WO2006132030A1 - 新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及び該分析試薬を使用する分析方法 - Google Patents

新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及び該分析試薬を使用する分析方法 Download PDF

Info

Publication number
WO2006132030A1
WO2006132030A1 PCT/JP2006/307531 JP2006307531W WO2006132030A1 WO 2006132030 A1 WO2006132030 A1 WO 2006132030A1 JP 2006307531 W JP2006307531 W JP 2006307531W WO 2006132030 A1 WO2006132030 A1 WO 2006132030A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reagent
protein
compound
analysis
Prior art date
Application number
PCT/JP2006/307531
Other languages
English (en)
French (fr)
Inventor
Yoshio Suzuki
Atsunori Hiratsuka
Kenji Yokoyama
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2007520035A priority Critical patent/JP4893964B2/ja
Publication of WO2006132030A1 publication Critical patent/WO2006132030A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members

Definitions

  • the present invention relates to a novel compound, a reagent for analyzing a peptide or protein containing the compound, and an analysis method using the analysis reagent.
  • transcriptome analysis has been actively conducted to comprehensively analyze RNA expression by improving DNA chip technology.
  • this RNA expression profile does not necessarily coincide with the protein expression profile, and the correlation is less than 50%.
  • comprehensive analysis of proteins is important in addition to comprehensive analysis of RNA.
  • two-dimensional electrophoresis, mass analysis, and genome analysis such as protein chips have been developed remarkably. Attempts have been made to elucidate protein function using comparable high-throughput analysis.
  • Typical methods for quantifying proteins in samples include (a) absorptiometry, (b) Biuret method using Biuret reagent, (c) Lowry method combining phenol reagent and Biuret method, ( d) Bradford method, (e) ELISA method and the like. The following describes the principles, advantages, and disadvantages of each method.
  • the absorbance at 280 is variable because the content of anne varies.
  • A280nm can be calculated as 1.0 at a concentration of lmg / ml.
  • the operation is simple and the sample can be collected after measurement.
  • Absorbance varies depending on the type of protein. Also, tannins that do not absorb at 280 h (collagen, gelatin, etc.) cannot be measured. In addition, if substances with absorption in the ultraviolet region are mixed, quantification becomes difficult.
  • Coloring is hindered by other reducing substances because it is colored by a reduction reaction.
  • the operation is complicated and it takes time to measure.
  • Coomassie Brilliant Blue G-250 a trifluoromethane-based blue pigment, binds to a protein in an acidic solution, the maximum absorption wavelength shifts from 465 to 595, and the color changes from reddish purple to blue. This is a method for quantifying proteins using this phenomenon.
  • Fluorophotometry is a conventional method for analyzing various chemical substances, and has advantages such as high sensitivity, small amount of sample, large-scale equipment, and no need for skilled techniques.
  • Patent Document 1 US Patent No. 5616502
  • Non-Patent Literature 1 Haugland, R. P. Handoook of Fluorescent Probes and Research Chemicals, 9th ed .; Molecular Probes Inc .: Leiden (2002)
  • Non-Patent Document 2 L. J. Jones, R. P. Haugland, V. L. Singer, Biotechniques, 34, 850 (200 3)
  • Non-Patent Document 3 R. F. Pasternack, C. Fleming, S. Herring, P. J. Collings, J. DePaula, G. DeCastro, E. J. Gibbs, Biophys. J "79, 550 (2000)
  • the present invention solves the above-mentioned problems, and highly sensitive peptide and protein concentrations It is an object of the present invention to provide a novel compound useful as a reagent that can be analyzed efficiently and simply, and a peptide or protein analysis method using the reagent containing the novel compound.
  • the present inventors have synthesized a novel fluorescent compound having a heterocyclic ring and an olefin-conjugated system, and the compound is highly sensitive and efficient in peptide and protein concentrations.
  • the present invention has been found to be useful as a reagent that can be easily and easily analyzed.
  • the present invention includes the following inventions.
  • R is an optionally substituted aryl group or heteroaryl group
  • R and R are independently of each other a bond, a hydrogen atom, a carbon number of 1 to: an alkyl group of LO, carbon
  • R force is substituted !, which is a phenol group or a naphthyl group
  • R, R, R, and R forces, independently of each other, a bond, a hydrogen atom, an alkyl having 1 to 10 carbon atoms
  • a method for analyzing a peptide or protein comprising mixing a sample containing a peptide or protein and the reagent according to (4), and measuring fluorescence or color development of the mixture.
  • the sample and the reagent are mixed by bringing a solution containing the reagent into contact with a gel containing the sample separated by gel electrophoresis.
  • the analysis method according to (5) The analysis method according to (5).
  • the conventional method has drawbacks such as low sensitivity and accuracy, complicated operation, and a long time.
  • the reagent and analysis method containing the novel compound of the present invention are not limited. If used, the presence or concentration of peptides and proteins in a sample can be measured accurately and conveniently in a short time.
  • the method of the present invention measures changes in fluorescence and luminescence, it does not require an expensive apparatus and skilled techniques as in the prior art, and accurate measurement can be easily performed without experience.
  • the compound to be used as an analytical reagent can be easily synthesized from an inexpensive starting material, and since an expensive reagent is not used, the cost for analysis can be greatly reduced.
  • FIG. 1 is a schematic diagram of fluorescence emission by formation of a complex of a protein and a dye.
  • FIG. 3 Three-dimensional fluorescence spectrum of dye 1 with 200 ⁇ g / mL BSA added.
  • FIG. 5 is a photograph observation view when Dye 1 and various concentrations of BSA are added.
  • FIG. 6 is a calibration curve in which the fluorescence intensity of Dye 1 is plotted against the BSA concentration.
  • FIG. 7 Electrophoresis of BSA or IgG separated by SDS-PAGE in Example 7. It is a photograph.
  • FIG. 8 is a graph showing the relationship between the fluorescence intensity of protein spots and protein concentration in Example 7.
  • a compound useful as a reagent of the present invention is represented by the following formula I. :
  • R is an optionally substituted aryl group or heteroaryl group
  • R and R are independently of each other a bond, a hydrogen atom, a carbon number of 1 to: an alkyl group of LO, carbon
  • aryl groups include phenyl and polycyclic aromatic groups in which 2 to 4 benzene rings are condensed (for example, naphthyl, anthryl, pyrenyl).
