WO2006129698A1 - 移動体通信システム及びその通信制御方法 - Google Patents

移動体通信システム及びその通信制御方法 Download PDF

Info

Publication number
WO2006129698A1
WO2006129698A1 PCT/JP2006/310863 JP2006310863W WO2006129698A1 WO 2006129698 A1 WO2006129698 A1 WO 2006129698A1 JP 2006310863 W JP2006310863 W JP 2006310863W WO 2006129698 A1 WO2006129698 A1 WO 2006129698A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
radio resource
transmission
control unit
communication control
Prior art date
Application number
PCT/JP2006/310863
Other languages
English (en)
French (fr)
Inventor
Mayu Takeshita
Jinsock Lee
Kojiro Hamabe
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007519027A priority Critical patent/JP4853732B2/ja
Priority to CN2006800194829A priority patent/CN101189902B/zh
Priority to US11/916,080 priority patent/US8797863B2/en
Priority to EP06747036.9A priority patent/EP1887828B1/en
Publication of WO2006129698A1 publication Critical patent/WO2006129698A1/ja
Priority to US14/134,709 priority patent/US9282544B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to optimal allocation of radio resources in a plurality of types of transport channels in a mobile communication system.
  • MBMS Multimedia Broadcast Multicast Service
  • the radio resource refers to transmission power, spreading code, frequency subcarrier, and the like.
  • HSDPA High Speed Downlink Packet Access
  • MBMS is put into practical use in the future, it is highly likely that HSPDA will coexist in the system and share the same radio resources in the base station.
  • next MBMS (the advanced version of Rel. 6 MBMS)
  • HSDPA the advanced version of Rel. 5 HSDPA
  • a control unit MAC (Medium Access Control) that controls communication of data (hereinafter referred to as MBMS data) transmitted using the transport channel for MBMS and a transport channel for HSDPA are used.
  • the MACs that control the communication of the data transmitted (hereinafter referred to as HSDPA data) are independent as MAC-m and MAC-hs, respectively, and MAC-m is in the base station controller (RNC). hs is in the base station. Therefore, when sharing base station radio resources between MBMS and HSDPA, it can be realized as follows.
  • the radio resource control that manages and controls radio resources between the mobile station (UE) and the base station is under the control of the base station to which MBMS data is transmitted. If the mobile station solicits a reception request from the mobile station and determines that transmission is possible within the amount of radio resources that can be used for MBMS data set in advance, it decides to transmit MBMS data.
  • the MAC-m in the base station controller performs MBMS data communication control according to priority and QoS among the MBMS data radio resources set in advance by the RRC. Do.
  • RRC determines transmission / reception of HSDPA data when it is determined that transmission / reception is possible within the preset amount of wireless resources available for HSDPA data.
  • the MAC-hs in the base station is stored in the wireless resource for HSDPA set in advance by RRC according to the data priority and the CQI (Channel Quality Indicator) of each mobile station. Perform communication control.
  • CQI Channel Quality Indicator
  • the radio resource information used by each data is notified from RRC to MAC-m and MAC-hs, but the radio resource information used by each data is not notified to a different MAC. That is, the radio resource information used by HSDPA data is not notified to MAC-m, and conversely, the radio resource information used by MBMS data is not notified to MAC-hs.
  • Hs cannot recognize the amount of radio resources used by each other's data, and MBMS data radio resources cannot be allocated to HSDPA data during communication.
  • wireless resources for HSPDA data cannot be allocated to MBMS data! Therefore, they are not used as shown in Figure 1! ⁇ Radio resources sometimes occurred.
  • the vertical line indicates the radio resource used for HSDPA data
  • the blank part indicates the radio resource used for MBMS data
  • the dotted line indicates the unused radio resource.
  • the following scheduling can be realized by notifying each other of the radio resource information to be used between the MACs.
  • the radio resource amount that can be used for MBMS data is set in advance.
  • RRC grants the MBMS transmission request if it is determined that transmission is possible within the preset MBMS data radio resource.
  • the MAC-m in the base station controller performs data communication control according to the priority between the MBMS data and the QoS among the MBMS data radio resources set in advance from the RRC. .
  • MAC-m notifies the MAC-hs in the base station of the amount of radio resources that MBMS data actually uses, and MAC hs is the remaining radio resource that can be used in the base station.
  • Data communication control is performed according to the degree.
  • MAC-hs can determine the remaining amount of radio resources that can be used by the base station as shown in Fig. 2. All can be allocated to HSDPA data, and the utilization rate of radio resources that can be used in the base station can be improved. Conversely, the usage rate of radio resources that can be used in the base station can be improved by notifying MAC-hs to the radio resources used by MAC-hs.
  • the vertical line represents the radio resource used for HSDPA data
  • the blank represents the radio resource used for MBMS data.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-166236
  • Non-Patent Document 1 3GPP TS 25.321 V6.3.0 (2004-12) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Medium Access Control (M AC) protocol specification
  • Non-Patent Document 2 3GPP TS 25.346 V6.2.0 (2004-09) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Introduction of the Multimedia Broadcast Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2
  • the MAC-hs cannot know the amount of MBMS data that arrives a certain time ago. Data and low priority HSDPA data may not be properly scheduled. For example, at t2 in Fig. 2, the amount of radio resources used for MBMS data increases, radio resources that can use HSDPA data decrease, and resources that can transmit high-priority data also decrease. At this time, even if the scheduling method of HSDPA data is changed and an attempt is made to transmit high-priority data more preferentially, it can be reflected after t3. On the other hand, at t3, there are few radio resources used by MBMS data, and there are more radio resources that can use HSPDA data, so appropriate scheduling is not performed.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the MAC-hs cannot grasp the amount of MBMS data that arrives a certain time ago, so HARQ (Hybrid Automatic Repeat ReQuest) may not be able to respond to the resending request.
  • the amount of radio resources used for MBMS data increases, and the radio resources that can use H SDP A data decrease. If there is a large number of retransmission requests for UE power at this timing, there are few radio resources that can use HSDPA data, so transmission will occur at the next timing, resulting in data delay.
  • the MAC resource reserved as the MBMS radio resource by MAC m is used as the MAC resource.
  • the present invention provides an MBMS for performing multicast or broadcast by sharing radio resources among a plurality of users and transmitting the same data to a plurality of users, and allocating or scheduling resources for each user.
  • HSDPA coexists in the system and transmits data for each user.
  • MAC-m is used for MBMS at the time of transmission from the base station.
  • Information on radio resources used in the transport channel is notified to the MAC-hs before the transmission time, and the MAC-hs receives information on the radio resources of the transport channel for MBMS from the MAC-m.
  • Radio resources of the transport channel for MBMS and transport channel for HSDPA assigned From the resource, and calculates the radio resources that can be used in the data transmission time of the transport channel for HSDP A, according to the radio resource of the calculation result, and performs communication control of data.
  • the radio resource reserved as the MBMS data radio resource by MAC-m can be allocated to the HSDPA data by MAC-hs.
  • the radio resource reserved as the MBMS data radio resource by MAC-m can be allocated to the HSDPA data by MAC-hs, and the radio resource usage rate is improved.
  • the radio resource usage rate is improved.
  • it is possible to grasp changes in the radio resource status in which HSDP A data can be used in advance with MAC-hs it is possible to select an appropriate scheduling method and radio resource ratio for the transmission time from the base station. More priority HSDPA data can be transmitted.
  • data communication control can be performed with retransmission control, and data transmission delay is less likely to occur.
  • FIG. 1 A diagram showing radio resources in a base station and unused radio resources used for MBMS and HSDPA data.
  • FIG. 2 This figure shows the radio resources in the base station used for MBMS and HSDPA data.
  • FIG. 3 is a system configuration diagram used in an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of Resource Planning Information.
  • FIG. 5 A diagram showing the radio resource usage rates of MBMS data and HSDPA data in time series.
  • FIG. 6 is a diagram showing the radio resource usage rate of MBMS data in time series, with the RPI notified from MAC-m to MAC-hs corresponding to FIG.
  • FIG. 7 is a sequence diagram showing a data flow from MAC-m to MAC-hs.
  • FIG. 8 is a flowchart showing the MAC-hs operation used in the first embodiment.
  • FIG. 9 is a block diagram showing a configuration of MAC-hs used in the first embodiment.
  • FIG. 10 is a block diagram showing a configuration of MAC-m used in an embodiment of the present invention.
  • FIG. 11 is a diagram in which the scheduler used at the time of actual HSDPA data transmission is entered in the radio resource usage rates of MBMS data and HSDPA data in time series in the first embodiment.
  • FIG. 12 is a diagram showing an example of a radio resource ratio table used in the second embodiment.
  • FIG. 13 is a flowchart showing the MAC-hs operation used in the second embodiment.
  • FIG. 14 is a block diagram showing a configuration of MAC-hs used in the second embodiment.
  • FIG. 15 is a diagram in which the radio resource ratio used at the time of actual HSDPA data transmission is entered in the radio resource usage rates of MBMS data and HSDPA data in time series in the second embodiment.
  • FIG. 16 is a sequence diagram showing a data flow from MAC-m to MAC-hs.
  • FIG. 17 is a flowchart showing the MAC-hs operation used in the third embodiment.
  • FIG. 18 is a block diagram showing a configuration of MAC-hs used in the third embodiment.
  • FIG. 19 is a diagram in which the transmission method used at the time of actual HSDPA data transmission is entered in the radio resource usage rates of MBMS data and HSDPA data in time series in the third embodiment.
  • the present invention is applied to radio resource allocation in a plurality of types of transport channels of a mobile communication system.
  • the multiple types of transport channels include a transport channel that is allocated to a multicast or broadcast service that shares radio resources among multiple users and transmits the same data to multiple users, and resource allocation or scheduling for each user.
