WO2006132152A1 - ガスタービンの燃焼器 - Google Patents

ガスタービンの燃焼器 Download PDF

Info

Publication number
WO2006132152A1
WO2006132152A1 PCT/JP2006/311107 JP2006311107W WO2006132152A1 WO 2006132152 A1 WO2006132152 A1 WO 2006132152A1 JP 2006311107 W JP2006311107 W JP 2006311107W WO 2006132152 A1 WO2006132152 A1 WO 2006132152A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas turbine
fuel nozzle
swirl
combustor
Prior art date
Application number
PCT/JP2006/311107
Other languages
English (en)
French (fr)
Inventor
Koichi Ishizaka
Eisaku Ito
Satoshi Tanimura
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN2006800012905A priority Critical patent/CN101080596B/zh
Priority to DE112006001317T priority patent/DE112006001317B4/de
Priority to US11/666,414 priority patent/US8671690B2/en
Publication of WO2006132152A1 publication Critical patent/WO2006132152A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • the present invention relates to a combustor for a gas turbine.
  • a combustor for a gas turbine by adopting a configuration capable of realizing a new staging control, even if the gas turbine is operated at a low load, carbon monoxide (CO) and unburned fuel (UHC) contained in the exhaust gas are used. : Unburned hydrocarbons) is devised to enable high-efficiency operation.
  • a gas turbine used for power generation or the like includes a compressor, a combustor, and a turbine as main members. Many gas turbines have a plurality of combustors. Air compressed by a compressor is mixed with fuel supplied to the combustors and burned in each combustor to produce high-temperature combustion gas. Is generated. This high-temperature combustion gas is supplied to the turbine to drive the turbine.
  • a plurality of combustors 10 of this gas turbine are annularly arranged in a combustor casing 11 (only one is shown in FIG. 12).
  • the combustor casing 11 and the gas turbine casing 12 are filled with compressed air to form a passenger compartment 13. Air that is compressed by a compressor is introduced into the passenger compartment 13. The introduced compressed air enters the combustor 10 through an air inlet 14 provided upstream of the combustor 10.
  • the fuel supplied from the fuel nozzle 16 and the compressed air are mixed and burned. Combustion gas generated by the combustion is supplied to the turbine chamber side through the transition piece 17 and rotates the turbine rotor.
  • FIG. 13 is a perspective view showing the fuel nozzle 16, the inner cylinder 15, and the tail cylinder 17 separately.
  • the fuel nozzle 16 has a plurality of premixed fuel nozzles 16a and a single neuron fuel nozzle 16b.
  • the inner cylinder 15 is provided with a plurality of spoolers 18.
  • the plurality of premixed fuel nozzles 16 a are inserted into the inner cylinder 15 after passing through the spooler 18. Therefore, the fuel injected from the premix fuel nozzle 16 a is premixed with the swirled air by the spooler 18 and burns in the inner cylinder 15.
  • the fuel nozzle 16 is of a type that is inserted into the spooler 18 provided in the inner cylinder 15, but a plurality of spoolers (swivel blades) are provided on the outer peripheral surface of the fuel nozzle.
  • spoolers swivel blades
  • combustors of this type that inject fuel from this swirler.
  • Lean premixed combustion is used as a method to improve the efficiency of gas turbines while reducing the generation of O and UHC.
  • lean premixed combustion is adopted, CO and UH
  • Patent Document 1 Japanese Patent Laid-Open No. 11 14055
  • Patent Document 2 JP 2004-12039 A
  • the fuel-air ratio FZA may become too low in the conventional technology. In this case, the amount of CO and UHC generated will increase. In addition, since the fuel-air ratio FZA is low, that is, the fuel concentration is low, the combustion efficiency is deteriorated.
  • the present invention is a case where a gas turbine is operated at a low load in a combustor of a type having a plurality of spoolers (swirl blades) on the outer peripheral surface of a fuel nozzle.
  • Another object of the present invention is to provide a gas turbine combustor capable of high-efficiency operation while reducing carbon monoxide (CO) and unburned fuel (UHC: unburned hydrocarbon) contained in exhaust gas.
  • CO carbon monoxide
  • UHC unburned hydrocarbon
  • a plurality of locations along the circumferential direction of the outer peripheral surface of the fuel nozzle are arranged in a state along the axial direction of the fuel nozzle, in order to swirl the air flowing along the axial direction of the fuel nozzle around the fuel nozzle
  • a combustor of a gas turbine having a combustion burner having swirler blades that are gradually curved from the upstream side to the downstream side of the air flow
  • a valve provided in each fuel passage
  • a control unit for controlling the opening and closing of the valve for controlling the opening and closing of the valve
  • the controller is
  • the opening degree of a specific one of the valves is controlled according to the load, and the remaining valves are closed.
  • a valve provided in each fuel passage
  • a control unit for controlling the opening and closing of the valve for controlling the opening and closing of the valve
  • the controller is
  • valves When the gas turbine is at full load, all the valves are open, When the gas turbine is in a partial load state, the degree of opening of the valve provided in the fuel passage for supplying fuel to the injection holes formed in a specific number of adjacent swirl blades aligned in the circumferential direction is determined according to the load. Control and close the remaining valves.
  • the configuration of the present invention includes
  • a plurality of locations along the circumferential direction of the outer peripheral surface of the fuel nozzle are arranged in a state along the axial direction of the fuel nozzle, in order to swirl the air flowing along the axial direction of the fuel nozzle around the fuel nozzle
  • a combustor of a gas turbine having a plurality of combustion burners having swirler blades that are gradually curved from the upstream side to the downstream side of the air flow
  • An inner peripheral injection hole and an outer peripheral injection hole that are formed on the inner peripheral side and the outer peripheral side, respectively, and inject fuel into each swirl blade
  • a valve provided in each fuel passage
  • a control unit for controlling the opening and closing of the valve for controlling the opening and closing of the valve
  • the control unit for each of a plurality of combustion burners
  • the opening degree of the valve provided in the fuel passage for supplying fuel to the inner peripheral injection hole is controlled according to the load, and fuel is supplied to the outer injection hole.
  • the valve provided in the fuel passage to be supplied is closed.
  • a plurality of locations along the circumferential direction of the outer peripheral surface of the fuel nozzle are arranged in a state along the axial direction of the fuel nozzle, in order to swirl the air flowing along the axial direction of the fuel nozzle around the fuel nozzle
  • a combustor of a gas turbine having a plurality of combustion burners having swirler blades that are gradually curved from the upstream side to the downstream side of the air flow,
  • a fuel passage for individually supplying fuel to an injection hole formed in each swirl vane and an injection hole formed in the fuel nozzle;
  • a valve provided in each fuel passage
  • a control unit for controlling the opening and closing of the valve for controlling the opening and closing of the valve
  • the control unit for each of a plurality of combustion burners
  • the opening degree of the valve provided in the fuel passage for supplying fuel to the injection hole formed in the fuel nozzle is controlled according to the load to form the swirl blade.
  • a valve provided in a fuel passage for supplying fuel to the injection hole is closed.
  • Angular force formed by a tangent line that contacts the average warp line of the swirler at the trailing edge of the swirler and an axis along the axial direction of the fuel nozzle. It is LO degree, and the outer peripheral side of the trailing edge of the swirl vane is larger than the angle of the inner peripheral side of the rear edge of the swirl vane.
  • Angular force formed by a tangent line that contacts the average warp line of the swirler at the trailing edge of the swirler and an axis along the axial direction of the fuel nozzle. It is LO degree, and it is 25 to 35 degrees on the outer peripheral side of the trailing edge of the swirl vane.
  • the fuel nozzle includes a plurality of swirl vanes on the outer peripheral surface, and the combustor of the gas turbine having the combustion burner having the swirl vanes provided with the injection holes is used for partial load.
  • the combustor of the gas turbine having the combustion burner having the swirl vanes provided with the injection holes is used for partial load.
  • the fuel-air ratio is low when viewed from the whole combustion burner, but in the vicinity of each swirl blade (ie locally)
  • the fuel-air ratio can be increased.
  • the amount of CO and UHC generated can be suppressed and the combustion efficiency can be improved even if the load becomes partial.
  • FIG. 1 is a configuration diagram showing a combustor of a gas turbine according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing a fuel nozzle and swirl vanes of a premixed combustion burner provided in the combustor according to the first embodiment.
  • FIG. 3 is a configuration diagram showing the fuel nozzle and swirler of the premixed combustion burner provided in the combustor according to the first embodiment from the upstream side.
  • FIG. 5 is an explanatory diagram showing the curved state of the swirl blade.
  • FIG. 6 is a characteristic diagram showing the relationship between swirl blade height and air velocity.
  • FIG. 7 is a characteristic diagram showing the relationship between the fuel concentration distribution and the angle on the outer periphery of the swirl blade.
  • FIG. 8 is a configuration diagram showing an arrangement state of the combustors according to the first embodiment of the present invention.
  • FIG. 9 is a system diagram showing a piping arrangement system in the combustor according to the first embodiment of the present invention.
  • FIG. 10 is a block diagram showing a combustor according to the second embodiment of the present invention.
  • FIG. 11 is a configuration diagram showing a modification of Embodiment 2 of the present invention.
  • FIG. 12 is a configuration diagram showing a conventional combustor of a gas turbine.
  • FIG. 13 is an exploded perspective view showing a fuel nozzle, an inner cylinder, and a tail cylinder of a conventional gas turbine combustor.
  • the inventor of the present application has developed a premixed combustion burner for a gas turbine having a new configuration in which the outer peripheral surface of the fuel nozzle is provided with swirl vanes (swirler vanes).
  • the newly-developed premixed combustion burner can mix the fuel well to obtain a uniform concentration of fuel gas, and can ensure the prevention of flashback by making the flow rate of the fuel gas uniform. .
  • the pie mouth A plurality of premixed combustion burners 100 are arranged so as to surround the steam burner 200.
  • the pilot combustion burner 200 incorporates a force pilot combustion nozzle (not shown).
  • a plurality of premixed combustion burners 100 arranged in the circumferential direction (for example, eight) and one pilot combustion burner 200 constitute one combustor 500, and this is configured in the gas turbine. Multiple combustors 500 are installed.
  • the premixed combustion burner 100 includes a fuel nozzle 110, a burner cylinder 120, and swirl vanes (stellar vanes) 130 as main members.
  • the burner cylinder 120 is concentric with the fuel nozzle 110 and is disposed in a state surrounding the fuel nozzle 110. Therefore, the outer peripheral surface of the fuel nozzle 110 and the burner cylinder 1
  • Compressed air A flows through the air passage 111 from the upstream side (left side in FIG. 1) to the downstream side (right side in FIG. 1).
  • the swirl vane 130 is provided at a plurality of locations along the circumferential direction of the fuel nozzle 110 In the example, it is arranged at six locations) and is arranged extending along the axial direction of the fuel nozzle 110.
  • Each swirl vane 130 imparts a swirling force to the compressed air A flowing through the air passage 111, and turns this compressed air A into a swirling air flow a. For this reason, each swirl vane 130 is gradually bent from the upstream side to the downstream side so that the compressed air A can be swirled (in the circumferential direction, tilted, tilted). Details of the curved state of the swirl vane 130 will be described later.
  • a tally balance (gap) 121 is provided between the outer peripheral side end face (tip) of each swirl vane 130 and the inner peripheral face of the burner cylinder 120.
  • a clearance setting rib is provided on the front edge side of the outer peripheral side end face (tip) of each swirl vane 130.
  • Each clearance setting rib 131 is fixed.
  • Each clearance setting rib 131 is provided with swirl vanes 130.
  • the lengths (radial lengths) of the clearances 121 formed between the swirl vanes 130 and the burner cylinder 120 are equal. Further, the assembly work when the fuel nozzle 110 provided with the swirl vanes 130 is assembled in the burner cylinder 120 is facilitated.
  • Injection holes 133b (shown by dotted circles in Figs. 1 and 2) are formed in the blade back surfaces 132b of the swirl vanes 130, and the injection holes 133a (Fig. 1 and 2 are shown as solid circles). In this case, the formation positions of the injection holes 133b and the injection holes 133a are arranged in a staggered manner.
  • the position of the injection hole 133a formed in 2a and the position of the injection hole 133b formed in the blade back surface 132b of the other adjacent swirl vane 131 are misaligned.
  • fuel passages are formed inside the fuel nozzle 110 and inside each swirl vane 130, and the fuel passage of the fuel nozzle 110 and the fuel passage of each swirl vane 130 are passed through.
  • the fuel is supplied to the injection holes 133a and 133b.
