WO2006136705A1 - Microscope a force atomique a harmonique superieur - Google Patents

Microscope a force atomique a harmonique superieur Download PDF

Info

Publication number
WO2006136705A1
WO2006136705A1 PCT/FR2006/001406 FR2006001406W WO2006136705A1 WO 2006136705 A1 WO2006136705 A1 WO 2006136705A1 FR 2006001406 W FR2006001406 W FR 2006001406W WO 2006136705 A1 WO2006136705 A1 WO 2006136705A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever arm
tip
oscillation
frequency
probe
Prior art date
Application number
PCT/FR2006/001406
Other languages
English (en)
Inventor
Paul Girard
Michel Ramonda
Richard Arinero
Original Assignee
Centre Nationale De La Recherche Scientifique -Cnrs-
Universite De Montpellier Ii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Nationale De La Recherche Scientifique -Cnrs-, Universite De Montpellier Ii filed Critical Centre Nationale De La Recherche Scientifique -Cnrs-
Priority to EP06764801A priority Critical patent/EP1896824B1/fr
Priority to DE602006002986T priority patent/DE602006002986D1/de
Priority to JP2008517536A priority patent/JP4960347B2/ja
Priority to US11/922,699 priority patent/US8234913B2/en
Publication of WO2006136705A1 publication Critical patent/WO2006136705A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • G01Q60/34Tapping mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode

