JP2010013260A - Conveyance system, and traveling vehicle - Google Patents

Conveyance system, and traveling vehicle Download PDF

Info

Publication number
JP2010013260A
JP2010013260A JP2008176380A JP2008176380A JP2010013260A JP 2010013260 A JP2010013260 A JP 2010013260A JP 2008176380 A JP2008176380 A JP 2008176380A JP 2008176380 A JP2008176380 A JP 2008176380A JP 2010013260 A JP2010013260 A JP 2010013260A
Authority
JP
Japan
Prior art keywords
distance
traveling vehicle
distance measuring
station
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176380A
Other languages
Japanese (ja)
Inventor
Tomoyuki Imai
智行 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2008176380A priority Critical patent/JP2010013260A/en
Priority to KR1020090033594A priority patent/KR20100004849A/en
Priority to TW098114637A priority patent/TWI450060B/en
Priority to CN200910146555A priority patent/CN101620443A/en
Publication of JP2010013260A publication Critical patent/JP2010013260A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/30Details; Auxiliary devices
    • B65G17/48Controlling attitudes of load-carriers during movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/52Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Intermediate Stations On Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a position and an attitude of a traveling vehicle by a single distance measuring device. <P>SOLUTION: A conveyance system 100 includes a station 110, the traveling vehicle 140 which stops at a target position in a target attitude, and a transfer means 170 for transferring load. The system includes the single distance measuring means 141 for measuring a distance between the station 110 and the traveling vehicle 140, a first distance measuring part 111 and a second distance measuring part 112 which are objects to be measured by the distance measuring means 141, a control part 151 for obtaining a first distance from the first distance measuring part 111, for making the traveling vehicle 140 travel by a predetermined distance and to a predetermined direction, and for obtaining a second distance from the second distance measuring part 112, a calculation part 152 for calculating an inclination value which is inclination of the traveling vehicle 140 from the target attitude based on the first distance and the second distance, and a transfer condition determination part 153 for determining transfer conditions of the transfer means 170 based on the inclination value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、固定的な複数のステーションとこれらステーションの間で荷物を搬送する走行車と、ステーションと走行車との間で荷物を移載する移載手段とを備える搬送システムに関し、特に、走行車が走行する軌条のない搬送システムであって、荷物を正確な積載位置や正確な積載姿勢で移載する搬送システムに関する。また、前記搬送システムに使用される走行車に関する。   The present invention relates to a transport system including a plurality of stationary stations, a traveling vehicle that transports a load between these stations, and a transfer means that transfers the load between the station and the traveling vehicle. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transport system that does not have a rail on which a vehicle travels, and transfers a load with an accurate loading position and an accurate loading posture. Moreover, it is related with the traveling vehicle used for the said conveyance system.

例えば、自動倉庫などにおいて荷物を搬入や搬出するような搬送システムの場合、次のような工程が採用されている。(1)ステーションに荷物が載置される。(2)当該ステーションの近傍に自律走行により到着した走行車に前記荷物が移載される。(3)走行車は、前記荷物を別のステーションにまで自律走行で搬送する。(4)別のステーションに走行車が到着し、荷物が移載される。   For example, in the case of a transport system that loads and unloads luggage in an automatic warehouse or the like, the following processes are employed. (1) A package is placed on the station. (2) The luggage is transferred to a traveling vehicle that has arrived near the station by autonomous traveling. (3) The traveling vehicle transports the luggage to another station by autonomous traveling. (4) A traveling vehicle arrives at another station and the luggage is transferred.

以上のように、搬送システムにおいて走行車が自律走行する場合、倉庫全体における走行車の位置を走行車自身が認識するために、倉庫に位置を示す指標が分散状に設けられることがある。そして、指標と指標との間を走行車が走行する際は、走行車自身が有しているエンコーダを用いて自身の位置を認識している。   As described above, when the traveling vehicle autonomously travels in the transport system, in order for the traveling vehicle itself to recognize the position of the traveling vehicle in the entire warehouse, an index indicating the position in the warehouse may be provided in a distributed manner. When the traveling vehicle travels between the indexes, the position of the traveling vehicle is recognized using an encoder that the traveling vehicle itself has.

従って、一のステーションから他のステーションに走行車が移動する場合、走行車は、前記指標でエンコーダのずれを補正しつつ正確に他のステーションの近傍で停止するものとなっている。そして、他のステーションと走行車との間で荷物が移載される。   Therefore, when a traveling vehicle moves from one station to another station, the traveling vehicle stops accurately in the vicinity of the other station while correcting the deviation of the encoder with the index. Then, the luggage is transferred between the other station and the traveling vehicle.

しかし、表示装置用のガラス基板などを荷物として搬送する搬送システムの場合、ステーションと走行車との間でより正確な位置やより正確な姿勢でガラス基板を移載する必要がある。そのため、このような搬送システムに採用される走行車は、走行基台の上に走行基台に対してY方向(走行車からステーションに向かう方向)、X方向(Y方向と交差し、水平面内の方向)、θ方向(回転方向)に移動する載置台を備えている。さらに、当該走行車は、ステーションとの位置や姿勢を走行車が備えるエンコーダよりも精密に測定できる測定手段を備えている。以上により搬送システムは、測定システムの測定結果に基づいて載置台を正確に移動させ、ガラス基板を正確な位置、正確な姿勢でステーションと走行車との間で移載できるようになっている(特許文献1参照)。
特開2000−194418号公報
However, in the case of a transport system that transports a glass substrate or the like for a display device as a baggage, it is necessary to transfer the glass substrate between the station and the traveling vehicle at a more accurate position and more accurate posture. Therefore, the traveling vehicle employed in such a transport system is located on the traveling base with respect to the traveling base in the Y direction (the direction from the traveling vehicle toward the station) and the X direction (crossing the Y direction and within the horizontal plane. And a mounting table that moves in the θ direction (rotational direction). Further, the traveling vehicle includes measurement means that can measure the position and orientation with the station more precisely than an encoder included in the traveling vehicle. As described above, the transfer system can move the mounting table accurately based on the measurement result of the measurement system, and can transfer the glass substrate between the station and the traveling vehicle at an accurate position and an accurate posture ( Patent Document 1).
JP 2000-194418 A

ところが、従来の搬送システムにおいては、ステーションと走行車との姿勢関係を測定するためには、複数のセンサを備える必要がある。加えて、ステーションと走行車との相対的位置関係を測定するためには、さらに他のセンサを備える必要がある。   However, in the conventional transport system, it is necessary to provide a plurality of sensors in order to measure the attitude relationship between the station and the traveling vehicle. In addition, in order to measure the relative positional relationship between the station and the traveling vehicle, it is necessary to further include another sensor.