  • the injected fuel is mixed with air A (a) to become fuel gas, which is sent to the inner space of the inner cylinder and combusted.
  • each swirl 130 is gradually curved as it goes from the upstream side to the downstream side so that the compressed air A can be swirled.
  • the dotted line indicates the blade shape (blade cross-sectional shape) on the inner peripheral side (innermost peripheral surface) of the swirl vane 130
  • the solid line indicates the blade shape on the outer peripheral side (outermost peripheral surface) of the swirl vane 130. (Wing cross-sectional shape) is shown.
  • the average warp line (skeletal line) is expressed as Lll
  • the tangent line that contacts the average warp line LI1 at the trailing edge of the swirl blade is expressed as L12.
  • the average warp line (skeleton line) is L21
  • the tangent line that touches the average warp line L21 at the trailing edge of the swirl blade is L22.
  • the axis along the axial direction of the fuel nozzle 110 is defined as LO.
  • the angle formed between the tangent L 12 on the inner peripheral side and the axis LO is 0 degree, and the tangent L 22 on the outer peripheral side.
  • the axis LO are made larger than the angle on the inner circumference side.
  • the angle formed between the tangent line that touches the average warp line and the axis line increases as it goes from the inner peripheral side to the outer peripheral side, so that streamlines from the inner peripheral side toward the outer peripheral side are generated.
  • the air flow rate of the air A (a) is uniform and the occurrence of flashback (backfire) can be prevented regardless of whether the air passage 111 is on the inner peripheral side or the outer peripheral side.
  • the circumferential length of the air passage 111 is short on the inner peripheral side and long on the outer peripheral side.
  • the force (effect) that imparts swirl to the compressed air A is The outer peripheral side with a longer peripheral length is stronger than the inner peripheral side with a shorter length.
  • the swirl imparting force to the compressed air A is uniform on both the inner and outer circumferential sides, and the fuel concentration is uniform on both the inner and outer circumferential sides.
  • FIGS. 6 and 7 are characteristic diagrams showing experimental results.
  • the “angle” shown in FIGS. 6 and 7 is an angle formed by a tangent line and an axis line that are in contact with the average warp line at the trailing edge of the swirl blade.
  • FIG. 6 is a characteristic diagram in which the vertical axis represents the height (%) of the swirl vane 130 and the horizontal axis represents the flow velocity of the air A (a).
  • a swirler height of 100% means the outermost position of the swirler, and a swirler height of 0% means the innermost position of the swirler.
  • Fig. 6 shows the characteristics that the angle on the inner peripheral side is 0 degree and the angle on the outer peripheral side is 5 degrees, the characteristic that the angle on the inner peripheral side is 0 degree, and the angle on the outer peripheral side is 30 degrees. It shows the characteristics that the angle on the peripheral side is 0 degree, the angle on the outer peripheral side is 35 degrees, and the angle on the inner peripheral side and the angle on the outer peripheral side are 20 degrees.
  • FIG. 7 is a characteristic diagram in which the vertical axis indicates the fuel concentration distribution and the horizontal axis indicates the angle on the outer peripheral side. Burning The fuel concentration distribution is the difference between the maximum fuel concentration and the minimum fuel concentration. The smaller the value of the fuel concentration distribution is, the more the concentration is constant.
  • FIG. 7 shows a characteristic in which the angle on the inner peripheral side and the angle on the outer peripheral side are 20 degrees, and the characteristic in which the angle on the outer peripheral side is changed by setting the angle on the inner peripheral side to 0 degree.
  • the fuel concentration becomes uniform when the angle on the outer peripheral side is 25 degrees or more.
  • a clearance (gap) 121 is intentionally provided between the outer peripheral side end face (tip) of each swirl vane 130 and the inner peripheral face of the burner cylinder 120.
  • the blade back surface 132b of the swirl blade 130 has a negative pressure
  • the blade belly surface 132a has a positive pressure
  • an air leakage flow that flows from the blade vent surface 132a to the blade back surface 132b through the clearance 121 occurs.
  • This leakage flow and the compressed air A flowing in the axial direction in the air passage 111 act to generate a vortex air flow.
  • the fuel injected from the injection holes 133a and 133b and the air are more effectively mixed, and the uniformization of the fuel gas is promoted.
  • Example 1 ⁇ Fuel Path Arrangement State and Staging Control Method in Example 1> Next, the fuel passage arrangement state and staging control method in Example 1 will be described.
  • a plurality of eight premixed combustion burners 100 are arranged side by side in the circumferential direction so as to surround the periphery of the firing burner 200.
  • 100A, 100B, 100C, 100D, 100E, 100F, 100G, and 100H are used as symbols without distinguishing each premixed combustion burner.
  • 100 is used as the code.
  • Each premixed combustion burner 100A to 100H has six swirl vanes 130, respectively. In each swirl vane 130, injection holes 130a, 130b are formed.
  • the six swirl blades provided in the premixed combustion burner 100A are designated as 130A1, 130A 2, 130A3, 130A4, 130A5, 130A6,
  • the six swirl blades provided in the premixed combustion burner 100B are designated as 130B1, 130B2, 130B3, 130B4, 130B5, 130B6,
  • the six swirl blades provided in the premixed combustion burner 100C are designated as 130C1, 130C2, 130C3, 130C4, 130C5, 130C6,
  • the six swirl blades provided in the premixed combustion burner 100D are designated as 130D1, 130D 2, 130D3, 130D4, 130D5, 130D6,
  • the six swirl blades provided in the premixed combustion burner 100E are designated as 130E1, 130E2, 130E3, 130E4, 130E5, 130E6,
  • the six swirl blades provided in the premixed combustion burner 100F are designated as 130F1, 130F2, 130F3, 130F4, 130F5, 130F6,
  • the six swirl blades equipped in the premixed combustion burner 100G are designated as 130G1, 130G 2, 130G3, 130G4, 130G5, 130G6,
  • reference numeral 130 is used to indicate each swirl blade without distinction.
  • the fuel passage system in the first embodiment is as shown in Fig. 9, which is a schematic system diagram. As shown in FIG. 9, the fuel supplied from the fuel pump P is supplied to the injection holes 133a and 133b of the individual swirlers 130 via the fuel passage L branched from the fuel pump P. It has become so.
  • the control unit 310 includes the valves 300A1 to 300A6, 300B1 to 300B6, 300C1 to 300C6, 300D1 to 300D6, 300E1 to 300E6, 300F1 to 300F 6, 300G1 to 300G6, 300H1 to Fuel supplied to each swirler 130 A1 to 130A6, 130B1 to 130B6, 130C1 to 130C6, 130D1 to 130D6, 130E1 to 130E6, 130F1 to 130F6, 130G1 to 130G6, 130H1 to 130H6 by adjusting the opening of 300H6 This is to control the amount.
  • the control unit 310 adjusts the opening / closing (opening) of each valve 300 as follows, for example, according to the load of the gas turbine.
  • control unit 310 opens all the valves 300. As a result, fuel is injected from the injection holes 133a and 133b of all swirl vanes 130.
  • the control unit 310 opens the valves 300A1 to 300A3 and opens and closes the opening according to the load amount. Then, close the valves 300A4 to 300A6. By such control, fuel is injected from the injection holes 133a and 133b of the rotating blades 130A1 to 130A3. At this time, the swirl vanes 130A1 to 130A3 are swirl vanes adjacent in the circumferential direction.
  • each swirl 130 is swirling, the swirling air flow a (see Fig. 1) is roughly divided. Thus, there are two types: one that winds inward toward the inner circumference side (radial center side) and one that winds toward the outer circumference side (radial outer circumference side).
  • the swirl vanes 130A1 to 130A3 are swirl vanes arranged in a portion where a swirl air flow a that is entangled in an inner circumferential direction flows.
  • the premixed combustion burner 100A as a whole has a fuel-air ratio FZA
  • the fuel-air ratio FZA increases when viewed from each swirler 130A1 to 130A3, that is, locally. Since the swirlers 130A1 to 130A3 are adjacent to each other in the circumferential direction (that is, they are not separated from each other in the circumferential direction), the swirlers 130A1 to 130A3 The proportion of the injected fuel that is diffusely mixed with the surrounding air is reduced. For this reason, the fuel-air ratio FZA is high in a local portion near the swirl vanes 130A1 to 130A3. As a result, CO and UHC emissions can be reduced even at partial loads, and highly efficient combustion can be ensured.
  • the fuel injected from each of the swirl vanes 130A1 to 130A3 rides on the swirl air flow a that is entrained in the inner peripheral direction and burns near the combustion burner 100A.
  • the proportion of the injected fuel diffused and mixed in the surrounding air is reduced, the local fuel-air ratio FZA is increased, and the partial load is reduced. Even so, CO and UHC emissions can be reduced and high-efficiency combustion can be ensured.
  • the control unit 310 opens the valve 300A1 to 300A3 in the premixed combustion burner 100A and sets the opening degree to the load amount.
  • the valve 300A4 to 300A6 is closed, but the valve 300A1 to 300A3 is opened and the opening is opened and closed according to the load.
  • a predetermined opening smaller than the opening of valves 300A1 to 300A3 (this opening may be determined in advance or may be set according to the load) Please do it.
  • control unit 310 When partial load is reached, control unit 310 simultaneously performs the same control as described above for premixed combustion burner 100A for premixed combustion burners 100B to 100H.
  • the control unit 310 determines that the premixed combustion burner 100B to 100H [Various! Valves 300B1 to 300B3, 300C1 to 300C3, 300D1 to 300D3, 300E 1 Open ⁇ 300E3, 300F1 ⁇ 300F3, 300G1 ⁇ 300G3, 300H1 ⁇ 300H3, open and close the opening according to the load, and close the remaining valves. With this control, swirl vanes 130B1 to 130B3, 130C1 to 130C3, 130D1 to 130D3, 130 E1 to 130E3, 130F1 to 130F3, 130G1 to 130G3, 130H1 to 130H3, and fuel power S injection from 133a, 133b force Is done.
  • the swirling blades 130B1 to 130B3, 130C1 to 130C3, 130D1 to 130D3, 130E1 to 130E3, 130F1 to 130F3, 130G1 to 13 OG3, and 130H1 to 130H3 are adjacent swirling blades arranged in the circumferential direction.
  • the local fuel-air ratio FZA becomes high even at partial load, and the CO and U HC
  • the emission amount can be reduced, and highly efficient combustion can be ensured.
  • the staging control by the control unit 310 described above is an example, and the number of swirling blades (that is, swirling blades that inject fuel) adjacent to each other is changed at the time of partial load. I will change it.
  • the plurality of swirl vanes 130 that inject fuel at the time of partial load are members of a group adjacent to the circumferential direction in the above-described embodiment. It is also possible to make it.
  • swirl vanes 130 are provided with injection holes 133a and 133b.
  • the swirl vanes 130A1, 130B1, 130C1, 130D1, 130E1, 130F1, 130G1, 13 OH1 Side injection hole 133a only, and swirler vanes 130A2, 130B2, 130C2, 130D2, 130E2, 130F2, 130G2, 130H2 are equipped with vane surface ⁇ J and wing back ⁇ J injection ridges 13 3a, 133b 130A3, 130B3, 130C3, 130D3, 130E3, 130F3, 130G3, 130H3 may be provided with only the injection hole 133b on the blade back side.
  • Other swirl vanes 130 are provided with injection holes 133a and 133b.
  • a specific one of the plurality of air passages 111 in the case of the premixed combustion burner 100A, an air passage sandwiched between the swirler 130A1 and the swirler 130A2;
  • the fuel injection can be concentrated in the air passage sandwiched between the swirl vane 130A2 and swirl vane 130A3, and the local fuel-air ratio FZA can be increased.
  • Example 2 of the present invention will be described. The description of the same components as those in the first embodiment will be omitted, and the parts unique to the second embodiment will be described.
  • the plurality of premixed combustion burners 100 operate without stopping when viewed as a whole burner, but pay attention to the individual premixed combustion burners 100. Then, only a part of the force of the plurality of swirl vanes 130 is injected with fuel.
  • each swirl vane 130 is provided with an inner peripheral injection hole 133c and an outer peripheral injection hole 133d. Also, each injection hole 133c, 133d A fuel passage (indicated by a dotted line in the figure) for supplying fuel individually is arranged, and valves 300c and 300d are interposed in each fuel passage.
  • the control unit 320 controls the staging by opening and closing the valves 300c and 300d.
  • the configuration of other parts is the same as that of the first embodiment.
  • control unit 320 opens the valves 300c and 300d and injects fuel from the injection holes 133c and 133d.
  • the control unit 320 closes the valve 300d to stop fuel injection from each of the injection holes 133d on the outer peripheral side, and controls the valve 30 Oc according to the load amount.
  • the amount of fuel injected from each injection hole 133c on the inner peripheral side is adjusted by adjusting the opening degree of.
  • the rate at which the fuel injected from the inner peripheral injection hole 133c diffuses and mixes with the surrounding air when there is a partial load is reduced.
  • the fuel-air ratio FZA is low as a whole of the premixed combustion burner 100.
  • the fuel-air ratio FZA increases locally. For this reason, CO and UHC emissions can be reduced even at partial loads, and highly efficient combustion can be ensured.
  • the injection hole 133c on the inner peripheral side may be arranged near the swirl vane 130 in the fuel nozzle 110 that is not the swirl vane 130 !!