  • FIG. 3 shows a system configuration used in the first embodiment of the present invention.
  • Mobile station 13 1 sets up a radio channel with the base station 121 and transmits / receives MBMS data and HSDPA data.
  • the base station 121 is also connected to mobile stations 132 and 133 other than the mobile station 131, and transmits and receives MB MS data and HSDPA data.
  • the base station 121 is connected to the base station control device 111, and the base station control device 111 includes a control unit RRC151 that performs various controls relating to radio channel setting between the base station 121 and the mobile stations 131, 132, 133.
  • the control unit MAC-ml 52 that performs communication control of MBMS data is in the base station controller 111, and the control unit MAC-hs 161 that controls communication of HSDPA data is in the base station 121.
  • the base station control device and the base station realize the functions of the control unit RRC, the control unit MAC-m, and the control unit MAC-hs by the control program stored in each memory.
  • FIG. 4 shows RPI (Resource Planning), which is radio resource information used by MBMS data.
  • FIG. 5 shows the available radio resources of MBMS data and HSDPA data as seen in time series.
  • the horizontal axis shows scheduling 'data transmission unit time, and the vertical axis shows the radio resource usage ratio.
  • the vertical line indicates radio resources that can be used for HSDPA data, and the blank area indicates radio resources that are used for MBMS data.
  • Fig. 6 shows the radio resource usage rate and RPI of MBMS data viewed in time series, actually notified from MAC-m to MAC-hs.
  • RPI corresponds to Figure 5.
  • the horizontal axis is the scheduling unit, and the vertical axis is the radio resource usage rate.
  • 10 is a preset threshold value.
  • Time Tk is the RPI MAC-hs reception time notified from MAC-m.
  • Tk tk At — TTI (tk: MAC—m defines the transmission timing of MBMS data from the base station, At: time required for HSDPA data scheduling, and TTI: HSDPA scheduling. Unit time for data transmission).
  • the RRC 151 establishes a connection between the base station 121 and the mobile stations 131, 132, 133, and the MAC-ml 52 transmits MBMS data among the MBMS data radio resources set in advance by the RRC 151. After performing data communication control according to priority and QoS, data is transmitted to the mobile stations 131, 132, 133 via the base station 121 at the time tk using the specified radio channel.
  • the RRC 151 determines transmission / reception of the HSDPA data when it is determined that transmission / reception is possible within the amount of radio resources available for the preset HSDPA data.
  • the RRC 151 sets up a connection between the base station 121 and the mobile station 131, and the MAC-hsl 61 calculates the amount of radio resources that can use the HSD PA data at the transmission timing tk from the RPI received at the time Tk.
  • the amount of radio resources that can be used for HSDP A data at times t2 and t3 from T2 and T3 can be calculated as t2 and t3 in FIG. This shows that the amount of radio resources that can be used by HSDPA data at t2 is large, but the amount of radio resources that can be used by HSDPA data decreases at the next scheduling timing t3.
  • the MAC-hsl 61 selects a scheduling method based on the amount of radio resources at the calculated transmission timing tk (S 103). For example, when the amount of wireless resources that can be used by HSDPA is greater than the threshold, PF (Proportional Fairness based scheduler mode) is used so that the transmission probability between users is equalized while taking into account priority and wireless quality. If there is little scheduling, AP (Absolute Priority based scheduler mode) can be used to switch the scheduling so that high priority data can be transmitted with higher probability. In other words, by using PF until time t2, and switching to AP at time t3, more high-priority data can be transmitted.
  • PF Proportional Fairness based scheduler mode
  • MAC—hsl61 performs communication control of data according to the priority of data and CQI (Channel Quality Indicator) of each UE according to the changed scheduling method among the radio resources for HSDPA calculated from RPI. After that, the base station 121 transmits data to the mobile station 131 at the time tk using the designated radio channel (S104).
  • CQI Channel Quality Indicator
  • FIG. 8 is a flowchart showing a specific MAC-hs operation.
  • MAC-hsl61 receives the RPI from MAC-ml52 (S11), the amount of radio resources that can be used by HSDPA at the time tk is less than the threshold (Yes in S12), and the scheduler at time tk 1 is PF. If yes (Yes in S13), the scheduler is changed from PF to AP (S15). If the scheduler at the time tk-l is AP (No in S13), the scheduler is not changed (S16).
  • FIG. 9 shows the configuration of MAC-hs in the present embodiment.
  • the MA Chs of this embodiment stores the data distributed by the Priority Queue distribution 201 and the Priority Queue distribution, which distributes the received data to multiple queues according to the priority, and transmits them sequentially.
  • Queue 202, HARQ entity 203 that receives the retransmission request from the UE and performs retransmission control, TFRC (Transport Format Resource Combination) selection ion 204 that selects a radio resource suitable for data transmission, MAC- hs It consists of a MAC-hs scheduler management unit 205 that manages the scheduler method.
  • TFRC Transport Format Resource Combination
  • the RRC 151 When the RRC 151 permits the transmission of the MBMS data, the RRC 151 notifies the MAC-ml 52 of the MBMS data RPI together with the MBMS data.
  • the MAC-ml 52 notifies the RPI of the notified MBMS data to the MAC-hs scheduler management unit 205 in the MAC-hs 161.
  • the reception time in the MAC-hs scheduler management unit 205 is Tk.
  • the MAC—hs scheduler management unit 205 calculates the available radio resource amount of HSDPA data in tk from the received RPI from the MBMS data transmission timing tk and the radio resource usage of MBMS data in tk.
  • the MAC—hs scheduler management unit 205 switches the PF when the amount of radio resources that can be used by HSDPA is greater than the threshold, and switches the AP when the amount is less than the threshold, and changes according to the available radio resource amount of the calculated HSDPA data.
  • the communication control of HSPDA data is performed according to the scheduling method, and control is performed so that unused radio resources do not occur at the time of tk and more high-priority data can be transmitted.
  • FIG. 10 shows a configuration of MAC-m in the present embodiment.
  • the MA C m of this embodiment includes the base station controller, Add MBM S-ID 301 that assigns MBMS ID to the received data, TCTF (Target Channel Type Field) MU X302 that assigns the type of Logical channel, scheduling and It consists of Scheduling / Buffering / Priority Handling 303 for priority control, TFC selection304 4 for mapping between Transport channel and Logical channel, and MAC-m control management unit 305 for control management in MAC-m. .
  • the RRC 151 When the RRC 151 permits transmission of MBMS data, the RRC 151 notifies the MAC-m control management unit 305 of the MBMS data and the RPI of the MBMS data. The MAC-m control management unit 305 notifies the MAC-hsl 61 of the RPI of the notified MBMS data.
  • FIG. 11 is a diagram in which the scheduler used at the time of actual HSDPA data transmission is entered.
  • the radio resources reserved as MBMS data radio resources by MAC-m can be allocated to HSDPA data by MAC-hs, which not only improves the radio resource usage rate, but also MAC-hs Since the RPI is received at a time that is At + TTI earlier than tk, which is the actual HSDPA data transmission timing, the scheduler that transmits HSDPA data can be switched to AP at tk at time tk. It becomes possible to transmit more high priority data than.
  • more high-priority data can be transmitted without changing the scheduling method in the first embodiment.
  • 3, 4, 5, 6 and 10 are the same as those in the first embodiment.
  • FIG. 12 is an example of a table of data radio resource ratios used at the time of actual HSDPA data transmission.
  • Receive MBMS transmission request from core network 101 RRC151 solicits reception requests from mobile stations 131, 132, 133 under the base station 121 to which MBMS data is to be transmitted, and determines that transmission is possible within the preset amount of wireless resources available for MBMS data. If so, decide to send MBMS data.
  • the RR C151 notifies the MAC-ml 52 of the MBMS data and the RPI of the MBMS data, and the MAC-ml 52 notifies the MAC-hsl 61 of the RPI of the notified MBMS data at the time Tk.
  • the RRC 151 establishes a connection between the base station 121 and the mobile stations 131, 132, 133, and the MAC-ml 52 uses the MBMS data radio resources set in advance from the RRC 151 as MBMS data. After performing data communication control according to the priority and QoS, the base station 121 transmits data to the mobile stations 131, 132, 133 via the designated radio channel.
  • the RRC 151 determines transmission / reception of the HSDPA data when it is determined that transmission / reception is possible within the amount of radio resources available for the preset HSDPA data.
  • the RRC 151 sets up a connection between the base station 121 and the mobile station 131, and the MAC-hsl 61 calculates the amount of radio resources that can use the HSDPA data at the transmission timing tk from the received RPI.
  • the amount of radio resources that can be used for the H SDP A data at times t2 and t3 from T2 and T3 is calculated as t2 and t3 in FIG.
  • the amount of radio resources that can use HSDPA data at t2 is large, but at T3, which is the next scheduling timing, the amount of radio resources that can use HSDPA data is likely to decrease.
  • MAC-hs receives RPI at a time that is At + TTI earlier than tk, which is the actual transmission timing of HSDPA data, so when the amount of radio resources that HSDPA can use is greater than the threshold, Mode 1 that is a normal radio resource ratio can be converted to mode 2 that is a radio resource ratio that is weighted so that a small amount of high-priority data can be transmitted more than usual.
  • Mode 1 that is a normal radio resource ratio can be converted to mode 2 that is a radio resource ratio that is weighted so that a small amount of high-priority data can be transmitted more than usual.
  • the MAC—hsl61 performs the data communication control according to the CQI of each UE according to the changed radio resource ratio among the radio resources for HSDPA calculated from the RPI, and then specified via the base station 121. Data is transmitted to mobile station 131 via the radio channel.
  • FIG. 13 is a flowchart showing a specific MAC-hs operation.