本願発明は、上記課題に鑑みなされたものであり、ステーションと走行車との姿勢関係を単数の測距手段で測定可能とし、正確な姿勢で移載を実現できる搬送システムの提供を目的とする。さらに、ステーションと走行車との相対的位置関係を前記測距手段で測定可能とし、正確な位置での移載を実現できる搬送システムの提供を目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a transport system that can measure the posture relationship between a station and a traveling vehicle with a single distance measuring means and realize transfer in an accurate posture. . It is another object of the present invention to provide a transport system that can measure the relative positional relationship between a station and a traveling vehicle with the distance measuring means and realize transfer at an accurate position.

上記課題を解決するために、本願発明にかかる搬送システムは、ステーションと、ステーション近傍の目標位置に目標姿勢で停止する走行車と、ステーションと走行車との間で荷物を移載する移載手段とを備える搬送システムであって、前記ステーションと前記走行車との一方に設けられ、前記ステーションと前記走行車との距離を測定する測距手段と、前記ステーションと前記走行車との他方に設けられ、前記測距手段の測距対象となる第一測距部、及び、第二測距部と、前記第一測距部との第一距離を前記測距手段から取得し、前記走行車を所定距離かつ所定方向に走行させ、前記第二測距部との第二距離を前記測距手段から取得する制御部と、取得された前記第一距離と前記第二距離とに基づき前記走行車の前記目標姿勢からの傾きである傾き値を算出する算出部と、算出された前記傾き値に基づき前記移載手段の移載条件を決定する移載条件決定部とを備えることを特徴とする。   In order to solve the above-described problems, a transport system according to the present invention includes a station, a traveling vehicle that stops at a target position near the station in a target posture, and a transfer means that transfers a load between the station and the traveling vehicle. A distance measuring means for measuring a distance between the station and the traveling vehicle, and provided on the other of the station and the traveling vehicle. A first distance between the first distance measuring section and the second distance measuring section and the first distance measuring section to be measured by the distance measuring means is acquired from the distance measuring means, and the traveling vehicle Based on the acquired first distance and second distance, and a controller that acquires a second distance from the second distance measuring unit from the distance measuring means. By tilting the car from the target posture A calculation unit for calculating an inclination value that, characterized in that it comprises a transfer condition determination unit determining a transfer condition of said transferring means based on the calculated gradient value.

これによれば、単数の測距手段で目標位置に到達した走行車の目標姿勢からの傾きである傾き値を取得することができる。そして、ステーションと走行車との間を正確な姿勢で移載することが可能となる。   According to this, it is possible to acquire an inclination value that is an inclination from the target posture of the traveling vehicle that has reached the target position by a single distance measuring means. Then, it becomes possible to transfer between the station and the traveling vehicle in an accurate posture.

さらに、前記ステーションと前記走行車との他方に設けられ、前記走行車を前記所定方向に移動させた場合に前記測距手段との距離が徐々に変化する第三測距部を備え、前記制御部はさらに、前記第三測距部との第三距離を前記測距手段から取得し、前記算出部はさらに、測定された前記第一距離または前記第二距離と前記第三距離とに基づき前記目標位置からのずれであるずれ値を算出し、前記移載条件決定部は、算出された前記ずれ値に基づき前記移載手段の移載条件を決定することが望ましい。   And a third distance measuring unit provided on the other of the station and the traveling vehicle, wherein the distance from the distance measuring means gradually changes when the traveling vehicle is moved in the predetermined direction. The unit further obtains a third distance with the third distance measuring unit from the distance measuring means, and the calculation unit is further based on the measured first distance or the second distance and the third distance. It is preferable that a shift value that is a shift from the target position is calculated, and the transfer condition determination unit determines a transfer condition of the transfer means based on the calculated shift value.

これによれば、単数の測距手段で走行車のステーションに対する姿勢と位置とを取得することができ、より正確に荷物を移載することが可能となる。   According to this, it is possible to acquire the posture and position of the traveling vehicle with respect to the station with a single distance measuring means, and it is possible to transfer the load more accurately.

また、前記制御部は、前記走行車を走らせながら前記第一距離と前記第二距離とを取得することが好ましい。   Moreover, it is preferable that the said control part acquires said 1st distance and said 2nd distance, running the said traveling vehicle.

これにより、走行車の移動と傾き値の取得を同時期に行うことができ、荷物の搬送時間を短縮することが可能となる。また、減速や加速を繰り返す必要がないため、慣性により走行距離の誤差が生じることもなく、また、バックラッシュなどによる誤差を抑制することも可能となる。   As a result, the movement of the traveling vehicle and the acquisition of the inclination value can be performed at the same time, and the time for transporting the luggage can be shortened. Further, since there is no need to repeat deceleration and acceleration, there is no error in travel distance due to inertia, and errors due to backlash can be suppressed.

さらに、前記制御部は、前記第一測距部と前記第二測距部とを結ぶ線と前記走行車と前記目標位置とを結ぶ線とが平行で、前記走行車と前記目標位置との距離が閾値となった時点で前記走行車を減速させ、前記第一測距部と前記第二測距部とは前記走行車の減速する位置と目標位置との間に配置されることが好ましい。   Furthermore, the control unit is configured such that a line connecting the first distance measuring unit and the second distance measuring unit and a line connecting the traveling vehicle and the target position are parallel, and the traveling vehicle and the target position are When the distance reaches a threshold value, the traveling vehicle is decelerated, and the first distance measuring unit and the second distance measuring unit are preferably disposed between a position where the traveling vehicle decelerates and a target position. .

これによれば、低い速度で測距を行うため、高い移送精度を確保することが可能となる。   According to this, since distance measurement is performed at a low speed, it is possible to ensure high transfer accuracy.

本願発明によれば、単数の測距手段で走行車のステーションに対する姿勢や位置を測定することが可能となり、ステーションと走行車との間の荷物の移載を正確な姿勢や正確な位置で行うことが可能となる。   According to the present invention, it is possible to measure the posture and position of the traveling vehicle with respect to the station with a single distance measuring means, and transfer the load between the station and the traveling vehicle in an accurate posture and accurate position. It becomes possible.