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

 外周面に複数枚の旋回翼130を備えた燃料ノズル110を、バーナー筒120内に備えた予混合燃焼バーナー100を、複数本備えて燃焼器500が構成される。各旋回翼130には噴射孔133a,133bが形成されている。ガスタービンが全負荷状態になっているときには、全ての旋回翼130の噴射孔133a,133bから燃料噴射をし、部分負荷になったときには、周方向に隣接する特定枚数の旋回翼130の噴射孔133a,133bからのみ燃料を噴射し、残りの旋回翼130の噴射孔133a,133bからの燃料噴射を停止するステージング制御をする。このように、旋回翼130ごとに燃料噴射・停止のステージング制御をすることにより、部分負荷であっても、局所的に燃空比を上げることができ、COやUHCの発生を抑制して高効率燃焼を実現できる。

Description

明 細 書
ガスタービンの燃焼器
技術分野
[0001] 本発明はガスタービンの燃焼器に関するものである。本発明では、新規なステージ ング制御を実現することができる構成を採用することにより、ガスタービンを低負荷運 転しても、排ガス中に含まれる一酸化炭素 (CO)や未燃燃料 (UHC:未燃炭化水素 )を低減しつつ高効率運転ができるように工夫したものである。
背景技術
[0002] 発電等に用いられるガスタービンは、圧縮機、燃焼器、タービンを主要部材として 構成されている。ガスタービンは複数の燃焼器を有しているものが多ぐ圧縮機により 圧縮された空気と、燃焼器に供給された燃料を混合させ、各々の燃焼器内で燃焼さ せて高温の燃焼ガスを発生させる。この高温の燃焼ガスをタービンへ供給してタービ ンの回転駆動をしている。
[0003] ここで従来のガスタービンの燃焼器の一例を、図 12を参照しつつ説明する。
図 12に示すように、このガスタービンの燃焼器 10は、燃焼器ケーシング 11に環状 に複数個配置されて 、る(図 12では 1個のみ示して 、る)。燃焼器ケーシング 11とガ スタービンケーシング 12には圧縮空気が充満し、車室 13を形成する。この車室 13に は、圧縮機により圧縮された空気が導入される。導入された圧縮空気は、燃焼器 10 の上流部に設けられた空気流入口 14から、燃焼器 10の内部に入る。燃焼器 10の内 筒 15の内部では、燃料ノズル 16から供給された燃料と圧縮空気が混合されて燃焼 する。燃焼によって生じた燃焼ガスは、尾筒 17を通ってタービン室側へ供給され、タ 一ビンロータを回転させる。
[0004] 図 13は、燃料ノズル 16と、内筒 15と、尾筒 17とを分離して示す斜視図である。同 図に示すように、燃料ノズル 16は、複数本の予混合燃料ノズル 16aと、 1本のノイロッ ト燃料ノズル 16bを有している。内筒 15には複数のスヮラー 18が備えられている。複 数本の予混合燃料ノズル 16aは、それぞれ、スヮラー 18を貫通してから、内筒 15に 挿入されている。 このため、予混合燃料ノズル 16aから噴射された燃料は、スヮラー 18により旋回流と なった空気と予混合され、内筒 15内で燃焼する。
[0005] 図 12,図 13の例では、燃料ノズル 16が、内筒 15に備えたスヮラー 18に挿入される タイプとなっているが、燃料ノズルの外周面に複数枚のスヮラー (旋回翼)を備え、こ のスワラ一から燃料を噴射するタイプの燃焼器も存在する。
[0006] 燃料ノズルの外周面に複数枚のスヮラー (旋回翼)を備えたタイプの燃焼器では、 C
Oや UHCの発生を低減しつつ、ガスタービンの高効率ィ匕を図る手法として、希薄予 混合燃焼が採用されている。このような希薄予混合燃焼を採用した場合、 COや UH
Cの発生を同時に抑制するためには、燃料と空気との混合比 (燃空比: FZA)を、「 特定の範囲」に維持しなければならない。
[0007] 特許文献 1 :特開平 11 14055号公報
特許文献 2:特開 2004 - 12039
発明の開示
発明が解決しょうとする課題
[0008] 燃料ノズルの外周面に複数枚のスヮラー (旋回翼)を備えたタイプの燃焼器を備え たガスタービンでは、負荷が低減し部分負荷になった場合には、燃焼器に供給する 燃料量を少なくしていく。このように部分負荷になった場合であっても、従来では燃焼 器の燃料ノズルの外周面に備えた全ての旋回翼から燃料を噴射して燃焼運転させ ているので、燃焼器の燃空比 FZAが低くなりすぎ、前述した「特定の範囲」から外れ てしまうことがある。
このように部分負荷時において、従来技術では、燃空比 FZAが低くなり過ぎてしま うことがあり、この場合には、 COや UHCの発生量が増えてしまう。また、このように燃 空比 FZAが低い、即ち燃料濃度が低いため、燃焼効率が悪ィ匕してしまう。
[0009] 本発明は、上記従来技術に鑑み、燃料ノズルの外周面に複数枚のスヮラー (旋回 翼)を備えたタイプの燃焼器にぉ ヽて、ガスタービンを低負荷運転した場合であって も、排ガス中に含まれる一酸化炭素 (CO)や未燃燃料 (UHC:未燃炭化水素)を低 減しつつ高効率運転ができる、ガスタービンの燃焼器を提供することを目的とする。 課題を解決するための手段 [0010] 上記課題を解決する本発明の構成は、
燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを有するガスタービンの燃焼器にお いて、
前記各旋回翼にそれぞれ形成されて燃料を噴射する噴射孔と、
各旋回翼に形成された噴射孔に個別に燃料を供給する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、前記弁のうちの特定のものの開度を 負荷に応じて制御し、残りの弁を閉とすることを特徴とする。
[0011] また本発明の構成は、
燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを有するガスタービンの燃焼器にお いて、
前記各旋回翼にそれぞれ形成されて燃料を噴射する噴射孔と、
各旋回翼に形成された噴射孔に個別に燃料を供給する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、 ガスタービンが部分負荷状態になった時には、周方向に並んで隣接した特定枚数 の旋回翼に形成された噴射孔に燃料を供給する燃料通路に備えられている弁の開 度を負荷に応じて制御し、残りの弁を閉とすることを特徴とする。
[0012] また本発明の構成は、
燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを複数本有するガスタービンの燃焼 器において、
前記各旋回翼にそれぞれに、内周側と外周側に形成されて燃料を噴射する内周 側の噴射孔及び外周側の噴射孔と、
各旋回翼に形成された内周側の噴射孔及び外周側の噴射孔に個別に燃料を供給 する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、複数の各燃焼バーナーに対して、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、内周側の噴射孔に燃料を供給する 燃料通路に備えられている弁の開度を負荷に応じて制御し、外周側の噴射孔に燃 料を供給する燃料通路に備えられている弁を閉とすることを特徴とする。
[0013] また本発明の構成は、
燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを複数本有するガスタービンの燃焼 器において、 前記各旋回翼に形成されて燃料を噴射する噴射孔及び前記燃料ノズルに形成さ れて燃料を噴射する噴射孔と、
各旋回翼に形成された噴射孔及び前記燃料ノズルに形成された噴射孔に個別に 燃料を供給する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、複数の各燃焼バーナーに対して、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、前記燃料ノズルに形成された噴射 孔に燃料を供給する燃料通路に備えられている弁の開度を負荷に応じて制御し、前 記旋回翼に形成された噴射孔に燃料を供給する燃料通路に備えられている弁を閉 とすることを特徴とする。
[0014] また本発明の構成は、
上述のガスタービンの燃焼器にぉ 、て、
前記旋回翼の平均反り線に対して前記旋回翼の後縁で接する接線と、前記燃料ノ ズルの軸方向に沿う軸線とでなす角度力 前記旋回翼の後縁の内周側では 0〜: LO 度になっており、前記旋回翼の後縁の外周側では、前記旋回翼の後縁の内周側の 角度よりも大きい角度になっていることを特徴とする。
[0015] また本発明の構成は、
上述のガスタービンの燃焼器にぉ 、て、
前記旋回翼の平均反り線に対して前記旋回翼の後縁で接する接線と、前記燃料ノ ズルの軸方向に沿う軸線とでなす角度力 前記旋回翼の後縁の内周側では 0〜: LO 度になっており、前記旋回翼の後縁の外周側では 25〜35度になっていることを特徴 とする。
発明の効果
[0016] 本発明によれば、燃料ノズルの外周面に複数枚の旋回翼を備え、この旋回翼に噴 射孔を備えた燃焼バーナーを有するガスタービンの燃焼器にぉ 、て、部分負荷にな つたときには、特定の旋回翼に備えた噴射孔カゝらのみ燃料を噴射し、残りの旋回翼 に備えた噴射孔からは燃料を噴射しな 、ようにしたステージング制御をするため、燃 焼バーナー全体でみると燃空比が低くなるが、各旋回翼の近傍では(つまり局所的 には)燃空比を高くすることができる。この結果、部分負荷になっても、 COや UHCの 発生量を抑制することができると共に、燃焼効率が向上する。