  • the heteroaryl group is an aryl group containing at least one heteroatom selected from the group consisting of N, O and S as a ring atom. These aryl groups or heteroaryl groups may be further condensed with another aromatic ring or heteroaromatic ring.
  • Specific examples of aryl groups and heteroaryl groups include, for example, pyridyl group, furyl group, dansyl group, coumarin, benzothiazol, fluorescein, rhodamine, and azobenzene.
  • the aryl group or heteroaryl group has 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms).
  • the aryl group or heteroaryl group is preferably substituted with a hydroxyl group for imparting water solubility and electron donating property.
  • R, R, R and R are independently of each other a bond, a hydrogen atom, a C 1-10 carbon atom;
  • Alkyl group alkoxy group having 1 to 10 carbon atoms, and phenol group (which may be substituted by one or more groups in which an amino group, a halogen atom, and a -tro group force are also selected) , Amino group
  • Cyano group nitro group, carboxyl group (or its salt, ester, amide), sulfonic acid (or its salt, ester, amide), thiol group, hydroxyl group (or its salt), carbon number
  • This compound is produced by reacting 4-hydroxybenzaldehyde and 4- (disanomethylene) -2,6-dimethyl-4H-pyran in ethanol in the presence of a base (for example, an amine such as piperidine). be able to.
  • a base for example, an amine such as piperidine
  • the reagent of the present invention contains the compound of formula I, but the form at the time of use is not particularly limited.
  • the reagent of formula I is dissolved in water to form an aqueous solution.
  • it may be a filter paper, a silica sheet, an alumina sheet or the like impregnated with a solution of the compound of formula I and optionally dried.
  • protein a method for analyzing a peptide or protein (hereinafter also simply referred to as "protein”) using the reagent of the present invention will be described.
  • FIG. 1 The principle of the method of the present invention is shown in FIG.
  • the compound of formula I and the protein to be measured are mixed, they form a complex, and the compound of formula I emits fluorescence or color.
  • This change in fluorescence and color development correlates with the amount of protein.
  • qualitative analysis or quantitative analysis of protein can be performed.
  • the reagent of the present invention and the protein-containing sample may be mixed in a liquid phase (eg, an aqueous solution), or a solid phase (eg, filter paper, silica sheet, aluminum) impregnated with the reagent. Nasheet) and a solution containing the sample can be brought into contact with each other.
  • a liquid phase eg, an aqueous solution
  • a solid phase eg, filter paper, silica sheet, aluminum
  • the compound of formula I forms a complex (charge transfer complex) with the protein by hydrophobic interaction and charge transfer interaction, thereby forming a compound of formula I.
  • Changes occur in the intrinsic absorption wavelength and absorption intensity, or fluorescence wavelength and fluorescence intensity. In some cases, this change can be visually observed as a change in color tone, so that the presence of the protein in the sample can be easily confirmed. Alternatively, it may be measured using a measuring instrument such as a commercially available fluorimeter or absorptiometer. The protein concentration can be accurately quantified based on the amount of change.
  • the sample is subjected to electrophoresis such as agarose gel electrophoresis or polyacrylamide gel electrophoresis to separate proteins contained in the sample, and then the analysis reagent of the present invention is brought into contact with the gel after electrophoresis in the gel. It is also possible to perform qualitative Z quantitative analysis of the protein in the sample by staining the protein present in the sample and capturing it as an image using a fluorescence image analyzer or the like.
  • electrophoresis such as agarose gel electrophoresis or polyacrylamide gel electrophoresis
  • Fig. 2 shows the measured absorption spectrum.
  • concentration of BSA increased, the absorbance in the 400 nm to 500 nm absorption band increased slightly. Similar results were obtained for Dye 2 and Dye 3.
  • Fig. 5 shows a photograph of the solution before the addition of BSA to Dye 1 (0 ⁇ g / ml) and after the addition (100 ⁇ g / ml) with an ultraviolet lamp. Orange by adding BSA It was observed that it was emitting light!
  • Table 1 shows optical data before and after the interaction of each of the above dyes with BSA.
  • Glycine sodium chloride sodium salt, ammonium sulfate, asparagine, sodium hydrogen carbonate, salt salt zinc (11), Bicine, Bis-Tris, nickel chloride, sodium acetate, Tricine, sodium phosphate, guanidine .HCL , Imidazole, Calcium Chloride, Triethanolamine, Sodium Taenoate, HEPES, B-PER Reagent, Salty Connort (II), Nucleic Acid (Derived from Testis), SDS, CHAPS, Tweem-20, Triton X -100, EDTA, EGTA, cysteine, glucose, melibiose, 2 mercaptoethanol, thimerosal, acetone, acetonitrile, ethanol, methanol, Phenol Red, urea, glycerol, potassium thiocyanate, sucrose
  • Table 2 shows the concentration of nuclear material when the fluorescence intensity changes by 10% by adding each of the above interfering substances in the state where the dye and BSA are mixed. Observed concentrations of interfering substances are in excess of concentrations higher than those used under normal experimental conditions. It was. Therefore, it was found that the interaction between the dye and the protein was not affected by the interfering substance.
  • Fluorescence detection was performed (ex; 543 nm, em; 590 nm or ex; 480 nm, em; 530 nm).
  • Fig. 7 shows an electrophoretogram of BSA or IgG separated by SDS-PAGE.
  • the protein was dyed with a dye and succeeded in obtaining a beautiful electrophoretic image.
  • Fig. 8 shows the relationship between the fluorescence intensity of protein spots and protein concentration. A good linear relationship was obtained, and no significant difference was observed in the slope of the calibration curve for each protein.
  • Reagents and methods for protein analysis using the novel compounds of the present invention are highly sensitive, comprehensive and simple protein analysis in the fields of biochemistry, medicine, analytical chemistry and the like. Useful. Furthermore, not only protein analysis, but also stains used when separating proteins in electrophoresis and proteins in living cells. It can also be used for visualization imaging dyes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Pyrane Compounds (AREA)

Abstract

 ペプチド及びタンパク質濃度を高感度で効率的に且つ簡便に分析することができる試薬として有用な、下記式Iで表される化合物、及び該化合物を含む試薬を使用した分析方法を提供する。  式I:   【化1】 [式中、R1は置換されていてもよいアリール基又はヘテロアリール基であり、R3、R4、R5及びR6は、互いに独立して、結合、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、フェニル基(該フェニル基はアミノ基、ハロゲン及びニトロ基から選択される1つ以上の基により置換されていてもよい)、アミノ基、シアノ基、ニトロ基、カルボキシル基(若しくはその塩、エステル、アミド)、スルホン酸(若しくはその塩、エステル、アミド)、チオール基、水酸基(若しくはその塩)、炭素数1~10のアシル基、ハロゲン及び糖からなる群より選択されたものであり、nは1~5の整数である。]      

