WO2006132049A1 - 単結晶状有機カルボン酸金属錯体、その製造方法及びその用途 - Google Patents

単結晶状有機カルボン酸金属錯体、その製造方法及びその用途 Download PDF

Info

Publication number
WO2006132049A1
WO2006132049A1 PCT/JP2006/309429 JP2006309429W WO2006132049A1 WO 2006132049 A1 WO2006132049 A1 WO 2006132049A1 JP 2006309429 W JP2006309429 W JP 2006309429W WO 2006132049 A1 WO2006132049 A1 WO 2006132049A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
organic
metal complex
organic carboxylic
acid metal
Prior art date
Application number
PCT/JP2006/309429
Other languages
English (en)
French (fr)
Inventor
Satoshi Takamizawa
Original Assignee
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005169087A external-priority patent/JP5099615B2/ja
Priority claimed from JP2005169083A external-priority patent/JP4951728B2/ja
Priority claimed from JP2005169081A external-priority patent/JP5099614B2/ja
Application filed by Yokohama City University filed Critical Yokohama City University
Priority to EP06746239A priority Critical patent/EP1914263B1/en
Priority to US11/921,681 priority patent/US8034165B2/en
Publication of WO2006132049A1 publication Critical patent/WO2006132049A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/14Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing two or more elements other than carbon, oxygen, nitrogen, sulfur and silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a single crystal organic carboxylic acid metal complex, a method for producing the same, and an application thereof.
  • Patent Document 1 describes a metal carboxylate complex composed of benzoic acid, a metal, and an organic ligand capable of bidentate coordination with the metal. It is described as useful.
  • Non-patent documents 1 and 2 include single crystals in which benzoic acid, rhodium (non-patent document 1) or copper (non-patent document 2), and an organometallic complex having a pyrazine force are one-dimensionally connected. It is also described that the crystal structure changes when the metal complex adsorbs and desorbs the diacid carbon which is a guest molecule.
  • activated carbon zeolite has been conventionally used as an adsorbent for adsorbing and removing vapors of organic solvents such as benzene and toluene (Patent Documents 2 and 3).
  • alloys and sintered bodies thereof are used as the hydrogen storage material (Patent Documents 4 and 5).
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-309592
  • Patent Document 2 JP 2004-255336 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-261780
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-1389
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-3203
  • Non-patent literature l Satoshi Takamizawa et al, Angew. Chem. Int. Ed. 2003, 42, 4331-43 34
  • Non-Patent Document 2 Satoshi Takamizawa et al., Inorganic Chemistry Communications, Volume 6, Issue 10, October 2003, pp.1326— 1328
  • One object of the present invention is to use various gas or organic solvent vapor adsorbents, hydrogen storage materials, and the like. It is intended to provide a huge single crystal of a complex such as an organic carboxylate metal complex described in Non-Patent Document 1 and a method for producing the same.
  • Another object of the present invention is to easily adsorb and desorb organic solvent vapors such as benzene and toluene and harmful organic compounds such as formaldehyde, and to use them continuously without any particular regeneration treatment. It is an object to provide an adsorbent for volatile organic compounds. Another object of the present invention is to provide a hydrogen storage material that easily adsorbs and desorbs hydrogen and has a large amount of hydrogen storage per unit volume.
  • another object of the present invention is to provide a novel organometallic complex having a novel chemical structure and physical properties different from the organometallic complexes described in the above-mentioned known documents and useful for the adsorption and desorption of various gases. And a gas storage agent comprising the same.
  • the inventor of the present application has, as an upper layer, a solution containing an organic carboxylic acid having a metal salt and a conjugated system, or a solution of a metal salt of an organic carboxylic acid having a conjugated system.
  • Two layers are formed with a non-mixed solvent as a lower layer, and in this state, pyrazine or substituted pyrazine vapor having a solution power of pyrazine or substituted virazine is introduced into the upper layer solution to cause a reaction, and the organic layer is formed at the interface between the two layers.
  • M 1 and M 2 are independently divalent metals
  • R la , R lb , R lc and R ld are Independently, an organic group containing a conjugated system
  • R 2 , R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a alkenyl group having 1 to 4 carbon atoms
  • a method for producing a single crystal of a complex is provided.
  • the present invention also provides an organic carboxylate metal complex single crystal composed of a repeating unit represented by the above general formula [I] and having a long side length of 0.8 mm or more.
  • the inventor of the present application has made it easy for an organic carboxylic acid metal complex having a specific structure to adsorb vapor of an organic solvent, and to be easily detached without particularly performing a regeneration treatment.
  • the present inventors have found that the organic carboxylic acid metal complex easily adsorbs and desorbs hydrogen and has a large hydrogen storage amount per unit volume, and has completed the second invention of the present application.
  • the present invention relates to the above general formula [I] (M 1 and M 2 , R la , R lb , R le and R ld in general formula [I], and R 2 , R 3 , R 4 and R 5 also provides a volatile organic compound absorbent comprising repeating units mosquito ⁇ et configured organic force carboxylic acid metal complex represented by as defined above). Furthermore, the present invention provides use of the organic carboxylic acid metal complex of the present invention for producing a volatile organic compound adsorbent. Furthermore, the present invention provides a method for adsorbing a volatile organic compound, which comprises contacting the organic carboxylic acid metal complex of the present invention with a vapor of the volatile organic compound.
  • the present invention also provides a volatile organic compound concentration retention agent that retains the concentration of volatile organic compounds in the air at a predetermined value or less, comprising the organic carboxylic acid metal complex. Furthermore, the present invention provides the use of the organic carboxylic acid metal complex of the present invention for producing a volatile organic compound concentration maintaining agent. Furthermore, the present invention provides a method of keeping the concentration of the volatile organic compound in the air below a predetermined value by placing the volatile organic compound adsorbent of the present invention in the air. Furthermore, the present invention provides the above organic carbon Provided is a hydrogen storage material comprising a boronic acid metal complex. Furthermore, the present invention provides the use of the organic carboxylic acid metal complex of the present invention for producing a hydrogen storage material.
  • the present invention provides a method for occluding hydrogen gas, which comprises contacting the organic carboxylic acid metal complex of the present invention with hydrogen gas. Furthermore, the present invention relates to a method of arranging metal atoms one-dimensionally one by one by adsorbing metal vapor to an organic carboxylic acid metal complex, and a metal atom as a guest in a channel structure produced by the method. Provides an organic carboxylate metal complex in which one atom is arranged one-dimensionally.
  • the present invention relates to the above general formula [I] (M 1 and M 2 , R la , R lb , R le and R 1 d in general formula [I], and R 2 , R 4 and R 5 are also as defined above, except that R 2 , R 4 and R 5 are hydrogen atoms at the same time.) .
  • the present invention also provides a gas storage agent comprising the organic carboxylic acid metal complex of the present invention. Furthermore, the present invention provides a gas adsorption permeable membrane comprising a single crystal of the carboxylic acid metal complex.
  • the present invention provides the above general formula [I] (M 1 and M 2 , R la , R lb , and R ld in the general formula [I], and R 2 , R 4 and R 5 are also defined in the same manner as above, and provide a single-crystal organic carboxylic acid metal complex having a long side length of at least 5 m.
  • the first invention of the present application provided for the first time a giant single crystal of an organic carboxylate metal complex useful as an adsorbent for various gases and vapors of organic solvents, a hydrogen storage material, and the like, and a method for producing the same.
  • organic carboxylic acid metal complexes as adsorbents for various gases and vapors of organic solvents, hydrogen storage materials, etc.
  • the use of huge single crystals increases the adsorption per unit apparent volume compared to the case of using many small single crystals. The amount can advantageously be increased.
  • huge Large single crystals can be used as they are as adsorption filters for vapors of various gases and organic solvents.
  • a novel volatile organic compound vapor adsorbent and hydrogen storage material comprising an organic carboxylic acid metal complex having a specific structure are provided.
  • the concentration of the organic solvent vapor increases to a predetermined value or more, the crystal structure of the organic carboxylic acid metal complex changes and the adsorption amount increases rapidly.
  • the concentration of the solvent vapor can be maintained below the concentration at which the amount of adsorption increases rapidly (hereinafter “critical concentration”).
  • the hydrogen storage material of the present invention is suitable for storing hydrogen because it easily adsorbs and desorbs hydrogen and has a large amount of hydrogen storage per unit volume.
  • an organic carboxylic acid metal complex having a novel chemical structure and a gas storage agent using the same are provided.
  • a gas storage agent a variety of organic carboxylate metal complexes having different crystal structures due to bonding of specific substituents to the pyrazine ring of the organic carboxylate metal complex, resulting in different adsorption and desorption characteristics for various gases.
  • a gas storage agent is provided.
  • FIG. 1 is a schematic diagram of a stereoscopic micrograph of a giant single crystal obtained in Examples 1 and 2.
  • FIG. 2 Schematic diagram of stereomicrographs of the giant single crystals obtained in Examples 1 and 2, and the plane index and the positional relationship between the crystal plane and the channel direction, as revealed by X-ray single crystal structure analysis FIG.
  • FIG. 3 shows X-ray single crystal analysis data of the giant single crystal obtained in Example 1.
  • FIG. 4 shows X-ray single crystal analysis data of the giant single crystal obtained in Example 2.
  • FIG. 5 Stereomicrograph (a)) and X-ray topography of the giant single crystal obtained in Example 1.
  • FIG. 6 shows the isothermal vapor adsorption curve of the organic carboxylate metal complex produced in Example 3 of the present invention. Show.
  • FIG. 7 shows an isothermal vapor adsorption curve of the organic carboxylate metal complex produced in Example 9 of the present invention.
  • FIG. 9 is a diagram schematically showing a crystal structure of a crystal in a state where hydrogen is adsorbed on rhodium benzoate pyrazine produced in Example 9.
  • FIG. 10 is a view schematically showing a crystal structure in a state where mercury vapor is adsorbed on a rhodium benzoate pyrazine single crystal produced in Example 9.
  • Example 10 (a)) and Example 4 (b)) of the present invention A schematic diagram of a stereoscopic microscope photograph of the complex single crystal produced in Example 10 (a)) and Example 4 (b)) of the present invention, and an area index and It is a schematic diagram showing the positional relationship between the crystal plane and the channel direction.
  • ⁇ 12 Schematic diagram of a stereoscopic microscope photograph of the complex single crystal produced in Example 11 (a)) and Example 5 (b)) of the present invention, and the surface index and It is a schematic diagram showing the positional relationship between the crystal plane and the channel direction.
  • FIG. 13 A diagram schematically showing a cross-sectional view of a crystal of benzoic acid 2-methylbiazine complex single crystal produced in an example of the present invention before and after carbon dioxide adsorption.
  • FIG. 14 is a diagram schematically showing changes in the skeleton structure of the benzoic acid 2-methylbiazine complex single crystal produced in the example of the present invention before and after carbon dioxide adsorption.
  • FIG. 15 is a diagram schematically showing crystal cross-sectional views of a benzoic acid pyrazine complex single crystal produced in an example of the present invention before and after carbon dioxide adsorption.
  • FIG. 16 is a diagram schematically showing changes in the skeletal structure before and after diacid-carbon adsorption of a benzoic acid pyrazine complex single crystal produced in an example of the present invention.
  • FIG. 17 is a view schematically showing a crystal cross section before and after adsorbing carbon dioxide on the complex produced in Example 11 of the present invention.
  • FIG. 18 is a graph showing the results of measuring the amount of carbon dioxide adsorbed under isothermal or equal pressure for the complex produced in Example 10 of the present invention.
  • Example 4 of the present invention For the complex produced in Example 4 of the present invention, the amount of carbon dioxide adsorbed was kept isothermal. Or it is a figure which shows the result measured under the equal pressure.