  • MAC-hsl61 receives the RPI from MAC-ml52 (S21), the amount of radio resources that HSDPA can use at time tk is less than the threshold (Yes at S22), and the radio resource ratio at time tk-1 is mod.
  • the radio resource ratio is changed to mode2 (S25). If the radio resource ratio at time tk-1 is mode2 (No in S23), no mode change is made (S26). O The amount of radio resources that can be used by HSDPA at time tk is greater than the threshold (No in S22). If the radio resource ratio at time tk-1 is mode2 (Yes in S24), the radio resource ratio is changed to model (S27). If the radio resource ratio at time tk-1 is model (No in S24), the mode is not changed (S26).
  • FIG. 14 shows a MAC-hs configuration in the present embodiment.
  • the MAC-hs of the present embodiment is based on Priority Queue distribution 40 that distributes received data to multiple queues according to priority and data divided by Priority Queue distribution.
  • Priority Queue 402 Stores and sequentially sends Priority Queue 402, HARQ entity 403 that receives retransmission request from UE and performs retransmission control, Transport Format and radio resource suitable for data transmission TFRC (Transport Format Resource Combination)
  • TFRC Transport Format Resource Combination
  • It includes a selection ion 404 and a MAC-hs radio resource ratio management unit 405 that manages a radio resource ratio in the MAC-hs.
  • the RRC 151 When the RRC 151 permits transmission of MBMS data, the RRC 151 notifies the MAC-ml 52 of the MBMS data and the RPI of the MBMS data.
  • the MAC-ml 52 notifies the RPI of the notified MBMS data to the MAC-hs radio resource ratio management unit 405 in the MAC-hs 161.
  • the reception time in the MAC-hs radio resource ratio management unit 405 is tk.
  • MAC—hs radio resource ratio management unit 405 receives MBMS data from the received RPI.
  • the amount of available radio resources for HS DPA data in tk is calculated from the transmission timing Tk and the radio resource usage of MBMS data in Tk.
  • the MAC-hs wireless resource ratio management unit 405 switches the model when the amount of wireless resources that can be used by HSDPA is greater than the threshold, and mode2 when the amount is less than the threshold, and the available wireless resources for the calculated H SDPA data.
  • the communication control of HSPDA data is performed according to the radio resource ratio of the changed data, and control is performed so that unused radio resources do not occur at tk and more high-priority data can be transmitted.
  • FIG. 15 is a diagram in which the radio resource ratio used at the time of actual HSDPA data transmission is entered.
  • the MAC resource that has been reserved as the MBMS data radio resource by the MAC-m can be allocated to the HSDPA data by the MAC-hs. Since RPI is received at a time that is At + TTI earlier than tk, which is the actual HSDPA data transmission timing, the radio resource ratio for transmitting HSDPA data can be switched from model to mode2 at time tk. With mode2, it is possible to send more data with higher priority than model.
  • transmission considering HARQ can be performed in the scheduling performed by MAC-hs. 3, 4, 5, 6 and 10 are the same as those in the first embodiment.
  • the time Tk is the reception time at the MAC-hs of the RPI notified from the MAC-m.
  • Tk tk—A t—2 XTTI (tk: Transmission timing of MBMS data from the base station specified by MAC-m, At: Time required for scheduling HSDP A data, TTI: HS DPA Unit time for data transmission with scheduling set).
  • the RRC 151 sets up a connection between the base station 121 and the mobile stations 131, 132, 133, and the MAC-ml 52 uses the MBMS data radio resources set in advance from the RRC 151 to transfer MBMS data.
  • the base station 121 After performing data communication control according to the priority and QoS, the base station 121 transmits data to the mobile stations 131, 132, 133 via the designated radio channel.
  • the RRC 151 determines transmission / reception of the HSDPA data when it is determined that transmission / reception is possible within the amount of radio resources available for the preset HSDPA data.
  • the RRC 151 sets up a connection between the base station 121 and the mobile station 131, and the MAC-hsl 61 calculates the amount of radio resources that can use the HSDPA data at the transmission timing tk from the received RPI.
  • the amount of radio resources that can be used for HSDP A data at times t2 and t3 from T2 and T3 can be calculated as t2 and t3 in FIG. This shows that the amount of radio resources that can be used by HSDPA data at t2 is large, but the amount of radio resources that can be used by HSDPA data decreases at the next scheduling timing t3.
  • the MAC-hsl 61 selects a transmission method based on the amount of radio resources at the calculated transmission timing tk (S203). For example, if a large amount of HSDPA data is transmitted at time t2 and a large number of retransmission requests occur due to many reception errors at the mobile station, retransmission data may not be transmitted at time t3. There is. For this reason, if it is obvious that the amount of data will be less than the threshold at time t3, when transmitting data at time t2, temporarily increase the transmission power so that no data retransmission request will occur. Can be controlled. The transmission method controlled so that this data retransmission request does not occur is TM (Turbo Mode). On the other hand, the normal transmission method is NM (Normal Mode). Also, at time t7, the amount of radio resources that can be used by HSDPA will increase in advance from the threshold. So you can send it back to NM.
  • MAC—hsl61 performs data communication control according to the priority and CQI of each UE according to the changed transmission method in the radio resource for HSDPA calculated from RPI, and then via base station 121, Data is transmitted to the mobile station 131 using the designated wireless channel (S204).
  • FIG. 17 is a flowchart showing a specific MAC-hs operation.
  • MAC-hsl61 receives the RPI from MAC-ml52 (S31), the amount of radio resources that can be used by HSDPA at time tk is less than the threshold (Yes in S32), and the transmission method at time tk 1 is NM (Yes in S33), change the transmission method to TM (S35). If the transmission method at time tk 1 is TM (No in S33), the transmission method is not changed (S36). Also, if the amount of radio resources that HSDPA can use at time tk is greater than the threshold (No in S32) and the transmission method at time tk-1 is TM (Yes in S34), change the transmission method to NM. (S37). If the transmission method at time tk-1 is NM (No in S34), the transmission method is not changed (S36).
  • FIG. 18 shows a MAC-hs configuration in the present embodiment.
  • the MAC-hs in this embodiment is based on the Priority Queue distribution 50 that distributes the received data to multiple queues according to the priority and the data divided by the Priority Queue distribution.
  • TFRC Transport Format Resource Combination
  • It consists of a selection ion 504 and a MAC-hs transmission method control unit 505 that manages transmission methods in the MAC-hs.
  • the RRC 151 When the RRC 151 permits transmission of MBMS data, the RRC 151 notifies the MAC-ml 52 of the MBMS data RPI along with the MBMS data.
  • the MAC-ml 52 notifies the RPI of the notified MBMS data to the MAC-hs transmission method control unit 505 in the MAC-hs 161.
  • the reception time at the MAC-hs transmission method control unit 505 is tk.
  • the MAC hs transmission method control unit 505 determines the MBMS data transmission timing Tk from the received RPI. Calculate the available radio resource amount of HSDPA data in tk from the radio resource usage of MBMS data in Tk.
  • the MAC—hs transmission method control unit 505 transmits NM when the transmission method in tk 1 is TM and the amount of radio resources that can be used by HSDPA in tk is larger than the threshold, and transmits in tk-l.
  • the TM is switched, and the communication control of HSPDA data is performed according to the changed transmission method. It does not occur, and the amount of retransmissions can be controlled to reduce transmission delay.
  • the configuration of the present embodiment is not limited to the above, and can also be implemented when a plurality of base stations are connected to a base station controller and the same MBMS data is simultaneously transmitted from a plurality of base stations. It is.
  • the MAC-m in the base station controller notifies the same RPI to multiple MAC-hs, and the MAC-hs calculates the available radio resources for HSDPA data, respectively, according to the calculation results. Select the transmission method and transmit HSDPA data. Power MBMS data transmission time and radio resources are not affected, so MBMS data can be received simultaneously from multiple base stations in the mobile station. It is also effective when performing Soft Hand over control.
  • FIG. 19 is a diagram in which the transmission method used when HSDPA data is transmitted during actual HSDPA data transmission is entered.
  • the radio resources reserved as MBMS data radio resources by MAC-m can be allocated to HSDPA data by MAC-hs. ⁇ t + 2 X TTI earlier than tk, which is the actual transmission timing of HSDPA data! Since RPI is received at the time, the transmission method is set so that a data retransmission request does not occur before time tk. It is possible to control the data transmission delay.
  • the time at which MAC-m notifies the radio resource information at the transmission time from the base station is set as the time required for scheduling by MAC-hs and the unit of data transmission. Although it is calculated from the time, it can be varied according to the conditions.
  • the present invention can be applied to a mobile communication system that performs multicasting or broadcasting using a plurality of types of transport channels.