次に、本願発明に係る実施の形態を、図面を参照しつつ説明する。   Next, an embodiment according to the present invention will be described with reference to the drawings.

図1は、実施の形態である搬送システムの一部を模式的に示す斜視図である。   FIG. 1 is a perspective view schematically showing a part of the transport system according to the embodiment.

同図に示すように、搬送システム100は、荷物としてのガラス基板200を走行車140を用いて搬送し、移載手段170を用いてステーション110と走行車140との間で荷物を移載するシステムであり、測距手段(図示せず)と、第一測距部111と、第二測距部112と、第三測距部113とを備えている。また、走行車140が走行する床面には、指標101が取り付けられている。なお、本実施の形態の場合、移載手段170は、ステーション110と走行車140とに分かれて備えられている。   As shown in the figure, the transport system 100 transports a glass substrate 200 as a load using a traveling vehicle 140, and transfers the load between the station 110 and the traveling vehicle 140 using a transfer means 170. This system includes a distance measuring means (not shown), a first distance measuring section 111, a second distance measuring section 112, and a third distance measuring section 113. An index 101 is attached to the floor on which the traveling vehicle 140 travels. In the case of the present embodiment, the transfer means 170 is provided separately for the station 110 and the traveling vehicle 140.

図2は、走行車を示す図であり、(a)が上面図、(b)が下面図である。   2A and 2B are diagrams showing a traveling vehicle, in which FIG. 2A is a top view and FIG. 2B is a bottom view.

同図(a)に示すように、走行車140は、移載手段170の一部である載置台171が上部に設けられ、載置台171の上に載置されるガラス基板200を自律的に搬送する装置であり、電子計算機150が搭載されている。走行車140の角部には測距手段141が取り付けられている。また、同図(b)に示すように、走行車140は、二つの駆動輪142と四つの補助輪143とが底面に取り付けられている。   As shown in FIG. 5A, the traveling vehicle 140 is provided with a mounting table 171 as a part of the transfer means 170 on the upper side, and autonomously moves the glass substrate 200 mounted on the mounting table 171. It is an apparatus for carrying, and an electronic computer 150 is mounted. A distance measuring means 141 is attached to a corner of the traveling vehicle 140. Further, as shown in FIG. 4B, the traveling vehicle 140 has two drive wheels 142 and four auxiliary wheels 143 attached to the bottom surface.

測距手段141は、第一測距部111、第二測距部112、第三測距部113との距離を測定する装置である。本実施の形態の場合、測距手段141としてレーザ光線を用いた反射型のレーザ測距センサが採用されている。レーザ測距センサは、指向性が高いため、走行車140にレーザ測距センサを固定することにより、走行車140に対し所定の方向にある物体とレーザ測距センサとの距離を正確に測定することができる。また、測距に要する時間は、走行車140を走行させながら測定を行った場合でもレーザ測距センサとの距離を測定する部位を1点と見なせるほどに短い。従って、走行車140の姿勢や位置を正確に測定するにはレーザ測距センサを測距手段141として好適に採用できる。同図中破線矢印は、測距手段141の測距方向を表している。   The distance measuring unit 141 is a device that measures the distance from the first distance measuring unit 111, the second distance measuring unit 112, and the third distance measuring unit 113. In the case of the present embodiment, a reflection type laser distance sensor using a laser beam is employed as the distance measuring means 141. Since the laser distance sensor has high directivity, by fixing the laser distance sensor to the traveling vehicle 140, the distance between an object in a predetermined direction with respect to the traveling vehicle 140 and the laser distance sensor is accurately measured. be able to. Further, the time required for the distance measurement is short enough that the part for measuring the distance to the laser distance sensor can be regarded as one point even when the measurement is performed while the traveling vehicle 140 is traveling. Therefore, in order to accurately measure the posture and position of the traveling vehicle 140, a laser distance measuring sensor can be suitably employed as the distance measuring means 141. A broken line arrow in the figure represents the distance measuring direction of the distance measuring means 141.

なお、測距手段141としては、レーザ測距センサばかりでなく、アームを伸ばして第一測距部111等と接触させ、距離を測定する装置でも良い。その他、超音波による測距など特に測距方式は限定されない。また、分離した二つの機器を用い、当該機器間の距離を測定する場合、距離に関するデータを送信する方を本願発明に関しては測距手段141とする。   The distance measuring means 141 may be not only a laser distance measuring sensor but also an apparatus that measures the distance by extending the arm and bringing it into contact with the first distance measuring unit 111 or the like. In addition, there is no particular limitation on the distance measurement method such as distance measurement using ultrasonic waves. In the case where two separated devices are used to measure the distance between the devices, the method of transmitting data related to the distance is the distance measuring means 141 in the present invention.

駆動輪142は、走行車140を走行させるために駆動源(図示せず)と接続され水平な軸回りで回転駆動する車輪であり、走行車140の幅方向の両端部にそれぞれ設けられている。また、駆動輪142は、駆動輪142を垂直な軸回りで回動させるための回動台144を回して走行車140に取り付けられている。また、二つの駆動輪142は、相互に独立に垂直軸回りで回動可能である。以上により、二つの駆動輪142を同一直線状または平行とすることにより、走行車140を所望の方向に直進させることが可能となる。また、二つの駆動輪142を交差する方向に配置することで、所望の曲率の線上を走行させることが可能となる。   The drive wheels 142 are wheels that are connected to a drive source (not shown) to drive the traveling vehicle 140 and are driven to rotate about a horizontal axis, and are provided at both ends of the traveling vehicle 140 in the width direction. . Further, the drive wheel 142 is attached to the traveling vehicle 140 by turning a turntable 144 for turning the drive wheel 142 about a vertical axis. Further, the two drive wheels 142 can rotate around the vertical axis independently of each other. As described above, it is possible to make the traveling vehicle 140 go straight in a desired direction by making the two driving wheels 142 the same straight line or parallel. Further, by arranging the two drive wheels 142 in the intersecting direction, it is possible to travel on a line having a desired curvature.

また、駆動輪142と回動台144とはエンコーダが設けられており、当該エンコーダにより走行車140の移動距離と移動方向とを出力することができるものとなっている。   Moreover, the drive wheel 142 and the turntable 144 are provided with an encoder, and the encoder can output the moving distance and moving direction of the traveling vehicle 140.

