and various sensors are connected to the input IZF74. Examples of this sensor include sensors that detect the rotation angles or rotation amounts of the motors 13a, 13b, and 27 and the substrate conveyance amount by the roller conveyor. CPU71 obtains detection results of various sensors via input IZF74
[0037] CPU71には出力 IZF75が接続されており、出力 IZF75にはモータ、制御弁が接 続されている。モータは、例えば、各モータ 13a、 13b、 27並びに上述したローラコン ベアの駆動モータ等である。制御弁はエアシリンダ 45eへのエアの供給、方向を切替 える弁である。 CPU71は例えば入力 IZF74に接続された各種センサの検知結果に 応じて、出力 IZF75に接続された各ァクチユエータに制御命令を出力して基板搬送 システム Aを動作させる。なお、第 1のベルトコンベア 11と第 2のベルトコンベア 12と は制御部 70によってそれぞれ個別に独立して制御されることは言うまでもない。 CP U71には通信 I/F78が接続されており、ホストコンピュータ 80とのデータ通信を行 なう。ホストコンピュータ 80は基板搬送システム Aに対する各種の設定、動作命令等 を行なう。 [0038] <基板搬送システムの動作 > [0037] An output IZF75 is connected to the CPU 71, and a motor and a control valve are connected to the output IZF75. The motor is, for example, each of the motors 13a, 13b, 27, the roller conveyor drive motor described above, and the like. The control valve is a valve that switches the supply and direction of air to the air cylinder 45e. For example, the CPU 71 outputs a control command to each of the actuators connected to the output IZF75 according to the detection results of various sensors connected to the input IZF74 to operate the substrate transfer system A. Needless to say, the first belt conveyor 11 and the second belt conveyor 12 are individually and independently controlled by the control unit 70. A communication I / F 78 is connected to the CPU 71, and data communication with the host computer 80 is performed. The host computer 80 performs various settings and operation commands for the substrate transfer system A. [0038] <Operation of substrate transfer system>
次に、図 8乃至図 14を参照して制御部 70の制御による基板搬送システム Aの動作 例について説明する。ここでは、基板収納カセット 100aから処理装置 110へ基板を 一枚ずつ搬送し、また、処理装置 110から基板収納カセット 100bへ処理済の基板を 搬送する場合について説明する。  Next, an example of the operation of the substrate transfer system A under the control of the control unit 70 will be described with reference to FIGS. Here, a case will be described in which substrates are transferred one by one from the substrate storage cassette 100a to the processing apparatus 110, and processed substrates are transferred from the processing apparatus 110 to the substrate storage cassette 100b.
[0039] まず、第 1及び第 2のベルトコンベア 11、 12を駆動してベルト l lc、 12cを走行させ 、第 1のベルトコンベア 11の当接部 14aと、第 2のベルトコンベア 12の当接部 14bと が相互に基板の幅よりも離間した位置 (初期位置)に位置させる(初期制御)。図 8は 当接部 14a、 14bが初期位置に位置した態様を示す。図中、 P1は当接部 14aの基 板への当接面の Y方向の位置を、 P2は当接部 14bの基板への当接面の Y方向の位 置を、それぞれ示す。 P1と P2とは距離 dlだけ離間しており、距離 dl >基板の Y方 向の幅、である。  [0039] First, the first and second belt conveyors 11 and 12 are driven to run the belts llc and 12c, and the contact portions 14a of the first belt conveyor 11 and the second belt conveyor 12 are brought into contact with each other. The contact portion 14b is positioned at a position (initial position) that is separated from the width of the substrate (initial control). FIG. 8 shows a state in which the contact portions 14a and 14b are located at the initial position. In the figure, P1 indicates the position of the contact surface of the contact portion 14a on the substrate in the Y direction, and P2 indicates the position of the contact surface of the contact portion 14b on the substrate in the Y direction. P1 and P2 are separated by a distance dl, and the distance dl> the width in the Y direction of the substrate.
[0040] 続いて昇降ユニット 20により基板収納カセット 100aを降下させ、最下方の基板が 移載ユニット 30の各ローラコンベア 31上に載置される位置にて停止する。ローラコン ベア 31のローラを回転駆動することにより、基板を X方向に移動させ、ベルトコンペ ァユニット 10へ移動させる(図 9)。基板収納カセット 100a側の移載ユニット 40は予め ローラコンベア 41を上昇位置に位置させておき、ローラコンベア 41のローラも回転駆 動する。これにより、ローラコンベア 31からローラコンベア 41へ基板が移動し、ベルト コンベアユニット 10上に基板が移動する。  Subsequently, the substrate storage cassette 100 a is lowered by the elevating unit 20 and stopped at a position where the lowermost substrate is placed on each roller conveyor 31 of the transfer unit 30. By rotating the roller of the roller conveyor 31, the substrate is moved in the X direction and moved to the belt compare unit 10 (Fig. 9). In the transfer unit 40 on the substrate storage cassette 100a side, the roller conveyor 41 is placed in the raised position in advance, and the rollers of the roller conveyor 41 are also driven to rotate. As a result, the substrate moves from the roller conveyor 31 to the roller conveyor 41, and the substrate moves onto the belt conveyor unit 10.
[0041] ベルトコンベアユニット 10上へ基板が移動すると、基板収納カセット 100a側のロー ラコンベア 31及び 41のローラの回転駆動を停止し、ローラコンベア 41を下降位置へ 降下させる。これにより、基板がベルトコンベアユニット 10のベルト l lc、 12c上へ載 置される。基板は 2つのベルトコンベアユニット 10の各ベルト l lc、 12c上に跨る位置 まで移動され、この跨った状態で搬送される。本実施形態ではベルト l lc、 12c上に 突起部 15a、 15bを設けているため、基板は突起部 15a、 15b上に跨って載置される  [0041] When the substrate moves onto the belt conveyor unit 10, the rotation of the rollers of the roller conveyors 31 and 41 on the substrate storage cassette 100a side is stopped, and the roller conveyor 41 is lowered to the lowered position. As a result, the substrate is placed on the belts l lc and 12 c of the belt conveyor unit 10. The board is moved to a position over the belts l lc and 12c of the two belt conveyor units 10 and is transported in this state. In the present embodiment, since the protrusions 15a and 15b are provided on the belts llc and 12c, the substrate is placed across the protrusions 15a and 15b.
[0042] 次に、第 1及び第 2のベルトコンベア 11、 12を駆動してベルト 11 c、 12cを相互に逆 方向に走行させ、初期位置にある当接部 14aと当接部 14bとの間の距離が基板の幅 となるようにする (位置決め制御)。これにより基板が位置決めされる。図 10は基板が 位置決めされた態様を示す図である。当接部 14aと当接部 14bとが初期位置力も移 動し、 P1と P2との距離が dlから d2へ変化している。距離 d2 基板の Y方向の幅、 である。ベルト l lc、 12cを相互に逆方向に走行させることで、当接部 14aが基板の —Y側の端縁に、当接部 14bが基板の +Y側の端縁に、それぞれ当接し、また、基 板は突起部 15a、 15bを滑動する。基板は当接部 14aと 14bとに緩やかに挟持され てその Y方向の位置決め力 Sなされることになる。 [0042] Next, the first and second belt conveyors 11 and 12 are driven to cause the belts 11c and 12c to travel in opposite directions, and the contact portions 14a and 14b at the initial position are moved. The distance between is the width of the board (Positioning control) Thereby, the substrate is positioned. FIG. 10 is a diagram showing a state in which the substrate is positioned. The abutting portion 14a and the abutting portion 14b also move the initial position force, and the distance between P1 and P2 changes from dl to d2. Distance d2 The width of the board in the Y direction. By causing the belts l lc and 12c to run in opposite directions, the contact portion 14a contacts the edge of the substrate on the -Y side, and the contact portion 14b contacts the edge of the substrate on the + Y side. Further, the board slides on the protrusions 15a and 15b. The substrate is gently sandwiched between the contact portions 14a and 14b, and the positioning force S in the Y direction is applied.
