WO2006134190A2 - Agentes y métodos basados en el uso del dominio eda de la fibronectina - Google Patents

Agentes y métodos basados en el uso del dominio eda de la fibronectina Download PDF

Info

Publication number
WO2006134190A2
WO2006134190A2 PCT/ES2006/000343 ES2006000343W WO2006134190A2 WO 2006134190 A2 WO2006134190 A2 WO 2006134190A2 ES 2006000343 W ES2006000343 W ES 2006000343W WO 2006134190 A2 WO2006134190 A2 WO 2006134190A2
Authority
WO
WIPO (PCT)
Prior art keywords
eda
protein
cells
siinfekl
vector
Prior art date
Application number
PCT/ES2006/000343
Other languages
English (en)
French (fr)
Other versions
WO2006134190A8 (es
WO2006134190A3 (es
Inventor
Claude Leclerc
Juan José LASARTE SAGASTIBELZA
Marta Gorraiz Ayala
Jesús PRIETO VALTUEÑA
Original Assignee
Proyecto De Biomedicina Cima, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES06794018T priority Critical patent/ES2392659T3/es
Priority to DK06794018.9T priority patent/DK1913954T3/da
Priority to BRPI0611782-1A priority patent/BRPI0611782A2/pt
Priority to CN2006800293241A priority patent/CN101287487B/zh
Application filed by Proyecto De Biomedicina Cima, S.L. filed Critical Proyecto De Biomedicina Cima, S.L.
Priority to US11/922,148 priority patent/US9155783B2/en
Priority to EP06794018A priority patent/EP1913954B8/en
Priority to CA2612151A priority patent/CA2612151C/en
Priority to JP2008516349A priority patent/JP4970435B2/ja
Priority to PL06794018T priority patent/PL1913954T3/pl
Priority to MX2007015935A priority patent/MX2007015935A/es
Priority to AU2006259041A priority patent/AU2006259041B2/en
Publication of WO2006134190A2 publication Critical patent/WO2006134190A2/es
Publication of WO2006134190A3 publication Critical patent/WO2006134190A3/es
Publication of WO2006134190A8 publication Critical patent/WO2006134190A8/es
Priority to US14/835,764 priority patent/US20160215039A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464838Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/77Ovalbumin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention relates to a protein vector for molecular transport to cells expressing the TLR4 receptor
  • ⁇ Toll-like receptor 4 the preparation of said protein vector and its applications, with a particular incidence in the preparation and use of pharmaceutical compositions, particularly immunotherapeutic compositions, for the prevention and treatment of infectious and tumor diseases.
  • CTLs are activated by presentation to T-cell receptors (TCRs) of small peptides associated with MHC class I molecules. These MHC class I peptide complexes are present on the surface of antigen presenting cells (APC), which are also capable of providing stimulus signals for optimal activation of CTLs.
  • APC antigen presenting cells
  • DC Dendritic cells
  • DC are the most potent APCs and have a unique ability to interact with non-activated T lymphocytes (naive T lymphocytes) and initiate the primary immune response, activating CD4 + helper T lymphocytes (helper) and T lymphocytes CD8 + cytotoxic.
  • Antigen presentation and cell stimulation T by DC has been studied by Guermonprez y-cois. ("Antigen presentation and T cell stimulation by DC". Annu. Rev.
  • dendritic cells patrol through blood, peripheral tissues, lymph and secondary lymphoid organs. In peripheral tissues, dendritic cells capture their own and foreign antigens. The captured antigens are processed to proteolytic peptides and pass to MHC class I and II molecules (for the activation of CD8 + or CD4 + T cells, respectively). This process of antigen uptake, degradation and loading is called antigen presentation. However, in the absence of stimulation, peripheral dendritic cells present antigens inefficiently.
  • dendritic cells Shortly after a warning signal emerges, the efficacy of antigen uptake, intracellular transport and degradation, and intracellular traffic of MHC molecules is modified.
  • the load of peptides is increased, as well as the half-life and the transfer to the cell surface of the MHC molecules. It also increases the surface expression of molecules co-stimulators of T cells.
  • dendritic cells become the most potent APCs, and the only ones capable of activating non-activated T lymphocytes and initiating the immune response. Together with the modification of their abilities in the presentation of antigens, maturation also induces the massive migration of dendritic cells out of peripheral tissues. Changes in the expression of chemokine receptors and adhesion molecules, as well as the important changes in the organization of the cytoskeleton, contribute to the migration of dendritic cells through lymph to the secondary lymphatic organs.
  • Dendritic cells respond to two types of signals: to the direct recognition of pathogens (by means of receptors with a specific recognition pattern), and to the indirect recognition of the infection (by inflammatory cytokines, internal cellular compounds, and specific immunological responses). In response to these signals, dendritic cells are activated and begin their maturation process, which transforms them into effective stimulators of T cells. At least five types of surface receptors capable of triggering dendritic cell maturation have been observed: (i ) TLR receptors
  • TLR TLR1-9
  • TLRs are expressed in macrophages and dendritic cells, and in other cells such as B lymphocytes. They have also been identified ligands for various TLRs. Most of these ligands come from pathogens but are not found in the host, suggesting that TLRs are essential to detect invading microorganisms.
  • the recognition of ligands by TLRs results in rapid activation of innate immunity by inducing the production of proinflammatory cytokines and overregulation of co-stimulatory molecules. Innate activated immunity results in effective adaptive immunity.
  • the specifically recognized molecular patterns are lipopolysaccharides LPS (gram-negative bacteria), lipoteic acids (gram-positive bacteria), taxol, protein F (respiratory syncytial virus), heat shock protein 60, and the fibronectin EDA domain. Therefore, a vaccine that is capable of inducing * optimal T-cell responses must meet various conditions. First, it must be able to transport T-cell epitopes derived from antigens to APCs (or DC) to be loaded into MHC class I and / or II molecules. Thus, vectorization until DC would represent the main objective in the design of new transport systems for vaccine development. In addition, the vector must transmit the appropriate signals to the DC to induce its activation. The arrival of the antigen to DC without any sign of maturation could cause tolerance instead of activation of helper and cytotoxic T lymphocytes. In addition, its effectiveness should not be affected by previous immunity against the vector itself.
  • LPS gram-negative bacteria
  • lipoteic acids gram-positive bacteria
  • a first approach to direct antigenic peptides to MHC class I and / or II molecules is based on synthetic peptide vaccines containing selected epitopes capable of binding directly to these molecules on the surface of APCs. In some cases these peptides have achieved tumor protection or virus elimination in murine models, while in others they have induced tolerance. Studies with different types of peptides in humans have achieved timid clinical responses in cancer patients.
  • EP1188446A1 refers to a protein vector, based on Bordetella adenyl cyclase toxin, for the transfer of molecules to cells expressing CDlIb.
  • the present invention relates to the extra domain A (EDA) of fibronectin, a possible natural ligand of TLR4, as a theoretical means for transporting antigens to cells expressing TLR4 and -which could induce appropriate selection and maturation of APC , and finally lead to a specific effective CTL response.
  • EDA extra domain A
  • Fibronectin molecules are the product of a single gene, whose resulting protein can exist in multiple generated forms of the alternative splicing of a single pre-mRNA (Pankov R and Kenneth MY, "Fibronectin at a glance.” Journal of CeIl Science, 2002; 115: 3861-3863). The most important splicing occurs in the central group of type III repetitions.
  • EDA extra B domain
  • EIIIB extra A domain
  • EDA extra B domain
  • EIIIA extra A domain
  • .Cellular fibronectins which alternatively contain EDA and EDB, occur in response to tissue damage.
  • EDA induces the release of proteoglycans and the expression of metalloproteinases (MMP 1, 3, and 9) and of pro-inflammatory cytokines (see Saito S and cois.
  • MMP 1, 3, and 9 metalloproteinases
  • pro-inflammatory cytokines see Saito S and cois.
  • the Fibronectin Extradomain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism ", J. Biol.
  • Hepatitis C virus is a single-stranded RNA virus that belongs to the family Flaviviridae (Miller RH. And Purcell RH. 1990. PNAS. 87: 2057). This virus has been recognized as one of the main causative agents of chronic hepatitis and liver disease and is estimated to affect 170 million people worldwide (World-Health Organization. Hepatitis C. WkI and Epidemiol Rec 1997; 72: 65).
  • One of the main characteristics of HCV infection is its high tendency to chronicity (70% of infections) and the development of liver cirrhosis (20%) with a high risk of hepatocarcinoma development (Divag et al. Gastroenterology 1983; 85: 439).
  • He IFN-Ot treatment is the most common therapy in HCV infection, but it is only effective in 20-30% of treated patients (Camps et al. J Hepatol 1993; 17: 390).
  • the combination of IFN- ⁇ and ribavirin has improved these results (30% -40% of patients eliminate the virus in a sustained manner) but there is still a very high percentage of patients resistant to therapy (Poynard et al. Lancet 1998; 352: 1426). Therefore, the development of new therapeutic strategies for the treatment of chronic hepatitis C is of vital importance.
  • the 9.6-kilobase HCV genome contains highly conserved non-coding regions at the 5 'and 3' ends that flank a broad reading frame that codes for 3 structural proteins (core, El and E2) and at least 6 non-structural proteins (NS2, NS3, NS4a, NS4b, NS5a and NS5b) (Major, ME and Feinstone SM. (1997) Hepatology 25, 1527).
  • the elimination of the virus after an acute HCV infection or after treatment with IFN- ⁇ is associated with the presence of a strong CD4 and CD8 cellular immune response against the virus proteins.
  • the CD4 response against HCV NS3 non-structural protein has been associated with viral clearance after acute infection, while the absence of this T cell response leads to the persistence of the virus and the establishment of a chronic infection (Diepolder et al. Lancet 1995; 346: 1006; Pape et al J Viral Hepat 1999; 6 Suppl 1: 36-40).
  • several studies have identified several cytotoxic epitopes within the NS3 protein in patients infected with HCV. These data suggest that the NS3 protein could be a good target for the induction of an anti-HCV cellular response.
  • the present invention relates to the use of a polypeptide comprising an amino acid sequence corresponding to: a) the fibronectin EDA domain (EDA), b) a fragment of said EDA domain capable of binding to TLR4, or c) a variant of said EDA domain or capable fragment of joining TLR4 and having a homology greater than 70% with any natural form of said EDA domain or fragment, in the preparation of a stimulating agent of cellular immune responses against an antigen.
  • EDA fibronectin EDA domain
  • this inducing agent includes both the fibronectin EDA domain and the antigen against which it is desired to generate the immune response, these two components being able to be separate or covalently linked entities.
  • said variant of the EDA domain or fragment capable of binding to TLR4 cited in element c) is characterized in that its amino acid sequence is the result of the substitution, addition or deletion of one or more amino acids of a polypeptide defined in elements a) and b).
  • said fragment capable of binding to element c) is characterized in that it has a homology greater than 85% with any natural form of the EDA domain or its corresponding fragment, and in a more preferred embodiment, it has a homology greater than 95% with said natural form of the fibronectin EDA domain or its corresponding fragment.
  • the amino acid sequence of the fibronectin EDA domain will be that of a natural form of EDA that is capable of binding to TLR4.
  • This EDA domain can be selected from the natural forms of the domain in any animal species, particularly in mammals, for example rodents (mice, rats, etc.) or primates (particularly humans).
  • the immunostimulatory agent comprises a partial amino acid sequence of an EDA domain that is characterized by its. binding capacity to TLR4.
  • the EDA domain is a modified variant of some of the natural forms of the EDA domain or its fragments, and is also characterized by having the property of binding to TLR4.
  • a variant of the EDA domain has a homology greater than 70% with any natural form of the EDA domain.
  • a suitable modified variant can be selected by comparing the sequence of an EDA domain of fibronectin, or a fragment thereof, with other candidate polypeptide sequences. Any alignment algorithm (for example, FASTA, Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches, Science. 1985 Mar 22; 227 (4693): 1435-41), or computer software may be used for homology analysis.
  • TLR4 binding properties can be assessed by any conventional binding assay, for example using flow cytometry as described in The Current Protocols in Immunology and The Current Protocols in Protein Science published by John Wiley & Sons (Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober) (updated periodically. Last updated May 1, 2005).
  • the EDA domain comprises a sequence that is selected from: a) the complete amino acid sequence of a domain Mouse EDA (Entrez Protein: NM_010233, amino acids 1721 to 1810; SEQ. ID. NO: 2, amino acids 2-91); b) the complete amino acid sequence of a human EDA domain (Entrez Protein NM_002026, amino acid 1631 to 1716; SEQ. ID. NO: 4); and c) a fragment of the sequences a) and b) capable of binding to cells expressing TLR4.
  • the EDA domain includes a sequence that is selected from: a) amino acids 2-57 of SEQ. ID. NO: 6, which corresponds to an alternative splicing form of the mouse fibronectin EDA domain; b) the sequence SEQ. ID. NO: 8, which corresponds to an alternative splicing form of the EDA domain, of humans; and c) a fragment of sequences a) and b) capable of binding to cells expressing TLR4.
  • the immunostimulatory agent may also include one or more molecules of interest.
  • the molecule of interest can be administered in an amount that, in combination with the other components of the agent, generates an effective immune response against the molecule.
  • the EDA domain (or a fragment or variant thereof) and the molecule of interest are linked in the same hybrid molecule or protein vector.
  • the present invention relates to a protein vector as described above, in which the molecule of interest is selected from the following types or groups: polypeptides, lipopeptides, oligosaccharides, polysaccharides, nucleic acids, lipids, and drugs.
  • the molecule of interest is an antigen or an epitope.
  • the antigen coupled to the vector is a viral antigen, a bacterial antigen, a fungal antigen, or a parasitic antigen.
  • said viral antigen is a viral hepatitis C virus antigen
  • the hepatitis C virus antigen is the NS3 protein or an antigenic fragment thereof.
  • the NS3 protein refers to the NS3 non-structural protein of the hepatitis C virus, a 67kDa protein that includes 2 domains, a serine proteinase that encompasses 189 amino acids from the N-terminal end and a domain with helicase-nucleoside triphosphatase activity which covers the 442 amino acids of the C-terminal end.
  • the NS3 protein sequence included in the protein vector of the invention can correspond to any strain or isolate of the human hepatitis C virus.
  • the antigen is a tumor antigen or a tumor antigenic determinant.
  • epitope refers to a peptide sequence that binds to MHC class I or class II molecules, and which can be recognized by the CD8 + or CD4 + T cell receptor, respectively, and induce an immune response.
  • the molecule of interest is the cytotoxic T antigenic determinant of ovalbumin (OVA 257-264) or SIINFEKL (SEQ. ID .. NO: 2, amino acids 95-102, which has 3 additional amino acids at the end C-terminal and in the N-terminal of the epitope, QLE-SIINFEKL-TEW).
  • the antigen may be any material capable of producing a Th immune response, a CD8 + T cell response, an NK cell response, a T cell response [gamma] / [delta], or an antibody response.
  • appropriate antigens include peptides; polypeptides; lipids; glycolipids, polysaccharides; carbohydrates; polynucleotides; prions; live or inactivated bacteria, viruses or fungi; and antigens derived from bacteria, viruses, fungi, protozoa, tumors or microorganisms, toxins or toxoids.
  • the antigen is an allergen.
  • the molecule of interest is a chemical compound or a drug chemically or genetically linked to the protein vector.
  • the protein vector is useful for the specific vectorization of drugs to cells expressing TLR4.
  • the protein vector is characterized by including a Tag sequence, for example an N-terminal histidine tail. This will simplify the purification process when the protein vector is obtained by genetic engineering.
  • the SEQ sequences. ID. NO: 2 and SEQ. ID. NO: 6 represent specific modalities of the protein vector of the invention.
  • the protein vector comprises the sequence SEQ ID NO: 10, which comprises a fragment of the NS3 protein.
  • the EDA domain incorporated into the protein vector is characterized in that it binds to TLR4 and facilitates the translocation of the molecule of interest to the cytosol of cells expressing TLR4.
  • the invention also relates to the use of the protein vector to direct and translocate a molecule of interest to cells expressing TLR4.
  • the cells expressing TLR4 are any type of antigen presenting cells (APC).
  • APCs are dendritic cells.
  • the protein vector is characterized by facilitating the translocation of the antigen or epitope of interest, favoring its subsequent processing and load on MHC molecules for antigen presentation to T lymphocytes.
  • the protein vector is capable of stimulating the maturation of APC, increasing the expression of MHC molecules and co-stimulatory signals.
  • the protein vector is characterized by being able to simultaneously induce antigen presentation and facilitate maturation of APCs, thereby inducing an effective antigen-specific immune response.
  • this antigen-specific immune response is a CTL response.
  • the protein vector can be obtained by DNA recombination technology.
  • the invention relates to a modified nucleic acid encoding the protein vector of the invention. This nucleic acid can be easily deduced from the amino acid sequence of the protein vector.
  • This modified nucleic acid may be contained in a DNA construct or construct.
  • the invention provides a DNA construct comprising a nucleic acid encoding the protein vector of the invention.
  • This DNA construct can incorporate a control sequence that is operably linked to the nucleic acid encoding the protein vector.
  • "Operatively linked,” referring to nucleic acids, means that a nucleic acid is in functional relationship with another nucleic acid sequence.
  • Control sequences are expression signals recognized by a specific host cell, and regulate functions such as transcription and translation of a specific coding sequence (examples of control sequences are promoters, enhancers, transcription terminators, points of ribosome binding, signal peptides for protein secretion or for other subcellular locations).
  • the DNA construct also includes a marker or gene that encodes a motif or phenotype that allows the selection of the transformed host cell with the DNA construct.
  • the modified nucleic acid and DNA construct referred can be obtained by conventional methods included in any laboratory manual (for example, "Molecular Cloning:. A Laboratory manual.” Joseph Sambrook, David W. Russel Eds 2001, 3rd ed. CoId Spring Harbor, New York).
  • the modified nucleic acid or DNA construct of the invention comprises SEQ. ID. NO: 1, SEQ ID. NO: 5, SEQ ID NO: 9 (EDA-NS3) or SEQ. ID. NO: 11 (EDA-OVA).