補助輪143は、走行車140を走行可能としつつ走行車140を水平に維持するための車輪であり、走行車140の下面の四隅近傍に取り付けられている。補助輪143は、駆動源とは接続されておらず走行車140の走行状況に追随して回転する車輪である。   The auxiliary wheels 143 are wheels for keeping the traveling vehicle 140 horizontal while allowing the traveling vehicle 140 to travel, and are attached to the vicinity of the four corners of the lower surface of the traveling vehicle 140. The auxiliary wheel 143 is a wheel that is not connected to the drive source and rotates following the traveling state of the traveling vehicle 140.

載置台171は、移載手段170を構成する要素の一つであり、ガラス基板200が載置される台である。また、載置台171は、走行車140に回動可能に取り付けられており、取得した信号に基づいた角度で走行車140に対し回動することができるものとなっている。   The mounting table 171 is one of the elements constituting the transfer means 170 and is a table on which the glass substrate 200 is mounted. Further, the mounting table 171 is rotatably attached to the traveling vehicle 140 and can be rotated with respect to the traveling vehicle 140 at an angle based on the acquired signal.

図3は、電子計算機の機能構成を示すブロック図である。   FIG. 3 is a block diagram showing a functional configuration of the electronic computer.

同図に示すように電子計算機150は、演算装置や記憶装置やインターフェースを備え、記憶装置に記憶されるプログラムやデータに基づいて、計算や機器の制御などを行うことのできるコンピュータであって、処理機能のとして、制御部151と、算出部152と、移載条件決定部153と、送信部154とを備えている。   As shown in the figure, the electronic computer 150 is a computer that includes an arithmetic device, a storage device, and an interface, and that can perform calculations and control of equipment based on programs and data stored in the storage device. As processing functions, a control unit 151, a calculation unit 152, a transfer condition determination unit 153, and a transmission unit 154 are provided.

制御部151は、外部の機器から信号を取得し、外部の機器を制御することができる処理部である。本実施の形態の場合、制御部151は、測距手段141から距離に関するデータを取得することができる。また、制御部151は、駆動輪142を制御して走行車140を走行させることができるとともに、駆動輪エンコーダ145からの信号に基づき走行車140の走行距離を取得することが可能である。また、制御部151は、回動台144を駆動すると共に回動台エンコーダ146からの信号をフィードバックして駆動輪142の回動角度を制御し、走行車140を所定方向に向かわせることが可能である。   The control unit 151 is a processing unit that can acquire a signal from an external device and control the external device. In the case of the present embodiment, the control unit 151 can acquire data related to the distance from the distance measuring unit 141. In addition, the control unit 151 can drive the traveling vehicle 140 by controlling the driving wheel 142 and can acquire the traveling distance of the traveling vehicle 140 based on a signal from the driving wheel encoder 145. In addition, the control unit 151 can drive the turntable 144 and feed back a signal from the turntable encoder 146 to control the turning angle of the drive wheel 142 so that the traveling vehicle 140 is directed in a predetermined direction. It is.

また制御部151は、測距手段141から距離に関するデータ(第一距離)を取得するステップと、走行車140を所定の距離、所定の方向に走行させるステップと、その後に再度測距手段141から距離に関するデータ(第二距離)を取得するステップとを、前記記載順に実行することが可能となっている。さらに、制御部151は、第二距離を取得した後、走行車140を所定の距離、所定の方向に走行させるステップと、測距手段141から距離に関するデータ(第三距離)を取得するステップとを前記記載順に実行することが可能となっている。   In addition, the control unit 151 obtains the distance-related data (first distance) from the distance measuring means 141, causes the traveling vehicle 140 to travel in a predetermined distance and in a predetermined direction, and then again from the distance measuring means 141. It is possible to execute the step of acquiring data on the distance (second distance) in the order described above. Furthermore, after acquiring the second distance, the control unit 151 causes the traveling vehicle 140 to travel in a predetermined distance and in a predetermined direction, and acquires distance data (third distance) from the distance measuring unit 141. Can be executed in the order described above.

算出部152は、制御部151により取得された第一距離、第二距離と、第一距離を取得してから第二距離を取得するまでの走行車140の走行距離(予め定められている)とに基づき走行車140の目標姿勢(後述)からの傾きである傾き値を算出する処理部である。   The calculation unit 152 obtains the first distance, the second distance, and the travel distance of the traveling vehicle 140 from when the first distance is acquired until the second distance is acquired (predetermined). Is a processing unit that calculates an inclination value that is an inclination from a target posture (described later) of the traveling vehicle 140 based on the above.

また、算出部152は、第一距離、または、第二距離と第三距離とに基づき、目標位置(後述)からのずれであるずれ値を算出することもできる処理部である。   The calculation unit 152 is a processing unit that can also calculate a deviation value that is a deviation from a target position (described later) based on the first distance or the second distance and the third distance.

移載条件決定部153は、算出部152で算出された結果に基づき移載手段170の移載条件(例えば、載置台171を走行車140に体して何度回動させるか、移載爪172(後述)を何ミリ移動させるか、移載爪172を何ミリ突出させて移載するか)を決定する処理部である。   Based on the result calculated by the calculation unit 152, the transfer condition determination unit 153 moves the transfer unit 170 (for example, how many times the mounting table 171 is rotated around the carriage 140, or the transfer claw is moved). This is a processing unit that determines how many millimeters 172 (to be described later) is moved and how many millimeters the transfer claw 172 is projected.

送信部154は、移載条件決定部153で決定された移載条件を移載手段170に送信する処理部である。   The transmission unit 154 is a processing unit that transmits the transfer condition determined by the transfer condition determination unit 153 to the transfer unit 170.

図4は、ステーションを示す上面図である。   FIG. 4 is a top view showing the station.

同図(a)に示すように、ステーション110は、移載手段170の一部である移載爪172が上部に設けられ、移載爪172の上に載置されるガラス基板200が載置される設備である。ステーション110は、第一測距部111と第二測距部と第三測距部113とを備えるターゲットプレート114が側面に取り付けられている。また、ステーション110の上面には、ターゲットプレート114が取り付けられた側面と平行にレール115が敷設されている。   As shown in FIG. 5A, the station 110 is provided with a transfer claw 172 which is a part of the transfer means 170 on the upper side, and a glass substrate 200 placed on the transfer claw 172 is placed thereon. Equipment. In the station 110, a target plate 114 including a first distance measuring unit 111, a second distance measuring unit, and a third distance measuring unit 113 is attached to a side surface. A rail 115 is laid on the upper surface of the station 110 in parallel with the side surface to which the target plate 114 is attached.

