WO2006136072A1 - Procédé pour traiter une panne de canal dans un réseau optique automatiquement commuté - Google Patents
Procédé pour traiter une panne de canal dans un réseau optique automatiquement commuté Download PDFInfo
- Publication number
- WO2006136072A1 WO2006136072A1 PCT/CN2006/000317 CN2006000317W WO2006136072A1 WO 2006136072 A1 WO2006136072 A1 WO 2006136072A1 CN 2006000317 W CN2006000317 W CN 2006000317W WO 2006136072 A1 WO2006136072 A1 WO 2006136072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- alarm
- node
- information
- network
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/14—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0081—Fault tolerance; Redundancy; Recovery; Reconfigurability
Definitions
- the present invention relates to an automatic switched optical network technology, and in particular, to a method for processing a channel fault in an automatically switched optical network.
- the self-healing ability of the network is the key to ensuring that the business is as unaffected as possible under abnormal network conditions.
- the traditional network mainly relies on the protection switching capability of the ring network and the 1+1 and 1:n modes of the service to protect the service in the case of network failure.
- the ASON network adds to the resilience of the service in addition to these protection capabilities of traditional networks.
- the so-called recovery is to reserve resources for the service without prior reservation during the planning period of the network, but to re-establish new services when the network failure occurs.
- the advantage of such recovery is that the utilization of network resources can be greatly improved, and a series of strategies such as segment recovery and preset recovery are adopted in the recovery to improve the recovery speed, and there are many kinds of abnormalities in the network to minimize the business damage.
- the common ones are: fiber break, node failure, node power loss, transmission board failure, service transmission channel failure, node reset, and so on. Due to the unpredictability of these anomalies, the network needs to be able to handle it according to its own ability when an abnormality occurs.
- fiber breaks, node failures, etc. ASON networks have a more mature solution, but there is no perfect solution for channel failures. Most devices do not handle channel (that is, time slot) alarms. The business is actually broken. Therefore, in order to minimize the impact on the service, when the smart device has a channel failure, it needs to recover from the service.
- LMP Link Management Protocol
- LSP Label switching path
- the LMP fault handling process is based on LMP information, including information such as Channel Status, Channel Status ACK, Channel Status Request, Channel Status Response, and port fault status.
- the indication can locate the location of the port failure in the ASON network, where the Channel is currently only for the port level. Take recovery after locating the fault location, such as rerouting, and troubleshoot the link to protect the service.
- the network internal channel fault locating method in the prior art solution is implemented by extending the port-level fault locating method in the LMP protocol to support channel-level faults.
- the object of the present invention is to provide a method for processing a channel fault in an automatic switched optical network, which can quickly and accurately locate a channel fault and trigger a rerouting recovery service, thereby minimizing service damage and The impact of network performance.
- the present invention provides a method for processing a channel failure in an automatically switched optical network, including the following steps:
- the first node determines, according to the alarm information or the alarm message, that the channel alarm is caused by a channel fault
- the first and last nodes use a combination of local detection and message advertisement to determine that the channel failure comes from inside the network;
- the first node initiates a rerouting process for fault location that is identical to the original path.
- the process does not perform cross-configuration and locates the link generated by the channel fault.
- step C further comprises the step after step C:
- the downstream node When the link generated by the channel failure is located, the downstream node sends a rerouting loss to the first node.
- the failure message the message includes link failure information corresponding to the failed channel;
- the first node initiates a second re-routing according to the received failed link information, excluding the failed link, and excluding the currently located channel fault.
- the step A described includes:
- the node After detecting the alarm information, the node sends an alarm message to the first node.
- the first node determines whether the channel alarm is an alarm caused by a channel fault according to the detected alarm information or the type and content of the received alarm message.
- the channel alarm is caused by the channel fault.
- the channel alarm is caused by the channel fault.
- the step B described includes:
- the first and last nodes After determining that the channel alarm is caused by a channel fault, the first and last nodes respectively detect channel alarm information of the forward entrance and the reverse entrance;
- the last node notifies the detected channel alarm information to the first node
- the first node determines whether the channel fault is from inside the network according to whether the channel alarm information detected by the first node and the channel alarm message sent by the last node are received.
- the step B3 specifically includes:
- the first node When the first node does not detect the channel alarm information at the forward port, and receives the channel alarm message sent by the last node about the forward port within a predetermined time, it is determined that the channel failure is from inside the network;
- the head node When the head node detects the channel alarm information at the reverse entry and does not receive the channel alarm message about the reverse entry sent by the last node within a predetermined time, it is determined that the channel failure is from inside the network.
- the step C described specifically includes -
- the channel alarm information detected or received by the first node is sequentially sent to the downstream nodes by signaling, and the alarm information at the entrance of each node is detected and compared with the channel alarm information brought by the signaling.
- the location of the internal channel failure of the network is determined based on the comparison result.
- the step C1 specifically includes:
- the signaling refers to a signaling message based on a resource reservation protocol.
- the subnet is treated as a link consisting of the first and last nodes.
- Figure 1 is a flow chart of the method of the present invention
- Figure 2 is a schematic diagram of the structure of an ASON network in which a channel failure occurs.
- the core idea of the present invention is: When a channel alarm is generated, the first node of the service is first based on the alarm. The information or alarm message determines whether the alarm is caused by the channel fault. If not, the alarm is processed according to the normal port alarm. Otherwise, the fault of the internal network and the external network channel is continued. If the network is faulty, the process ends. Otherwise, The fault is specifically located and excluded.
- the invention uses the combination of local detection and message advertisement to locate the faults inside the network and the external channel of the network through the first and last nodes of the service; the rerouting method is used to specifically locate and eliminate the internal channel faults of the network.
- FIG. 1 The specific implementation manner of the method of the present invention is as shown in FIG. 1 and includes the following steps:
- Step 11 Generate a channel alarm.
- a channel alarm is generated.
- Step 12 Determine if the channel alarm is caused by a channel fault.
- the first node of the service When a channel alarm is generated, the first node of the service first determines whether the alarm is caused by a channel fault. If not, step 13 is performed according to the normal port level alarm; otherwise, step 14 is performed to continue the fault. Positioning outside the network and inside the network.
- each node in the network detects the operation of the fiber between the nodes at any time. In the event of a failure, the node detects the alarm and sends a corresponding alarm message to the first node of the service.
- the node when a fiber break occurs at the forward entrance of a node, when a port fault occurs, the node will detect the port alarm information at the entrance, and the downstream node of the node will detect the channel alarm information, and these nodes will all The detected alarm information is sent to the first node by sending a message;
- the node when a channel fault occurs at the forward entrance of a node, the node will detect the channel alarm information at the entrance, and the downstream node of the node will also detect the channel alarm information, and all the nodes will detect the channel alarm information.
- the alarm information is sent to the first node.