  • the modified nucleic acid or DNA construct of the invention can be inserted into a suitable vector.
  • the invention relates to a vector, such as an expression vector, comprising said modified nucleic acid or DNA construct.
  • a vector such as an expression vector
  • the choice of the vector will depend on the host cell in which it is to be inserted.
  • the vector in which the nucleic acid is inserted can be a plasmid or a virus that, when inserted into the cell, may or may not be included in the cell genome.
  • the vector can be obtained by conventional methods (Sambrook et al., 2001, cited supra).
  • the invention relates to a host cell, such as a transformed host cell, comprising a modified nucleic acid or a DNA construct according to the invention.
  • the expression host cell is a prokaryotic, eg Escherichia coli, or a eukaryotic host, eg yeasts (for example Saccharomyces cerevisiae, Pichia pastoris), insect, or mammalian cells.
  • the expression vector comprising the modified nucleic acid or DNA construct encoding the protein vector of the invention is intended for therapy or gene transfer in vivo.
  • the expression vector is a viral vector.
  • Appropriate viral vectors include, but are not limited to: adenoviruses, adeno-associates, retroviruses, lentiviruses, alphaviruses, herpesviruses, coronavirus-derived vectors, etc.
  • the invention in another aspect, relates to a method for producing the protein vector of the invention that includes culturing an expression host cell containing a modified nucleic acid or a DNA construct according to the invention, under conditions that allow vector expression. proteinaceous.
  • the conditions for optimizing the culture of the host cell will depend on the type of host cell used. If desired, the method of producing the protein vector of the invention will include isolation and purification thereof.
  • the protein vector of the invention may be obtained by other conventional methods. These methods include, for example, solid phase chemical synthesis; purification by high performance liquid chromatography (HPLC); and, if preferred, analysis by conventional techniques such as sequencing or mass spectrometry, amino acid analysis, magnetic resonance techniques, etc.
  • the protein vector of the invention can be obtained by covalently linking the polypeptide with the amino acid sequence corresponding to the EDA domain of fibronectin (EDA) (or a fragment of said domain capable of binding to TLR4, or a variant thereof ), with the molecule of interest (eg polypeptides, lipopeptides, oligosaccharides, polysaccharides, nucleic acids, lipids, or other chemical compounds). This can be done with conventional methods included in laboratory manuals for example, "The current protocols in protein chemistry", published by John Wiley & Sons
  • the protein vector, or the modified nucleic acid and DNA constructs that encode it, or the expression vectors and expression host cells that incorporate the said modified nucleic acid or constructs of DNA can be used to prepare a pharmaceutical composition.
  • the invention relates to the use of the polypeptide with the amino acid sequence corresponding to the EDA domain of fibronectin (EDA), or a fragment or variant thereof, as described above, in the preparation of a immunostimulatory agent that is characterized as a pharmaceutical composition.
  • EDA EDA domain of fibronectin
  • the pharmaceutical composition of the invention can be used to stimulate the maturation of antigen presenting cells, or to induce a specific immune response against the molecule of interest.
  • the pharmaceutical composition can be used to induce a ThI immune response in a subject to which the pharmaceutical composition is administered.
  • inducing a ThI immune response includes cases in which the immunostimulatory composition induces a mixed Thl / Th2 response. In other cases, however, the immunostimulatory composition induces a ThI immune response with little or virtually no response induction. Th2 immunological.
  • the pharmaceutical composition can be used to induce a CTL response.
  • the pharmaceutical composition can be used as an immunostimulatory adjuvant, eg in combination with one or more antigens, with or without additional adjuvants.
  • the pharmaceutical composition may form a vaccine.
  • the immunostimulatory composition may serve as an adjuvant for use together with a vaccine.
  • the immunostimulatory composition that includes the polypeptide with the fibronectin EDA domain (or a fragment or variant thereof) can increase the expansion of activated CD8 + T cells, the generation of memory CD8 + T cells, or both.
  • the immunostimulatory composition can increase immunity mediated by antigen specific cells in a subject receiving it.
  • the immunostimulatory composition that includes the fibronectin EDA domain (or a fragment or variant) is useful for the treatment and prophylaxis of an infectious, tumor or allergic disease.
  • said composition is used for the treatment and prophylaxis of hepatitis C.
  • the immunostimulatory composition that includes the fibronectin EDA domain may additionally contain vehiculizers, excipients, and other known pharmaceutically acceptable ingredients.
  • the immunostimulatory composition of the invention can be applied to animals, eg mammals (human or not), birds and the like, in accordance with conventional methods known in the art (eg orally, subcutaneously, nasally, topically ).
  • the invention also provides a therapeutic and / or prophylactic method that includes administering to an individual an immunostimulatory composition that includes the EDA domain of Ia fibronectin (or a fragment or a variant of this).
  • routes of administration include, among others, transdermal or transmucosal absorption, injection (eg subcutaneous, intraperitoneal, intramuscular, intravenous, etc.), ingestion, inhalation, and the like.
  • the invention relates to a pharmaceutical composition that includes at least one pharmaceutically acceptable carrier and an effective amount of the protein vector in at least one of its expression forms: a) the protein vector in a polypeptide form; b) a modified nucleic acid encoding said protein vector; c) an expression vector that includes the modified nucleic acid; or d) expression host cells that also include the modified nucleic acid.
  • the pharmaceutical composition is characterized by including an effective amount of dendritic cells that have been incubated in vitro with the protein vector in at least one of its forms of expression.
  • the pharmacological compound is a vaccine or an immunotherapeutic composition.
  • the protein vector in some of its expression forms is used to prepare an effective pharmaceutical composition for induction of dendritic maturation in vitro or in vivo.
  • the protein vector is used to prepare a pharmaceutical composition that induces a specific immune response against the molecule of interest (antigen or epitope) coupled to the protein vector.
  • This immune response is a humoral immune response.
  • said immune response is of the CTL type.
  • the invention relates to the use of the protein vector in the preparation of a pharmaceutical composition useful for the treatment and prophylaxis of an infectious disease.
  • Said disease may be bacterial, viral, fungal, or parasitic.
  • the invention relates to the use of the protein vector in the preparation of a pharmaceutical composition useful for the treatment and prophylaxis of a tumor disease.
  • the invention relates to the use of the protein vector in the preparation of a pharmaceutical composition useful for the treatment and prophylaxis of an allergic disease.
  • Various allergic diseases are related to the activation of a Th2 immune response.
  • a deviation or a change in Th2 response to ThI using the protein vector with a specific allergen can have a protective or therapeutic effect against allergic disease.
  • the proposed pharmaceutical composition is used for administration to an animal or human host. Any suitable route of administration can be used.
  • the pharmaceutical composition is administered parenterally (for example, intravenously, subcutaneously, intramuscularly), transdermally, or mucosa.
  • FIGURES Figure 1 Analysis by SDS-PAGE of the EDA and EDA-SIINFEKL proteins produced and purified. An aliquot of the EDA and EDA-SIINFEKL proteins was loaded on a 15% polyacrylamide gel and subjected to electrophoresis. Molecular weight markers (MWM) are measured in KDa. Be observes a band corresponding to the putative molecular weight of the EDA protein and EDA-SIINFEKL (13-14 KDa).
  • FIG. 1 EDA-SIINFEKL protein vector binding to TLR4.
  • 2A Direct binding tests. HEK293-LacZ cells (HEK293-LacZ) and HEK293-TLR4 / MD2 / CD14 cells (HEK293-TLR4) were pulsed with l ⁇ M EDA-SIINFEKL, fixed with paraformaldehyde, labeled with anti-His and anti-EDA antibodies, revealed with IgG-FITC anti-mouse and analyzed with flow cytometry.
  • 2B Ability of EDA to inhibit the binding of anti-TLR4 antibodies to cells expressing TLR4.
  • HEK TLR4 cells were incubated for 2 hours at 4 ° C in the presence or absence of 500 nM of the EDA-SIINFEKL protein. The cells were washed and incubated with an anti-TLR4 antibody labeled with FITC and then analyzed by flow cytometry.
  • 2 C Percentage of inhibition of binding of the anti-TLR4 antibody to cells expressing TLR4 by using different concentrations of the EDA-SIINFEKL protein.
  • 2D Cell adhesion assays.
  • HEK-hTLR4 or HEK-LacZ cells labeled with tritiated thymidine were dispensed in the wells of a 96-well microplate previously upholstered with the EDA protein and incubated for 2 hours at 37 0 C. Non-adherent cells were removed while the adherents were harvested and the incorporated radioactivity was measured in a Topcount scintillation counter. Adherent cell numbers per well were calculated with the help of standard curves.
  • EDA-SIINFEKL activates the TLR4 signaling pathway. Colorimetric measurement of the secretable human embryonic alkaline phosphatase gene in the culture supernatant of HEK293 / TLR4-MD2-CD14 or HEK293 / LacZ expressing cells transfected with this reporter gene whose expression is controlled by the NF- ⁇ B-inducible ELAM-I promoter. 24 hours after transfection, cells were incubated in the presence or absence of different concentrations of LPS, 100 nM of the EDA-SIINFEKL protein, or 100 nM of the EDA-SIINFEKL protein previously digested by proteinase K. The bars represent the induction of NF-KB (OD obtained with HEK293 / TLR4-MD2-CD14 supernatants divided by OD obtained with HEK293 / LacZ supernatants).
  • EDA-SIINFEKL induces the secretion of proinflammatory cytokines by DC in v ⁇ tr ⁇ .
  • Bone marrow derived DCs were cultured in the presence of LPS (1 ⁇ g / ml), EDA-SIINFEKL (500 nM), EDA-SIINFEKL (500 nM) digested with proteinase K, or saline. After 24 h, the presence of IL-12 (A) and TNF- ⁇ (B) in the culture supernatant was measured by ELISA.
  • EDA-SIINFEKL induces the in vivo maturation of CDlIc dendritic cells. Dendritic cell maturation is a requirement for optimal stimulation of a T lymphocyte response. When maturation occurs, APCs increase the expression of surface molecules such as MHC class I (H2K b in our model) and class II (IA b in our model), and the molecules CD40, CD80 and CD86. Therefore, we will analyze whether EDA-SIINFEKL could induce the maturation of cells expressing CDlIc in vivo.
  • MHC class I H2K b in our model
  • IA b class II
  • mice C57BL / 5 wt mice were immunized iv with 25 ⁇ g EDA-SIINFEKL, 25 ⁇ g EDA-SIINFEKL digested with proteinase K, 25 ⁇ g of LPS or only with PBS.
  • C57BL / 6 TLR4 KO mice were also immunized with 25 ⁇ g EDA-SIINFEKL or only with PBS. 15 hours later the mice were sacrificed and the CDlIc cells were purified using an autoMACS. The cells were labeled and analyzed by flow cytometry to determine the expression of the H-2Kb, I-Ab, CD40, CD80 and CD86 molecules.
  • EDA-SIINFEKL is efficiently presented by dendritic cells to T lymphocytes specific for the SIINFEKL epitope.
  • A Production of IFN- ⁇ by non-adherent cells of transgenic OT-I mice. Bone marrow derived DCs were cultured in the presence of culture medium, different concentrations of synthetic peptide SIINFEKL, SIINFEKL plus EDA, EDA-SIINFEKL (fusion protein) or EDA alone.
  • B3Z hybridoma cells (10 5 cells / well) were incubated in the presence of spleen cells from C57BL / 6 wt mice or spleen cells from knock out mice for the TLR4 molecule (10 5 cells / well) and EDA-SIINFEKL protein (100 nM).
  • Bone marrow derived DCs were incubated for 1 hour in the absence or presence of 30 mM of chloroquine, brefeldin, monensin or 4 mg / ml cycloheximide, before the addition of EDA-SIINFEKL or the synthetic peptide SIINFEKL (White bars).
  • the DCs thus treated were fixed with glutaraldehyde and used as antigen presenting cells (APC) (10 4 cells / well) in co-cultures with non-adherent cells of OT-I mice (10 5 cells / well). 24 hours later, the amount of IFN- ⁇ secreted to the culture supernatant was measured by a commercial ELISA.
  • APC antigen presenting cells
  • SIINFEKL and the amount of IFN- ⁇ secreted to the culture supernatant was measured by ELISA.
  • B Analysis of the induction of specific CTL responses of SIINFEKL. Splenocytes from mice immunized with EDA-SIINFEKL or with SIINFEKL were resurfaced for 5 days in the presence of the SIINFEKL peptide. After this incubation, CTL activity was measured against EL-4 target cells incubated in the absence or in the presence of the SIINFEKL peptide by a conventional chromium 51 release assay.
  • EDA-SIINFEKL protects against the development of tumors after inoculation of EG7 tumor cells expressing OVA.
  • EDA acts as an adjuvant in the induction of cytotoxic responses after immunization with the OVA protein.
  • EDA acts as an adjuvant in the induction of cytotoxic responses after immunization with the OVA protein.
  • EDA acts as an adjuvant agent after immunization with a protein that contains a cytotoxic epitope but that alone is not capable of activating a cytotoxic response.
  • mice were sacrificed and splenocytes were cultured in the presence of the synthetic SIINFEKL peptide. After 5 days of culture, the cytotoxic response against EL-4 target cells previously pulsed with or without the SIINFEKL peptide was measured in both groups in a conventional Cr 51 release experiment.
  • EDA can act as a vehicle for larger antigens.
  • the EDA protein can act as a vehicle to transport a cytotoxic epitope and favor the induction of a CTL response against said epitope.
  • EDA-OVA fusion protein was built and performed the following experiments in vi tro and in vivo.
  • A Analysis by SDS-PAGE of the EDA-OVA recobinant protein. The recombinant EDA-OVA protein was expressed in E.
  • Bone marrow derived DC were cultured in the presence or absence of different concentrations of OVA, EDA-OVA (fusion protein), EDA plus OVA or EDA alone. 24 hours later, DC were used as antigen presenting cells in the presence of 10 5 non-adherent cells of OT-I mice. The production of IFN- ⁇ by non-adherent cells of OT-I mice in the presence of DC was quantified by a commercial ELISA.
  • the EDA-OVA protein induces OVA specific CTLs in vivo.
  • C57BL / 6 mice were immunized with 1 nmol of EDA-OVA or with 1 nmol of OVA.
  • the splenocytes of the immunized mice were restimulated in vitro for 5 days in the presence of the SIINFEKL peptide.
  • specific CTL activity was measured against EL-4 cells incubated in the absence or in the presence of SIINFEKL in a conventional Cr 51 release assay.
  • the data represent the average percentages of the specific net lysis values (% lysis of the target cell pulsed with SIINFEKL minus the% lysis of the non-pulsed target cell) of triplicate samples.
  • the EDA-NS3 protein induces a specific CTL response against the NS3 protein of hepatitis virus
  • HHD mice transgenic for the HLA-A2.1 protein
  • EDA-NS3 protein dissolved in saline.
  • splenocytes were restimulated in vitro with the NS3 1073 peptide (which contains an immunodominant cytotoxic T determinant of the NS3 protein for HLA-A2 restriction).
  • cytotoxic activity was measured against T2 target cells incubated with peptide 1073 (V) (SEQ. ID.
  • the EDA-NS3 protein induces a multi-epitope response. against different epitopes of the NS3 protein.
  • the splenocytes obtained from the mice immunized with EDA-NS3 were restimulated in vitro for 48 hours in the presence of peptides 1038-1046, NS3 1073-1081 or NS3 1169-1177 (containing three cytotoxic determinants for HLA.A2 restriction within the fragment 1-196 of the NS3 protein) or with the recombinant NS3 protein (Mikrogen).
  • the amount of IFN- ⁇ secreted to the culture supernatant was measured by a commercial ELISA.
  • the EDA-NS3 protein induces a long-lasting cytotoxic response.
  • HHD mice were immunized iv with 100 ⁇ g / mouse of the EDA-NS3 protein in saline.
  • mice Sixty days after immunization, mice were sacrificed and the presence of specific CTLs was measured against NS3 1073 peptide in a conventional Chromium 51 release assay using T2 target cells incubated in the absence or presence of NS3 1073 peptide.
  • E immunization of C57BL / 6 mice with DC incubated with EDA-NS3 protects mice from infection with the recombinant vaccinia virus vHCV (l-3011) that expresses hepatitis C virus proteins.
  • mice were immunized with DC 10 6 previously incubated with the EDA-NS3 protein and 7 days later they received the 5xlO 5 pfu challenge of vaccinia vHCV virus (1-3011) via ip Three days after infection the mice were sacrificed and the viral load / mg was quantified ovarian tissue by an infection test in BSC-I cells.
  • Example 1 The Extra Domain A of fibronectin interacts with TLR4 and activates the TLR4 signaling pathway.
  • the extra fibronectin domain was amplified with RT-PCR using specific primers and hepatocyte RNA from mice treated with concanavalin-A to induce liver damage [Lasarte et cois, Hepatology. 2003; 37 (2): 461-70. ].
  • the liver tissue parts were homogenized and used in Ultraspec (Biotecx, Houston, TX, USA) using an Ultraturrax Driver T.25 (Janke & Kunkel, Ika-Labortechnik, Germany).
  • RNA was isolated according to the methods of Chomczynski and Sacchi (Chomczynski P and Sacchi N.) Step-by-step method of RNA isolation by acid g ⁇ anidinium th ⁇ ocyanate-phenol-chloroform extraction.
  • RNA Reverse transcription of RNA (60 min at 37 0 C) with 200U of reverse transcriptase M-MuLV (Gibco-BRL) in 20 ul of buffer volume 5xRT (25OmM Tris-HCl pH 8.3, 375mm KCl, 15mM MgCl 2 was performed ) supplemented with 5mM dithiothreitol (DDT), 0.5mM deoxynucleoside triphosphate (Boehringer Mannheim, Mannheim, Germany), 25U of ribonuclease inhibitor (Promega Corporation, Madison, WI, USA) and 200ng of random hexamers (Boehringer Mannheim).
  • DDT dithiothreitol
  • DDT dithiothreitol
  • ribonuclease inhibitor Promega Corporation, Madison, WI, USA
  • cDNA was used for PCR amplification in 20 ⁇ l of a 1Ox buffer solution (10OmM Tris-HCl pH9.3, 50OmM KCl, 1% Triton X-100) containing O.O ⁇ mM dNTP, upstream and downstream primers (40ng each), 1.5mM MgCl 2 and 2U of Taq DNA polymerase (Promega Corporation).
  • the first upstream was (SEQ. ID. NO: 13)
  • the amplified PCR fragment was cloned into pCR2.1-TOPO using a TOPO TA cloning kit Invitrogen, Carlsbad, CA, USA).
  • This plasmid was digested with Ndel and Notl and the DNA fragment obtained was subcloned into the plasmid digested Ndel / Notl pET20b (Novagen), which allows the expression of fusion proteins with 6 histidine residues ( ⁇ xHis tags) at the carboxyl end.
  • the resulting plasmid pET20b2-26 expressing the EDA-SIINFEKL-6xHis fusion protein was transfected into BL21 cells (DE3) for expression of the recombinant protein vector.
  • Transfected cells were grown in 11 LB 37 0 C until OD600 reached 0.5-1 the units.
  • IPTG was added to the final culture, to a final concentration of 0.4 mM and incubated with stirring at room temperature overnight.
  • the cells were collected by centrifugation, resuspended in 0.
  • IM Tris-HCl pH 7.2, treated with lysozyme, fragmented using a French press (two passes at 20,000 pst), clarified by centrifugation and filtered.