なお、ステーション110は、走行車140と荷物であるガラス基板を移載するために、一時的にガラス基板200が保管(載置)される領域や場所であって、具体的な形状などは特に限定されるものではない。   The station 110 is an area or place where the glass substrate 200 is temporarily stored (placed) in order to transfer the traveling vehicle 140 and the glass substrate that is a load, and the specific shape and the like are particularly It is not limited.

ターゲットプレート114は、一端部が斜めに切り取られて第三測距部113が形成された板状の部材であり、測距手段141の測距対象となる部材である。ターゲットプレート114は、測距手段141から照射されるレーザ光線を十分に反射しうる表面を有している。ターゲットプレート114の第三測距部113以外の部分は、対向する面がそれぞれ平行であり、交差する面は垂直に交差している。従って、ターゲットプレート114の
一面(以下「取り付け面」と記す。)をステーション110の側面に沿わせて取り付けると、取り付け面と平行な面(以下「反射面」と記す。)は、ステーション110の側面と平行となる。
The target plate 114 is a plate-like member in which one end portion is cut off obliquely to form the third distance measuring unit 113, and is a member to be a distance measurement target of the distance measuring unit 141. The target plate 114 has a surface that can sufficiently reflect the laser beam emitted from the distance measuring means 141. The portions of the target plate 114 other than the third distance measuring unit 113 are opposed to each other in parallel, and intersecting surfaces intersect perpendicularly. Therefore, when one surface of the target plate 114 (hereinafter referred to as “attachment surface”) is attached along the side surface of the station 110, a surface parallel to the attachment surface (hereinafter referred to as “reflection surface”) is Parallel to the side.

なお、ターゲットプレート114の反射面には第一測距部111と第二測距部112が設けられるが、第一測距部111、及び、第二測距部112の位置は、測距手段141測距した位置であり、制御部151によりソフトウエア的に決定されるため、具体的に領域を限定できるものではない。   In addition, although the 1st ranging part 111 and the 2nd ranging part 112 are provided in the reflective surface of the target plate 114, the position of the 1st ranging part 111 and the 2nd ranging part 112 is a ranging means. Since the position is a distance measured by 141 and is determined by software by the control unit 151, the area cannot be specifically limited.

移載爪172は、移載手段170を構成する要素の一つであり、ガラス基板200が載置される装置である。また、移載爪172は、ステーション110の上面に敷設されるレール115に対し取り付けられており、取得した信号に基づいた位置にレール115に沿って移動できるものとなっている。また、移載爪172は、ガラス基板200を載置した状態でレール115に対して垂直に出没可能となっており、移載爪172を突出させた状態で最上面部を上下動可能となっている。従って、ガラス基板200を載置した状態で移載爪172を突出させ、走行車140側の載置台171の上方にガラス基板200を配置し、移載爪172の最上面部を下げることで、ガラス基板200をステーション110側から走行車140側に移載することが可能となる。また、上記と逆の工程を行えば、ガラス基板200を走行車140側からステーション110側に移載することも可能である。   The transfer claw 172 is one of the elements constituting the transfer means 170 and is a device on which the glass substrate 200 is placed. The transfer claw 172 is attached to the rail 115 laid on the upper surface of the station 110 and can move along the rail 115 to a position based on the acquired signal. In addition, the transfer claw 172 can move vertically with respect to the rail 115 with the glass substrate 200 placed thereon, and the uppermost surface portion can be moved up and down with the transfer claw 172 protruding. ing. Accordingly, the transfer claw 172 is projected in a state where the glass substrate 200 is mounted, the glass substrate 200 is disposed above the mounting table 171 on the traveling vehicle 140 side, and the uppermost surface portion of the transfer claw 172 is lowered, It becomes possible to transfer the glass substrate 200 from the station 110 side to the traveling vehicle 140 side. Moreover, if the reverse process is performed, the glass substrate 200 can be transferred from the traveling vehicle 140 side to the station 110 side.

図5は、搬送システムにおける走行車の位置と姿勢の測定工程を示す図であり、(a)〜(e)は、時間の経過順に示されている。   FIG. 5 is a diagram illustrating a process of measuring the position and posture of the traveling vehicle in the transport system, and (a) to (e) are illustrated in the order of passage of time.

なお、同図に示される破線で描かれた矩形は、走行車140が到着すべき目標位置、及び、目標姿勢を示している。   In addition, the rectangle drawn with the broken line shown to the same figure has shown the target position and the target attitude | position which the traveling vehicle 140 should arrive.

同図(a)に示されるように、第一測距部111と前記第二測距部112とを結ぶ線と走行車140と目標位置とを結ぶ線とが平行で、走行車140と目標位置との距離が閾値となった時点で制御部151は、走行車140を所定の速度(クリープ速度)まで減速させ、目標位置に向かってまっすぐに走行車140を走行させる。ただし、駆動輪エンコーダ145や回動台エンコーダ146の精度等により、走行車140は、所望の移載精度が満たされるほど正確な距離、かつ、正確な方向に走行することは困難である。   As shown in FIG. 5A, the line connecting the first distance measuring unit 111 and the second distance measuring unit 112 is parallel to the line connecting the traveling vehicle 140 and the target position, and the traveling vehicle 140 and the target When the distance to the position becomes a threshold value, the control unit 151 decelerates the traveling vehicle 140 to a predetermined speed (creep speed) and causes the traveling vehicle 140 to travel straight toward the target position. However, due to the accuracy of the drive wheel encoder 145 and the turntable encoder 146, it is difficult for the traveling vehicle 140 to travel in an accurate distance and in an accurate direction so that the desired transfer accuracy is satisfied.

次に、同図(b)に示すように、走行車140が所定の位置に到達したことを制御部151が判断すると、制御部151は、測距手段141から第一距離を取得する。   Next, as shown in FIG. 5B, when the control unit 151 determines that the traveling vehicle 140 has reached a predetermined position, the control unit 151 acquires the first distance from the distance measuring unit 141.