図面の簡単な説明
[0017] [図 1]本発明の実施例 1に係る、ガスタービンの燃焼器を示す構成図。
[図 2]実施例 1に係る燃焼器に備えた予混合燃焼バーナーの燃料ノズル及び旋回翼 を示す斜視図。
[図 3]実施例 1に係る燃焼器に備えた予混合燃焼バーナーの燃料ノズル及び旋回翼 を上流側から示す構成図。
圆 4]実施例 1に係る燃焼器に備えた予混合燃焼バーナーの燃料ノズル及び旋回翼 を下流側から示す構成図。
[図 5]旋回翼の湾曲状態を示す説明図。
[図 6]旋回翼高さと空気流速との関係を示す特性図。
[図 7]燃料濃度分布と旋回翼の外周側の角度との関係を示す特性図。
[図 8]本発明の実施例 1に係る燃焼器の配置状態を示す構成図図。
[図 9]本発明の実施例 1に係る燃焼器における配管配置系統を示す系統図。
[図 10]本発明の実施例 2〖こ係る燃焼器を示す構成図。
[図 11]本発明の実施例 2の変形例を示す構成図。
[図 12]従来のガスタービンの燃焼器を示す構成図。
[図 13]従来のガスタービンの燃焼器の燃料ノズル,内筒,尾筒を分解して示す斜視 図。
符号の説明
[0018] 100, 100A〜100H 予混合燃焼バーナー
110 燃料ノズル
111 空気通路
120 バーナー筒
121 クリアランス 130 旋回筒
131 クリアランス設定用リブ
132a 翼腹面
132b 翼背面
133a, 133b, 133c, 133d 噴射孔
200 パイロット燃焼バーナー
300A1〜300A6, 300B1〜300B6, 300C1〜300C6, 300D1〜300D6, 30 0E1〜300E6, 300F1〜300F6, 300G1〜300G6, 300H1〜300H6, 300c, 300d 弁
310、 320 制御部
500, 520 燃焼器
L, LA1〜LA6, LB1〜: LB6, LC1〜LC6, LD1〜: LD6, LEI〜: LE6, LF1〜L F6, LG1〜LG6, LH1〜: LH6 燃料通路
A 圧縮空気
a 旋回空気流
u 渦空気流
発明を実施するための最良の形態
[0019] 以下に本発明の実施の形態を、実施例に基づき詳細に説明する。
なお本願発明者は、燃料ノズルの外周面に旋回翼 (スワラ一べーン)を備えた、新 規な構成となっているガスタービンの予混合燃焼バーナーの開発をした。開発した 新規な予混合燃焼バーナーは、燃料を十分に混合して均一濃度の燃料ガスとするこ とができると共に、燃料ガスの流速を均一にして逆火の防止を確実に図ることができ る。
以下の実施例では、この新規な予混合燃焼バーナーを採用した燃焼器に、本願発 明を適用した実施例について説明する。
実施例 1
[0020] <実施例 1の全体構成 >
図 1に示すように、本発明の実施例 1に係るガスタービンの燃焼器 500では、パイ口 ット燃焼バーナー 200の周囲を囲む状態で、予混合燃焼バーナー 100が複数個(例 えば 8個)配置されている。パイロット燃焼バーナー 200には、図示は省略する力 パ ィロット燃焼ノズルが組み込まれて 、る。
周方向に並んで複数配置された (例えば 8個)の予混合燃焼バーナー 100と、 1本 のパイロット燃焼バーナー 200により、 1つの燃焼器 500が構成され、ガスタービンに はこのように構成された燃焼器 500が複数設置される。
[0021] 予混合燃焼バーナー 100は、燃料ノズル 110と、バーナー筒 120と、旋回翼 (スヮ ラーべーン) 130を主要部材として構成されている。
[0022] バーナー筒 120は、燃料ノズル 110に対して同心状で且つこの燃料ノズル 110を 囲繞する状態で配置されている。このため、燃料ノズル 110の外周面とバーナー筒 1
20の内周面との間に、リング状の空気通路 111が形成される。
この空気通路 111には、その上流側(図 1では左側)から下流側(図 1では右側)に 向かい、圧縮空気 Aが流通する。
[0023] 旋回翼 130は、図 1、斜視図である図 2、上流側から見た図 3、下流側から見た図 4 に示すように、燃料ノズル 110の周方向に沿う複数箇所 (本例では 6箇所)に配置さ れて、燃料ノズル 110の軸方向に沿 、伸びて配置されて 、る。
なお図 1では、理解を容易にするため、周方向に沿う角度 0度と角度 180度の位置 に配置した 2枚の旋回翼 130のみを示している(図 1の状態では、実際には合計で 4 枚の旋回翼が見える)。
[0024] 各旋回翼 130は、空気通路 111を流通する圧縮空気 Aに旋回力を付与して、この 圧縮空気 Aを旋回空気流 aにするものである。このため、各旋回翼 130は、圧縮空気 Aを旋回させることができるように、上流側から下流側に向かうに従い次第に湾曲して V、る(周方向に沿!、傾 、て 、る)。旋回翼 130の湾曲状態にっ 、ての詳細は後述す る。
[0025] 各旋回翼 130の外周側端面 (チップ)と、バーナー筒 120の内周面との間には、タリ ァランス(隙間) 121が取られている。
[0026] 更に、各旋回翼 130の外周側端面 (チップ)の前縁側には、クリアランス設定用リブ
131が固定されている。各クリアランス設定用リブ 131は、旋回翼 130が備えられた 燃料ノズル 110をバーナー筒 120の内部に組みつけた際に、バーナー筒 120の内 周面に緊密に接触する高さ (径方向長さ)となっている。
[0027] このため、各旋回翼 130とバーナー筒 120との間に形成される各クリアランス 121の 長さ (径方向長さ)は均等になる。また旋回翼 130が備えられた燃料ノズル 110をバ 一ナー筒 120の内部に組みつける際の組つけ作業が容易になる。
[0028] 各旋回翼 130の翼背面 132bには噴射孔 133b (図 1,図 2では点線の円で示して いる)が形成され、各旋回翼 130の翼腹面 132aには噴射孔 133a (図 1,図 2では実 線の円で示している)が形成されている。この場合、噴射孔 133bと噴射孔 133aの形 成位置は、千鳥状にズレて配置されている。
このため、隣接する旋回翼 131で見ると、隣接する一方の旋回翼 131の翼腹面 13
2aに形成された噴射孔 133aの位置と、隣接する他方の旋回翼 131の翼背面 132b に形成された噴射孔 133bとの位置と力 位置ズレしている。
[0029] 図示は省略するが、燃料ノズル 110の内部及び各旋回翼 130の内部には燃料通 路が形成されており、燃料ノズル 110の燃料通路及び各旋回翼 130の燃料通路を介 して、各噴射孔 133a、 133bに燃料が供給される。
このため、各噴射孔 133a、 133bから空気通路 111に向力つて燃料が噴射される。 このとき、噴射孔 133aの配置位置と噴射孔 133bの配置位置が位置ズレしているた め、噴射孔 133aから噴射された燃料と、噴射孔 133bから噴射された燃料とが干渉( 衝突)することはない。
噴射された燃料は、空気 A (a)と混合されて燃料ガスとなり、内筒の内部空間に送ら れて燃焼する。
[0030] なお、本実施例の技術的ポイントである、燃料通路の配置状態や、ステージング制 御の手法につ!、ては後述する。
[0031] ここで、旋回翼 130の湾曲状態に付いて、図 1〜図 4を参照して説明する。
(1)概略的に言うと、各旋回翼 130は、圧縮空気 Aを旋回させることができるように、 上流側から下流側に向かうに従 、次第に湾曲して 、る。
(2)軸方向(燃料ノズル 110の長手方向)に関しては、上流側から下流側に向かうに 従い湾曲が大きくなつている。 (3)旋回翼 130の後縁では、径方向(燃料ノズル 110の半径方向(放射方向))に関 して、内周側よりも外周側に向かうに従い湾曲が大きくなつている。
[0032] 上述した(3)の旋回翼 130の後縁での湾曲について、図 5を参照しつつ、更に説明 する。
図 5において、点線は旋回翼 130の内周側(最内周面)での翼形状 (翼断面形状) を示しており、実線は旋回翼 130の外周側 (最外周面)での翼形状 (翼断面形状)を 示している。
点線で示す内周側の翼形状において、平均反り線 (骨格線)を Ll l、この平均反り 線 LI 1に対して旋回翼の後縁で接する接線を L 12として ヽる。
実線で示す外周側の翼形状において、平均反り線 (骨格線)を L21、この平均反り 線 L21に対して旋回翼の後縁で接する接線を L22として ヽる。
燃料ノズル 110の軸方向に沿う軸線を LOとして 、る。
[0033] 図 5に示すように、本実施例では、旋回翼 130の後縁において、内周側での接線 L 12と軸線 LOとでなす角度を 0度としており、外周側での接線 L22と軸線 LOとでなす 角度を、内周側での角度よりも大きくしている。
[0034] 本願発明者の研究によれば、内周側から外周側に向かうに従い、平均反り線に対 して旋回翼の後縁で接する接線と軸線とでなす角度を大きくしていく場合、
(a)内周側の角度を 0〜: LO度にし、
(b)外周側の角度を 25〜35度にする、
ことが「最適」であることが究明された。
ここでいう「最適」とは、
(i)空気通路 111の内周側であっても外周側であっても、空気 A (a)の流速が均一と なってフラッシュバック (逆火)の発生を防止でき、
(ii)空気通路 111の内周側であっても外周側であっても、燃料濃度が均一となること を意味する。