Description

明 細 書
新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及 び該分析試薬を使用する分析方法
技術分野
[0001] 本発明は、新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、 及び該分析試薬を使用する分析方法に関する。
背景技術
[0002] 体内のタンパク質を網羅的に調べて病気の状態や原因を探るプロテオーム研究が 進められており、例えば、ガンマーカータンパク質のように疾患の目印となるタンパク 質を決定しょうとする研究が急速に加速している。特に、タンパク質表面、タンパク質 表面間の分子認識は生命現象における共通の言語と考えられ、細胞外からの情報 の多くは細胞膜や細胞内部でのタンパク質表面を介した相互作用によって増幅し伝 達される。
[0003] また、近年では DNAチップ技術の向上により RNAの発現を網羅的に解析するトラン スクリプトーム解析も盛んに行われている。しかしながら、この RNA発現プロファイルと タンパク質の発現プロファイルとは必ずしも一致するわけでなぐその相関は 50%以 下であると言われている。そのためには、 RNAの網羅的解析にカ卩えて、タンパク質の 網羅的解析が重要であり、最近では著しく発達している二次元電気泳動法や質量分 析さらにはプロテインチップのようなゲノム解析に匹敵するハイスループット分析を駆 使して、タンパク質の機能を明らかにする試みがなされている。
[0004] 試料中のタンパク質を定量する代表的な方法として、(a)吸光光度法、(b) Biuret試 薬を用いた Biuret法、(c)フヱノール試薬と Biuret法を組み合わせた Lowry法、(d ) Bradford法、(e) ELISA法等が挙げられる。以下にそれぞれの方法の原理、長所、 および短所につ!、て記す。
[0005] (a)吸光光度法
原理:タンパク質中のチロシンやトリプトファンに起因する 280nm付近の吸収帯を利用 してタンパク質濃度を算出する方法。タンパク質の種類によってチロシンやトリプトフ アンの含量が異なるので 280應における吸光度は変動する力 通常 lmg/mlの濃度の 時 A280nmは 1.0として計算できる。
長所:操作が簡便であり、測定後サンプルの回収が可能である。
短所:タンパク質の種類により吸光度が変動する。また 280應に吸収を持たないタン ノ^質 (コラーゲン、ゼラチンなど)は測定できない。さらに紫外部に吸収を持つ物質 が混入すると定量が困難となる。
[0006] (b) Biuret法
原理:タンパク質をアルカリ性条件下で Cu2+溶液と反応させると、 Cu2+がポリペプチド 鎖中の窒素原子と配位結合して赤色に発色する現象を利用して、 540nmにおける吸 光度を測定する方法。
長所:タンパク質の違 、による発色率の差が少な 、。操作が簡単である。
短所:感度が低ぐ低濃度試料には向かない。
[0007] (c) Lowry法
原理:リンモリブデン酸とリンタングステン酸を酸性溶液に溶解したフエノール試薬を 用いて、タンパク質中のチロシン、トリブトファンおよびシスティンと反応させることによ り、青色を呈色させる方法である。ペプチド結合に由来する発色効果が強く表れるた め Biuret法よりはるかに感度が高!、。
長所:感度が高ぐ最も一般に使用されている方法である。
短所:還元反応によって呈色させるため、他の還元物質により発色が妨害される。操 作が煩雑で測定までに時間がかかる。タンパク質によって発色率に差がある。
[0008] (d) Bradford法
酸性溶液中、トリフエ-ルメタン系青色色素の Coomassie Brilliant Blue G-250がタン パク質と結合すると、極大吸収波長が 465應から 595應にシフトし、色調が赤紫色か ら青色に変化する。この現象を利用してタンパク質を定量する方法である。
長所:妨害物質の影響を受けに 、。操作が非常に簡単である。
短所:タンパク質の種類により発色率に差がある。また界面活性剤の混入により発色 が妨害される。
[0009] (e) ELISA法 特定のタンパク質とだけ結合する抗体を利用した免疫学的な手法。
短所:対象となるタンパク質 (抗原)と抗体の結合反応を繰り返す必要があるため、測 定に 6時間以上かかるなど、迅速に結果を求めることができな!/、。
[0010] この他には、蛍光光度法を利用してペプチド又はタンパク質を分析する方法が知ら れている。蛍光光度法は、種々の化学物質を分析する慣習的な方法であり、高感度 で、試料が少量ですみ、大掛かりな装置、熟練した技術を必要としないといった利点 がある。
[0011] これまでにも蛍光光度法を利用したタンパク質定量の報告はあり、例えば、フルォ レサミンは 1級ァミンと反応すると、 495nmに蛍光を発する強い蛍光物質となることを利 用した方法ゃシァニン系色素を用いた分析が代表的である(Haugland, R. P. Handb ook of Fluorescent Probes ana Researchし hemicals, 9th ed.; Molecular Probes Inc.: Leiden, 2002.)。
[0012] し力しながらこの方法では色素とタンパク質とを共有結合を介して反応させるため、 反応時間が遅い、タンパク質の種類によって反応性が変わる、検量線が直線でない 、色素同士の会合による測定誤差、スト一タスシフトが小さいといった問題点がある。
[0013] 特許文献 1 :米国特許第 5616502号
非特干文献 1 : Haugland, R. P. Handoook of Fluorescent Probes and Research Chem icals, 9th ed.; Molecular Probes Inc.: Leiden(2002)
非特許文献 2 : L. J. Jones, R. P. Haugland, V. L. Singer, Biotechniques, 34, 850(200 3)
非特許文献 3 : R. F. Pasternack, C. Fleming, S. Herring, P. J. Collings, J.DePaula, G. DeCastro, E. J. Gibbs, Biophys. J" 79, 550(2000)
発明の開示
発明が解決しょうとする課題
[0014] タンパク質の網羅的な解析によるプロテオーム研究は重要である力 従来の分析 方法は、感度 ·精度が低カつたり、操作が煩雑であったり、時間がかかる等の欠点が めつに。
[0015] そこで、本発明では、上記問題点を解決し、ペプチド及びタンパク質濃度を高感度 で効率的に且つ簡便に分析することができる試薬として有用な新規化合物、及び該 新規化合物を含む試薬を使用したペプチド又はタンパク質の分析方法を提供するこ とを目的とする。
課題を解決するための手段