[0043] 次に、第 1及び第 2のベルトコンベア 11、 12を駆動してベルト l lc、 12cを同方向(  [0043] Next, the first and second belt conveyors 11 and 12 are driven to move the belts l lc and 12c in the same direction (
+Y方向)に等速で走行させる (搬送制御)。これにより基板が +Y方向に搬送される 。図 11は基板が搬送される態様を示した図である。ベルト l lc、 12cを同方向(+Y 方向)に等速で走行させることで、基板が当接部 14aと 14bと挟まれて位置決めされ た状態のまま搬送される。ベルト l lc、 12cには基板の自重により下方向の荷重が作 用するが、支持部 51により支持され、ベルト l lc、 12cが下方へ橈むことが防止され て基板を安定して搬送することができる。  Drive at a constant speed in the + Y direction (transport control). As a result, the substrate is transported in the + Y direction. FIG. 11 is a view showing a mode in which the substrate is conveyed. By causing the belts l lc and 12c to travel in the same direction (+ Y direction) at a constant speed, the substrate is conveyed while being positioned between the contact portions 14a and 14b. Belts l lc and 12c are subjected to a downward load due to the weight of the substrate, but are supported by the support part 51, and the belts l lc and 12c are prevented from pinching downward to stably transport the substrate. be able to.
[0044] 次に、基板の搬送が開始されるのと前後して処理装置 110側の移載ユニット 40の ローラコンベア 41を下降位置に位置させる。図 12に示すように基板が処理装置 110 側の移載ユニット 40上へ到達すると、第 1及び第 2のベルトコンベア 11、 12の駆動を 停止し、基板の搬送を停止する。そして、処理装置 110側の移載ユニット 40のローラ コンベア 41を上昇位置へ上昇させ、基板をベルトコンベアユニット 10からローラコン ベア 41へ移載する。移載後、ローラコンベア 41のローラを回転駆動し、基板を— X 方向に移動させ、処理装置 110へ基板を移載する(図 13)。以上により 1単位の基板 の搬送が終了する。なお、処理装置 110へ基板を移載する際、並行して、図 13に示 すように、基板収納カセット 100aから次の基板をベルトコンベアユニット 10へ移載す る動作を開始することもできる。図 13では、ベルトコンベア 11、 12も駆動されて、当 接部 14a、 14bが初期位置へ戻るように移動している。  Next, before and after the substrate transfer is started, the roller conveyor 41 of the transfer unit 40 on the processing apparatus 110 side is positioned at the lowered position. As shown in FIG. 12, when the substrate reaches the transfer unit 40 on the processing apparatus 110 side, the driving of the first and second belt conveyors 11 and 12 is stopped, and the conveyance of the substrate is stopped. Then, the roller conveyor 41 of the transfer unit 40 on the processing apparatus 110 side is raised to the raised position, and the substrate is transferred from the belt conveyor unit 10 to the roller conveyor 41. After the transfer, the rollers of the roller conveyor 41 are driven to rotate, the substrate is moved in the −X direction, and the substrate is transferred to the processing apparatus 110 (FIG. 13). This completes the transfer of one unit of substrate. In addition, when the substrate is transferred to the processing apparatus 110, the operation of transferring the next substrate from the substrate storage cassette 100a to the belt conveyor unit 10 can be started in parallel as shown in FIG. . In FIG. 13, the belt conveyors 11 and 12 are also driven to move the contact portions 14a and 14b back to the initial positions.
[0045] 次に、処理装置 110から基板収納カセット 100bへ処理済みの基板を搬送する場 合について説明する。まず、処理装置 110側の移載ユニット 40のローラコンベア 41 を上昇位置に位置させる。また、昇降ユニット 20により基板収納カセット 100bを降下 させ、基板収納カセット 100b内の基板を収納する段を移載ユニット 30の移載高さに 合わせる。続いて処理装置 110側の移載ユニット 30及び 40のローラコンベア 30及 び 40のローラを回転駆動し、基板を +X方向に搬送可能な状態で待機する。処理装 置 110から処理済の基板が排出されると、図 14に示すように、移載ユニット 40→移 載ユニット 30と基板が搬送されて基板収納カセット 100b内に収納されることになる。 処理装置 110から基板収納カセット 100bへ処理済みの基板を搬送する間、図 14〖こ 示すように、基板収納カセット 100aから基板をベルトコンベアユニット 10へ移載して 、処理装置 110への搬送を準備することができる。 Next, a case where a processed substrate is transferred from the processing apparatus 110 to the substrate storage cassette 100b will be described. First, the roller conveyor 41 of the transfer unit 40 on the processing apparatus 110 side is positioned at the raised position. The lifting / lowering unit 20 lowers the substrate storage cassette 100b. Then, the stage for storing the substrates in the substrate storage cassette 100b is matched with the transfer height of the transfer unit 30. Subsequently, the rollers 30 and 40 of the transfer units 30 and 40 on the processing apparatus 110 side are rotationally driven to stand by in a state where the substrate can be conveyed in the + X direction. When the processed substrate is discharged from the processing apparatus 110, the transfer unit 40 → the transfer unit 30 and the substrate are transported and stored in the substrate storage cassette 100b as shown in FIG. While the processed substrate is transferred from the processing apparatus 110 to the substrate storage cassette 100b, the substrate is transferred from the substrate storage cassette 100a to the belt conveyor unit 10 and transferred to the processing apparatus 110 as shown in FIG. Can be prepared.
[0046] <基板搬送システムの利点 >  [0046] <Advantages of substrate transfer system>
本実施形態の基板搬送システム Aによれば、当接部 14a、 14bが基板の対向する 両端縁にそれぞれ当接し、ベルト l lc、 12cの走行方向(Y方向)の基板の位置決め を行なうことができると共に、位置決めされた状態で基板を搬送できる。従って、搬送 途中で基板が傾くことなぐ位置決めされた状態で基板を搬送することができる。  According to the substrate transfer system A of the present embodiment, the contact portions 14a and 14b are in contact with the opposite end edges of the substrate, respectively, to position the substrate in the running direction (Y direction) of the belts llc and 12c. In addition, the substrate can be transported in a positioned state. Therefore, the substrate can be transported in a state where the substrate is positioned without being inclined during the transport.
[0047] 上記の位置決め制御の際には、基板がベルト l lc、 12c上を摺動することになるが 、本実施形態では基板が載置される部位に複数の突起部 15a、 15bを設け、基板を 突起部 15a、 15b上に載置されるようにしているので、ベルト l lc、 12cと基板とがほと んど接触せず、両者の摩擦を軽減して基板が傷つくことを防止できる。  [0047] During the positioning control described above, the substrate slides on the belts l lc and 12c. In the present embodiment, a plurality of protrusions 15a and 15b are provided at the portion where the substrate is placed. Since the board is placed on the protrusions 15a and 15b, the belts l lc and 12c are hardly in contact with the board, reducing friction between them and preventing the board from being damaged. it can.
[0048] また、上記実施形態では、ベルトコンベアユニット 10のベルト l lc、 12cの走行方向 と直交する方向に基板を移載する移載ユニット 30、 40を設けたことにより、、ベルトコ ンベアユニット 10の長手方向に沿ってその側方に基板収納カセット 100と処理装置 1 10とを配置したレイアウトを採用できた。  [0048] Further, in the above-described embodiment, the transfer unit 30, 40 that transfers the substrate in the direction orthogonal to the traveling direction of the belts llc, 12c of the belt conveyor unit 10 is provided, so that the belt conveyor unit 10 A layout in which the substrate storage cassette 100 and the processing apparatus 110 are arranged on the side of the substrate along the longitudinal direction of the substrate can be adopted.
[0049] 更に、ローラコンベア 41を昇降可能とすることで、ローラコンベア 41を上昇位置に 位置させて基板を搬送する際、当接部 14a、 14bと基板が干渉することがない。従つ て、ある基板の搬送中に、ベルトコンベアユニット 10上に基板収納カセット 100又は 処理装置 110からの他の基板を配置し、基板の移載の準備ができ、搬送効率を高め ることがでさる。  [0049] Furthermore, by allowing the roller conveyor 41 to move up and down, the abutting portions 14a and 14b do not interfere with the substrate when the substrate is transported while the roller conveyor 41 is positioned at the raised position. Therefore, while a certain substrate is being transported, another substrate from the substrate storage cassette 100 or the processing apparatus 110 can be placed on the belt conveyor unit 10 so that the substrate can be prepared for transfer and the transport efficiency can be improved. I'll do it.