Definitions

  • the present invention relates to the field of near-field microscopes in vibrating mode.
  • a sensor In such a device, a sensor is vibrated near its fundamental resonant frequency and, when approaching the object to be analyzed, its vibration amplitude is reduced. There can be two reasons for this. In a first mode, the sensor detects long-range forces of the electromagnetic type. In this case, the oscillator slightly changes resonant frequency and sees its forced oscillation amplitude change. This is known as "contactless" mode. According to a second mode, the sensor oscillates by coming into intermittent contact with the material, the amplitude of vibration being limited by the contact with the object. This mode is known as intermittent contact or, in English, tapping mode.
  • the object to be analyzed is scanned substantially in the plane of the surface of the object (hereinafter xy), and a feedback loop adjusts the z position of the object to maintain the object. amplitude of vibration at a set point. The variations of position in z then give the morphology of the material.
  • Figure 1 gives an example of the general principle of the atomic force microscope in which a vibrator 1 excites a sensor 2, consisting of a lever arm and a probe tip (or tip) at its end. The movement of the lever varies the reflected signal of the laser - positioned at the probe tip - which is then detected by a photodiode 3. The signal from the photodiode is then used to control a feedback unit 4 which controls a piezoelectric device x, y, z associated with the sample 6, the feedback taking place on the component z, and a scan being made in x, y. The morphology of the sample 6 is then obtained at the outlet of the feedback loop.
  • a first limit to such devices is the realization of fast imaging, especially for high resolution images, if it is desired for example to obtain images of 4096 * 4096 pixels, in the air or in a controlled atmosphere and all the more, under vacuum.
  • the physical limit of the device is then the response time of the oscillator to a local disturbance.
  • the stabilization time constant is of the order of 2 ms in the air because of damping phenomena, and goes to 800 ms in the vacuum.
  • This difference does not yet allow, for existing systems, to obtain a scanning speed compatible with the requirements in terms of processing time.
  • the quality coefficient is also defined with respect to the frequency width df of the resonance curve. It is known that this frequency is the one giving a
  • the scanning speed is therefore limited by the stabilization time T of the oscillator between several successive pixels.
  • the present invention therefore intends to provide a new atomic force microscope that both maintain and even increase performance in the air (or controlled atmosphere), but can also operate in the vacuum or ultra-vacuum.
  • the quality factor of the oscillator is thus reduced in an original way, by working no longer on the fundamental of the sensor, but on higher order harmonics. It is known, in particular from the publication of Stark et al. "Tapping-mode atomic foce microscopy and phase-imaging in higher eigenmodes", 1999, to use a higher order harmonic in an atomic force microscope. In Stark et al., The first harmonic is used in ambient conditions.
  • the present invention aims to overcome the disadvantages of the prior art.
  • An object of the invention is to improve the operation of known atomic force microscopes.
  • Another object of the invention is to improve the quality factor of an atomic force microscope, especially in vacuum or in a controlled atmosphere.
  • Another object of the invention is to provide an atomic force microscope comprising a probe tip and whose probe tip can oscillate at frequencies according to a plurality of harmonics of a lever arm.
  • Another object of the invention is to provide an atomic force microscope comprising a probe tip, the probe tip being able to oscillate at frequencies according to different harmonics, and the chosen harmonic being adapted to the microscope's performance.
  • Another object of the invention is to provide an atomic force microscope comprising a probe tip, the probe tip being able to oscillate at frequencies according to different harmonics, and in which the chosen harmonic is adapted to the operating quality of the microscope, even in vacuum or controlled atmosphere.
  • Another object of the invention is to provide an atomic force microscope comprising a probe tip, the probe tip being able to oscillate at frequencies according to different harmonics, the choice of the harmonic being able to be performed automatically.
  • the present invention relates to a method for measuring the characteristics of the surface of a sample from a probe tip placed on one end of a lever arm, said lever arm being able to oscillate by the intermediate vibrator, in an atomic force microscopy system, comprising the steps of: - oscillating said tip of the lever arm at a first oscillation frequency corresponding to a fundamental of said lever arm; producing a signal representative of said oscillation defining a parameter corresponding to an operating threshold of said microscopy system analyzing said signal and, if said signal corresponds to a state of said system greater than said operating threshold, o varying the oscillation frequency of said tip of the lever arm by changing the excitation frequency of the vibrator according to at least one harmonic of higher order of said lever arm. o Selecting one of said corresponding higher order harmonics for which the signal representative of the oscillation corresponds to a state of the system less than or equal to said operating threshold;
  • the invention also relates to an atomic force microscopy system
  • a probe tip placed on one end of a lever arm, oscillation means able to oscillate said probe tip substantially according to the fundamental frequency of said lever arm and scanning means for translating between the tip of the oscillating probe and the surface of the sample so that the tip of the probe interacts with said surface
  • said system comprising control means capable of controlling said means oscillator for varying the oscillation frequency of said nozzle according to a plurality of harmonics of said lever arm, characterized in that said system further comprises means for detecting the interaction between the tip of the probe and said surface, said detection means being able to provide a signal representative of data of said surface and in that said control means comprise an input receiving a parameter representative of an operating threshold of said system, to vary the oscillation frequency said tip according to at least one harmonic of said lever arm when said signal corresponds to a state of said system greater than said operating threshold.
  • This system is suitable for implementing the method defined above.
  • FIG. 1 illustrates an atomic force microscope as known in the prior art
  • FIG. 2 illustrates a controlled amplitude atomic force microscope according to the invention
  • FIG. 3 illustrates the method of automating the calculation of the surface data by increasing the order of the harmonics