  • FIG. 20 Complex (a) produced in Example 10 of the present invention, complex produced in Example 4 (b), complex produced in Example 11 (c) and complex produced in Example 5 (d )) Is a graph showing the results of measuring the amount of adsorbed oxygen gas at isothermal conditions (77K).
  • FIG. 21 shows the complex (a) produced in Example 10 of the present invention, the complex produced in Example 4 (b), the complex produced in Example 11 (c), and the complex produced in Example 5 (d )) Is a graph showing the results of measuring the amount of nitrogen gas adsorbed under isothermal conditions (77K).
  • FIG. 6 is a diagram showing the results of measuring the amount of adsorption of selenium.
  • the organic carboxylic acid metal complex used in the first invention of the present application has a repeating unit force having a structure represented by the above general formula [I].
  • the general formula [I] coordinate bonds exist between M 1 and O, between M 2 and O, between M 1 and M 2 and between M 2 and N.
  • the number of repeating units represented by the general formula [I] is not particularly limited, but is usually about 10 7 to 10 1Q , and preferably about 8 ⁇ 10 7 to 10 9 .
  • the upper right oxygen atom is the same as the carbon atom to which R lb is bonded.
  • the oxygen atom in the lower right is bonded to the carbon atom to which R le is bonded.
  • the oxygen atom of the top left is bonded to carbon atom of R la is bonded
  • an oxygen atom of the lower left is bonded to R ld It is bonded to the carbon atom.
  • M 1 and M 2 are metal atoms that can be divalent independently of each other, and may be transition metals or typical metals.
  • M include manganese, iron, conoleto, nickel, copper, zinc, ruthenium, rhodium, chromium, molybdenum, norradium and tungsten, and among these, copper and rhodium are particularly preferable.
  • M 1 and M 2 are preferably the same type of metal atom.
  • R la , R lb,! ⁇ And R ld may be collectively referred to as “is an organic group containing a conjugated system, ie, benzene, for example).
  • An unsubstituted phenyl group is particularly preferred, which is an organic group containing a ring, a naphthalene ring, an anthracene ring, a hetero ring thereof, and the like, and an optionally substituted phenyl group.
  • examples of the substituent include an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, a hydroxyl group, an amino group, a cyan group, and an alkyl group having 1 to 4 carbon atoms.
  • examples include a mino group, an alkoxyl group having 1 to 4 carbon atoms, a halogen atom, and an optionally substituted phenol group (substituents are the same as above (excluding substituted furan groups)).
  • the number of groups is 1-5.
  • the “alkyl group” includes both a linear alkyl group and a branched alkyl group unless otherwise specified.
  • R la , R lb , R le and R ld are preferably the same kind of organic group.
  • R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • R 2 , R 3 , R 4 and R 5 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a allyl group, etc.
  • R 2 , R 3 , R 4 and Among R 5 those in which 4 of 4 forces are hydrogen atoms are preferred.
  • the huge single crystal of the organic metal carboxylate complex is an organic compound having a conjugated system with a divalent metal salt ( two different metal salts when ⁇ 1 and ⁇ 2 are different, the same shall apply hereinafter).
  • a solution containing a carboxylic acid (Ri-COO R 1 has the same meaning as above, and when R la , R lb , R le and R ld are a plurality of types of organic groups, a plurality of types of organic carboxylic acids, the same applies hereinafter), or two layers organic carboxylic acid (Ri-COOH (R 1 is as defined above)) to a solution of the divalent the possible metal salts to a layer, the solvent immiscible with the solvent of the solution as a lower layer having a conjugated system And a pyrazine or substituted pyrazine vapor from a solution of pyrazine or substituted virazine is introduced and reacted to form a single crystal of the organic carboxylic acid metal complex at the
  • the metal salt acetate, formate, sulfate, nitrate and carbonate are preferable, and acetate is particularly preferable.
  • the concentration of the metal salt in the solution is not particularly limited, usually, 0.00001 ⁇ 0.5Mol Ji about 1, Ji preferably 0.001 ⁇ 0.1mol is about 1, also the (sum of their concentrations in the case of including a multi several organic carboxylic acid) concentration of the organic carboxylic acid is particularly limited, such bur normally, 0.0001 ⁇ Lmol Ji about 1, preferably it is about one-Ji 0.004 ⁇ 0.4mol.
  • the concentration thereof is not particularly limited, usually, 0.000 01 ⁇ Lmol Ji about 1, preferably 0.001 ⁇ 0.1mol Ji about 1.
  • the solvent constituting the lower layer is a solvent that is not mixed with the solvent in the upper layer solution and has a density higher than that of the solvent (preferably a density of 1.5 or more), and each of the reactive substances described above. As long as the solvent does not react with the generated complex, it is not limited. Here, “does not mix” means that the interface between the two layers is clearly present even after the crystal growth reaction for several tens of days.
  • a preferred solvent for forming the lower layer is a fluorine-based solvent.
  • fluorine-based solvent examples include norfluorodecahydrophenanthrene, perfluorodecalin, perfluoro-1-methyldecalin, perfluorodimethylnaphthalene, perfluoro-1,3-dimethylcyclohexane, 2,5-dichroate.
  • Virazine or substituted pyrazine vapor having a solution strength of pyrazine or substituted virazine is introduced into the solution forming the upper layer and reacted.
  • pyrazine or substituted pyrazine instead of using pyrazine or substituted pyrazine as it is, it is dissolved in a solvent to form a solution, and the pyrazine or substituted pyrazine vapor generated by the solution force is subjected to the reaction.
  • the vapor pressure of pyrazine or substituted pyrazine can be lowered, and the amount of pyrazine or substituted pyrazine introduced per unit time can be reduced.
  • the introduction is preferably carried out by natural diffusion at the reaction temperature in order to reduce the amount of pyrazine or substituted pyrazine introduced per unit time.
  • a solvent for the solution of pyrazine or substituted virazine an organic solvent having a low vapor pressure such as ethylene glycol or xylene is preferable.
  • the concentration of the pyrazine or substituted pyrazine in solution is not particularly limited, preferably the gesture et 0.00001 ⁇ 0.01mol Ji about 1 preferred is about one Ji 0.0001 ⁇ 0.01Mol.
  • the reaction temperature is not particularly limited, but a reaction time of about 10 ° C to 25 ° C is preferably 15 ° C.
  • reaction vessel is not limited in any way, it is preferable to use a vessel whose surface has been subjected to anti-adhesion processing such as Teflon (registered trademark) processing so that the produced single crystal does not adhere to the wall surface of the vessel. ,.
  • the organic carboxylic acid metal complex is produced and grown at the interface between the two layers of the single crystal force of the organic carboxylate metal complex.
  • the size of the single crystal is not particularly limited, but it is preferable that the long side is 0.8 mm or more. In the following examples, the long side is 5 mm. If the reaction time is further increased, a product of about 10 mm can be obtained.
  • “long side” means the longest side of the polygon that is the widest surface constituting the crystal.
  • the organic carboxylic acid metal complex represented by the above general formula [I] having a long side length of 0.8 mm or more has not been known before this application, and such a giant single crystal itself is not known. Is new. Therefore, the present invention also provides an organic carboxylic acid metal complex single crystal represented by the above general formula [I] having a long side length of 0.8 mm or more.
  • the giant single crystal obtained by the method of the present invention can be used as a vapor adsorbent of various gas organic solvents, a hydrogen storage material, and the like, in the same manner as a single crystal of normal size.
  • the second invention of the present application is based on the above general formula [I] (M 1 and M 2 in the general formula [I], R la , R lb , R lc and R ld , and R 2 , Provided is a volatile organic compound adsorbent comprising an organic carboxylic acid metal complex composed of repeating units represented by R 4 and R 5 as defined above.
  • M 1 and M 2 in the general formula [I], R la , R lb , R le and R ld , and!? 2 The above explanations are applied as they are for explanations and preferred examples of R 4 and R 5 .
  • the number of repeating units represented by the general formula [I] is not particularly limited, but is usually 10 to 10 8 , preferably 10 2 to 10 7 .
  • the organic carboxylic acid metal complex represented by the general formula D] is in the form of a giant single crystal produced by the method of the first invention described above, the number of repeating units is as described above.
  • the repeating units represented by the above general formula [I] are connected one-dimensionally and gather to form a molecular crystal.
  • the conjugated system of R 1 approaches so that a ⁇ - ⁇ bond is formed and the crystal structure is stabilized.
  • the molecular crystal is preferably a single crystal.
  • Single crystals can not only increase the amount of organic solvent vapor or hydrogen adsorbed per unit volume, but also make the physical properties uniform and produce complexes with specified physical properties with good reproducibility. It has the advantage of being able to.
  • a huge single crystal having a long side length of 0.8 mm or more can be produced. When such a large single crystal is used, the unit apparent volume per unit volume can be obtained. This is advantageous because the vapor adsorption amount and hydrogen storage amount can be further increased.
  • the organic carboxylic acid metal complex described above includes a metal salt (if M 1 and M 2 are different, two metal salts, the same shall apply hereinafter) and an organic carboxylic acid (Ri-COO R 1 is as defined above)
  • R la , R lb , R le and R ld are plural kinds of organic groups, plural kinds of organic carboxylic acids (the same applies hereinafter))
  • a substituted pyrazine are produced by slowly reacting in a solvent.
  • a metal salt of an organic carboxylic acid Ri-COOH (R 1 is as defined above)
  • a substituted pyrazine in a solvent.
  • a solvent methanol and acetonitrile are preferable.
  • the metal salt acetate, formate, sulfate, nitrate and carbonate are preferred, and acetate is particularly preferred.
  • the reaction temperature is not particularly limited, and is possible at a temperature of about 0 ° C to 70 ° C. Good results are obtained at room temperature.
  • the reaction time is not particularly limited, but usually good results are obtained in about 3 hours to 1 week.
  • the ratio of the metal salt to be formed and the organic carboxylic acid is not particularly limited, but the molar ratio is usually about 1: 2 to 1: 8, and the ratio of the metal salt to the substituted virazine is usually 1: 0.5 to 1: About 10.
  • the preferable example of a manufacturing method is described in detail in the following Example.
  • a giant single crystal having a repeating unit force represented by the above general formula [I] can also be produced.
  • the use of the second invention of the present application that is, it can be preferably used as a volatile organic compound adsorbent or a hydrogen storage material.
  • the organic carboxylic acid metal complex forms a molecular crystal, and the molecular crystal has pores (channel structure) or regularly arranged voids extending one-dimensionally inside the crystal.
  • a gas can be adsorbed and desorbed as a guest in the crystal internal space.
  • the volatile organic compound adsorbent of the present invention comprises the above-described organic carboxylic acid metal complex.
  • the concentration of the organic solvent vapor increases to a specific value or more
  • the crystal structure of the organic carboxylic acid metal complex changes and the adsorption amount Increases rapidly.
  • the concentration of the organic solvent vapor in the air can be maintained below the concentration (critical concentration) at which the amount of adsorption increases rapidly. That is, by placing the volatile organic compound adsorbent of the present invention in the air, the concentration of the organic solvent vapor in the air can be maintained below the critical concentration. That is, the volatile organic compound adsorbent of the present invention can be used as an organic solvent vapor concentration maintaining agent. Furthermore, since the adsorption and desorption of organic solvent vapor is rapid and reversible, when the concentration of organic solvent vapor in the air drops below the critical concentration due to ventilation or the like, the organic solvent adsorbed on the adsorbent Vapor desorbs quickly.
  • the adsorbent maintains its ability as an adsorbent continuously without any special regeneration treatment such as heat treatment.
  • This is a very advantageous feature compared to conventional adsorbents using activated carbon or zeolite that require regeneration treatment such as heat treatment as the adsorption proceeds.
  • the adsorbent of the present invention can be used permanently while maintaining its ability.
  • the use mode of the volatile organic compound adsorbent of the present invention includes an organic carboxylic acid metal complex.
  • the body molecular crystal preferably a single crystal, may be placed in a container equipped with air circulation holes and left indoors, or may be adsorbent components in compositions that generate organic solvent vapor, such as paints and building materials. You may mix as.