  • the fusion protein present in the soluble fraction was purified by affinity chromatography (Histrap, Pharmacia) using an FPLC platform (AKTA, Pharmacia). The protein was desalted using desalting columns Hitrap (Pharmacia), and concentrated with the Amicon Ultra 4-5000 MWCO centrifuge filter device (Millipore Carrighwahill, Ireland). The recombinant protein vector was purified from endotoxins using Endotrap columns (Profos Ag, Regensburg, Germany), until the endotoxin levels were below 0.2EU / ⁇ g protein (evaluated with the LAL assay, Cambrex).
  • PCR was performed using primers CCATATGAACATTGATCGCCCTAAAGGACT (SEQ ID NO: 13) and AGCGGCCGCTGTGGACTGGATTCCAATCAGGGG (SEQ ID NO: 15) pl cloning strategies similar to those indicated for the pl indicated EDA-SIINFEKL and plasmid pET20bEDAl. 2 was obtained.
  • HEK293 expressing human TLR4-MD2-CD14 from Invivogen.
  • LacZ Invivogen
  • Cells were pulsed with 1 mM EDA-SIINFEKL for 1 h at 4 ° C, washed with PBS and fixed with 4% paraformaldehyde in PBS for 10 min. After 3 washes, the cells were labeled with 1/100 anti-His antibodies (Qiagen) and 1/200 anti-CD16 (FcBlock, from Becton Dickinson) for 1 hour and 30 min. After 3 washes, the cells were incubated for 30 min with a 1/100 solution of fluorescein-labeled mouse anti-IgG antibody and analyzed by flow cytometry.
  • EDA-SIINFEKL protein the ability of the EDA-SIINFEKL protein to inhibit the binding of an FITC-labeled human anti-TLR4 antibody to HEK-hTLR4 cells was also measured.
  • HEK TLR4 cells were incubated for 2 h at 4 0 C in the presence or absence of different doses of EDA-SIINFEKL. The cells were then washed and incubated with anti-TLR4 antibodies and analyzed by flow cytometry. The percentage of inhibition for the different concentrations of EDA-SIINFEKL tested was calculated. Cell adhesion assays were also performed.
  • HEK LacZ cells or HEK hTLR4 were previously labeled with tritiated thymidine and dispensed in 96-well plates previously upholstered with the EDA protein. After two hours of incubation at 37 0 C, the nonadherent cells were removed while adhered cells remaining were recovered and incorporated in a Topcount scintillation counter radioactivity measured. The number of adherent cells per well was calculated with the help of curves standard obtained using different concentrations of labeled cells.
  • SEAP expression is controlled by an NAM-kB-inducible ELAM-I promoter (pNiFty-SEAP (Invivogen)).
  • pNiFty-SEAP NAM-kB-inducible ELAM-I promoter
  • the cells were incubated in the presence or absence of different concentrations of LPS, 100 nM EDA-SIINFEKL protein or EDA-SIINFEKL protein previously digested with 100 nM K proteinase. After 24 h the expression of the reporter gene in the culture supernatant was measured by a colorimetric assay (Invivogen).
  • the bars represent the induction factor of NF-KB (OD obtained in supernatants from HEK293 / TLR4-MD2-CD14 divided by OD obtained in supernatants from HEK293 / LacZ).
  • the amount of endotoxin contaminants in the EDA preparations of this study was below 0.0003 ⁇ g / ml.
  • EDA-SIINFEKL (SEQ. ID. NO: 2) and EDA were expressed in E. coli as ⁇ xHis fusion proteins, purified by affinity chromatography, desalted and released from endotoxins as described in the methods section .
  • the resulting proteins were analyzed by SDS-PAGE and Western blot using anti-His antibodies ( Figure 1). A band corresponding to the putative molecular weight (13 kDa) was observed for each protein. 1.2.2.
  • EDA-SIINFEKL fusion protein binds to TLR4
  • EDA-SIINFEKL protein had the ability to bind cells that express TLR4.
  • HEK293 cells expressing hTLR4-MD2-CD14 or HEK293 transfected with LacZ (Invivogen) were pulsed with l ⁇ M EDA-SIINFEKL protein, labeled with anti-His antibodies and a fluorescein-labeled mouse anti-IgG (see methods) and analyzed by flow cytometry.
  • the EDA-SIINFEKL fusion protein activates the TLR4 signaling pathway.
  • TLR4 signaling leads to the translocation of NF-KB, a transcription factor that binds to consensus sequences in promoters of various genes.
  • NF-KB a transcription factor that binds to consensus sequences in promoters of various genes.
  • a fusion protein containing EDA and a specific antigen could favor the rapid activation of congenital immunity by inducing the production of proinflammatory cytokines, and overexpression of costimulatory molecules.
  • the ability of this fusion protein to target and bind to the surface of the DC could increase the capture and endocytosis of the antigen by the DC, thereby increasing the immune response against this antigen.
  • Example 2 Fusion proteins containing EDA induce maturation of dendritic cells in vitro and in vivo and allow the induction of cytotoxic T lymphocytes.
  • Dendritic cells were grown from bone marrow cells. After using the red blood cells with ACK lysis buffer, the cells were washed and lymphocytes and granulocytes were removed by incubation with a mixture of antibodies against CD4 (GKl; ATCC, Manassas, VA), CD8
  • the remaining cells were grown in 12 culture plates in complete medium with 10 6 cells / ml supplemented with 20 ng / ml of mGM-CSF and 20 ng / ml of mIL-4 (both from Peprotech; London, GB). Every 2 days the medium was replaced with fresh medium containing cytokines.
  • Non-adherent dendritic cells were collected on day 7, and cultured in the presence or absence of 1 ⁇ g / ml or 15 ng / ml of LPS (Sigma), EDA-SIINFEKL (500 nM) or SIINFEKL (10 ⁇ M) at 37 ° C and 5% CO 2 .
  • polymyxin (10 ⁇ g / ml) was added to the cultures, in order to inhibit the effect of endotoxin contaminants.
  • the supernatants were collected and IL-12 was measured and
  • TNF- ⁇ by ELISA (BD-Pharmingen), according to the manufacturer's instructions.
  • the maturation of the DC was evaluated in vitro by flow cytometry, measuring the expression of several surface markers.
  • C57BL6 mice were injected iv with 25 ⁇ g EDA-SIINFEKL, 25 ⁇ g EDA-SIINFEKL digested with proteinase-K, 25 ⁇ g LPS or only with PBS.
  • EDA-SIINFEKL digestion with proteinase K was performed with agarose proteinase K (Sigma, St Louis).
  • agarose-proteinase balls washed in wash buffer (20 mM Tris-HCl, pH 7.2, 1 mM EDTA, ClCa 2 ImM) were used to digest the EDA-SIINFEKL or LPS protein for 20 min at 30 0 C.
  • the agarose-proteinase K balls were removed by centrifugation.
  • the mice were sacrificed and the CDlIc cells purified by autoMACS. The cells were labeled and analyzed by flow cytometry.
  • DC were collected, fixed with 0.05% glutaraldehyde and used as APC in the presence of different amounts of non-adherent OT-I cells or hybridoma cell line T B3Z. In some experiments, DCs were incubated in the presence or absence of chloroquine (3 ⁇ M), Monensin (l ⁇ l Golgystop, Pharmingen), Brefeldina (l ⁇ l Golgyplug, Pharmingen), cycloheximide
  • B3Z hybridoma cells (10 5 cells / well) were cultured in complete medium (RPMI 1640 supplemented with 10% FCS, 2 mM glutamine, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin and 5xlO ⁇ 5 M 2 -mercaptoethanol) for 18 hours in the presence of spleen cells (10 5 cells / well) of C57BL / 6 wt mice or TLR4 KO mice, and different concentrations of EDA-SIINFEKL. The amount of IL-2 released to the culture supernatant was measured, as previously described, by a bioassay based on the CTLL line.
  • CTL cytotoxic T lymphocytes
  • IFN- ⁇ producing cells after immunization.
  • CTL cytotoxic T lymphocytes
  • the C57BL6 mice were immunized iv with 50 ⁇ g of EDA-SIINFEKL OR with SIINFEKL on days 0 and 10. On day 20 the mice were sacrificed to determine the CTL response against SIINFEKL.
  • the splenocytes of the immunized animals were cultured in the presence of 0.1 ⁇ g / ml of SIINFEKL at 5 x 10 6 cells / ml (1OmI) for 5 days in complete medium. On day 5, the cells were collected for chromium release studies.
  • Lytic activity by incubating for 4 h different amounts of effector cells with 1 x 10 4-4 target cells previously loaded with 51 Cr and with or without SIINFEKL was measured.
  • the specific percentage of lysis was calculated according to the formula: (experimental cpm - spontaneous cpm) / (maximum cpm - spontaneous cpm) x 100, where the spontaneous lysis corresponds to target cells incubated in the absence of effector cells, and the maximum lysis is obtained incubating target cells with 5% Triton xlOO.
  • splenocytes from immunized mice were placed on 96 plates, at 8xlO 5 cells / well, with complete medium only, or with 30 ⁇ M peptide in a final volume of 0.25 ml.
  • the supernatant (50 ⁇ l) was removed at 48 h and IFN- ⁇ was measured by ELISA (Pharmingen, San Diego, CA) according to the manufacturer's instructions.
  • the ability of the EDA protein to act as an adjuvant in a protein mixture was tested.
  • the C57BL / 6 mice were immunized iv with 50 ⁇ g of EDA-SIINFEKL in the presence of 500 ⁇ g of the OVA protein in PBS or with 500 ⁇ g of OVA protein in PBS.
  • the EDA-SIINFEKL fusion protein stimulates the production of IL-12 and TNF- ⁇ by bone marrow derived dendritic cells (BMDC).
  • BMDC bone marrow derived dendritic cells
  • BMDC was cultured with SIINFEKL (10 ⁇ M), LPS (1 ⁇ g / ml and 15 ng / ml) or EDA-SIINFEKL- ⁇ xHis (50OnM).
  • SIINFEKL 10 ⁇ M
  • LPS 1 ⁇ g / ml and 15 ng / ml
  • EDA-SIINFEKL- ⁇ xHis 50OnM
  • the amount of IL-12 or TNF- ⁇ in the culture supernatant was measured by ELISA. It was observed that EDA-SIINFEKL was able to stimulate the production of high levels of IL-12 or TNF- ⁇ by BMDC ( Figure 4). It was observed that this immunostimulatory capacity disappeared when the protein was previously treated with proteinase K indicating that this activity was not due to possible traces of endotoxin in the protein samples.
  • EDA-SIINFEKL induces in vivo TLR4-dependent maturation of DCs expressing CDlIc.
  • DCs Dendritic cells
  • CTL cytotoxic T lymphocytes
  • helper T lymphocytes cytotoxic T lymphocytes
  • Immature DCs can capture antigens, but they must be differentiated or mature to be able to stimulate non-activated T lymphocytes. Therefore, dendritic cell maturation is a requirement for optimal stimulation of a T-lymphocyte response.
  • APCs increase the expression of surface molecules, such as MHC class I and class II, and the CD40, CD80 and CD86.
  • EDA-SIINFEKL could induce in vivo maturation of cells with CDlIc expression.
  • C57BL6 mice were immunized intravenously with 25 ⁇ g of EDA-SIINFEKL, 25 ⁇ g of EDA-SIINFEKL digested with proteinase K, 25 ⁇ g • of LPS or only with PBS. 15 hours later the mice were sacrificed and the CDlIc cells were purified with autoMACS, labeled with antibodies, and analyzed with flow cytometry.
  • EDA-SIINFEKL was capable of inducing the expression of MHC class I and class II molecules, and of CD40 and CD86.
  • This ability of EDA-SIINFEKL disappears completely when the protein is digested by proteinase K before immunization ( Figure 5).
  • the digestion of LPS by proteinase K has no inhibitory effect on the ability of LPS to induce the expression of these maturation markers (not shown).
  • EDA-SIINPEKL is efficiently presented by dendritic cells to epitope-specific T lymphocytes SIINFEKL.
  • EDA-SIINFEKL was cultured (10 5 cells / well) in the presence of different concentrations of EDA-SIINFEKL, EDA + SIINFEKL, EDA or the SIINFEKL peptide. 48 h later, 10 5 non-adherent OT-I cells were added to the wells. IFN- ⁇ production was measured by non-adherent OT-I cells ( Figure 6A).
  • EDA-SIINFEKL induces specific CTLs for SIINFEKL In vivo.
  • mice immunized with EDA-SIINFEKL fusion protein developed specific CTL responses against selected cells pulsed with the SIINFEKL epitope.
  • C57BL6 mice were immunized via i.v. with 50 ⁇ g of EDA-SIINFEKL or with SIINFEKL in PBS on days 0 and 10.
  • the mice were sacrificed and the CTL response was analyzed against SIINFEKL. It could be seen that EDA-SIINFEKL was able to induce CTL against pulsed EL-4 target cells with
  • EDA-SIINFEKL protects mice against challenge with tumor cells that express the OVA protein.
  • mice were immunized sc with 3 nmol of EDA-SIINFEKL, SIINFEKL, or with saline. 20 days after the second immunization sc 10 5 EG7OVA cells were injected. It was observed that EDA-SIINFEKL immunization protected mice from tumor growth. All mice immunized with SIINFEKL or with saline serum developed tumors, while 40% of mice immunized with EDA-SIINFEKL did not, and the remaining 60% had delayed tumor growth (Figure
  • the immunization strategy that originates CTL responses in vivo is established, avoiding the need for an adjuvant.
  • Mechanisms that contribute to the efficacy of fusion proteins that contain EDA have been identified, such as a vector that transfers antigens to cells that express TLR-4 and induces cellular immune responses against an antigen.
  • immunization of mice with the recombinant EDA-SIINFEKL fusion protein is capable of inducing a specific CTL response in vivo against the SIINFEKL epitope.
  • immunization with EDA-SIINFEKL protects mice against challenge with EG7OVA tumor cells.
  • this protein vector containing EDA is capable of: (i) selecting antigens for cells expressing TLR4 and in particular professional APCs; (ii) transfer the vectorized antigen to the classical class I antigen processing route; (iii) induce in vivo and in vitro maturation of dendritic cells; and (iv) originate CTL in vivo against vectorized antigen in the absence of adjuvant, which can be used in vaccination strategies against infectious agents or cancer.
  • These fusion proteins with EDA can also serve to transport molecules with pharmacological importance to the cytosol of cells expressing TLR4.
  • EDA EDA-induced in vivo the maturation of dendritic cells
  • the ability of EDA to induce in vivo the maturation of dendritic cells allows its use as an adjuvant in formulations containing an antigen against which one wants to induce an immunogenic response, opening the range of possibilities of the use of EDA in development of vaccines
  • the EDA protein can be used as a vehicle to transport antigens of at least 390 amino acids.
  • messenger RNA was extracted from the EG7OVA tumor cells, which express the OVA protein. After reverse transcription and PCR amplification using the primers GCGGCCGCAATGGGCTCCATCGGCGCA (SEQ ID NO: 16) and GCGGCCGCAGGGGAAACACATCT (SEQ ID NO: 17) (the underlined bases were added to introduce the sequence recognized by the restriction enzyme Notl, while the italicized sequence belongs to the beginning and end of the ovalbumin).
  • the PCR product was cloned into pCR2.1-TOPO using the TOPO TA kit (Invitrogen), digested with Notl and subcloned into plasmid pET20bEDA 1.2 (expressing the EDA protein) previously opened with Notl. The correct orientation of the construction was verified by sequencing.
  • the fusion protein present in the soluble fraction was purified by affinity chromatography (Histrap, Pharmacia) using an FPLC platform (AKTA, Pharmacia). The protein was desalted using desalting columns Hitrap (Pharmacia), and concentrated with the Amicon Ultra 4-5000 MWCO centrifuge filter device (Millipore Carrighwahill, Ireland).
  • the recombinant protein vector was purified from endotoxins using columns Endotrap (Profos Ag, Regensburg, Germany), until the endotoxin levels were below 0.2EU / ⁇ g protein (evaluated with the LAL assay, Cambrex).
  • Endotrap columns Endotrap
  • AGCGGCCGCAGCCACCATGGCGCCTATCACGGCCTATTC SEQ ID NO: 18
  • AGCGGCCGCTTGCGGTACGGCCGGAGGGGATGAGTT SEQ ID NO: 19
  • the proteins thus purified were analyzed by SDS-PAGE.
  • EDA-OVA The ability of EDA-OVA to be captured by APC to present the processed CTL SIINFEKL epitope to T lymphocytes of transgenic OT-I mice was characterized.
  • Bone marrow derived DC (10 5 cells / well) were cultured in the presence of different concentrations of EDA-OVA, EDA + OVA (not covalently bound), OVA or EDA.
  • EDA-OVA EDA + OVA (not covalently bound)
  • OVA OVA
  • C57BL6 mice or HHD mice (transgenic for the HLA-A2.1 molecule) were immunized iv with 50 ⁇ g of EDA-OVA or with EDA-NS3 respectively, on days 0 and 10. On day 20 the mice were sacrificed to determine the CTL response against SIINFEKL or against the NS3 1073 peptide. Splenocytes from the immunized animals were cultured in the presence of 0.1 ⁇ g / ml of SIINFEKL or 1 ⁇ g / ml of NS3 1073 at 5 x 10 6 cells / ml (10 mi) for 5 days. in complete medium. On day 5, the cells were collected for chromium release studies.
  • Lytic activity by incubating for 4 h different amounts of effector cells with 1 x 10 4-4 target cells previously loaded with 51 Cr and with or without peptide was measured.
  • the specific percentage of lysis was calculated according to the formula: (experimental cpm - spontaneous cpm) / (maximum cpm - spontaneous cpm) x 100, where the spontaneous lysis corresponds to target cells incubated in the absence of effector cells, and the maximum lysis is obtained incubating target cells with 5% Triton xlOO.
  • splenocytes from immunized mice were placed in 96 plates, at 8xlO 5 cells / well, with complete medium only, or with 30 ⁇ M of the NS3 peptides 1038-1046
  • ELISA (Pharmingen, San Diego, CA) according to the manufacturer's instructions. 3.1.4. Protective tests against infection with vaccinia vHCV 1-1031 virus expressing hepatitis C virus polyprotein C57BL / 6 mice were immunized on days 1 and 10 with 1 x 10 6 bone marrow derived dendritic cells pulsed with EDA-NS3 protein. Ten days after the second immunization, the mice were infected via ip with 5 x 10 6 pfu of the recombinant vaccinia virus vHCV 1- 1031. Three days after infection, the animals were sacrificed and the viral load / mg was quantified of ovarian tissue by means of a quantification test of plaque forming units based on the use of the BSC-I cell line.
  • EDA-OVA and EDA-NS3 proteins were purified from the extracts of transforming E. coli bacteria using the soluble fraction in the case of the EDA-OVA protein and the bodies of inclusion in the case of EDA-NS3.
  • Figures 1OA and HA show the result of the SDS-PAGE of both proteins. Simple bands were obtained corresponding to proteins of 55 kDa and 32 kDa sizes respectively corresponding to the expected sizes for each of the proteins.
  • HHD mice transgenic for HLA-A2.1
  • EDA-NS3 protein induces an effective cytotoxic response against target cells previously incubated with peptide NS3 1073 (V) (SEQ. ID. NO .: 20, CVNGVCWTV), or with variant 1073 (L) of this peptide (SEQ. ID. NO .: 21, CLNGVCWTV) Figure 11B.
  • V peptide NS3 1073
  • L variant 1073 of this peptide
  • SEQ. ID. NO .: 21, CLNGVCWTV Figure 11B.
  • immunization of HHD mice with the EDA-NS3 protein induces the activation of IFN- ⁇ producing cells specific for NS3 peptides 1038 (SEQ. ID. NO .: 23), 1073 (SEQ. ID NO .: 20, CVNGVCWTV) and 1169 (SEQ. ID.
  • mice were infected with 5 x 10 6 pfu of the recombinant vaccinia virus vHCV 1-3011 (kindly provided by Dr. Rice, Washington University School of Medicine, St. Louis, MO and described by Grakoui A , et al. J Virol. 1993; 67: 1385). Three days later the viral load was measured in both groups of mice. In this experiment it was observed that the immunization with DC incubated with the EDA-NS3 protein is able to protect 6% of the mice against infection by the recombinant vaccinia virus.
  • the EDA protein can serve as a very useful vector to vehicle the SIINFEKL epitope of the OVA protein to cells expressing the TLR4 molecule and improve its immunogenicity.
  • the recombinant EDA-OVA fusion proteins that contain the complete OVA protein (397 amino acids) and the EDA-NS3 protein that contains the protease activity fragment of the NS3 protein of the hepatitis C virus. With these results it is demonstrated that the EDA protein can act as a very effective vector for vehicularizing larger antigens.
  • the binding of the OVA protein to EDA favors the capture of the antigen by the antigen presenting cells, increasing the activation of the specific T cells.
  • immunization with these fusion proteins (EDA-OVA and EDA-NS3) allows the induction of specific cytotoxic responses against these antigens. It was observed that the induced responses are long lasting.
  • the administration of the EDA-NS3 protein with dendritic cells allows the induction of a protective cellular response against infection by the vaccinia virus that expresses the hepatitis C virus proteins.