[0050] <第 2実施形態 >  [0050] <Second Embodiment>
上記実施形態では、位置決め制御の際、第 1及び第 2のベルトコンベア 11、 12を 駆動してベルト l lc、 12cを相互に逆方向に走行させ、初期位置にある当接部 14aと 当接部 14bとの間の距離が基板の幅となるようにした。つまり、当接部 14aと当接部 1 4bとの双方を逆方向に移動させることにより、基板の位置決めを行なった力 いずれ か一方が他方へ近づくように移動すれば基板の位置決めができる。 In the above embodiment, the first and second belt conveyors 11 and 12 are used for positioning control. The belts llc and 12c were driven to run in opposite directions so that the distance between the contact part 14a and the contact part 14b at the initial position was the width of the substrate. In other words, by moving both the contact portion 14a and the contact portion 14b in the opposite directions, the substrate can be positioned if one of the forces for positioning the substrate moves so as to approach the other.
[0051] 従って、第 1及び第 2のベルトコンベア 11、 12の少なくともいずれかを駆動し、当接 部 14a又は 14bの一方が他方へ近づくように制御することで基板の位置決めができ る。更に、位置決め制御では、当接部 14a及び 14bを異なる速度で同方向に移動さ せてもよい。例えば、当接部 14aと当接部 14bとを初期位置力も基板の搬送方向 (Y 方向)に移動させる力 当接部 14aの移動速度は搬送制御時の移動速度と同じに、 当接部 14bは搬送制御時の移動速度より遅い速度とし、徐々に当接部 14bの移動 速度を搬送制御時の移動速度まであげる。これにより、当接部 14aと当接部 14bとの 移動速度の差により両者の距離が狭まり、やがて両者が基板の両端縁に当接するこ とになる。この方式では、基板の搬送を行ないながら基板の位置決めができる。  [0051] Accordingly, the substrate can be positioned by driving at least one of the first and second belt conveyors 11 and 12 and controlling one of the contact portions 14a or 14b to approach the other. Further, in the positioning control, the contact portions 14a and 14b may be moved in the same direction at different speeds. For example, the force that moves the abutment portion 14a and the abutment portion 14b in the substrate transport direction (Y direction) as well as the moving speed of the abutment portion 14a is the same as the movement speed during transport control. The speed is slower than the movement speed during transfer control, and the movement speed of the contact part 14b is gradually increased to the movement speed during transfer control. As a result, the distance between the contact portion 14a and the contact portion 14b is reduced due to the difference in moving speed between the contact portion 14a and the contact portion 14b. In this method, the substrate can be positioned while the substrate is being transported.
[0052] また、上記実施形態では、 4本のベルト l lc、 12cに跨って 1枚の基板を載置し、搬 送したが、基板の大きさに併せてベルトの幅を調整することで、 2本のベルト l lc、 12 cで 1枚の基板を搬送するようにしてもよい。つまり、最低 1つのベルトコンベアユニット 10があれば、上記実施形態の各制御が実施できる。  [0052] In the above embodiment, a single substrate is placed and transported across the four belts llc and 12c. By adjusting the width of the belt in accordance with the size of the substrate, One substrate may be transported by two belts l lc and 12 c. That is, if there is at least one belt conveyor unit 10, each control of the above embodiment can be performed.
[0053] これとは逆に 4本以上のベルトを用いる構成も採用できる。図 15は 4つのベルトコン ベアユニット 10を用いた例を示す図である。ベルトコンベアユニット 10を 2つずつ独 立して同期駆動することで、 2枚の基板を並行して搬送することができる。また、 4つ のベルトコンベアユニット 10を全て同期駆動することで、図 16に示すように図 15の基 板とは大きさが異なる(より大きな)基板も搬送できる。つまり、初期制御及び位置決 め制御等における当接部 14a、 14b間の距離を適宜設定することで、異なる大きさの 基板を同じシステムで搬送できるという利点がある。  [0053] Conversely, a configuration using four or more belts may be employed. FIG. 15 is a diagram showing an example in which four belt conveyor units 10 are used. By driving the belt conveyor units 10 independently and in synchronization, two boards can be transported in parallel. Further, by synchronously driving all four belt conveyor units 10, as shown in FIG. 16, it is possible to transport a substrate having a different size (larger) than the substrate of FIG. That is, there is an advantage that substrates of different sizes can be transported by the same system by appropriately setting the distance between the contact portions 14a and 14b in the initial control and the positioning control.
[0054] <第 3実施形態 >  <Third Embodiment>
上記実施形態では、突起部 15a、 15b及び当接部 14a、 14bを移動させる移動手 段としてベルトコンベア 11、 12を用いた力 他の種類の移動手段を用いることもでき る。以下、図 17乃至図 25を参照して、他の種類の移動手段の採用例について説明 する。なお、これらの各図において上述した基板搬送システム Aと同様の構成につい ては同じ符号を付し、説明を省略する。また、特に説明しないが、上記第 1実施形態 及び第 2実施形態における制御内容、装置のレイアウト等はこの第 3実施形態の構 成例につ 、ても適用可能である。 In the above-described embodiment, force using the belt conveyors 11 and 12 as the moving means for moving the protrusions 15a and 15b and the contact portions 14a and 14b can be used. Hereinafter, with reference to FIG. 17 to FIG. 25, examples of adopting other types of moving means will be described. To do. In these drawings, the same reference numerals are given to the same components as those of the substrate transfer system A described above, and the description thereof is omitted. Although not specifically described, the control contents, device layout, and the like in the first and second embodiments can be applied to the configuration example of the third embodiment.
[0055] <ボールネジ機構の採用例 1 >  [0055] <Application example 1 of ball screw mechanism>
図 17は本発明の他の実施形態に係る基板搬送システム Bの平面図である。基板搬 送システム Bはベルトコンベアユニット 10に代えてボールネジ機構を備えた駆動ュ- ット 210を採用したものである。  FIG. 17 is a plan view of a substrate transfer system B according to another embodiment of the present invention. The substrate transport system B employs a drive unit 210 having a ball screw mechanism instead of the belt conveyor unit 10.
[0056] 2つの駆動ユニット 210は、それぞれ第 1のボールネジ機構 211と、第 2のボールネ ジ機構 212と、カゝら構成されている。第 1のボールネジ機構 211は、 Y方向に延びる 直線状のネジ軸 2111及びガイド部材 2112と、ガイド部材 2112に案内されてネジ軸 2111に沿って移動する移動ユニット 2113と、を備える。ネジ軸 2111はその両端部 近傍にぉ 、て軸受 211 laにより回転自在に支持されて 、る。  Each of the two drive units 210 includes a first ball screw mechanism 211, a second ball screw mechanism 212, and the like. The first ball screw mechanism 211 includes a linear screw shaft 2111 and a guide member 2112 extending in the Y direction, and a moving unit 2113 that is guided by the guide member 2112 and moves along the screw shaft 2111. The screw shaft 2111 is rotatably supported by a bearing 211 la near the both ends thereof.
[0057] 第 2のボールネジ機構 212は、第 1のボールネジ機構 211に対して X方向に離間し て配設されており、第 1のボールネジ機構 211と同様の構成である。つまり、第 2のボ 一ルネジ機構 212は、 Y方向に延びる直線状のネジ軸 2121及びガイド部材 2122と 、ガイド部材 2122に案内されてネジ軸 2121に沿って移動する移動ユニット 2123と 、を備える。ネジ軸 2121はその両端部近傍において軸受 2121aにより回転自在に 支持されている。  The second ball screw mechanism 212 is disposed away from the first ball screw mechanism 211 in the X direction, and has the same configuration as the first ball screw mechanism 211. That is, the second ball screw mechanism 212 includes a linear screw shaft 2121 and a guide member 2122 extending in the Y direction, and a moving unit 2123 that is guided by the guide member 2122 and moves along the screw shaft 2121. . The screw shaft 2121 is rotatably supported by bearings 2121a in the vicinity of both ends thereof.
[0058] 各ネジ軸 2111、 2121の一方の端部にはかさ歯車 221がそれぞれ取り付けられて いる。力さ歯車 221はモータ 223a、 223bにより回転駆動されるかさ歯車 222と嚙合 しており、モータ 223a、 223bの正転 '逆転により各才ヽジ軸 2111、 2121力 S正転 '逆転 する。 2つの駆動ユニット 210のうち、各ボールネジ機構 211はモータ 223aにより同 期制御され、各ボールネジ機構 212はモータ 223bにより同期制御される。なお、ボ 一ルネジ機構 211とボールネジ機構 212とはそれぞれ個別に独立して制御されるこ とは言うまでもない。  A bevel gear 221 is attached to one end of each screw shaft 2111, 2121. The force gear 221 is meshed with a bevel gear 222 that is rotationally driven by the motors 223a and 223b, and the forward rotations and reverse rotations of the motors 223a and 223b cause reverse rotation of the respective talent shafts 2111 and 2121. Of the two drive units 210, each ball screw mechanism 211 is synchronously controlled by a motor 223a, and each ball screw mechanism 212 is synchronously controlled by a motor 223b. Needless to say, the ball screw mechanism 211 and the ball screw mechanism 212 are individually controlled independently.