Abstract

 MBMSとHSDPAがシステム内で共存し、同一無線リソースを共有して使用する移動体通信システムにおいて、無線リソース使用率を向上させ、かつ事前に無線リソース状況の変動を把握し、それに応じた通信制御を行うことができる通信制御方法を提供する。  MAC-mが、基地局からの送出時刻においてMBMS用トランスポートチャネルで使用する無線リソースに関する情報を、その送出時刻よりも前にMAC-hsへ通知し、MAC-hsが、MAC-mからMBMS用トランスポートチャネルの無線リソースに関する情報を受信し、MBMS用トランスポートチャネルの無線リソースに関する情報とHSDPA用トランスポートチャネルが割り当てられた無線リソースから、HSDPA用トランスポートチャネルのデータが送出時刻に使用できる無線リソースを演算し、その演算結果の無線リソースに応じて、データの通信制御を行う。

Description

明 細 書
移動体通信システム及びその通信制御方法
技術分野
[0001] 本発明は、移動体通信システムの複数種類のトランスポートチャネルにおける無線 リソースの最適配分に関する。
背景技術
[0002] 近年、 3GPP仕様に準拠した移動体通信システムが次々と実用化されており、 Rel . 6において標準化された MBMS(Multimedia Broadcast Multicast Service)は、複数 のユーザに同一のデータを送信する際、基地局 (Node B)内の無線リソースを複数 のユーザで同時に共有できる技術であり、今後実用化される可能性が十分ある (非 特許文献 1及び 2参照)。ここで、無線リソースとは、送信電力、拡散コード、周波数サ ブキャリア等を指す。また既に Rel. 5において標準化された HSDPA(High Speed Do wnlink Packet Access)は下り無線リンクのパケットサービスの高速化技術として、実用 化されつつある。今後 MBMSが実用化される場合、 HSPDAとシステム内で共存し 、基地局内の同じ無線リソースを共有して提供される可能性が高い。
[0003] また、今後 3GPPにお!/、て、次期 MBMS (Rel. 6の MBMSを高度化したもの)と次 期 HSDPA (Rel. 5の HSDPAを高度化したもの)が標準化されつつあり、これらがシ ステム内で共存し、基地局内の同じ無線リソースを共有して提供される可能性が高い
[0004] MBMS用のトランスポートチャネルを使用して送信されるデータ(以降 MBMSデ ータとする)の通信制御を行う制御部 MAC(Medium Access Control)と、 HSDPA用 のトランスポートチャネルを使用して送信されるデータ(以降 HSDPAデータとする) の通信制御を行う MACは、それぞれ MAC— m、 MAC— hsとして独立しており、 M AC— mは基地局制御装置 (RNC)内、 MAC— hsは基地局内にある。そのため、 M BMSと HSDPA間で基地局内無線リソースの共有を行う場合、以下のように実現す ることがでさる。
[0005] まず、各基地局が使用できる全無線リソース量のうち、 MBMSデータに使用できる 無線リソース量と HSDPAデータに使用できる無線リソース量を予め設定する。コア ネットワーク力も MBMS送信要求を受信した時、移動局 (UE)と基地局間の無線リソ ース管理、制御を行う制御部 RRC(Radio Resource Control)は、 MBMSデータの送 信対象の基地局配下の移動局から受信要求を募り、予め設定された MBMSデータ に使用できる無線リソース量内で送信可能と判断した場合、 MBMSデータの送信を 決定する。
[0006] 次に基地局制御装置内にある MAC— mは、 RRCから事前に設定された MBMS データ用無線リソースの中で、 MBMSデータを、優先度や QoSに応じてデータの通 信制御を行う。一方 HSDPAは、コアネットワークまたは移動局力 HSDPA送受信 要求を受信した時、 RRCは予め設定された HSDPAデータに使用できる無線リソー ス量内で送受信可能と判断した場合、 HSDPAデータの送受信を決定する。
[0007] 次に基地局内にある MAC— hsは、 RRCから事前に設定された HSDPA用無線リ ソースの中で、データの優先度や各移動局の CQI(Channel Quality Indicator)に応じ てデータの通信制御を行う。
[0008] 通常 RRCから MAC— m、 MAC— hsへ、各データが使用する無線リソース情報を 通知されるが、各データが使用する無線リソース情報を異なる MACには通知しない 。つまり、 MAC— mには HSDPAデータが使用する無線リソース情報が通知されず 、逆に MAC— hsには MBMSデータが使用する無線リソース情報が通知されないた め、この方法では、 MAC— mと MAC— hsは、それぞれ互いのデータが使用してい る無線リソース量をお互い認識することができず、通信中に MBMSデータ用無線リソ ースは HSDPAデータへ割り当てることができない。逆に、 HSPDAデータ用無線リ ソースは MBMSデータへ割り当てることはできな!、ため、図 1のように使用されな!ヽ 無線リソースが生じることがあった。図 1中縦線部が HSDPAデータに使用された無 線リソース、空白部が MBMSデータに使用された無線リソース、点線部が未使用無 線リソースを表す。
[0009] そこで互いの MAC同士力 使用する無線リソース情報を通知しあうことによって、 次のようなスケジューリングを実現することができる。まず、各基地局が使用できる全 無線リソース量のうち、 MBMSデータに使用できる無線リソース量を予め設定する。 コアネットワークから MBMS送信要求を受信した時、 RRCは予め設定された MBM Sデータ用無線リソース内で送信可能と判断した場合、 MBMS送信要求を許可する
[0010] 次に基地局制御装置内にある MAC— mは、 RRCから事前に設定された MBMS データ用無線リソースの中から、 MBMSデータ間の優先度や QoSに応じてデータの 通信制御を行う。一方 MAC— mは基地局内にある MAC— hsに MBMSデータが実 際使用する無線リソース量を通知し、 MAC hsは基地局内で使用できる無線リソー スの残りの中で、各 UEの CQIや優先度に応じてデータの通信制御を行う。
[0011] このように MAC— mから MAC— hsに MBMSデータが実際使用する無線リソース 量を通知することによって、図 2のように MAC— hsは基地局が使用できる無線リソー ス量の残りをすベて HSDPAデータに割り当てることができ、基地局で使用できる無 線リソースの使用率を向上させることができる。また逆も同様に、 MAC—hsからMA C mへ使用無線リソースを通知することによって、基地局で使用できる無線リソース の使用率を向上させることができる。図 2中縦線部が HSDPAデータに使用された無 線リソース、空白部が MBMSデータに使用された無線リソースを表す。
[0012] また、利用率情報信号の受信に応答して、基地局コントローラが HSDPAデータと 専用音声データのチャネルに割り当てられる基地局の送信電力を変える分散呼制御 方法がある (例えば、特許文献 1参照)。
特許文献 1 :特開 2004— 166236号公報
非特許文献 1 : 3GPP TS 25.321 V6.3.0 (2004-12) 3rd Generation Partnership Projec t; Technical Specification Group Radio Access Network; Medium Access Control (M AC) protocol specification
非特許文献 2 : 3GPP TS 25.346 V6.2.0 (2004-09) 3rd Generation Partnership Projec t; Technical Specification Group Radio Access Network; Introduction of the Multime dia Broadcast Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2
発明の開示
発明が解決しょうとする課題 [0013] し力しながら、上述した従来技術には以下のような問題が存在する。
[0014] まず、 MAC— mから MAC— hsに MBMSデータの使用無線リソース量を通知する 場合、 MAC— hsは到来する MBMSデータ量をある一定時間前に把握できないた め、高優先度の HSDPAデータと低優先度の HSDPAデータのスケジューリングが 適切に行えない場合がある。例えば、図 2の t2では MBMSデータの使用無線リソー ス量が多くなり、 HSDPAデータが使用できる無線リソースが少なくなり、高優先度の データが送信できるリソースも減る。この時、 HSDPAデータのスケジューリング方法 を変更し、高優先度のデータをより優先的に送信できるように試みたとしても、実際反 映できるのは t3以降となる。し力し逆に t3では、 MBMSデータが使用する無線リソー スが少なぐ HSPDAデータが使用できる無線リソースが多くなるため、適切なスケジ ユーリングが行われない。
[0015] また、 MAC— mから MAC— hsに MBMSデータの使用無線リソース量を通知する 場合、 MAC— hsは到来する MBMSデータ量をある一定時間前に把握できないた め、 HARQ(Hybrid Autimatic Repeat reQuest)の再送要求に応じることができない場 合がある。例えば、図 2の t2では MBMSデータの使用無線リソース量が多くなり、 H SDP Aデータが使用できる無線リソースが少なくなる。このタイミングに UE力も大量 の再送要求があった場合、 HSDPAデータが使用できる無線リソースが少ないため、 次のタイミングで送信することになり、データの遅延が生じる。
[0016] そこで本発明は、 MBMSと HSDPAがシステム内で共存しており、同一無線リソー スを共有して使用する場合、 MAC mで MBMS用無線リソースとして確保されて ヽ た無線リソースを、 MAC— hsで HSDPAデータに割り当てることを可能にすることよ り無線リソース使用率を向上させ、かつ MAC— hsで事前に HSDPAデータが使用 できる無線リソース状況の変動を把握し、それに応じた通信制御を行うことにより、適 切なスケジューリング方法や無線リソース比率を選択し、高優先度の HSDPAデータ をより多く送信することができる移動体通信システム及びその通信制御方法を提供す ることを目的とする。
[0017] また、 HARQをカ卩味したスケジューリングを行 、、データの送信遅延が生じさせな いようにすることを目的とする。 課題を解決するための手段