Abstract

La presente invención se refiere al empleo de un polipéptido que comprende una secuencia correspondiente al dominio EDA de la fibronectina, un fragmento de dicho dominio EDA capaz de unirse a TLR4, o una variante de dicho dominio EDA o fragmento que es capaz de unirse a TLR4 y presenta una homología mayor del 70% con cualquier forma o fragmento natural del dominio EDA, en la elaboración de un agente inmunoestimulador. La presente invención se refiere también a los métodos de producción y las aplicaciones del citado agente.

Description

AGENTES Y MÉTODOS BASADOS EN EL USO DEL DOMINIO EDA DE LA FIBRONECTINA
CAMPO TÉCNICO DE LA INVENCIÓN Esta invención se refiere a un vector proteinico para el transporte molecular a células que expresan el receptor TLR4
{Toll-like receptor 4), la preparación de dicho vector proteinico y sus aplicaciones, con una particular incidencia en la preparación y utilización de composiciones farmacéuticas, particularmente composiciones inmunoterapéuticas, para la prevención y tratamiento de enfermedades infecciosas y tumorales .
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN Los patógenos y el cáncer siguen siendo las principales causas de muerte en el mundo. El desarrollo de vacunas para prevenir enfermedades para las que no existe vacunación -como SIDA o paludismo- o para tratar enfermedades crónicas o cánceres, asi como la mejora de la eficacia y seguridad de las vacunas ya existentes, sigue siendo una prioridad. En la mayoría de los casos, el desarrollo de tales vacunas requiere estrategias capaces, de estimular de modo especifico a los linfocitos T citotóxicos CD8+ (CTL) .
Los CTL se activan mediante la presentación a receptores de células T (TCR) de péptidos pequeños asociados a moléculas MHC de clase I. Estos complejos péptido-MHC de clase I están presentes en la superficie de células presentadoras de antigenos (APC) , que son también capaces de proporcionar señales de estimulo para la activación óptima de los CTL. Las células dendríticas (DC) son las APC más potentes y tienen una capacidad única para interactuar con los linfocitos T no activados (naive T lymphocytes) e iniciar la respuesta inmune primaria, activando a los linfocitos T ayudadores CD4+ (helper) y a los linfocitos T citotóxicos CD8+. La presentación antigénica y la estimulación de células T por las DC ha sido estudiada por Guermonprez y- cois. ("Antigen presentation and T cell stimulation by DC". Annu. Rev. Immunol. 2002, 20:621-627), cuyo contenido se incluye aqui como referencia. En ausencia de inflamación y de respuesta inmunológica, las células dendriticas patrullan a través de la sangre, tejidos periféricos, linfa y órganos linfoides secundarios. En los tejidos periféricos, las células dendriticas capturan antigenos propios y ajenos. Los antigenos captados son procesados hasta péptidos proteoliticos y pasan a las moléculas MHC de clase I y II (para la activación de linfocitos T CD8+ o CD4+, respectivamente) . Este proceso de captación de antigeno, degradación y carga, se denomina presentación antigénica. Sin embargo, en ausencia de estimulación, las células dendriticas periféricas presentan los antigenos de modo ineficaz. La (s) señal (es) exógena(s) provenientes de los patógenos o la(s) señal (es) endógena (s), induce (n) a las células dendriticas para que inicien un proceso de desarrollo denominado maduración, que transforma a las células dendriticas en APC y en activadores de linfocitos T. Los productos bacterianos y virales, asi como las citoquinas inflamatorias y otras moléculas propias, inducen la maduración de las células dendriticas mediante interacción directa con los receptores de superficie de las células dendriticas innatas. Los linfocitos T, a través de vias dependientes e independientes de CD40, y las células endoteliales, contribuyen a la maduración final de las células dendriticas mediante contacto directo célula a célula y mediante secreción de citoquinas. Poco tiempo después de que surja una señal de peligro, se modifica la eficacia de la captación de antigenos, el transporte intracelular y la degradación, y el tráfico intracelular de moléculas MHC. Se incrementa la carga de péptidos, asi como la vida media y el traslado a la superficie celular de las moléculas MHC. También aumenta la expresión en superficie de las moléculas co-estimuladoras de células T. De este modo, las células dendríticas se convierten en las APC más potentes, y las únicas capaces de activar a los linfocitos T no activados e iniciar la respuesta inmunológica. Junto a la modificación de sus capacidades en la presentación de antigenos, la maduración induce también la migración masiva de células dendriticas fuera de los tejidos periféricos. Las modificaciones en la expresión de receptores de quimioquinas y moléculas de adhesión, asi como los importantes cambios en la organización del citoesqueleto, contribuyen a la migración de las células dendriticas a través de la linfa hasta los órganos linfáticos secundarios .
Inducción de la maduración de las células dendríticas. Las células dendríticas responden a dos tipos de señales: al reconocimiento directo de patógenos (mediante receptores con patrón de reconocimiento específico) , y al reconocimiento indirecto de la infección (mediante citoquinas inflamatorias, compuestos celulares internos, y respuestas inmunológicas específicas) . En respuesta a estas señales, las células dendríticas se activan e inician su proceso de maduración, que las transforma en estimuladores eficaces de células T. Se han observado al menos cinco tipos de receptores de superficie capaces de desencadenar la maduración de células dendríticas: (i) los receptores TLR
"toll-like receptors", (ii) los receptores de citoquinas,
(iii) moléculas de la familia de receptores TNF (TNF-R) , (iv)
FcR, y (v) sensores de muerte celular. Algunos de los estímulos más eficaces de maduración están mediados por interacciones de TLR (TLR1-9) con sus respectivos ligandos .
Kaisho y Akira han realizado una revisión de los receptores tipo peaje ("Toll-like receptors as adjuvant receptors".
Biochimica et Biophysica Acta, 2002, 1589: 1-13) . Los TLR se expresan en los macrófagos y en las células dendríticas, y en otras células como los linfocitos B. También se han identificado ligandos para diversos TLR. La mayoría de estos ligandos proceden de patógenos pero no se encuentran en el huésped, lo que sugiere que los TLR son fundamentales para detectar a los microorganismos invasores. El reconocimiento de ligandos por los TLR da lugar a una rápida activación de la inmunidad innata al inducir la producción de citoquinas proinflamatorias y a la sobreregulación de moléculas co- estimuladoras . La inmunidad innata activada da lugar a una inmunidad adaptativa eficaz. Respecto a los TLR4, los patrones moleculares específicamente reconocidos son lipopolisacaridos LPS (bacterias gramnegativas) , ácidos lipoteicoicos (bacterias grampositivas) , taxol, proteína F (virus respiratorio sincitial) , proteína 60 del shock térmico, y el dominio EDA de la fibronectina . Por tanto, una vacuna que sea capaz de inducir* respuestas óptimas de células T deberá cumplir diversas condiciones. Lo primero, deberá ser capaz de transportar hasta las APC (o DC) los epítopos de linfocitos T derivados de antígenos para que sean cargados en las moléculas MHC de clase I y/o II. Así, la vectorización hasta las DC representaría el objetivo principal en el diseño de nuevos sistemas de transporte para el desarrollo de vacunas. Además, el vector deberá transmitir las señales apropiadas a la DC para inducir su activación. La llegada del antígeno a la DC sin que haya señal de maduración podría causar tolerancia en lugar de activación de linfocitos T ayudadores y citotóxicos. Además, su eficacia no deberá verse afectada por la inmunidad previa frente al propio vector.
Una primera aproximación para dirigir los péptidos antigénicos a las moléculas MHC de clase I y/o II, está basada en vacunas peptídicas sintéticas que contienen epítopos seleccionados capaces de unirse directamente a estas moléculas en la superficie de las APC. En algunos casos estos péptidos han logrado protección tumoral o eliminación de virus en modelos murinos, mientras que en otros han inducido tolerancia. Los estudios con diferentes tipos de péptidos en humanos han conseguido timidas respuestas clínicas en pacientes con cáncer.
Se están desarrollando también un número importante de estrategias que, básicamente, pueden dividirse en dos categorías. El primer tipo se basa en la síntesis del antigeno por las APC, o su traslado activo al citoplasma de la célula para que acceda a la via clásica de procesamiento del antigeno en MHC-I. El segundo tipo se aprovecha de la capacidad de presentación cruzada de las APC y se basa en antigenos exógenos libres o asociados a células. El traslado de antigenos al citoplasma de las APC se ha logrado mediante toxinas bacterianas (Morón y cois. "New tools for antigen delivery to the MHC class I pathway". TRENDS In Immunology, 2004; 25: 92-97). A modo de ejemplo, EP1188446A1 se refiere a un vector proteinico, basado en la toxina adenilciclasa de Bordetella, para el traslado de moléculas a células que expresan CDlIb.
La presente invención se refiere al dominio extra A (EDA) de la fibronectina, un posible ligando natural de TLR4, como medio teórico para el transporte de antigenos a células que expresan TLR4 y -que podría inducir la selección apropiada y la maduración de las APC, y dar lugar finalmente a una respuesta CTL especifica eficaz. Las moléculas de fibronectina son producto de un único gen, cuya proteina resultante puede existir en múltiples formas generadas del corte y empalme alternativo de un único pre-ARNm (Pankov R y Kenneth MY, "Fibronectin at a glance". Journal of CeIl Science, 2002; 115:3861-3863). El corte y empalme más importante se produce en el grupo central de repeticiones tipo III. La utilización de exones o de saltos da lugar a la inclusión o exclusión de una de las dos repeticiones tipo III: el dominio extra B (también llamado EDB, EIIIB o EDII), y el dominio extra A (también llamado EDA, EIIIA o EDI) . Las fibronectinas .celulares, que contienen alternativamente EDA y EDB, se producen en respuesta a daño tisular. Entre otras funciones biológicas, se ha observado que EDA induce la liberación de proteoglicanos y la expresión de metaloproteinasas (MMP 1, 3, y 9) y de citoquinas pro- inflamatorias (ver Saito S y cois. "The Fibronectin Extradomain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism", J. Biol . Chem. 1999; 161:3071-3076). También se ha comprobado que EDA es capaz de activar TLR4 e inducir por tanto respuestas tipo LPS (Okamura Y y cois., "The extra domain A of fibronectin activates Toll-like receptor 4", J. Biol. Chem. 2001; 276:10229-10233) .
Como se ha indicado anteriormente, el desarrollo de estrategias de potenciación de la respuesta inmunitaria frente a un antigeno abre las puertas al desarrollo de vacunas para el tratamiento del cáncer o de enfermedades infecciosas. En concreto, en la infección por el virus de la hepatitis C se ha observado que la respuesta inmunitaria juega un papel esencial en la eliminación de la infección por lo que la utilización de estrategias inmunopotenciadoras constituyen una alternativa en el tratamiento y la prevención de esta infección.
El virus de la hepatitis C (VHC) es un virus ARN de cadena sencilla que pertenece a la familia Flaviviridae (Miller RH. and Purcell RH. 1990. PNAS. 87:2057). Este virus ha sido reconocido como uno de los principales agentes causantes de las hepatitis crónicas y enfermedades hepáticas y se estima que afecta a 170 millones de personas en todo el mundo (World-Health-Organisation. Hepatitis C. WkIy Epidemiol Rec 1997; 72:65). Una de las principales características de la infección por VHC es su alta tendencia a la cronicidad (70% de las infecciones) y al desarrollo de cirrosis hepática (20%) con un alto riesgo de desarrollo de hepatocarcinomas (Dienstag et al. Gastroenterology 1983; 85:439). El tratamiento con IFN-Ot es la terapia más común en la infección por VHC, pero sólo es efectiva en el 20-30% de los pacientes tratados (Camps et al. J Hepatol 1993; 17:390). La combinación de IFN-α y ribavirina ha mejorado estos resultados (el 30%-40% de los pacientes eliminan el virus de forma sostenida) pero todavía queda un porcentaje muy alto de pacientes resistentes a la terapia (Poynard et al. Lancet 1998; 352:1426). Por ello, el desarrollo de nuevas estrategias terapéuticas para el tratamiento de la hepatitis C crónica es de vital importancia.
El genoma del VHC de 9.6- kilobases, contiene regiones muy conservadas no codificantes en los extremos 5 'y 3 'que flanquean un amplio marco de lectura que codifica para 3 proteínas estructurales (core, El y E2) y al menos 6 proteínas no estructurales (NS2, NS3, NS4a, NS4b, NS5a y NS5b) (Major, ME and Feinstone SM. (1997) Hepatology 25, 1527) .
La eliminación del virus tras una infección aguda por el VHC o tras el tratamiento con IFN-γ viene asociado a la presencia de una fuerte respuesta inmunitaria celular CD4 y CD8 frente a las proteínas del virus. En particular, la respuesta CD4 frente' a la proteina no estructural NS3 del VHC ha sido asociada al aclaramiento viral tras la infección aguda, mientras que la ausencia de esta respuesta celular T conlleva la persistencia del virus y el establecimiento de una infección crónica (Diepolder et al. Lancet 1995; 346:1006; Pape et al J Viral Hepat 1999; 6 Suppl 1:36-40). Además, varios estudios han identificado varios epitopos citotóxicos dentro de la proteina NS3 en pacientes infectados por el VHC. Estos datos sugieren que la proteina NS3 podría ser una buena diana para la inducción de una respuesta celular anti-VHC.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Por una parte, la presente invención se refiere al uso de un polipéptido que comprende una secuencia de aminoácidos que corresponde a: a) el dominio EDA de la fibronectina (EDA) , b) un fragmento de dicho dominio EDA capaz de unirse a TLR4, o c) una variante de dicho dominio EDA o fragmento capaz de unirse a TLR4 y que tenga una homología .mayor del 70% con cualquier forma natural de dicho dominio EDA o fragmento, en la preparación de un agente estimulador de respuestas inmunes celulares frente a un antigeno.
En la presente invención, este agente inductor incluye tanto el dominio EDA de la fibronectina como el antigeno frente al que se desea generar la respuesta inmune, pudiendo estar estos dos componentes como entidades separadas o unidos covalentemente .
En una realización concreta de la invención, dicha variante del dominio EDA o fragmento capaz de unirse a TLR4 citado en el elemento c) , se caracteriza porque su secuencia de aminoácidos es la resultante de la sustitución, adición o deleción de uno o varios aminoácidos de un polipéptido definido en los elementos a) y b) .
En una realización preferente de la invención, dicho fragmento capaz de unirse al elemento c) , se caracteriza porque tiene una homología mayor del 85% con cualquier forma natural del dominio EDA o su correspondiente fragmento, y en una realización más preferente, posee una homología mayor del 95% con dicha forma natural del dominio EDA de fibronectina o su correspondiente fragmento. Según la invención, en una realización especifica la secuencia de aminoácidos del dominio EDA de fibronectina será la de una forma natural de EDA que sea capaz de unirse a TLR4. Este dominio EDA puede seleccionarse entre las formas naturales del dominio en cualquier especie animal, particularmente en mamíferos, por ejemplo roedores (ratones, ratas, etc.) o primates (particularmente humanos).
En otra realización particular, el agente inmunoestimulador comprende una secuencia de aminoácidos parcial de un dominio EDA que se caracteriza por su. capacidad de unión a TLR4.
En otra realización particular de la invención, el dominio EDA es una variante modificada de alguna de las formas naturales del dominio EDA o sus fragmentos, y se caracteriza también por tener la propiedad de unirse a TLR4. En un caso concreto, una variante del dominio EDA presenta una homología mayor del 70% con cualquier forma natural del dominio EDA. Una variante modificada adecuada puede seleccionarse comparando la secuencia de un dominio EDA de fibronectina, o un fragmento del mismo, con otras secuencias polipeptidicas candidatas . Para el análisis de homología podrá emplearse cualquier algoritmo de alineamiento (por ejemplo, FASTA, Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches, Science. 1985 Mar 22;227 (4693) :1435-41) , o software informático (p.ej. Jellyfish de Labvelocity Inc., o Blast software de NCBI). De este modo, las secuencias polipeptidicas candidatas que tengan una homología mayor del 70% se evalúan para determinar su capacidad de unión a TLR4. Las propiedades de unión a TLR4 pueden valorarse mediante cualquier ensayo de unión convencional, por ejemplo utilizando citometría de flujo tal y como se describe en The Current Protocols in Immunology y en The Current Protocols in Protein Science publicados por John Wiley & Sons (Editado por: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober) (actualizado periódicamente. Última actualización 1 de mayo de 2005) .
En una realización de la invención el dominio EDA comprende una secuencia que se selecciona entre: a) la secuencia de aminoácidos completa de un dominio EDA de ratón (Entrez Protein: NM_010233, aminoácidos 1721 a 1810; SEQ. ID. NO: 2, aminoácidos 2-91); b) la secuencia de aminoácidos completa de un dominio EDA humano (Entrez Protein NM_002026, aminoácido 1631 a 1716; SEQ. ID. NO: 4); y c) un fragmento de las secuencias a) y b) capaz de unirse a células que expresen TLR4.
En otra realización particular, el dominio EDA incluye una secuencia que se selecciona entre: a) aminoácidos 2-57 de SEQ. ID. NO: 6, que corresponde a una forma de corte y empalme alternativo del dominio EDA de fibronectina de ratón; b) la secuencia SEQ. ID. NO: 8, que corresponde a una forma de corte y empalme alternativo del dominio EDA., de humanos; y c) un fragmento de las secuencias a) y b) capaz de unirse a células que expresen TLR4.
En algunas realizaciones el agente inmunoestimulador puede incluir también una o más moléculas de interés. Cuando está presente en el agente inmunoestimulador, la molécula de interés puede administrarse en una cantidad que, en combinación con los otros componentes del agente, genera una respuesta inmunitaria eficaz frente a la molécula.
En una realización preferida, el dominio EDA (o un fragmento o variante de esta) y la molécula de interés se encuentran unidos en la misma molécula híbrida o vector proteinico . En otro aspecto, la presente invención se refiere a un vector proteinico como el descrito anteriormente, en el que la molécula de interés se selecciona entre los siguientes tipos o grupos: polipéptidos, lipopéptidos, oligosacáridos, polisacáridos, ácidos nucleicos, lipidos, y fármacos. En una realización particular del vector proteinico, la molécula de interés es un antígeno o un epitopo. En una realización de la invención, el antigeno acoplado al vector es un antigeno viral, un antigeno bacteriano, un antigeno fúngico, o un antigeno parasitario. En una realización concreta dicho antigeno viral es un antigeno viral del virus de la hepatitis C, y en una realización preferente el antigeno del virus de la hepatitis C es la proteina NS3 o un fragmento antigénico de la misma. La proteina NS3 se refiere a la proteina no estructural NS3 del virus de la hepatitis C, una proteina de 67kDa que incluye 2 dominios, una serin- proteinasa que abarca los 189 aminoácidos del extremo N- terminal y un dominio con actividad helicasa-nucleósido trifosfatasa que abarca los 442 aminoácidos del extremo C- terminal. La secuencia de la proteina NS3 incluida en el vector proteinico de la invención puede corresponder a cualquier cepa o aislado del virus de la hepatitis C humana.
En otra realización, el antigeno es un antigeno tumoral o un determinante antigénico tumoral. En el presente texto el término "epitopo" se refiere a una secuencia peptidica que se une a las moléculas MHC de clase I o clase II, y que puede ser reconocida por el receptor de células T de linfocitos T CD8+ o CD4+, respectivamente, e inducir una respuesta inmunológica .
En una realización especifica, la molécula de interés es el determinante antigénico T citotóxico de la • ovoalbúmina (OVA 257-264) o SIINFEKL (SEQ. ID.. NO: 2, aminoácidos 95-102, que presenta 3 aminoácidos adicionales en el extremo C- terminal y en el N-terminal del epitopo, QLE-SIINFEKL-TEW) .
El antigeno puede ser cualquier material capaz de producir una respuesta inmunológica Th, una respuesta de linfocitos T CD8+, una respuesta de células NK, una respuesta de linfocitos T [gamma] / [delta] , o una respuesta de anticuerpos. Aunque sin limitarse a ellos, los antigenos apropiados incluyen péptidos; polipéptidos; lipidos; glucolipidos, polisacáridos; hidratos de carbono; polinucleótidos; priones; bacterias, virus u hongos vivos o inactivados; y antígenos derivados de bacterias, virus, hongos, protozoos, tumores o microorganismos, toxinas o toxoides . En otra realización particular del vector proteinico el antigeno es un alérgeno.
En otra realización especialmente interesante de la invención, la molécula de interés es un compuesto químico o un fármaco enlazado química o genéticamente con el vector proteinico. De este modo, el vector proteinico es útil para la vectorización de fármacos específica hacia células que expresan TLR4.
En una realización particular, el vector proteinico se caracteriza por incluir una secuencia Tag, por ejemplo una cola de histidinas N-terminal. Esto simplificará el proceso de purificación cuando el vector proteinico se obtenga mediante ingeniería genética. Como ejemplo, las secuencias SEQ. ID. NO: 2 y SEQ. ID. NO: 6 representan modalidades específicas del vector proteinico de la invención. En una realización concreta no limitativa de la presente invención, el vector proteinico comprende la secuencia SEQ ID NO: 10, que comprende un fragmento de la proteína NS3.
El dominio EDA incorporado al vector proteinico se caracteriza porque se une a TLR4 y facilita la translocación de la molécula de interés al citosol de las células que expresan TLR4.
Así, la invención también se refiere al uso del vector proteinico para dirigir y translocar una molécula de interés a las células que expresan TLR4. En una realización particular, las células que expresan TLR4 son cualquier tipo de células presentadoras de antígeno (APC) . En una realización preferida, dichas APC son células dendríticas.
En otra realización particular, el vector proteinico se caracteriza por facilitar la translocación del antígeno o epítopo de interés, favoreciendo su posterior procesamiento y carga en las moléculas MHC para la presentación del antigeno a los linfocitos T.