[0059] 図 18は移動ユニット 2113、 2123近傍の構成を示す斜視図である。移動ユニット 2 123は上述した突起部 15b及び当接部 14bが上面に設けられた支持板 2123aと、 支持板 2123aの両端部下面に固定された一対の支持ブロック 2123bと、を備える。 支持ブロック 2123bはネジ軸 2121に螺合するボールナットを有しており、ネジ軸 21 21が貫通している。また、支持ブロック 2123bの下面にはガイド部材 2122に嚙合う 溝が形成されている。 FIG. 18 is a perspective view showing a configuration in the vicinity of the moving units 2113 and 2123. The moving unit 2123 includes a support plate 2123a provided with the above-described protrusion 15b and contact portion 14b on the upper surface, A pair of support blocks 2123b fixed to the lower surfaces of both ends of the support plate 2123a. The support block 2123b has a ball nut that is screwed onto the screw shaft 2121, and the screw shaft 21 21 passes therethrough. Further, a groove that fits the guide member 2122 is formed on the lower surface of the support block 2123b.
[0060] しかして、ネジ軸 2121が回転すると移動ユニット 2123はネジ軸 2121の回転方向 によって +Y方向又は Y方向に移動し、突起部 15b及び当接部 14bを Y方向に沿 う直線軌道上で移動させることができる。  [0060] However, when the screw shaft 2121 rotates, the moving unit 2123 moves in the + Y direction or the Y direction depending on the rotation direction of the screw shaft 2121, and the protruding portion 15b and the contact portion 14b move on the straight track along the Y direction. It can be moved with.
[0061] 移動ユニット 2113は移動ユニット 2123と同様の構成であり、上述した突起部 15a 及び当接部 14aが上面に設けられた支持板 2113aと、支持板 2113aの両端部下面 に固定された一対の支持ブロック 2113bと、を備える。支持ブロック 2113bはネジ軸 2111に螺合するボールナットを有しており、ネジ軸 2111が貫通している。また、支 持ブロック 2123bの下面にはガイド部材 2122に嚙合う溝が形成されている。  [0061] The moving unit 2113 has the same configuration as that of the moving unit 2123, and the support plate 2113a having the protrusion 15a and the contact portion 14a described above provided on the upper surface, and a pair fixed to the lower surfaces of both ends of the support plate 2113a. Support block 2113b. The support block 2113b has a ball nut that is screwed onto the screw shaft 2111, and the screw shaft 2111 passes therethrough. Further, a groove that fits the guide member 2122 is formed on the lower surface of the support block 2123b.
[0062] しかして、ネジ軸 2111が回転すると移動ユニット 2113はネジ軸 2111の回転方向 によって +Y方向又は Y方向に移動し、突起部 15a及び当接部 14aを、突起部 15 b及び当接部 14bが移動する直線軌道と平行な、 Y方向に沿う直線軌道上で移動さ せることができる。  [0062] When the screw shaft 2111 rotates, the moving unit 2113 moves in the + Y direction or the Y direction depending on the rotation direction of the screw shaft 2111, and the protrusion 15a and the contact portion 14a are connected to the protrusion 15b and the contact. It can be moved on a straight orbit along the Y direction, parallel to the straight orbit along which the part 14b moves.
[0063] このような構成カゝらなる基板搬送システム Bにおいても、基板搬送システム Aと同様 の基板の搬送制御が可能である。  [0063] In the substrate transport system B having such a configuration, the same substrate transport control as that of the substrate transport system A is possible.
[0064] <ボールネジ機構の採用例 2 >  [0064] <Application example 2 of ball screw mechanism>
図 19は本発明の他の実施形態に係る基板搬送システム Cの平面図である。基板 搬送システム Cはベルトコンベアユニット 10に代えてボールネジ機構を備えた駆動ュ ニット 310を採用したものである。駆動ユニット 310は駆動ユニット 210とは異なる形 式のボーノレネジ機構を採用したものである。  FIG. 19 is a plan view of a substrate transfer system C according to another embodiment of the present invention. The board transfer system C employs a drive unit 310 having a ball screw mechanism instead of the belt conveyor unit 10. The drive unit 310 employs a Bonnole screw mechanism of a different form from the drive unit 210.
[0065] 2つの駆動ユニット 310は、それぞれ第 1のボールネジ機構 311と、第 2のボールネ ジ機構 312と、カゝら構成されている。第 1のボールネジ機構 311は、 Y方向に延びる 直線状のネジ軸 3111及びガイド部材 3112と、ガイド部材 3112に案内されてネジ軸 3111に沿って移動する移動ユニット 3113と、を備える。ネジ軸 3111はその両端部 近傍において軸受 3111aにより固定されている。つまり、本例ではネジ軸 3111は回 転しない。 Each of the two drive units 310 includes a first ball screw mechanism 311, a second ball screw mechanism 312, and the like. The first ball screw mechanism 311 includes a linear screw shaft 3111 and a guide member 3112 extending in the Y direction, and a moving unit 3113 that is guided by the guide member 3112 and moves along the screw shaft 3111. The screw shaft 3111 is fixed by bearings 3111a in the vicinity of both ends thereof. In other words, in this example, the screw shaft 3111 is turned. Do not roll.
[0066] 第 2のボールネジ機構 312は、第 1のボールネジ機構 311に対して X方向に離間し て配設されており、第 1のボールネジ機構 311と同様の構成である。つまり、第 2のボ 一ルネジ機構 312は、 Y方向に延びる直線状のネジ軸 3121及びガイド部材 3122と 、ガイド部材 3122に案内されてネジ軸 3121に沿って移動する移動ユニット 3123と 、を備える。ネジ軸 3121はその両端部近傍において軸受 3121aにより固定されてい る。  The second ball screw mechanism 312 is disposed away from the first ball screw mechanism 311 in the X direction, and has the same configuration as the first ball screw mechanism 311. That is, the second ball screw mechanism 312 includes a linear screw shaft 3121 and a guide member 3122 extending in the Y direction, and a moving unit 3123 that is guided by the guide member 3122 and moves along the screw shaft 3121. . The screw shaft 3121 is fixed by bearings 3121a in the vicinity of both ends thereof.
[0067] 図 20は移動ユニット 3113、 3123近傍の構成を示す斜視図である。移動ユニット 3 123は上述した突起部 15b及び当接部 14bが上面に設けられた支持板 3123aと、 支持板 3123aの両端部下面に固定された一対の支持ブロック 3123bと、を備える。  FIG. 20 is a perspective view showing a configuration in the vicinity of the moving units 3113 and 3123. The moving unit 3123 includes a support plate 3123a provided with the above-described protrusion 15b and contact portion 14b on the upper surface, and a pair of support blocks 3123b fixed to the lower surfaces of both ends of the support plate 3123a.
[0068] 支持ブロック 3123bは、モータ 31231と、摺動咅 31232と、力ら構成されて ヽる。モ ータ 31231は、その出力軸 31231aが円筒状をなしており、その内部にネジ軸 3121 に螺合するボールナットを有しており、ネジ軸 3121が貫通している。また、摺動部 31 232はモータ 31231の下面に固定されており、ガイド部材 3122に嚙合う溝が形成さ れている。  [0068] The support block 3123b includes a motor 31231, a sliding rod 31232, and a force. The motor 31231 has a cylindrical output shaft 31231a, and has a ball nut screwed into the screw shaft 3121 therein, and the screw shaft 3121 passes therethrough. Further, the sliding portion 31 232 is fixed to the lower surface of the motor 31231, and a groove that fits the guide member 3122 is formed.