[0016] 本発明者らは上記課題を解決するために鋭意検討した結果、複素環とォレフィン 共役系とを有する新規な蛍光化合物を合成し、該化合物がペプチド及びタンパク質 濃度を高感度で効率的に且つ簡便に分析することができる試薬として有用であること を見出し、本発明を完成させるに至った。
[0017] 即ち、本発明は以下の発明を包含する。
[0018] (1)次の式 Iで表される化合物:
[化 1]
Figure imgf000006_0001
[0019] [式中、 Rは置換されていてもよいァリール基又はへテロアリール基であり、 R、 R、
1 3 4
R及び Rは、互いに独立して、結合、水素原子、炭素数 1〜: LOのアルキル基、炭素
5 6
数 1〜10のアルコキシ基、フエ-ル基(該フヱ-ル基はァミノ基、ハロゲン及び-トロ 基力も選択される 1つ以上の基により置換されていてもよい)、アミノ基、シァノ基、 -ト 口基、カルボキシル基 (若しくはその塩、エステル、アミド)、スルホン酸 (若しくはその 塩、エステル、アミド)、チオール基、水酸基 (若しくはその塩)、炭素数 1〜10のァシ ル基、ハロゲン及び糖からなる群より選択されたものであり、 nは 1〜5の整数である。 ] [0020] (2) R力 置換されて!、てもよ 、、フエ-ル基又はナフチル基であることを特徴とする
(1)に記載の化合物。
[0021] (3)R、 R、 R及び R力 互いに独立して、結合、水素原子、炭素数 1〜10のアル キル基力もなる群より選択されたものであり、 nが 1であることを特徴とする(2)に記載 の化合物。
[0022] (4) (1)〜(3)のいずれかに記載された化合物を含むことを特徴とするペプチド又は タンパク質の分析用試薬。
[0023] (5)ペプチド又はタンパク質を含有する試料と (4)に記載の試薬とを混合し、該混合 物の蛍光又は発色を測定することを特徴とするペプチド又はタンパク質の分析方法。
[0024] (6)前記試料と前記試薬との混合が液相中で行われることを特徴とする(5)に記載の 分析方法。
[0025] (7)前記試料と前記試薬との混合が、前記試薬を含有する溶液と、ゲル電気泳動を 用いて分離された前記試料を含有するゲルとを接触させることにより行われることを 特徴とする (5)に記載の分析方法。
発明の効果
[0026] 従来の方法では、感度 ·精度が低カつたり、操作が煩雑であったり、時間がかかる 等の欠点があつたが、本発明の新規ィ匕合物を含む試薬及び分析方法を用いれば、 試料中のペプチド及びタンパク質の存在又は濃度を、短時間で正確に且つ簡便に 測定することができる。また、本発明の方法では蛍光や発光の変化を測定するので、 従来のような高価な装置や熟練した技術は必要とせず、経験がなくても容易に正確 な測定をすることができる。また使用する分析試薬となる化合物は安価な出発物質か ら容易に合成することができ、高価な試薬は使用しないので分析に力かるコストを大 幅に低減することができる。
図面の簡単な説明
[0027] [図 1]タンパク質と色素の複合体形成による蛍光発光の模式図である。
[図 2]色素 1に種々の濃度の BSAを添カ卩したときの吸収スペクトルである。
[図 3]色素 1に 200 μ g/mLの BSAを添カ卩したときの 3次元蛍光スペクトルである。
[図 4]色素 1に種々の濃度の BSAを添カ卩したときの蛍光スペクトルである。
[図 5]色素 1と種々の濃度の BSAを添加したときの写真観察図である。
[図 6]色素 1の蛍光強度を BSA濃度に対してプロットした検量線である。
[図 7]実施例 7において、 SDS-PAGEによって分離された BSAまたは IgGの電気泳動 写真である。
[図 8]実施例 7において、タンパク質のスポットの蛍光強度とタンパク質濃度との関係 を示す図である。
発明を実施するための最良の形態
[0028] 本発明の試薬として有用な化合物は、下記の式 Iで表される。:
[化 2]
Figure imgf000008_0001
[0029] [式中、 Rは置換されていてもよいァリール基又はへテロアリール基であり、 R、 R、
1 3 4
R及び Rは、互いに独立して、結合、水素原子、炭素数 1〜: LOのアルキル基、炭素
5 6
数 1〜10のアルコキシ基、フエ-ル基(該フヱ-ル基はァミノ基、ハロゲン及び-トロ 基力も選択される 1つ以上の基により置換されていてもよい)、アミノ基、シァノ基、 -ト 口基、カルボキシル基 (若しくはその塩、エステル、アミド)、スルホン酸 (若しくはその 塩、エステル、アミド)、チオール基、水酸基 (若しくはその塩)、炭素数 1〜10のァシ ル基、ハロゲン及び糖からなる群より選択されたものであり、 nは 1〜5の整数である。 ]
[0030] ァリール基としては、例えば、フエニル、 2〜4個のベンゼン環が縮合した多環芳香 族基 (例えば、ナフチル、アントリル、ピレニル)等が挙げられる。また、ヘテロァリール 基とは、 N、 O及び Sからなる群より選択される少なくとも 1個のへテロ原子をその環原 子として含有するァリール基を 、う。これらのァリール基又はへテロアリール基はさら に別の芳香環又は複素芳香環と縮合したものであってもよ 、。ァリール基及びへテロ ァリール基の具体例としては、例えば、ピリジル基、フリル基、ダンシル基、クマリン、 ベンゾチアゾ一ル、フルォレセイン、ローダミン、ァゾベンゼン等が挙げられる。
[0031] 前記ァリール基又はへテロアリール基は、炭素数 1〜10 (好ましくは炭素数 1〜6) のアルキル基、炭素数 1〜10 (好ましくは炭素数 1〜6)のアルコキシ基、フ ニル基( 該フエニル基はァミノ基、ハロゲン及び-トロ基力 選択される 1つ以上の基により置 換されていてもよい)、アミノ基、シァノ基、ニトロ基、カルボキシル基 (若しくはその塩 、エステル、アミド)、スルホン酸 (若しくはその塩、エステル、アミド)、チオール基、水 酸基 (若しくはその塩)、炭素数 1〜10 (好ましくは炭素数 1〜6)のァシル基、ハロゲ ン及び糖からなる群より選択される 1つ以上の基により置換されていてもよい。前記ァ リール基又はへテロアリール基は、水溶性及び電子供与性の付与のために水酸基 で置換されて 、ることが好まし 、。
[0032] 化合物の蛍光基又は発色基 (紫外部、可視部、赤外部の吸収、蛍光の測定が可能 なもの)となる部分は、式 Iのォレフイン部分- (CH=CH)n-と共役系を形成するものであ り、式 Π :
[0033] [化 3]
式 1 1
Figure imgf000009_0001
で表される構造を有する。
[0034] [式中、 R、 R、 R及び Rは、互いに独立して、結合、水素原子、炭素数 1〜10のァ
3 4 5 6
ルキル基、炭素数 1〜10のアルコキシ基、フエ-ル基(該フヱ-ル基はァミノ基、ハロ ゲン及び-トロ基力も選択される 1つ以上の基により置換されていてもよい)、アミノ基
、シァノ基、ニトロ基、カルボキシル基 (若しくはその塩、エステル、アミド)、スルホン酸 (若しくはその塩、エステル、アミド)、チオール基、水酸基 (若しくはその塩)、炭素数
1〜10のァシル基、ハロゲン及び糖からなる群より選択されたものである。 ]