  • FIG. 4 illustrates the different modes of vibration of a lever arm attached to one end, including the modes corresponding to the higher harmonics used in the present invention
  • FIG. 5 illustrates the response time of the sensor as a function of the excitation frequency, with respect to an operating threshold ⁇ f , for different types of sensors, in the air
  • FIG. 6 illustrates the response time of the sensor as a function of the excitation frequency, with respect to an operating threshold ⁇ f , for different types of sensors, in the vacuum
  • Figures 7a to 7c illustrate the response curves of the different vibrators.
  • the atomic force microscope comprises, in a manner known per se, an oscillation means 1, for example in the form of a vibrator 1, which excites a sensor 2, composed of a lever arm and a probe tip.
  • the movement of the lever - and the point which is connected thereto - makes, for example, the reflected signal of the laser, which is then detected by a detection means in the form of a photodiode 3.
  • the signal coming from the photodiode is then used to control a feedback unit 4 which controls an x, y, z piezoelectric device associated with the sample 6, the feedback taking place on the z component, and a scan being performed in x, y.
  • the morphology of the sample 6 is then obtained at the outlet of the feedback loop.
  • the device further comprises a control unit 7 intended to control the frequency of the vibrator 1 and the resonance curve of the sensor associated with it (for example, amplitude and phase, resonant frequency and quality coefficient Q n ).
  • the unit of control is arranged to select the frequencies corresponding to the fundamental of the sensor 2, as well as to different higher order harmonics of the sensor.
  • the term "higher order harmonic” any frequency of vibration of the sensor according to a different eigen mode of the fundamental.
  • the fundamental will be noted H 0 , and the associated harmonics H 1 , H 2f ... H n .
  • the vibratory modes of a vibrating beam are recalled figure 4.
  • the controller 7 thus makes it possible to excite the vibrator 1 according to any one of the modes H 0 ... H n of the sensor 2, and is therefore suitable for high excitation frequencies, typically greater than 2 MHz.
  • a parameter ⁇ t corresponding to the acceptable response time is then defined in terms of computing time and thus of scanning speed.
  • FIG. 5 illustrates the response time of the sensor as a function of the excitation frequency, with respect to the operating threshold ⁇ f , for different types of sensors, in the air. This figure shows how the response time decreases with the oscillation frequency.
  • an operating threshold as defined in solid horizontal line, it can be seen, on the one hand, that for some types of sensors, even at the fundamental frequency, the response time is too high to allow satisfactory operation (point of the curve above the threshold).
  • the invention then makes it possible, by working on a higher harmonic through the control unit, to make the system operate below the threshold, and therefore satisfactorily.
  • FIG. 6 illustrates this time the response time of the sensor as a function of the excitation frequency, and with respect to the same operating threshold ⁇ f , for different types of sensors, in the vacuum.
  • No sensor can then allow a satisfactory scan for its fundamental frequency, or even, for most, for the first order harmonic.
  • the invention also provides a method for automatically implementing the optimal operating mode of a variable frequency atomic force microscope.
  • control unit comprises calculation means that can take input of the sensor parameters, and outputting a control of the oscillation means 1 through the vibrator.
  • the control program is initialized at an oscillation frequency corresponding to the fundamental of the sensor. It is understood, however, that it can also be initialized to a higher harmonic if we know that we work in a vacuum and that the fundamental will be unusable.
  • the stabilization time related to the quality factor of the sensor is then calculated in this vibration mode, and it is tested whether this stabilization time is less than the predefined threshold time ⁇ f .
  • the process is iterated by passing to a higher order harmonic H ⁇ -> H i + 1 .
  • the maximum value of i can be pre-defined.
  • the invention described above is therefore particularly suitable for use in vacuum or in ultra-vacuum (UHV), for example when the microscope is associated with a vacuum pump and also in the air or in a controlled atmosphere when the we want to sweep quickly.
  • UHV ultra-vacuum
  • the invention can be used in intermittent contact mode or in contactless mode.
  • the skilled person is able to perform the adaptation of the device by simple routine steps.
  • the system can be used to characterize differences in local mechanical properties, for example from the so-called morphology "by comparing the results obtained with different harmonics. This is applicable to air or controlled atmosphere where generally all harmonics are satisfactory and under vacuum (and UHV), as long as several satisfactory harmonics have been determined.
  • This apparent stiffness variation makes it possible: a) to adapt the effective stiffness of the lever to the material used or to keep a constant bit (diamond, for example); b) to increase the range of stiffnesses available (K 0 varies from 1 to 50 N / m and the coefficient due to harmonics varies from 1 to 100).
  • K 0 varies from 1 to 50 N / m and the coefficient due to harmonics varies from 1 to 100.
  • This idea could, for example, apply to the quality control of mechanically polyphase materials (manufacture), to the counting of biological cells on a rigid support.
  • it could be extended to other resonant systems than the atomic force microscope for the purpose of examining contact areas of dimensions much larger than ten or so square nanometers.
  • the system can be used in double pass mode in which a first profile of the sample is detected, then, by bringing the probe closer or further away as a function of this first profile, the constant and controlled distance is detected at a constant distance.
  • variations of long-range forces ie the derivative of the force relative to the direction of vibration of the sensor
  • electromagnetic signals optical for example, if appearance of a photovoltage on the sensor.
  • the practically usable resonance frequency is often different (in general H 0 or H 1 , to the strictest H 2 ) from that defined previously for the acquisition of the morphology (H 2 , for example under vacuum).
  • H 0 or H 1 to the strictest H 2
  • H 2 morphology
  • the amplitude response profile of a vibrator as used in known AFM-type microscopes is substantially as shown in FIG. 7a.
  • the existing vibrators are modified in order to adapt the device to the use of high frequency.
  • Those skilled in the art are then able to adapt the electronics and the feedback to this new type of vibrator.
  • the sensors will also be modified so as to produce frequency responses adapted to the desired work by adapting the quality coefficient of the resonance Qn (f) associated with Hn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