次に、同図(c)に示すように、制御部151は、予め与えられた距離だけ今までと同じ方向に走行車140を走行させる。その後、制御部151は、測距手段141から第二距離を取得する。なお、走行車140が走行する距離は、駆動輪エンコーダ145から取得しても良く、駆動輪エンコーダ145からのデータに基づき走行車140の速度を統計的に算出し、第一距離取得から第二距離取得までの時間により特定してもかまわない。   Next, as shown in FIG. 3C, the control unit 151 causes the traveling vehicle 140 to travel in the same direction as before by a predetermined distance. Thereafter, the control unit 151 acquires the second distance from the distance measuring unit 141. Note that the distance traveled by the traveling vehicle 140 may be acquired from the drive wheel encoder 145, the speed of the traveling vehicle 140 is statistically calculated based on the data from the drive wheel encoder 145, and the second distance from the first distance acquisition. It may be specified by the time until the distance acquisition.

以上により、第一距離と第二距離と、これらの間の走行車140の走行距離とに基づき、ターゲットプレート114の反射面に対する走行車140の姿勢、すなわち目標姿勢からの傾きである傾き値が算出部152により算出される。   As described above, based on the first distance, the second distance, and the travel distance of the travel vehicle 140 between them, the posture value of the travel vehicle 140 with respect to the reflecting surface of the target plate 114, that is, the tilt value that is the tilt from the target posture is obtained. Calculated by the calculation unit 152.

なお、具体的な算出方法は限定されるものではないが、例えば、走行車140の進行方向と測距手段141の測距方向とは垂直であると仮定すれば、走行車140の走行距離を分母とし、第一距離と第二距離との差分を分子とすれば傾き値が算出できる。   Although a specific calculation method is not limited, for example, if it is assumed that the traveling direction of the traveling vehicle 140 and the ranging direction of the ranging means 141 are perpendicular, the traveling distance of the traveling vehicle 140 is calculated. If the difference between the first distance and the second distance is the numerator, the slope value can be calculated.

次に、同図(d)に示すように、制御部151は、予め与えられた距離だけ今までと同じ方向に走行車140を走行させる。その後、制御部151は、測距手段141から第三距離を取得する。   Next, as shown in FIG. 4D, the control unit 151 causes the traveling vehicle 140 to travel in the same direction as before for a predetermined distance. Thereafter, the control unit 151 acquires the third distance from the distance measuring unit 141.

制御部151が取得した第三距離は、第三測距部113と測距手段141との距離であり、反射面に対して斜めの面と測距手段141との距離になる。従って、第二距離(または第一距離)と第三距離との差分と、斜めの面の反射面に対する角度とに基づき、走行車140のターゲットプレート114に対する反射面と平行な方向(同図(e)中x方向)の位置関係、すなわち目標位置とのずれ値が算出部152により算出される。   The third distance acquired by the control unit 151 is the distance between the third distance measuring unit 113 and the distance measuring means 141, and is the distance between the surface oblique to the reflecting surface and the distance measuring means 141. Therefore, based on the difference between the second distance (or the first distance) and the third distance and the angle of the oblique surface with respect to the reflective surface, the direction parallel to the reflective surface with respect to the target plate 114 of the traveling vehicle 140 (FIG. e) The positional relationship in the middle x direction), that is, a deviation value from the target position is calculated by the calculation unit 152.

次に、算出部152により算出された傾き値、及び、ずれ値を取得し、移載条件決定部153は、移載条件を決定する。この移載条件は、移載爪172をレール115に沿って移動させる距離、移載爪172を突出させる(同図中y方向)距離、及び、載置台171を走行車140に対して回動させる回動角度である。   Next, the inclination value and the deviation value calculated by the calculation unit 152 are acquired, and the transfer condition determination unit 153 determines the transfer condition. This transfer condition includes a distance for moving the transfer claw 172 along the rail 115, a distance for protruding the transfer claw 172 (in the y direction in the figure), and rotating the mounting table 171 with respect to the traveling vehicle 140. This is the turning angle.

そして、送信部154は、移載条件を移載爪172と載置台171とに送信する。   Then, the transmission unit 154 transmits the transfer condition to the transfer claw 172 and the mounting table 171.

移載条件を取得した移載爪172と載置台171とは、同図(e)に示すように、移載条件に合致するようにレール115に沿ってスライドし、走行車140に対して回動する。   The transfer claw 172 and the mounting table 171 that have acquired the transfer condition slide along the rail 115 so as to match the transfer condition as shown in FIG. Move.

そして、移載条件に従ってガラス基板200の移載を行う。   Then, the glass substrate 200 is transferred according to the transfer conditions.

以上のような構成、及び、工程によれば、走行車140の目標姿勢に対する傾き値、及び、目標位置に対するずれ値を単数の測距手段141を用いて算出することが可能となり、搬送システム100のコスト、特に走行車140のコストを低下させることが可能となる。   According to the configuration and the process as described above, the inclination value with respect to the target posture of the traveling vehicle 140 and the deviation value with respect to the target position can be calculated using the single distance measuring unit 141, and the transport system 100. Cost, in particular, the cost of the traveling vehicle 140 can be reduced.

なお、上記実施の形態では、第一距離と第二距離とを走行車140を走行させた状態で取得したが、本願発明は、走行車140を停止させて第一距離や第二距離を取得する場合も含む。   In the above-described embodiment, the first distance and the second distance are acquired while the traveling vehicle 140 is traveling. However, the present invention stops the traveling vehicle 140 and acquires the first distance and the second distance. This includes cases where

また、第一測距部111と第二測距部112とは同一面内に存在していたが、これに限定されるわけではない。第一測距部111と第二測距部112との位置関係が事前に把握可能であれば、当該位置関係を用いて走行車140の姿勢を算出することが可能である。   Moreover, although the 1st ranging part 111 and the 2nd ranging part 112 existed in the same surface, it is not necessarily limited to this. If the positional relationship between the first distance measuring unit 111 and the second distance measuring unit 112 can be grasped in advance, the posture of the traveling vehicle 140 can be calculated using the positional relationship.

また、図6に示すように、移載手段170は、ステーション110か走行車140の一方に設けられているものでもかまわない。同図に示す移載手段170は、ガラス基板200を吸引により吊り下げて保持し、ガラス基板200を水平面内で移動できると共に、ガラス基板200を回動させることも可能である。   Further, as shown in FIG. 6, the transfer means 170 may be provided on one of the station 110 or the traveling vehicle 140. The transfer means 170 shown in the figure suspends and holds the glass substrate 200 by suction, can move the glass substrate 200 in a horizontal plane, and can also rotate the glass substrate 200.