- the first node may determine, according to the detected alarm information or the type and content of the received alarm message, whether the channel alarm is caused by a channel fault or a port fault;
- the first node detects the alarm information, and the alarm information and the received alarm message have both a port alarm and a channel alarm, and the information in the alarm information and the alarm message match, Indicates that the channel alarm is caused by a port fault.
- the channel alarm is caused by the port fault.
- the first node detects the alarm information, and the alarm information and the received alarm message both indicate that the channel alarm is matched, and the information in the alarm information matches the information in the alarm message, it indicates that the channel alarm is caused by the channel fault. ;
- the channel alarm is caused by the channel fault.
- Step 13 Perform port troubleshooting.
- Step 14 Determine if the channel fault is coming from inside the network.
- the first and last nodes of the service continue to locate the internal fault of the network and the external channel of the network by using a combination of local detection and message advertisement.
- the first and last nodes perform the fault location of the internal network and the external channel of the network.
- the specific method is as follows: When it is determined that there is a channel fault, the first node first detects whether there is a channel alarm in the forward entrance of the network, and if so, the channel fault is considered to be from the first The external network before the node (there is no positioning and troubleshooting), otherwise, the alarm of the reverse entry is continuously detected;
- step 16 perform step 16 to continue the specific positioning of the channel fault
- step 15 is executed to end the process.
- the end node While the head node detects the channel alarm, the end node also performs the detection of the ramp alarm. The last node first detects whether there is a channel alarm in the reverse entry. If so, the last node promptly reports the network externally. The alarm information is sent to the first node to determine that the channel fault is from outside the network, and step 15 is performed to end the process described in the method;
- the last node does not detect the channel alarm in the reverse port, the message notification processing is not performed, and the channel alarm is continuously detected in the forward port. If yes, the last node promptly reports the internal alarm information of the network to the first node, and determines If the channel fault is from the fiber in the network, go to Step 16. Continue to locate the channel fault.
- Step 15 End this process.
- Step 16 Perform the specific positioning of the internal channel fault of the network.
- the first node of the service After the channel fault is determined to be internal to the network, the first node of the service initiates a re-routing process that is identical to the original path. This process is used to locate the fault and does not perform cross-configuration. When the link generated by the channel fault is found, the re-routing failure message is sent to the head node, where the failure message includes the link and node information corresponding to the failed channel.
- the method for relocating the internal channel fault of the network by using the rerouting method is specifically as follows:
- the channel alarm information detected or received by the first node is sequentially sent to the downstream nodes by signaling, and the alarm information at the entrance of each node is detected and compared with the channel alarm information brought by the signaling, and the network is determined according to the comparison result.
- the location of the internal channel fault is sequentially sent to the downstream nodes by signaling, and the alarm information at the entrance of each node is detected and compared with the channel alarm information brought by the signaling, and the network is determined according to the comparison result.
- the signaling firstly brings the channel alarm information detected or received by the service head node to the second node, and detects the alarm condition of the node forward entrance and detects or receives with the first node.
- the channel alarm information that is, the channel alarm information brought by the signaling is compared;
- the channel alarm is detected at the forward entrance of the node, and the alarm information matches the channel alarm information brought by the signaling, it indicates that the channel fault to be located is generated between the first node and the second node;
- the link between the two nodes is normal, and the signaling will be the first.
- the channel alarm information detected or received by the node is brought to the third node, and the fault location is continued according to the above method until the specific location where the fault occurs is located. If the channel fault is from the receiving fiber, the alarm detection and information comparison are performed on the reverse entrance of each node. If the upstream entry of the upstream node has a channel alarm and the alarm information matches the channel alarm information brought by the signaling, the link between the upstream and downstream nodes is normal.
- the upstream node has the alarm information and the first
- the channel alarm information of the node matches, and the downstream node has no alarm information, or the alarm information does not match the channel alarm information of the first node, indicating that the link between the upstream and downstream nodes is abnormal, and the channel to be located is located.
- the fault is from this link.
- a rerouting failure message is returned to the first node, and the link and node information corresponding to the channel are recorded in the message as the failed link corresponding to the channel fault.
- the signaling refers to a signaling message based on RSVP (Resource Reservation Protocol).
- a subnet such as a virtual ring or other type of guard ring
- the subnet is treated as a "link" consisting of the first and last nodes.
- Step 17 Perform channel troubleshooting.
- the head node After the channel fault location is completed, the head node re-initiates the second re-routing according to the received dead link information, and excludes the failed link. The link corresponding to the channel fault is removed. After the re-routing is successful, the service is restored. The channel fault handling process ends.
- the channel fault is located and removed through the above steps, if the first node still detects the channel alarm, indicating that there are other channel faults in the current service, re-distribute and eliminate the next channel fault according to the above steps. Finally, locate and eliminate all channel failures inside the network to achieve the purpose of restoring services.
- the ASON network includes one transmitting fiber and one receiving fiber, and each node from the first node to the last node has an LSP (label switching path), and in the link between the node 3 and the node 4 on the transmitting fiber.
- LSP label switching path
- the first node of the service will not receive other nodes.
- the port alarm message, and the channel alarm message sent by the node 4 and the last node is received, and the alarm information in the two alarm messages is matched, thereby determining that the alarm is not caused by the port failure, but by the channel failure. caused.
- the faults of the external network and the internal channel of the network are located: that is, the first node detects the channel alarms of the forward port A and the reverse port C. At this time, there is no channel alarm on the ports A and C. At the same time, the last node detects the alarms of the forward port B and the reverse port D. It is found that there is an alarm on the #1 channel of the forward port B, and the alarm information is sent to the head node in time. Since there is no alarm at the forward entrance A and there is a channel-level alarm at the forward entrance B, the first node determines that the fault of the channel comes from inside the network.
- the first node initiates the fault location and troubleshooting process:
- the first node initiates a re-routing process that is completely consistent with the original path.
- the process is used for fault location, and the intermediate nodes do not perform cross-configuration.
- the process of specifically locating the channel failure is as follows: the alarm information of the forward entry B sent by the last node received by the first node is brought to the node 2 through the RSVP message, and the alarm condition of the forward entrance of the node 2 is detected, and the RSVP message is taken with The alarm information is compared. Since node 2 has no alarm at the forward entrance, the link between the first node and node 2 is normal.
- the alarm information to be located is continuously brought to the node 4 through the RSVP message, and the alarm condition of the node 4 to the entrance is detected, and the alarm information is compared. It is found that the #1 channel of the node 4 has an alarm and matches the alarm information brought by the RSVP message, and then it is judged that the channel failure is from the link between the node 3 and the node 4. Therefore, an RSVP error message is returned to the first node, indicating that the rerouting fails.
- the link and node information corresponding to the #1 channel are recorded in the message as the failed link corresponding to the channel failure.