La présente invention se rapporte à un système de microscopie à force atomique comprenant un embout de sonde placé sur une extrémité d'un bras de levier (2), des moyens d'oscillation (1) apte à faire osciller ledit embout de sonde sensiblement selon la fréquence fondamentale dudit bras de levier, ledit système comprenant des moyens de contrôle (7) apte à contrôler lesdits moyens d'oscillation pour faire varier la fréquence d'oscillation dudit embout selon une pluralité d'harmoniques dudit bras de levier, caractérisé en ce que lesdits moyens de contrôle comprennent une entrée recevant un paramètre représentatif d'un seuil de fonctionnement dudit système, pour faire varier la fréquence d'oscillation dudit embout selon au moins un harmonique dudit bras de levier lorsque ledit signal correspond à un état dudit système supérieur audit seuil de fonctionnement.

Description

MICROSCOPE À FORCE ATOMIQUE À HARMONIQUE SUPERIEUR
La présente invention se rapporte au domaine des microscopes à champ proche en mode vibrant.
Elle se rapporte plus particulièrement à de tels microscopes fonctionnant en mode « amplitude contrôlée ou régulée » .
Le principe général des microscopes à champ proche en mode vibrant est connu de l'homme du métier. Dans un tel dispositif, un capteur est mis en vibration au voisinage de sa fréquence de résonance fondamentale et, lorsqu'on l'approche de l'objet à analyser, son amplitude de vibration se trouve réduite. Il peut y avoir deux raisons pour cela. Selon un premier mode, le capteur détecte des forces à long rayon d'action, de type électromagnétique. Dans ce cas, l'oscillateur change légèrement de fréquence de résonance et voit son amplitude d'oscillation forcée changer. Ceci est connu sous le nom de mode « sans contact ». Selon un second mode, le capteur oscille en venant au contact intermittent du matériau, l'amplitude de vibration étant limitée par le contact à l'objet. Ce mode est connu sous le nom de contact intermittent ou, en langue anglaise, mode « tapping».
De façon générale, on réalise un balayage de l'objet à analyser sensiblement dans le plan de la surface de l'objet (ci-après en xy), et une boucle de rétroaction ajuste la position en z de l'objet pour maintenir l'amplitude de vibration à une valeur de consigne. Les variations de position en z donnent alors la morphologie du matériau.
À l'air ou sous atmosphère contrôlée, la rétroaction a lieu sur l'amplitude de vibration alors que sous vide, la rétroaction a lieu, dans les systèmes connus, sur le glissement de fréquence de résonance, et ce à cause des limitations sur le temps de réponse de l'oscillateur, comme ceci sera développé par la suite.
La figure 1 donne un exemple du principe général du microscope à force atomique dans lequel un vibreur 1 excite un capteur 2, composé d'un bras de levier et d'un embout de sonde (ou pointe) à son extrémité. Le mouvement du levier fait varier le signal réfléchi du laser — positionné au niveau de l'embout de sonde-, qui est alors détecté par une photodiode 3. Le signal issu de la photodiode est alors utilisé pour contrôler une unité de rétroaction 4 qui contrôle un dispositif piézo-électrique en x,y,z 5 associé à l'échantillon 6, la rétroaction ayant lieu sur la composante z, et un balayage étant réalisé en x,y. La morphologie de l'échantillon 6 est alors obtenue en sortie de la boucle de contre-réaction.
Une première limite à de tels dispositifs est la réalisation de l'imagerie rapide, en particulier pour des images à haute résolution, si l'on désire par exemple obtenir des images de 4096*4096 pixels, à l'air ou sous atmosphère contrôlée et, à plus forte raison, sous vide. La limite physique du dispositif est alors le temps de réponse de l'oscillateur à une perturbation locale.
En effet, la constante de temps de stabilisation est de l'ordre de 2 ms dans l'air à cause des phénomènes d'amortissement, et passe à 800 ms dans le vide. Cette différence ne permet pas encore, pour les systèmes existants, d'obtenir une vitesse de balayage compatible avec les exigences en matière de temps de traitement. Plus précisément, un oscillateur possédant un coefficient de qualité Q et vibrant à une fréquence de résonance f0 (ou une période T0), met un temps T=Q*T0 pour passer d'un état stable à un autre état stable. Le coefficient de qualité est par ailleurs défini par rapport à la largeur fréquentielle df de la courbe de résonance. Il est connu que cette fréquence est celle donnant une
amplitude égale à A0 étant l'amplitude maximale. On
Figure imgf000005_0001
a alors Q=fo/df.
La vitesse de balayage est donc limitée par le temps T de stabilisation de l'oscillateur entre plusieurs pixels successifs.
Plusieurs solutions de contrôle du facteur de qualité Q existent dans l'art antérieur, mais aucune n'est réellement satisfaisante pour une utilisation du dispositif dans le vide ou l'ultra-vide (UHV). Un exemple d'un tel contrôle est donné dans la première publication sur ce sujet « Régulation of a micro-cantilever response by force feedback », Applied Physics Letters, Volume 62(19), 2344, 10 Mai 1993, J.Mertz, O. Marti, J. Mlynek.
La présente invention entend donc proposer un nouveau microscope à force atomique qui permette à la fois de maintenir et même accroître les performances dans l'air (ou atmosphère contrôlée), mais qui puisse également fonctionner dans le vide ou l'ultra-vide. Selon un aspect de l'invention, on réduit donc le facteur de qualité de l'oscillateur de façon originale, en travaillant non plus sur le fondamental du capteur, mais sur des harmoniques d' ordre supérieur . II est connu, notamment de la publication de Stark et al. « Tapping-mode atomic foce microscopy and phase-imaging in higher eigenmodes », 1999, d'utiliser un harmonique d'ordre supérieur dans un microscope à force atomique. Dans la publication de Stark et al., le premier harmonique est utilisé dans des conditions ambiantes.
Toutefois, le système décrit dans la publication susmentionnée ne permet pas de faire fonctionner le système à des harmoniques différents du premier harmonique.
Par ailleurs, le système décrit dans la publication susmentionnée ne permet pas de choisir l'harmonique supérieure la plus adaptée au bon fonctionnement du système.
La présente invention a pour but de pallier les inconvénients de l'art antérieur.
Un but de l'invention est d'améliorer le fonctionnement des microscopes à force atomique connus.
Un autre but de l'invention est d'améliorer le facteur de qualité d'un microscope à force atomique, notamment dans le vide ou sous atmosphère contrôlée.
Un autre but de l'invention est de fournir un microscope à force atomique comprenant un embout de sonde et dont l'embout de sonde puisse osciller à des fréquences selon une pluralité d'harmoniques d'un bras de levier.
Un autre but de l'invention est de fournir un microscope à force atomique comprenant un embout de sonde, l'embout de sonde pouvant osciller à des fréquences selon différentes harmoniques, et l'harmonique choisie étant adaptée à la qualité de fonctionnement du microscope.
Un autre but de l'invention est de fournir un microscope à force atomique comprenant un embout de sonde, l'embout de sonde pouvant osciller à des fréquences selon différentes harmoniques, et dans lequel l'harmonique choisie est adaptée à la qualité de fonctionnement du microscope, même dans le vide ou sous atmosphère contrôlée .
Un autre but de l'invention est de fournir un microscope à force atomique comprenant un embout de sonde, l'embout de sonde pouvant osciller à des fréquences selon différentes harmoniques, le choix de l'harmonique pouvant être réalisé de façon automatique.