[0018] 上述の課題を解決するため、本発明は、複数ユーザで無線リソースを共有して、同 一データを複数ユーザに送信するマルチキャスト又はブロードキャストを行う MBMS と、ユーザごとにリソース割り当て又はスケジューリングを行い、ユーザごとにデータを 送信する HSDPAがシステム内で共存しており、同一無線リソースを共有して使用す る移動体通信システムにおいて、 MAC— mが、基地局からの送出時刻において M BMS用トランスポートチャネルで使用する無線リソースに関する情報を、その送出時 刻よりも前に MAC— hsへ通知し、 MAC—hsが、 MAC—mからMBMS用トランス ポートチャネルの無線リソースに関する情報を受信し、 MBMS用トランスポートチヤネ ルの無線リソースに関する情報と HSDPA用トランスポートチャネルが割り当てられた 無線リソースから、 HSDP A用トランスポートチャネルのデータが送出時刻に使用で きる無線リソースを演算し、その演算結果の無線リソースに応じて、データの通信制 御を行うことを特徴とする。
[0019] 以上の構成によって、 MAC— mで MBMSデータ用無線リソースとして確保されて いた無線リソースを、 MAC— hsで HSDPAデータに割り当てることができる。
発明の効果
[0020] 本発明によれば、 MAC— mで MBMSデータ用無線リソースとして確保されていた 無線リソースを、 MAC— hsで HSDPAデータに割り当てることができ、無線リソース 使用率が向上する。また、 MAC— hsで事前に HSDP Aデータが使用できる無線リソ ース状況の変動が把握できるので、基地局からの送出時刻に適切なスケジユーリン グ方法や無線リソース比率を選択することができ、高優先度の HSDPAデータをより 多く送信することができる。さらに再送制御を加味したデータの通信制御を行うことが でき、データの送信遅延が生じにくくなる。
図面の簡単な説明
[0021] [図 1]MBMSと HSDPAデータに使用されている基地局内無線リソースと、不使用無 線リソースを表した図である。
[図 2]MBMSと HSDPAデータに使用されている基地局内無線リソースを表した図で ある。 [図 3]本発明の実施例で用いられるシステム構成図である。
[図 4]Resource Planning Informationの例を示す図である。
[図 5]時系列による MBMSデータ、 HSDPAデータそれぞれの無線リソース使用率 を示す図である。
[図 6]MAC— mから MAC— hsに通知された RPIを図 5に対応させ、時系列による M BMSデータの無線リソース使用率を示す図である。
[図 7]MAC—mから MAC—hsへのデータの流れを示すシーケンス図である。
[図 8]第 1の実施例で用いられる MAC— hsの動作を示すフローチャートである。
[図 9]第 1の実施例で用いられる MAC— hsの構成を示すブロック図である。
[図 10]本発明の実施例で用いられる MAC— mの構成を示すブロック図である。
[図 11]第 1の実施例における、時系列による MBMSデータ、 HSDPAデータそれぞ れの無線リソース使用率に、実際の HSDPAデータ送信時に使用されたスケジユー ラを記入した図である。
[図 12]第 2の実施例で用いられる無線リソース比率表の一例を示す図である。
[図 13]第 2の実施例で用いられる MAC— hsの動作を示すフローチャートである。
[図 14]第 2の実施例で用いられる MAC— hsの構成を示すブロック図である。
[図 15]第 2の実施例における、時系列による MBMSデータ、 HSDPAデータそれぞ れの無線リソース使用率に、実際の HSDPAデータ送信時に使用された無線リソー ス比率を記入した図である。
[図 16]MAC—mから MAC—hsへのデータの流れを示すシーケンス図である。
[図 17]第 3の実施例で用いられる MAC— hsの動作を示すフローチャートである。
[図 18]第 3の実施例で用いられる MAC— hsの構成を示すブロック図である。
[図 19]第 3の実施例における、時系列による MBMSデータ、 HSDPAデータそれぞ れの無線リソース使用率に、実際の HSDPAデータ送信時に使用された送信方法を 記入した図である。
符号の説明
10 閾値
101 コアネットワーク 111 基地局制御装置
121 基地局
131, 132, 133 移動局
151 RRC
152 MAC— m
161 MAC-hs
201, 40丄, 501 Priority Queue distribution
202, 402, 502 Priority Queue
203, 403, 503 HARQ entity
204, 404, 504 TFRC selection
205 MAC— hsスケジューラ制御部
301 Add MBMS -ID
302 TCTF MUX
303 Priority/ Buffering/ Priority Handling
304 TFC selection
305 MAC— m制御部
405 MAC— hs無線リソース比率制御部
505 MAC hs送信方法制御部
発明を実施するための最良の形態
[0023] 本発明は、移動体通信システムの複数種類のトランスポートチャネルでの無線リソ ース割当に適用される。この複数種類のトランスポートチャネルとしては、複数ユーザ で無線リソースを共有して、同一データを複数ユーザに送信するマルチキャスト又は ブロードキャストを行うサービスに割り当てられるトランスポートチャネルと、ユーザごと にリソース割り当て又はスケジューリングを行い、ユーザごとにデータを送信するサー ビスに割り当てられるトランスポートチャネルがある。以下、前述した 3GPPの MBMS と HSDPAを例にとって、本発明の最良の形態について図面を参照して説明する。 実施例 1
[0024] 図 3は、本発明の第 1の実施例に用いられるシステム構成を示している。移動局 13 1は基地局 121と無線チャネルを設定して MBMSデータ、 HSDPAデータの送受信 を行っている。基地局 121は、移動局 131以外の移動局 132、 133とも接続し、 MB MSデータ、 HSDPAデータの送受信を行っている。また、基地局 121は基地局制御 装置 111に接続されており、基地局制御装置 111は基地局 121と移動局 131、 132 、 133間の無線チャネル設定に関する諸制御を行う制御部 RRC151を含む。 MBM Sデータの通信制御を行う制御部 MAC— ml52は基地局制御装置 111内にあり、 HSDPAデータの通信制御を行う制御部 MAC— hs 161は基地局 121内にある。基 地局制御装置及び基地局は、それぞれのメモリに格納された制御プログラムによつ て、制御部 RRC、制御部 MAC— m、制御部 MAC— hsとしての機能を実現する。
[0025] 図 4は、 MBMSデータが使用する無線リソース情報である、 RPI(Resource Planning
Information)の一例である。
[0026] 図 5は、時系列で見た、 MBMSデータ、 HSDPAデータそれぞれの使用可能無線 リソースである。横軸はスケジューリング 'データ送信単位時間、縦軸は無線リソース 使用比率を示す。縦線部は HSDPAデータに使用できる無線リソース、空白部は M BMSデータに使用される無線リソースを表す。
[0027] 図 6は、 MAC— mから MAC— hsに実際通知された、時系列で見た MBMSデー タの無線リソース使用率、 RPIである。 RPIは図 5に対応している。横軸はスケジユー リング単位、縦軸は無線リソース使用率である。図中 10は予め設定した閾値である。 時刻 Tkは、 MAC— mから通知された RPIの MAC— hsでの受信時刻である。ここで 、 Tk=tk A t— TTI (tk: MAC— mが規定した、 MBMSデータの基地局からの送 信タイミング、 A t :HSDPAデータのスケジューリングに要する時間、 TTI : HSDPA のスケジューリングを設定してデータ送信する単位時間)とする。
[0028] 次に、図 7に示す、 MAC— mから MAC— hsへのデータの流れを示すシーケンス 図を参照して、 MBMSデータの流れを説明する。コアネットワーク 101から MBMS 送信要求を受信した時、 RRC151は、 MBMSデータの送信対象の基地局 121配下 の移動局 131、 132、 133から受信要求を募り、予め設定された MBMSデータに使 用できる無線リソース量内で送信可能と判断した場合、 MBMSデータの送信を決定 する。次に RRC151は、 MAC— ml52へ MBMSデータと共に MBMSデータの RP Iを通知する。 MAC—ml52は、時刻 Tk=tk— A t—TTIを計算し(S101)、通知さ れた MBMSデータの RPIを、 MAC— hs 161へ時刻 Tkに通知する(S 102)。
[0029] 一方 RRC151は、基地局 121と移動局 131、 132、 133間のコネクションを設定し、 MAC— ml52は、 RRC151から事前に設定された MBMSデータ用無線リソースの 中で、 MBMSデータを、優先度や QoSに応じてデータの通信制御を行った後、基 地局 121を介して、指定された無線チャネルで時刻 tkに移動局 131、 132、 133へ データを送信する。
[0030] 次に、 HSDP Aデータの流れを説明する。コアネットワーク 101または移動局 131 力 HSDPA送受信要求を受信した時、 RRC151は、予め設定された HSDPAデー タに使用できる無線リソース量内で送受信可能と判断した場合、 HSDPAデータの 送受信を決定する。次に RRC151は、基地局 121と移動局 131間のコネクションを 設定し、 MAC— hsl61は、時刻 Tkに受信した RPIから、送信タイミング tkに、 HSD PAデータが使用できる無線リソース量を計算する。
[0031] 図 6の時刻 T2と T3に着目すると、 T2と T3から t2と t3それぞれの時刻での HSDP Aデータが使用できる無線リソース量は、図 5の t2と t3のように算出できる。これより、 t2での HSDPAデータが使用できる無線リソース量は多いが、次のスケジューリング タイミングである t3では、 HSDPAデータが使用できる無線リソース量が少なくなるこ とがわかる。