En otra realización, el vector proteinico es capaz de estimular la maduración de la APC, aumentando la expresión de moléculas MHC y de señales co-estimuladoras . En una realización particular ventajosa, el vector proteinico se caracteriza por ser capaz de inducir simultáneamente la presentación del antigeno y facilitar la maduración de las APC, induciendo asi una respuesta inmunológica antigeno- especifica eficaz. En una realización aún más preferida, esta respuesta inmunológica antigeno-especifica es una respuesta CTL.
El vector proteinico puede obtenerse mediante tecnología de recombinación de ADN. Asi, en otro aspecto, la invención se refiere a un ácido nucleico modificado que codifica para el vector proteinico de la invención. Este ácido nucleico puede deducirse fácilmente a partir de la secuencia de aminoácidos del vector proteinico.
Este ácido nucleico modificado puede estar contenido en una construcción o constructo de ADN. Asi, la invención proporciona un constructo de ADN que comprende un ácido nucleico que codifica para el vector proteinico de la invención. Este constructo de ADN puede incorporar una secuencia de control que esté operativamente unida al ácido nucleico que codifica al vector proteinico. "Operativamente unido", referido a ácidos nucleicos, significa que un ácido nucleico se sitúa en relación funcional con otra secuencia de ácidos nucleicos. Las "secuencias de control" son señales de expresión reconocidas por una célula hospedadora especifica, y que regulan funciones como la transcripción y la traducción de una secuencia codificadora concreta (son ejemplos de secuencias de control los promotores, aumentadores, finalizadores de transcripción, puntos de unión a ribosomas, péptidos señal para secreción proteica o para otras localizaciones subcelulares) . La unión de las secuencias deseadas se realiza mediante unión en puntos de restricción especificos. En caso de que éstos no existan, se emplean ligadores o adaptadores de oligonucleótidos sintéticos, siguiendo métodos convencionales. Una ventaja en este sentido es que el constructo de ADN también incluya un marcador o gen que codifica un motivo o fenotipo que permite la selección de la célula hospedadora transformada con el constructo de ADN. El ácido nucleico modificado y el constructo de ADN referidos, pueden obtenerse mediante métodos convencionales recogidos en cualquier manual de laboratorio (por ejemplo, "Molecular Cloning: a Laboratory manual." Joseph Sambrook, David W. Russel Eds . 2001, 3a ed. CoId Spring Harbor, Nueva York) .
En una realización particular, el ácido nucleico modificado o el constructo de ADN de la invención comprenden la SEQ. ID. NO: 1, SEQ ID. NO: 5, SEQ ID NO: 9 (EDA-NS3) o SEQ. ID. NO: 11 (EDA-OVA) .
El ácido nucleico modificado o el constructo de ADN de la invención pueden insertarse en un vector adecuado. Asi, en otro aspecto, la invención se refiere a un vector, como un vector de expresión, que comprende el mencionado ácido nucleico modificado o constructo de ADN. La elección del vector dependerá de la célula hospedadora en la que se vaya a insertar. A modo de ejemplo, el vector en el que se inserta el ácido nucleico puede ser un plásmido o un virus que al insertarse en la célula podrá o no incluirse en el genoma celular. El vector puede obtenerse mediante métodos convencionales (Sambrook y cois., 2001, citado supra) .
En otro aspecto, la invención se refiere a una célula hospedadora, como una célula hospedadora transformada, que comprende un ácido nucleico modificado o una construcción de ADN según la invención. Según la invención, la célula hospedadora de expresión es un procariota, p.ej. Escherichia coli, o un hospedador eucariota, p.ej. levaduras (por ejemplo Saccharomyces cerevisiae, Pichia pastoris) , células de insecto, o células de mamíferos.
En otra realización particular de la invención, el vector de expresión que comprende el ácido nucleico modificado o constructo de ADN que codifica para el vector proteínico de la invención está destinado para terapia o transferencia génica in vivo. En una realización más específica, el vector de expresión es un vector viral. Los vectores virales apropiados incluyen, entre otros a: adenovirus, adenoasociados, retrovirus, lentivirus, alfavirus, herpesvirus, vectores derivados de coronavirus, etc.
En otro aspecto, la invención se refiere a un método para producir el vector proteínico de la invención que incluye cultivar una célula hospedadora de expresión que contenga un ácido nucleico modificado o un constructo de ADN según la invención, en condiciones que permitan la expresión del vector proteínico. Las condiciones para optimizar el cultivo de la célula hospedadora dependerán del tipo de célula hospedadora empleado. Si se desea, el método para producir el vector proteínico de la invención incluirá el aislamiento y purificación del mismo.
Alternativamente, el vector proteínico de la invención podrá obtenerse por otros métodos convencionales. Estos métodos incluyen, por ejemplo, la síntesis química en fase sólida; la purificación mediante cromatografía líquida de alto rendimiento (HPLC) ; y, si se prefiere, el análisis mediante técnicas convencionales como la secuenciación o la espectrometría de masas, el análisis de aminoácidos, las técnicas de resonancia magnética, etc. En otra realización, el vector proteínico de la invención podrá obtenerse mediante enlace covalente del polipéptido con la secuencia de aminoácidos correspondiente al dominio EDA de la fibronectina (EDA) (o un fragmento de dicho dominio capaz de unirse a TLR4, o una variante del mismo), con la molécula de interés (p.ej. polipéptidos, lipopéptidos, oligosacáridos, polisacáridos, ácidos nucleicos, lípidos, u otros compuestos químicos) . Esto puede realizarse con métodos convencionales incluidos en los manuales de laboratorio por ejemplo, "The current protocols in protein chemistry", publicado por John Wiley & Sons
(actualizado periódicamente. Última actualización 1 de mayo de 2005)', o "Immobilized affinity ligand Techniques", GT
Hermanson, AK Mallia and PK Smith, Academic Press, Inc. San
Diego, CA, 1992. De acuerdo con la invención, el vector proteinico, o el ácido nucleico modificado y constructos de ADN que lo codifican, o los vectores de expresión y las células hospedadoras de expresión que incorporan los citados ácido nucleico modificado o constructos de ADN, pueden emplearse para preparar una composición farmacéutica.
En otra realización, la invención se refiere al uso del polipéptido con la secuencia de aminoácidos correspondiente al dominio EDA de la fibronectina (EDA) , o un fragmento o una variante de este, tal y como se ha descrito anteriormente, en la preparación de un agente inmunoestimulador que se caracteriza por ser una composición farmacéutica.
En ciertas realizaciones, la composición farmacéutica de la invención puede emplearse para estimular la maduración de células presentadoras de antigeno, o para inducir una respuesta inmune específica frente a la molécula de interés. En una realización particular, la composición farmacéutica puede emplearse para inducir una respuesta inmunológica ThI en un sujeto al que se le administra 'la composición farmacéutica. Tal y como se utiliza aquí, "inducir una respuesta inmunológica ThI" incluye casos en los que la composición inmunoestimuladora induce una respuesta mixta Thl/Th2. En otros casos, no obstante, la composición inmunoestimuladora induce una respuesta inmunológica ThI con poca o prácticamente ninguna inducción de respuesta inmunológica Th2. En una realización concreta, la composición farmacéutica puede emplearse para inducir una respuesta CTL. En ciertas realizaciones, la composición farmacéutica puede emplearse como adyuvante inmunoestimulador, p.ej. en combinación con uno o más antigenos, con o sin adyuvantes adicionales. Asi, en algunos casos, la composición farmacéutica puede formar una vacuna. En otros, la composición inmunoestimuladora puede servir de adyuvante para emplearlo junto a una vacuna. La composición inmunoestimuladora que incluye al polipéptido con el dominio EDA de la fibronectina (o un fragmento o una variante de este) puede aumentar la expansión de linfocitos T CD8+ activados, la generación de linfocitos T CD8+ de memoria, o ambos. De este modo, la composición inmunoestimuladora puede incrementar la inmunidad mediada por células especificas de antigeno en un sujeto que la reciba.
En una realización concreta, la composición inmunoestimuladora que incluye el dominio EDA de fibronectina (o un fragmento o una variante) es útil para el tratamiento y profilaxis de una enfermedad infecciosa, tumoral o alérgica. En una realización concreta de la presente invención, dicha composición se emplea para el tratamiento y profilaxis de la hepatitis C.
La composición inmunoestimuladora que incluye el dominio EDA de la fibronectina (o un fragmento o una variante) puede contener adicionalmente vehiculizantes, excipientes, y otros ingredientes farmacéuticamente aceptables conocidos.
La composición inmunoestimuladora de la invención puede aplicarse a animales, p.ej. mamíferos (humanos o no), aves y similares, de acuerdo con los métodos convencionales conocidos en la técnica (p.ej. por via oral, subcutánea, nasal, tópica) .
La invención proporciona también un método terapéutico y/o profiláctico que incluye administrar a un sujeto una composición inmunoestimuladora que incluye el dominio EDA de Ia fibronectina (o un fragmento o una variante de esta) . Las vías de administración incluyen, entre otras, absorción transdérmica o transmucosa, inyección (p.ej. subcutánea, intraperitoneal, intramuscular, intravenosa, etc.), ingestión, inhalación, y similares.
Todavía en otro aspecto, la invención se refiere a una composición farmacéutica que incluye al menos un vehículo farmacéuticamente aceptable y una cantidad eficaz del vector proteínico en al menos una de sus formas de expresión: a) el vector proteínico en forma polipeptídica; b) un ácido nucleico modificado que codifica dicho vector proteínico; c) un vector de expresión que incluye el ácido nucleico modificado; o d) células hospedadoras de expresión que también incluyan el ácido nucleico modificado.
En otra realización concreta, la composición farmacéutica se caracteriza por incluir una cantidad eficaz de células dendríticas que han sido incubadas in vitro con el vector proteínico en al menos una de sus formas de expresión. En otra realización más concreta, el compuesto farmacológico es una vacuna o una composición inmunoterapéutica .
Adicionalmente, en la invención se proporcionan usos adicionales del vect-or proteínico. En una realización de la invención, el vector proteínico en alguna de sus formas de expresión se utiliza para preparar una composición farmacéutica eficaz para la inducción de la maduración dendrítica in vitro o in vivo.
En otra realización, el vector proteínico se utiliza para preparar una composición farmacéutica que induzca una respuesta inmunitaria específica frente a la molécula de interés (antígeno o epítopo) acoplada al vector proteínico.
Esta respuesta inmune es una respuesta inmune humoral
(producción de anticuerpos frente a la molécula de interés) , una respuesta T colaboradora, o una respuesta de linfocitos T citotóxicos (CTL) . En una realización preferida, dicha respuesta inmunitaria es de tipo CTL.
En una realización más concreta, la invención se refiere al empleo del vector proteinico en la preparación de una composición farmacéutica útil para el tratamiento y profilaxis de una enfermedad infecciosa. Dicha enfermedad podrá ser bacteriana, viral, fúngica, o parasitaria. En otra realización concreta, la invención se refiere al empleo del vector proteinico en la preparación de una composición farmacéutica útil para el tratamiento y profilaxis de una enfermedad tumoral .
Todavía en otra realización particular, la invención se refiere al empleo del vector proteinico en la preparación de una composición farmacéutica útil para el tratamiento y profilaxis de una enfermedad alérgica. Diversas enfermedades alérgicas están relacionadas con la activación de una respuesta inmune Th2. De este modo, un desvio o un cambio de respuesta Th2 a ThI empleando el vector proteinico con un alérgeno especifico, puede tener un efecto protector o terapéutico frente a la enfermedad alérgica.
De acuerdo con una realización particular de la invención, la composición farmacéutica propuesta se emplea para su administración a un huésped animal o humano. Puede emplearse cualquier vía de administración adecuada. En una realización concreta, la composición farmacéutica se administra por via parenteral (por ejemplo, intravenosa, subcutánea, intramuscular), transdérmica, o mucosa.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1. Análisis mediante SDS-PAGE de las proteinas EDA y EDA-SIINFEKL producidas y purificadas. Se cargó una alícuota de las proteinas EDA y EDA-SIINFEKL en un gel de poliacrilamida al 15% y se sometieron a electroforesis . Los marcadores de peso molecular (MWM) se miden en KDa. Se observa una banda correspondiente al peso molecular putativo de la proteina EDA y de EDA-SIINFEKL (13-14 KDa) .
Figura 2. Unión del vector proteinico EDA-SIINFEKL a TLR4. 2A. Ensayos de unión directa. Las células HEK293-LacZ (HEK293-LacZ) y las células HEK293-TLR4/MD2/CD14 (HEK293-TLR4) fueron pulsadas con lμM EDA-SIINFEKL, fijadas con paraformaldehido, marcadas con anticuerpos anti-His y anti-EDA, reveladas con anti-ratón IgG-FITC y analizadas con citometria de flujo. 2B. Capacidad de EDA de inhibir la unión de anticuerpos anti-TLR4 a las células que expresan TLR4. Las células HEK TLR4 fueron incubadas durante 2 horas a 4°C en presencia o ausencia de 500 nM de la proteina EDA-SIINFEKL. Las células fueron lavadas e incubadas con un anticuerpo anti-TLR4 marcado con FITC y analizadas después por citometria de flujo. 2C. Porcentaje de inhibición de la unión del anticuerpo anti~TLR4 a las células que expresan TLR4 mediante el uso de diferentes concentraciones de la proteina EDA-SIINFEKL. 2D. Ensayos de adherencia celular. Las células HEK-hTLR4 o las HEK-LacZ, marcadas con timidina tritiada fueron dispensadas en los pocilios de una microplaca de 96 pocilios previamente tapizada con la proteina EDA e incubada durante 2 horas a 370C. Las células no adherentes fueron eliminadas mientras que las adherentes fueron cosechadas y la radiactividad incorporada fue medida en un contador de centelleo Topcount. Los números de células adherentes por pocilio fueron calculados con la ayuda de curvas estándar.
Figura 3. EDA-SIINFEKL activa la via de señalización de TLR4. Medición colorimétrica del gen fosfatasa alcalina embrionaria humana secretable en el sobrenadante del cultivo de HEK293/TLR4-MD2-CD14 o HEK293/LacZ que expresa células transfectadas con este gen reportero cuya expresión está controlada por el promotor NF-κB-inducible ELAM-I. 24 horas después de la transfección, se incubaron las células en presencia o en ausencia de diferentes concentraciones de LPS, 100 nM de la proteina EDA-SIINFEKL, o 100 nM de la proteina EDA-SIINFEKL previamente digerida mediante proteinasa K. Las barras representan la inducción de NF-KB (OD obtenido con sobrenadantes de HEK293/TLR4-MD2-CD14 dividido por OD obtenido con sobrenadantes de HEK293/LacZ) .
Figura 4. EDA-SIINFEKL induce in v±trσ la secreción de citocinas proinflamatorias por las DC. Las DC derivadas de médula ósea se cultivaron en presencia de LPS (1 μg/ml) , EDA- SIINFEKL (500 nM) , EDA-SIINFEKL (500 nM) digerido con proteinasa K, o salino. Tras 24 h, se midió mediante ELISA la presencia de IL-12 (A) y TNF-α (B) en el sobrenadante del cultivo.
Figura 5. EDA-SIINFEKL induce la maduración In vivo de las células dendriticas CDlIc. La maduración de células dendríticas es un requisito para la estimulación óptima de una respuesta de linfocitos T. Cuando se produce la maduración, las APC aumentan la expresión de moléculas de superficie como las MHC de clase I (H2Kb en nuestro modelo) y clase II (IAb en nuestro modelo), y las moléculas CD40, CD80 y CD86. Por lo tanto, analizaremos si EDA-SIINFEKL podria inducir la maduración de células que expresen CDlIc in vivo.
Se inmunizó i.v. a ratones C57BL/5 wt con 25 μg EDA-SIINFEKL, 25 μg EDA-SIINFEKL digeridos con proteinasa K, 25 μg de LPS o sólo con PBS. También se inmunizó a ratones C57BL/6 TLR4 KO con 25 μg EDA-SIINFEKL o sólo con PBS. 15 horas después se sacrificó a los ratones y las células CDlIc se purificaron mediante el uso de un autoMACS. Las células fueron marcadas y analizadas mediante citometria de flujo para determinar la expresión de las moléculas H-2Kb, I-Ab, CD40, CD80 y CD86. Figura 6: EDA-SIINFEKL es presentado eficazmente por células dendriticas a linfocitos T específicos para el epitopo SIINFEKL. Caracterizamos la capacidad de EDA-SIINFEKL para ser capturado por APC para la presentación del epitopo CTL SIINFEKL procesado a linfocitos T obtenidos a partir de ratones transgénicos OT-I específicos de este epitopo. (A) Producción de IFN-γpor células no adherentes de ratones transgénicos OT-I. Las DC derivadas de médula ósea se cultivaron en presencia de medio de cultivo, diferentes concentraciones de péptido sintético SIINFEKL, SIINFEKL más EDA, EDA-SIINFEKL (proteina de fusión) o EDA sola. Tras 24 horas de cultivo se recogieron las DC y se emplearon como APC en presencia de 105 células no adherentes de OT-I. Después de 24 horas adicionales, se extrajo el sobrenadante de cultivo y se midió la cantidad de IFN-γ secretada al sobrenadante de cultivo. (B) Dependencia de la molécula TLR4. Las células del hibridoma B3Z (105 células/pocilio) fueron incubadas en presencia de células de bazo de ratones C57BL/6 wt o de células de bazo provenientes de ratones "knock out" para la molécula TLR4 (105 células/pocilio) y la proteina EDA- SIINFEKL (100 nM) . (C) Las células de bazo de ratones C57BL/6 wt fueron cocultivadas con células del hibridoma celular B3Z y la proteina EDA-SIINFEKL en presencia o ausencia de un anticuerpo anti-TLR4. (B y C) La cantidad de IL-2 secretada al sobrenadante de cultivo fue medida mediante un bioensayo basado en la utilización de la linea celular CTLL. (D) Efecto de la cloroqμina, monensinar brefeldina o cicloheximida en la presentación antigénica de la proteína de fusión EDA- SIINFEKL. Las DC derivadas de médula ósea se incubaron durante 1 hora en ausencia o presencia de 30 mM de cloroquina, brefeldina, monensina o 4 mg/ml cicloheximida, antes de la adición de EDA-SIINFEKL o el péptido sintético SIINFEKL (Barras blancas) . Tras 10 horas de cultivo, las DC asi tratadas fueron fijadas con glutaraldehido y usadas como células presentadoras de antígeno (APC) (104 células/pocilio) en co-cultivos con células no adherentes de ratones OT-I (105 células/pocilio) . 24 horas después, la cantidad de IFN-γ secretada al sobrenadante de cultivo fue medida mediante un ELISA comercial.
Figura 7. La inmunización de ratones con EDA-SIINFEKL induce respuesta celular especifica frente el epitopo SIINFEKL. Los resultados precedentes demuestran que la proteína recombinante EDA-SIINFEKL es bioactiva y activa específicamente a las APC. La inducción de respuestas inmunitarias específicas de linfocitos T in vivo es fundamental para el desarrollo de una vacuna. Por tanto, comprobamos si los ratones inmunizados con proteína de fusión EDA-SIINFEKL desarrollaban respuestas celulares específicas frente a este epitopo. (A) Medida de la Inducción de células productoras de IFN-γ. Los días 0 y 10, inmunizamos ratones
C57BL/6 con 1.5 nmol de EDA-SIINFEKL o con 1.5 nmol del peptido SIINFEKL. A día 20, las células del bazo fueron incubadas durante 48 horas en presencia o ausencia de
SIINFEKL, y la cantidad de IFN-γ secretada al sobrenadante de cultivo fue medida mediante ELISA. (B) . Análisis de la inducción de respuestas CTL específicas de SIINFEKL. Los esplenocitos de los ratones inmunizados con EDA-SIINFEKL o con SIINFEKL fueron restimulados durante 5 días en presencia del péptido SIINFEKL. Después de esta incubación se midió la actividad CTL frente a células diana EL-4 incubadas en ausencia o en presencia del péptido SIINFEKL mediante un ensayo de liberación de cromo51 convencional. Los datos representan los porcentajes medios de los valores de lisis neta específica (% lisis de la célula diana pulsada con SIINFEKL menos el % de lisis de la célula diana no pulsada) de muestras triplicadas . Figura 8. EDA-SIINFEKL protege frente al desarrollo de tumores tras la inoculación de células tumorales EG7 que expresan OVA. Para estudiar la capacidad de la proteina de fusión EDA-SIINFEKL para proteger a los ratones frente a la inyección de células tumorales EG7OVA, se inmunizó s.c. a los ratones en los dias 0 y 10 con 3 nmol de EDA-SIINFEKL, SIINFEKL o con suero salino. A los 20 dias de la segunda inmunización se administraron s.c. 105 células EG7OVA. El crecimiento tumoral se controló con un calibre y se expresó en mm3 con lá fórmula V = (L x w2 )/2, . donde L, es la longitud; w, anchura. Se sacrificó a los ratones cuando el tumor alcanzó un volumen mayor de 8 cm3.
Figura 9. EDA actúa como adyuvante en la inducción de respuestas citotóxicas tras la inmunización con la proteina OVA. Existe la posibilidad de que si EDA es capaz de promover la maduración de las células dendriticas in vivo, puede actuar como agente adyuvante tras la inmunización con una proteina que contenga un epitopo citotóxico pero que por si sola no sea capaz de activar una respuesta citotóxica. Para probar esta posibilidad, inmunizamos un grupo de ratones con 50μg de EDA junto con 500μg de la proteina OVA (A) y otro grupo de ratones con 500μg de OVA (B) , sin utilizar ningún otro tipo de adyuvante. Una semana después de la inmunización, los ratones fueron sacrificados y los esplenocitos fueron cultivados en presencia del péptido sintético SIINFEKL. Tras 5 dias de cultivo, se midió en ambos grupos la respuesta citotóxica frente a células diana EL-4 previamente pulsadas con o sin el péptido SIINFEKL en un experimento convencional de liberación de Cr51.
Figura 10. EDA puede actuar como vehículo para antigenos más grandes. En los experimentos anteriores se demuestra que la proteina EDA puede actuar como vehículo para transportar un epitopo citotóxico y favorecer la inducción de una respuesta CTL frente a dicho epitopo. En un paso posterior quisimos estudiar si EDA era capaz . de transportar un antigeno más grande y favorecer la inducción de una respuesta celular frente a este antigeno. Para ello construimos la proteina de fusión EDA-OVA y realizamos los siguientes experimentos in vi tro e in vivo. (A) Análisis por SDS-PAGE de la proteína recoiαbínante EDA-OVA. La proteina recombinante EDA-OVA fue expresada en E. coli, purificada por cromatografía de afinidad, desalada, detoxificada, concentrada y analizada por SDS-PAGE. Se observa una banda de unos 55 kDa que corresponde al peso molecular putativo de dicha proteina. (B) Experimentos de presentación antigénica. Las DC derivadas de medula ósea fueron cultivadas en presencia o ausencia de diferentes concentraciones de OVA, EDA-OVA (proteina de fusión), EDA más OVA o EDA sola. 24 horas después, las DC fueron utilizadas como células presentadoras de antigeno en presencia de 105 células no adherentes de ratones OT-I. La producción de IFN-γ por las células no adherentes de ratones OT-I en presencia de las DC fue cuantificada mediante un ELISA comercial. (C) La proteína EDA-OVA induce CTL específicos de OVA in vivo. Los ratones C57BL/6 fueron inmunizados con 1 nmol de EDA-OVA o con 1 nmol de OVA. Siete dias tras la inmunización, los esplenocitos de los ratones inmunizados fueron restimulados in vitro durante 5 dias en presencia del péptido SIINFEKL. Después de este proceso se midió la actividad CTL especifica frente a células EL-4 incubadas en ausencia o en presencia de SIINFEKL en un ensayo convencional de liberación de Cr51. Los datos representan los porcentajes medios de los valores de lisis neta especifica (% lisis de la célula diana pulsada con SIINFEKL menos el % de lisis de la célula diana no pulsada) de muestras triplicadas.