本願発明は、自動倉庫や半導体製造工場、ディスプレイ製造工場などに利用可能である。   The present invention can be used in automatic warehouses, semiconductor manufacturing factories, display manufacturing factories, and the like.

実施の形態である搬送システムの一部を模式的に示す斜視図である。It is a perspective view showing typically a part of conveyance system which is an embodiment. 走行車を示す図であり、(a)が上面図、(b)が下面図である。It is a figure which shows a traveling vehicle, (a) is a top view, (b) is a bottom view. 電子計算機の機能構成を示すブロック図である。It is a block diagram which shows the function structure of an electronic computer. ステーションを示す上面図である。It is a top view which shows a station. 搬送システムにおける走行車の位置と姿勢の測定工程を示す図であり、(a)〜(e)は、時間の経過順に示されている。It is a figure which shows the measurement process of the position and attitude | position of a traveling vehicle in a conveyance system, (a)-(e) is shown in order of passage of time. 搬送システムの他の実施の形態を示す図である。It is a figure which shows other embodiment of a conveyance system.

符号の説明Explanation of symbols

100 搬送システム
101 指標
110 ステーション
111 第一測距部
112 第二測距部
113 第三測距部
114 ターゲットプレート
115 レール
140 走行車
141 測距手段
142 駆動輪
143 補助輪
144 回動台
145 駆動輪エンコーダ
146 回動台エンコーダ
150 電子計算機
151 制御部
152 算出部
153 移載条件決定部
154 送信部
170 移載手段
171 載置台
172 移載爪
200 ガラス基板
100 transport system 101 index 110 station 111 first distance measuring unit 112 second distance measuring unit 113 third distance measuring unit 114 target plate 115 rail 140 traveling vehicle 141 distance measuring means 142 driving wheel 143 auxiliary wheel 144 rotating table 145 driving wheel Encoder 146 Turntable encoder 150 Electronic computer 151 Control unit 152 Calculation unit 153 Transfer condition determination unit 154 Transmitter 170 Transfer means 171 Mounting table 172 Transfer claw 200 Glass substrate

Claims (5)

ステーションと、ステーション近傍の目標位置に目標姿勢で停止する走行車と、ステーションと走行車との間で荷物を移載する移載手段とを備える搬送システムであって、
前記ステーションと前記走行車との一方に設けられ、前記ステーションと前記走行車との距離を測定する測距手段と、
前記ステーションと前記走行車との他方に設けられ、前記測距手段の測距対象となる第一測距部、及び、第二測距部と、
前記第一測距部との第一距離を前記測距手段から取得し、前記走行車を所定距離かつ所定方向に走行させ、前記第二測距部との第二距離を前記測距手段から取得する制御部と、
取得された前記第一距離と前記第二距離とに基づき前記走行車の前記目標姿勢からの傾きである傾き値を算出する算出部と、
算出された前記傾き値に基づき前記移載手段の移載条件を決定する移載条件決定部と
を備える搬送システム。
A transport system comprising a station, a traveling vehicle that stops at a target position in the vicinity of the station in a target posture, and a transfer means that transfers a load between the station and the traveling vehicle,
Ranging means provided on one of the station and the traveling vehicle, and measuring a distance between the station and the traveling vehicle;
A first distance measuring unit that is provided on the other of the station and the traveling vehicle and is a distance measuring object of the distance measuring means; and a second distance measuring unit;
The first distance to the first distance measuring unit is acquired from the distance measuring means, the traveling vehicle is traveled in a predetermined distance and in a predetermined direction, and the second distance to the second distance measuring section is determined from the distance measuring means. A control unit to obtain;
A calculation unit that calculates an inclination value that is an inclination from the target posture of the traveling vehicle based on the acquired first distance and the second distance;
A transfer system comprising: a transfer condition determining unit that determines a transfer condition of the transfer means based on the calculated inclination value.
さらに、
前記ステーションと前記走行車との他方に設けられ、前記走行車を前記所定方向に移動させた場合に前記測距手段との距離が徐々に変化する第三測距部を備え、
前記制御部はさらに、前記第三測距部との第三距離を前記測距手段から取得し、
前記算出部はさらに、測定された前記第一距離または前記第二距離と前記第三距離とに基づき前記目標位置からのずれであるずれ値を算出し、
前記移載条件決定部は、算出された前記ずれ値に基づき前記移載手段の移載条件を決定する
請求項1に記載の搬送システム。
further,
A third distance measuring unit provided on the other of the station and the traveling vehicle, wherein the distance to the distance measuring means gradually changes when the traveling vehicle is moved in the predetermined direction;
The control unit further acquires a third distance from the third ranging unit from the ranging unit,
The calculation unit further calculates a deviation value that is a deviation from the target position based on the measured first distance or the second distance and the third distance,
The transfer system according to claim 1, wherein the transfer condition determining unit determines a transfer condition of the transfer means based on the calculated deviation value.
前記制御部は、前記走行車を走らせながら前記第一距離と前記第二距離とを取得する請求項1に記載の搬送システム。   The transport system according to claim 1, wherein the control unit acquires the first distance and the second distance while driving the traveling vehicle. 前記制御部は、前記第一測距部と前記第二測距部とを結ぶ線と前記走行車と前記目標位置とを結ぶ線とが平行で、前記走行車と前記目標位置との距離が閾値となった時点で前記走行車を減速させ、
前記第一測距部と前記第二測距部とは前記走行車の減速する位置と目標位置との間に配置される
請求項3に記載の搬送システム。
The control unit has a parallel line connecting the first distance measuring unit and the second distance measuring unit and a line connecting the traveling vehicle and the target position, and the distance between the traveling vehicle and the target position is When the threshold is reached, the vehicle is decelerated,
The transport system according to claim 3, wherein the first distance measuring unit and the second distance measuring unit are disposed between a position where the traveling vehicle decelerates and a target position.
ステーション近傍に目標姿勢で停止する走行車であって、
前記ステーションとの距離を測定する測距手段と、
前記ステーションが有する第一測距部との第一距離を前記測距手段から取得し、当該走行車を所定距離かつ所定方向に走行させ、前記ステーションが有する第二測距部との第二距離を前記測距手段から取得する制御部と、
取得された前記第一距離と前記第二距離とに基づき前記ステーションに対する当該走行車の前記目標姿勢からの傾きである傾き値を算出する算出部と、
前記ステーションと当該走行車との間で荷物を移載する移載手段に算出された前記傾き値を送信する送信部と
を備える走行車。
A traveling vehicle that stops in a target position near the station,
Ranging means for measuring the distance to the station;
The first distance from the first distance measuring unit possessed by the station is acquired from the distance measuring means, the traveling vehicle is traveled in a predetermined distance and in a predetermined direction, and the second distance from the second distance measuring unit possessed by the station. A control unit that acquires the distance measuring means;
A calculation unit that calculates an inclination value that is an inclination from the target posture of the traveling vehicle with respect to the station based on the acquired first distance and the second distance;
A traveling vehicle comprising: a transmission unit that transmits the calculated slope value to a transfer means for transferring a load between the station and the traveling vehicle.
JP2008176380A 2008-07-04 2008-07-04 Conveyance system, and traveling vehicle Pending JP2010013260A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008176380A JP2010013260A (en) 2008-07-04 2008-07-04 Conveyance system, and traveling vehicle
KR1020090033594A KR20100004849A (en) 2008-07-04 2009-04-17 Transportation system and vehicle
TW098114637A TWI450060B (en) 2008-07-04 2009-05-01 Handling system, walking car
CN200910146555A CN101620443A (en) 2008-07-04 2009-06-03 Conveying system and running vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176380A JP2010013260A (en) 2008-07-04 2008-07-04 Conveyance system, and traveling vehicle