[0032] 次に MAC—hsl61は、計算した送信タイミング tkにおける無線リソース量に基づき スケジューリング方法の選択を行う(S 103)。例えば、 HSDPAが使用できる無線リソ ース量が閾値より多いときは PF(Proportional Fairness based scheduler mode)を用い 、優先度や無線品質等を考慮しつつ、各ユーザ間の送信確率が均等になるようなス ケジユーリングを行い、少ないときは AP(Absolute Priority based scheduler mode)を 用い、高優先度のデータをより高確率で送信できるようなスケジューリングをできるよう に切り替えて使用することができる。つまり、時刻 t2までは PFを使用し、時刻 t3にな るとき APを切り替えて使用することにより、高優先度のデータをより多く送信すること ができる。また、時刻 t7には HSDPAが使用できる無線リソース量が閾値より増加す ることが事前にわかって 、るので、 PFに戻すことができる。 [0033] MAC— hsl61は、 RPIから算出した HSDPA用無線リソースの中で、変更したスケ ジユーリング方法に従い、データの優先度や各 UEの CQI(Channel Quality Indicator )に応じたデータの通信制御を行った後、基地局 121を介して、指定された無線チヤ ネルで時刻 tkに移動局 131へデータを送信する(S 104)。
[0034] 図 8は、具体的な MAC— hsの動作を示すフローチャートである。 MAC—hsl61 は、 MAC— ml52から RPIを受信し(S11)、時刻 tkで HSDPAが使用できる無線リ ソース量が閾値以下で(S 12で Yes)、さらに時刻 tk 1でのスケジューラが PFの場 合は(S13で Yes)、スケジューラを PFから APに変更する(S15)。時刻 tk—lでのス ケジユーラが APの場合は(S13で No)、スケジューラ変更なしとする(S16)。また、時 刻 tkで HSDPAが使用できる無線リソース量が閾値より大きく(S12で No)、さらに時 刻 tk— 1でのスケジューラが APの場合は(S 14で Yes)、スケジューラを APから PFに 変更する(S17)。時刻 tk— 1でのスケジューラが PFの場合は(S 14で No)、スケジュ ーラ変更なしとする(S16)。
[0035] 図 9は、本実施例における MAC— hsの構成を示したものである。本実施例の MA C hsは、基地局制御装置力 受信したデータを優先度に応じて複数の待ち行列に 振り分ける Priority Queue distribution201と、 Priority Queue distributionで振り分け られたデータを格納し、順次送出する Priority Queue202と、 UEからの再送要求を 受信して、再送制御を行う HARQ entity203と、データの送信に適した Transport For matと無線リソースを選択する TFRC(Transport Format Resource Combination) select ion204と、 MAC— hs内のスケジューラ方法の管理を行う MAC— hsスケジューラ管 理部 205から構成される。
[0036] MBMSデータの送信を RRC151が許可すると、 RRC151から MAC—ml52へ M BMSデータと共に MBMSデータの RPIが通知される。 MAC— ml52は、通知され た MBMSデータの RPIを、 MAC— hs 161内の MAC - hsスケジューラ管理部 205 へ通知する。このとき MAC— hsスケジューラ管理部 205での受信時刻を Tkとする。 MAC— hsスケジューラ管理部 205は受信した RPIから、 MBMSデータの送信タイミ ング tkと、 tkでの MBMSデータの無線リソース使用量から、 tkでの HSDPAデータ の利用可能無線リソース量を計算する。 [0037] さらに MAC— hsスケジューラ管理部 205は、 HSDPAが使用できる無線リソース量 が閾値より多いときは PFを、少ないときは APを切り替え、計算した HSDPAデータの 利用可能無線リソース量に応じ、変更したスケジューリング方法に従って HSPDAデ ータの通信制御を行い、 tk時点での不使用無線リソースが生じず、かつ高優先度の データをより多く送信できるように制御する。
[0038] 図 10は、本実施例における MAC— mの構成を示したものである。本実施例の MA C mは、基地局制御装置力 受信したデータに MBMS— IDを付与する Add MBM S- ID301と、 Logical channelのタイプ付与する TCTF(Target Channel Type Field) MU X302と、スケジューリングや優先度の制御を行う Scheduling/Buffering/Priority Handl ing303と、 Transport channelと Logical channel間のマッピングを行う TFC selection30 4と、 MAC— m内の制御管理を行う MAC— m制御管理部 305から構成される。
[0039] MBMSデータの送信を RRC151が許可すると、 RRC151から MAC— m制御管 理部 305へ MBMSデータと共に MBMSデータの RPIが通知される。 MAC— m制 御管理部 305は、通知された MBMSデータの RPIを MAC— hsl61へ通知する。
[0040] 図 11は、実際の HSDPAデータ送信時に使用されたスケジューラを記入した図で ある。上記のように、 MAC— mで MBMSデータ用無線リソースとして確保されていた 無線リソースを、 MAC— hsで HSDPAデータに割り当てることができ、無線リソース 使用率が向上するだけでなく、 MAC— hsは実際の HSDPAデータの送信タイミング である tkよりも A t+TTIだけ早い時刻に RPIを受信しているので、 HSDPAデータを 送信するスケジューラを時刻 tkに PF力も APに切り替えることができ、 APによって PF よりも高優先度のデータをより多く送信することが可能となる。
実施例 2
[0041] 第 2の実施例では、第 1の実施例においてスケジューリング方法を変えることなく高 優先度のデータをより多く送信できるようにすることができる。なお、図 3, 4, 5, 6, 10 は、第 1の実施例と共通である。
[0042] 図 12は、実際の HSDPAデータ送信時に使用された、データの無線リソース比率 で表の一例である。
[0043] MBMSデータの流れを説明する。コアネットワーク 101から MBMS送信要求を受 信した時、 RRC151は、 MBMSデータの送信対象の基地局 121配下の移動局 131 、 132、 133から受信要求を募り、予め設定された MBMSデータに使用できる無線リ ソース量内で送信可能と判断した場合、 MBMSデータの送信を決定する。次に RR C151は、 MAC—ml52へMBMSデータと共にMBMSデータのRPIを通知し、 M AC—ml52は、通知された MBMSデータの RPIを、 MAC—hsl61へ時刻Tkに通 知する。
[0044] 一方 RRC151は、基地局 121と移動局 131、 132、 133間のコネクションを設定し、 MAC— ml52は、 RRC151から事前に設定された MBMSデータ用無線リソースの 中で、 MBMSデータを、優先度や QoSに応じてデータの通信制御を行った後、基 地局 121を介して、指定された無線チャネルで移動局 131、 132、 133へデータを送 信する。
[0045] 次に、 HSDP Aデータの流れを説明する。コアネットワーク 101または移動局 131 力 HSDPA送受信要求を受信した時、 RRC151は、予め設定された HSDPAデー タに使用できる無線リソース量内で送受信可能と判断した場合、 HSDPAデータの 送受信を決定する。次に RRC151は、基地局 121と移動局 131間のコネクションを 設定し、 MAC— hsl61は、受信した RPIから、送信タイミング tkに、 HSDPAデータ が使用できる無線リソース量を計算する。
[0046] さらに図 6の時刻 T2と T3に着目すると、 T2と T3から t2と t3それぞれの時刻での H SDP Aデータが使用できる無線リソース量は、図 5の t2と t3のように算出される。これ より、 t2での HSDPAデータが使用できる無線リソース量は多いが、次のスケジユーリ ングタイミングである T3では、 HSDPAデータが使用できる無線リソース量が少なくな ることがゎカゝる。
[0047] そこで、 MAC— hsは、実際の HSDPAデータの送信タイミングである tkよりも A t+ TTIだけ早い時刻に RPIを受信しているので、 HSDPAが使用できる無線リソース量 が閾値より多いときは通常の無線リソース比率である mode 1を、少な 、ときは高優先 度のデータを通常よりも多く送信できるように重み付けをした無線リソース比率である mode2に変換して使用することができる。つまり、時刻 t2までは図 12の modelを使 用し、時刻 t3になるとき mode2に切り替えて使用することにより、高優先度のデータ をより多く送信することができる。
[0048] また、時刻 t7には HSDPAが使用できる無線リソース量が閾値より増加することが 事前にわかっているので、 modelに戻すことができる。 MAC— hsl61は、 RPIから 算出した HSDPA用無線リソースの中で、変更した無線リソース比率に従い、各 UE の CQIに応じてデータの通信制御を行った後、基地局 121を介して、指定された無 線チャネルで移動局 131へデータを送信する。
[0049] 図 13は、具体的な MAC— hsの動作を示すフローチャートである。 MAC—hsl61 は、 MAC— ml52から RPIを受信し(S21)、時刻 tkで HSDPAが使用できる無線リ ソース量が閾値以下で(S22で Yes)、さらに時刻 tk— 1での無線リソース比率が mod elの場合は(S23で Yes)、無線リソース比率を mode2に変更する(S25)。時刻 tk— 1での無線リソース比率が mode2の場合は(S23で No)、 mode変更なしとする(S26 ) oまた、時刻 tkで HSDPAが使用できる無線リソース量が閾値より大きく(S22で No )、さらに時刻 tk— 1での無線リソース比率が mode2の場合は(S24で Yes)、無線リ ソース比率を modelに変更する(S27)。時刻 tk— 1での無線リソース比率が model の場合は(S24で No)、 mode変更なしとする(S26)。
[0050] 図 14は、本実施例における MAC— hsの構成を示したものである。本実施例の M AC— hsは、基地局制御装置力 受信したデータを優先度に応じて複数の待ち行列 に贩り分ける Priority Queue distribution40上と、 Priority Queue distributionで ¾り分 けられたデータを格納し、順次送出する Priority Queue402と、 UEからの再送要求を 受信して、再送制御を行う HARQ entity403と、データの送信に適した Transport For matと無線リソースを選択する TFRC(Transport Format Resource Combination) select ion404と、 MAC— hs内の無線リソース比率の管理を行う MAC— hs無線リソース比 率管理部 405から構成される。