  • an adsorbent of the present invention filled in a breathable bag or the like may be embedded in the wall or under the floor.
  • the phrase “keep the volatile organic compound adsorbent in the air” is used in a sense encompassing both of these embodiments.
  • the volatile organic compound adsorbed by the volatile organic compound adsorbent of the present invention is an organic compound that is liquid at room temperature or an organic compound solution that is liquid at room temperature. Means that it emits in the air, and is not particularly limited as long as it is a volatile organic compound, but vapors of organic solvents and vapors of aldehydes such as formaldehyde are preferred.
  • the organic solvent is not particularly limited as long as it is an organic solvent, but aliphatic organic solvents such as alkanes such as hexane, heptane, and octane and derivatives thereof (halogenated compounds), benzene, toluene, xylene, etc.
  • Aromatic organic solvents can be mentioned as preferred examples. Since these organic solvents and aldehydes are part of the causative substances of sick house, the adsorbent of the present invention is also useful for preventing sick house.
  • Formaldehyde is a gas at room temperature, but concentrated aqueous solutions and formalin that are liquid at room temperature are widely used, and formaldehyde vaporizes at room temperature from these solutions. ⁇ ⁇ Included in “volatile organic compounds”.
  • the critical concentration varies depending on the type of organic carboxylic acid metal complex used and the type of organic solvent, and is usually about ImmHg to lOmmHg.
  • the critical concentration is the concentration of the organic solvent vapor in the air that the adsorbent of the present invention is in contact with, so when the adsorbent of the present invention is mixed with paint or building materials, or when it is used independently as an adsorbent.
  • an adsorbent is placed near the wall or floor where organic solvent vapor is generated, the concentration of the organic solvent vapor at that location will be maintained below the critical concentration, so air that is far away from the wall or floor will be maintained.
  • the concentration of the organic solvent vapor can be kept lower than the critical concentration.
  • the above-described organic carboxylic acid metal complex easily adsorbs hydrogen and easily desorbs it, and the hydrogen diffuses quickly and reaches an adsorption equilibrium state in a short time.
  • the crystal structure of the organic carboxylic acid metal complex has a stable hydrogen absorption. An adhesion structure is realized, and hydrogen aggregates are formed in a fine space in the crystal at a high density. For this reason, the organic carboxylic acid metal complex can be advantageously used as a hydrogen storage material.
  • the hydrogen storage material of the present invention can be used in the same manner as a hydrogen storage material having a conventional alloy strength.
  • the hydrogen storage material of the present invention is filled in an airtight container, the hydrogen gas is stored at a high pressure, and the hydrogen gas can be taken out and used when the hydrogen gas is used.
  • the extracted hydrogen gas can be used as fuel for a hydrogen engine.
  • metal atoms By adsorbing metal vapor to the crystal of the organic carboxylic acid metal complex described above, metal atoms can be arranged one-dimensionally one by one along the channel structure in the crystal. Such a line of metal atoms is the thinnest metal wire that can be considered in theory, and each metal atom is arranged within a distance where free electron flow occurs, so that a current can flow. Therefore, such metal wires can be used as the finest wiring, and are useful as fine wiring for quantum semiconductors and various nanotech devices that are currently under development.
  • the present invention further includes the above general formula [I] (M 1 and M 2 in the general formula [I], R la , R lb , R le and R ld , and!? 2 , R 4 and R 5 also have the same meaning as above, except that R 2 , R 4 and R 5 are hydrogen atoms at the same time).
  • R 4 and R 5 also have the same meaning as above, except that R 2 , R 4 and R 5 are hydrogen atoms at the same time).
  • These organic carboxylic acid metal complexes themselves are novel substances.
  • M 1 and M 2 in general formula [I], R la , R lb , R le and R ", and!? 2 The above explanations are applied as they are as explanations and preferred examples of R 4 and R 5 (where R 2 , Except when R 4 and R 5 are simultaneously hydrogen atoms).
  • the repeating number of the repeating unit represented by the general formula [I] is not particularly limited, but is usually 10 to 10 8 , preferably 10 2 to 10 7 .
  • the number of repeating units is as described above, usually, 107 to 1 (), preferably 8 X 10 7 to 10 about 9.
  • the present invention provides the above general formula [I] (M 1 and M 2 , R la , R lb , R le and R ld in the general formula [I], and R 2 , R 4 and R 5 are also defined in the same manner as above, and a single-crystal organic carboxylic acid metal complex having a long side length of L m or more is also provided.
  • This single crystal has a monoclinic crystal system with a space group of C2 / c, or a triclinic crystal system with a space group of P-1. Are preferred! / ⁇ (see examples below).
  • the organic carboxylic acid metal complex of the present invention forms a molecular crystal, and the molecular crystal has pores (channel structure) or regularly arranged voids extending one-dimensionally inside the crystal. Since gas molecules can be adsorbed and desorbed in the crystal internal space, the organic carboxylic acid metal complex of the present invention can be used as a gas storage agent.
  • the gas storage agent can be used for gas storage and separation / concentration.
  • the organic carboxylic acid metal complex of the present invention by enclosing gas molecules in the channel structure, the crystal structure changes, and the shape and size of the channel structure change. Therefore, various gas molecules can be optimally included, and the amount of gas stored per unit volume is large.
  • the single crystal of the organic carboxylic acid metal complex of the present invention is a porous body having a channel structure inside, it can be used as it is as a gas adsorption film.
  • This gas adsorption membrane can be used as a filter for separating and concentrating gases.
  • Vapor diffusion is achieved by holding a test tube containing an ethylene glycol solution of pyrazine carefully so as not to contact the reaction solution, sealing the whole system, and slowly dissolving pyrazine vapor into the reaction solution. It was done. Crystals grew in the interface between the two layers of Florina Toto Methanol. After one month, the target substance was isolated as a single crystal by filtration and then air-dried. Blue plate-like single crystal 360 mg (yield 60%). When calculated from the generated crystal size (about 10 7 per lcm of crystal), the number of repeating units was about 5 ⁇ 10 6 to 10 7 .
  • Example 2 Synthesis of rhodium benzoate ( ⁇ ) pyrazine adduct single crystal Rhodium (II) benzoate (20 mg, 3.50 mmol) was dissolved in 40 ml of acetonitrile, and poured into 5 ml of Fluorinert (trade name, manufactured by 3M, FC77) in a Teflon (registered trademark) container. In the state where the upper acetonitrile solution and the lower florinate solution are separated into two layers, the pyrazine, which has a vapor pressure suppressed by dissolving in ethylene glycol, is introduced into the solution by vapor diffusion in the same manner as in Example 1. And reacted slowly.
  • Fig. 1 shows a schematic diagram of a stereomicrograph of the giant single crystal obtained in Examples 1 and 2.
  • FIG. 1 The left side of FIG. 1 is a schematic diagram of a photograph of the single crystal obtained in Example 1, and the right side is a photograph of the single crystal obtained in Example 2.
  • FIG. 2 a schematic diagram of a stereoscopic microscope photograph of the giant single crystal obtained in Examples 1 and 2, and a plane index and a positional relationship between the crystal plane and the channel direction revealed by X-ray single crystal structural analysis are shown in FIG. Show.
  • FIG. 2 a) shows the result for the single crystal obtained in Example 1
  • b) shows the result for the single crystal obtained in Example 2.
  • the results of X-ray single crystal analysis are shown in Figs. 3 and 4, respectively.
  • FIG. 5 shows a schematic diagram (a) of FIG. 5) and a schematic diagram of an X-ray topography photograph (b) of FIG. 5) of a giant single crystal obtained in Example 1.
  • Copper (II) acetate monohydrate was 80mg (2.4x10- 4 mol) and ⁇ and blue solution 117.2mg benzoate (8.4 X 10- 4 mol) in methanol 80 ml.
  • pyrazine 8.0 mg (Example 3)
  • 2-methylvirazine 0.3 ml (Example 4)
  • 2,3-dimethylvirazine 0.3 ml (Example 5)
  • 2-ethylvirazine 0.3 ml (implemented)
  • Example 6 2,3-Jetylvirazine: 0.3 ml (Example 7) or 2-propylvirazine: 0.3 ml (Example 8) was added and allowed to react slowly at room temperature for 24 hours.
  • the number of repeating units represented by the general formula [I] was about 10 4 to 4 ⁇ 10 5 calculated from the size of the produced crystal (about 10 7 per lcm of crystal).
  • Elemental analysis results and X-ray structural analysis results are shown in Table 1 below.
  • Example 3 For the organic carboxylic acid metal complexes prepared in Example 3 and Example 4, the amount of vapor adsorbed when n-hexane or benzene was adsorbed and desorbed at 10 ° C or 20 ° C isotherm. It was measured.
  • Example 9 For the organic carboxylic acid metal complexes produced in Example 3, Example 9, Example 4 and Example 10, the amount of hydrogen adsorbed when hydrogen gas was adsorbed and desorbed at an isothermal temperature of 77 ° C. 7 measurements.
  • Example 9 The rhodium pyrazine benzoate single crystal produced in Example 9 (crystal size: 0.40 ⁇ 0.25 ⁇ 0.04 mm 3 ) was placed in a glass sealed container together with mercury and evacuated with an oil rotary pump. The vessel was heated to 150 ° C and the crystals were exposed to mercury vapor (vapor pressure 2.8mmHg). Seven days later, the mixture was cooled to room temperature and the crystals were taken out in air. The crystal remained in a single crystal state, and an inclusion crystal of mercury atoms was obtained. 100% recovery
  • FIG. 11 and b A schematic diagram of a stereoscopic microscope photograph of the single crystal produced in Example 10 and Example 4, and a schematic diagram showing a plane index and a positional relationship between the crystal plane and the channel direction clarified by X-ray single crystal structural analysis are shown. 11 and b).
  • a schematic diagram of a stereoscopic microscope photograph of the single crystal produced in Example 11 and Example 5 and a schematic diagram showing a plane index and a positional relationship between the crystal plane and the channel direction revealed by X-ray single crystal structural analysis
  • thick arrows indicate the channel structure.
  • FIG. 13 shows a schematic cross-sectional view of the 2-methylbiazine benzoate complex before and after adsorption of carbon dioxide. Similar results were obtained regardless of whether the metal was copper (Example 4) or rhodium (Example 10).
  • Figure 14 shows the changes in the skeletal structure before and after adsorption of carbon dioxide.
  • FIG. 15 and FIG. 16 show changes in the crystal cross section and the skeleton structure of the benzoic acid pyrazine complex of Example 3 and Example 9.
  • the structure before adsorption is a zigzag one-dimensional chain accumulation structure bent by steric hindrance of the methyl group of the 2-methylpyrazine ring.
  • the molecular chain structure changes to a straight one-dimensional chain, and a one-dimensional channel is generated to include CO.
  • the change in solid structure can be controlled by the introduction of substituents.
  • Table 7 shows changes in V / Z and porosity before and after CO inclusion at 90K.
  • Example 10 2 cell cell Complex of Example 10 (2a): 813.1 ⁇ 893.3A 3 (9.0% increase), complex of Example 4 (2b): 812.9 ⁇ 90 0.1A 3 (9.7% increase), which contains CO molecules Increase in cell volume is seen by contact
  • both 2a and 2b increased more than twice, and the volume of the gas adsorbing space changes significantly due to the change in the solid structure.
  • Example 11 For the complex produced in Example 11 1, the state of the crystal cross section before and after the adsorption of carbon dioxide and carbon dioxide was examined by X-ray analysis in the same manner as in Example 19. The result is schematically shown in FIG.
  • the CO array state in the channel is different from the conventional one-dimensional array, and it produces tetramers.
  • each complex is reversible in adsorption and desorption, and exhibits specific gas adsorption / desorption characteristics depending on the crystal structure and crystal structure change. It was shown that it can be used as a material.
  • Example 22 Oxygen gas adsorption 'desorption'
  • the complex produced in Example 10 the complex produced in Example 4, the complex produced in Example 11 and the complex produced in Example 5, the adsorption amount of oxygen gas at isothermal conditions (77K) was measured. .
  • the results are shown in Fig. 10 a), b), c) and d), respectively.
  • black circles indicate the amount of adsorption during the adsorption process
  • white circles indicate the amount of adsorption during the desorption process.
  • Example 10 For the complex produced in Example 10, the complex produced in Example 4, the complex produced in Example 11 and the complex produced in Example 5, the adsorption amount of nitrogen gas under isothermal conditions (77K) was measured. . The results are shown in Fig. 21 a), b), c) and d), respectively. In each figure, black circles indicate the amount of adsorption during the adsorption process, and white circles indicate the amount of adsorption during the desorption process.