Publications (1)

Publication Number Publication Date
JP2010013260A true JP2010013260A (en) 2010-01-21

Family

ID=41513714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176380A Pending JP2010013260A (en) 2008-07-04 2008-07-04 Conveyance system, and traveling vehicle

Country Status (4)

Country Link
JP (1) JP2010013260A (en)
KR (1) KR20100004849A (en)
CN (1) CN101620443A (en)
TW (1) TWI450060B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321591B2 (en) 2009-04-10 2016-04-26 Symbotic, LLC Autonomous transports for storage and retrieval systems
WO2011158426A1 (en) * 2010-06-18 2011-12-22 村田機械株式会社 Travelling vehicle system
US9499338B2 (en) 2010-12-15 2016-11-22 Symbotic, LLC Automated bot transfer arm drive system
US11078017B2 (en) 2010-12-15 2021-08-03 Symbotic Llc Automated bot with transfer arm
KR102314503B1 (en) 2013-09-13 2021-10-19 심보틱 엘엘씨 Automated storage and retrieval system
JP2015106254A (en) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 Autonomous moving vehicle, and control method and control program of the same
KR101616482B1 (en) 2014-09-01 2016-04-28 주식회사다스 Locking assembly
CN107871218B (en) 2016-09-27 2021-01-08 杭州海康机器人技术有限公司 Cross-warehouse handling control method, device and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09114523A (en) * 1995-10-13 1997-05-02 Shizukou Kk Autonomously traveling vehicle and driving method for the vehicle
JPH10240346A (en) * 1997-02-21 1998-09-11 Shinko Electric Co Ltd Collision prevention controller for unmanned vehicle
JP2000194418A (en) * 1998-12-25 2000-07-14 Murata Mach Ltd Position correction system for ummanned carriage
JP2002108451A (en) * 2000-09-29 2002-04-10 Nippon Seiki Co Ltd Method for guiding traveling object
JP2006268499A (en) * 2005-03-24 2006-10-05 Funai Electric Co Ltd Running device and self-propelled vacuum cleaner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508130B2 (en) * 2000-09-21 2004-03-22 村田機械株式会社 Transport system
WO2004108366A1 (en) * 2003-06-06 2004-12-16 Advantest Corporation Transport device, electronic component handling device, and transporting method for electronic component handling device
EP1728738B1 (en) * 2005-05-31 2008-09-17 Daifuku Co., Ltd. Article transport facility and a method of operating the facility
CN101203445B (en) * 2005-06-22 2012-03-07 平田机工株式会社 Work transfer system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09114523A (en) * 1995-10-13 1997-05-02 Shizukou Kk Autonomously traveling vehicle and driving method for the vehicle
JPH10240346A (en) * 1997-02-21 1998-09-11 Shinko Electric Co Ltd Collision prevention controller for unmanned vehicle
JP2000194418A (en) * 1998-12-25 2000-07-14 Murata Mach Ltd Position correction system for ummanned carriage
JP2002108451A (en) * 2000-09-29 2002-04-10 Nippon Seiki Co Ltd Method for guiding traveling object
JP2006268499A (en) * 2005-03-24 2006-10-05 Funai Electric Co Ltd Running device and self-propelled vacuum cleaner

Also Published As

Publication number Publication date
TW201003347A (en) 2010-01-16
TWI450060B (en) 2014-08-21
KR20100004849A (en) 2010-01-13
CN101620443A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP2010013260A (en) Conveyance system, and traveling vehicle
JP5908333B2 (en) forklift
JP4296914B2 (en) Position teaching device and transport system including the same
US10239692B2 (en) Article transport facility
JP2018158779A (en) On-vehicle device, cargo-handling machine, control circuit, control method, and program
US11358706B2 (en) Automated weight balancing for automated guided vehicle
JP4944840B2 (en) Guidance system and guidance method
JP2003321102A (en) System for automatic guided vehicle
WO2020179386A1 (en) Moving body control method, moving body control system, and program
JP2018194937A (en) Travel control device and travel control method of unmanned carrier
JP7188574B2 (en) Suction pad and deformation measuring device
US20220297992A1 (en) Unmanned transport vehicle, unmanned transport method, and computer-readable storage medium
JP2019079171A (en) Movable body
JP2021046287A (en) Carrier system
CN109828569A (en) A kind of intelligent AGV fork truck based on 2D-SLAM navigation
JP4073203B2 (en) Carriage trolley stop position guidance device for container cranes
JP2003020102A (en) Automated guided system
JP2011243129A (en) Transportation vehicle system
US10315898B2 (en) Lifter based traversal of a robot
JP2007072572A (en) Article conveyance facility
JP6729865B2 (en) Container yard and its control method
WO2022168377A1 (en) Baggage transport system, and method and computer program used in baggage transport system
JP2021056764A (en) Movable body
JP7497694B2 (en) TRANSPORTATION SYSTEM, TRANSPORTATION METHOD, AND PROGRAM
US20240153805A1 (en) Transport Vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803