[0035] 上記 (i)となる理由を説明する。
仮に、平均反り線に接する接線と、軸線とでなす角度を、内周側と外周側で同じに したとすると、内周側から外周側に向かう流線 (空気流れ)が発生する。この結果、空 気通路 111の内周側で流通(軸方向に沿い流通)する空気 A (a)の流速が遅くなり、 空気通路 111の外周側で流通(軸方向に沿 、流通)する空気 A (a)の流速が速くな る。このようにして、内周側での空気流速が遅くなると、内周側においてフラッシュバッ クが発生する恐れがある。
[0036] しかし、本願発明では、平均反り線に接する接線と、軸線とでなす角度は、内周側 力 外周側に向かうに従い大きくなるので、内周側から外周側に向かう流線の発生を 抑制することができ、空気通路 111の内周側であっても外周側であっても、空気 A (a )の流速が均一となってフラッシュバック (逆火)の発生を防止できるのである。
[0037] 上記 (ii)となる理由を説明する。
空気通路 111の周方向長さは、内周側で短ぐ外周側で長い。本願発明では、平 均反り線に接する接線と、軸線とでなす角度は、内周側力 外周側に向かうに従い 大きくなるので、圧縮空気 Aに対して旋回を付与する力(効果)は、周長の短い内周 側よりも、周長の長い外周側ほど強くなる。この結果、単位長さ当たりでは、内周側で も外周側でも、圧縮空気 Aに対する旋回付与力が均一となり、内周側でも外周側でも 燃料濃度が均一となるのである。
[0038] 更に、平均反り線に対して旋回翼の後縁で接する接線と軸線とでなす角度を、
(a)内周側の角度を 0〜10度に特定し、
(b)外周側の角度を 25〜35度に特定した理由を、
実験結果を示す特性図である図 6及び図 7を参照して説明する。なお図 6及び図 7に おいて示す「角度」は、平均反り線に対して旋回翼の後縁で接する接線と軸線とでな す角度である。
[0039] 図 6は縦軸に旋回翼 130の高さ(%)をとり、横軸に空気 A (a)の流速をとつた特性 図である。旋回翼の高さが 100%とは、旋回翼の最外周位置を意味し、旋回翼の高 さが 0%とは、旋回翼の最内周位置を意味する。
[0040] 図 6には、内周側の角度が 0度,外周側の角度が 5度の特¾と、内周側の角度が 0 度,外周側の角度が 30度の特性と、内周側の角度が 0度,外周側の角度が 35度の 特性と、内周側の角度も外周側の角度も 20度の特性を示して 、る。
[0041] 図 7は縦軸に燃料濃度分布をとり、横軸に外周側の角度をとつた特性図である。燃 料濃度分布とは、最大燃料濃度と最小燃料濃度との差であり、この燃料濃度分布の 値が小さ!/、ほど濃度が一定であることを意味する。
[0042] 図 7には、内周側の角度も外周側の角度も 20度の特性と、内周側の角度を 0度に して外周側の角度を変化させた特性を示している。
[0043] 燃料濃度分布を示す図 7から分力ゝるように、燃料濃度は、外周側の角度が 25度以 上になると均一化する。
また、図 6から分かるように、外周側の角度が 25度以上において、流速の翼高さ方 向の分布が一様となるのは、内周側の角度が 0〜: L0度、外周側の角度が 25〜35度 である。
[0044] このように、図 6,図 7の特性からも、
(a)内周側の角度を 0〜: LO度にし、
(b)外周側の角度を 25〜35度にすることにより、
(i)空気通路 111の内周側であっても外周側であっても、空気 A (a)の流速が均一と なってフラッシュバック (逆火)の発生を防止でき、
(ii)空気通路 111の内周側であっても外周側であっても、燃料濃度を均一にすること ができることが分かる。
[0045] 前述したように、本実施例では、各旋回翼 130の外周側端面 (チップ)と、バーナー 筒 120の内周面との間に、意図的に、クリアランス(隙間) 121をとつている。
旋回翼 130の翼背面 132bは負圧で、翼腹面 132aは正圧であり、翼背面 132bと 翼腹面 132aとの間に圧力差がある。このため、クリアランス 121を通って、翼腹面 13 2aから翼背面 132bに回り込む、空気の漏れ流れが生ずる。この漏れ流れと、空気通 路 111内を軸方向に流通する圧縮空気 Aとが作用して、渦空気流が発生する。この 渦空気流により、噴射孔 133a、 133bから噴射された燃料と、空気とがより効果的に 混合され、燃料ガスの均一化が促進される。
[0046] <実施例 1における、燃料通路の配置状態およびステージング制御手法 > 次に本実施例 1における、燃料通路の配置状態及びステージング制御手法にっ ヽ て説明する。
[0047] 本実施例 1のガスタービンの燃焼器 500では、図 8に示すように、 1本のノ ィロット燃 焼バーナー 200の周囲を囲む状態で、 8本の予混合燃焼バーナー 100が周方向に 並んで複数個配置されて 、る。
なお以降の説明では、個々の予混合燃焼バーナーを区別する場合には、符号とし て 100A, 100B, 100C, 100D, 100E, 100F, 100G, 100Hを用い、各予混合 燃焼バーナーを区別することなく示す場合には符号として 100を用いる。
[0048] 各予混合燃焼バーナー 100A〜100Hは、それぞれ、 6枚の旋回翼 130を有して いる。そして、各旋回翼 130に噴射孔 130a, 130bが形成されている。
ここで〖ま、
(a)予混合燃焼バーナー 100Aに備えられた 6枚の旋回翼を、符号 130A1, 130A 2, 130A3, 130A4, 130A5, 130A6とし、
(b)予混合燃焼バーナー 100Bに備えられた 6枚の旋回翼を、符号 130B1, 130B2 , 130B3, 130B4, 130B5, 130B6とし、
(c)予混合燃焼バーナー 100Cに備えられた 6枚の旋回翼を、符号 130C1, 130C2 , 130C3, 130C4, 130C5, 130C6とし、
(d)予混合燃焼バーナー 100Dに備えられた 6枚の旋回翼を、符号 130D1, 130D 2, 130D3, 130D4, 130D5, 130D6とし、
(e)予混合燃焼バーナー 100Eに備えられた 6枚の旋回翼を、符号 130E1, 130E2 , 130E3, 130E4, 130E5, 130E6とし、
(f)予混合燃焼バーナー 100Fに備えられた 6枚の旋回翼を、符号 130F1, 130F2 , 130F3, 130F4, 130F5, 130F6とし、
(g)予混合燃焼バーナー 100Gに備えられた 6枚の旋回翼を、符号 130G1, 130G 2, 130G3, 130G4, 130G5, 130G6とし、
(h)予混合燃焼バーナー 100Hに備えられた 6枚の旋回翼を、符号 130H1, 130H 2, 130H3, 130H4, 130H5, 130H6として、各旋回翼を区別して示す。
なお、各旋回翼を区別することなく示す場合には符号 130を用いる。
[0049] 本実施例 1における燃料通路系統は、概略系統図である図 9に示すようになつてい る。図 9に示すように、燃料ポンプ Pから供給された燃料は、燃料ポンプ Pから分岐し ていった燃料通路 Lを介して、個々の旋回翼 130の噴射孔 133a, 133bに供給され るようになっている。
なお、パイロット燃焼バーナー 200にも燃料供給がされるが、パイロット燃焼パーナ 一 200に燃料を供給する燃料通路は図示省略している。
[0050] 噴射孑し 133a, 133bをそれぞれ有する各旋回翼 130A1〜130A6, 130B1〜130 B6, 130C1〜130C6, 130D1〜130D6, 130E1〜130E6, 130F1〜130F6, 130G1〜130G6, 130H1〜130H6に個別に燃料を供給するため分岐した各燃 料通路 LA1〜LA6, LB1〜: LB6, LC1〜LC6, LD1〜LD6, LEI〜: LE6, LF1〜 LF6, LG1~LG6,: LH1〜: LH6に ίま、それぞれ、弁 300Α1〜300Α6, 300Β1〜 300Β6, 300C1〜300C6, 300D1〜300D6, 300E1〜300E6, 300F1〜300 F6, 300G1〜300G6, 300H1〜300H6を備えている。
なお、各弁を区別することなく示す場合には符号 300を用いる。
[0051] 制御部 310は、ガスタービンの負荷に応じて、各弁 300A1〜300A6, 300B1〜3 00B6, 300C1〜300C6, 300D1〜300D6, 300E1〜300E6, 300F1〜300F 6, 300G1〜300G6, 300H1〜300H6の開度調整をすることにより、各旋回翼 13 0A1〜130A6, 130B1〜130B6, 130C1〜130C6, 130D1〜130D6, 130E1 〜130E6, 130F1〜130F6, 130G1〜130G6, 130H1〜130H6に供給する燃 料の量を制御するものである。
[0052] 制御部 310は、ガスタービンの負荷に応じて、例えば、各弁 300を次のように開閉( 開度)調整する。
[0053] ガスタービンの負荷が全負荷であるときには、制御部 310は、全ての弁 300を開状 態とする。これにより全ての旋回翼 130の噴射孔 133a, 133bから燃料が噴射される
[0054] ガスタービンの負荷が部分負荷になったときには、制御部 310は、予混合燃焼バ ーナー 100Aにおいては、弁 300A1〜300A3を開状態にすると共にその開度を負 荷量に応じて開閉し、弁 300A4〜300A6を閉状態にする。このような制御により、旋 回翼 130A1〜130A3の噴射孔 133a, 133bから燃料が噴射される。このとき、旋回 翼 130A1〜130A3は、周方向に並んで隣接した旋回翼である。