- the first node After the location of the fault is rectified, the first node re-initiates the re-routing and eliminates the failed link. After the re-routing is successful, the service is restored.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Optical Communication System (AREA)
Description
自动交换光网络中通道故障的处理方法 技术领域
本发明涉及自动交换光网络技术, 尤其涉及一种自动交换光网络中通道 故障的处理方法。
自动交 换光网络)的出现不是偶然的,它的兴起可以归结为 Internet快速发展带来的 巨大冲击, 运营商提供新型增值业务时所面临的挑战, 以及探索未来经济有 效组网方式的需要。
近年来, 随着信息化进程的加快, 数据业务在骨干网上持续爆炸性增长, 尤其是对 IP业务的需求激增。 随着大量而丰富业务的提供, 业务的可靠性即 业务在网络异常情况下尽量不受影响的要求便成为运营商首要关注的问题。
网络的自愈能力便是保证业务在网络异常情况下尽量不受影响的关键。 在传统网络中, 主要依靠环网的保护倒换能力以及业务的 1+1, 1: n的方式 实现网络故障情况下业务的保护。 ASON 网络在沿用了传统网络的这些保护 能力外还增加了业务的恢复能力。 所谓的恢复就是在网络的规划时期不事先 对业务进行保护资源的预留, 而是在网络故障发生时才重新建立新的业务。 这样恢复的优点在于可以大大提高网络资源的利用率, 在恢复中采取一系列 的策略如区段恢复、 预置恢复等方法提高恢复的速度, 尽量使业务损伤降到 网络中的异常有很多种情况, 常见的有: 光纤断、 节点故障、 节点掉电、 传输单板故障、 业务传输通道故障、 节点复位等。 这些异常由于发生的不可 预测性, 均需要网络在异常发生时能依靠自身的能力处理。 对于光纤断、 节 点故障等, ASON 网络都有较成熟的方案解决, 但对通道故障而言, 尚没有 比较完善的解决方法, 多数设备对于通道(也就是时隙)告警没有进行处理, 此时业务实际上是中断的。 因此为了尽量减少对业务的影响, 当智能设备存 在通道故障时需要针对业务进行恢复。
LMP (Link Management Protocol, 链路管理协议) 有专门的链路故障信
息定位机制: 由下游检测到数据链路故障的节点发起, 通过通道故障消息以 及回复消息的交互, 沿着 LSP (标记交换路径) 向上游逐跳检测链路状态, 直到定位到发生故障的链路。
LMP故障处理过程基于 LMP信息, 包括 Channel Status (通道状态)、 Channel Status ACK (通道状态应答)、 Channel Status Request (通道状态请求)、 Channel Status Response (通道状态响应) 等信息的交互以及端口故障状态的 指示, 可以定位出 ASON网络中端口故障的位置, 这里的 Channel (通道) 目前还只是针对端口级别的。 在定位出故障位置后采取恢复, 如重路由的方 式, 排除故障链路, 以保护业务。
目前,现有技术方案中的网络内部通道故障定位方法是通过扩展 LMP协 议中的端口级别的故障定位方法, 使其支持到通道级别的故障来实现的。
但是, 采用上述方案进行通道故障定位时, 由于信息交互量非常大, 不 但会影响定位的速度和准确性, 导致故障排除的效率低下, 业务损伤严重, 同时也会降低设备的工作能力, 从而影响网络性能。
发明内容
鉴于上述现有技术所存在的问题, 本发明的目的是提供一种自动交换光 网络中通道故障的处理方法, 能够快速、 准确地定位通道故障并触发重路由 恢复业务, 尽量降低业务损伤和对网络性能的影响。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种自动交换光网络中通道故障的处理方法, 包括如下步 骤:
A、 产生通道告警时, 首节点根据告警信息或告警消息确定该通道告警 是由通道故障引起;
B、首、末节点利用本地检测和消息通告结合的方式确定该通道故障来自 网络内部;
C、首节点发起一次与原路径完全一致的用于进行故障定位的重路由建路 过程, 该过程不进行交叉的配置工作, 定位出通道故障产生的链路。
进一步, 该方法在步骤 C之后进一步包括步骤:
D、 当定位出通道故障产生的链路时, 下游节点向首节点发送重路由失
败消息, 该消息中包含失效通道对应的链路失效信息;
E、首节点根据收到的失效链路信息,在排除该失效链路的条件下发起第 二次重路由, 排除当前定位出的通道故障。
所述的步骤 A包括:
Al、 节点检测到告警信息后, 向首节点发送告警消息;
A2、 首节点根据自身检测到的告警信息或收到的告警消息的类型及内 容, 确定所述通道告警是否为由通道故障引起的告警。
所述的步骤 A2具体包括:
当首节点检测到告警信息, 且该告警信息和收到的告警消息均表明是通 道告警, 且该告警信息与告警消息中的信息均相匹配时, 则表明所述通道告 警是由通道故障引起的;
当首节点没有检测到告警信息, 但收到的告警消息均表明是通道告警, 且告警消息中的信息均相匹配时,则表明所述通道告警是由通道故障引起的。
所述的步骤 B包括:
Bl、 确定所述通道告警是由通道故障引起后, 首、 末节点分别检测正向 入口、 反向入口的通道告警信息;
B2、 末节点将检测到的通道告警信息发消息通告给首节点;
B3、 首节点根据自身是否检测到的通道告警信息及是否收到的末节点发 送的通道告警消息确定通道故障是否来自网络内部。
所述的步骤 B3具体包括:
当首节点在正向入口没有检测到通道告警信息, 而且在预定的时间内收 到末节点发送的关于正向入口的通道告警消息时, 则确定所述通道故障来自 网络内部;
当首节点在反向入口检测到通道告警信息, 而且在预定的时间内没有收 到末节点发送的关于反向入口的通道告警消息时, 则确定所述通道故障来自 网络内部。
所述的步骤 C具体包括-
Cl、 将首节点检测到或接收到的通道告警信息通过信令依次带到下游各 节点,检测各节点入口处的告警信息并与信令带来的通道告警信息进行比较,
根据比较结果确定所述网络内部通道故障的位置。
所述的步骤 C1具体包括-
Cll、当网络内部通道故障来自发光纤时,则依次对各个节点的正向入口 进行告警检测及信息比较;
C12、当某个节点在正向入口没有检测到通道告警信息或所检测到的通道 告警信息与信令带来的通道告警信息不相匹配, 而其下游节点在正向入口检 测到通道告警信息且所检测到的通道告警信息与信令带来的通道告警信息相 匹配时, 则表明该上、 下游节点之间的链路异常, 所述网络内部通道故障来 自该链路。
所述的步骤 C1具体包括:
C13、当网络内部通道故障来自收光纤时,则依次对各个节点的反向入口 进行告警检测及信息比较;
C14、当某个节点在反向入口检测到通道告警信息且所检测到的通道告警 信息与信令带来的通道告警信息相匹配, 而其下游节点在反向入口没有检测 到通道告警信息或所检测到的通道告警信息与信令带来的通道告警信息不相 匹配时, 则表明该上、 下游节点之间的链路异常, 所述网络内部通道故障来 自该链路。
所述的信令是指基于资源预留协议的信令消息。
另外, 在通道故障定位过程中, 如果链路中间嵌有子网, 则将该子网作 为一段由首、 末节点组成的链路进行处理。
由上述本发明提供的技术方案可以看出, 采用本发明提供的方案进行通 道故障定位时, 信息交互量不大, 能够提高通道故障定位的速度和准确性, 从而提高了故障排除的效率, 尽量降低业务损伤, 同时对网络性能的影响也 很小。
附图说明
图 1为本发明所述方法的流程图;
图 2为发生通道故障的 ASON网络结构示意图。
具体实施方式
本发明的核心思想是: 当产生通道告警时, 业务的首节点首先根据告警
信息或告警消息判断是否由通道故障引起的告警, 如果不是, 则按照普通的 端口告警处理, 否则继续进行网络内部和网络外部通道故障的定位, 如果是 网络外部故障, 则结束本流程, 否则对故障进行具体定位并排除。
本发明通过业务的首、 末节点利用本地检测和消息通告结合的方法进行 网络内部和网络外部通道故障的定位; 采用重路由的方式进行网络内部通道 故障的具体定位及排除。
为对本发明有进一步的了解, 下面将结合附图对本发明所述的方法进行 详细的说明。
本发明所述方法的具体实现方式如图 1所示, 包括以下步骤:
步骤 11 : 产生通道告警。
ASON 网络中发生故障时, 不论是端口故障还是通道故障, 都会产生通 道告警。
步骤 12: 判断通道告警是否由通道故障引起的。
当产生通道告警时, 业务的首节点首先判断该告警是否由通道故障引起 的, 如果不是, 则执行步骤 13, 按照普通的端口级告警的方式处理; 否则, 执行步骤 14, 继续对该故障进行网络外部和网络内部的定位。
在实际应用中,网络中的各个节点会随时检测节点之间光纤的工作情况, 一旦发生故障, 节点便会检测到告警信息并向业务的首节点发送相应的告警 消息。
比如当某个节点的正向入口处发生光纤中断, 产生端口故障时, 该节点 在该入口处会检测到端口告警信息, 同时, 该节点的下游节点会检测到通道 告警信息, 这些节点均将检测到的告警信息发消息通告给首节点;