Pour ce faire, la présente invention concerne un Procédé de mesure des caractéristiques de la surface d'un échantillon à partir d'un embout de sonde placé sur une extrémité d'un bras de levier ledit bras de levier étant apte à osciller par l'intermédiaire d'un vibreur, dans un système de microscopie à force atomique, comprenant les étapes consistant à : - faire osciller ledit embout du bras de levier selon une première fréquence d'oscillation correspondant à un fondamental dudit bras de levier ; produire un signal représentatif de ladite oscillation définir un paramètre correspondant à un seuil de fonctionnement dudit système de microscopie analyser ledit signal et, si ledit signal correspond à un état dudit système supérieur audit seuil de fonctionnement, o faire varier la fréquence d'oscillation dudit embout du bras de levier en changeant la fréquence d'excitation du vibreur selon au moins un harmonique d'ordre supérieur dudit bras de levier. o Sélectionner un desdits harmoniques d'ordre supérieur correspondant pour lequel le signal représentatif de l'oscillation correspond à un état du système inférieur ou égal audit seuil de fonctionnement ;
Faire interagir ledit embout de sonde oscillant audit harmonique supérieur sélectionné pour la mesure des caractéristiques de la surface dudit échantillon.
II est entendu qu'aux fins de la présente demande, la notion d'état du système supérieur ou inférieur à un seuil de fonctionnement est relative et dépend des mesures utilisées. Par soucis de cohérence avec les figures 5 et 6, nous considérerons que l'état du système est satisfaisant lorsqu'il est inférieur ou égal au seuil de fonctionnement, de sorte que selon l'invention, lorsque celui-ci est supérieur, on cherche des harmoniques plus élevés.
L'invention concerne également un système de microscopie à force atomique comprenant un embout de sonde placé sur une extrémité d'un bras de levier, des moyens d'oscillation apte à faire osciller ledit embout de sonde sensiblement selon la fréquence fondamentale dudit bras de levier, et des moyens de balayage destinés à produire une translation entre l'embout de la sonde oscillant et la surface de l'échantillon de sorte que l'embout de la sonde interagisse avec ladite surface, ledit système comprenant des moyens de contrôle apte à contrôler lesdits moyens d'oscillation pour faire varier la fréquence d'oscillation dudit embout selon une pluralité d'harmoniques dudit bras de levier, caractérisé en ce que ledit système comprend en outre des moyens de détection de l'interaction entre l'embout de la sonde et ladite surface, lesdits moyens de détection étant aptes à fournir un signal représentatif de données de ladite surface et en ce que lesdits moyens de contrôle comprennent une entrée recevant un paramètre représentatif d'un seuil de fonctionnement dudit système, pour faire varier la fréquence d'oscillation dudit embout selon au moins un harmonique dudit bras de levier lorsque ledit signal correspond à un état dudit système supérieur audit seuil de fonctionnement.
Ce système convient pour la mise en œuvre du procédé défini précédemment.
On comprendra mieux l ' invention à l ' aide de la description, faite ci-après à titre purement explicatif, d'un mode de réalisation de l'invention, en référence aux figures annexées : - la figure 1 illustre un microscope à force atomique tel que connu dans l'art antérieur ; la figure 2 illustre un microscope à force atomique à amplitude contrôlée selon l'invention ; la figure 3 illustre le procédé d'automatisation du calcul des données de surface par augmentation de l'ordre des harmoniques ; la figure 4 illustre les différents modes de vibration d'un bras de levier fixé à une extrémité, y compris les modes correspondant aux harmoniques supérieurs utilisés dans la présente invention ; la figure 5 illustre le temps de réponse du capteur en fonction de la fréquence d'excitation, par rapport à un seuil de fonctionnement τf, pour différents types de capteurs, dans l'air ; la figure 6 illustre le temps de réponse du capteur en fonction de la fréquence d'excitation, par rapport à un seuil de fonctionnement τf, pour différents types de capteurs, dans le vide ; les figures 7a à 7c illustrent les courbes de réponses des différents vibreurs.
Illustré figure 2, le microscope à force atomique selon l'invention comprend de façon connue en soi un moyen d'oscillation 1 par exemple sous la forme d'un vibreur 1 , qui excite un capteur 2, composé d'un bras de levier et d'un embout de sonde. Le mouvement du levier — et de la pointe qui lui est liée — fait, par exemple, varier le signal réfléchi du laser, qui est alors détecté par un moyen de détection sous la forme d'une photodiode 3. Le signal issu de la photodiode est alors utilisé pour contrôler une unité de rétroaction 4 qui contrôle un dispositif piézo-électrique en x,y, z 5 associé à l'échantillon 6, la rétroaction ayant lieu sur la composante z, et un balayage étant réalisé en x,y. La morphologie de l'échantillon 6 est alors obtenue en sortie de la boucle de contre-réaction.
Selon l'invention, le dispositif comprend en outre une unité de contrôle 7 destinée à contrôler la fréquence du vibreur 1 et la courbe de résonance du capteur qui lui est associée (par exemple, amplitude et phase, fréquence de résonance et coefficient de qualité Qn). L'unité de contrôle est agencée pour sélectionner les fréquences correspondant au fondamental du capteur 2, ainsi qu'à différents harmoniques d'ordre supérieur du capteur.
Aux fins de la présente demande, on appellera « harmonique d'ordre supérieur » toute fréquence de vibration du capteur selon un mode propre différent du fondamental. Le fondamental sera noté H0 , et les harmoniques associées H1, H2f ... Hn. Les modes vibratoires d'une poutre vibrante sont rappelés figure 4.
Le contrôleur 7 permet donc d'exciter le vibreur 1 selon l'un quelconque des modes H0... Hn du capteur 2, et est donc adapté pour des hautes fréquences d'excitation, typiquement supérieurs à 2 MHz.
L'homme du métier comprendra donc qu'en augmentant l'ordre de l'harmonique utilisé pour la vibration, on fait décroître le temps de réponse du capteur, ce qui permet un balayage plus rapide sur la surface de l'échantillon à analyser.
On définit alors un paramètre τt correspondant au temps de réponse acceptable en termes de temps de calcul et donc de vitesse de balayage.
La figure 5 illustre le temps de réponse du capteur en fonction de la fréquence d'excitation, et ce par rapport au seuil de fonctionnement τf, pour différents types de capteurs, dans l'air. On constate sur cette figure la façon dont le temps de réponse décroît avec la fréquence d'oscillation. Ainsi, avec un seuil de fonctionnement tel que défini en trait horizontal plein, on constate d'une part que pour quelques types de capteurs, même à la fréquence fondamentale, le temps de réponse est trop élevé pour permettre un fonctionnement satisfaisant (point de la courbe au-dessus du seuil). L'invention permet alors, en travaillant sur un harmonique supérieur grâce à l'unité de contrôle, de faire fonctionner le système en dessous du seuil, et donc de façon satisfaisante .
On constate d'autre part que si l'on désire diminuer le seuil de fonctionnement, et donc augmenter encore les performances du dispositif, il est nécessaire pour la plupart des capteurs, de se placer sur des harmoniques supérieurs. Ceci est également rendu possible par l'unité de contrôle 7.
La figure 6 illustre cette fois le temps de réponse du capteur en fonction de la fréquence d'excitation, et ce par rapport au même seuil de fonctionnement τf, pour différents types de capteurs, dans le vide.
On note déjà dans le vide, avec l'échelle telle qu'illustrée, la très forte décroissance du temps de réponse — due également à celle du facteur de qualité - avec la fréquence d'excitation.