[0055] し力も、各旋回翼 130は旋回しているため、旋回空気流 a (図 1参照)は、大きく分け て、内周側(半径方向中心側)に向力つて巻き込んでいくものと、外周側(半径方向 外周側)に向かって巻き込んでいくものとになる。旋回翼 130A1〜130A3は、内周 側に向力つて巻き込んでいく旋回空気流 aが流れる部分に配置された旋回翼として いる。
[0056] このように全ての旋回翼 130から燃料を噴射するのではなぐ特定の旋回翼 130A 1〜130A3からのみ燃料を噴射するようにしたので、予混合燃焼バーナー 100A全 体では燃空比 FZAは低いが、各旋回翼 130A1〜130A3ごとに見ると、つまり局所 的に見ると燃空比 FZAが高くなる。し力も、各旋回翼 130A1〜130A3は周方向に 隣接したものであるため(つまり、周方向に 1つ飛びとなっているのではなぐグルー プとなっているため)、旋回翼 130A1〜130A3から噴射された燃料が周囲の空気で 拡散混合される割合が少なくなる。このため旋回翼 130A1〜130A3の近くの局所 的な部分では、燃空比 FZAが高くなる。この結果、部分負荷になっても、 COや UH Cの排出量を低減することができると共に、高効率な燃焼を確保することができる。
[0057] 更に、各旋回翼 130A1〜130A3から噴射された燃料は、内周側に向力つて巻き 込んでいく旋回空気流 aに乗って、燃焼バーナー 100Aの近くで燃焼する。このよう に燃焼バーナー 100Aの近くで燃焼することによつても、噴射された燃料が周囲の空 気で拡散混合される割合が少なくなり、局所的な燃空比 FZAが高くなり、部分負荷 になっても、 COや UHCの排出量を低減することができると共に、高効率な燃焼を確 保することができる。
[0058] なお、仮に外周側に向力つて巻き込んでいく旋回空気流 aに燃料を噴射すると、こ の燃料は外周側に広がりつつ下流に流れ、バーナー筒 120 (図 1参照)にて絞られ てから燃焼するため、燃焼位置は旋回翼 130から下流側に向力つて離れた位置とな り、空気で拡散混合され易い。このため、 COや UHCの排出量低減や、高効率燃焼 確保の点で有利ではな 、。
[0059] また上記例では、ガスタービンの負荷が部分負荷になったときには、制御部 310は 、予混合燃焼バーナー 100Aにおいては、弁 300A1〜300A3を開状態にすると共 にその開度を負荷量に応じて開閉し、弁 300A4〜300A6を閉状態にしているが、 弁 300A1〜300A3を開状態にすると共にその開度を負荷量に応じて開閉し、弁 30 0A4〜300A6を全閉にすることなく弁 300A1〜300A3の開度よりも小さい所定の 開度 (この開度は予め決めていてもよいし、または、負荷に応じて設定してもよい)に するようにしてちょい。
[0060] 部分負荷になったときに、制御部 310は、予混合燃焼バーナー 100Aに対する上 述した制御と同様な制御を、予混合燃焼バーナー 100B〜100Hに対しても同時に 行う。
[0061] 即ち、部分負荷になったときに、制御部 310は、予混合燃焼バーナー 100B〜100 H【こお!ヽて ίま、弁 300B1〜300B3, 300C1〜300C3, 300D1〜300D3, 300E 1〜300E3, 300F1〜300F3, 300G1〜300G3, 300H1〜300H3を開状態に すると共にその開度を負荷量に応じて開閉し、残りの弁を閉状態にする。このような 制御により、旋回翼 130B1〜130B3, 130C1~130C3, 130D1~130D3, 130 E1〜130E3, 130F1〜130F3, 130G1〜130G3, 130H1〜130H3の各噴射 孑し 133a, 133b力ら燃料力 S噴射される。このとさ、旋回翼 130B1〜130B3, 130C1 〜130C3, 130D1〜130D3, 130E1〜130E3, 130F1〜130F3, 130G1〜13 OG3, 130H1〜130H3は、周方向に並んで隣接した旋回翼である。
[0062] このため、各予混合燃焼バーナー 100B〜100Hにおいても、予混合燃焼パーナ 一 100Aと同様に、部分負荷になっても、局所的な燃空比 FZAが高くなり、 COや U HCの排出量を低減することができると共に、高効率な燃焼を確保することができる。
[0063] 結局、部分負荷となったときに、全ての予混合燃焼バーナー 100A〜100Hは、バ ーナー全体として見ると休止することなく燃焼運転しているが、個々の予混合燃焼バ ーナー 100に着目すると、複数の旋回翼の一部力ものみ燃料を噴射するようにして いる。したがって、部分負荷になっても局所的な燃空比 FZAが高くなり、 COや UH Cの排出量を低減することができると共に、高効率な燃焼を確保することができる。更 に周方向に関して発熱量が均一化し、熱応力による歪力が尾筒に作用することもなく なる。
[0064] <ステージング制御の変形例 >
なお上述した制御部 310によるステージング制御は一例であり、部分負荷のときに 、隣接して並んだグループとする旋回翼 (つまり燃料を噴射する旋回翼)の枚数を変 更することちでさる。
また部分負荷のときに燃料を噴射する複数の旋回翼 130を、上述した実施例では 周方向に隣接したグループのものとしている力 周方向に 1つ飛びとなった旋回翼 1 30から燃料を噴射するようにすることも可能である。
[0065] また、上述した例では、全ての旋回翼 130に噴射孔 133aと噴射孔 133bを備えて いる力 旋回翼 130A1、 130B1, 130C1, 130D1, 130E1, 130F1, 130G1, 13 OH1には翼腹面側の噴射孔 133aのみを備え、旋回翼 130A2、 130B2, 130C2, 130D2, 130E2, 130F2, 130G2, 130H2には翼腹面佃 Jと翼背面佃 Jの噴射孑し 13 3a, 133bを備え、旋回翼 130A3、 130B3, 130C3, 130D3, 130E3, 130F3, 1 30G3, 130H3には翼背面側の噴射孔 133bのみを備えるようにしてもよい。他の旋 回翼 130には、噴射孔 133a, 133bを備える。
[0066] このようにすれば、部分負荷のときには、複数ある空気通路 111のうち特定のもの( 予混合燃焼バーナー 100Aでいえば、旋回翼 130A1と旋回翼 130A2とで挟んだ空 気通路と、旋回翼 130A2と旋回翼 130A3とで挟んだ空気通路)に、集中して燃料 噴射をすることができ、局所的な燃空比 FZAを高くすることができる。
[0067] 更に、部分負荷の時に、予混合燃焼バーナー 100A, 100C, 100E, 100Gにつ いては、上述したように、複数の旋回翼のうち特定の旋回翼からのみ燃料を噴射し、 予混合燃焼バーナー 100B, 100D, 100F, 100Hについては、完全に燃料噴射を 停止するようにすることも可能である。
実施例 2
[0068] 次に本発明の実施例 2を説明する。なお、実施例 1と同様な構成部分については 説明を省略し、実施例 2に独特な部分について説明をする。
この実施例 2においても、部分負荷となったときに、複数の予混合燃焼バーナー 10 0は、バーナー全体として見ると休止することなく燃焼運転しているが、個々の予混合 燃焼バーナー 100に着目すると、複数の旋回翼 130の一部力ものみ燃料を噴射す るようにしている。
[0069] 図 10に示すように、実施例 2の燃焼器 520では、各旋回翼 130には、内周側の噴 射孔 133cと外周側の噴射孔 133dが備えられている。また、各噴射孔 133c、 133d に個別に燃料を供給する燃料通路(図中では点線で示して ヽる)が配置され、各燃 料通路には、弁 300c, 300dが介装されている。制御部 320は弁 300c, 300dを開 閉制御してステージング制御する。他の部分の構成は、実施例 1と同様である。
[0070] 実施例 2では、ガスタービンの負荷が全負荷のときには、制御部 320は、弁 300c, 300dを開として、各噴射孔 133c, 133dから燃料を噴射する。
[0071] ガスタービンの負荷が部分負荷になったときには、制御部 320は、弁 300dを閉とし て外周側の各噴射孔 133dからの燃料噴射を停止すると共に、負荷量に応じて弁 30 Ocの開度を調整して内周側の各噴射孔 133cからの燃料噴射量を調整する。
[0072] 内周側では周方向長が短いので、部分負荷になったときに、内周側の噴射孔 133 cから噴射した燃料が周囲の空気で拡散混合される割合が少なくなる。また予混合燃 焼バーナー 100の全体としては燃空比 FZAは低くなる力 噴射孔 133cの近くでみ ると局所的に燃空比 FZAが高くなる。このため部分負荷になっても、 COや UHCの 排出量を低減することができると共に、高効率な燃焼を確保することができる。
[0073] なお部分負荷のときに、 6枚の旋回翼 130のうち、周方向に並んで隣接した所定枚 数 (例えば 3枚)の旋回翼 130に備えた内周側の噴射孔 133cからのみ燃料を噴射す るようにしてちょい。
[0074] なお図 11に示すように、内周側の噴射孔 133cを、旋回翼 130ではなぐ燃料ノズ ル 110のうち旋回翼 130に近 、部分に配置するようにしてもよ!、。