比如当某个节点的正向入口处发生通道故障时, 该节点在该入口处会检 测到通道告警信息, 同时, 该节点的下游节点也会检测到通道告警信息, 这 些节点均将检测到的告警信息发消息通告给首节点。
所以, 首节点可以根据自身检测到的告警信息或接收到的告警消息的类 型和内容来确定该通道告警是通道故障引起的还是端口故障引起的;
如果首节点检测到告警信息, 且该告警信息和接收到的告警消息中既有 端口告警又有通道告警, 且该告警信息和告警消息中的信息均相匹配时, 则
表明该通道告警是由端口故障引起的;
如果首节点没有检测到告警信息, 但是接收到的告警消息中既有端口告 警又有通道告警, 且这些告警消息中的信息均相匹配时, 则表明该通道告警 是由端口故障引起的。
如果首节点检测到告警信息, 且该告警信息和收到的告警消息均表明是 通道告警, 且该告警信息与告警消息中的信息均相匹配时, 则表明该通道告 警是由通道故障引起的;
如果首节点没有检测到告警信息, 但是接收到的告警消息均表明是通道 告警, 且这些告警消息中的信息均相匹配时, 则表明该通道告警是由通道故 障引起的。
步骤 13 : 进行端口故障处理。
如果通道告警是由端口故障弓 I起的, 则采用现有技术对该端口故障进行 处理。
步骤 14: 判断通道故障是否来自网络内部。
当确定通道告警是由通道故障引起后, 业务的首、 末节点利用本地检测 和消息通告结合的方式继续对该故障进行网络内部和网络外部通道故障的定 位。
首、 末节点进行网络内部和网络外部通道故障定位的方法具体为: 当确定有通道故障时, 首节点首先检测其网外来的正向入口是否有通道 告警, 如果有, 则认为通道故障来自首节点之前的外部网络 (则不进行任何 定位和排除处理), 否则, 继续检测反向入口的告警情况;
如果反向入口有告警, 则等待末节点检测网络外部告警的消息通告; 如果首节点在预定的时间内没有收到末节点发送的网络外部告警的消息 通告, 则认为该通道故障来自该网络内部的收光纤中, 执行步骤 16, 继续进 行通道故障的具体定位;
如果首节点在预定的时间内收到末节点发送的网络外部告警的消息通 告, 则认为该通道故障来自该网络外部, 执行步骤 15, 结束本流程。
在首节点检测通道告警的同时, 末节点也在进行逋道告警的检测。 末节 点首先检测反向入口是否有通道告警, 如果有, 末节点及时将该网络外部告
警信息发消息通告给首节点, 确定通道故障来自网络外部, 则执行步骤 15, 结束本方法所述流程;
如果末节点在反向入口没有检测到通道告警, 则不进行消息通告处理, 继续检测正向入口是否有通道告警, 如果有, 末节点及时将该网络内部告警 信息发消息通告给首节点, 确定通道故障来自网络内部的发光纤中, 则执行 步骤 16, 继续进行通道故障的具体定位。
步骤 15 : 结束本流程。
当定位出通道故障来自网络外部时, 则结束本方法所述故障定位及排除 流程。
步骤 16: 进行网络内部通道故障的具体定位。
当确定通道故障来自网络内部后, 业务的首节点发起一次与原路径完全 一致的重路由建路过程, 该过程用来进行故障定位, 不进行交叉的配置工作。 当找到通道故障产生的链路时, 向首节点发送此次重路由失败消息, 该失败 消息中包含失效通道对应的链路和节点信息。
利用重路由方式进行网络内部通道故障定位的方法具体为:
将首节点检测到或接收到的通道告警信息通过信令依次带到下游各节 点, 检测各节点入口处的告警信息并与信令带来的通道告警信息进行比较, 根据比较结果确定所述网络内部通道故障的位置。
如果通道故障来自发光纤, 则信令首先将业务首节点检测到或接收到的 通道告警信息带到第二节点, 同时检测该节点正向入口处的告警情况并与首 节点检测到或接收到的通道告警信息, 即信令带下来的通道告警信息进行比 较;
如果在该节点正向入口处检测到了通道告警, 并且该告警信息与信令带 下来的通道告警信息相匹配, 则说明所要定位的通道故障产生自首节点和第 二节点之间;
如果该节点正向入口处无通道告警; 或者虽然有通道告警, 但是该告警 信息与信令带下来的通道告警信息不匹配, 则说明这两个节点之间的链路正 常, 信令将首节点检测到或接收到的通道告警信息带到第三节点, 按照上述 方法继续进行故障定位, 直到定位出产生故障的具体位置。
如果通道故障来自收光纤, 则对各个节点的反向入口进行告警检测及信 息比较。 如果上、 下游节点的反向入口有通道告警且告警信息与信令带下来 的通道告警信息相匹配时, 则说明该上、 下游节点之间的链路正常; 如果上 游节点的告警信息与首节点的通道告警信息相匹配,而下游节点无告警信息, 或虽有告警信息但与首节点的通道告警信息不相匹配, 则说明该上、 下游节 点之间的链路异常, 所要定位的通道故障来自该链路。
当定位出通道故障产生自某两个节点之间时, 向首节点返回重路由失败 消息, 该消息中记录了该通道对应的链路和节点信息, 作为通道故障对应的 失效链路。
所述信令是指基于 RSVP(Resource Reservation Protocol, 资源预留协议) 的信令消息。
在故障定位过程中, 如果链路中间嵌有子网, 例如虚拟环或其它类型的 保护环, 则将该子网看成是一段由首、 末节点组成的 "链路"进行处理。
步骤 17: 进行通道故障排除。
当通道故障定位完成后, 首节点根据收到的失效链路信息, 重新发起第 二次重路由, 并排除该失效链路。 这样有通道故障对应的链路被排除出去, 重路由成功后, 进行业务的恢复, 所述通道故障处理流程结束。
通过上述步骤进行了一个通道故障的定位及排除后, 如果首节点仍然检 测到通道告警, 表明当前业务上还有其它的通道故障, 则重新按照上述步骤 进行下一个通道故障的定位及排除处理, 最终定位并排除网络内部所有的通 道故障, 实现恢复业务的目的。
下面将结合附图 2, 举例说明本发明所述方法的具体应用。
如图 2所示, ASON网络包括一条发光纤和一条收光纤, 首节点到末节 点的各个节点上有 LSP (标记交换路径), 在发光纤上节点 3和节点 4之间的 链路中 # 1通道发生故障, 此时 LSP上的业务中断。 下面具体说明 # 1通道 故障的处理过程:
当网络中的节点 3和节点 4之间的 # 1通道发生故障时, 产生通道告警 后, 首先按照上述步骤 12的方式判断该告警是否由通道故障引起的。
由于该告警是通道故障引起的, 因此, 业务的首节点不会收到其它节点
的端口告警消息, 而会收到节点 4和末节点发送的通道告警消息, 并且这两 个告警消息中的告警信息相匹配,从而判断出该告警不是由端口故障引起的, 而是由通道故障引起的。
然后按照上述步骤 14的方式进行网络外部和网络内部通道故障的定位: 即首节点检测正向入口 A和反向入口 C的通道告警情况,此时入口 A和 C上均无通道告警。 同时末节点检测正向入口 B和反向入口 D的告警情况, 发现正向入口 B的 # 1通道上有告警, 于是及时将该告警信息发消息通告给 首节点。 由于正向入口 A处无告警, 而正向入口 B处有通道级告警, 因此首 节点判断出该通道故障来自网络内部。
最后首节点发起故障定位和故障排除流程:
按照上述步骤 16,首节点发起一次与原路径完全一致的重路由建路过程, 该过程用来进行故障定位, 经过中间的节点不进行交叉的配置工作。 具体定 位通道故障的过程如下- 将首节点收到的末节点发送的正向入口 B的告警信息通过 RSVP消息带 到节点 2, 同时检测节点 2正向入口处的告警情况, 并与 RSVP消息带下来 的告警信息进行比较, 由于节点 2正向入口处无告警, 因此首节点和节点 2 之间的链路正常;
继续将所要定位的告警信息通过 RSVP消息带到节点 3, 检测节点 3正 向入口处的告警情况, 并进行告警信息比较, 同样由于节点 3正向入口处无 告警, 因此节点 2和节点 3之间的链路正常;
继续将所要定位的告警信息通过 RSVP消息带到节点 4, 检测节点 4正 向入口处的告警情况, 并进行告警信息比较。 发现节点 4的 # 1通道有告警, 并且与 RSVP消息带下来的告警信息相匹配, 于是判断出该通道故障来自节 点 3和节点 4之间的链路。 于是向首节点返回一个 RSVP错误消息, 表明此 次重路由失败, 该消息中记录了 # 1 通道对应的链路和节点信息, 作为通道 故障对应的失效链路。
定位出通道故障的具体位置后, 按照步骤 17的方式, 首节点重新发起重 路由, 同时排除找到的失效链路, 重路由成功后, 进行业务的恢复。
通过上述方法, 能够准确、 及时地定位出通道故障的具体位置, 从而实
现了快速排除故障, 尽量降低业务损伤的目的, 同时对设备的工作能力和网 络性能的影响也很小。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应该以权利要求的保护范围为准。
Claims
1. 一种自动交换光网络中通道故障的处理方法, 包括如下步骤:
A、 产生通道告警时, 首节点根据告警信息或告警消息确定该通道告警 是由通道故障引起;
B、首、末节点利用本地检测和消息通告结合的方式确定该通道故障来自 网络内部;
C、首节点发起一次与原路径完全一致的用于进行故障定位的重路由建路 过程, 该过程不进行交叉的配置工作, 定位出通道故障产生的链路。
2. 根据权利要求 1所述的方法, 其特征在于, 在步骤 C之后进一步包括:
D、 在定位出通道故障产生的链路后, 下游节点向首节点发送重路由失 败消息, 该消息中包含失效通道对应的失效链路信息;
E、首节点根据收到的失效链路信息,在排除该失效链路的条件下发起第 二次重路由, 排除当前定位出的通道故障。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述的步骤 A包括: Al、 节点检测到告警信息后, 向首节点发送告警消息;
A2、 首节点根据自身检测到的告警信息或收到的告警消息的类型及内 容, 确定所述通道告警是否为由通道故障引起的告警。
4. 根据权利要求 3所述的方法, 其特征在于, 所述的步骤 A2具体包括: 当首节点检测到告警信息, 且该告警信息和收到的告警消息均表明是通 道告警, 且该告警信息与告警消息中的信息均相匹配时, 则表明所述通道告 警是由通道故障引起的;
当首节点没有检测到告警信息, 但收到的告警消息均表明是通道告警, 且告警消息中的信息均相匹配时,则表明所述通道告警是由通道故障引起的。
5. 根据权利要求 1或 2所述的方法, 其特征在于, 所述的步骤 B包括- Bl、 确定所述通道告警是由通道故障引起后, 首、 末节点分别检测正向 入口、 反向入口的通道告警信息;
B2、 末节点将检测到的通道告警信息发消息通告给首节点;
B3、 首节点根据自身是否检测到的通道告警信息及是否收到的末节点发
送的通道告警消息确定通道故障是否来自网络内部。
6. 根据权利要求 5所述的方法, 其特征在于, 所述的步骤 B3具体包括- 当首节点在正向入口没有检测到通道告警信息, 而且在预定的时间内收 到末节点发送的关于正向入口的通道告警消息时, 则确定所述通道故障来自 网络内部;
当首节点在反向入口检测到通道告警信息, 而且在预定的时间内没有收 到末节点发送的关于反向入口的通道告警消息时, 则确定所述通道故障来自 网络内部。
7. 根据权利要求 1或 2所述的方法, 其特征在于, 所述的步骤 C具体包括: C 将首节点检测到或接收到的通道告警信息通过信令依次带到下游各 节点,检测各节点入口处的告警信息并与信令带来的通道告警信息进行比较, 根据比较结果确定所述网络内部通道故障的位置。
8. 根据权利要求 7所述的方法, 其特征在于, 所述的步骤 C1具体包括: Cll、当网络内部通道故障来自发光纤时,则依次对各个节点的正向入口 进行告警检测及信息比较;
C12、当某个节点在正向入口没有检测到通道告警信息或所检测到的通道 告警信息与信令带来的通道告警信息不相匹配, 而其下游节点在正向入口检 测到通道告警信息且所检测到的通道告警信息与信令带来的通道告警信息相 匹配时, 则表明该上、 下游节点之间的链路异常, 所述网络内部通道故障来 自该链路。
9. 根据权利要求 7所述的方法, 其特征在于, 所述的步骤 C1具体包括: C13、当网络内部通道故障来自收光纤时,则依次对各个节点的反向入口 进行告警检测及信息比较;
C14、当某个节点在反向入口检测到通道告警信息且所检测到的通道告警 信息与信令带来的通道告警信息相匹配, 而其下游节点在反向入口没有检测 到通道告警信息或所检测到的通道告警信息与信令带来的通道告警信息不相 匹配时, 则表明该上、 下游节点之间的链路异常, 所述网络内部通道故障来 自该链路。
10. 根据权利要求 7所述的方法, 其特征在于, 所述的信令是指基于资源
预留协议的信令消息。
11. 根据权利要求 1至 10任一项所述的方法, 其特征在于, 在通道故障定 位过程中, 如果链路中间嵌有子网, 则将该子网作为一段由首、 末节点组成 的链路进行处理。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200680013184.9A CN101164260B (zh) | 2005-06-23 | 2006-03-03 | 自动交换光网络中通道故障的处理方法 |
AT06721993T ATE440412T1 (de) | 2005-06-23 | 2006-03-03 | Verfahren zum bearbeiten eines kanalausfalls in einem automatisch vermittelten optischen netzwerk |
DE602006008622T DE602006008622D1 (de) | 2005-06-23 | 2006-03-03 | Verfahren zum bearbeiten eines kanalausfalls in einem automatisch vermittelten optischen netzwerk |
EP06721993A EP1903693B1 (en) | 2005-06-23 | 2006-03-03 | A method for processing channel failure in automatically switched optical network |
US11/955,776 US7773877B2 (en) | 2005-06-23 | 2007-12-13 | Method for handling channel failures in an automatically switched optical network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510077397.5 | 2005-06-23 | ||
CNB2005100773975A CN100395994C (zh) | 2005-06-23 | 2005-06-23 | 自动交换光网络中通道故障的处理方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/955,776 Continuation US7773877B2 (en) | 2005-06-23 | 2007-12-13 | Method for handling channel failures in an automatically switched optical network |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006136072A1 true WO2006136072A1 (fr) | 2006-12-28 |
Family
ID=37570090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2006/000317 WO2006136072A1 (fr) | 2005-06-23 | 2006-03-03 | Procédé pour traiter une panne de canal dans un réseau optique automatiquement commuté |
Country Status (6)
Country | Link |
---|---|
US (1) | US7773877B2 (zh) |
EP (1) | EP1903693B1 (zh) |
CN (2) | CN100395994C (zh) |
AT (1) | ATE440412T1 (zh) |
DE (1) | DE602006008622D1 (zh) |
WO (1) | WO2006136072A1 (zh) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100395994C (zh) * | 2005-06-23 | 2008-06-18 | 华为技术有限公司 | 自动交换光网络中通道故障的处理方法 |
CN100512154C (zh) * | 2007-03-29 | 2009-07-08 | 华为技术有限公司 | 一种提高多层网络业务恢复性能的方法及装置 |
US8484611B2 (en) * | 2007-10-15 | 2013-07-09 | International Business Machines Corporation | Method and system for simplified assembly of information processing applications |
CN101150744B (zh) * | 2007-10-23 | 2010-08-04 | 中兴通讯股份有限公司 | 测试电信号交叉功能的方法 |
CN100589416C (zh) * | 2007-10-30 | 2010-02-10 | 中兴通讯股份有限公司 | 一种自动交换光网络系统中业务产生告警时的维护方法 |
CN101174899B (zh) * | 2007-11-26 | 2010-12-08 | 中兴通讯股份有限公司 | 用于ason网络中的业务保护与恢复的自动测试方法 |
WO2009080124A1 (en) * | 2007-12-21 | 2009-07-02 | Telecom Italia S.P.A. | Protecting an ethernet network having a ring architecture |
US8312426B2 (en) * | 2008-01-07 | 2012-11-13 | International Business Machines Corporation | Method and system for simplified service composition in web environment |