[0069] しかして、一対の支持ブロック 3123bの各モータ 31231は、互いに同期制御される 。出力軸 31231aが回転すると、移動ユニット 3123は出力軸 31231aの回転方向に よって +Y方向又は— Y方向に移動し、突起部 15b及び当接部 14bを Y方向に沿う 直線軌道上で移動させることができる。  [0069] Accordingly, the motors 31231 of the pair of support blocks 3123b are synchronously controlled with each other. When the output shaft 31231a rotates, the moving unit 3123 moves in the + Y direction or the −Y direction depending on the rotation direction of the output shaft 31231a, and moves the protrusion 15b and the contact portion 14b on a linear track along the Y direction. Can do.
[0070] 移動ユニット 3113は移動ユニット 3123と同様の構成であり、上述した突起部 15a 及び当接部 14aが上面に設けられた支持板 3113aと、支持板 3113aの両端部下面 に固定された一対の支持ブロック 3113bと、を備える。  [0070] The moving unit 3113 has the same configuration as that of the moving unit 3123, and a pair of support plates 3113a provided with the protrusions 15a and the abutting portions 14a described above on the upper surface and a pair of lower surfaces fixed to both ends of the support plate 3113a. Support block 3113b.
[0071] 支持ブロック 3113bは、モータ 31131と、摺動咅 31132と、力ら構成されて ヽる。モ ータ 31131は、その出力軸 31131aが円筒状をなしており、その内部にネジ軸 3111 に螺合するボールナットを有しており、ネジ軸 3111が貫通している。また、摺動部 31 132はモータ 31131の下面に固定されており、ガイド部材 3112に嚙合う溝が形成さ れている。  [0071] The support block 3113b is composed of a motor 31131, a sliding rod 31132, and a force. The motor 31131 has an output shaft 31131a formed in a cylindrical shape, and has a ball nut screwed into the screw shaft 3111 therein, and the screw shaft 3111 passes therethrough. Further, the sliding portion 31 132 is fixed to the lower surface of the motor 31131, and a groove that fits the guide member 3112 is formed.
[0072] しかして、一対の支持ブロック 3113bの各モータ 31131は、互いに同期制御される 。出力軸 31131aが回転すると、移動ユニット 3113は出力軸 31131aの回転方向に よって +Y方向又は Y方向に移動し、突起部 15a及び当接部 14aを、突起部 15b 及び当接部 14bが移動する直線軌道と平行な、 Y方向に沿う直線軌道上で移動させ ることがでさる。 [0072] Thus, the motors 31131 of the pair of support blocks 3113b are synchronously controlled with each other. . When the output shaft 31131a rotates, the moving unit 3113 moves in the + Y direction or the Y direction depending on the rotation direction of the output shaft 31131a, and the protrusion 15b and the contact portion 14b move along the protrusion 15a and the contact portion 14a. It can be moved on a straight orbit along the Y direction, parallel to the straight orbit.
[0073] このような構成カゝらなる基板搬送システム Cにおいても、基板搬送システム Aと同様 の基板の搬送制御が可能である。  In the substrate transport system C having such a configuration, the same substrate transport control as that of the substrate transport system A is possible.
[0074] <ラック ピニオン機構の採用例 >  [0074] <Rack and pinion mechanism application example>
図 21は本発明の他の実施形態に係る基板搬送システム Dの平面図である。基板 搬送システム Dはベルトコンベアユニット 10に代えてラック―ピニオン機構を備えた 駆動ユニット 410を採用したものである。  FIG. 21 is a plan view of a substrate transfer system D according to another embodiment of the present invention. The substrate transfer system D employs a drive unit 410 having a rack-pinion mechanism instead of the belt conveyor unit 10.
[0075] 2つの駆動ユニット 410は、それぞれ第 1のラック—ピ-オン機構 411と、第 2のラッ ク一ピ-オン機構 412と、力も構成されている。第 1のラック一ピ-オン機構 411は、 Y 方向に延びる直線状のラック 4111及びガイド部材 4112と、ガイド部材 4112に案内 されてラック 4111に沿って移動する移動ユニット 4113と、を備える。  Each of the two drive units 410 is also configured with a first rack-pion mechanism 411, a second rack-pion mechanism 412 and a force. The first rack and pion mechanism 411 includes a linear rack 4111 and a guide member 4112 extending in the Y direction, and a moving unit 4113 that is guided by the guide member 4112 and moves along the rack 4111.
[0076] 第 2のラック一ピ-オン機構 412は、第 1のラック一ピ-オン機構 411に対して X方 向に離間して配設されており、第 1のラック一ピ-オン機構 411と同様の構成である。 つまり、第 2のラック一ピ-オン機構 412は、 Y方向に延びる直線状のラック 4121及 びガイド部材 4122と、ガイド部材 4122に案内されてラック 4121に沿って移動する 移動ユニット 4123と、を備える。  [0076] The second rack and one-pion mechanism 412 is disposed away from the first rack and one-pion mechanism 411 in the X direction. The configuration is the same as 411. That is, the second rack-and-pion mechanism 412 includes a linear rack 4121 and a guide member 4122 extending in the Y direction, and a moving unit 4123 that is guided by the guide member 4122 and moves along the rack 4121. Prepare.
[0077] 図 22は移動ユニット 4113、 4123近傍の構成を示す斜視図である。移動ユニット 4 123は上述した突起部 15b及び当接部 14bが上面に設けられた支持板 4123aと、 支持板 4123aの両端部下面に固定された一対の支持ブロック 4123bと、を備える。 支持ブロック 4123bはモータを備えており、その出力軸(—X方向に延びる)にはピ- オン 4123b'が取り付けられている。また、支持ブロック 4123bの下面にはガイド部材 4122に嚙合う溝が形成されている。  FIG. 22 is a perspective view showing a configuration in the vicinity of the moving units 4113 and 4123. The moving unit 4123 includes a support plate 4123a provided with the above-described protrusion 15b and contact portion 14b on the upper surface, and a pair of support blocks 4123b fixed to the lower surfaces of both ends of the support plate 4123a. The support block 4123b includes a motor, and a pinion 4123b ′ is attached to the output shaft (extending in the −X direction). Further, a groove that fits the guide member 4122 is formed on the lower surface of the support block 4123b.
[0078] しかして、一対の支持ブロック 4123bの各モータは、互いに同期制御される。これら のモータの駆動によりピ-オン 4123b,が回転すると、移動ユニット 4123はピ-オン 4123b'の回転方向によって +Y方向又は— Y方向に移動し、突起部 15b及び当接 部 14bを Y方向に沿う直線軌道上で移動させることができる。 Accordingly, the motors of the pair of support blocks 4123b are controlled synchronously with each other. When the pione 4123b is rotated by driving these motors, the moving unit 4123 is moved in the + Y direction or the Y direction depending on the rotation direction of the pione 4123b ′, and the protrusion 15b and the abutment are brought into contact. The part 14b can be moved on a straight track along the Y direction.
[0079] 移動ユニット 4113は移動ユニット 4123と同様の構成であり、上述した突起部 15a 及び当接部 14aが上面に設けられた支持板 4113aと、支持板 4113aの両端部下面 に固定された一対の支持ブロック 4113bと、を備える。支持ブロック 4113bはモータ を備えており、その出力軸(+X方向に延びる)にはピ-オン (不図示)が取り付けら れている。また、支持ブロック 4113bの下面にはガイド部材 4112に嚙合う溝が形成 されている。 [0079] The moving unit 4113 has the same configuration as that of the moving unit 4123, and the support plate 4113a having the protrusion 15a and the contact portion 14a described above provided on the upper surface, and a pair fixed to the lower surfaces of both ends of the support plate 4113a. Support block 4113b. The support block 4113b includes a motor, and a pion (not shown) is attached to the output shaft (extending in the + X direction). Further, a groove that fits the guide member 4112 is formed on the lower surface of the support block 4113b.
[0080] しかして、一対の支持ブロック 4113bの各モータは、互いに同期制御される。これら のモータの駆動により不図示のピ-オンが回転すると、移動ュ-ット 4113は当該ピ 二オンの回転方向によって +Y方向又は Y方向に移動し、突起部 15a及び当接部 14aを、突起部 15b及び当接部 14bが移動する直線軌道と平行な、 Y方向に沿う直 線軌道上で移動させることができる。  [0080] Therefore, the motors of the pair of support blocks 4113b are synchronously controlled with each other. When a pinion (not shown) is rotated by driving these motors, the moving arm 4113 moves in the + Y direction or the Y direction depending on the rotation direction of the pinion, and moves the protrusion 15a and the contact portion 14a. The protrusion 15b and the contact portion 14b can be moved on a straight track along the Y direction parallel to the moving straight track.