中でも、下記式:
[0035] [化 4]
Figure imgf000010_0001
で表される基が好ましい。
[0036] 蛍光基又は発色基である上記構造に、アルケニル基及び芳香族基を接続すること により共役系が伸長し、蛍光 ·発色波長の長波長化が促される。
[0037] 式 Iの化合物は、公知の方法により容易に合成することができる。例えば、下記式: [0038] [化 5]
Figure imgf000010_0002
の化合物は、 4-ヒドロキシベンズアルデヒドと 4- (ジシァノメチレン)- 2,6-ジメチル -4H- ピランとをエタノール中、塩基 (例えばピぺリジン等のァミン)の存在下で反応させるこ とにより製造することができる。
[0039] 本発明の試薬は式 Iの化合物を含有するものであるが、その使用時の形態は特に 限定されるものではなぐ例えば、水に式 Iの化合物を溶解させて水溶液としたもので もよいし、又は、ろ紙、シリカシート、アルミナシート等に式 Iの化合物の溶液を染み込 ませ、場合により乾燥させたものでもよい。 [0040] 次に、本発明の試薬を用いるペプチド又はタンパク質 (以下、単に「タンパク質」とも 言う)の分析方法にっ 、て説明する。
[0041] 本発明の方法の原理を図 1に示す。式 Iの化合物と測定対象物であるタンパク質と を混合するとこれらは複合体を形成し、式 Iの化合物に蛍光発光又は発色が生じる。 この蛍光,発色の変化 (例えば、波長、強度)はタンパク質量と相関関係があるので、 この変化を測定することにより、タンパク質の定性分析又は定量分析を行うことができ る。
[0042] 本発明の試薬とタンパク質含有試料との混合は、液相(例えば、水溶液)中で行つ てもよいし、又は前記試薬を染み込ませた固相(例えば、ろ紙、シリカシート、アルミ ナシート)と前記試料を含有する溶液とを接触させることにより行うことができる。
[0043] 試料中にタンパク質が存在する場合、式 Iの化合物は疎水性相互作用及び電荷移 動相互作用によりタンパク質と複合体 (電荷移動錯体)を形成し、それにより式 Iの化 合物に固有の吸収波長や吸収強度または蛍光波長や蛍光強度に変化が生じる。こ の変化は色調の変化として目視で観察できる場合もあり、これにより試料中のタンパ ク質の存在を容易に確認することができる。あるいは、市販の蛍光光度計'吸光光度 計等の測定機器を用いて測定してもよい。この変化量'変位量からタンパク質の濃度 を正確に定量することができる。
[0044] また、試料をァガロースゲル電気泳動又はポリアクリルアミドゲル電気泳動等の電 気泳動にかけて試料に含まれるタンパク質を分離し、次いで電気泳動後のゲルに本 発明の分析試薬を接触させることによりゲル中に存在するタンパク質を染色し、これ を蛍光イメージアナライザ一等を用 、て画像として取り込むことにより、試料中のタン ノ ク質を定性 Z定量分析することも可能である。
実施例
[0045] 以下に、本発明を実施例によりより詳細に説明するが、本発明はこれらに限定され るものではない。
[0046] (実施例 1 :色素 1の合成)
[化 6]
Figure imgf000012_0001
色素 1
[0047] 50ml三口フラスコに、 4-ヒドロキシベンズアルデヒド 0.70g(5.81mmol)、 4- (ジシァノメ チレン)- 2,6-ジメチル- 4H-ピラン 1.0g(5.81mmol)、ピぺリジン 0.50g(5.81mmol)、ェタノ ール 50mlをカ卩え、 Ar気流下、 12時間加熱還流した。溶媒を減圧留去した後、カラムク 口マトグラフィー (Si02, CHC13: MeOH = 10 : 1 v/v)で精製し、 目的化合物を得た。 収率 30%。
JH NMR (400 MHz, CDCl , r.t., TMS, d/ppm) 1.71 (s, 3H), 5.27 (s, 1H), 5.51 (s, 1
3
H), 6.65 (d, 1H), 6.85 (d, 1H), 6.68 (d, 2H), 7.13 (d, 2H).
[0048] (実施例 2 :色素 2の合成)
[化 7]
Figure imgf000012_0002
色素 2
50ml三口フラスコに、ノ ニリン 0.70g(5.81mmol)、 4- (ジシァノメチレン) -2,6-ジメチル- 4H-ピラン 1.0g(5.81mmol)、ピぺリジン 0.50g(5.81mmol)、エタノール 50mlをカ卩え、 Ar気 流下、 12時間加熱還流した。溶媒を減圧留去した後、カラムクロマトグラフィー (Si02, rf 00S〜 0 [VS9]
Figure imgf000013_0001
止 腿 OH ^ ¾T¾。 ·Π泰簿 ^^ΟΗβ^ ¾ί
•(Ηΐ 'Ρ) 80·8
'(Ηΐ ' ) 8S"Z '(Ηΐ ' ) eS- '(Ηΐ 'Ρ) \τΐ '(Ηΐ 'Ρ) 6S'9 '(Ηΐ 'Ρ) S8'9 '(Ηΐ 'Ρ) S9'9 '(Η ΐ 's) IS'S '(Ηΐ 's) LZ' '(HS ΐΖ·ΐ
Figure imgf000013_0002
Η Ν ΗΤ
°% Z 揭。
目 、つ ¾H (ΛΛ ΐ : ΟΪ = Horn: ειつ Ηつ 'so!s)— 4ム マ
^ ^w^-^m^m^ 。 っ^ D 翻^、止^ Ι ^Μ^ 一 ^
ε挲^
Figure imgf000013_0003
[ ]
(^^m'^'- m [osoo]
"(HS 'Ρ) εΓ '{HZ 'Ρ) 89·9 '(Ηΐ 'Ρ) S8'9 '(Ηΐ 'Ρ) S9'9 '(Ηΐ 's) IS'S '(Η ΐ 's) LZ' '(Ηε 's) εο· '(Ηε ιζ·ΐ
Figure imgf000013_0004
H N HT
°%0S ¾T。 呦^ W目、つ攝慰 (ΛΛ ΐ: Οΐ = HO : £\DHD
TCS.0C/900Zdf/X3d 0£0 /900Z OAV [0053] 測定された吸収スペクトルを図 2に示す。図 2において、曲線 (A)は [BSA] = Ο μ § /mL、曲線 )は [BSA] = 200 μ g/mLを表す。 BSAの濃度の増加に伴い、 400nm 〜500nmの吸収帯の吸光度がわずかに増加した。色素 2および色素 3についても同 様の結果が得られた。
[0054] (実施例 5 :色素 1とタンパク質 (BSA)との複合体ィ匕による蛍光スペクトルの変化)
色素 1と BSAとの相互作用を蛍光スペクトル測定により解析するにあたり、最適な励 起波長を決定するために、色素 1と BSA (200 μ g/mL)とを混合し、 3次元蛍光スぺク トル (励起波長範囲: 350ηπ!〜 500nm、蛍光波長範囲: 400ηπ!〜 750nm)を測定した。そ の結果を図 3に示す。励起波長が長波長側へ行くに伴い、 590nmに極大蛍光波長を 持つ蛍光スペクトルが観察された。 500nmの測定にお ヽては散乱光が蛍光に大きく かぶさるために、以後の蛍光スペクトル測定の励起波長は 470nmとした。色素 2およ び色素 3につ ヽても同様の測定を行!ヽ、励起波長を決定した。