Figura 11. La proteina EDA-NS3 induce una respuesta CTL especifica frente a la proteina NS3 del virus de la hepatitis
C. Una vez que vimos que la proteina EDA podia actuar como vehiculo para antígenos grandes, estudiamos la capacidad de EDA para inducir una respuesta antiviral frente a la proteina NS3 (aminoácidos 1-196 de la región proteasa de la proteina NS3) del virus de la hepatitis C como una estrategia de vacunación frente a la infección por este virus . (A) Análisis por SDS-PAGE de la proteína recombinante EDA-NS3 (1-196) . La proteina recombinante de fusión EDA-NS3 fue construida y expresada en E. coli, y analizada por SDS-PAGE. Se observa una banda de unos 32 kDa que se corresponde con el peso molecular putativo de la proteina de fusión. (B) La proteína EDA-OVA induce CTL específicos de OVA in vivo. Inmunizamos ratones HHD (transgénicos para la proteina HLA-A2.1), por via i. v. con 100 μg/ratón de la proteina EDA-NS3 disuelta en suero salino. Una semana tras la inmunización, los esplenocitos fueron restimulados in vitro con el péptido NS3 1073 (que contiene un determinante T citotóxico inmunodominante de la proteina NS3 para la restricción HLA- A2). Tras 5 dias de cultivo, se midió la actividad citotóxica frente a células diana T2 incubadas con el péptido 1073 (V) (SEQ. ID. NO.: 20, CVNGVCWTV), o con la variante 1073 (L) de este péptido (SEQ. ID. NO.: 21, CLNGVCWTV) o en ausencia de péptido utilizando un ensayo de liberación de Cr51 convencional. (C) La proteína EDA-NS3 induce una respuesta multiepitópica. frente a diferentes epítopos de la proteína NS3. Los esplenocitos obtenidos de los ratones inmunizados con EDA-NS3 fueron restimulados in vitro durante 48 horas en presencia de los péptidos 1038-1046, NS3 1073-1081 o NS3 1169-1177 (que contienen tres determinantes citotóxicos para la restricción HLA.A2 dentro del fragmento 1-196 de la proteina NS3) o con la proteina NS3 recombinante (Mikrogen) . La cantidad de IFN-γ secretada al sobrenadante de cultivo se midió mediante un ensayo ELISA comercial . (D) La proteína EDA- NS3 induce una respuesta citotóxica de larga duración. Los ratones HHD fueron inmunizados por via i.v. con 100 μg/ratón de la proteína EDA-NS3 en salino. Sesenta días tras la inmunización, los ratones se sacrificaron y se midió la presencia de CTL específicos frente al péptido NS3 1073 en un ensayo de liberación de Cromo51 convencional utilizando células diana T2 incubadas en ausencia o presencia del péptido NS3 1073. (E) La inmunización de ratones C57BL/6 con DC incubadas con EDA-NS3 protege a los ratones de la infección con el virus vaccinia recombinante vHCV(l-3011) que expresa las proteínas del virus de la hepatitis C. Los ratones fueron inmunizados con 106 DC previamente incubadas con la proteína EDA-NS3 y 7 días después recibieron el desafío de 5xlO5 pfu del virus vaccinia vHCV (1-3011) por vía i.p. Tres días después de la infección los ratones fueron sacrificados y se cuantificó la carga viral/mg de tejido ovárico mediante un ensayo de infección en células BSC-I.
Ejemplos
Ejemplo 1. El Dominio Extra A de fibronectina interacciona con TLR4 y activa la via de señalización de TLR4.
1.1 Material y métodos
1.1.1 Expresión de proteínas recombinantes del vector proteinico EDA y EDA-SIINFEKL Preparación del vector proteinico recombinante
Se amplificó el dominio extra de fibronectina (EDA) con RT-PCR utilizando primers específicos y ARN de hepatocitos de ratones tratados con concanavalina-A para inducir daño hepático [Lasarte y cois, Hepatology. 2003; 37 (2) : 461-70. ] . Las partes de tejido hepático se homogeneizaron y Usaron en ültraspec (Biotecx, Houston, TX, USA) utilizando un Ultraturrax Driver T.25 (Janke & Kunkel, Ika-Labortechnik, Alemania) . El ARN se aisló según los métodos de Chomczynski y Sacchi (Chomczynski P y Sacchi N. Síngle-step method of RNA isolation by acid gυanidinium th±ocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-159) . Se realizó la transcripción inversa del ARN (60 min a 370C) con 200U de transcriptasa inversa M-MuLV (Gibco-BRL) en 20 μL de volumen de tampón 5xRT (25OmM Tris-HCl Ph 8.3, 375mM KCl, 15mM MgCl2) suplementado con ditiotreitol 5mM (DDT) , trifosfato desoxinucleósido 0.5mM (Boehringer Mannheim, Mannheim, Alemania) , 25U de inhibidor de ribonucleasa (Promega Corporation, Madison, WI, EE.UU.) y 200ng de hexámeros aleatorios (Boehringer Mannheim). Después de calentar (95°C, 1 min) y enfriar en hielo rápidamente, se utilizaron 0.3 μg de ADNc para su amplificación por PCR en 20μl de una solución de tampón 1Ox (10OmM Tris-HCl pH9.3, 50OmM KCl, 1% Tritón X- 100) que contenia O.OδmM dNTP, primers corriente arriba y corriente abajo(40ng cada), 1.5mM MgCl2 y 2U de polimerasa ADN Taq (Promega Corporation) . El primer corriente arriba fue (SEQ. ID. NO: 13)
5' CCATATGAACATTGATCGCCCTAAAGGACT 3f
(las bases subrayadas se añadieron a los primers a fin de introducir una secuencia reconocible por la enzima de restricción Ndel, mientras que la secuencia en cursiva corresponde al comienzo de EDA) y el primer corriente abajo (SEQ. ID. NO: 14)
5 ' AGCGGCCGCCCATTCAGTCAGTTTTTCAAAGTTGATTATACTCTCAAGCTGTGTGGAC TGGATTCCAATCAGGGG 3' (las bases subrayadas se añadieron a los primers a fin de introducir una secuencia reconocible por la enzima de restricción Notl, la secuencia en negrita corresponde a la secuencia que codifica para el epitopo OVA CTL (SIINFEKL) flanqueado por 3 aminoácidos en ambos extremos QLE-SIINFEKL-TEW, mientras que la secuencia en cursiva corresponde al final de EDA) .
El fragmento PCR amplificado se clonó en pCR2.1-TOPO utilizando un equipo de clonación TOPO TA Invitrogen, Carlsbad, CA, USA) . Este plásmido se digirió con Ndel y Notl y el fragmento de ADN obtenido fue subclonado en el plásmido digerido Ndel/Notl pET20b (Novagen) , que posibilita la expresión de proteínas de fusión con 6 residuos de histidina (βxHis tags) en el extremo carboxilo.
El plásmido resultante pET20b2-26 que expresa la proteina de fusión EDA-SIINFEKL-6xHis fue transfectado a células BL21(DE3) para la expresión del vector proteinico recombinante . Las células transfectadas crecieron en 11 de LB a 370C hasta que la OD600 alcanzó 0.5-1 unidades. Se añadió IPTG al cultivo final, hasta una concentración final de 0.4 mM y se incubaron con agitación a temperatura ambiente durante la noche. Las células fueron recolectadas mediante centrifugación, resuspendidas en 0. IM Tris-HCl pH=7,2, tratadas con lisozima, fragmentadas empleando una prensa de French (dos pases a 20.000 pst) , aclarados por centrifugación y filtradas. La proteina de fusión presente en la fracción soluble fue purificada mediante cromatografía de afinidad (Histrap, Pharmacia) empleando una plataforma FPLC (AKTA, Pharmacia) . La proteina se desaló mediante columnas de desalado Hitrap (Pharmacia) , y se concentró con el dispositivo de filtro con centrifugación Amicon Ultra 4-5000 MWCO (Millipore Carrighwahill, Irlanda) . El vector proteinico recombinante se purificó de endotoxinas utilizando columnas Endotrap (Profos Ag, Regensburg, Alemania) , hasta que los niveles de endotoxina estuvieron por debajo de 0.2EU/μg de proteina (evaluado con el ensayo LAL, Cambrex) .
Para la obtención del plásmido de expresión de la proteina EDA, se procedió a la realización de una PCR utilizando los cebadores CCATATGAACATTGATCGCCCTAAAGGACT (SEQ ID NO: 13) y AGCGGCCGCTGTGGACTGGATTCCAATCAGGGG (SEQ ID NO: 15) estrategias de clonado similares a las indicadas para el plásmido EDA-SIINFEKL y se obtuvo el plásmido pET20bEDAl .2.
Se colocaron 20 μg de proteina de cada muestra en gel de SDS- acrilamida al 15%, seguido de tinción con azul de Coomassie. Se observó una banda correspondiente al peso molecular putativo (13 kDa) . 1.1.2. Unión de EDA-SIINFEKL a TLR4. Ensayos de citometria de flujo y de adherencia.
Para determinar si la proteina EDA-SIINFEKL recombinante era capaz de unirse a las células que expresan TLR-4, empleamos HEK293 que expresan TLR4humano-MD2-CD14 (de Invivogen) . También empleamos células HEK293 transfectadas con LacZ (Invivogen) a modo de control negativo. Se pulsaron las células con 1 mM EDA-SIINFEKL durante 1 h a 4°C, se lavaron con PBS y se fijaron con paraformaldehido al 4% en PBS durante 10 min. Tras 3 lavados, las células fueron marcadas con anticuerpos anti-His al 1/100 (Qiagen) y anti- CD16 al 1/200 (FcBlock, de Becton Dickinson) durante 1 hora y 30 min. Tras 3 lavados, las células fueron incubadas durante 30 min con una disolución 1/100 de anticuerpo anti-IgG de ratón marcado con fluoresceina y se analizó mediante citometria de flujo.
Alternativamente, también se midió la capacidad de la proteina EDA-SIINFEKL para inhibir la unión de un anticuerpo anti-TLR4 humano marcado con FITC a las células HEK-hTLR4. Para ello, las células HEK TLR4 fueron incubadas durante 2 h a 40C en presencia o ausencia de diferentes dosis de EDA- SIINFEKL. Las células fueron después lavadas e incubadas con anticuerpos anti-TLR4 y analizadas por citometria de flujo. Se calculó el porcentaje de inhibición para las diferentes concentraciones de EDA-SIINFEKL ensayadas. También se realizaron ensayos de adherencia celular. Las células HEK LacZ o las HEK hTLR4 fueron previamente marcadas con timidina tritiada y dispensadas en placas de 96 pocilios previamente tapizadas con la proteina EDA. Tras dos horas de incubación a 370C, las células no adherentes fueron eliminadas mientras que las células que permanecieron adheridas fueron recuperadas y se midió la radiactividad incorporada en un contador de centelleo Topcount. El número de células adherentes por pocilio se calculó con la ayuda de curvas estándar obtenidas utilizando diferentes concentraciones de células marcadas.
1.1.3. Activación de la via de señalización TLR4 De acuerdo con las instrucciones del fabricante
(Invivogen) , se transfectaron células de expresión
HEK293/hTLR4-MD2-CD14 o HEK293/LacZ con un plásmido que transportaba el gen de fosfatasa alcalina embrionaria humana secretable (SEAP) . La expresión de SEAP se controla mediante un promotor NF-kB-inducible ELAM-I (pNiFty-SEAP (Invivogen) ) . 24 h después de la transfección, se incubaron las células en presencia o ausencia de diferentes concentraciones de LPS, proteina EDA-SIINFEKL 100 nM o proteina EDA-SIINFEKL previamente digerida con proteinasa K 100 nM. Después de 24 h se midió la expresión del gen reportero en el sobrenadante de cultivo mediante un ensayo colorimétrico (Invivogen) . En la figura 3, las barras representan el factor de inducción de NF-KB (OD obtenido en los sobrenadantes a partir de HEK293/TLR4-MD2-CD14 dividido por OD obtenido en los sobrenadantes a partir de HEK293/LacZ) . La cantidad de contaminantes de endotoxina en las preparaciones EDA de este estudio estuvo por debajo de 0,0003 μg/ml .
1.2 Resultados
1.2.1. Expresión de las proteinas de fusión recombinantes EDA y EDA-SIINFEKL
La proteina recombinante EDA-SIINFEKL (SEQ. ID. NO: 2) y EDA se expresaron en E. coli como proteinas de fusión βxHis, purificadas mediante cromatografía de afinidad, desaladas y liberadas de endotoxinas tal y como se describió en el apartado de métodos. Las proteinas resultantes se analizaron mediante SDS-PAGE y Western blot empleando anticuerpos anti- His (Figura 1) . Se observó una banda correspondiente al peso molecular putativo (13 kDa) para cada proteina. 1.2.2. La proteina de fusión EDA-SIINFEKL se une a TLR4
Se ha descrito que el dominio extra A de fibronectina activa al receptor TLR4 (Okamura y cois, JBC, 2001; 276:10229-10233). No obstante, no hay evidencias directas de unión fisica entre EDA y TLR4. En primer lugar analizamos si la proteína EDA-SIINFEKL tenía la capacidad de unirse a células que expresen TLR4. Las células HEK293 que expresan hTLR4-MD2-CD14 o las HEK293 transfectadas con LacZ (Invivogen) fueron pulsadas con proteína EDA-SIINFEKL lμM, marcadas con anticuerpos anti-His y un anti-IgG de ratón marcado con fluoresceína (ver métodos) y se analizó mediante citometría de flujo. Se observó que las células HEK293 que expresan hTLR4-MD2-CD14 humano presentaban una intensidad de fluorescencia ligeramente mayor que las HEK293 que expresaban LacZ (Figura 2A) . También se midió la capacidad de la proteína EDA-SIINFEKL para inhibir la unión de un anticuerpo marcado con fluoresceína específico frente a TLR4 humano, observándose que la incubación previa de las células HEK hTLR4 con 500 mM de la proteína EDA-SIINFEKL inhiben en aproximadamente un 50% la unión de dicho anticuerpo (Figura 2B) . En la figura 2C se muestra el efecto inhibitorio de diferentes dosis de la proteína EDA-SIINFEKL sobre esta unión del anticuerpo. Por otro lado se midió la capacidad de las células HEK hTLR4 y las células control HEK LacZ para unirse en un ensayo de adherencia, a pocilios de plástico previamente tapizados con la proteína EDA. Se muestra que las células HEK hTLR4 son capaces de unirse específicamente a los pocilios que contienen EDA. Todos estos experimentos parecen indicar que la proteína EDA y EDA-SIINFEKL son capaces de unirse a TLR4.
1.2.3. La proteina de fusión EDA-SIINFEKL activa la vía de señalización TLR4 La señalización TLR4 lleva a la translocación de NF-KB, un factor de transcripción que se une a secuencias consenso en los promotores de diversos genes. Para determinar si la proteina recombinante EDA-SIINFEKL puede activar TLR4, empleamos células HEK293/hTLR4-MD2-CD14 o HEK293/LacZ transfectadas con un plásmido que transporta el gen de la fosfatasa alcalina embrionaria humana secretable (SEAP) bajo el control de un promotor ELAM-I NF-icB-inducible (pNiFty-SEAP
(Invivogen) ) . Se observó que la proteina EDA-SIINFEKL sólo podia estimular la expresión de SEAP en células transfectadas HEK293/hTLR4-MD2-CD14, alcanzando un factor de inducción NF-
KB de I1 similar al que aparece al incubar las células con 0.01 μg de LPS (Figura 3). Esta capacidad para estimular la translocación nuclear de NF-KB desaparecía por completo si la proteína EDA-SIINFEKL era previamente digerida con proteinasa K (Figura 3) , lo que indica que la activación de la vía TLR4 por EDA no puede ser debida a una potencial contaminación por LPS en la preparación de proteína recombinante .
1.3 Discusión. Creamos el plásmido recombinante pET20b2-26 que nos permitía expresar la proteína de fusión recombinante EDA- SIINFEKL βxHis en E. coli. La presencia de 6 histidinas facilita la detección y purificación de la proteína de fusión. Así, pudimos purificar importantes cantidades de la proteína de fusión a partir de la fracción citoplásmica de los cultivos de E. coli. Los estudios de unión realizados con células que expresan TLR4 sugieren que la proteína EDA- SIINFEKL es capaz de unirse a TLR4 de modo específico. Además, mostramos aquí que EDA-SIINFEKL puede activar la vía de señalización TLR4. Esta activación no está relacionada con la potencial contaminación LPS de la proteína, ya que la digestión previa con proteinasa K elimina la capacidad de estimular la translocación nuclear de NF-KB. Además, la cantidad de contaminantes de endotoxina en la preparación de EDA de este estudio estaba por debajo de 0.0003 μg/ml (tal y como se determinó por el ensayo LAL) , que no puede activar la via de señalización TLR4 en este estudio in vitro. Estos resultados sugieren que la proteina EDA puede utilizarse como vehículo proteinico para presentar antigenos a células que expresen TLR4. Se sabe que las células dendriticas expresan receptores TLR, y especialmente TLR4. También se sabe que algunos de los estímulos de maduración más potentes para las DC proceden de la interacción de los receptores TLR con sus respectivos ligandos. Por tanto, la interacción de una proteina de fusión que contenga EDA y un antigeno determinado, podría favorecer la activación rápida de la inmunidad congénita mediante la inducción de la producción de citocinas proinflamatorias, y la sobreexpresión de moléculas coestimuladoras . Además, la capacidad de esta proteina de' fusión de dirigirse y unirse a la superficie de la DC podría aumentar la captura y la endocitosis del antigeno por la DC, incrementando asi la respuesta inmunológica frente a este antigeno.
Ejemplo 2. Las proteínas de fusión que contienen EDA inducen la maduración de células dendriticas in vitro e in vivo y permiten la inducción de linfocitos T citotóxicos
2.1 Material y métodos.
2.1.1. Generación de células dendriticas a partir de médula ósea.
Las células dendriticas se crecieron a partir de células de médula ósea. Tras usar los eritrocitos con tampón de lisis ACK, las células fueron lavadas y se retiraron linfocitos y granulocitos mediante incubación con una mezcla de anticuerpos frente a CD4 (GKl; ATCC, Manassas, VA), CD8
(53.6.72; ATCC), Ly-βG/Grl (BD-Pharmingen; San Diego CA) y CD45R/B220 (BD-Pharmingen), seguido de complemento de conejo. Las células restantes crecieron en 12 placas de cultivo en medio completo con 106 células/ml suplementadas con 20 ng/ml de mGM-CSF y 20 ng/ml de mIL-4 (ambos de Peprotech; Londres, GB) . Cada 2 dias el medio se sustituía con medio fresco que contenia citocinas . Se recogieron células dendriticas no adherentes el dia 7, y se cultivaron en presencia o ausencia de 1 μg/ml o 15 ng/ml de LPS (Sigma) , EDA-SIINFEKL (500 nM) o SIINFEKL (10 μM) a 37°C y 5% CO2. En algunos experimentos se añadió polimixina (lOμg/ml) a los cultivos, a fin de inhibir el efecto de los contaminantes de endotoxina. A las 24 h de cultivo se recogieron los sobrenadantes y se midió IL-12 y
TNF-α mediante ELISA (BD-Pharmingen) , de acuerdo con las instrucciones del fabricante.
2.1.2 Medición de la maduración ±n vivo de las células CDlIc tras la inmunización con EDA-SIINFEKL. Efecto de la digestión con proteinasa-K.
La maduración de las DC se evaluó in vi tro mediante citometria de flujo, midiendo la expresión de varios marcadores de superficie. Se inyectó i.v. a ratones C57BL6 con 25 μg EDA-SIINFEKL, 25 μg EDA-SIINFEKL digeridos con proteinasa-K, 25 μg LPS o sólo con PBS. La digestión de EDA- SIINFEKL con proteinasa K se realizó con agarosa-proteinasa K (Sigma, St Louis) . Brevemente, se utilizaron 5mg/ml de bolas de agarosa-proteinasa lavados en tampón de lavado (Tris-HCl 20 mM, pH 7.2, EDTA 1 mM, ClCa2 ImM) para digerir la proteina EDA-SIINFEKL o LPS durante 20 min a 300C. Las bolas de agarosa-proteinasa K se retiraron por centrifugación. A las 15 horas de la inmunización los ratones fueron sacrificados y las células CDlIc purificadas mediante autoMACS . Las células fueron marcadas y analizadas mediante citometria de flujo.
2.1.3. Estudios ±n v±tro para evaluar la capacidad de presentación del antigeno. Caracterizamos la capacidad de EDA-SIINFEKL para ser capturado por APC para presentar el epítopo CTL SIINFEKL procesado a los linfocitos T de los ratones transgénicos OT-I o al hibridoma T B3Z, ambos específicos de este epitopo. Las DC derivadas de médula ósea se cultivaron en presencia de diferentes concentraciones de EDA-SIINFEKL, EDA más SIINFEKL
(no unidos covalentemente) o de SIINFEKL. Tras 24 h de cultivo, se recogió el sobrenadante y se midió la producción de IFN-γ mediante ELISA. De modo alternativo, a las 12h de haberse iniciado el cultivo se recogieron las DC, se fijaron con glutaraldehído al 0,05% y se utilizaron como APC en presencia de diferentes cantidades de células no adherentes de OT-I o de la línea celular hibridoma T B3Z. En algunos experimentos las DC fueron incubadas en presencia o ausencia de cloroquina (3μM) , Monensina (lμl Golgystop, Pharmingen) , Brefeldina (lμl Golgyplug, Pharmingen) , cicloheximída
(4μg/ml) para ser posteriormente incubadas en presencia de EDA-SIINFEKL o de péptido SIINFEKL. En algunos casos se añadió anticuerpo anti-TLR4 a los cultivos . La activación de las células B3Z en presencia de APC tratadas se realizó midiendo la producción de IL-2. Las células de hibridoma B3Z (105 células/pocilio) se cultivaron en medio completo (RPMI 1640 suplementado con FCS al 10%, glutamina 2 mM, 100 U/ml de penicilina, 100 μg/ml de estreptomicina y 5xlO~5M 2-mercaptoethanol) durante 18 horas en presencia de células de bazo (105 células/pocilio) de ratones C57BL/6 wt o de ratones TLR4 KO, y diferentes concentraciones de EDA-SIINFEKL. La cantidad de IL-2 liberada al sobrenadante del cultivo se midió, tal y como se describió previamente, mediante un bioensayo basado en la línea CTLL.
2.1.4. Medición de la inducción In vivo de linfocitos T citotóxicos (CTL) y de células productoras de IFN-γ después de la inmunización. Los ratones C57BL6 fueron inmunizados i.v. con 50 μg de EDA-SIINFEKL O con SIINFEKL en los dias 0 y 10. El dia 20 se sacrificó a los ratones para determinar la respuesta CTL frente a SIINFEKL. Se cultivaron los esplenocitos de los animales inmunizados en presencia de 0.1 μg/ml de SIINFEKL a 5 x 106 células/ml (1OmI) durante 5 dias en medio completo. El dia 5 se recogieron las células para realizar estudios de liberación de cromo. Se midió la actividad litica incubando durante 4 h diferentes cantidades de células efectoras con 1 x 104 células EL-4 diana, cargadas previamente con 51Cr y con o sin SIINFEKL. El porcentaje especifico de lisis se calculó según la fórmula: (cpm experimental - cpm espontánea) / (cpm máxima - cpm espontánea) x 100, donde la lisis espontánea corresponde a células diana incubadas en ausencia de células efectoras, y la lisis máxima se obtiene incubando células diana con 5% Tritón xlOO.
Para medir la producción de IFN-γ en respuesta a SIINFEKL, se colocaron esplenocitos de ratones inmunizados en 96 placas, a 8xlO5 células/pocilio, sólo con medio completo, o con péptido 30 μM en un volumen final de 0.25 mi. El sobrenadante (50 μl) se retiró a las 48 h y se midió el IFN-γ mediante ELISA (Pharmingen, San Diego, CA) de acuerdo con las instrucciones del fabricante.
En otro grupo de experimentos se probó la capacidad de la proteina EDA para actuar como adyuvante en una mezcla de proteinas. En este caso, los ratones C57BL/6 fueron inmunizados por via i.v. con 50 μg de EDA-SIINFEKL en presencia de 500 μg de la proteina OVA en PBS o con 500 μg de proteina OVA en PBS. Una semana después los ratones fueron sacrificados para determinar la respuesta CTL frente a SIINFEKL en ambos grupos como se indica más arriba. 2.1.5. Protección frente al desafio con células tumorales EG7 que expresan la proteina OVA