[0081] このような構成カゝらなる基板搬送システム Dにおいても、基板搬送システム Aと同様 の基板の搬送制御が可能である。  In the substrate transport system D having such a configuration, the same substrate transport control as that of the substrate transport system A can be performed.
[0082] <リニアモータの採用例 >  [0082] <Application example of linear motor>
図 23は本発明の他の実施形態に係る基板搬送システム Eの平面図である。基板搬 送システム Eはベルトコンベアユニット 10に代えてリニアモータを備えた駆動ユニット 510を採用したものである。  FIG. 23 is a plan view of a substrate transfer system E according to another embodiment of the present invention. The board transport system E employs a drive unit 510 equipped with a linear motor in place of the belt conveyor unit 10.
[0083] 2つの駆動ユニット 510は、それぞれ第 1のリニアモータ 511と、第 2のリニアモータ 512と、カゝら構成されている。第 1のリニアモータ 511は、 Y方向に延びる直線状の固 定子ユニット 5111と、固定子ユニット 5111に沿って移動する移動ユニット 5113と、 を備える。  Each of the two drive units 510 includes a first linear motor 511, a second linear motor 512, and the like. The first linear motor 511 includes a linear stator unit 5111 extending in the Y direction, and a moving unit 5113 that moves along the stator unit 5111.
[0084] 第 2のリニアモータ 512は、第 1のリニアモータ 511に対して X方向に離間して配設 されており、第 1のリニアモータ 511と同様の構成である。つまり、第 2のリニアモータ 5 12は、 Y方向に延びる直線状の固定子ユニット 5121と、固定子ユニット 5121に沿つ て移動する移動ユニット 5123と、を備える。  The second linear motor 512 is disposed away from the first linear motor 511 in the X direction, and has the same configuration as the first linear motor 511. That is, the second linear motor 512 includes a linear stator unit 5121 extending in the Y direction and a moving unit 5123 that moves along the stator unit 5121.
[0085] 第 1のリニアモータ 511と第 2のリニアモータ 512との間には、ガイド部材 513が配設 されている。ガイド部材 513は、移動ユニット 5113、 5123の移動を案内する。 [0086] 図 24は移動ユニット 5113、 5123近傍の構成を示す斜視図である。図 25は図 24 の線 IV— IVに沿う断面図(端面図)である。移動ユニット 5123は上述した突起部 15 b及び当接部 14bが上面に設けられた支持板 5123aと、支持板 5123aの下面に固 定されたヨーク 5123bと、を備える。ヨーク 5123bはその断面がコの字型をなしており 、その左右の側壁の内面には、それぞれ、複数の永久磁石 5123b'がヨーク 5123b の長手方向(Y方向)に配列されている。また、ヨーク 5123bの左右の側壁のうち、一 方の側壁の外面にはガイド部材 513の側面に形成された溝に嚙合う摺動部 5123b" が設けられている。 A guide member 513 is disposed between the first linear motor 511 and the second linear motor 512. The guide member 513 guides the movement of the moving units 5113 and 5123. FIG. 24 is a perspective view showing a configuration in the vicinity of the moving units 5113 and 5123. FIG. 25 is a sectional view (end view) taken along line IV-IV in FIG. The moving unit 5123 includes a support plate 5123a having the above-described protrusion 15b and contact portion 14b provided on the upper surface, and a yoke 5123b fixed to the lower surface of the support plate 5123a. The yoke 5123b has a U-shaped cross section, and a plurality of permanent magnets 5123b ′ are arranged on the inner surfaces of the left and right side walls in the longitudinal direction (Y direction) of the yoke 5123b. In addition, a sliding portion 5123b "that fits into a groove formed on the side surface of the guide member 513 is provided on the outer surface of one of the left and right side walls of the yoke 5123b.
[0087] 固定子ユニット 5121はその断面が逆 T字型をなしており、その上方に延びる部分 は、ヨーク 5123b内に挿入される位置に位置しており、また、当該上方に延びる部分 には電機子コイル 5121aが内蔵されている。電機子コイル 5121aは固定子ユニット 5 121の長手方向(Y方向)に複数配列されている。  [0087] The stator unit 5121 has an inverted T-shaped cross section, and the portion extending upward is located at a position to be inserted into the yoke 5123b, and the portion extending upward is An armature coil 5121a is incorporated. A plurality of armature coils 5121a are arranged in the longitudinal direction (Y direction) of the stator unit 5121.
[0088] し力して、固定子ユニット 5121の複数の電機子コイル 5121aの励磁を順次切り替 えていくことにより、その切り替え態様に従って移動ユニット 5123は +Y方向又は— Y方向に移動し、突起部 15b及び当接部 14bを Y方向に沿う直線軌道上で移動させ ることがでさる。  [0088] When the excitation of the plurality of armature coils 5121a of the stator unit 5121 is sequentially switched by applying force, the moving unit 5123 moves in the + Y direction or the -Y direction according to the switching mode, and the protrusion It is possible to move 15b and the contact part 14b on a straight track along the Y direction.
[0089] 移動ユニット 5113は移動ユニット 5123と同様の構成であり、上述した突起部 15a 及び当接部 14aが上面に設けられた支持板 5113aと、支持板 5113aの下面に固定 されたヨーク 5113bと、を備える。ヨーク 5113bはその断面がコの字型をなしており、 その左右の側壁の内面には、それぞれ、複数の永久磁石 5113b'がヨーク 5113bの 長手方向(Y方向)に配列されている。また、ヨーク 5113bの左右の側壁のうち、一方 の側壁の外面にはガイド部材 513の側面に形成された溝に嚙合う摺動部 5113b"が 設けられている。  The moving unit 5113 has the same configuration as that of the moving unit 5123, and includes a support plate 5113a provided with the above-described protrusion 15a and contact portion 14a on the upper surface, and a yoke 5113b fixed to the lower surface of the support plate 5113a. . The yoke 5113b has a U-shaped cross section, and a plurality of permanent magnets 5113b ′ are arranged on the inner surfaces of the left and right side walls in the longitudinal direction (Y direction) of the yoke 5113b. In addition, a sliding portion 5113b "that fits into a groove formed on the side surface of the guide member 513 is provided on the outer surface of one of the left and right side walls of the yoke 5113b.
[0090] 固定子ユニット 5111はその断面が逆 T字型をなしており、その上方に延びる部分 は、ヨーク 5113b内に挿入される位置に位置しており、また、当該上方に延びる部分 には電機子コイル 511 laが内蔵されて!、る。電機子コイル 511 laは固定子ユニット 5 111の長手方向(Y方向)に複数配列されている。  [0090] The stator unit 5111 has an inverted T-shaped cross section, and the portion extending upward is located at a position to be inserted into the yoke 5113b, and the portion extending upward is Armature coil 511 la is built in! A plurality of armature coils 511 la are arranged in the longitudinal direction (Y direction) of the stator unit 5 111.
[0091] し力して、固定子ユニット 5111の複数の電機子コイル 5111aの励磁を順次切り替 えていくことにより、その切り替え態様に従って移動ユニット 5113は +Y方向又は— Υ方向に移動し、突起部 15a及び当接部 14aを、突起部 15b及び当接部 14bが移動 する直線軌道と平行な、 Y方向に沿う直線軌道上で移動させることができる。 [0091] By applying force, the excitation of the plurality of armature coils 5111a of the stator unit 5111 is sequentially switched. Accordingly, the moving unit 5113 moves in the + Y direction or the heel direction according to the switching mode, and the projection 15a and the contact portion 14a are parallel to the linear track on which the projection 15b and the contact portion 14b move. It can be moved on a straight track along the Y direction.
このような構成カゝらなる基板搬送システム Eにおいても、基板搬送システム Aと同様 の基板の搬送制御が可能である。  In such a substrate transport system E, the same substrate transport control as that of the substrate transport system A is possible.