Aucun capteur ne peut alors permettre un balayage satisfaisant pour sa fréquence fondamentale, ni même, pour la plupart, pour l'harmonique d'ordre 1. Selon l'invention, on peut alors paramétrer le dispositif de contrôle 7 pour fixer la fréquence d'oscillation à des harmoniques d'ordre supérieur 1, 2, ou plus, dans le cas d'un travail dans le vide.
Illustré figure 3, l'invention fournit également un procédé pour mettre en œuvre automatiquement le mode de fonctionnement optimal d'un microscope à force atomique à fréquence variable.
Pour cela, l'unité de contrôle comprend des moyens de calculs pouvant prendre en entrée les paramètres du capteur, et rendant en sortie un contrôle du moyen d'oscillation 1 à travers le vibreur.
On initialise 10 le programme de contrôle à une fréquence d'oscillation correspondant au fondamental du capteur. Il est cependant entendu qu'on peut également l'initialiser à un harmonique d'ordre supérieur si l'on sait que l'on travaille dans le vide et que le fondamental sera inutilisable.
On calcule 20 alors le temps de stabilisation lié au facteur de qualité du capteur dans ce mode de vibration, et on teste 30 si ce temps de stabilisation est inférieur au temps seuil τf prédéfini.
S'il ne l'est pas, on itère 40 le procédé en passant à un harmonique d'ordre supérieur H±->Hi+1. La valeur maximum de i peut être pré-définie.
On note bien sûr que la courbe du temps de réponse en fonction de la fréquence étant décroissante, cet algorithme mis en œuvre au niveau de l'unité de contrôle converge vers un ou des harmoniques satisfaisants, quel que soit le type de capteur utilisé.
Une fois un harmonique d'ordre supérieur Hf satisfaisant identifié, on réalise alors de façon connue en soi la caractérisation de la surface de l'échantillon avec un mode vibrant Hf. Par ailleurs, il est entendu qu'une fois un harmonique acceptable sélectionné, il est également possible de chercher 50 des nouvelles solutions plus fines afin d'améliorer encore le niveau de fonctionnement du système. L'homme du métier est alors apte à déterminer un compromis acceptable entre le temps de traitement correspondant à la recherche des harmoniques, la qualité du dispositif en haute fréquence si l'on augmente trop la fréquence, et le résultat obtenu.
Ceci garantit que le balayage de la surface respecte bien les contraintes temporelles définies par le seuil τf.
L'invention précédemment décrite est donc particulièrement adaptée pour une utilisation dans le vide ou dans l'ultra-vide (UHV), par exemple lorsque le microscope est associé à une pompe à vide et également à l'air ou sous atmosphère contrôlée lorsque l'on souhaite balayer rapidement.
Il est par ailleurs entendu que l'invention est utilisable en mode contact intermittent ou en mode sans contact. L'homme du métier est apte à réaliser l'adaptation du dispositif par des simples démarches de routine.
On note, de plus, que le système peut être utilisé pour caractériser des différences de propriétés mécaniques locales, à partir, par exemple, du signal dit « de morphologie » en comparant les résultats obtenus avec différents harmoniques. Ceci est applicable à l'air ou sous atmosphère contrôlée où généralement tous les harmoniques sont satisfaisants et sous vide (et UHV), dans la mesure où plusieurs harmoniques satisfaisants auront été déterminés.
En effet, la raideur apparente du capteur Kn, sur le mode n, devient Kn = (fn/f0)2 K0 et la gamme de raideurs couverte sera d'autant plus large que la gamme de fn sera étendue. Voyons en les conséquences sur l'imagerie dite « de morphologie ». Imaginons un matériau avec une « bosse » au centre d'un plan, supposons de plus que cette « bosse » présente une diminution de dureté locale par rapport au plan environnant. L'utilisation d'un harmonique élevé « durcit » le capteur par rapport à l'échantillon, ce qui favorise 1 ' indentation locale, et atténue le « signal morphologie », si on se réfère à un harmonique faible. Pour simplifier, aux harmoniques bas la morphologie réelle reste visible, alors qu'elle disparaît aux harmoniques élevés.
Cette variation de raideur apparente permet: a) d'adapter la raideur effective du levier au matériau utilisé ou de conserver un embout constant (diamant, par exemple), b) d'augmenter la gamme de raideurs disponibles (K0 varie de 1 à 50 N/m et le coefficient dû aux harmoniques varie de 1 à 100). Cette idée pourrait, par exemple, s'appliquer au contrôle qualité de matériaux (fabrication) mécaniquement polyphasés, au comptage de cellules biologiques sur support rigide. De plus, elle pourrait être étendue à d'autres systèmes résonnants que le microscope à force atomique aux fins d'examiner des aires de contact de dimensions très supérieures à la dizaine de nanomètres carrés. On note par ailleurs que le système peut être utilisé en mode double passage dans lequel on détecte un premier profil de l'échantillon, puis, en rapprochant ou en éloignant la sonde en fonction de ce premier profil, on détecte à distance constante et contrôlée les variations des forces à longue distance (i.e. la dérivée de la force par rapport à la direction de vibration du capteur) ou des signaux électromagnétiques (optiques par exemple, si apparition d'un photovoltage sur le capteur) . Il faut noter que, au second passage, la fréquence de résonance pratiquement utilisable est souvent différente (en général H0 ou H1, à la rigueur H2) de celle définie précédemment pour l'acquisition de la morphologie (H2, par exemple sous vide). L'expérience et la théorie ont montré que pratiquement seuls HO, Hl, peut être H2 étaient utilisables pour détecter les gradients de force .
Enfin, afin de maintenir la qualité des mesures même pour les hautes fréquences d'oscillation, il est préférable de modifier les vibreurs existants. En effet, le profil de réponse en amplitude d'un vibreur tel qu'il est utilisé dans les microscopes de type AFM connus, est sensiblement tel qu'illustré sur la figure 7a.
On constate donc que l'amplitude associée diminue lorsque la fréquence de vibration augmente, et donc lorsque l'ordre de l'harmonique augmente selon le procédé de l'invention. Or, on cherche à travailler à amplitude sensiblement constante, et il est donc préférable de modifier les vibreurs existants, pour obtenir idéalement une réponse telle qu'illustrée figure 7b.
Pour ce faire, on peut choisir de positionner une pluralité de vibreurs en cascade. Ceux-ci peuvent être couplés, c'est-à-dire avec des fréquences de résonances proches, ou bien découplés.
Ceci provoque une extension du spectre de fréquence du vibreur et permet donc de s'adapter à l'utilisation des harmoniques supérieurs .
Avec un vibreur alimenté par un générateur basse fréquence associé à un autre vibreur haute fréquence, on peut par exemple obtenir un profil d'amplitude tel qu'illustré figure 7c.
De façon générale, on modifie donc les vibreurs existants afin d'adapter le dispositif à l'utilisation des haute fréquence. L'homme du métier est alors apte à adapter l'électronique et la rétroaction à ce nouveau type de vibreur.
De façon générale, éventuellement on modifiera également les capteurs de façon à produire des réponses en fréquences adaptées aux travaux souhaités en adaptant le coefficient de qualité de la résonance Qn(f) associé à Hn.
Par exemple, à l'air ou sous atmosphère contrôlée et aussi sous vide, pour balayer rapidement, on a intérêt à faire décroître Qn(f) avec la fréquence f, si l'on se réfère aux
Fig. 5 et 6, et pour élargir la gamme de raideurs dynamiques
Kn, on a intérêt à maintenir Qn(f) le plus constant possible.
L'invention est décrite dans ce qui précède à titre d'exemples. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de l'invention sans pour autant sortir du cadre du brevet.