Abstract

各種ガスや有機溶剤の蒸気の吸着剤、水素吸蔵材等として有用な、有機カルボン酸金属錯体のような錯体の巨大な単結晶及びその製造方法が開示されている。金属塩と共役系を有する有機カルボン酸を含む溶液、又は共役系を有する有機カルボン酸の金属塩の溶液を上層とし、該溶液の溶媒と混じり合わない溶媒を下層として2層を形成し、この状態で前記上層の溶液にピラジン又は置換ピラジンの溶液からのピラジン又は置換ピラジン蒸気を導入して反応させ、前記2層の界面に前記有機カルボン酸金属錯体の単結晶を生成させることにより、有機カルボン酸金属錯体の、長辺が0.8mm以上の巨大な単結晶を成長させる。

Description

明 細 書
単結晶状有機カルボン酸金属錯体、その製造方法及びその用途 技術分野
[0001] 本発明は、単結晶状有機カルボン酸金属錯体、その製造方法及びその用途に関 する。
背景技術
[0002] 特許文献 1には、安息香酸と、金属と、該金属に 2座配位可能な有機配位子から成 るカルボン酸金属錯体が記載されており、該錯体力 Sメタンガスの吸蔵材として有用な ことが記載されている。また、非特許文献 1及び 2には、安息香酸と、ロジウム (非特許 文献 1)又は銅 (非特許文献 2)と、ピラジン力 成る有機金属錯体が一次元的につな 力つた単結晶が記載されており、該金属錯体がゲスト分子である二酸ィ匕炭素を吸着 及び脱着する際に結晶構造が変化することも記載されている。
[0003] 一方、従来より、ベンゼンやトルエン等の有機溶剤の蒸気を吸着除去するための吸 着剤としては活性炭ゃゼオライト等が用いられている (特許文献 2及び 3)。また、水 素吸蔵材としては、合金やその焼結体が用いられている(特許文献 4及び 5)。
[0004] 特許文献 1:特開 2000-309592号公報
特許文献 2:特開 2004-255336号公報
特許文献 3:特開 2004-261780号公報
特許文献 4:特開 2003-1389号公報
特許文献 5:特開 2003-3203号公報
非特許文献 l : Satoshi Takamizawa et al, Angew. Chem. Int. Ed. 2003, 42, 4331-43 34
非特許文献 2 : Satoshi Takamizawa et al., Inorganic Chemistry Communications, Vol ume 6, Issue 10, October 2003, pp.1326— 1328
発明の開示
発明が解決しょうとする課題
[0005] 本発明の 1つの目的は、各種ガスや有機溶剤の蒸気の吸着剤、水素吸蔵材等とし て有用な、非特許文献 1に記載されて ヽる有機カルボン酸金属錯体のような錯体の 巨大な単結晶及びその製造方法を提供することである。
[0006] 本発明の他の目的は、ベンゼンやトルエン等の有機溶剤の蒸気およびホルムアル デヒドなどの有害有機化合物を容易に吸着、脱離し、特に再生処理を行なわなくても 持続的に使用することができる揮発性有機化合物の吸着剤を提供することである。ま た、本発明の目的は、水素を容易に吸着、脱離し、単位体積当りの水素吸蔵量が大 きな水素吸蔵材を提供することである。
[0007] さらに本発明の他の目的は、上記公知文献に記載された有機金属錯体とは異なる 新規な化学構造及び物性を有し、種々のガスの吸着及び脱着に有用な新規な有機 金属錯体及びそれから成るガス吸蔵剤を提供することである。
課題を解決するための手段
[0008] 本願発明者は、鋭意研究の結果、金属塩と共役系を有する有機カルボン酸を含む 溶液、又は共役系を有する有機カルボン酸の金属塩の溶液を上層とし、該溶液の溶 媒と混じり合わない溶媒を下層として 2層を形成し、この状態で前記上層の溶液にピ ラジン又は置換ビラジンの溶液力 のピラジン又は置換ピラジン蒸気を導入して反応 させ、前記 2層の界面に前記有機カルボン酸金属錯体の単結晶を生成させること〖こ より、有機カルボン酸金属錯体の巨大な単結晶を成長させることが可能であることを 見出し、本願第 1の発明を完成した。
[0009] すなわち、本発明は、一般式 [I]
[0010] [化 1]
Figure imgf000004_0001
[ I ]
(ただし、 M1及び M2は互いに独立して 2価をとり得る金属、 Rla、 Rlb、 Rlc及び Rldは互い に独立して、共役系を含む有機基、 R2、 R4及び R5は互いに独立して水素原子、炭 素数 1〜4のアルキル基又は炭素数 1〜4のァルケ-ル基を示す)
[0012] で示される繰返し単位カゝら構成された有機カルボン酸金属錯体の巨大単結晶の製 造方法であって、前記 2価をとり得る金属の塩と共役系を有する有機カルボン酸を含 む溶液、又は共役系を有する有機カルボン酸の前記 2価をとり得る金属塩の溶液を 上層とし、該溶液の溶媒と混じり合わない溶媒を下層として 2層を形成し、この状態で 前記上層の溶液にピラジン又は置換ビラジンの溶液力 のピラジン又は置換ビラジン 蒸気を導入して反応させ、前記 2層の界面に前記有機カルボン酸金属錯体の単結 晶を生成させることを含む、前記有機カルボン酸金属錯体の単結晶の製造方法を提 供する。また、本発明は、上記一般式 [I]で示される繰返し単位から構成され、長辺の 長さが 0.8mm以上である有機カルボン酸金属錯体単結晶を提供する。
[0013] また、本願発明者は、鋭意研究の結果、特定の構造を有する有機カルボン酸金属 錯体が、有機溶剤の蒸気を容易に吸着し、特に再生処理を行なわなくても容易に脱 離することを見出し、また、該有機カルボン酸金属錯体が、水素を容易に吸着、脱離 し、単位体積当りの水素吸蔵量も大きいことを見出し、本願第 2の発明を完成した。
[0014] すなわち、本発明は、上記一般式 [I] (一般式 [I]中の M1及び M2、 Rla、 Rlb、 Rle及び Rld 、並びに R2、 R3、 R4及び R5も上記と同義)で示される繰返し単位カゝら構成された有機力 ルボン酸金属錯体から成る揮発性有機化合物吸着剤を提供する。さらに、本発明は 、上記本発明の有機カルボン酸金属錯体の、揮発性有機化合物吸着剤の製造のた めの使用を提供する。さら〖こ、本発明は、上記本発明の有機カルボン酸金属錯体を 揮発性有機化合物の蒸気と接触させることを含む、揮発性有機化合物の吸着方法 を提供する。
[0015] また、本発明は、前記有機カルボン酸金属錯体から成る、空気中の揮発性有機化 合物の濃度を所定値以下に保持する揮発性有機化合物濃度保持剤を提供する。さ らに、本発明は、上記本発明の有機カルボン酸金属錯体の、揮発性有機化合物濃 度維持剤の製造のための使用を提供する。さらに、本発明は、前記本発明の揮発性 有機化合物吸着剤を空気中に置いておくことにより該空気中の揮発性有機化合物 の濃度を所定値以下に保持する方法を提供する。さらに、本発明は、前記有機カル ボン酸金属錯体をから成る水素吸蔵材を提供する。さら〖こ、本発明は、上記本発明 の有機カルボン酸金属錯体の、水素吸蔵材の製造のための使用を提供する。さらに 本発明は、上記本発明の有機カルボン酸金属錯体と水素ガスとを接触させることを 含む、水素ガスの吸蔵方法を提供する。さらに、本発明は、有機カルボン酸金属錯 体に金属蒸気を吸着させることにより金属原子を 1原子ずつ一次元的に配列させる 方法及び該方法により製造された、チャンネル構造内にゲストとしての金属原子が 1 原子ずつ一次元的に配列された有機カルボン酸金属錯体を提供する。
[0016] さらに、本願発明者は、鋭意研究の結果、カルボン酸と、 2価をとり得る金属と、ビラ ジンとから構成される有機カルボン酸金属錯体にお 、て、ピラジン環上に特定の置 換基を導入することにより無置換の場合に比べて結晶構造や物性を有意に変化させ ることができ、種々のガスに対する吸着特性が異なる多様な有機カルボン酸金属錯 体及びガス吸蔵剤を提供できることを見出し、本願第 3の発明を完成した。
[0017] すなわち、本発明は、上記一般式 [I] (一般式 [I]中の M1及び M2、 Rla、 Rlb、 Rle及び R1 d、並びに R2
Figure imgf000006_0001
R4及び R5も上記と同義、ただし、 R2、 R4及び R5が同時に水素原 子である場合を除く)で示される繰返し単位カゝら構成された有機カルボン酸金属錯体 を提供する。
[0018] また、本発明は、上記本発明の有機カルボン酸金属錯体から成るガス吸蔵剤を提 供する。さらに本発明は、上記カルボン酸金属錯体の単結晶から成るガス吸着透過 膜を提供する。
[0019] また、本発明は、上記一般式 [I] (一般式 [I]中の M1及び M2、 Rla、 Rlb、 及び Rld、並 びに R2
Figure imgf000006_0002
R4及び R5も上記と同義)で示される繰返し単位カゝら構成され、長辺の長さ カ^ m以上である単結晶状有機カルボン酸金属錯体を提供する。
発明の効果
[0020] 本願第 1の発明により、各種ガスや有機溶剤の蒸気の吸着剤、水素吸蔵材等とし て有用な有機カルボン酸金属錯体の巨大単結晶及びその製造方法が初めて提供さ れた。有機カルボン酸金属錯体を各種ガスや有機溶剤の蒸気の吸着剤、水素吸蔵 材等として用いる場合、巨大な単結晶を用いれば、小さな単結晶を多数用いる場合 に比べて、単位見かけ体積当りの吸着量を大きくすることができ有利である。また、巨 大な単結晶は、そのままで各種ガスや有機溶剤の蒸気の吸着フィルターとしても利 用できる。
[0021] 本願第 2の発明により、特定の構造を有する有機カルボン酸金属錯体から成る新 規な揮発性有機化合物蒸気吸着剤及び水素吸蔵材が提供された。本発明の有機 溶剤蒸気吸着剤では、有機溶剤蒸気の濃度が所定値以上に高まると、有機カルボ ン酸金属錯体の結晶構造が変化して吸着量が急激に大きくなるので、空気中の有 機溶剤蒸気の濃度を、この吸着量が急激に大きくなる濃度 (以下、「臨界濃度」)以下 に維持することができる。さらに、有機溶剤蒸気の吸着と脱離は迅速でかつ可逆的で あるので、換気等により空気中の有機溶剤蒸気濃度が臨界濃度未満に下がった場 合には、吸着剤に吸着された有機溶剤蒸気が速やかに脱離する。このため、吸着剤 は加熱処理等の特別の再生処理を行なうことなく持続的に吸着剤としての能力を維 持する。また、本発明の水素吸蔵材は、水素を容易に吸着、脱離し、単位体積当りの 水素吸蔵量も大きいので、水素の貯蔵に好適である。
[0022] さらに、本願第 3の発明により、新規な化学構造を有する有機カルボン酸金属錯体 及びそれを用いたガス吸蔵剤が提供された。本発明によれば、有機カルボン酸金属 錯体のピラジン環に特定の置換基を結合させることにより、結晶構造が異なり、その 結果、種々のガスに対する吸着及び脱着特性が異なる多様な有機カルボン酸金属 錯体及びガス吸蔵剤が提供される。
図面の簡単な説明
[0023] [図 1]実施例 1及び 2で得られた巨大単結晶の実体顕微鏡写真の模式図である。
[図 2]実施例 1及び 2で得られた巨大単結晶の実体顕微鏡写真の模式図、並びに X 線単結晶構造解析により明らかになった面指数及び結晶面とチャンネル方向の位置 関係を模式的に示す図である。
[図 3]実施例 1で得られた巨大単結晶の X線単結晶解析データを示す。
[図 4]実施例 2で得られた巨大単結晶の X線単結晶解析データを示す。
[図 5]実施例 1で得られた巨大単結晶の実体顕微鏡写真 (a))と X線トポグラフィー写真
(b》を示す。
[図 6]本発明の実施例 3で製造した有機カルボン酸金属錯体の等温蒸気吸着曲線を 示す。
[図 7]本発明の実施例 9で製造した有機カルボン酸金属錯体の等温蒸気吸着曲線を 示す。
圆 8]本発明の実施例 3、実施例 9、実施例 4及び実施例 10で製造した有機カルボン 酸金属錯体に水素ガスを吸蔵させた際の水素吸着曲線を示す。
圆 9]実施例 9で製造した安息香酸ロジウムピラジンに水素を吸着させた状態の結晶 体の結晶構造を模式的に示す図である。
圆 10]実施例 9で製造した安息香酸ロジウムピラジン単結晶に水銀蒸気を吸着させ た状態の結晶構造を模式的に示す図である。
圆 11]本発明の実施例 10(a))及び実施例 4(b))で製造した錯体単結晶の実体顕微鏡 写真の模式図、並びに X線単結晶構造解析により明らかになった面指数及び結晶 面とチャンネル方向の位置関係を示す模式図である。
圆 12]本発明の実施例 11(a))及び実施例 5(b))で製造した錯体単結晶の実体顕微鏡 写真の模式図、並びに X線単結晶構造解析により明らかになった面指数及び結晶 面とチャンネル方向の位置関係を示す模式図である。
圆 13]本発明の実施例で製造した安息香酸 2-メチルビラジン錯体単結晶の二酸ィ匕 炭素吸着前後における結晶断面図を模式的に示す図である。
圆 14]本発明の実施例で製造した安息香酸 2-メチルビラジン錯体単結晶の二酸ィ匕 炭素吸着前後における骨格構造の変化を模式的に示す図である。
圆 15]本発明の実施例で製造した安息香酸ピラジン錯体単結晶の二酸ィ匕炭素吸着 前後における結晶断面図を模式的に示す図である。
圆 16]本発明の実施例で製造した安息香酸ピラジン錯体単結晶の二酸ィ匕炭素吸着 前後における骨格構造の変化を模式的に示す図である。
圆 17]本発明の実施例 11で製造した錯体について、二酸化炭素を吸着させる前後 の結晶断面を模式的に示す図である。
圆 18]本発明の実施例 10で製造した錯体について、二酸化炭素の吸着量を等温下 又は等圧下で測定した結果を示す図である。