Los ratones fueron inmunizados s.c. en los dias 0 y 10 con 3 nmol de EDA-SIINFEKL o de SIINFEKL. A los 20 dias de la segunda inmunización se inyectó por vía s.c. a los ratones con 105 células EG7OVA. El crecimiento tumoral se controló con un calibre y se expresó en mm3 con la fórmula V = (L x w2) /2, donde L, es la longitud; w, anchura. Se sacrificó a los ratones cuando el tumor alcanzó un volumen mayor de 8 cm3.
2.2. Resultados
2.2.1. La proteina de fusión EDA-SIINFEKL estimula la producción de IL-12 y TNF-α por las células dendriticas derivadas de médula ósea (BMDC) .
Examinamos si la proteina recombinante EDA-SIINFEKL era capaz de estimular a las BMDC para producir citoquinas proinflamatorias como IL-12 o TNF-α. Se cultivó BMDC con SIINFEKL (lOμM), LPS (lμg/ml y 15 ng/ml) o EDA-SIINFEKL-βxHis (50OnM) . A las 24 h, se midió mediante ELISA la cantidad de IL-12 o TNF-α existente en el sobrenadante del cultivo. Se observó que EDA-SIINFEKL era capaz de estimular la producción de niveles elevados de IL-12 o de TNF-α mediante BMDC (Figura 4) . Se observó que esta capacidad inmunoestimuladora desaparecía cuando la proteina era previamente tratada con proteinasa K indicando que esta actividad no era debida a posibles trazas de endotoxina en las muestras de proteina.
2.2.2. EDA-SIINFEKL induce la maduración in vivo dependiente de TLR4 de las DC que expresan CDlIc.
Las células dendriticas (DC) son las células presentadoras de antigenos más potentes con una capacidad única para estimular linfocitos T no activados y respuestas secundarias a los antigenos . Las DC tienen la capacidad de capturar antigenos, procesarlos hasta péptidos, y presentar los péptidos en asociación con moléculas MHC de clase I o de clase II a linfocitos T citotóxicos (CTL) o a linfocitos T colaboradores, respectivamente. Las DC inmaduras pueden capturar antigenos, pero deben diferenciarse o madurar para ser capaces de estimular a los linfocitos T no activados. Por tanto, la maduración de células dendriticas es un requisito para la estimulación óptima de una respuesta de linfocitos T. Cuando se produce la maduración, las APC aumentan la expresión de moléculas de superficie, como las MHC de clase I y de clase II, y las CD40, CD80 y CD86. Se procedió a analizar si EDA-SIINFEKL podia inducir la maduración in vivo de células con expresión de CDlIc. Ratones C57BL6 fueron inmunizados por via i.v. con 25 μg de EDA-SIINFEKL, 25 μg de EDA-SIINFEKL digerido con proteinasa K, 25 μg • de LPS o sólo con PBS. 15 horas más tarde los ratones fueron sacrificados y las células CDlIc fueron purificadas con autoMACS, marcadas con anticuerpos, y analizadas con citometria de flujo. Se observó que la inmunización con EDA-SIINFEKL era capaz de inducir la expresión de moléculas MHC de clase I y de clase II, y de CD40 y CD86. Esta capacidad de EDA-SIINFEKL desaparece por completo cuando la proteina es digerida por proteinasa K antes de la inmunización (Figura 5) . La digestión de LPS por proteinasa K no tiene efecto inhibidor sobre la capacidad de LPS para inducir la expresión de estos marcadores de maduración (no mostrado) . Se comprobó la capacidad de EDA-SIINFEKL para inducir la maduración de células CDlIc de ratones C57BL/6 TLR4 KO, y se observó que EDA-SIINFEKL era incapaz de inducir la sobreexpresión de los marcadores de maduración hallados en los ratones C57BL/6 wt (Figura 5) .
2.2.3 EDA-SIINPEKL es presentado eficazmente por las células dendriticas a los linfocitos T específicos del epitopo SIINFEKL .
Describimos la capacidad de EDA-SIINFEKL para ser capturado por APC, y de presentar el epitopo CTL SIINFEKL procesado a los linfocitos T de ratones transgénicos OT-I específicos para este epitopo. Las DC derivadas de médula ósea se cultivaron (105 células/pocilio) en presencia de diferentes concentraciones de EDA-SIINFEKL, EDA+SIINFEKL, EDA o del péptido SIINFEKL. 48 h después, se añadieron a los pocilios 105 células no adherentes de OT-I. Se midió la producción de IFN-γ por células no adherentes de OT-I (Figura 6A) . Se observó que el péptido SIINFEKL era muy eficazmente presentado a células T de ratones OT-I como se muestra por la producción de IFN-γ. EDA-SIINFEKL también induce altos niveles de IFN-γ, aunque se requieren altas dosis de proteina para obtener niveles similares o incluso superiores de IFN-γ, indicando claramente que la proteina EDA vehiculiza este epitopo SIINFEKL a las moléculas MHC de clase I. La adición de la proteina EDA a las DC incubadas con el péptido SIINFEKL no aumentó la producción de IFN-γ por las células T de los ratones 0T-1. Como se esperaba, las DC incubadas con EDA sola no activaron a las células T de los ratones OT-I. Para estudiar si la expresión de la molécula TLR4 en las DC podria favorecer la presentación de EDA-SIINFEKL, las células B3Z especificas de SIINFEKL fueron incubadas con diferentes concentraciones de EDA-SIINFEKL en presencia de células de bazo provenientes de ratones C57BL/6 wt o de ratones TLR4 KO. La presentación de EDA-SIINFEKL a las células B3Z fue más eficaz en presencia de células presentadoras que expresaban TLR4 (Figura 6B) . Además, la presentación de EDA-SIINFEKL a las células B3Z fue totalmente bloqueada por la adición de anticuerpos anti-TLR4 (Figura 6C) , sugiriendo que TLR4 está implicada en la captura de EDA-SIINFEKL. Después estudiamos el efecto de diferentes drogas en el procesamiento de EDA- SIINFEKL y encontramos que esta presentación era totalmente inhibida por la monensina, brefeldina o la cicloheximida, pero no por la cloroquina, un conocido inhibidor de la acidificación de los endosomas y lisosomas tardios (Figura 6D) . Como se esperaba, la presentación del péptido sintético SIINFEKL no se vio alterada por estas drogas. Estos resultados sugieren que la internalización de EDA-SIINFEKL no está mediada por macropinocitosis y demuestran que EDA- SIINFEKL es procesada por la vía de procesamiento citosólica de clase I.
2.2.4. EDA-SIINFEKL induce CTL específicos para SIINFEKL In vivo.
Los datos anteriores demuestran que la proteina recombinante EDA-SIINFEKL es bioactiva y activa a las APC de modo especifico. La inducción de repuestas inmunológicas de linfocitos T especificas in vivo es fundamental para el desarrollo de una vacuna. Por lo tanto, comprobamos si los ratones inmunizados con proteína de fusión EDA-SIINFEKL desarrollaban respuestas CTL específicas frente a células seleccionadas pulsadas con el epítopo SIINFEKL. Ratones C57BL6 fueron inmunizados por vía i.v. con 50 μg de EDA- SIINFEKL o con SIINFEKL en PBS en los días 0 y 10. El día 20 se sacrificó a los ratones y se analizó la respuesta CTL frente a SIINFEKL. Pudo observarse que EDA-SIINFEKL era capaz de inducir CTL frente a células diana EL-4 pulsadas con
SIINFEKL. Por el contrario, no se encontró actividad CTL cuando los ratones fueron inmunizados sólo con SIINFEKL
(Figura 7) . Debido a la capacidad de EDA para inducir la maduración in vivo de células dendríticas, también se evaluó la capacidad de EDA de actuar como adyuvante cuando es inmunizado conjuntamente con la proteína OVA. En este experimento pudimos observar que la presencia de EDA en la mezcla de inmunización tiene un efecto inmunoestimulador y es capaz de potenciar la inducción de una respuesta CTL frente a SIINFEKL inducida por la proteína OVA (comparar actividad lítica en panel A y B de la figura 9) .
2.2.5. EDA-SIINFEKL protege a los ratones frente al desafio con células tumorales que expresan la proteina OVA. Para estudiar la capacidad de la proteina de fusión EDA-SIINFEKL de proteger a los ratones de la inyección de células tumorales EG7OVA, se inmunizaron ratones por via s.c. con 3 nmol de EDA-SIINFEKL, SIINFEKL, o con suero salino. A los 20 dias de la segunda inmunización se inyectaron s.c. 105 células EG7OVA. Se observó que la inmunización EDA-SIINFEKL protegía a los ratones del crecimiento tumoral. Todos los ratones inmunizados con SIINFEKL o con suero salino desarrollaron tumores, mientras que el 40% de los ratones inmunizados con EDA-SIINFEKL no lo hicieron, y el 60% restante tuvieron retraso en el crecimiento tumoral (Figura
2.3. Discusión.
En el presente estudio, utilizando la proteina EDA recombinante como un vector de transporte de epitopos, se establece la estrategia de inmunización que origina respuestas CTL in vivo, evitando la necesidad de un adyuvante. Se han identificado los mecanismos que contribuyen a la eficacia de las proteínas de fusión que contienen EDA, como un vector que traslada antigenos a células que expresan TLR-4 e induce respuestas inmunológicas celulares frente a un antigeno.
Se ha observado en primer lugar que la estimulación in vitro de BMDC con EDA era capaz de estimular la producción de citoquinas proinflamatorias tales como IL-12 y TNF-α. Se sabe que estas citoquinas son fundamentales para iniciar una respuesta inmunitaria consistente frente a un antigeno. Además, se observó que la inmunización in vivo con EDA podia inducir la maduración de las DC e incrementar la expresión de moléculas coestimuladoras en la superficie de las DC. La expresión de estas moléculas coestimuladoras es de gran importancia para la inducción eficaz de respuestas inmunitarias frente a un antigeno. Se vio que este efecto dependía de la presencia de TLR4, ya que las células CDlIc aisladas in vivo a partir de los ratones C57BL/6 TLR4 KO previamente inmunizados con EDA, no mostraron ninguna mejoría en su estado de maduración en comparación con el que tenían los animales no inmunizados.
La presencia de la molécula TLR4 en APC mejora la presentación del antigeno tras la incubación con la proteina de fusión EDA-SIINFEKL, y esta presentación no se ve afectada por la cloroquina, que inhibe la proteolisis endolisosómica. Estos datos sugieren que la interiorización de EDA-SIINFEKL no está mediada por macropinocitosis y demuestra que la proteina EDA-SIINFEKL recombinante se procesa como un antigeno citosólico, lo que implica que la proteina de fusión deberá llegar al citosol a través de la membrana plasmática de APC.
Y, sobre todo, se ha demostrado que la inmunización de ratones con la proteina de fusión EDA-SIINFEKL recombinante es capaz de inducir una respuesta CTL especifica in vivo frente al epitopo SIINFEKL. Además, la inmunización con EDA- SIINFEKL protege a los ratones frente al desafio con células tumorales EG7OVA. Todos estos datos muestran que este vector proteinico que contiene EDA es capaz de: (i) seleccionar antigenos para células que expresan TLR4 y en particular APC profesionales; (ii) trasladar el antigeno vectorizado a la via de procesado de antigeno clase I clásica; (iii) inducir in vivo e in vitro la maduración de las células dendriticas; y (iv) originar CTL in vivo frente al antigeno vectorizado en ausencia de adyuvante, con lo que puede emplearse en estrategias de vacunación frente a agentes infecciosos o cáncer. Estas proteínas de fusión con EDA también pueden servir para el transporte de moléculas con importancia farmacológica al citosol de células que expresen TLR4. Además, la capacidad de EDA de inducir in vivo la maduración de las células dendriticas permite su utilización como adyuvante en formulaciones que contengan un antigeno frente al que se quiere inducir una respuesta inmunogénica, abriendo el abanico de posibilidades de la utilización de EDA en el desarrollo de vacunas.
Ejemplo 3. La proteina EDA puede utilizarse como vehículo para transportar antigenos de al menos 390 aminoácidos.
3.1 Material y métodos .
3.1.1 Expresión de proteínas recombinantes EDA-OVA y EDA-NS3.
Para la construcción del plásmido de expresión de la proteina EDA-OVA, se extrajo el RNA mensajero de las células tumorales EG7OVA, que expresan la proteina OVA. Tras la transcripción inversa y la amplificación por PCR utilizando los cebadores GCGGCCGCAATGGGCTCCATCGGCGCA (SEQ ID NO: 16) y GCGGCCGCAGGGGAAACACATCT (SEQ ID NO: 17) (las bases subrayadas fueron añadidas para introducir la secuencia reconocida por la enzima de restricción Notl, mientras que la secuencia en cursiva pertenece al principio y final de la ovalbúmina) . El producto de PCR fue clonado en pCR2.1-TOPO usando el kit TOPO TA (Invitrogen) , digerido con Notl y subclonado en el plásmido pET20bEDA 1.2 (que expresa la proteina EDA) previamente abierto con Notl. La orientación correcta de la construcción fue verificada por secuenciación. Tras la inducción de los cultivos de E. coli transformada con el plásmido, la proteina de fusión presente en la fracción soluble fue purificada mediante cromatografía de afinidad (Histrap, Pharmacia) empleando una plataforma FPLC (AKTA, Pharmacia) . La proteina se desaló mediante columnas de desalado Hitrap (Pharmacia) , y se concentró con el dispositivo de filtro con centrifugación Amicon Ultra 4-5000 MWCO (Millipore Carrighwahill, Irlanda) . El vector proteinico recombinante se purificó de endotoxinas utilizando columnas Endotrap (Profos Ag, Regensburg, Alemania) , hasta que los niveles de endotoxina estuvieron por debajo de 0.2EU/μg de proteína (evaluado con el ensayo LAL, Cambrex) . Para la construcción de la proteína EDA-NS3 se siguió una estrategia similar utilizando los cebadores
AGCGGCCGCAGCCACCATGGCGCCTATCACGGCCTATTC (SEQ ID NO: 18) y AGCGGCCGCTTGCGGTACGGCCGGAGGGGATGAGTT (SEQ ID NO: 19) que permiten la expresión del fragmento amino-terminal de la proteína NS3 (aminoácidos 1026-1221) . A diferencia de la proteína EDA-OVA que se extrajo de la fracción soluble de los cultivos de E. coli, en el caso de la proteína EDA-NS3, la proteína fue purificada a partir de cuerpos de inclusión previamente disueltos de urea 8M. Tras una cromatografía de afinidad utilizando columnas Histrap, se procedió a una cromatografía de intercambio iónico (DEAE-sepharose) . La fracción purificada de esta segunda cromatografía fue después replegada utilizando un protocolo de replegado en columna G25. Una vez replegada, la proteína EDA-NS3 fue desalada y purificada de endotoxinas utilizando columnas Endotrap (Profos, Alemania) .
Las proteínas así purificadas fueron analizadas por SDS- PAGE.
3.1.2. Estudios In vitxo para evaluar la capacidad de presentación del antigeno.
Se caracterizó la capacidad de EDA-OVA para ser capturado por APC para presentar el epítope CTL SIINFEKL procesado a los linfocitos T de los ratones transgénicos OT-I. Las DC derivadas de médula ósea (105 células/pocilio) se cultivaron en presencia de diferentes concentraciones de EDA-OVA, EDA + OVA (no unidos covalentemente) , de OVA o de EDA. A las 12h de haberse iniciado el cultivo se añadieron 105 células/pocilio de células no adherentes de ratón transgénico OT-I. A las 24 horas de cultivo se extrajo el sobrenadante para la cuantificación del IFN-γ secretado al sobrenadante de cultivo mediante un ensayo ELISA comercial.
3.1.3. Medición de la inducción In vivo de linfocitos T citotóxicos (CTL) y de células productoras de IFN-γ después de la inmunización .
Los ratones C57BL6 o los ratones HHD (transgénicos para la moléclula HLA-A2.1) fueron inmunizados i.v. con 50 μg de EDA-OVA o con EDA-NS3 respectivamente, en los días 0 y 10. El día 20 se sacrificó a los ratones para determinar la respuesta CTL frente a SIINFEKL o frente al péptido de NS3 1073. Se cultivaron los esplenocitos de los animales inmunizados en presencia de 0.1 μg/ml de SIINFEKL o de 1 μg/ml de NS3 1073 a 5 x 106 células/ml (10 mi) durante 5 días. en medio completo. El día 5 se recogieron las células para realizar estudios de liberación de cromo. Se midió la actividad lítica incubando durante 4 h diferentes cantidades de células efectoras con 1 x 104 células EL-4 diana, cargadas previamente con 51Cr y con o sin péptido. El porcentaje específico de lisis se calculó según la fórmula: (cpm experimental - cpm espontánea) / (cpm máxima - cpm espontánea) x 100, donde la lisis espontánea corresponde a células diana incubadas en ausencia de células efectoras, y la lisis máxima se obtiene incubando células diana con 5% Tritón xlOO. Para medir la producción de IFN-γ en respuesta a los diferentes péptidos, se colocaron esplenocitos de ratones inmunizados en 96 placas, a 8xlO5 células/pocilio, sólo con medio completo, o con 30 μM de los péptidos NS3 1038-1046
(SEQ. ID. NO.: 23), 1073-1081 (SEQ. ID. NO.: 20, CVNGVCWTV), 1169-1177 (SEQ. ID. NO.: 22), o con 1 μg/ml de NS3 recombinante en un volumen final de 0.25 mi. El sobrenadante
(50 μl) se retiró a las 48 h y se midió el IFN-γ mediante
ELISA (Pharmingen, San Diego, CA) de acuerdo con las instrucciones del fabricante. 3.1.4. Ensayos de protección frente a la infección por el virus vaccinia vHCV 1-1031 que expresa la poliproteina del virus de la hepatitis C Los ratones C57BL/6 fueron inmunizados los dias 1 y 10 con 1 x 106 células dendriticas derivadas de médula ósea pulsadas con la proteina EDA-NS3. Diez dias después de la segunda inmunización, los ratones fueron infectados por via i.p. con 5 x 106 pfu del virus vaccinia recombinante vHCV 1- 1031. A los tres dias de la infección, los animales fueron sacrificados y se cuantificó la carga viral/mg de tejido ovárico mediante un ensayo de cuantificación de unidades formadoras de placas basado en la utilización de la linea celular BSC-I.
3.2. Resultados.
3.2.1. Expresión y purificación de las proteinas EDA-OVA y EDA-NS3. Como se indica en la sección de Materiales y métodos, las proteinas EDA-OVA y EDA-NS3 fueron purificadas a partir de los extractos de bacterias E. coli transformantes utilizando la fracción soluble en el caso de la proteina EDA- OVA y de los cuerpos de inclusión en el caso de EDA-NS3. En las figuras 1OA y HA se muestra el resultado del SDS-PAGE de ambas proteinas. Se obtuvieron bandas simples correspondientes a proteinas de tamaños de 55 kDa y de 32 kDa respectivamente correspondientes a los tamaños esperados para cada una de las proteinas.
3.2.2. La unión de EDA a la proteina OVA favorece la presentación antigénica de OVA a los linfocitos T de los ratones transgénicos OT-I .
Estudiamos la capacidad de la unión de EDA a la proteina OVA para favorecer la presentación antigénica del epitope SIINFEKL a células T especificas de este epitopo. Observamos que las DC derivadas de médula ósea cultivadas en presencia de EDA-OVA estimulaban una producción de IFN-γ por parte de las células no adherentes de ratón OTl más fuerte que la inducida por cantidades equimoleculares de la proteina OVA sola (Figura 9B) . Observamos que la producción de IFN-γ era también mejorada en los co-cultivos que contenían la proteina EDA y la proteina OVA, en comparación con la proteina OVA sola, sugiriendo que la maduración de las DC inducida por EDA podria favorecer la activación de las células T.
3.2.3. La unión de EDA a la proteina OVA o a la proteina NS3 favorece la inducción de linfocitos T citotóxicos específicos in vivo. Estudiamos la capacidad de las proteínas EDA-OVA y EDA- NS3 para inducir una respuesta CTL frente al epitopo SIINFEKL o frente al epitopo NS3 1073 respectivamente. Observamos, en el caso de la proteina EDA-OVA, que la inmunización con esta proteina disuelta en suero salino era capaz de inducir una respuesta citotóxica frente a células diana incubadas con el péptido SIINFEKL que la inmunización con la proteina OVA por si sola no es capaz de inducir (Figura 9C) . Del mismo modo, la inmunización de ratones HHD (transgénicos para HLA-A2.1) con la proteina EDA-NS3 induce una respuesta citotóxica eficaz frente a las células diana previamente incubadas con el péptido NS3 1073 (V) (SEQ. ID. NO.: 20, CVNGVCWTV), o con la variante 1073 (L) de este péptido (SEQ. ID. NO.: 21, CLNGVCWTV) Figura 11B. Del mismo modo, observamos que la inmunización de los ratones HHD con la proteina EDA-NS3 induce la activación de células productoras de IFN-γ especificas para los péptidos NS3 1038 (SEQ. ID. NO.: 23), 1073 (SEQ. ID. NO.: 20, CVNGVCWTV) y 1169 (SEQ. ID. NO.: 22) (Figura 11C) . También pudimos observar que la inmunización de los ratones con la proteina EDA-NS3 induce una respuesta celular citotóxica especifica frente al péptido NS3 1073 de larga duración. En efecto, cuando los ratones inmunizados con la proteina EDA-NS3 fueron sacrificados 60 dias después de la inmunización pudimos detectar la presencia de CTL especificos frente a este péptido (Figura HD) .
3.2.4. La inmunización de ratones C57BL/6 con células dendriticas incubadas con la proteina EDA-NS3 protege a los ratones frente a la infección por un virus vaccinia que expresa las proteinas del virus de la hepatitis C . Quisimos estudiar si la inmunización con células dendriticas incubadas in vitro con la proteina EDA-NS3 era capaz de inducir una respuesta celular capaz de proteger a los ratones frente al desafio con un virus recombinante que expresara las proteinas del virus de la hepatitis C. Para ello,- inmunizamos ratones C57BL/6 con células dendriticas derivadas de médula ósea incubadas con la proteina EDA-NS3 o con células dendriticas que no hablan sido incubadas con ningún antigeno. Diez dias tras la segunda inmunización, los ratones fueron infectados con 5 x 106 pfu del virus vaccinia recombinante vHCV 1-3011 (amablemente cedido por el Dr. Rice, Washington University School of Medicine, St. Louis, MO y descrito por Grakoui A, et al. J Virol . 1993; 67:1385). A los tres dias se midió la carga viral en ambos grupos de ratones. En este experimento se observó que la inmunización con DC incubadas con la proteina EDA-NS3 es capaz de proteger al 6% de los ratones frente a la infección por el virus vaccinia recombinante.
3.3. Discusión. Como se ha mostrado en los resultados anteriores, la proteina EDA puede servir como un vector muy útil para vehiculizar el epitopo SIINFEKL de la proteina OVA a las células que expresan la molécula TLR4 y mejorar su inmunogenicidad. Para evaluar la capacidad de EDA para aumentar la inmunogenicidad de proteinas más grandes, construimos las proteínas recombinantes de fusión EDA-OVA que contiene la proteina OVA completa (397 aminoácidos) y la proteina EDA-NS3 que contiene el fragmento con actividad proteasa de la proteina NS3 del virus de la hepatitis C. Con estos resultados se demuestra que la proteina EDA puede actuar como un vector muy eficaz para vehiculizar antigenos más grandes . Asi encontramos en los ensayos de presentación antigénica que la unión de la proteina OVA a EDA favorece la captura del antigeno por las células presentadoras de antigeno, aumentando la activación de las células T especificas. Además, se observó que la inmunización con estas proteínas de fusión (EDA-OVA y EDA-NS3) permite la inducción de respuestas citotóxicas específicas frente a estos antígenos . Se observó que las respuestas inducidas son de larga duración. Finalmente se observó que la administración de la proteína EDA-NS3 con células dendríticas permite la inducción de una respuesta celular protectora frente a la infección por el virus vaccinia que expresa las proteínas del virus de la hepatitis C. Estos datos indican que la proteína EDA puede ser un vector proteico muy adecuado para la inducción de respuestas celulares frente a un antígeno de interés. La construcción de proteínas de fusión basadas en la proteína EDA supone una estrategia apropiada en los protocolos de vacunación frente a enfermedades tumorales o enfermedades causadas por agentes infecciosos .