Claims

REVENDICATIONS
1. Système de microscopie à force atomique comprenant un embout de sonde placé sur une extrémité d'un bras de levier (2), des moyens d'oscillation (1) apte à faire osciller ledit embout de sonde sensiblement selon la fréquence fondamentale dudit bras de levier, et des moyens de balayage (5) destinés à produire une translation entre l'embout de la sonde oscillant et la surface de l'échantillon de sorte que l'embout de la sonde interagisse avec ladite surface, ledit système comprenant des moyens de contrôle (7) apte à contrôler lesdits moyens d'oscillation pour faire varier la fréquence d'oscillation dudit embout selon une pluralité d'harmoniques dudit bras de levier, caractérisé en ce que ledit système comprend en outre des moyens de détection de l'interaction entre l'embout de la sonde et ladite surface, lesdits moyens de détection étant aptes à fournir un signal représentatif de données de ladite surface et en ce que lesdits moyens de contrôle comprennent une entrée recevant un paramètre représentatif d'un seuil de fonctionnement dudit système, pour faire varier la fréquence d'oscillation dudit embout selon au moins un harmonique dudit bras de levier lorsque ledit signal correspond à un état dudit système supérieur audit seuil de fonctionnement.
2. Système de microscopie à force atomique selon la revendication 1, comprenant en outre une unité de traitement dudit signal.
3. Système selon la revendication 1 ou 2, dans lequel lesdits moyens d'oscillations comprennent une pluralité de vibreurs en cascade.
4. Procédé de mesure des caractéristiques de la surface d'un échantillon à partir d'un embout de sonde placé sur une extrémité d'un bras de levier ledit bras de levier étant apte à osciller par l'intermédiaire d'un vibreur, dans un système de microscopie à force atomique, comprenant les étapes consistant à : faire osciller ledit embout du bras de levier selon une première fréquence d'oscillation correspondant à un fondamental dudit bras de levier ; - produire un signal représentatif de ladite oscillation définir un paramètre correspondant à un seuil de fonctionnement dudit système de microscopie analyser ledit signal et, si ledit signal correspond à un état dudit système supérieur audit seuil de fonctionnement, o faire varier la fréquence d'oscillation dudit embout du bras de levier en changeant la fréquence d'excitation du vibreur selon au moins un harmonique d'ordre supérieur dudit bras de levier. o Sélectionner un desdits harmoniques d'ordre supérieur correspondant pour lequel le signal représentatif de l'oscillation correspond à un état du système inférieur ou égal audit seuil de fonctionnement ; o Faire interagir ledit embout de sonde oscillant audit harmonique supérieur sélectionné pour la mesure des caractéristiques de la surface dudit échantillon.
PCT/FR2006/001406 2005-06-23 2006-06-21 Microscope a force atomique a harmonique superieur WO2006136705A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06764801A EP1896824B1 (fr) 2005-06-23 2006-06-21 Microscope a force atomique a harmonique superieur
DE602006002986T DE602006002986D1 (de) 2005-06-23 2006-06-21 Rasterkraftmikroskop mit oberschwingungen
JP2008517536A JP4960347B2 (ja) 2005-06-23 2006-06-21 より高次の高調波原子間力顕微鏡
US11/922,699 US8234913B2 (en) 2005-06-23 2006-06-21 Higher harmonics atomic force microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0506402A FR2887630B1 (fr) 2005-06-23 2005-06-23 Microscope a force atomique a harmonique superieur
FR0506402 2005-06-23

Publications (1)

Publication Number Publication Date
WO2006136705A1 true WO2006136705A1 (fr) 2006-12-28

Family

ID=35241257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001406 WO2006136705A1 (fr) 2005-06-23 2006-06-21 Microscope a force atomique a harmonique superieur

Country Status (7)

Country Link
US (1) US8234913B2 (fr)
EP (1) EP1896824B1 (fr)
JP (1) JP4960347B2 (fr)
AT (1) ATE409857T1 (fr)
DE (1) DE602006002986D1 (fr)
FR (1) FR2887630B1 (fr)
WO (1) WO2006136705A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304211A (ja) * 2007-06-05 2008-12-18 Jeol Ltd カンチレバの自動チューニング方法
US7979916B2 (en) 2008-05-23 2011-07-12 Bede Pittenger Preamplifying cantilever and applications thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051556A (ja) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc 光学式変位検出機構及びそれを用いた表面情報計測装置
US7856866B2 (en) * 2007-09-06 2010-12-28 University Of Maryland Method of operating an atomic force microscope in tapping mode with a reduced impact force
JP5553926B2 (ja) * 2009-02-10 2014-07-23 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡における探針とサンプルの近接方法
JP5340119B2 (ja) * 2009-02-10 2013-11-13 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡における探針とサンプルの近接方法
US20110041224A1 (en) * 2009-08-06 2011-02-17 Purdue Research Foundation Atomic force microscope including accelerometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006593A (en) * 1995-12-06 1999-12-28 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method using cantilever to measure physical properties