圆 19]本発明の実施例 4で製造した錯体について、二酸化炭素の吸着量を等温下 又は等圧下で測定した結果を示す図である。
[図 20]本発明の実施例 10で製造した錯体 (a))、実施例 4で製造した錯体 (b》、実施例 11で製造した錯体 (c》及び実施例 5で製造した錯体 (d))につ ヽて、等温下 (77K)にお ける酸素ガスの吸着量を測定した結果を示す図である。
[図 21]本発明の実施例 10で製造した錯体 (a))、実施例 4で製造した錯体 (b》、実施例 11で製造した錯体 (c》及び実施例 5で製造した錯体 (d))につ ヽて、等温下 (77K)にお ける窒素ガスの吸着量を測定した結果を示す図である。
[図 22]本発明の実施例 10で製造した錯体 (a))及び実施例 4で製造した錯体 (b))につ V、て、等温下 (20°C)における一酸ィ匕窒素ガスの吸着量を測定した結果を示す図であ る。
発明を実施するための最良の形態
[0024] 上記の通り、本願第 1の発明に用いられる有機カルボン酸金属錯体は、上記一般 式 [I]で表される構造を有する繰返し単位力 構成される。なお、一般式 [I]中、 M1と O の間、 M2と Oの間、 M1と M2の間及び M2と Nの間は配位結合である。一般式 [I]に示さ れる繰返し単位の繰返し数は、特に限定されないが、通常、 107〜101Q、好ましくは 8 X 107〜109程度である。なお、一般式 [I]から明らかなように、一般式 [I]中、 M1に結合し ている 4つの酸素原子のうち、右上の酸素原子は、 Rlbが結合している炭素原子と結 合しており、右下の酸素原子は Rleが結合している炭素原子と結合している。同様に、 M2に結合している 4つの酸素原子のうち、左上の酸素原子は、 Rlaが結合している炭 素原子と結合しており、左下の酸素原子は Rldが結合している炭素原子と結合してい る。
[0025] 一般式 [I]中、 M1及び M2は、互いに独立して、 2価をとり得る金属原子であり、遷移 金属でも典型金属でもよい。 Mの好ましい例として、マンガン、鉄、コノ レト、ニッケル 、銅、亜鉛、ルテニウム、ロジウム、クロム、モリブデン、ノ《ラジウム及びタングステンを 挙げることができ、これらの中でも特に銅及びロジウムが好ましい。なお、 M1及び M2 は、同じ種類の金属原子であることが好ましい。
[0026] 一般式 [I]中、 Rla、 Rlb、!^及び Rld (以下、 Rla、 Rlb、!^及び Rldを総称して「 と記載 することがある)は、互いに独立して、共役系を含む有機基、すなわち、例えばべンゼ ン環、ナフタレン環、アントラセン環、これらのヘテロ環等を含む有機基であり、置換さ れていてもよいフエニル基が好ましぐ特に無置換のフエニル基が好ましい。フエニル 基が置換されている場合、置換基の例としては、炭素数 1〜4のアルキル基、炭素数 1〜4のハロアルキル基、水酸基、アミノ基、シァノ基、炭素数 1〜4のものアルキルァ ミノ基、炭素数 1〜4のアルコキシル基、ハロゲン原子及び置換されていてもよいフエ -ル基 (置換基は上記と同様 (置換フ 二ル基は除く) )を例示することができ、置換 基の数は 1〜5個である。なお、本明細書において、「アルキル基」は、特に断りがな い限り直鎖アルキル基及び分枝アルキル基の両者を包含する。「ァルケ-ル基」、「 アルコキシル基」についても同様である。 Rla、 Rlb、 Rle及び Rldは、同じ種類の有機基 であることが好ましい。
[0027] 一般式 [I]中、 R2、 R3、 R4及び R5は互いに独立して水素原子、炭素数 1〜4のアルキ ル基又は炭素数 1〜4のァルケ-ル基を表す。 R2、 R3、 R4及び R5の好ましい例として は、水素原子、メチル基、ェチル基、プロピル基、ァリル基等を挙げることができ、ま た、 R2、 R3、 R4及び R5のうち 2個力 4個が水素原子であるものが好ましい。
[0028] 上記一般式 [I]で表される繰返し単位は、一次元的につながり、それらが集まって分 子結晶を構成する。その際、 R1の共役系が接近するので π— π結合が生じ、結晶造 が安定化される。
[0029] 前記有機カルボン酸金属錯体の巨大な単結晶は、前記 2価をとり得る金属の塩 (Μ1 と Μ2が異なる場合は 2種類の金属塩、以下同様)と共役系を有する有機カルボン酸( Ri-COO R1は上記と同義、 Rla、 Rlb、 Rle及び Rldが複数種類の有機基である場合に は複数種類の有機カルボン酸、以下同様))を含む溶液、又は共役系を有する有機 カルボン酸 (Ri-COOH (R1は上記と同義) )の前記 2価をとり得る金属塩の溶液を上層 とし、該溶液の溶媒と混じり合わない溶媒を下層として 2層を形成し、これにピラジン 又は置換ビラジンの溶液からのピラジン又は置換ピラジン蒸気を導入して反応させ、 前記 2層の界面に前記有機カルボン酸金属錯体の単結晶を生成させることにより製 造することができる。
[0030] ここで、前記金属塩としては、酢酸塩、ギ酸塩、硫酸塩、硝酸塩及び炭酸塩が好ま しぐ特に酢酸塩が好ましい。また、該金属塩及び前記有機カルボン酸の溶液又は 前記有機カルボン酸の前記金属塩の溶液の溶媒としては、メタノール、エタノール、 プロパノール、ァセトニトリル、ジメチルホルムアミド、ニトロメタン、テトラヒドロフラン、 酢酸メチル等が好まし ヽ。該溶液中の前記金属塩の濃度 (複数種類の金属塩を含 む場合はそれらの濃度の合計)は、特に限定されないが、通常、 0.00001〜0.5molじ1 程度、好ましくは 0.001〜0.1molじ1程度であり、また、前記有機カルボン酸の濃度 (複 数種類の有機カルボン酸を含む場合にはそれらの濃度の合計)は、特に限定されな いが、通常、 0.0001〜lmolじ1程度、好ましくは 0.004〜0.4molじ1程度である。有機力 ルボン酸の金属塩を用いる場合は、その濃度は、特に限定されないが、通常、 0.000 01〜lmolじ1程度、好ましくは 0.001〜0.1molじ1程度である。
また、前記下層を構成する溶媒としては、上層の溶液中の溶媒と混じり合わず、か つ、該溶媒よりも密度が大きい溶媒 (好ましくは密度が 1.5以上)であって、前記各反 応物質や生成された錯体と反応しない溶媒であれば何ら限定されない。なお、ここで 「混じり合わない」とは、数十日に亘る結晶成長反応後においても、 2層の界面が明 瞭に存在して 、ることを意味する。上層の溶液中の溶媒カ^タノールゃァセトニトリル である場合、下層を形成する好ましい溶媒としては、フッ素系溶媒を挙げることができ る。フッ素系溶媒としては、例えば、ノ ーフルォロデカヒドロフエナンスレン、パーフル ォロデカリン、パーフルオロー 1ーメチルデカリン、パーフルォロジメチルナフタレン、 パーフルオロー 1, 3—ジメチルシクロへキサン、 2, 5—ジクロ口べンゾトリフロライド、 クロ口ペンタフルォロベンゼン、 1, 1, 2—トリクロ口一 1, 2, 2—トリフルォロェタン(例 えば、旭硝子株式会社製の商品名「フロンソルブ」)、へキサフルォロベンゼン、 1. 3 ージトリフルォロメチルベンゼン、 2, 2, 2—トリフルォロエタノール、トリフルォロメチ ルベンゼン、住友スリーェム株式会社製の商品名「PF5052」、パーフルオロー 2—ノ ルマルプチルフラン系溶媒 (例えば、住友スリーェム株式会社製の商品名「フロリナ ート FC75」)、トリスパーフルォロ n—ブチルァミン系溶媒(例えば、住友スリーェム株 式会社製の商品名「フロリナート FC43」)、同じくトリスパーフルォロアルキルアミン系 溶媒 (例えば、住友スリーェム株式会社製の商品名「フロリナート FC3283」、同「フロ リナート FC40」および同「フロリナート FC70」 )、 日本モンテジソン株式会社製のガル デン D02 (商品名)並びにクロロフルォロカーボン (例えば、旭硝子株式会社製の商 品名「フロン 113」 )などを挙げることができる。
[0032] 前記上層を形成している溶液に、ピラジン又は置換ビラジンの溶液力ものビラジン 又は置換ピラジン蒸気を導入して反応させる。ピラジン又は置換ピラジンをそのまま 用いるのではなぐ溶媒に溶解して溶液にし、該溶液力 発生するピラジン又は置換 ピラジン蒸気を反応に供する。そうすることによって、ピラジン又は置換ピラジンの蒸 気圧を下げ、単位時間当たりに導入されるピラジン又は置換ピラジンの量を少なくす ることができる。なお、導入は、単位時間当たりに導入されるピラジン又は置換ピラジ ンの量を少なくするために、反応温度における自然拡散により導入することが好まし い。ピラジン又は置換ビラジンの溶液の溶媒としてはエチレングリコール、キシレン等 の蒸気圧の低い有機溶媒が好ましい。また、溶液中のピラジン又は置換ビラジンの 濃度は、特に限定されないが、 0.00001〜0.01molじ1程度が好ましぐさらに好ましく は 0.0001〜0.01molじ1程度である。
[0033] 反応温度は、特に限定されないが、 10°C〜25°C程度が好ましぐ反応時間は、 15
日〜 2ヶ月程度が好ましい。また、反応容器は何ら限定されるものではないが、生成 した単結晶が容器の壁面に付着しないように、表面にテフロン (登録商標)加工等の 付着防止加工を施した容器を用いることが好ま 、。
[0034] 上記した方法により、上記有機カルボン酸金属錯体の単結晶力 2層の界面にお いて生成され、成長する。単結晶の大きさは特に限定されないが、長辺が 0.8mm以 上のものが好ましぐ下記実施例では、長辺が 5mmのものが得られている。反応時間 をさらに長くすれば、 10mm程度のものが得られる。なお、ここで「長辺」は、結晶を構 成する最も広い面である多角形のうち、最も長い辺を意味する。なお、長辺の長さが 0.8mm以上の、上記一般式 [I]で表される有機カルボン酸金属錯体は本願よりも前に は知られておらず、このような巨大単結晶はそれ自体が新規である。したがって、本 発明は、長辺の長さが 0.8mm以上である、上記一般式 [I]で表される有機カルボン酸 金属錯体単結晶をも提供するものである。
[0035] 本発明の方法により得られる巨大単結晶は、通常の大きさの単結晶と同様、各種ガ スゃ有機溶剤の蒸気の吸着剤、水素吸蔵材等として利用できる。
[0036] 上記の通り、本願第 2の発明は、上記一般式 [I] (一般式 [I]中の M1及び M2、 Rla、 Rlb 、 Rlc及び Rld、並びに R2
Figure imgf000013_0001
R4及び R5も上記と同義)で示される繰返し単位カゝら構成 された有機カルボン酸金属錯体から成る揮発性有機化合物吸着剤を提供する。一 般式 [I]中の M1及び M2、 Rla、 Rlb、 Rle及び Rld、並びに!?2
Figure imgf000013_0002
R4及び R5についての説 明や好ましい例としては上記の説明がそのまま当てはまる。一般式 [I]に示される繰返 し単位の繰返し数は、特に限定されないが、通常、 10〜108、好ましくは 102〜107であ る。もっとも、一般式 D]で表される有機カルボン酸金属錯体が、上記した本願第 1の 発明の方法により製造された巨大単結晶の形態にある場合には、繰返し単位数は、 上記の通り、通常、 107〜10ω、好ましくは 8 X 107〜109程度である。
[0037] 上記一般式 [I]で表される繰返し単位は、一次元的につながり、それらが集まって分 子結晶を構成する。その際、 R1の共役系が接近するので π— π結合が生じ、結晶構 造が安定化される。分子結晶は、単結晶であることが好ましい。単結晶であれば、単 位体積当りの有機溶剤蒸気又は水素吸着量を大きくすることができるのみならず、物 性の均一化を図ることができ、所定の物性を有する錯体を再現性良く製造できるとい う利点を有する。さらに、上記した本願第 1の発明の方法により、長辺の長さが 0.8mm 以上の巨大な単結晶をも製造することができ、このような巨大単結晶を用いると、単 位見かけ体積当りの蒸気吸着量や水素吸蔵量をさらに大きくすることができるので有 利である。
[0038] 上記した有機カルボン酸金属錯体は、金属塩 (M1と M2が異なる場合は 2種類の金 属塩、以下同様)と、有機カルボン酸 (Ri-COO R1は上記と同義、 Rla、 Rlb、 Rle及び Rldが複数種類の有機基である場合には複数種類の有機カルボン酸、以下同様) )と 、置換ピラジンとを溶媒中でゆっくり反応させることにより製造することができ、この方 法により本発明の有機カルボン酸金属錯体の単結晶を製造することができる。あるい は、有機カルボン酸 (Ri-COOH (R1は上記と同義))の金属塩を溶媒中で置換ピラジ ンと反応させることによつても製造することができる。溶媒としては、メタノール及びァ セトニトリルが好ましい。また、金属塩としては、酢酸塩、ギ酸塩、硫酸塩、硝酸塩及 び炭酸塩が好ましぐ特に酢酸塩が好ましい。反応温度は、特に限定されず、 0°C〜 70°C程度で可能である力 室温において良好な結果が得られる。また、反応時間は 、特に限定されないが、通常、 3時間〜 1週間程度で良好な結果が得られる。反応さ せる金属塩と有機カルボン酸の比率は、特に限定されないが、モル比で通常、 1 : 2 〜1 : 8程度、金属塩と置換ビラジンの比率は、モル比で通常、 1:0.5〜1:10程度であ る。なお、製造方法の好ましい例は、下記実施例に詳細に記載されている。