Claims

KEIVINDICACIONES
1. Uso de un polipéptido que comprende una secuencia de aminoácidos seleccionada entre: a) el dominio EDA de la fibronectina (EDA) , b) un fragmento de dicho dominio EDA capaz de unirse a TLR4, o c) una variante de dicho dominio EDA o fragmento capaz de unirse a TLR4 y que tenga una homología mayor del 70% con cualquier forma natural de dicho dominio EDA o fragmento, en la preparación de un agente estimulador de respuestas inmunes celulares frente a un antigeno.
2. Uso de un polipéptido según la reivindicación 1, caracterizado porque el fragmento correspondiente al dominio EDA comprende una secuencia seleccionada entre: a) los aminoácidos 2-91 de la secuencia SEQ. ID. NO: 2; b) la secuencia SEQ. ID. NO: 4; y c) un fragmento de las secuencias a) y b) capaz de unirse a células que expresen TLR4.
3. Uso de un polipéptido según la reivindicación 1, caracterizado porque el fragmento correspondiente al dominio EDA comprende una secuencia seleccionada entre: a) los aminoácidos 2-57 de la secuencia SEQ. ID. NO: 6; b) la secuencia SEQ. ID. NO: 8; y c) un fragmento de las secuencias a) y b) capaz de unirse a células que expresen TLR4.
4. Uso de un polipéptido según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque dicho agente inmunoestimulador comprende además una o más moléculas de interés .
5. Uso de un polipéptido de acuerdo con una cualquiera de las reivindicaciones 1 a 4, caracterizado porque dicho agente inmunoestimulador es un vector proteinico en el que el polipéptido está unido a la molécula de interés .
6. Un vector proteinico caracterizado porque comprende un polipéptido cuya secuencia de aminoácidos está seleccionada entre : a) el dominio EDA de la fibronectina (EDA) , b) un fragmento de dicho dominio EDA capaz de unirse a
TLR4, o c) una variante de dicho dominio EDA o fragmento capaz de unirse a TLR4 y que tenga una homología mayor del 70% con cualquier forma natural de dicho dominio EDA o fragmento, unido a una molécula de interés seleccionada entre: un polipéptido, un lipopéptido, un oligosacárido, un polisacárido, un ácido nucleico, un lípido, y un fármaco.
7. Un vector proteinico según la reivindicación 6, caracterizado porque la molécula de interés se ha seleccionado entre un antígeno y un epítopo.
8. Un vector proteinico según una de las reivindicaciones 6 ó 7, caracterizado porque la molécula de interés se ha seleccionado entre un antígeno viral, un antígeno bacteriano, y un antígeno parasitario.
9. Un vector proteinico según una cualquiera de las reivindicaciones β a 8, caracterizado porque la molécula de interés es un antígeno viral del virus de la hepatitis C.
10. Un vector proteinico según la reivindicación 9, caracterizado porque el antígeno del virus de la hepatitis C es la proteína NS3 o un fragmento antigénico de dicha proteína.
11. Un vector proteínico según la reivindicación 10, caracterizado porque su secuencia de aminoácidos es SEQ ID NO: 10.
12. Un vector proteinico según una cualquiera de las reivindicaciones 6 o 7, caracterizado porque la molécula de interés se ha seleccionado entre un antigeno tumoral y un determinante antigénico tumoral.
13. Un vector proteinico según la reivindicación 12, caracterizado porque la molécula de interés es el determinante antigénico T citotóxico de ovoalbúmina (OVA 257- 264) o SIINFEKL. '
14. Un vector proteinico según la reivindicación 13 caracterizado porque comprende una secuencia de aminoácidos seleccionada entre SEQ. ID. NO: 2, o SEQ. ID. NO: 6.
15. Un vector proteinico según la reivindicación 6, caracterizado porque la molécula de interés es un alérgeno.
16. Un vector proteinico según la reivindicación 6, caracterizado porque la molécula de interés es además un fármaco química o genéticamente unido al dominio EDA.
17. Uso de un vector proteinico según una cualquiera de las reivindicaciones 6 a 16 para dirigir y translocar de modo especifico la molécula de interés al citosol de células que expresan TLR4.
18. Uso de un vector proteinico según la reivindicación 17, caracterizado porque las células que expresan TLR4 son células presentadoras de antigeno.
19. Uso de un vector proteinico según la reivindicación 18, caracterizado porque las células presentadoras de antigeno son células dendriticas .
20. Un ácido nucleico modificado caracterizado porque codifica un vector proteinico definido en cualquiera de las reivindicaciones 6 a 16.
21. Un ácido nucleico modificado según la reivindicación 20, caracterizado porque además comprende una secuencia de control operativamente unida que regula la expresión del vector proteinico.
22. Un ácido nucleico modificado según las reivindicaciones 20 ó 21, caracterizado porque comprende las secuencias SEQ. ID. NO: 1 o SEQ ID. NO: 5.
23. Un ácido nucleico modificado según las reivindicaciones 20 o 21, caracterizado porque comprende la secuencia SEQ ID
NO : 9.
24. Un vector de expresión para la expresión génica de un vector proteinico definido en cualquiera de las reivindicaciones 6-16, caracterizado porque el vector de expresión comprende un ácido nucleico modificado definido en cualquiera de las reivindicaciones 20 a 23.
25. Un vector de expresión según la reivindicación 24, caracterizado porque dicho vector es un vector viral.
26. Una célula hospedadora de expresión caracterizada porque comprende un ácido nucleico modificado definido en cualquiera de las reivindicaciones 20 a 23, o un vector de expresión definido en las reivindicaciones 24 ó 25.
27. Una célula hospedadora _ de expresión según la reivindicación 26, caracterizada porque dicha célula hospedadora de expresión es Escherichia coli.
28. Un método para producir un vector proteinico definido en cualquiera de las reivindicaciones 6 a 16, caracterizado porque comprende cultivar una célula hospedadora de expresión definida en las reivindicaciones 26 ó 27 en condiciones que permitan la producción de dicho vector proteinico y la recuperación del mismo.
29. Uso de un ácido nucleico modificado definido en las reivindicaciones 20 a 23, un vector de expresión definido en las reivindicaciones 24 ó 25, o una célula hospedadora definida en las reivindicaciones 26 ó 27, en la preparación de una composición farmacéutica.
30. Uso de un polipéptido según cualquiera de las reivindicaciones 1 a 5, caracterizado porque dicho agente estimulador de la respuesta inmune celular es una composición farmacéutica .
31. Uso de un polipéptido según la reivindicación 30, caracterizado porque dicha composición farmacéutica estimula la maduración de células presentadoras de antígeno.
32. Uso de un polipéptido según las reivindicaciones 30 ó 31, caracterizado porque dicha composición farmacéutica induce una respuesta inmunológica eficaz frente a la molécula de interés .
33. Uso de un polipéptido según la reivindicación 32, caracterizado porque la respuesta inmunológica es una respuesta CTL.
34. Uso de un polipéptido según una cualquiera de las reivindicaciones 30 a 33, caracterizado porque dicha composición farmacéutica es útil para el tratamiento y profilaxis de una enfermedad infecciosa.
35. Uso de un polipéptido según la reivindicación 34, caracterizado porque dicha composición farmacéutica es útil para el tratamiento y profilaxis de hepatitis C.
36. Uso de un polipéptido según una cualquiera de las reivindicaciones 30 a 33, caracterizado porque dicha composición farmacéutica es útil para el tratamiento y profilaxis de una enfermedad tumoral .
37. Uso de un polipéptido según una cualquiera de las reivindicaciones 30 a 33, caracterizado porque dicha composición farmacéutica es útil para el tratamiento y profilaxis de una enfermedad alérgica.
38. Una composición farmacéutica caracterizada porque comprende al menos un vehículo farmacéuticamente aceptable, y al menos uno de los siguientes componentes: a) un vector proteinico definido en cualquiera de las reivindicaciones 6 a 16; b) un ácido nucleico modificado definido en cualquiera de las reivindicaciones 20 a 23; c) un vector de expresión que comprende dicho ácido nucleico modificado definido en las reivindicaciones 24 ó 25; o d) una célula hospedadora de expresión que también comprende dicho ácido nucleico modificado definido en las reivindicaciones 26 ó 27.
39. Una composición farmacéutica caracterizada porque comprende una cantidad de células dendríticas, donde dichas células dendriticas se han incubado in vi tro con al menos uno de los siguientes componentes: a) un vector proteinico definido en cualquiera de las reivindicaciones 6 a 16; b) un ácido nucleico definido en cualquiera de las reivindicaciones 20 a 23; o c) un vector de expresión que comprende dicho ácido nucleico definido en las reivindicaciones 24 ó 25.
40. Una composición farmacéutica según las reivindicaciones 38 ó 39, caracterizada porque la composición es una vacuna o una composición inmunoterapéutica.
PCT/ES2006/000343 2005-06-13 2006-06-13 Agentes y métodos basados en el uso del dominio eda de la fibronectina WO2006134190A2 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP06794018A EP1913954B8 (en) 2005-06-13 2006-06-13 Use of the eda domain of fibronectin
BRPI0611782-1A BRPI0611782A2 (pt) 2005-06-13 2006-06-13 uso de um polipeptìdio, vetor proteìnico, uso do mesmo, ácido nucléico modificado, vetor de expressão, célula hospedeira de expressão, método para produzir um vetor proteìnico, uso de um ácido nucléico modificado e de um polipeptìdio e composição farmacêutica
CN2006800293241A CN101287487B (zh) 2005-06-13 2006-06-13 基于使用纤连蛋白eda结构域的试剂和方法
JP2008516349A JP4970435B2 (ja) 2005-06-13 2006-06-13 フィブロネクチンのedaドメインの使用を基にした剤および方法
US11/922,148 US9155783B2 (en) 2005-06-13 2006-06-13 Agents and methods based on the use of the EDA domain of fibronectin
DK06794018.9T DK1913954T3 (da) 2005-06-13 2006-06-13 Anvendelse af fibronectins EDA domæne
CA2612151A CA2612151C (en) 2005-06-13 2006-06-13 Agents and methods based on the use of the eda domain of fibronectin
ES06794018T ES2392659T3 (es) 2005-06-13 2006-06-13 Uso del dominio EDA de fibronectina
PL06794018T PL1913954T3 (pl) 2005-06-13 2006-06-13 Zastosowanie domeny eda fibronektyny
MX2007015935A MX2007015935A (es) 2005-06-13 2006-06-13 Agentes y metodos basados en el uso del dominio eda de la fibronectina.
AU2006259041A AU2006259041B2 (en) 2005-06-13 2006-06-13 Agents and methods based on the use of the EDA domain of fibronectin
US14/835,764 US20160215039A1 (en) 2005-06-13 2015-08-26 Agents and methods based on the use of the eda domain of fibronectin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200501412 2005-06-13
ES200501412A ES2291071B1 (es) 2005-06-13 2005-06-13 Agentes y metodos basados en el uso del dominio eda de la fibronectina.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/922,148 A-371-Of-International US9155783B2 (en) 2005-06-13 2006-06-13 Agents and methods based on the use of the EDA domain of fibronectin
US14/835,764 Division US20160215039A1 (en) 2005-06-13 2015-08-26 Agents and methods based on the use of the eda domain of fibronectin

Publications (3)

Publication Number Publication Date
WO2006134190A2 true WO2006134190A2 (es) 2006-12-21
WO2006134190A3 WO2006134190A3 (es) 2007-02-22
WO2006134190A8 WO2006134190A8 (es) 2008-01-31

Family

ID=37532656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000343 WO2006134190A2 (es) 2005-06-13 2006-06-13 Agentes y métodos basados en el uso del dominio eda de la fibronectina

Country Status (14)

Country Link
US (2) US9155783B2 (es)
EP (1) EP1913954B8 (es)
JP (1) JP4970435B2 (es)
CN (1) CN101287487B (es)
AU (1) AU2006259041B2 (es)
BR (1) BRPI0611782A2 (es)
CA (1) CA2612151C (es)
DK (1) DK1913954T3 (es)
ES (2) ES2291071B1 (es)
MX (1) MX2007015935A (es)
PL (1) PL1913954T3 (es)
PT (1) PT1913954E (es)
RU (1) RU2430738C2 (es)
WO (1) WO2006134190A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063865A1 (es) 2008-12-03 2010-06-10 Proyecto De Biomedicina Cima, S.L. Uso de modulinas solubles en fenol para el desarrollo de vacunas
WO2011029980A1 (es) 2009-09-11 2011-03-17 Proyecto De Biomedicina Cima, S.L. Composiciones terapéuticas para el tratamiento de enfermedades causadas por hpv
WO2012123269A1 (en) 2011-03-11 2012-09-20 Proyecto De Biomedicina Cima, S.L. Immunogenic compositions and methods for their use

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE535982C2 (sv) * 2009-12-15 2013-03-19 Theravac Pharmaceuticals Ab Ett nytt vaccin som angriper tumörkärl som ett effektivt redskap i tumörterapi
EP2531207B1 (en) * 2010-02-05 2019-10-30 Cornell University Methods and compositions for cancer immunotherapy using flagellin-tumor associated antigen fusion protein expressing tumor cells
WO2011101332A1 (en) * 2010-02-16 2011-08-25 Proyecto De Biomedicina Cima, S.L. Compositions based on the fibronectin extracellular domain a for the treatment of melanoma
WO2011156639A1 (en) * 2010-06-10 2011-12-15 The Regents Of The University Of California Eiiia and eiiib segments of fibronectin regulate stem cell fate
AU2011323205A1 (en) * 2010-11-04 2013-06-27 The Board Of Regents Of The University Of Oklahoma Peptide compositions that downregulateTLR-4 signaling pathway and methods of producing and using same
JP6283347B2 (ja) * 2013-03-06 2018-02-21 タカラバイオ株式会社 成熟樹状細胞集団の製造方法
US20180133327A1 (en) 2015-03-16 2018-05-17 Amal Therapeutics Sa Cell Penetrating Peptides and Complexes Comprising the Same
AU2017234192B2 (en) 2016-03-16 2024-04-04 Amal Therapeutics Sa Combination of an immune checkpoint modulator and a complex comprising a cell penetrating peptide, a cargo and a TLR peptide agonist for use in medicine
CA3031170A1 (en) 2016-09-21 2018-03-29 Amal Therapeutics Sa Fusion comprising a cell penetrating peptide, a multi epitope and a tlr peptide agonist for treatment of cancer
WO2018162450A1 (en) * 2017-03-06 2018-09-13 Fundación Para La Investigación Médica Aplicada New inmunostimulatory compositions comprising an entity of cold inducible rna-binding protein with an antigen for the activation of dendritic cells
JP2023542297A (ja) 2020-09-14 2023-10-06 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 異種プライムブーストワクチン
EP4228681A1 (en) 2020-10-14 2023-08-23 Boehringer Ingelheim International GmbH Combination of a sting agonist and a complex comprising a cell penetrating peptide, a cargo and a tlr peptide agonist
TW202346363A (zh) 2022-03-16 2023-12-01 德商百靈佳殷格翰國際股份有限公司 腫瘤抗原、包含所述腫瘤抗原的化合物及其用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188446A1 (en) 2000-09-15 2002-03-20 Institut Pasteur Proteinaceous vectors for molecule delivery to CD11b expressing cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108898A (en) * 1989-01-18 1992-04-28 Peters John H Use of fibronectin having a variable included type III repeat sequence as a marker for toxemia in pregnancy
AU5488900A (en) 1999-06-14 2001-01-02 General Hospital Corporation, The Modulators of fibrosis
MXPA04006517A (es) * 2002-01-03 2005-03-31 Schering Ag Conjugados que comprenden un anticuerpo especifico para el dominio ed-b de fibronectina y sus usos para la deteccion y tratamiento de tumores.
WO2003070761A1 (en) * 2002-02-19 2003-08-28 Yeda Research And Development Co. Ltd. Dual-effect ligands comprising anti-inflammatory hsp peptide epitopes for immunomodulation
FR2855758B1 (fr) * 2003-06-05 2005-07-22 Biomerieux Sa Composition comprenant la polyproteine ns3/ns4 et le polypeptide ns5b du vhc, vecteurs d'expression incluant les sequences nucleiques correspondantes et leur utilisation en therapeutique
US20060024757A1 (en) * 2004-07-30 2006-02-02 Robert Hussa Detection of oncofetal fibronectin for selection of concepti

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188446A1 (en) 2000-09-15 2002-03-20 Institut Pasteur Proteinaceous vectors for molecule delivery to CD11b expressing cells

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
"Hepatitis C. Wkly Epidemiol Rec", vol. 72, 1997, WORLD-HEALTH-ORGANISATION, pages: 65
"Immobilized affinity ligand Techniques", 1992, ACADEMIC PRESS, INC.
"Molecular Cloning: a Laboratory manual.", 2001, COLD SPRING HARBOR
"The Current Protocols in Immunology and in The current protocols in Protein Science", 1 May 2005, JOHN WILEY & SONS
"The current protocols in protein chemistry", 1 May 2005, JOHN WILEY & SONS
"Toll-like receptors as adjuvant receptors", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1589, 2002, pages 1 - 13
CAMPS ET AL., J HEPATOL, vol. 17, 1993, pages 390
CHOMCZYNSKI P; SACCHI N: "Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction", ANAL BIOCHEM, vol. 162, 1987, pages 156 - 159, XP025650376, DOI: doi:10.1016/0003-2697(87)90021-2
DIENSTAG ET AL., GASTROENTEROLOGY, vol. 85, 1983, pages 439
DIEPOLDER ET AL., LANCET, vol. 346, 1995, pages 1006
GRAKOUI A ET AL., J VIROL., vol. 67, 1993, pages 1385
GUERMONPREZ ET AL.: "Antigen presentation and T cell stimulation by DC", ANNU. REV. IMMUNOL., vol. 20, 2002, pages 621 - 627
LASARTE ET AL., HEPATOLOGY, vol. 37, no. 2, 2003, pages 461 - 70
LIPMAN DJ; PEARSON WR: "Rapid and sensitive protein similarity searches", SCIENCE, vol. 227, no. 4693, 22 March 1985 (1985-03-22), pages 1435 - 41, XP002920456, DOI: doi:10.1126/science.2983426
MAJOR, ME; FEINSTONE SM, HEPATOLOGY, vol. 25, 1997, pages 1527
MILLER RH; PURCELL RH, PNAS, vol. 87, 1990, pages 2057
MOR6N ET AL.: "New tools for antigen delivery to the MHC class I pathway", TRENDS IN IMMUNOLOGY, vol. 25, 2004, pages 92 - 97, XP004487053, DOI: doi:10.1016/j.it.2003.11.008
OKAMURA ET AL., JBC, vol. 276, 2001, pages 10229 - 10233
OKAMURA Y ET AL.: "The extra domain A of fibronectin activates Toll-like receptor 4", J. BIOL. CHEM., vol. 276, 2001, pages 10229 - 10233, XP003008523, DOI: doi:10.1074/jbc.M100099200
PANKOV R; KENNETH MY: "Fibronectin at a glance", JOURNAL OF CELL SCIENCE, vol. 115, 2002, pages 3861 - 3863, XP055155861, DOI: doi:10.1242/jcs.00059
PAPE ET AL., J VIRAL HEPAT, vol. 6, no. 1, 1999, pages 26 - 40
POYNARD ET AL., LANCET, vol. 352, 1998, pages 1426
SAITO S ET AL.: "The Fibronectin Extradomain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism", J. BIOL. CHEM., vol. 161, 1999, pages 3071 - 3076
See also references of EP1913954A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063865A1 (es) 2008-12-03 2010-06-10 Proyecto De Biomedicina Cima, S.L. Uso de modulinas solubles en fenol para el desarrollo de vacunas
WO2011029980A1 (es) 2009-09-11 2011-03-17 Proyecto De Biomedicina Cima, S.L. Composiciones terapéuticas para el tratamiento de enfermedades causadas por hpv
WO2012123269A1 (en) 2011-03-11 2012-09-20 Proyecto De Biomedicina Cima, S.L. Immunogenic compositions and methods for their use

Also Published As

Publication number Publication date
ES2392659T3 (es) 2012-12-12
JP2008543301A (ja) 2008-12-04
RU2008100242A (ru) 2009-07-20
ES2291071A1 (es) 2008-02-16
AU2006259041A1 (en) 2006-12-21
MX2007015935A (es) 2008-04-21
CA2612151C (en) 2015-01-13
CA2612151A1 (en) 2006-12-21
EP1913954A4 (en) 2011-01-12
US9155783B2 (en) 2015-10-13
CN101287487A (zh) 2008-10-15
US20160215039A1 (en) 2016-07-28
US20090220532A1 (en) 2009-09-03
DK1913954T3 (da) 2012-11-26
PL1913954T3 (pl) 2013-01-31
EP1913954A2 (en) 2008-04-23
BRPI0611782A2 (pt) 2010-09-28
AU2006259041B2 (en) 2012-02-02
RU2430738C2 (ru) 2011-10-10
WO2006134190A8 (es) 2008-01-31
EP1913954B8 (en) 2012-09-19
WO2006134190A3 (es) 2007-02-22
JP4970435B2 (ja) 2012-07-04
ES2291071B1 (es) 2009-03-16
CN101287487B (zh) 2013-02-06
PT1913954E (pt) 2012-11-19
EP1913954B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US9155783B2 (en) Agents and methods based on the use of the EDA domain of fibronectin
WO2021248853A1 (zh) 偶联tlr7激动剂的新型冠状病毒多肽疫苗及其应用
KR101650364B1 (ko) 항원-특이적인 t 세포 반응을 유도하는 면역 강화제로서 사용을 위한 융합 단백질
ES2411096T3 (es) Activación de linfocitos T específicos contra el VHC
ES2685922T3 (es) Vacunas poxvirales mejoradas
Schneeweiss et al. A DNA vaccine encoding the E protein of West Nile virus is protective and can be boosted by recombinant domain DIII
US20200171140A1 (en) Compositions and methods for flavivirus vaccination
ES2640961T3 (es) Virus de la estomatitis vesicular para vacunas de sensibilización y refuerzo
ES2398492T3 (es) Proteínas de fusión que comprenden los antígenos de rechazo tumoral NY-ESO-1 y LAGE-1
US20230338510A1 (en) Novel coronavirus tandem epitope polypeptide vaccine and use thereof
WO2007042583A1 (es) Combinación inmunoe s t imuladora para profilaxis y tratamiento de hepatitis c
WO2011029980A8 (es) Composiciones terapéuticas para el tratamiento de enfermedades causadas por hpv
JP2019013229A (ja) 異種ポリペプチドを含むCyaAベースのキメラタンパク質及び免疫応答の誘導におけるその使用
Shi et al. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization
JP2023523423A (ja) SARS-CoV-2に対するワクチン及びその調製物
ES2338308T3 (es) Metodos y composiciones para inducir una respuesta inmune.
ES2299626T3 (es) Aumento de timosina para asegurar una inmunizacion genetica.
US20220211843A1 (en) Immune-stimulatory compositions and use thereof
WO2022043686A1 (en) Vaccine
JP2024518565A (ja) 組換え重複ペプチド及びネイティブタンパク質を含むワクチン製剤
ES2334472B1 (es) Combinacion inmunoestimuladora para profilaxis y tratamiento de hepatitis c.
US20160215023A1 (en) Simple vaccines from dna launched suicidal flaviviruses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029324.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/015935

Country of ref document: MX

Ref document number: 2008516349

Country of ref document: JP

Ref document number: 2612151

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006794018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006259041

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008100242

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006259041

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006259041

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006794018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11922148

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0611782

Country of ref document: BR

Kind code of ref document: A2