[0055] 蛍光スペクトルの測定は以下の条件で行なった。
濃度: [色素] = 1.0 X 10-5M
[BSA] = 0〜 200 g/mL
溶媒: 0.9 % NaCl水溶液
温度: 25 °C
励起波長:色素 1 350nm, 470nm
色素 2 350nm, 470nm
色素 3 500nm
[0056] 色素 1に(0,25, 50, 100,200 g/mL)の BSAを添カ卩したときの蛍光スペクトル変化を測 定し、その結果を図 4に記載した。図 4において各曲線は下力 順に BSA濃度 (0,25, 50, 100,200 g/mL)の測定結果を表す。図 4に示すように、 BSA濃度の増加に伴って 蛍光強度の増加が観察された。 BSAを 200 g/mL添加した時の蛍光強度は、色素 1 単独のときよりも約 20倍増加した。色素 2および色素 3についても、 BSA濃度の増加に 伴って蛍光強度が増加することが確認された。
[0057] 色素 1に BSAを添加する前 (0 μ g/ml)、および添加した後 (100 μ g/ml)の溶液に紫外 線ランプを照射したときの写真観察図を図 5に示す。 BSAを添加することにより橙色に 発光して!/、る様子が観察された。
[0058] 色素 1に BSAを添カ卩した時の 590nmにおける蛍光強度 (I)から、色素 1単独の 590nm における蛍光強度 (Io)を差し引いた値 (I-Io)を BSA濃度に対してプロットした図を図 6 に示す。相関係数が 0.9974という良好な直線関係が得られた。また検出限界は 100η g/mLであり、 Bradfold法よりも約 20倍感度が良いことが分かった。色素 2および色素 3 についても同様に検量線を作成したところ、蛍光強度とタンパク質濃度との間に良好 な直線関係があることが分力つた。
[0059] 上記の各色素の BSAとの相互作用の前後における光学的データを表 1に示す。
[表 1]
Figure imgf000016_0001
[0060] 全ての色素において、 BSAの添カ卩の前後で極大吸収波長のシフトは観察されず、 モル吸光係数がわずかに増加したのみであった。一方、蛍光スペクトルにおいては、 極大蛍光波長のシフトは観察されなカゝつたものの、 BSAの添加により大きな蛍光強度 の増加が観察された。相対蛍光強度 I/I (I :色素単独での 590nmにおける蛍光強
0 0
度、 I:色素に BSA(200 mg/mL)を添加した時の 590nmにおける蛍光強度)を算出した ところ、色素 1および色素 3の場合、 17〜18倍の蛍光強度の増加があり、ストークスシ フトが大きいので、極微量のタンパク質でも鋭敏に検出できることが分力 た。
[0061] (実施例 6:妨害物質に対する影響につ!、て)
無機塩、界面活性剤、核酸などの妨害物質が、色素とタンパク質との相互作用にど の程度、影響を与えるかを、以下のようにして確認した。
(測定条件)
[色素 3] = 1.0 X 10— 5 M
[BSA] = 1000 μ g/mL
溶媒: 0.9 % NaCl水溶液
温度: 25 ° C
励起波長:色素 3 500nm
(妨害物質として使用した化合物)
グリシン、塩ィ匕ナトリウム、硫酸アンモ-ゥム、ァスパラギン、炭酸水素ナトリウム、塩ィ匕 亜鉛(11)、 Bicine、 Bis- Tris、塩化ニッケル、酢酸ナトリウム、 Tricine、リン酸ナトリウム、 グァ-ジン .HCL、イミダゾール、塩化カルシウム、トリエタノールァミン、タエン酸ナトリ ゥム、 HEPES、 B-PER Reagent,塩ィ匕コノ ルト(II)、核酸 (鮭精巣由来)、 SDS、 CHAPS 、 Tweem- 20、 Triton X- 100、 EDTA、 EGTA、システィン、グルコース、メリビオース、 2 メルカプトエタノール、チメロサール、アセトン、ァセトニトリル、エタノール、メタノー ル、 Phenol Red,尿素、グリセロール、チォシアン酸カリウム、スクロース
[0062] (結果)
色素と BSAが混合している状態で、上記の各妨害物質を添加することによって、蛍 光強度が 10%変化したときの核物質の濃度を測定し、表 2に示す。観察された妨害物 質の濃度は、通常の実験条件下において利用される濃度よりも大過剰の濃度であつ た。従って、色素とタンパク質との相互作用は、妨害物質によって影響を受けないこと が分かった。
[表 2]
Figure imgf000019_0001
施例 7 :電気泳動試験)
合成した色素の応用例として、電気泳動によって分離されたタンパク質を検出する ための染色剤として利用することが出来るかどうかを、次のようにして検討した。
(実験条件)
•SDS— PALrE装 : ^ure Blot Fl Gel system (Astellas Pharma, Inc., Tokyo).
• [色素 3] = 0.1 mg/mL (又は 0.2mg/mL) in MeOH: H O = 1 : lv/v
2
•固定化液および洗浄液: AcOH: MeOH: H 0 = 3: 10: 87
2
'恢出装像: ProXpress imaging system (Perkin— Elmer, U.K.)又【ま L¾400 scanner、
Tecan, USA))
(操作)
1) BSA、 Human IgG、 Chymotrypsinogen又は Transferrinの SDS— PAGEを行った。
2)ゲルを固定ィ匕液中で 30分間浸した。
3)ゲルを色素溶液に 30分間または 1時間浸した。
4)ゲルを洗浄液に 30分間浸した。
5)蛍光検出を行った (ex; 543 nm, em; 590 nm又は ex; 480 nm, em; 530nm).
[0065] (結果)
SDS-PAGEによって分離された BSAまたは IgGの電気泳動写真を、図 7に示す。タン パク質は色素によって染色され、綺麗な電気泳動画像を得ることに成功した。
図 7において、各数字は次のものを表す:
(DlgGO. 02 g、 (2)lgG0. 1 gゝ (3)lgG0. 4 g、 (4)lgGl. 1 gゝ (l)lgG3 . 3/zg、 (6)BSA0. Ol^g, (7)BSA0. 02 g、 (8)BSA0. 1 g、 (9)BSA0.4 μ§、 (10)BSA1。 1 8、 (11)BSA3. 3 μ g、 (12)BSA10. 0 8
また、タンパク質のスポットの蛍光強度とタンパク質濃度との関係を、図 8に示す。良 好な直線関係が得られ、かつタンパク質間ごとの検量線の傾きに大きな違いは観察 されなかった。
産業上の利用可能性
[0066] 本発明の新規化合物を利用するタンパク質の分析用試薬及び分析方法は、例え ば、生化学、医療、分析化学等の分野において、高感度、網羅的かつ簡便なタンパ ク質の分析に有用である。さらには、タンパク質の分析だけに留まらず、電気泳動に おいてタンパク質を分離したときに使用される染色剤や生細胞内のタンパク質の可 視化イメージング色素等にも利用できる。