[0039] また、上記した本願第 1の発明の方法により、上記一般式 [I]で表される繰返し単位 力も構成される巨大単結晶を製造することができ、このような巨大単結晶は、本願第 2 の発明の用途、すなわち、揮発性有機化合物吸着剤や水素吸蔵材として好ましく用 いることがでさる。
[0040] 前記有機カルボン酸金属錯体は、分子結晶を形成し、該分子結晶には、結晶内部 に一次元的に延びる空孔 (チャンネル構造)もしくは規則配列した空隙が存在する。 この結晶内部空間にゲストとして気体を吸着及び脱着することができる。本発明の揮 発性有機化合物吸着剤は、上記した有機カルボン酸金属錯体から成る。下記実施 例において具体的に示されるように、本発明の揮発性有機化合物吸着剤では、有機 溶剤蒸気の濃度が特定値以上に高まると、有機カルボン酸金属錯体の結晶構造が 変化して吸着量が急激に大きくなる。このため、空気中の有機溶剤蒸気の濃度を、こ の吸着量が急激に大きくなる濃度(臨界濃度)以下に維持することができる。すなわ ち、本発明の揮発性有機化合物吸着剤を空気中に置いておくことにより、空気中の 有機溶剤蒸気濃度を臨界濃度以下に維持することができる。すなわち、本発明の揮 発性有機化合物吸着剤は、有機溶剤蒸気濃度維持剤として使用することができる。 さらに、有機溶剤蒸気の吸着と脱離は迅速でかつ可逆的であるので、換気等により 空気中の有機溶剤蒸気濃度が臨界濃度未満に下がった場合には、吸着剤に吸着さ れた有機溶剤蒸気が速やかに脱離する。このため、吸着剤は加熱処理等の特別の 再生処理を行なうことなく持続的に吸着剤としての能力を維持する。これは、吸着が 進むと加熱処理などの再生処理が必要となる活性炭ゃゼオライト等を用いる従来の 吸着剤と比較して非常に有利な特徴である。さらに、臨界濃度未満では有機溶剤蒸 気の吸着はほとんど起きないので、有機溶剤蒸気の蓄積による吸着能力の劣化がな い。このため、本発明の吸着剤は、その能力を維持したまま恒久的に使用することが できる。
[0041] 本発明の揮発性有機化合物吸着剤の使用態様としては、有機カルボン酸金属錯 体の分子結晶、好ましくは単結晶を、空気の流通孔を備えた容器に入れて室内等に 放置してもよいし、塗料や建材等の、有機溶剤蒸気を発生する組成物に吸着剤成分 として混入してもよい。あるいは、本発明の吸着剤を通気性のある袋等に充填したも のを壁の内部や床下等に埋め込んでもよい。本明細書及び特許請求の範囲におい て、「揮発性有機化合物吸着剤を空気中に置いておく」という文言は、これらのいず れの態様をも包含する意味で用いて 、る。
[0042] 本発明の揮発性有機化合物吸着剤により吸着される揮発性有機化合物は、常温 で液体の有機化合物又は常温で液体の有機化合物溶液から、常温にお!、てその有 機化合物の蒸気が空気中に発散するものを意味し、揮発性の有機化合物であれば 特に限定されな 、が、有機溶剤の蒸気及びホルムアルデヒド等のアルデヒド類の蒸 気が好ましい。ここで、有機溶剤は、有機溶剤であれば特に限定されないが、へキサ ン、ヘプタン、オクタン等のアルカンやその誘導体 (ハロゲンィ匕物等)の脂肪族の有 機溶剤並びにベンゼン、トルエン、キシレン等の芳香族の有機溶剤を好ましい例とし て挙げることができる。これらの有機溶剤やアルデヒド類は、シックハウスの原因物質 の一部であるから、本発明の吸着剤は、シックハウスの防止にも有用である。なお、ホ ルムアルデヒドは、常温で気体であるが、常温で液体の濃厚水溶液やホルマリンが 広く用いられており、ホルムアルデヒドはこれらの溶液から常温において蒸気となって 気化するので、本発明で!/ヽぅ「揮発性有機化合物」に包含される。
[0043] 臨界濃度は、用いる有機カルボン酸金属錯体の種類や有機溶剤の種類により異な る力 通常、 ImmHgないし lOmmHg程度である。なお、臨界濃度は、本発明の吸着剤 が接する空気中の有機溶剤蒸気の濃度であるから、本発明の吸着剤を塗料や建材 に混入させた場合や、あるいは独立して吸着剤として用いる場合でも有機溶剤蒸気 を発生する壁や床の近傍に吸着剤を置いた場合には、その場所における有機溶剤 蒸気の濃度が臨界濃度以下に維持されるので、壁や床から離れた位置にある空気 中の有機溶剤蒸気の濃度は臨界濃度よりも低く抑えることが可能である。
[0044] また、上記した有機カルボン酸金属錯体は、水素を容易に吸着し、かつ、容易に脱 離し、しかも水素の拡散が早く短時間で吸着平衡状態に達する。下記実施例におい て具体的に示されるように、有機カルボン酸金属錯体の結晶構造が水素の安定な吸 着構造を実現し、高密度に水素会合体を結晶中の微細空間に生成する。このため、 前記有機カルボン酸金属錯体は、水素の吸蔵材として有利に用いることができる。
[0045] 本発明の水素吸蔵材は、従来の合金力 成る水素吸蔵材と同様に使用することが できる。例えば、密閉容器内に本発明の水素吸蔵材を充填し、高圧で水素ガスを吸 蔵させ、水素ガスの使用時に該容器力 水素ガスを取り出して使用することができる 。取り出した水素ガスは、水素エンジンの燃料等として利用することができる。
[0046] 上記した有機カルボン酸金属錯体の結晶に、金属蒸気を吸着させることにより、結 晶内のチャンネル構造に沿って金属原子を 1原子ずつ一次元的に配列させることが できる。このような金属原子の線は、理論上考えられる最も細い金属線であり、各金 属原子は、自由電子の流通が起きる距離内に配列されるので電流を流すことができ る。したがって、このような金属線は、最も微細な配線として利用することができ、現在 開発が進んでいる量子半導体や各種ナノテクデバイスの微細配線として有用である
[0047] 上記のとおり、本発明はさらに、上記一般式 [I] (一般式 [I]中の M1及び M2、 Rla、 Rlb、 Rle及び Rld、並びに!?2
Figure imgf000016_0001
R4及び R5も上記と同義、ただし、 R2、 R4及び R5が同時 に水素原子である場合を除く)で示される繰返し単位カゝら構成された有機カルボン酸 金属錯体自体をも提供する。これらの有機カルボン酸金属錯体自体は新規物質であ る。一般式 [I]中の M1及び M2、 Rla、 Rlb、 Rle及び R"、並びに!?2
Figure imgf000016_0002
R4及び R5について の説明や好ましい例としては上記の説明がそのまま当てはまる(ただし、 R2
Figure imgf000016_0003
R4及 び R5が同時に水素原子である場合を除く)。一般式 [I]に示される繰返し単位の繰返し 数は、特に限定されないが、通常、 10〜108、好ましくは 102〜107である。もっとも、一 般式 [I]で表される有機カルボン酸金属錯体が、上記した本願第 1の発明の方法によ り製造された巨大単結晶の形態にある場合には、繰返し単位数は、上記の通り、通 常、 107〜101()、好ましくは 8 X 107〜109程度である。
[0048] さらに、本発明は、上記一般式 [I] (一般式 [I]中の M1及び M2、 Rla、 Rlb、 Rle及び Rld、 並びに R2
Figure imgf000016_0004
R4及び R5も上記と同義)で示される繰返し単位カゝら構成され、長辺の 長さが: L m以上である単結晶状有機カルボン酸金属錯体をも提供する。この単結 晶は、結晶系が単斜晶系で空間群が C2/c、又は結晶系が三斜晶系で空間群が P-1 であるものが好まし!/ヽ(下記実施例参照)。
[0049] 本発明の有機カルボン酸金属錯体は、分子結晶を形成し、該分子結晶には、結晶 内部に一次元的に延びる空孔 (チャンネル構造)もしくは規則配列した空隙が存在 する。この結晶内部空間にガス分子を吸着及び脱着することができるので、本発明の 有機カルボン酸金属錯体は、ガス吸蔵剤として利用することができる。ガス吸蔵剤は 、ガスの貯蔵や分離濃縮に用いることができる。本発明の有機カルボン酸金属錯体 は、チャンネル構造内にガス分子を包接することにより、その結晶構造が変化し、チ ヤンネル構造の形状やサイズが変化する。このため、種々のガス分子を最適に包接 することができ、単位体積当りのガスの吸蔵量も大きい。また、本発明の有機カルボ ン酸金属錯体の単結晶は、内部にチャンネル構造を有する多孔質体であるので、そ のままでガス吸着膜として利用することができる。このガス吸着膜は、ガスの分離濃縮 等のためのフィルタ一として利用できる。
実施例
[0050] 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実 施例に限定されるものではない。
[0051] 実施例 1 安息香酸銅 (Π)ピラジン付加物単結晶の合成
酢酸銅(II)一水和物 350mg (3.50mmol)に 50倍等量の安息香酸 21.4g (176mmol)を メタノール 350mlに溶かし、テフロン (登録商標)容器中でフロリナート(商品名、 3M製 、 FC77) 50mlの上に注いだ。上層のメタノール溶液と下層のフロリナート(商品名)の 2層に分離させた状態で、エチレングリコール中に溶力して蒸気圧抑制させたピラジ ンを蒸気拡散によって溶液に導き、 20°Cで反応させた。蒸気拡散は、ピラジンのェ チレングリコール溶液の入った試験管を反応液と接しなヽように注意して担持して系 全体を密閉し、ゆっくりとピラジン蒸気を反応溶液中へと溶け込ませることにより行な つた。フロリナ一トーメタノール 2層界面中に結晶成長し、 1ヶ月後に単結晶として目 的物をろ過によって単離したのち、風乾した。青色板状単結晶 360mg (収率 60%)。生 成した結晶サイズから算出すると (結晶 lcm当り約 107)、繰返し単位の繰返し数は約 5 X 106〜107程度であった。
[0052] 実施例 2 安息香酸ロジウム (Π)ピラジン付加物単結晶の合成 安息香酸ロジウム(II) 20mg (3.50mmol)をァセトニトリル 40mlに溶解し、テフロン(登 録商標)容器中でフロリナート(商品名、 3M製、 FC77) 5mlの上に注いだ。上層のァ セトニトリル溶液と下層のフロリナートの 2層に分離させた状態で、エチレングリコール 中に溶力して蒸気圧抑制させたピラジンを実施例 1と同様に蒸気拡散によって溶液 に導き、 15°Cでゆっくりと反応させた。フロリナ一トーメタノール 2層界面中に結晶成 長し、 1ヶ月後に単結晶として目的物をろ過によって単離した。赤色板状単結晶 360m g (収率 70%)。生成した結晶サイズカゝら算出すると、繰返し単位の繰返し数は約 106〜7 X 106程度であった。
[0053] 実施例 1及び 2で得られた巨大単結晶の実体顕微鏡写真の模式図を図 1に示す。
図 1の左側が実施例 1で得られた単結晶、右側が実施例 2で得られた単結晶の写真 の模式図である。また、実施例 1及び 2で得られた巨大単結晶の実体顕微鏡写真の 模式図、並びに X線単結晶構造解析により明らかになった面指数及び結晶面とチヤ ンネル方向の位置関係を図 2に示す。図 2の a)が実施例 1で得られた単結晶、 b)が実 施例 2で得られた単結晶についての結果を示す。また、 X線単結晶解析の結果をそ れぞれ図 3及び図 4に示す。さらに、実施例 1で得られた巨大単結晶の実体顕微鏡 写真の模式図(図 5の a))と X線トポグラフィー写真の模式図(図 5の b))を図 5に示す。
[0054] 実施例 3〜8 銅錯体の製造及び物性
酢酸銅 (II)一水和物, 80mg (2.4x10— 4mol)と安息香酸 117.2mg (8.4 X 10— 4mol)をメタノ ール 80mlに溶力し青色溶液とした。濾過後、ピラジン: 8.0mg (実施例 3)、 2—メチルビ ラジン: 0.3ml (実施例 4)、 2,3—ジメチルビラジン: 0.3ml (実施例 5)、 2-ェチルビラジン :0.3ml (実施例 6)、 2, 3-ジェチルビラジン: 0.3ml (実施例 7)又は 2-プロピルビラジン: 0.3ml (実施例 8)を加えて室温でゆっくり 24時間反応させた。青色の単結晶が生成し た。ピラジン錯体 (実施例 3) :12.2mg (58.6%), 2—メチルビラジン錯体 (実施例 4): 11. 7mg (57.4%), 2,3—ジメチルビラジン錯体(実施例 5) : 16.0mg (74.2%)、 2-ェチルピラジ ン錯体(実施例 6) (19.2%)、 2, 3-ジェチルビラジン錯体(実施例 7) (13.2%)、 2-プロピ ルビラジン錯体 (実施例 8) (39.3%)。同定は単結晶 X線構造解析および元素分析によ り行った。なお、生成した結晶のサイズから算出して (結晶 lcm当り約 107)、一般式 [I] で表される繰返し単位の繰返し数は、約 104〜4 X 105程度であった。 [0055] 元素分析結果及び X線構造解析結果を下記表 1に示す。
[0056] [表 1 - 1 ]
Figure imgf000019_0001
[0057] [表 1-2]
差替え用紙(規則 26)
Figure imgf000020_0001
1-3]
差眷ぇ用弒(規則 26)
Figure imgf000021_0001
[0059] 得られた各単結晶の物性データを下記表 2-1及び表 2-2にまとめて示す。
[0060] [表 2-1]
差替え ^弒 (規則 26) 実施例 3 実施例 4 実施例 5
組成式 C BNzOgCuz