Claims

請求の範囲 The scope of the claims
[1] 方形のワークが跨って載置される第 1及び第 2の載置部材と、  [1] first and second mounting members on which a square workpiece is mounted;
前記第 1の載置部材を第 1の直線軌道上で移動させる第 1の移動手段と、 前記第 2の載置部材を前記第 1の直線軌道と平行な第 2の直線軌道上で移動させ る第 2の移動手段と、  A first moving means for moving the first mounting member on a first linear track; and a second moving member for moving the second mounting member on a second linear track parallel to the first linear track. A second moving means,
前記第 1及び第 2の移動手段を個別に制御する制御手段と、  Control means for individually controlling the first and second moving means;
前記第 1の移動手段によって、前記第 1の直線軌道上を前記第 1の載置部材と共 に移動し、前記ワークの端縁に当接して当該端縁の位置を規定する第 1の当接部と 前記第 2の移動手段によって、前記第 2の直線軌道上を前記第 2の載置部材と共 に移動し、前記ワークの端縁に当接して当該端縁の位置を規定する第 2の当接部と 、を備え、  The first moving means moves along with the first mounting member on the first linear track and contacts the edge of the workpiece to define the position of the edge. The contact portion and the second moving means move along the second linear track along with the second mounting member, and come into contact with the edge of the workpiece to define the position of the edge. 2 contact portions, and
前記制御手段は、  The control means includes
前記第 1及び第 2の当接部が相互に前記ワークの幅よりも離間した初期位置に位 置するように前記第 1及び第 2の移動手段を制御する初期制御と、  An initial control for controlling the first and second moving means so that the first and second contact portions are positioned at an initial position separated from each other by a width of the workpiece;
前記初期位置にある前記第 1及び第 2の当接部の間において前記第 1及び第 2の 載置部材上に前記ワークが載置された場合に、前記第 1及び第 2の当接部の間の距 離が前記ワークの幅となるように前記第 1及び第 2の移動手段の少なくともいずれか を制御する位置決め制御と、  The first and second contact portions when the work is placed on the first and second placement members between the first and second contact portions at the initial position. Positioning control for controlling at least one of the first and second moving means so that the distance between the two becomes the width of the workpiece;
前記位置決め制御の後、前記第 1及び第 2の載置部材及び前記第 1及び第 2の当 接部が同方向に等速で走行するように前記第 1及び第 2の移動手段を制御する搬送 制御と、  After the positioning control, the first and second moving means are controlled so that the first and second mounting members and the first and second contact portions travel at the same speed in the same direction. Transport control,
を実行することを特徴とするワーク搬送システム。  A workpiece transfer system characterized by executing
[2] 前記第 1及び第 2の移動手段がベルトコンベアを備えたことを特徴とする請求項 1に 記載のワーク搬送システム。 2. The workpiece transfer system according to claim 1, wherein the first and second moving means include a belt conveyor.
[3] 前記第 1及び第 2の移動手段がボールネジ機構を備えたことを特徴とする請求項 1 に記載のワーク搬送システム。 3. The workpiece transfer system according to claim 1, wherein the first and second moving means include a ball screw mechanism.
[4] 前記第 1及び第 2の移動手段がラックーピ-オン機構を備えたことを特徴とする請 求項 1に記載のワーク搬送システム。 [4] The request characterized in that the first and second moving means include a rack-pion mechanism. The workpiece transfer system according to claim 1.
[5] 前記第 1及び第 2の移動手段がリニアモータを備えたことを特徴とする請求項 1に 記載のワーク搬送システム。 5. The work transfer system according to claim 1, wherein the first and second moving means include linear motors.
[6] ベルトの走行方向が相互に平行となるように配設された第 1及び第 2のベルトコンペ ァを備え、方形のワークを前記第 1及び前記第 2のベルトコンベアの各ベルト上に跨 るように載置して搬送するワーク搬送システムであって、 [6] The first and second belt comparators are arranged so that the running directions of the belts are parallel to each other, and a rectangular workpiece is placed on each belt of the first and second belt conveyors. It is a work transfer system for placing and transferring so as to straddle,
前記第 1及び第 2のベルトコンベアを個別に制御する制御手段と、  Control means for individually controlling the first and second belt conveyors;
前記第 1及び第 2のベルトコンベアの各ベルト上にそれぞれ設けられ、前記ワーク の端縁に当接して当該端縁の位置を規定する当接部と、を備え、  A contact portion provided on each of the belts of the first and second belt conveyors, and abutting portions that abut the edge of the workpiece and define the position of the edge;
前記制御手段は、  The control means includes
前記第 1及び第 2のベルトコンベアの各々の前記当接部が相互に前記ワークの幅 よりも離間した初期位置に位置するように前記第 1及び第 2のベルトコンベアを駆動 する初期制御と、  Initial control for driving the first and second belt conveyors so that the contact portions of the first and second belt conveyors are located at an initial position separated from the width of the workpiece;
前記初期位置にある前記当接部の間の各ベルト上に前記ワークが載置された場合 に、前記当接部の間の距離が前記ワークの幅となるように前記第 1及び第 2のベルト コンベアの少なくともいずれかを駆動する位置決め制御と、  When the work is placed on each belt between the contact portions at the initial position, the distance between the contact portions becomes the width of the work. Positioning control for driving at least one of the belt conveyors;
前記位置決め制御の後、各ベルトが同方向に等速で走行するように前記第 1及び 第 2のベルトコンベアを駆動する搬送制御と、  After the positioning control, transport control for driving the first and second belt conveyors so that each belt travels at the same speed in the same direction;
を実行することを特徴とするワーク搬送システム。  A workpiece transfer system characterized by executing
[7] 前記第 1及び第 2のベルトコンベアの各ベルト上の、前記ワークが載置される部位 に複数の突起部をそれぞれ設けたことを特徴とする請求項 6に記載のワーク搬送シ ステム。 [7] The workpiece transfer system according to [6], wherein a plurality of protrusions are provided on the respective belts of the first and second belt conveyors at portions where the workpiece is placed. .
[8] 前記第 1及び第 2のベルトコンベアの各ベルト下に当該ベルトを支持する支持部を 設けたことを特徴とする請求項 6に記載のワーク搬送システム。  8. The workpiece transfer system according to claim 6, wherein a support portion that supports the belt is provided under each belt of the first and second belt conveyors.
[9] 前記第 1及び第 2のベルトコンベアが、ベルトの走行方向が相互に平行となるように それぞれ複数配設され、  [9] A plurality of the first and second belt conveyors are provided so that the running directions of the belts are parallel to each other,
複数の前記第 1のベルトコンベアの各駆動プーリを連結する駆動軸、及び、複数の 前記第 2のベルトコンベアの各駆動プーリを連結する駆動軸、を設けたことを特徴と する請求項 6に記載のワーク搬送システム。 A drive shaft for connecting the drive pulleys of the plurality of first belt conveyors and a drive shaft for connecting the drive pulleys of the plurality of second belt conveyors are provided. The workpiece transfer system according to claim 6.
[10] 前記ワークが基板であり、 [10] The workpiece is a substrate.
前記ワーク搬送システムは、  The workpiece transfer system includes:
前記第 1及び第 2のベルトコンベアの側方に配置され、前記基板を複数枚収納する 基板収納カセットと、前記第 1及び第 2のベルトコンベアの側方に配置され、前記基 板を処理する処理装置と、の間で前記基板を搬送するシステムであり、更に、 前記基板収納カセットから前記第 1及び第 2のベルトコンベアの各ベルト上へ前記 基板を移載する第 1の移載手段と、  Arranged on the side of the first and second belt conveyors to store a plurality of substrates, and disposed on the side of the first and second belt conveyors to process the substrate. And a first transfer means for transferring the substrate from the substrate storage cassette onto each belt of the first and second belt conveyors. ,
前記第 1及び第 2のベルトコンベアの各ベルト上から前記処理装置へ前記基板を 移載する第 2の移載手段と、  Second transfer means for transferring the substrate from above each belt of the first and second belt conveyors to the processing apparatus;
を備えたことを特徴とする請求項 6に記載のワーク搬送システム。  The workpiece transfer system according to claim 6, further comprising:
[11] 前記第 1及び第 2のベルトコンベアが、ベルトの走行方向が相互に平行となるように それぞれ複数配設され、 [11] A plurality of the first and second belt conveyors are provided so that the running directions of the belts are parallel to each other,
前記第 1及び第 2の移載手段が、それぞれ、  The first and second transfer means are respectively
前記ベルトコンベア間において昇降可能に配設され、前記ベルトの走行方向と直 交する方向に前記基板を搬送するローラコンベアを備えたことを特徴とする請求項 1 0に記載のワーク搬送システム。  The work conveyance system according to claim 10, further comprising a roller conveyor that is disposed so as to be movable up and down between the belt conveyors and that conveys the substrate in a direction perpendicular to a traveling direction of the belt.