Claims

請求の範囲
次の式 Iで表される化合物:
Figure imgf000022_0001
[式中、 Rは置換されていてもよいァリール基又はへテロアリール基であり、 R、 R、
1 3 4
R及び Rは、互いに独立して、結合、水素原子、炭素数 1〜: LOのアルキル基、炭素
5 6
数 1〜10のアルコキシ基、フエ-ル基(該フヱ-ル基はァミノ基、ハロゲン及び-トロ 基力も選択される 1つ以上の基により置換されていてもよい)、アミノ基、シァノ基、 -ト 口基、カルボキシル基 (若しくはその塩、エステル、アミド)、スルホン酸 (若しくはその 塩、エステル、アミド)、チオール基、水酸基 (若しくはその塩)、炭素数 1〜10のァシ ル基、ハロゲン及び糖からなる群より選択されたものであり、 nは 1〜5の整数である。 ]
[2] R力 置換されて!、てもよ 、、フエニル基又はナフチル基であることを特徴とする請 求項 1に記載の化合物。
[3] R、 R、 R及び R 1S 互いに独立して、結合、水素原子、炭素数 1〜10のアルキ
3 4 5 6
ル基カもなる群より選択されたものであり、 nが 1であることを特徴とする請求項 2に記 載の化合物。
[4] 請求項 1〜3のいずれかに記載されたィ匕合物を含むことを特徴とするペプチド又は タンパク質の分析用試薬。
[5] ペプチド又はタンパク質を含有する試料と請求項 4に記載の試薬とを混合し、該混 合物の蛍光又は発色を測定することを特徴とするペプチド又はタンパク質の分析方 法。
[6] 前記試料と前記試薬との混合が液相中で行われることを特徴とする請求項 5に記 載の分析方法。
前記試料と前記試薬との混合が、前記試薬を含有する溶液と、ゲル電気泳動を用 いて分離された前記試料を含有するゲルとを接触させることにより行われることを特 徴とする請求項 5に記載の分析方法。
PCT/JP2006/307531 2005-06-08 2006-04-10 新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及び該分析試薬を使用する分析方法 WO2006132030A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007520035A JP4893964B2 (ja) 2005-06-08 2006-04-10 新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及び該分析試薬を使用する分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005167613 2005-06-08
JP2005-167613 2005-06-08

Publications (1)

Publication Number Publication Date
WO2006132030A1 true WO2006132030A1 (ja) 2006-12-14

Family

ID=37498237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307531 WO2006132030A1 (ja) 2005-06-08 2006-04-10 新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及び該分析試薬を使用する分析方法

Country Status (2)