分子量 704. 63
測定温度 [K] 298 90 90
結晶系 単斜晶系 三斜晶系 三斜晶系
空間群 C2/c P - 1 P-L
a[A ] 18. 070(8) 10. 213 (4) 10. 26 L1 (6) b[A ] 9. 700 (4) 10. 386 (4) 10. 4184 (6) c[A ] 15. 673 (6) 15. 6335 (9) α [度] 90 80. 728 (8) 81. 14 L0 (10)
Β [度] 97. 564(11) 82. 581 (8) 82. 3020 (10)
[度] 90 86. 601 (8) 87. 7220 (10) 体積 [A 3] 3296 (2) 1625. 8 (11)
z 4 2 2
密度 (計算値) [Mg/m 1. 394 1. 439 1. 61 結 寸法 [mm] 0. 45 x 0. 10 x 0. 0 0. 22 x 0. 08 x 0. 0 0. 30 x 0. 08 x 0. 0
4 4 4 [表 2- 2]
Figure imgf000022_0001
実施例 9 14 ロジウム錯体の製造及び物性
合成した安息香酸ロジウム 80mg(1.0xl0—4mol)をァセトニトリル 80mlに溶かし、赤紫色 の溶液とした。濾過後、ピラジン: 8.0mg (実施例 9)、 2—メチルビラジン: 0.3ml (実施例 10) 2,3—ジメチルビラジン: 0.3ml (実施例 11) 2-ェチルビラジン: 0.3ml (実施例 12 ) 2, 3-ジェチルビラジン: 0.3ml (実施例 13)又は 2-プロピルピラジン: 0.3ml (実施例 1 4)を加えて室温でゆっくり 24時間反応させた。褐色の微結晶が生成した。ピラジン 錯体 (実施例 7) :12.9mg (67.2%), 2—メチルビラジン錯体 (実施例 8): 11.9mg (60.7%) , 2,3—ジメチルビラジン錯体(実施例 9) : 16.3mg (81.7%)、 2-ェチルビラジン錯体(実 施例 10) (42.6%)、 2, 3-ジェチルビラジン錯体(実施例 11) (85.5%)、 2-プロピルピラジ ン錯体 (実施例 12) (14.6%)。同定は単結晶 X線構造解析および元素分析により行つ た。なお、生成した結晶のサイズ力も算出して (結晶 lcm当り約 107)、一般式 [I]で表さ れる繰返し単位の繰返し数は、約 104〜5 X 105程度であった。
[0063] 元素分析結果及び X線構造解析結果を下記表 3に示す。
[0064] [表 3-1]
Figure imgf000024_0001
3-2]
差替え^紙(規則 26)
Figure imgf000025_0001
3 - 3]
差替え用弒(規則 26) 2
Figure imgf000026_0001
[0067] 得られた各単結晶の物性データを下記表 4-1及び表 4- 2にまとめて示す。
[0068] [表 4-1] 差替え用紙(規則 26
Figure imgf000027_0001
[0069] [表 4- 2]
Figure imgf000027_0002
[0070] 実施例 15 有機溶剤蒸気の吸着及び脱着
実施例 3及び実施例 4で製造した有機カルボン酸金属錯体につ ヽて、 n-へキサン 又はベンゼンを 10°C又は 20°Cの等温下で吸着及び脱着させた際の蒸気の吸着量 を測定した。
[0071] 結果を図 6及び図 7に示す。なお、図中、 a)は n-へキサンについての結果、 b)はべ ンゼンについての結果を示す。また、丸が 10°Cでの結果、四角が 20°Cでの結果を 示す。さらに、黒塗りが吸着過程、白抜きが脱着過程における吸着量を示す。
[0072] 特徴的な可逆的吸脱着能がみられ、両方の錯体ともほぼ同様の吸着挙動を示して Vヽた。これは細孔構造の柔軟性によって様々な形状および性質を持つ有機分子に 対して広く吸着剤として機能できることを示している。また、吸着曲線は 10°Cよりも 20 °Cと温度の上昇によって吸着に必要な圧力が高圧側にシフトする挙動が見られた。 これは、吸着挙動と吸着剤の温度の間の熱力学的な相関を示唆する。
[0073] 吸着挙動で特徴的なのは、いずれの場合にも吸着の飛びが見られることである。 ( この圧力を臨界圧と以後記述する。)低圧部ではほとんど吸着が見られず、臨界圧に なって初めて吸着の飛びが見られる。これは固体試料のバルタ相転移によるもので ある。吸着線の飛びは蒸気吸着によって誘起された α— j8相転移によるものであり、 吸着ェンタルピーの平たん部は α— 相の二相共存状態によるものである。吸着曲 線は α— j8相の吸着線間を二相共存状態を経て非常に狭い圧力領域で遷移する。 へキサンやベンゼンでは臨界圧に達するまで低圧部での吸着は見られな 、。これは 、 α相の細孔構造がゲスト分子構造に対して相対的に細く屈曲しているため、拡散 が困難であるからである。本材料は結晶でありまた相転移はゲスト吸着によって誘起 されるため、ゲスト分子の結晶内での分布によって特異的な吸脱着挙動を示す。固 体の体積に比べて表面積の小さい結晶である本材料ではほとんど吸着が臨界圧ま で見られな 、、臨界圧で突然吸着力スタートする蒸気圧 (濃度)センシング機能があ る。これは、細孔構造の柔軟性と相転移現象に起因して生じる現象であると考えられ る。このように、本結晶材料の細孔構造の柔軟性と相転移現象によって、高い蒸気濃 度選択性と可逆性をもった吸着特性が明らかになった。
[0074] 実施例 16 水素ガスの吸蔵
実施例 3、実施例 9、実施例 4及び実施例 10で製造した有機カルボン酸金属錯体 につ!/、て、水素ガスを 77Κの等温下で吸着及び脱着させた際の水素の吸着量を測 し 7こ。
[0075] 結果を図 8に示す。なお、図中、 a)、 b)、 c)、 d)はそれぞれ実施例 3、実施例 9、実施 例 4及び実施例 10で製造した有機カルボン酸金属錯体につ ヽての結果を示す。ま た、黒丸が吸着過程、白丸が脱着過程における吸着量を示す。
[0076] 図 8に示されるように、有機カルボン酸金属錯体には多量の水素を吸蔵することが できる。また、観察の結果、拡散が早ぐ短時間で吸着平衡状態に達した。
[0077] さらに、実施例 9で製造した安息香酸ロジウムピラジンに水素を吸着させた状態の 結晶体を X線解析して水素の吸蔵状態を調べた。結果を図 9に模式的に示す。また 、水素を吸着させた状態の結晶体の結晶学的パラメーターを下記表 5に示す。
[0078] [表 5]
Figure imgf000029_0001
[0079] 実施例 17 水銀蒸気の吸着
実施例 9で製造した安息香酸ロジウムピラジン単結晶(結晶サイズ 0.40 X 0.25 X 0.0 4 mm3)を水銀とともにガラス密閉容器内に入れ、オイル回転ポンプで真空引きした。 容器を 150°Cに加熱して水銀蒸気 (蒸気圧 2.8mmHg)に結晶を曝した。 7日後に水冷 して常温にし、空気中で結晶を取り出した。結晶は単結晶状態を保ったままであり、 水銀原子の包接結晶を得た。回収率 100%
[0080] 得られた水銀原子の包接結晶を X線解析した。結晶の状態を模式的に図 10に示 す。図中、黒丸が水銀原子である。また、水銀原子の包接結晶の結晶学的パラメ一 ターを下記表 6に示す。
[0081] [表 6] 組成式 C 32H24Hg2N208Rh2
分子量 1 171. 53
測定温度 [κ] 9 OK
波長 0. 71073A
結晶系 単斜晶系
空間群 C2/m
a [ A ] 17. 573 (5)
b [ A ] 9. 601 (3)
c [ A ] 12. 202 (3)
α [度] 90
j3 [度] 127. 538 (4)
y [度] 90
体積 [ A 3] 1632. 4 (8)
Z 2
密度 (計算値) [Mg/m3] 2. 383
結晶寸法 [ 0. 40 X 0. 25 X 0. 04
[0082] 実施例 18 結晶構造の詳細
実施例 10及び実施例 4で製造した単結晶の実体顕微鏡写真の模式図、並びに X 線単結晶構造解析により明らかになった面指数及び結晶面とチャンネル方向の位置 関係を示す模式図をそれぞれ図 11の 、 b)に示す。同様に、実施例 11及び実施例 5で製造した単結晶の実体顕微鏡写真の模式図、並びに X線単結晶構造解析により 明らかになった面指数及び結晶面とチャンネル方向の位置関係を示す模式図をそ れぞれ図 12の a)、 b)に示す。これらの図中、太い矢印がチャンネル構造を示す。
[0083] 実施例 19 二酸化炭素の吸着前後の結晶構造の変化 (その 1)
実施例 4及び実施例 10で製造した安息香酸 2-メチルビラジン錯体に二酸ィ匕炭素 ガスを吸着させ、その前後における結晶構造の変化を X線単結晶解析により調べた 。二酸ィ匕炭素吸着前後における安息香酸 2-メチルビラジン錯体の結晶断面図を模 式的に図 13に示す。なお、金属が銅 (実施例 4)でもロジウム (実施例 10)でも同様な 結果が得られた。また、二酸ィ匕炭素の吸着前後における骨格構造の変化を模式的 に図 14に示す。また、実施例 3及び実施例 9の安息香酸ピラジン錯体についての結 晶断面図及び骨格構造の変化を図 15及び図 16に示す。
[0084] 実施例 4及び 10の安息香酸 2-メチルビラジン錯体では、吸着前の構造は 2-メチル ピラジン環のメチル基の立体障害により屈曲したジグザグ型の一次元鎖の集積構造 であるが、吸着後は真直ぐな一次元鎖へと分子鎖構造が変化し、一次元チャンネル が生成して COを包接する。置換基の導入によって固体構造変化を制御できる。
2
[0085] 表 7に 90Kにおける CO包接前後における V /Z,空隙率の変化を示す。 V /Zは
2 cell cell 実施例 10の錯体 (2a): 813.1→893.3A3 (9.0%増大)、実施例 4の錯体 (2b): 812.9→90 0.1A3 (9.7%増大)であり、 CO分子を包接することでセルボリュームの増加が見られ
2
た。また包接前後の空隙容積を比べると 2a,2bともに倍以上増大しており、固体構造 変化によってガス吸着する空間の容積も著しく変化する。
[0086] [表 7]
Figure imgf000031_0001
( * 1)包接 COを除いて算出
2
[0087] 実施例 20 二酸化炭素の吸着前後の結晶構造の変化 (その 2)
実施例 1 1で製造した錯体について、実施例 19と同様に、二酸ィ匕炭素を吸着させる 前後の結晶断面の様子を X線解析により調べた。結果を図 17に模式的に示す。
[0088] チャンネル中での CO配列状態はこれまでの一次元配列とは異なり、四量体を生
2
成していた。置換基の導入によって固体内空隙構造を変化させ、結晶中でのゲスト 分子吸着構造を制御できる特性がある。
[0089] 実施例 21 二酸化炭素の吸着'脱着
実施例 10で製造した錯体 (2a)又は実施例 4で製造した錯体 (2b)について、二酸ィ匕 炭素の吸着量を等温下又は等圧下で測定した。等圧吸着測定は、 1気圧で行い、等 温吸着測定は- 70°Cで行なった。結果を図 18(2a)及び図 19(2b)にそれぞれ示す。な お、各図中、黒丸は吸着過程における吸着量、白丸は脱着過程における吸着量を 示す。
[0090] 図 18及び図 19に示されるように、各錯体とも吸着、脱着が可逆的であり、結晶構造 および結晶構造変化によって特異的なガス吸脱着特性を示し、二酸化炭素の分離 濃縮、貯蔵材としての利用が可能であることが示された。
[0091] 実施例 22 酸素ガスの吸着'脱着 実施例 10で製造した錯体、実施例 4で製造した錯体、実施例 11で製造した錯体 及び実施例 5で製造した錯体につ 、て、等温下 (77K)における酸素ガスの吸着量を 測定した。結果を図 10の a),b),c),d)にそれぞれ示す。なお、各図中、黒丸は吸着過 程における吸着量、白丸は脱着過程における吸着量を示す。
[0092] 図 20に示されるように、各錯体とも吸着、脱着が可逆的であり、結晶構造および結 晶構造変化によって特異的なガス吸脱着特性を示し、酸素ガスの分離濃縮、貯蔵材 としての利用が可能であることが示された。
[0093] 実施例 23 窒素ガスの吸着'脱着
実施例 10で製造した錯体、実施例 4で製造した錯体、実施例 11で製造した錯体 及び実施例 5で製造した錯体につ 、て、等温下 (77K)における窒素ガスの吸着量を 測定した。結果を図 21の a),b),c),d)にそれぞれ示す。なお、各図中、黒丸は吸着過 程における吸着量、白丸は脱着過程における吸着量を示す。
[0094] 図 21に示されるように、各錯体とも吸着、脱着が可逆的であり、結晶構造および結 晶構造変化によって特異的なガス吸脱着特性を示し、窒素ガスの分離濃縮、貯蔵材 としての利用が可能であることが示された。
[0095] 実施例 24 —酸化窒素ガスの吸着'脱着
実施例 10で製造した錯体及び実施例 4で製造した錯体について、等温下 (20°C)に おける一酸ィ匕窒素ガスの吸着量を測定した。結果を図 22の a),b)にそれぞれ示す。な お、各図中、黒丸は吸着過程における吸着量、白丸は脱着過程における吸着量を 示す。
[0096] 図 22に示されるように、各錯体とも吸着、脱着が可逆的であり、結晶構造および結 晶構造変化によって特異的なガス吸脱着特性を示し、一酸化窒素の分離濃縮、貯 蔵材としての利用が可能であることが示された。