PCT/JP2006/310742 2005-06-22 2006-05-30 Work transfer system WO2006137249A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800223728A CN101203445B (en) 2005-06-22 2006-05-30 Work transfer system
JP2007522226A JP4629731B2 (en) 2005-06-22 2006-05-30 Work transfer system
TW095120839A TWI382951B (en) 2005-06-22 2006-06-12 Workpiece handling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-182419 2005-06-22
JP2005182419 2005-06-22

Publications (1)

Publication Number Publication Date
WO2006137249A1 true WO2006137249A1 (en) 2006-12-28

Family

ID=37570283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310742 WO2006137249A1 (en) 2005-06-22 2006-05-30 Work transfer system

Country Status (5)

Country Link
JP (1) JP4629731B2 (en)
KR (1) KR100924153B1 (en)
CN (1) CN101203445B (en)
TW (1) TWI382951B (en)
WO (1) WO2006137249A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129603A1 (en) * 2007-04-05 2008-10-30 Hirata Corporation Substrate conveyance system
WO2009063562A1 (en) * 2007-11-15 2009-05-22 Hirata Corporation Substrate transport device
JP2010040865A (en) * 2008-08-06 2010-02-18 Hirata Corp Conveyance system
CN102491090A (en) * 2007-09-19 2012-06-13 平田机工株式会社 Substrate conveying system
JP6043871B2 (en) * 2013-05-21 2016-12-14 ヤマハ発動機株式会社 Substrate transport apparatus, surface mounter, and substrate transport method
WO2021005093A1 (en) * 2019-07-09 2021-01-14 NICE Solar Energy GmbH Substrate conveying device and method for conveying a substrate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003720B4 (en) * 2007-11-30 2013-12-24 Hirata Corp. Transfer device
JP2010013260A (en) * 2008-07-04 2010-01-21 Murata Mach Ltd Conveyance system, and traveling vehicle
JP2010070328A (en) * 2008-09-19 2010-04-02 Sinfonia Technology Co Ltd Sorting device of article to be conveyed and sorting method of the article to be conveyed
KR101182774B1 (en) 2010-05-03 2012-09-13 (주)현대산기 Edge vending machine
CN101913491B (en) * 2010-08-09 2012-07-18 东洋热交换器(中山)有限公司 Conveying device for powder blowers
CN103010747B (en) * 2011-09-21 2016-04-20 瑞世达科技(厦门)有限公司 Transmit integrating apparatus and transfer approach thereof
CN103587962B (en) * 2012-08-14 2016-12-28 营口金辰机械股份有限公司 Solar module planer-type storage stack machine
JP6011311B2 (en) * 2012-12-18 2016-10-19 日本電気硝子株式会社 Work conveying apparatus and work conveying method
WO2018191122A1 (en) * 2017-04-10 2018-10-18 Flexible Steel Lacing Company Conveyor transfer guards
KR101794875B1 (en) * 2015-01-30 2017-11-07 가부시키가이샤 하리즈 Inspection apparatus for transparent plate, and inspection system including the same
CN106736337B (en) * 2016-11-21 2018-10-02 芜湖市泰能电热器具有限公司 A kind of electric heating aluminum pipe transfer device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317713A (en) * 1986-07-04 1988-01-25 Shinko Electric Ind Co Ltd Conveying device
JPH0338813U (en) * 1989-08-26 1991-04-15
JP2004186426A (en) * 2002-12-03 2004-07-02 Dainippon Screen Mfg Co Ltd Substrate processor
JP2004210440A (en) * 2002-12-27 2004-07-29 Ishikawajima Harima Heavy Ind Co Ltd Carrying device for platy member

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038813B2 (en) * 1990-06-21 2000-05-08 日本電気株式会社 BiCMOS gate circuit
JPH04317916A (en) * 1991-04-16 1992-11-09 Yuasa Corp Transport apparatus having width adjusting mechanism
JP2741706B2 (en) * 1991-07-19 1998-04-22 三菱電機株式会社 Transport mechanism for IC storage pallets
JP2553999B2 (en) * 1992-01-20 1996-11-13 株式会社フジキカイ Method and device for side-by-side conveyance of articles
JPH08335620A (en) * 1995-06-06 1996-12-17 Nikon Corp Conveyer apparatus for flat object
CN2427493Y (en) * 2000-04-20 2001-04-25 外商独资均强机械(苏州)有限公司 Mechanism for conveying work-piece box such as equipment for coating silver onto end surface of paster resistance
JP2004021044A (en) 2002-06-18 2004-01-22 Toyota Industries Corp Display device
JPWO2004088742A1 (en) * 2003-03-28 2006-07-06 平田機工株式会社 Substrate transfer system
JP4289093B2 (en) * 2003-09-16 2009-07-01 村田機械株式会社 Tray transport system
TWI226868B (en) * 2003-10-27 2005-01-21 Chi Mei Optoelectronics Corp Material handling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317713A (en) * 1986-07-04 1988-01-25 Shinko Electric Ind Co Ltd Conveying device
JPH0338813U (en) * 1989-08-26 1991-04-15
JP2004186426A (en) * 2002-12-03 2004-07-02 Dainippon Screen Mfg Co Ltd Substrate processor
JP2004210440A (en) * 2002-12-27 2004-07-29 Ishikawajima Harima Heavy Ind Co Ltd Carrying device for platy member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129603A1 (en) * 2007-04-05 2008-10-30 Hirata Corporation Substrate conveyance system
CN101652302B (en) * 2007-04-05 2012-10-10 平田机工株式会社 Substrate conveyance system
TWI408764B (en) * 2007-04-05 2013-09-11 Hirata Spinning Substrate handling system
CN102491090A (en) * 2007-09-19 2012-06-13 平田机工株式会社 Substrate conveying system
WO2009063562A1 (en) * 2007-11-15 2009-05-22 Hirata Corporation Substrate transport device
JP2010040865A (en) * 2008-08-06 2010-02-18 Hirata Corp Conveyance system
JP6043871B2 (en) * 2013-05-21 2016-12-14 ヤマハ発動機株式会社 Substrate transport apparatus, surface mounter, and substrate transport method
JPWO2014188513A1 (en) * 2013-05-21 2017-02-23 ヤマハ発動機株式会社 Substrate transport apparatus, surface mounter, and substrate transport method
WO2021005093A1 (en) * 2019-07-09 2021-01-14 NICE Solar Energy GmbH Substrate conveying device and method for conveying a substrate

Also Published As

Publication number Publication date
CN101203445A (en) 2008-06-18
TWI382951B (en) 2013-01-21
JP4629731B2 (en) 2011-02-09
CN101203445B (en) 2012-03-07
KR20080016745A (en) 2008-02-21
KR100924153B1 (en) 2009-10-28
JPWO2006137249A1 (en) 2009-01-08
TW200720170A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
WO2006137249A1 (en) Work transfer system
JP4690414B2 (en) Work loading / unloading system and transfer device
KR101690970B1 (en) Substrate processing system and substrate transfer method
JP4485980B2 (en) Substrate transport apparatus and substrate transport method
WO2012026129A1 (en) Sheet-shaped member transfer equipment
JP2010275059A (en) Sheet glass carrying direction changing device
JP5006411B2 (en) Substrate transfer device
KR102310157B1 (en) Scribing apparatus
TWI403446B (en) Substrate handling system
JP4564084B2 (en) Transport system
KR101215591B1 (en) substrate transfer system
JP3721866B2 (en) Substrate positioning device and coating machine or mounting machine equipped with the same
JP4796128B2 (en) Transfer robot
CN101148225A (en) Transfer loading device
WO2009113160A1 (en) Substrate conveyor and substrate conveyance method
KR101273607B1 (en) Tray transferring system
JP6584480B2 (en) Conveying system and workpiece conveying method
KR101849352B1 (en) Tray suppling and discharging apparatus
WO2021172108A1 (en) Sheet dispensing device
JP2004001990A (en) Work carrying device and transfer device
JP2000151190A (en) Board carrier/support for mounter
KR200328093Y1 (en) Cassette Transfer System in the Clean Room
JP2004172438A (en) Substrate transport apparatus
KR20120045885A (en) Conveyer for large area substrate and transfer method for the substrate
JPH08139500A (en) Electronic component mounting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022372.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522226

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756738

Country of ref document: EP

Kind code of ref document: A1