Claims

請求の範囲
[1] 燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを有するガスタービンの燃焼器にお いて、
前記各旋回翼にそれぞれ形成されて燃料を噴射する噴射孔と、
各旋回翼に形成された噴射孔に個別に燃料を供給する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、前記弁のうちの特定のものの開度を 負荷に応じて制御し、残りの弁を閉とすることを特徴とするガスタービンの燃焼器。
[2] 燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを有するガスタービンの燃焼器にお いて、
前記各旋回翼にそれぞれ形成されて燃料を噴射する噴射孔と、
各旋回翼に形成された噴射孔に個別に燃料を供給する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、周方向に並んで隣接した特定枚数 の旋回翼に形成された噴射孔に燃料を供給する燃料通路に備えられている弁の開 度を負荷に応じて制御し、残りの弁を閉とすることを特徴とするガスタービンの燃焼器
[3] 燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを複数本有するガスタービンの燃焼 器において、
前記各旋回翼にそれぞれに、内周側と外周側に形成されて燃料を噴射する内周 側の噴射孔及び外周側の噴射孔と、
各旋回翼に形成された内周側の噴射孔及び外周側の噴射孔に個別に燃料を供給 する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、複数の各燃焼バーナーに対して、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、内周側の噴射孔に燃料を供給する 燃料通路に備えられている弁の開度を負荷に応じて制御し、外周側の噴射孔に燃 料を供給する燃料通路に備えられている弁を閉とすることを特徴とするガスタービン の燃焼器。
[4] 燃料ノズルと、
前記燃料ノズルの外周面の周方向に沿う複数箇所に、前記燃料ノズルの軸方向に 沿う状態で配置されており、燃料ノズルの周囲で燃料ノズルの軸方向に沿い流通す る空気を旋回させるため、この空気の流れの上流側から下流側に向かうに従い次第 に湾曲している旋回翼とを備えた燃焼バーナーを複数本有するガスタービンの燃焼 器において、
前記各旋回翼に形成されて燃料を噴射する噴射孔及び前記燃料ノズルに形成さ れて燃料を噴射する噴射孔と、
各旋回翼に形成された噴射孔及び前記燃料ノズルに形成された噴射孔に個別に 燃料を供給する燃料通路と、
各燃料通路に備えられた弁と、
前記弁の開閉制御をする制御部とを有し、
前記制御部は、複数の各燃焼バーナーに対して、
ガスタービンが全負荷状態の時には、前記弁を全て開状態とし、
ガスタービンが部分負荷状態になった時には、前記燃料ノズルに形成された噴射 孔に燃料を供給する燃料通路に備えられている弁の開度を負荷に応じて制御し、前 記旋回翼に形成された噴射孔に燃料を供給する燃料通路に備えられている弁を閉 とすることを特徴とするガスタービンの燃焼器。
[5] 請求項 1乃至請求項 4の何れか一項において、
前記旋回翼の平均反り線に対して前記旋回翼の後縁で接する接線と、前記燃料ノ ズルの軸方向に沿う軸線とでなす角度力 前記旋回翼の後縁の内周側では 0〜: LO 度になっており、前記旋回翼の後縁の外周側では、前記旋回翼の後縁の内周側の 角度よりも大きい角度になっていることを特徴とするガスタービンの燃焼器。
[6] 請求項 1乃至請求項 4の何れか一項において、
前記旋回翼の平均反り線に対して前記旋回翼の後縁で接する接線と、前記燃料ノ ズルの軸方向に沿う軸線とでなす角度力 前記旋回翼の後縁の内周側では 0〜: LO 度になっており、前記旋回翼の後縁の外周側では 25〜35度になっていることを特徴 とするガスタービンの燃焼器。
PCT/JP2006/311107 2005-06-06 2006-06-02 ガスタービンの燃焼器 WO2006132152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800012905A CN101080596B (zh) 2005-06-06 2006-06-02 燃气轮机燃烧室
DE112006001317T DE112006001317B4 (de) 2005-06-06 2006-06-02 Gasturbinen-Brennkammer
US11/666,414 US8671690B2 (en) 2005-06-06 2006-06-02 Combustor of gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-165188 2005-06-06
JP2005165188A JP4486549B2 (ja) 2005-06-06 2005-06-06 ガスタービンの燃焼器

Publications (1)

Publication Number Publication Date
WO2006132152A1 true WO2006132152A1 (ja) 2006-12-14

Family

ID=37498352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311107 WO2006132152A1 (ja) 2005-06-06 2006-06-02 ガスタービンの燃焼器

Country Status (5)

Country Link
US (1) US8671690B2 (ja)
JP (1) JP4486549B2 (ja)
CN (1) CN101080596B (ja)
DE (1) DE112006001317B4 (ja)
WO (1) WO2006132152A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275308A (ja) * 2007-05-07 2008-11-13 General Electric Co <Ge> 燃料ノズル及びその製造方法
EP2042807A1 (de) * 2007-09-25 2009-04-01 Siemens Aktiengesellschaft Vormischstufe für einen Gasturbinenbrenner