US8245122B2 (en) * | 2008-01-08 | 2012-08-14 | International Business Machines Corporation | Method and system for modeling user requests, applications and components used in dynamic application assembly |
US8239828B2 (en) * | 2008-01-08 | 2012-08-07 | International Business Machines Corporation | Method of recovering from software failures using replanning |
CN101227751B (zh) * | 2008-01-30 | 2010-12-29 | 中兴通讯股份有限公司 | 一种在ason中实现传送资源告警模拟的方法 |
US8640149B2 (en) * | 2008-03-26 | 2014-01-28 | International Business Machines Corporation | Method and apparatus for dynamic web service composition and invocation |
US8949140B2 (en) * | 2008-04-21 | 2015-02-03 | International Business Machines Corporation | Method and system for dynamic software reconfiguration triggered by component- or system- initiated events |
US8898624B2 (en) * | 2008-05-05 | 2014-11-25 | International Business Machines Corporation | Method and apparatus for simplified assembly of parametric information processing applications |
CN101316447B (zh) * | 2008-07-10 | 2011-07-13 | 中兴通讯股份有限公司 | 一种自动交换光网络中业务建立方法 |
CN101631344B (zh) | 2008-07-16 | 2011-10-05 | 华为技术有限公司 | 隧道管理方法、装置及通信系统 |
CN101325456B (zh) * | 2008-07-24 | 2011-10-26 | 中兴通讯股份有限公司 | 一种光网络中处理te链路降级的方法 |
CN101753207B (zh) * | 2008-12-16 | 2013-08-28 | 华为技术有限公司 | 光纤链路故障识别方法、装置及系统 |
CN101790110B (zh) * | 2009-01-22 | 2012-12-19 | 中兴通讯股份有限公司 | 一种协调自动保护倒换操作与恢复操作的装置及方法 |
WO2011027361A2 (en) * | 2009-09-07 | 2011-03-10 | Tejas Networks Limited | A method and system for ring protection switching |
CN101707537B (zh) * | 2009-11-18 | 2012-01-25 | 华为技术有限公司 | 故障链路定位方法、告警根因分析方法及设备、系统 |
US8699873B2 (en) * | 2010-05-13 | 2014-04-15 | Fujitsu Limited | Identifying fault locations in a network |
CN102468885A (zh) * | 2010-11-17 | 2012-05-23 | 中兴通讯股份有限公司 | 链路故障处理方法及装置 |
JP5229696B2 (ja) * | 2011-03-04 | 2013-07-03 | 日本電気株式会社 | 情報処理システム、情報処理装置、その制御方法、及びその制御プログラム、通信環境監視復旧方法 |
EP2929295A4 (en) * | 2012-12-07 | 2016-07-27 | Nokia Technologies Oy | MANAGEMENT OF POSITIONING RESOURCES |
US9622040B2 (en) | 2012-12-07 | 2017-04-11 | Nokia Technologies Oy | Handling packet data units |
US9286032B2 (en) | 2013-03-15 | 2016-03-15 | International Business Machines Corporation | Automated software composition |
CN104521190B (zh) * | 2013-07-26 | 2017-10-17 | 华为技术有限公司 | 一种预留中继资源的方法及装置 |
JP2017038303A (ja) * | 2015-08-12 | 2017-02-16 | 富士通株式会社 | 受信装置及び警報情報の転送方法 |
CN108429625B (zh) * | 2017-02-13 | 2021-10-15 | 中兴通讯股份有限公司 | 一种实现故障诊断的方法及装置 |
CN113365165B (zh) * | 2021-06-22 | 2022-07-08 | 烽火通信科技股份有限公司 | 一种传送网重路由业务动态切换的方法和设备 |
CN116488724B (zh) * | 2023-06-25 | 2023-09-15 | 成都实时技术股份有限公司 | 一种光纤通信测试方法、介质及应用其的系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1424827A (zh) * | 2003-01-09 | 2003-06-18 | 上海交通大学 | 自动光交换网中的双向通道恢复方法 |
EP1422968A1 (en) * | 2002-11-19 | 2004-05-26 | Alcatel | Failure localization in a transmission network |
EP1463235A1 (en) * | 2003-03-24 | 2004-09-29 | Alcatel | OSPF monitor |
EP1489784A1 (en) * | 2003-06-16 | 2004-12-22 | Alcatel | Restoration in an automatically switched optical transport network |
US20050074236A1 (en) * | 2003-10-07 | 2005-04-07 | Neptec Optical Solutions, Inc. | Optical network monitoring system |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4449247A (en) * | 1980-07-30 | 1984-05-15 | Harris Corporation | Local orderwire facility for fiber optic communication system |
JPH0828680B2 (ja) * | 1987-07-23 | 1996-03-21 | 国際電信電話株式会社 | 双方向光ファイバ通信系の障害点監視方式 |
CA2020784C (en) * | 1989-07-11 | 1994-08-23 | Horoshi Shimizu | Fault locating system capable of quickly locating a fault in a hierarchical communication network |
JP2784080B2 (ja) * | 1990-05-09 | 1998-08-06 | 富士通株式会社 | リングネットワーク及びその障害復旧方法並びにリングネットワークに用いられるノード |
US5296956A (en) * | 1992-07-17 | 1994-03-22 | At&T Bell Laboratories | Performance monitoring and fault location for optical equipment, systems and networks |
US5436750A (en) * | 1993-05-07 | 1995-07-25 | Nec Corporation | Optical repeatered transmission with fault locating capability |