Claims

請求の範囲
[1] -般式 [I]
[化 1]
Figure imgf000033_0001
[ 1 ]
(ただし、 M1及び M2は互いに独立して 2価をとり得る金属、 Rla、 Rlb、 Rlc及び R"は互い に独立して、共役系を含む有機基、 R2
Figure imgf000033_0002
R4及び R5は互いに独立して水素原子、炭 素数 1〜4のアルキル基又は炭素数 1〜4のァルケ-ル基を示す)
で示される繰返し単位カゝら構成された有機カルボン酸金属錯体の巨大単結晶の製 造方法であって、前記 2価をとり得る金属の塩と共役系を有する有機カルボン酸を含 む溶液、又は共役系を有する有機カルボン酸の前記 2価をとり得る金属塩の溶液を 上層とし、該溶液の溶媒と混じり合わない溶媒を下層として 2層を形成し、この状態で 前記上層の溶液にピラジン又は置換ビラジンの溶液力 のピラジン又は置換ビラジン 蒸気を導入して反応させ、前記 2層の界面に前記有機カルボン酸金属錯体の単結 晶を生成させることを含む、前記有機カルボン酸金属錯体の単結晶の製造方法。
[2] 前記 、 Rlb、 Rlc及び Rldが互いに独立して置換されていてもよいフエ-ル基である 請求項 1記載の方法。
[3] 前記 M1及び M2が互いに独立してマンガン、鉄、コノ レト、ニッケル、銅、亜鉛、ルテ ユウム、ロジウム、クロム、モリブデン、パラジウム及びタングステン力 成る群より選ば れる少なくとも 1種である請求項 1又は 2記載の方法。
[4] 前記 M1及び M2が同一種類の金属であり、前記 、 Rlb、 Rle及び Rldが同一種類の 有機基である請求項 1な 、し 3の 、ずれか 1項に記載の方法。 [5] 前記 、 Rlb、 及び R"力 Sフエ-ル基、前記 R2、 R R4及び R5が互いに独立して水 素原子又は炭素数 1〜4のアルキル基、前記 M1及び M2が銅又はロジウムである請求 項 4記載の方法。
[6] 前記下層を形成する溶媒がフッ素系溶媒である請求項 1ないし 5のいずれか 1項に 記載の方法。
[7] 前記上層を形成する溶液の溶媒力 Sメタノール又はァセトニトリルである請求項 1ない し 6の 、ずれか 1項に記載の方法。
[8] 前記ピラジン又は置換ビラジンの溶液の溶媒がエチレングリコールである請求項 1 な!、し 7の!、ずれか 1項に記載の方法。
[9] 製造された単結晶の長辺の長さが 0.8mm以上である請求項 1ないし 8のいずれか 1 項に記載の方法。
[10] 一般式 [I]
[化 2]
Figure imgf000034_0001
[ 1 ]
(ただし、 M1及び M2は互いに独立して 2価をとり得る金属、 Rla、 Rlb、 Rlc及び R"は互い に独立して、共役系を含む有機基、 R2
Figure imgf000034_0002
R4及び R5は互いに独立して水素原子、炭 素数 1〜4のアルキル基又は炭素数 1〜4のァルケ-ル基を示す)
で示される繰返し単位力 構成され、長辺の長さが 0.8mm以上である有機カルボン 酸金属錯体単結晶。
[11] 前記 、 Rlb、 Rlc及び Rldが互いに独立して置換されていてもよいフエ-ル基である 請求項 10記載の単結晶。
[12] 前記 M1及び M2が互いに独立してマンガン、鉄、コノ レト、ニッケル、銅、亜鉛、ルテ ユウム、ロジウム、クロム、モリブデン、パラジウム及びタングステン力 成る群より選ば れる少なくとも 1種である請求項 10又は 11記載の単結晶。
[13] 前記 M1及び M2が同一種類の金属であり、前記 、 Rlb、 Rle及び Rldが同一種類の 有機基である請求項 10な 、し 12の 、ずれか 1項に記載の単結晶。
[14] 前記 Rla、 Rlb、!^及び R"力 Sフエ-ル基、前記 R2
Figure imgf000035_0001
R4及び R5が互いに独立して水 素原子又は炭素数 1〜4のアルキル基、前記 Mが銅又はロジウムである請求項 10記 載の単結晶。
[15] 一般式 [I]で示される繰返し単位から構成された有機カルボン酸金属錯体から成る 揮発性有機化合物吸着剤。
[化 3]
Figure imgf000035_0002
[ I ]
(ただし、 M1及び M2は互いに独立して 2価をとり得る金属、 Rla、 Rlb、 Rlc及び R"は互い に独立して、共役系を含む有機基、 R2
Figure imgf000035_0003
R4及び R5は互いに独立して水素原子、炭 素数 1〜4のアルキル基又は炭素数 1〜4のァルケ-ル基を示す。 )
[16] 前記 、 Rlb、 Rlc及び Rldが互いに独立して置換されて 、てもよ 、フエ-ル基である 請求項 15記載の揮発性有機化合物吸着剤。
[17] 前記 M1及び M2が互いに独立してマンガン、鉄、コノ レト、ニッケル、銅、亜鉛、ルテ ユウム、ロジウム、クロム、モリブデン、パラジウム及びタングステン力 成る群より選ば れる少なくとも 1種である請求項 15又は 16記載の揮発性有機化合物吸着剤。
[18] 前記 M1及び M2が同一種類の金属であり、前記 、 Rlb、 Rle及び Rldが同一種類の 有機基である請求項 15ないし 17のいずれか 1項に記載の揮発性有機化合物吸着 剤。 [19] 前記 Rla、 Rlb、!^及び R"力 Sフエ-ル基、前記 R2
Figure imgf000036_0001
R4及び R5が互いに独立して水 素原子又は炭素数 1〜4のアルキル基、前記 M1及び M2が銅又はロジウムである請求 項 15記載の揮発性有機化合物吸着剤。
[20] 前記有機カルボン酸金属錯体が単結晶の形態にある請求項 15ないし 19のいずれ カゝ 1項に記載の揮発性有機化合物吸着剤。
[21] 前記揮発性有機化合物が、有機溶剤の蒸気又はアルデヒド類である請求項 15な
V、し 20の 、ずれか 1項に記載の揮発性有機化合物吸着剤。
[22] 前記揮発性有機化合物が、脂肪族又は芳香族有機溶剤の蒸気である請求項 21 記載の揮発性有機化合物吸着剤。
[23] 請求項 15な 、し 20の 、ずれか 1項に記載の有機カルボン酸金属錯体の、揮発性 有機化合物吸着剤の製造のための使用。
[24] 請求項 15な ヽし 20の ヽずれか 1項に記載の有機カルボン酸金属錯体を揮発性有 機化合物の蒸気と接触させることを含む、揮発性有機化合物の吸着方法。
[25] 請求項 15ないし 20のいずれか 1項に記載の有機カルボン酸金属錯体力も成る、空 気中の揮発性有機化合物の濃度を所定値以下に維持する揮発性有機化合物濃度 維持剤。
[26] 請求項 15な 、し 20の 、ずれか 1項に記載の有機カルボン酸金属錯体の、揮発性 有機化合物濃度維持剤の製造のための使用。
[27] 請求項 15ないし 20のいずれか 1項に記載の揮発性有機化合物吸着剤を空気中に 置いておくことにより該空気中の有機溶剤蒸気の濃度を所定値以下に維持する方法
[28] 請求項 15な 、し 20の 、ずれか 1項に記載の有機カルボン酸金属錯体から成る水 素吸蔵材。
[29] 請求項 15ないし 20のいずれか 1項に記載の有機カルボン酸金属錯体の、水素吸 蔵材の製造のための使用。
[30] 請求項 15な 、し 20の 、ずれか 1項に記載の有機カルボン酸金属錯体と水素ガスと を接触させることを含む、水素ガスの吸蔵方法。
[31] 請求項 15ないし 20のいずれか 1項に記載の有機カルボン酸金属錯体に金属蒸気 を吸着させることにより金属原子を 1原子ずつ一次元的に配列させる方法。
請求項 31記載の方法により製造された、チャンネル構造内にゲストとしての金属原 子が 1原子ずつ一次元的に配列された有機カルボン酸金属錯体。
一般式 [I]で示される繰返し単位カゝら構成された有機カルボン酸金属錯体。
[化 4]
Figure imgf000037_0001
(ただし、 M1及び M2は互いに独立して 2価をとり得る金属、 Rla、 Rlb、 Rlc及び R"は互い に独立して、共役系を含む有機基、 R2
Figure imgf000037_0002
R4及び R5は互いに独立して水素原子、炭 素数 1〜4のアルキル基又は炭素数 1〜4のァルケ-ル基を示し、 R2
Figure imgf000037_0003
R4及び R5が 同時に水素原子である場合を除く)。
[34] 前記 、 Rlb、 Rlc及び R"が互いに独立して置換されて 、てもよ 、フエ-ル基である 請求項 33記載の有機カルボン酸金属錯体。
[35] 前記 M1及び M2が互いに独立してマンガン、鉄、コノ レト、ニッケル、銅、亜鉛、ルテ ユウム、ロジウム、クロム、モリブデン、パラジウム及びタングステン力 成る群より選ば れる少なくとも 1種である請求項 33又は 34記載の有機カルボン酸金属錯体。
[36] 前記 M1及び M2が同一種類の金属であり、前記 Rla、 Rlb、 Rle及び Rldが同一種類の 有機基である請求項 33な 、し 35の 、ずれか 1項に記載の有機カルボン酸金属錯体
[37] 前記 Rla、 Rlb、!^及び R"力 Sフエ-ル基、前記 R2
Figure imgf000037_0004
R4及び R5が互いに独立して水 素原子又は炭素数 1〜4のアルキル基、前記 M1及び M2が銅又はロジウムである請求 項 36記載の有機カルボン酸金属錯体。
[38] 単結晶の形態にある請求項 33ないし 37のいずれ力 1項に記載の有機カルボン酸 金属錯体。
[39] 請求項 32な 、し 38の 、ずれか 1項に記載の有機カルボン酸金属錯体から成るガ ス吸蔵剤。
[40] 請求項 32な 、し 38の 、ずれか 1項に記載の有機カルボン酸金属錯体の、ガス吸 蔵剤の製造のための使用。
[41] 請求項 32な 、し 38の 、ずれか 1項に記載の有機カルボン酸金属錯体とガスを接 触させることを含む、ガスの吸蔵方法。
[42] 請求項 38記載の有機カルボン酸金属錯体単結晶から成るガス吸着透過膜。
[43] 一般式 [I]で示される繰返し単位力 構成され、長辺の長さが 1 μ m以上である単結 晶状有機カルボン酸金属錯体。
[化 5]
Figure imgf000038_0001
[ I I
(ただし、 M1及び M2は互いに独立して 2価をとり得る金属、 Rla、 Rlb、 Rlc及び R"は互い に独立して、共役系を含む有機基、 R2
Figure imgf000038_0002
R4及び R5は互いに独立して水素原子、炭 素数 1〜4のアルキル基又は炭素数 1〜4のァルケ-ル基を示す)。
[44] 前記単結晶は、結晶系が単斜晶系で空間群が C2/c、又は結晶系が三斜晶系で空 間群が P-1である請求項 43記載の単結晶状有機カルボン酸金属錯体。
PCT/JP2006/309429 2005-06-09 2006-05-10 単結晶状有機カルボン酸金属錯体、その製造方法及びその用途 WO2006132049A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06746239A EP1914263B1 (en) 2005-06-09 2006-05-10 Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
US11/921,681 US8034165B2 (en) 2005-06-09 2006-05-10 Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-169081 2005-06-09
JP2005-169083 2005-06-09
JP2005-169087 2005-06-09
JP2005169087A JP5099615B2 (ja) 2005-06-09 2005-06-09 揮発性有機化合物吸着剤及び水素吸蔵材
JP2005169083A JP4951728B2 (ja) 2005-06-09 2005-06-09 有機カルボン酸金属錯体の単結晶及びその製造方法
JP2005169081A JP5099614B2 (ja) 2005-06-09 2005-06-09 新規カルボン酸金属錯体及びそれから成るガス吸蔵剤

Publications (1)

Publication Number Publication Date
WO2006132049A1 true WO2006132049A1 (ja) 2006-12-14

Family

ID=37498256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309429 WO2006132049A1 (ja) 2005-06-09 2006-05-10 単結晶状有機カルボン酸金属錯体、その製造方法及びその用途

Country Status (3)

Country Link
US (1) US8034165B2 (ja)
EP (1) EP1914263B1 (ja)
WO (1) WO2006132049A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425010A (zh) * 2011-11-28 2012-04-25 宁波大学 1,2,3,4-丁烷四羧酸锰铁电材料及其制备方法
WO2015068712A1 (ja) * 2013-11-05 2015-05-14 公立大学法人横浜市立大学 超弾性材料、ならびに当該超弾性材料を用いた、エネルギー貯蔵材料、エネルギー吸収材料、弾性材料、アクチュエータおよび形状記憶材料
JP2021044616A (ja) * 2019-09-06 2021-03-18 パナソニックi−PROセンシングソリューションズ株式会社 カメラ設置支援システムおよびカメラ設置支援方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230963A (zh) * 2014-08-31 2014-12-24 刘国政 一种双核配位聚合物及其制备方法
CN112342607B (zh) * 2020-08-31 2022-07-26 黄勇 一种离子液体提纯金属络合物单晶的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (ja) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd 新規三次元型有機金属錯体及びガス吸着材
JP2000309592A (ja) 1999-04-28 2000-11-07 Osaka Gas Co Ltd 有機金属錯体を用いたガス吸着材
JP2003001389A (ja) 2001-06-15 2003-01-07 Showa Denko Kk 水素吸蔵合金の製造方法
JP2003003203A (ja) 2001-06-21 2003-01-08 Tdk Corp 高密度焼結体の製造方法及びその焼結体
JP2004196594A (ja) * 2002-12-18 2004-07-15 Univ Kyoto 気体分子の整列保持方法および気体分子保持材料
JP2004255336A (ja) 2003-02-27 2004-09-16 Toho Kako Kensetsu Kk 有機溶剤の吸着除去方法
JP2004261780A (ja) 2003-03-04 2004-09-24 Se Kogyo Kk 有機溶剤を含む排気ガスの処理方法およびその処理装置
JP2005232109A (ja) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp ポリカルボン酸金属錯体の製造方法
JP2005255651A (ja) * 2004-03-15 2005-09-22 Kyoto Univ 有機金属錯体構造体及びその製造方法、並びに、該有機金属錯体構造体を用いた機能性膜、機能性複合材料、機能性構造体及び吸脱着センサー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063393A (ja) * 1998-08-13 2000-02-29 Osaka Gas Co Ltd 新規有機金属錯体およびガス吸着材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (ja) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd 新規三次元型有機金属錯体及びガス吸着材
JP2000309592A (ja) 1999-04-28 2000-11-07 Osaka Gas Co Ltd 有機金属錯体を用いたガス吸着材
JP2003001389A (ja) 2001-06-15 2003-01-07 Showa Denko Kk 水素吸蔵合金の製造方法
JP2003003203A (ja) 2001-06-21 2003-01-08 Tdk Corp 高密度焼結体の製造方法及びその焼結体
JP2004196594A (ja) * 2002-12-18 2004-07-15 Univ Kyoto 気体分子の整列保持方法および気体分子保持材料
JP2004255336A (ja) 2003-02-27 2004-09-16 Toho Kako Kensetsu Kk 有機溶剤の吸着除去方法
JP2004261780A (ja) 2003-03-04 2004-09-24 Se Kogyo Kk 有機溶剤を含む排気ガスの処理方法およびその処理装置
JP2005232109A (ja) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp ポリカルボン酸金属錯体の製造方法
JP2005255651A (ja) * 2004-03-15 2005-09-22 Kyoto Univ 有機金属錯体構造体及びその製造方法、並びに、該有機金属錯体構造体を用いた機能性膜、機能性複合材料、機能性構造体及び吸脱着センサー

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SATOSHI TAKAMIZAWA ET AL., ANGEW. CHEM. INT. ED, vol. 42, 2003, pages 4331 - 4334
SATOSHI TAKAMIZAWA ET AL., INORGANIC CHEMISTRY COMMUNICATIONS, vol. 6, 10 October 2003 (2003-10-10), pages 1326 - 1328
See also references of EP1914263A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425010A (zh) * 2011-11-28 2012-04-25 宁波大学 1,2,3,4-丁烷四羧酸锰铁电材料及其制备方法
WO2015068712A1 (ja) * 2013-11-05 2015-05-14 公立大学法人横浜市立大学 超弾性材料、ならびに当該超弾性材料を用いた、エネルギー貯蔵材料、エネルギー吸収材料、弾性材料、アクチュエータおよび形状記憶材料
JP6083659B2 (ja) * 2013-11-05 2017-02-22 公立大学法人横浜市立大学 超弾性材料、ならびに当該超弾性材料を用いた、エネルギー貯蔵材料、エネルギー吸収材料、弾性材料、アクチュエータおよび形状記憶材料
JP2021044616A (ja) * 2019-09-06 2021-03-18 パナソニックi−PROセンシングソリューションズ株式会社 カメラ設置支援システムおよびカメラ設置支援方法
US11373334B2 (en) 2019-09-06 2022-06-28 Panasonic I-Pro Sensing Solutions Co., Ltd. Camera setting assist system and camera setting assist method

Also Published As

Publication number Publication date
EP1914263B1 (en) 2012-12-05
US8034165B2 (en) 2011-10-11
US20090139401A1 (en) 2009-06-04
EP1914263A4 (en) 2009-08-26
EP1914263A1 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
Jiang et al. Interpenetration control in metal–organic frameworks for functional applications
Esken et al. Pd@ MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O (bdc) 3](MOF-5) with metal–organic palladium precursors for loading with Pd nanoparticles
EP2971277B1 (en) Metal organic framework, production and use thereof
JP5813946B2 (ja) ハイブリッド多孔性物質及びその製造方法
US6989044B2 (en) Intermolecularly bound transition element complexes for oxygen-selective adsorption
Schneemann et al. Targeted manipulation of metal–organic frameworks to direct sorption properties
US7824473B2 (en) Metal-organic framework materials based on icosahedral boranes and carboranes
US9120080B2 (en) Acetylene storage using metal-organic frameworks with open metal sites
US9676807B2 (en) Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs
Croitor et al. 1, 2-Cyclohexanedionedioxime as a useful co-ligand for fabrication of one-dimensional Zn (II) and Cd (II) coordination polymers with wheel-and-axle topology and luminescent properties
EP3529252B1 (en) A crystalline metal organic framework
WO2006132049A1 (ja) 単結晶状有機カルボン酸金属錯体、その製造方法及びその用途
Kim et al. Structural control of metal–organic framework bearing N-heterocyclic imidazolium cation and generation of highly stable porous structure
JP5099615B2 (ja) 揮発性有機化合物吸着剤及び水素吸蔵材
KR20180120398A (ko) 유무기 하이브리드 다공성 흡착제 및 이의 제조방법
Liao et al. Porous metal azolate frameworks
CA2327972C (en) Intermolecularly bound transition element complexes for oxygen-selective adsorption
JP5099614B2 (ja) 新規カルボン酸金属錯体及びそれから成るガス吸蔵剤
JP6323495B2 (ja) 多孔体の製造方法
KR101029326B1 (ko) 큰 다공성의 금속-유기 골격체 및 이를 포함하는 가스 저장체 및 금속-유기 골격체 제조방법
KR100576732B1 (ko) 금속-포르메이트 다공성 결정물질 및 그 제조방법
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
Hamza et al. Metal–organic frameworks (an overview)
Takamizawa et al. A novel inclusion complex between molybdenum (II) fumarate and poly (ethylene glycol): first supramolecule formation between a microporous complex and an organic polymer
WO2021043492A1 (en) Gas storage material and gas storage system

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11921681

Country of ref document: US