[0051] MBMSデータの送信を RRC151が許可すると、 RRC151から MAC—ml52へ M BMSデータと共に MBMSデータの RPIが通知される。 MAC— ml52は、通知され た MBMSデータの RPIを、 MAC— hs 161内の MAC— hs無線リソース比率管理部 405へ通知する。このとき MAC— hs無線リソース比率管理部 405での受信時刻を tk とする。 MAC— hs無線リソース比率管理部 405は受信した RPIから、 MBMSデータ の送信タイミング Tkと、 Tkでの MBMSデータの無線リソース使用量から、 tkでの HS DPAデータの利用可能無線リソース量を計算する。
[0052] さらに MAC— hs無線リソース比率管理部 405は、 HSDPAが使用できる無線リソ ース量が閾値より多いときは modelを、少ないときは mode2を切り替え、計算した H SDPAデータの利用可能無線リソース量に応じ、変更したデータの無線リソース比率 に従って HSPDAデータの通信制御を行い、 tk時点での不使用無線リソースが生じ ず、かつ高優先度のデータをより多く送信できるように制御する。
[0053] 図 15は、実際の HSDPAデータ送信時に使用された無線リソース比率を記入した 図である。上記のように、 MAC— mで MBMSデータ用無線リソースとして確保され ていた無線リソースを、 MAC— hsで HSDPAデータに割り当てることができ、無線リ ソース使用率が向上するだけでなぐ MAC— hsは実際の HSDPAデータの送信タ イミングである tkよりも A t+TTIだけ早い時刻に RPIを受信しているので、 HSDPA データを送信する無線リソース比率を時刻 tkに modelから mode2に切り替えること ができ、 mode2によって modelよりも高優先度のデータをより多く送信することが可 能となる。
実施例 3
[0054] 第 3の実施例では、第 1の実施例において、 MAC— hsが行うスケジューリングにお いて HARQ (再送制御)を考慮した送信を行うことができる。なお、図 3, 4, 5, 6, 10 は、第 1の実施例と共通である。
[0055] 時刻 Tkは、 MAC— mから通知された RPIの MAC— hsでの受信時刻である。ここ で、 Tk=tk— A t—2 XTTI (tk: MAC—mが規定した、 MBMSデータの基地局か らの送信タイミング、 A t:HSDP Aデータのスケジューリングに要する時間、 TTI :HS DPAのスケジューリングを設定してデータ送信する単位時間)とする。
[0056] 次に、図 16に示す、 MAC— mから MAC— hsへのデータの流れを示すシーケンス 図を参照して、 MBMSデータの流れを説明する。コアネットワーク 101から MBMS 送信要求を受信した時、 RRC151は、 MBMSデータの送信対象の基地局 121配下 の移動局 131、 132、 133から受信要求を募り、予め設定された MBMSデータに使 用できる無線リソース量内で送信可能と判断した場合、 MBMSデータの送信を決定 する。次に RRC151は、 MAC— ml52へMBMSデータと共にMBMSデータのRP Iを通知する。 MAC—ml52は、時刻 Tk=tk— 1; 2 丁丁1を計算し(3201)、通 知された MBMSデータの RPIを、 MAC— hsl61へ時刻 Tkに通知する(S202)。
[0057] 一方 RRC151は、基地局 121と移動局 131、 132、 133間のコネクションを設定し、 MAC— ml52は、 RRC151から事前に設定された MBMSデータ用無線リソースの 中で、 MBMSデータを、優先度や QoSに応じてデータの通信制御を行った後、基 地局 121を介して、指定された無線チャネルで移動局 131、 132、 133へデータを送 信する。
[0058] 次に、 HSDPAデータの流れを説明する。コアネットワーク 101または移動局 131 力 HSDPA送受信要求を受信した時、 RRC151は、予め設定された HSDPAデー タに使用できる無線リソース量内で送受信可能と判断した場合、 HSDPAデータの 送受信を決定する。次に RRC151は、基地局 121と移動局 131間のコネクションを 設定し、 MAC— hsl61は、受信した RPIから、送信タイミング tkに、 HSDPAデータ が使用できる無線リソース量を計算する。
[0059] 図 6の時刻 T2と T3に着目すると、 T2と T3から t2と t3それぞれの時刻での HSDP Aデータが使用できる無線リソース量は、図 5の t2と t3のように算出できる。これより、 t2での HSDPAデータが使用できる無線リソース量は多いが、次のスケジューリング タイミングである t3では、 HSDPAデータが使用できる無線リソース量が少なくなるこ とがわかる。
[0060] 次に MAC—hsl61は、計算した送信タイミング tkにおける無線リソース量に基づき 送信方法の選択を行う(S203)。例えば、時刻 t2に HSDPAデータを大量に送信し て、仮に移動局での受信エラーが多ぐ再送要求が大量に発生してしまった場合、 時刻 t3では再送データを送信しきれなくなってしまう可能性がある。このため、時刻 t 3でデータ量が閾値より少なくなることがわ力つているときは、時刻 t2でのデータ送信 時には、一時的に送信電力を上げて、データ再送要求の発生が生じないように制御 することができる。このデータ再送要求が生じな 、ように制御する送信方法を TM(Tu rbo Mode)とする。一方、通常の送信方法を NM(Normal Mode)とする。また、時刻 t7 には HSDPAが使用できる無線リソース量が閾値より増加することが事前にわ力つて いるので、 NMに戻して送信を行うことができる。
[0061] また、本実施例以外のデータの再送要求が生じな!/、ように制御する方法として、拡 散率を下げたり、変調方式を低レートイ匕したり、 CQIの値を低くする等が挙げられる。 MAC— hsl61は、 RPIから算出した HSDPA用無線リソースの中で、変更した送信 方法に従い、優先度や、各 UEの CQIに応じてデータの通信制御を行った後、基地 局 121を介して、指定された無線チャネルで移動局 131へデータを送信する(S204
) o
[0062] 図 17は、具体的な MAC— hsの動作を示すフローチャートである。 MAC—hsl61 は、 MAC— ml52から RPIを受信し(S31)、時刻 tkで HSDPAが使用できる無線リ ソース量が閾値以下で(S32で Yes)、さらに時刻 tk 1での送信方法が NMの場合 は(S33で Yes)、送信方法を TMに変更する(S35)。時刻 tk 1での送信方法が T Mの場合は(S33で No)、送信方法変更なしとする(S36)。また、時刻 tkで HSDPA が使用できる無線リソース量が閾値より大きく(S32で No)、さらに時刻 tk— 1での送 信方法が TMの場合は(S34で Yes)、送信方法を NMに変更する(S37)。時刻 tk— 1での送信方法が NMの場合は(S34で No)、送信方法変更なしとする(S36)。
[0063] 図 18は、本実施例における MAC— hsの構成を示したものである。本実施例の M AC— hsは、基地局制御装置力 受信したデータを優先度に応じて複数の待ち行列 に贩り分ける Priority Queue distribution50上と、 Priority Queue distributionで ¾り分 けられたデータを格納し、順次送出する Priority Queue502と、 UEからの再送要求を 受信して、再送制御を行う HARQ entity503と、データの送信に適した Transport For matと無線リソースを選択する TFRC(Transport Format Resource Combination) select ion504と、 MAC— hs内の送信方法の管理を行う MAC— hs送信方法制御部 505か ら構成される。
[0064] MBMSデータの送信を RRC151が許可すると、 RRC151から MAC—ml52へ M BMSデータと共に MBMSデータの RPIが通知される。 MAC— ml52は、通知され た MBMSデータの RPIを、 MAC— hs 161内の MAC— hs送信方法制御部 505へ 通知する。このとき MAC— hs送信方法制御部 505での受信時刻を tkとする。 MAC hs送信方法制御部 505は受信した RPIから、 MBMSデータの送信タイミング Tkと 、 Tkでの MBMSデータの無線リソース使用量から、 tkでの HSDPAデータの利用 可能無線リソース量を計算する。
[0065] さらに MAC— hs送信方法制御部 505は、 tk 1での送信方法が TMであり、かつ t kで HSDPAが使用できる無線リソース量が閾値より多いときは NMを、 tk—lでの送 信方法が NMであり、かつ tkで HSDPAが使用できる無線リソース量が閾値より少な いときは TMを切り替え、変更した送信方法に従って HSPDAデータの通信制御を 行い、 tk時点での不使用無線リソースが生じず、かつ再送の発生量を制御し、送信 遅延を低減することができる。
[0066] 本実施例の構成は上記に限られるものでなぐ基地局制御装置に複数の基地局が 接続されて 、て、同一の MBMSデータを複数の基地局から同時に送信する場合に も実施可能である。この場合、基地局制御装置内の MAC— mは、複数の MAC— h sに同一の RPIを通知し、 MAC— hsはそれぞれ HSDPAデータの使用可能無線リソ ースを計算し、計算結果に応じた送信方法を選択して HSDPAデータの送信を行う 力 MBMSデータの送出時刻や無線リソースに影響を与えることはないので、移動 局での複数基地局から MBMSデータを同時に受信することができ、 SHO(Soft Hand over)制御を行う場合にも有効である。
[0067] 図 19は、実際の HSDPAデータ送信時に HSDPAデータが送信されたときに使用 された送信方法を記入した図である。上記のように、 MAC— mで MBMSデータ用 無線リソースとして確保されていた無線リソースを、 MAC— hsで HSDPAデータに割 り当てることができ、無線リソース使用率が向上するだけでなぐ MAC— hsは実際の HSDPAデータの送信タイミングである tkよりも Δ t + 2 X TTIだけ早!、時刻に RPIを 受信しているので、時刻 tk以前にデータ再送要求の発生が生じないように送信方法 を制御することができ、データの送信遅延が生じに《なる。
[0068] 以上、第 1の実施例から第 3の実施例を説明したが、これらの各実施例を組み合わ せた制御を行うことも可能である。