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476176B2 (ja) * 2005-06-06 2010-06-09 三菱重工業株式会社 ガスタービンの予混合燃焼バーナー
JP4486549B2 (ja) 2005-06-06 2010-06-23 三菱重工業株式会社 ガスタービンの燃焼器
EP1970629A1 (en) * 2007-03-15 2008-09-17 Siemens Aktiengesellschaft Burner fuel staging
CA2691950C (en) 2007-07-02 2015-02-17 Eberhard Deuker Burner and method for operating a burner
JP4979615B2 (ja) 2008-03-05 2012-07-18 株式会社日立製作所 燃焼器及び燃焼器の燃料供給方法
ATE528589T1 (de) * 2008-08-04 2011-10-15 Siemens Ag Swirler
US8505304B2 (en) * 2008-12-01 2013-08-13 General Electric Company Fuel nozzle detachable burner tube with baffle plate assembly
US8104286B2 (en) * 2009-01-07 2012-01-31 General Electric Company Methods and systems to enhance flame holding in a gas turbine engine
US20100175380A1 (en) * 2009-01-13 2010-07-15 General Electric Company Traversing fuel nozzles in cap-less combustor assembly
US9513009B2 (en) * 2009-02-18 2016-12-06 Rolls-Royce Plc Fuel nozzle having aerodynamically shaped helical turning vanes
CH700796A1 (de) * 2009-04-01 2010-10-15 Alstom Technology Ltd Verfahren zum CO-emissionsarmen Betrieb einer Gasturbine mit sequentieller Verbrennung und Gasturbine mit verbessertem Teillast- Emissionsverhalten.
US8333075B2 (en) * 2009-04-16 2012-12-18 General Electric Company Gas turbine premixer with internal cooling
US20110225973A1 (en) * 2010-03-18 2011-09-22 General Electric Company Combustor with Pre-Mixing Primary Fuel-Nozzle Assembly
US8752386B2 (en) * 2010-05-25 2014-06-17 Siemens Energy, Inc. Air/fuel supply system for use in a gas turbine engine
NL2005381C2 (en) * 2010-09-21 2012-03-28 Micro Turbine Technology B V Combustor with a single limited fuel-air mixing burner and recuperated micro gas turbine.
IT1403221B1 (it) * 2010-12-30 2013-10-17 Nuovo Pignone Spa Premixer di combustione vorticante con bordo d'ingresso scolpito e metodo
US8365534B2 (en) 2011-03-15 2013-02-05 General Electric Company Gas turbine combustor having a fuel nozzle for flame anchoring
RU2011115528A (ru) 2011-04-21 2012-10-27 Дженерал Электрик Компани (US) Топливная форсунка, камера сгорания и способ работы камеры сгорания
US8978384B2 (en) * 2011-11-23 2015-03-17 General Electric Company Swirler assembly with compressor discharge injection to vane surface
WO2013128572A1 (ja) 2012-02-28 2013-09-06 三菱重工業株式会社 燃焼器及びガスタービン
US20130219897A1 (en) * 2012-02-28 2013-08-29 Mitsubishi Heavy Industries, Ltd. Combustor and gas turbine
JP6037812B2 (ja) * 2012-12-13 2016-12-07 三菱日立パワーシステムズ株式会社 燃料ノズル、燃焼バーナ、ガスタービン燃焼器及びガスタービン
JP5984770B2 (ja) * 2013-09-27 2016-09-06 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器およびこれを備えたガスタービン機関
JP5913503B2 (ja) * 2014-09-19 2016-04-27 三菱重工業株式会社 燃焼バーナ及び燃焼器、並びにガスタービン
CN104566469B (zh) * 2014-12-30 2018-09-14 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种燃气轮机燃烧室的双燃料喷嘴
CN104566466B (zh) * 2014-12-31 2017-12-01 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种防回火型燃料喷注装置、喷嘴
JP6611341B2 (ja) * 2016-03-30 2019-11-27 三菱重工業株式会社 燃焼器、及びガスタービン
EP3225915B1 (en) 2016-03-31 2019-02-06 Rolls-Royce plc Fuel injector and method of manufactering the same
US10234142B2 (en) * 2016-04-15 2019-03-19 Solar Turbines Incorporated Fuel delivery methods in combustion engine using wide range of gaseous fuels
CN106196059A (zh) * 2016-08-26 2016-12-07 中能服能源科技股份有限公司 一种低氮氧化物燃烧器结构
EP3301368A1 (en) * 2016-09-28 2018-04-04 Siemens Aktiengesellschaft Swirler, combustor assembly, and gas turbine with improved fuel/air mixing
US10738704B2 (en) * 2016-10-03 2020-08-11 Raytheon Technologies Corporation Pilot/main fuel shifting in an axial staged combustor for a gas turbine engine
US10739003B2 (en) 2016-10-03 2020-08-11 United Technologies Corporation Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10508811B2 (en) * 2016-10-03 2019-12-17 United Technologies Corporation Circumferential fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10393030B2 (en) * 2016-10-03 2019-08-27 United Technologies Corporation Pilot injector fuel shifting in an axial staged combustor for a gas turbine engine
KR102046455B1 (ko) * 2017-10-30 2019-11-19 두산중공업 주식회사 연료 노즐, 이를 포함하는 연소기 및 가스 터빈
JP7044669B2 (ja) * 2018-09-05 2022-03-30 三菱重工業株式会社 ガスタービン燃焼器
CN109708144B (zh) * 2019-01-25 2024-03-01 中国科学院工程热物理研究所 一种旋流器
US11187414B2 (en) * 2020-03-31 2021-11-30 General Electric Company Fuel nozzle with improved swirler vane structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104816U (ja) * 1986-12-17 1988-07-07
JPH02100060U (ja) * 1989-01-20 1990-08-09
JPH05272711A (ja) * 1992-03-25 1993-10-19 Kawasaki Heavy Ind Ltd 微粉炭低nox バーナ
JPH08210641A (ja) * 1995-02-01 1996-08-20 Kawasaki Heavy Ind Ltd ガスタービンの燃焼器およびこれを備えたガスタービン燃焼システム
JPH10185185A (ja) * 1996-12-26 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃料制御方法
JPH1183016A (ja) * 1997-09-10 1999-03-26 Mitsubishi Heavy Ind Ltd 3次元スワーラ
JP2001073804A (ja) * 1999-08-19 2001-03-21 General Electric Co <Ge> ガスタービンノズル用の燃料ステージング装置および方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3469562D1 (en) * 1983-01-26 1988-04-07 Firmenich & Cie Use of 1-cyclopentenylacetic acid as perfuming ingredient, perfuming composition containing it and perfumed products
JPS61241425A (ja) 1985-04-17 1986-10-27 Hitachi Ltd ガスタ−ビンの燃料ガス制御方法及び制御装置
US4903478A (en) * 1987-06-25 1990-02-27 General Electric Company Dual manifold fuel system
US4854127A (en) * 1988-01-14 1989-08-08 General Electric Company Bimodal swirler injector for a gas turbine combustor
DE3819899C1 (en) * 1988-06-11 1989-11-30 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Apparatus for generating a homogeneous mixture from a first and second medium
JPH06323165A (ja) * 1993-05-17 1994-11-22 Hitachi Ltd ガスタービン用制御装置及び制御方法
US5511375A (en) 1994-09-12 1996-04-30 General Electric Company Dual fuel mixer for gas turbine combustor
US5899075A (en) 1997-03-17 1999-05-04 General Electric Company Turbine engine combustor with fuel-air mixer
JPH1114055A (ja) 1997-06-26 1999-01-22 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及びその燃焼方法
US6502399B2 (en) 1997-09-10 2003-01-07 Mitsubishi Heavy Industries, Ltd. Three-dimensional swirler in a gas turbine combustor
US6141967A (en) 1998-01-09 2000-11-07 General Electric Company Air fuel mixer for gas turbine combustor
EP0936406B1 (en) 1998-02-10 2004-05-06 General Electric Company Burner with uniform fuel/air premixing for low emissions combustion
DE59811336D1 (de) * 1998-07-22 2004-06-09 Alstom Technology Ltd Baden Verfahren zum Betrieb einer Gasturbinenbrennkammer mit flüssigem Brennstoff
US6684641B2 (en) * 1999-12-15 2004-02-03 Osaka Gas Co., Ltd. Fluid distributor, burner device, gas turbine engine, and cogeneration system
US7360363B2 (en) * 2001-07-10 2008-04-22 Mitsubishi Heavy Industries, Ltd. Premixing nozzle, combustor, and gas turbine
DE10160997A1 (de) * 2001-12-12 2003-07-03 Rolls Royce Deutschland Magervormischbrenner für eine Gasturbine sowie Verfahren zum Betrieb eines Magervormischbrenners
US6655145B2 (en) * 2001-12-20 2003-12-02 Solar Turbings Inc Fuel nozzle for a gas turbine engine
US6968692B2 (en) 2002-04-26 2005-11-29 Rolls-Royce Corporation Fuel premixing module for gas turbine engine combustor
JP2004012039A (ja) 2002-06-07 2004-01-15 Hitachi Ltd ガスタービン燃焼器
US6962055B2 (en) * 2002-09-27 2005-11-08 United Technologies Corporation Multi-point staging strategy for low emission and stable combustion
US7137258B2 (en) * 2004-06-03 2006-11-21 General Electric Company Swirler configurations for combustor nozzles and related method
US6993916B2 (en) 2004-06-08 2006-02-07 General Electric Company Burner tube and method for mixing air and gas in a gas turbine engine
JP4486549B2 (ja) 2005-06-06 2010-06-23 三菱重工業株式会社 ガスタービンの燃焼器
US20070028618A1 (en) 2005-07-25 2007-02-08 General Electric Company Mixer assembly for combustor of a gas turbine engine having a main mixer with improved fuel penetration
JP2007162998A (ja) 2005-12-13 2007-06-28 Kawasaki Heavy Ind Ltd ガスタービンエンジンの燃料噴霧装置
GB0815761D0 (en) 2008-09-01 2008-10-08 Rolls Royce Plc Swirler for a fuel injector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104816U (ja) * 1986-12-17 1988-07-07
JPH02100060U (ja) * 1989-01-20 1990-08-09
JPH05272711A (ja) * 1992-03-25 1993-10-19 Kawasaki Heavy Ind Ltd 微粉炭低nox バーナ
JPH08210641A (ja) * 1995-02-01 1996-08-20 Kawasaki Heavy Ind Ltd ガスタービンの燃焼器およびこれを備えたガスタービン燃焼システム
JPH10185185A (ja) * 1996-12-26 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃料制御方法
JPH1183016A (ja) * 1997-09-10 1999-03-26 Mitsubishi Heavy Ind Ltd 3次元スワーラ
JP2001073804A (ja) * 1999-08-19 2001-03-21 General Electric Co <Ge> ガスタービンノズル用の燃料ステージング装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275308A (ja) * 2007-05-07 2008-11-13 General Electric Co <Ge> 燃料ノズル及びその製造方法
EP2042807A1 (de) * 2007-09-25 2009-04-01 Siemens Aktiengesellschaft Vormischstufe für einen Gasturbinenbrenner
WO2009040218A1 (de) * 2007-09-25 2009-04-02 Siemens Aktiengesellschaft Vormischstufe für einen gasturbinenbrenner

Also Published As

Publication number Publication date
CN101080596B (zh) 2011-04-13
CN101080596A (zh) 2007-11-28
JP2006336995A (ja) 2006-12-14
DE112006001317T5 (de) 2008-04-10
US20080289341A1 (en) 2008-11-27
DE112006001317B4 (de) 2010-12-09
JP4486549B2 (ja) 2010-06-23
US8671690B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
WO2006132152A1 (ja) ガスタービンの燃焼器
JP4418442B2 (ja) ガスタービンの燃焼器及び燃焼制御方法
JP4476176B2 (ja) ガスタービンの予混合燃焼バーナー
KR102201125B1 (ko) 가스 터빈 엔진용 연료 분사기 조립체
JP5746091B2 (ja) ローブスワーラ
CN101377305A (zh) 带径向分级流通道的预混合器和混合空气及燃气的方法
CN100554785C (zh) 用于对燃气轮机中的空气和气体进行混合的燃烧管及方法
JP4205231B2 (ja) バーナ
EP1795809B1 (en) Gas turbine combustor
US10024540B2 (en) Combustion chamber for a gas turbine
JP6937573B2 (ja) ガスタービンの燃焼システムにおける段階的な燃料および空気噴射
US20140090396A1 (en) Combustor with radially staged premixed pilot for improved
EP1731833A1 (en) Combustion apparatus
EP2578941A2 (en) System for Fuel Injection in a Fuel Nozzle
US20130283805A1 (en) Fuel/air premixing system for turbine engine
US20120167569A1 (en) Gas turbine combustion burner
JP2006300448A (ja) ガスタービンの燃焼器
RU2570480C2 (ru) Способ смешивания разбавляющего воздуха в системе последовательного сгорания газовой турбины
CN109804201B (zh) 具有引燃空气供应的引燃器组件
US8726671B2 (en) Operation of a combustor apparatus in a gas turbine engine
CN110440288B (zh) 一种用于预混气态燃料的进气装置
US20090117502A1 (en) Combustor and Method of Operating a Combustor
WO2024116966A1 (ja) ガスタービンの運転方法
JP2008082590A (ja) ガスタービン燃焼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11666414

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001290.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120060013173

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006001317

Country of ref document: DE

Date of ref document: 20080410

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase

Ref document number: 06756928

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607