US5636203A (en) * | 1995-06-07 | 1997-06-03 | Mci Corporation | Method and system for identifying fault locations in a communications network |
JP2682517B2 (ja) * | 1995-07-26 | 1997-11-26 | 日本電気株式会社 | 光出力遮断システム |
US5566162A (en) * | 1995-12-07 | 1996-10-15 | Northern Telecom Limited | Method of sectionalizing trouble on telecommunication network connections |
US5771274A (en) * | 1996-06-21 | 1998-06-23 | Mci Communications Corporation | Topology-based fault analysis in telecommunications networks |
US5832196A (en) * | 1996-06-28 | 1998-11-03 | Mci Communications Corporation | Dynamic restoration process for a telecommunications network |
US5768255A (en) * | 1996-06-28 | 1998-06-16 | Mci Communications Corporation | System and method for monitoring point identification |
US5784359A (en) * | 1996-06-28 | 1998-07-21 | Mci Communications Corporation | System and method for unreported trouble isolation |
US6496476B1 (en) * | 1997-03-12 | 2002-12-17 | Worldcom, Inc. | System and method for restricted reuse of intact portions of failed paths |
CA2284184A1 (en) * | 1997-03-12 | 1998-09-17 | Paul T. Baniewicz | Telecommunications network distributed restoration method and system |
US6044064A (en) * | 1997-03-28 | 2000-03-28 | Mci Communications Corporation | Method and system therefor of confining path verification signals within a distributed restoration network |
US6178025B1 (en) * | 1997-12-03 | 2001-01-23 | Nortel Networks Limited | Optical network loss-of-signal detection |
US6278689B1 (en) * | 1998-04-22 | 2001-08-21 | At&T Corp. | Optical cross-connect restoration technique |
US6253339B1 (en) * | 1998-10-28 | 2001-06-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Alarm correlation in a large communications network |
JP3356111B2 (ja) * | 1999-04-22 | 2002-12-09 | 日本電気株式会社 | Wdmネットワーク及びwdmネットワーク用ノード装置 |
US7142505B2 (en) * | 2000-01-04 | 2006-11-28 | At&T Corp. | Method and apparatus for restoring a network |
JP4495321B2 (ja) * | 2000-08-29 | 2010-07-07 | 富士通株式会社 | 光レベル制御方法 |
US7231145B2 (en) * | 2001-01-26 | 2007-06-12 | Tellabs Operations Inc. | Processing of optical performance data in an optical wavelength division multiplexed communication system |
JP4676099B2 (ja) * | 2001-08-06 | 2011-04-27 | 株式会社日立製作所 | 反射モニタ機能を備え反射検出可能な光切替装置、及び反射測定システム |
US7113699B1 (en) * | 2001-08-15 | 2006-09-26 | Ciena Corporation | Fault forwarding in an optical network |
US20040208547A1 (en) * | 2001-12-14 | 2004-10-21 | Boca Photonics Inc. | QoS based protection of mesh-based intelligent optical networks |
US7206287B2 (en) * | 2001-12-26 | 2007-04-17 | Alcatel Canada Inc. | Method and system for isolation of a fault location in a communications device |
JP3578745B2 (ja) * | 2002-01-15 | 2004-10-20 | 株式会社日立製作所 | 光経路設定装置、および、光通信網システム |
IL148811A (en) * | 2002-03-21 | 2007-03-08 | Eci Telecom Ltd | Method of locating faults in optical telecommunication networks |
US6963995B2 (en) * | 2002-04-24 | 2005-11-08 | Mci, Inc. | Network restoration using refreshed switch state tables |
US7155123B2 (en) * | 2002-05-10 | 2006-12-26 | Lucent Technologies Inc. | Method and apparatus for locating faults in an optical network |
US7260324B2 (en) * | 2002-09-11 | 2007-08-21 | Altera Corporation | Automatic optical power management in optical communications system |
US20040120706A1 (en) * | 2002-12-20 | 2004-06-24 | Kerry Johnson | Fault isolation in agile transparent networks |
FR2860369B1 (fr) * | 2003-09-30 | 2006-02-03 | Cit Alcatel | Localisation de points d'entree de flux dans un reseau de communications |
CN100387035C (zh) * | 2003-12-30 | 2008-05-07 | 烽火通信科技股份有限公司 | 一种在格状网中利用共享备用通道进行故障恢复的方法 |
US7499646B2 (en) * | 2004-02-23 | 2009-03-03 | Dynamic Method Enterprises Limited | Fast fault notifications of an optical network |
US7474850B2 (en) * | 2004-02-23 | 2009-01-06 | Dynamic Method Enterprises Limited | Reroutable protection schemes of an optical network |
US7489642B2 (en) * | 2004-04-29 | 2009-02-10 | Alcatel Lucent | Silent datapath failure detection |