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353519B2 (ja) * 1995-02-07 2002-12-03 松下電器産業株式会社 力勾配検出方法、情報再生方法、情報再生装置及び情報記録再生装置
JPH1054835A (ja) * 1996-08-12 1998-02-24 Jeol Ltd カンチレバ加振装置
JP3484429B2 (ja) * 2001-06-11 2004-01-06 株式会社リコー 力顕微鏡
JP2003065935A (ja) * 2002-07-26 2003-03-05 Matsushita Electric Ind Co Ltd 非接触原子間力顕微鏡、磁気力顕微鏡、および静電気力顕微鏡
JP3986944B2 (ja) * 2002-11-08 2007-10-03 株式会社ミツトヨ 加振型センサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006593A (en) * 1995-12-06 1999-12-28 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method using cantilever to measure physical properties

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SAHIN O ET AL: "Harmonic cantilevers for nanomechanical, sensing of elastic properties", TRANSDUCERS, SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS, 12TH INNATIONAL CONFERENCE ON, 2003, PISCATAWAY, NJ, USA,IEEE, vol. 2, 9 June 2003 (2003-06-09), pages 1124 - 1127, XP010647828, ISBN: 0-7803-7731-1 *
SAHIN O ET AL: "Resonant harmonic response in tapping-mode atomic force microscopy", PHYSICAL REVIEW B (CONDENSED MATTER AND MATERIALS PHYSICS) APS THROUGH AIP USA, vol. 69, no. 16, 15 April 2004 (2004-04-15), pages 165416-1 - 165416-9, XP002355047, ISSN: 0163-1829 *
SCHIENER J ET AL: "Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control", REVIEW OF SCIENTIFIC INSTRUMENTS AIP USA, vol. 75, no. 8, August 2004 (2004-08-01), pages 2564 - 2568, XP002355046, ISSN: 0034-6748 *
STARK ROBERT W ET AL: "Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 74, no. 22, 31 May 1999 (1999-05-31), pages 3296 - 3298, XP012022803, ISSN: 0003-6951 *
YAMANAKA K ET AL: "Ultrasonic atomic force microscope with overtone excitation of cantilever", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, TOKYO, JP, vol. 35, no. 6B, June 1996 (1996-06-01), pages 3787 - 3792, XP002338677, ISSN: 0021-4922 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304211A (ja) * 2007-06-05 2008-12-18 Jeol Ltd カンチレバの自動チューニング方法
US7979916B2 (en) 2008-05-23 2011-07-12 Bede Pittenger Preamplifying cantilever and applications thereof

Also Published As

Publication number Publication date
ATE409857T1 (de) 2008-10-15
JP2008544270A (ja) 2008-12-04
EP1896824A1 (fr) 2008-03-12
FR2887630A1 (fr) 2006-12-29
EP1896824B1 (fr) 2008-10-01
US8234913B2 (en) 2012-08-07
FR2887630B1 (fr) 2008-01-11
DE602006002986D1 (de) 2008-11-13
US20080223120A1 (en) 2008-09-18
JP4960347B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
EP1896824B1 (fr) Microscope a force atomique a harmonique superieur
JP6691272B2 (ja) 化学的撮像用の原子間力顕微鏡赤外線分光法及び装置
Hsu et al. A nonoptical tip–sample distance control method for near‐field scanning optical microscopy using impedance changes in an electromechanical system
EP2567244B1 (fr) Procedes de mesure et de modification de surface par microscopie a sonde locale fonctionnant en mode continu curviligne, microscope a sonde locale et dispositif permettant leurs mises en oeuvre
EP1244113A2 (fr) Procédé d'observation d'échantillons pour la microscopie à force atomique et microscope à force atomique
EP2150799A1 (fr) Sonde pour microscopie a force atomique
FR2708357A1 (fr) Microscope acoustique.
WO2014114860A1 (fr) Microscope à sonde locale multimode, microscope raman exalté par pointe et procédé de régulation de la distance entre la sonde locale et l'échantillon
JP4496350B2 (ja) 原子間力顕微鏡
EP3244169B1 (fr) Systeme de mesure resonant a resolution amelioree
FR2807162A1 (fr) Sonde d'analyse de surface pour un microscope a force atomique et microscope a force atomique la comportant
JP4616759B2 (ja) 原子間力顕微鏡及び原子間力顕微鏡を用いたエネルギー散逸像の形成方法
US10054611B2 (en) Method of controlling frequency modulated-atomic force microscope
WO2018134377A1 (fr) Sonde pour microscope à force atomique équipé d'un résonateur optomécanique, et microscope à force atomique comportant une telle sonde
EP2537037B1 (fr) Mesure du potentiel de surface d'un materiau
FR3071627A1 (fr) Procede de commande d'une sonde
WO2011061334A1 (fr) Capteur de force resonant sensible a des micro-forces
JP2576826B2 (ja) 表面構造を画像化するセンサ
FR3134185A1 (fr) Procede de detection de la force d’interaction pointe-surface sans perte de sensibilite pour augmenter la bande passante d’acquisition des mesures en microscopie a force atomique en mode non-contact
WO2007135345A1 (fr) Microscope a force atomique asservi
Feder An experimental technique for measurements of capillary waves
WO2021020111A1 (fr) Dispositif de mesure, microscope à force atomique et procédé de mesure
FR2911188A1 (fr) Procede et systeme mettant en oeuvre un element oscillant pour determiner des caracteristiques physiques d'un produit
Bosseboeuf et al. In-plane vibration measurement of microdevices by the knife-edge technique in reflection mode
FR3119024A1 (fr) Dispositif de mesure et/ou de modification d’une surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006764801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008517536

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11922699

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006764801

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2006764801

Country of ref document: EP