Country Link
JP (1) JP4893964B2 (ja)
WO (1) WO2006132030A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG158066A1 (en) * 2008-07-07 2010-01-29 Nat Inst Of Advanced Ind Scien Method and reagent for protein analysis
WO2010064638A1 (ja) * 2008-12-02 2010-06-10 独立行政法人科学技術振興機構 芳香族スルホン酸化合物を用いた新規Clear Native電気泳動法
JP2010528268A (ja) * 2007-05-18 2010-08-19 ライフ テクノロジーズ コーポレーション 迅速なタンパク質標識および分析
JP2011505342A (ja) * 2007-11-21 2011-02-24 バイオ−ラッド ラボラトリーズ,インコーポレイティド タンパク質染色のための光ルミネセンス性金属複合体
JP2012031082A (ja) * 2010-07-29 2012-02-16 National Institute Of Advanced Industrial Science & Technology タンパク質を検出するための分析試薬
US8778685B2 (en) 2009-08-25 2014-07-15 Life Technologies Corporation Quantitative fluorescent protein standards
CN104178132A (zh) * 2014-07-30 2014-12-03 四川大学 一种荧光化合物及其在医药上的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006374A1 (en) * 1985-04-25 1986-11-06 Polaroid Corporation Novel fruorescent compounds and biological diagnostic devices
WO2003078542A1 (en) * 2002-03-19 2003-09-25 Neoview Co., Ltd. Red organic light-emitting compound and organic light-emitting device comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145215A (en) * 1977-07-15 1979-03-20 Eastman Kodak Company Migration imaging process and compositions
JPS62502548A (ja) * 1985-04-25 1987-10-01 ポラロイド コ−ポレ−シヨン 新規な螢光性化合物および生物学的検査装置
JPH08100173A (ja) * 1994-09-30 1996-04-16 Idemitsu Kosan Co Ltd 白色蛍光変換膜及びそれを用いた白色発光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006374A1 (en) * 1985-04-25 1986-11-06 Polaroid Corporation Novel fruorescent compounds and biological diagnostic devices
WO2003078542A1 (en) * 2002-03-19 2003-09-25 Neoview Co., Ltd. Red organic light-emitting compound and organic light-emitting device comprising the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUN H. ET AL.: "Fluorescent Hydrophobic Probes Based on Intramolecular Charge Transfer State for Sensitive Protein Detection in Solution", CHEMISTRY LETTERS, vol. 33, no. 6, 2004, pages 690 - 691, XP003001630 *
KOPYLOVA T.N. ET AL.: "Limitation of High-Power Radiation by Organic Molecules: I. Substituted Pyranes and Cyanine Dyes", QUANTUM ELECTRONICS, vol. 33, no. 11, 2003, pages 967 - 974, XP003001631 *
WANG B.C. ET AL.: "Theoretical Investigation of Electro-Luminescent Properties in Red Emission DCM, DCJ, RED and DAD Derivatives", THEOCHEM., vol. 716, no. 1-3, 7 March 2005 (2005-03-07), pages 19 - 25, XP004771689 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528268A (ja) * 2007-05-18 2010-08-19 ライフ テクノロジーズ コーポレーション 迅速なタンパク質標識および分析
US8609423B2 (en) 2007-05-18 2013-12-17 Life Technologies Corporation Rapid protein labeling and analysis
US9983211B2 (en) 2007-05-18 2018-05-29 Life Technologies Corporation Rapid protein labeling and analysis
JP2011505342A (ja) * 2007-11-21 2011-02-24 バイオ−ラッド ラボラトリーズ,インコーポレイティド タンパク質染色のための光ルミネセンス性金属複合体
SG158066A1 (en) * 2008-07-07 2010-01-29 Nat Inst Of Advanced Ind Scien Method and reagent for protein analysis
US8263791B2 (en) 2008-07-07 2012-09-11 National Institute Of Advanced Industrial Science And Technology Method and reagent for protein analysis
WO2010064638A1 (ja) * 2008-12-02 2010-06-10 独立行政法人科学技術振興機構 芳香族スルホン酸化合物を用いた新規Clear Native電気泳動法
CN102232186A (zh) * 2008-12-02 2011-11-02 独立行政法人科学技术振兴机构 使用芳香族磺酸化合物的新型Clear Native电泳法
JP5213967B2 (ja) * 2008-12-02 2013-06-19 独立行政法人科学技術振興機構 芳香族スルホン酸化合物を用いた新規ClearNative電気泳動法
US8778685B2 (en) 2009-08-25 2014-07-15 Life Technologies Corporation Quantitative fluorescent protein standards
JP2012031082A (ja) * 2010-07-29 2012-02-16 National Institute Of Advanced Industrial Science & Technology タンパク質を検出するための分析試薬
CN104178132A (zh) * 2014-07-30 2014-12-03 四川大学 一种荧光化合物及其在医药上的用途

Also Published As

Publication number Publication date
JPWO2006132030A1 (ja) 2009-01-08
JP4893964B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
Li et al. Chromogenic and fluorogenic chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2009
Timms et al. Difference gel electrophoresis
Westermeier et al. Protein detection methods in proteomics research
Wang et al. Sensitive Near‐Infrared Fluorescent Probes for Thiols Based on Se N Bond Cleavage: Imaging in Living Cells and Tissues
US7371745B2 (en) Bis-transition-metal-chelate probes
WO2006132030A1 (ja) 新規化合物、該化合物を含むペプチド又はタンパク質の分析用試薬、及び該分析試薬を使用する分析方法
WO2002099424A2 (en) Acridone derivatives as labels for fluorescence detection of target materials
Wang et al. A novel hemicyanine-based near-infrared fluorescent probe for Hg2+ ions detection and its application in living cells imaging
WO2013091074A1 (en) Method and array for identifying histone-code-related analytes
Yu et al. A novel colorimetric sensor based on BODIPY-coumarin dye for simultaneous detection of cyanide and fluoride
JP2014525905A (ja) 近赤外フルオロフォアを使用する分析物検出
Zeng et al. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells
Peng et al. Double-site-based a smart fluorescent sensor for logical detecting of sulphides and its imaging evaluation of living organisms
CN110452250A (zh) 一种荧光素母体结构的检测肼用荧光探针
JP4822409B2 (ja) タンパク質の分析方法
WO2008022355A2 (en) Methods and reagents for detecting phosphomonoester groups
EP3137898A2 (en) Fluorescent molecular sensor for targeting changes in protein surfaces, and methods of use thereof
JPWO2008023489A1 (ja) スクエア酸誘導体化合物、及び該化合物を含むタンパク質検出用試薬、並びに該試薬を用いたタンパク質の検出方法
US20040096887A1 (en) Bis-transition-metal-chelate probes
Sundaram Protein stains and applications
CN108997255A (zh) 一种乙烯基醚类Hg2+荧光探针及其制备方法和应用
JP2000111480A (ja) 新規標識試薬
Sundaram et al. Protein stains and applications
Wolfbeis Fluorescent chameleon labels for bioconjugation and imaging of proteins, nucleic acids, biogenic amines and surface amino groups. a review
CN105315228B (zh) 一种检测高碘酸根的高选择性比值型荧光探针

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007520035

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06731478

Country of ref document: EP

Kind code of ref document: A1