US20060274645A1 (en) * | 2005-06-07 | 2006-12-07 | Richard Bradford | Methods and apparatus for error recovery in opaque networks using encrypted error locations |
CN100395994C (zh) * | 2005-06-23 | 2008-06-18 | 华为技术有限公司 | 自动交换光网络中通道故障的处理方法 |
-
2005
- 2005-06-23 CN CNB2005100773975A patent/CN100395994C/zh not_active Expired - Fee Related
-
2006
- 2006-03-03 EP EP06721993A patent/EP1903693B1/en not_active Not-in-force
- 2006-03-03 CN CN200680013184.9A patent/CN101164260B/zh active Active
- 2006-03-03 DE DE602006008622T patent/DE602006008622D1/de active Active
- 2006-03-03 WO PCT/CN2006/000317 patent/WO2006136072A1/zh not_active Application Discontinuation
- 2006-03-03 AT AT06721993T patent/ATE440412T1/de not_active IP Right Cessation
-
2007
- 2007-12-13 US US11/955,776 patent/US7773877B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1422968A1 (en) * | 2002-11-19 | 2004-05-26 | Alcatel | Failure localization in a transmission network |
CN1424827A (zh) * | 2003-01-09 | 2003-06-18 | 上海交通大学 | 自动光交换网中的双向通道恢复方法 |
EP1463235A1 (en) * | 2003-03-24 | 2004-09-29 | Alcatel | OSPF monitor |
EP1489784A1 (en) * | 2003-06-16 | 2004-12-22 | Alcatel | Restoration in an automatically switched optical transport network |
US20050074236A1 (en) * | 2003-10-07 | 2005-04-07 | Neptec Optical Solutions, Inc. | Optical network monitoring system |
Non-Patent Citations (2)
Title |
---|
JAJSZCZYK A.: "Automatically switched optical networks: benefits and requirements", IEEE COMMUNICATION MAGAZINE, vol. 43, no. 2, 1 February 2005 (2005-02-01), pages 10 - S 15, XP011126662, DOI: doi:10.1109/MCOM.2005.1391497 |
MUNOZ R. ET AL.: "Experimental GMPLS fault management for OULSR transport networks", IEEE OPTICAL FIBER COMMUNICATION CONFERENCE 2005, TECHNICAL DIGEST, vol. 3, 6 March 2005 (2005-03-06), pages 504 - 506, XP010831791 |
Also Published As
Publication number | Publication date |
---|---|
CN1885789A (zh) | 2006-12-27 |
US7773877B2 (en) | 2010-08-10 |
CN100395994C (zh) | 2008-06-18 |
EP1903693A1 (en) | 2008-03-26 |
CN101164260A (zh) | 2008-04-16 |
EP1903693B1 (en) | 2009-08-19 |
US20080124074A1 (en) | 2008-05-29 |
CN101164260B (zh) | 2012-04-04 |
EP1903693A4 (en) | 2008-11-05 |
ATE440412T1 (de) | 2009-09-15 |
DE602006008622D1 (de) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006136072A1 (fr) | Procédé pour traiter une panne de canal dans un réseau optique automatiquement commuté | |
US8117337B2 (en) | Method and device for implementing link pass through in point-to-multipoint network | |
US8699358B2 (en) | Troubleshooting method and apparatus | |
EP1817855B1 (en) | System and methods for detecting network failure | |
EP2458797A1 (en) | Method, device and system for updating ring network topology information | |
CN107612754B (zh) | 双向转发链路故障检测方法、装置及网络节点设备 | |
KR20120120472A (ko) | Mpls 링 토폴로지들에서의 최적화된 고속 리-라우트 | |
US8477655B2 (en) | Method, device, and system for establishing label switching path in fast rerouting switching | |
CN100438447C (zh) | 一种光网络lsp发生异常删除的恢复方法和装置 | |
CN106453074A (zh) | 一种切换方法及装置 | |
EP2613477B1 (en) | Method for triggering route switching and service provider-end provider edge device | |
JP2006033124A (ja) | トンネル障害通知装置および方法 | |
JP5012485B2 (ja) | 冗長方法及びスイッチ装置 | |
EP2403185A1 (en) | Method and system for service error connection and error prevention in automatic switched optical network | |
JP5518771B2 (ja) | 冗長ネットワークシステム、終端装置及び中継点隣接装置 | |
CN112714060A (zh) | 一种链路检测方法及设备 | |
EP2180636B1 (en) | Method for signaling a unidirectional failure of a packet-switched link | |
CN114338459B (zh) | 路径检测方法、装置、网络设备及计算机可读存储介质 | |
CN102811388B (zh) | 自动交换光网络的业务回复方法及装置 | |
CN107800601A (zh) | 环网倒换的保护方法、装置及系统 | |
WO2012065470A1 (zh) | 链路故障处理方法及装置 | |
JPH08331170A (ja) | 回線選択装置および回線選択方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 200680013184.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006721993 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2006721993 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11955776 Country of ref document: US |