[0069] 以上説明した実施例では、 MAC— mは基地局制御装置内、 MAC— hsは基地局 内にある例を説明したが、これらの MAC (制御部)を同一装置内に配置する構成も 可能である。 [0070] また、以上の実施例では、 MAC— mが、基地局からの送出時刻における無線リソ ース情報を通知する時刻を、 MAC— hsがスケジューリングに要する時間とスケジュ 一リング'データ送信単位時間から算出しているが、条件に応じて可変とすることもで きる。
産業上の利用可能性
[0071] 本発明は、複数種類のトランスポートチャネルでマルチキャストやブロードキャストを 行う移動体通信システムに適用することができる。

Claims

請求の範囲
[1] 複数種類のトランスポートチャネルにそれぞれ割り当てられた無線リソースの状況に 応じて、トランスポートチャネルの通信制御を行う制御部が複数ある移動体通信シス テムであって、
第 1の制御部は、基地局力 の送出時刻における第 1のトランスポートチャネルで使 用する無線リソースに関する情報を、前記送出時刻よりも前に第 2の制御部へ通知す る手段を備え、
前記第 2の制御部は、前記第 1の制御部から第 1のトランスポートチャネルの無線リ ソースに関する情報を受信する手段と、
前記第 1のトランスポートチャネルの無線リソースに関する情報と第 2のトランスポー トチャネルが割り当てられた無線リソースから、前記第 2のトランスポートチャネルのデ ータが前記送出時刻に使用できる無線リソースを演算する手段と、
前記演算結果の無線リソースに応じてデータの通信制御を行う手段とを備えること を特徴とする移動体通信システム。
[2] 前記第 2の制御部は、前記演算結果の無線リソースが予め定められた閾値を越え る、若しくは閾値以下になる場合、スケジューリング方法を変更する手段をさらに有し 前記演算結果の無線リソースに応じて、前記変更したスケジューリング方法でデー タの通信制御を行うことを特徴とする請求項 1に記載の移動体通信システム。
[3] 前記第 2の制御部は、前記演算結果の無線リソースが予め定められた閾値を越え る、若しくは閾値以下になる場合、各優先度のデータに割り当てる無線リソースの比 率を変更する手段をさらに有し、
前記演算結果の無線リソースに応じて、前記変更した無線リソースの比率に従って 各優先度のデータの通信制御を行うことを特徴とする請求項 1に記載の移動体通信 システム。
[4] 前記第 2の制御部は、前記演算結果の無線リソースが予め定められた閾値を越え る、若しくは閾値以下であれば送信方法を変更する手段をさらに有し、
前記演算結果の無線リソースに応じて、前記変更した送信方法に従ってデータの 通信制御を行うことを特徴とする請求項 1に記載の移動体通信システム。
[5] 第 1の制御部は、前記基地局力 の送出時刻における無線リソース情報を通知す る時刻を、前記第 2の制御部がスケジューリングに要する時間とスケジューリング'デ ータ送信単位時間から算出することを特徴とする請求項 1に記載の移動体通信シス テム。
[6] 前記通信制御に用いられるスケジューリング方法は、前記閾値を越える時には、優 先度又は無線品質に基づき、各ユーザ間の送信確率が均等になるスケジューリング 方法を使用し、前記閾値を下回る時には高優先度のデータをより高確率で送信でき るスケジューリング方法を使用することを特徴とする請求項 2に記載の移動体通信シ ステム。
[7] 前記通信制御に用いられる優先度は、前記閾値を上回る時には、通常の無線リソ ース比率を使用し、前記閾値を下回る時には、高優先度のデータを通常よりも多く送 信できるように重み付けをした無線リソース比率を使用することを特徴とする請求項 3 に記載の移動体通信システム。
[8] 前記通信制御に用いられる送信方法は、前記閾値を上回る時には、通常の送信方 法を使用し、前記閾値を下回る時には、送信電力、拡散率、変調方式、 CQIのうち一 つ、または複数を組み合わせて変更して、再送が発生しないように事前に制御する 送信方法を使用することを特徴とする請求項 4に記載の移動体通信システム。
[9] 前記第 1のトランスポートチャネルが、複数ユーザで無線リソースを共有して、同一 データを複数ユーザに送信するマルチキャスト又はブロードキャストを行うためのトラ ンスポートチャネルであり、前記第 2のトランスポートチャネル力 ユーザごとにリソース 割り当て又はスケジューリングを行い、ユーザごとにデータを送信するためのトランス ポートチャネルであることを特徴とする請求項 1に記載の移動体通信システム。
[10] 前記第 1の制御部が、前記移動体通信システムの基地局制御装置に含まれ、前記 第 2の制御部が、前記移動体通信システムの基地局に含まれることを特徴とする請 求項 1に記載の移動体通信システム。
[11] 複数種類のトランスポートチャネルにそれぞれ割り当てられた無線リソースの状況に 応じて、トランスポートチャネルのデータ通信制御を行う制御部が複数ある移動体通 信システムの通信制御方法であって、
第 1の制御部力 基地局力 の送出時刻における第 1のトランスポートチャネルで使 用する無線リソースに関する情報を、前記送出時刻よりも前に第 2の制御部へ通知し 前記第 2の制御部が、前記第 1の制御部から第 1のトランスポートチャネルの無線リ ソースに関する情報を受信し、
前記第 1のトランスポートチャネルの無線リソースに関する情報と第 2のトランスポー トチャネルが割り当てられた無線リソースから、前記第 2のトランスポートチャネルのデ ータが前記送出時刻に使用できる無線リソースを演算し、
前記演算結果の無線リソースに応じて、データの通信制御を行う各ステップを含む ことを特徴とする通信制御方法。
[12] 前記第 2の制御部が、前記演算結果の無線リソースが予め定められた閾値を越え る、若しくは閾値以下になる場合、スケジューリング方法を変更するステップをさらに 有し、
前記演算結果の無線リソースに応じて、前記変更したスケジューリング方法でデー タの通信制御を行うことを特徴とする請求項 11に記載の通信制御方法。
[13] 前記第 2の制御部が、前記演算結果の無線リソースが予め定められた閾値を越え る、若しくは閾値以下になる場合、各優先度のデータに割り当てる無線リソースの比 率を変更するステップをさらに有し、
前記演算結果の無線リソースに応じて、前記変更した無線リソースの比率に従って 各優先度のデータの通信制御を行うことを特徴とする請求項 11に記載の通信制御 方法。
[14] 前記第 2の制御部が、前記演算結果の無線リソースが予め定められた閾値を越え る、若しくは閾値以下であれば送信方法を変更するステップをさらに有し、
前記演算結果の無線リソースに応じて、前記変更した送信方法に従ってデータの 通信制御を行うことを特徴とする請求項 11に記載の通信制御方法。
[15] 第 1の制御部が、前記基地局力 の送出時刻における無線リソース情報を通知す る時刻を、前記第 2の制御部がスケジューリングに要する時間とスケジューリング'デ ータ送信単位時間から算出することを特徴とする請求項 11に記載の通信制御方法。
[16] 前記通信制御に用いられるスケジューリング方法は、前記閾値を越える時には、優 先度又は無線品質に基づき、各ユーザ間の送信確率が均等になるスケジューリング 方法を使用し、前記閾値を下回る時には高優先度のデータをより高確率で送信でき るスケジューリング方法を使用することを特徴とする請求項 12に記載の通信制御方 法。
[17] 前記通信制御に用いられる優先度は、前記閾値を上回る時には、通常の無線リソ ース比率を使用し、前記閾値を下回る時には、高優先度のデータを通常よりも多く送 信できるように重み付けをした無線リソース比率を使用することを特徴とする請求項 1 3に記載の通信制御方法。
[18] 前記通信制御に用いられる送信方法は、前記閾値を上回る時には、通常の送信方 法を使用し、前記閾値を下回る時には、送信電力、拡散率、変調方式、 CQIのうち一 つ、または複数を組み合わせて変更して、再送が発生しないように事前に制御する 送信方法を使用することを特徴とする請求項 14に記載の通信制御方法。
[19] 前記第 1のトランスポートチャネル力 複数ユーザで無線リソースを共有して、同一 データを複数ユーザに送信するマルチキャスト又はブロードキャストを行うためのトラ ンスポートチャネルであり、前記第 2のトランスポートチャネル力 ユーザごとにリソース 割り当て又はスケジューリングを行い、ユーザごとにデータを送信するためのトランス ポートチャネルであることを特徴とする請求項 11に記載の通信制御方法。
[20] 前記第 1の制御部が、前記移動体通信システムの基地局制御装置に含まれ、前記 第 2の制御部が、前記移動体通信システムの基地局に含まれることを特徴とする請 求項 11に記載の通信制御方法。
[21] 複数種類のトランスポートチャネルにそれぞれ割り当てられた無線リソースの状況に 応じて、トランスポートチャネルの通信制御を行う移動体通信システムの送信側制御 部であって、
基地局力 の送出時刻における前記トランスポートチャネルで使用する無線リソー スに関する情報を、前記送出時刻よりも前に通知する手段を備えることを特徴とする 制御部。
[22] 複数種類のトランスポートチャネルにそれぞれ割り当てられた無線リソースの状況に 応じて、トランスポートチャネルの通信制御を行う移動体通信システムの受信側制御 部であって、
前記無線リソースに関する情報を受信する手段と、
前記無線リソースに関する情報と他のトランスポートチャネルが割り当てられた無線 リソースから、当該他のトランスポートチャネルのデータが前記送出時刻に使用できる 無線リソースを演算する手段と、
前記演算結果のリソースに応じてデータの通信制御を行う手段とを備えることを特 徴とする制御部。
[23] 前記演算結果の無線リソースが予め定められた閾値を越える、若しくは閾値以下に なる場合、スケジューリング方法を変更する手段をさらに有し、
前記演算結果の無線リソースに応じて、前記変更したスケジューリング方法でデー タの通信制御を行うことを特徴とする請求項 22に記載の制御部。
[24] 前記演算結果の無線リソースが予め定められた閾値を越える、若しくは閾値以下に なる場合、各優先度のデータに割り当てる無線リソースの比率を変更する手段をさら に有し、
前記演算結果の無線リソースに応じて、前記変更した無線リソースの比率に従って
、各優先度のデータの通信制御を行うことを特徴とする請求項 22に記載の制御部。
[25] 演算結果の無線リソースが予め定められた閾値を越える、若しくは閾値以下であれ ば送信方法を変更する手段をさらに有し、
前記演算結果の無線リソースに応じて、前記変更した送信方法でデータの通信制 御を行うことを特徴とする請求項 22に記載の制御部。
[26] 前記基地局力 の送出時刻における無線リソース情報を通知する時刻を、受信側 制御部がスケジューリングに要する時間とスケジューリング 'データ送信単位時間を 加えて算出することを特徴とする請求項 21に記載の制御部。
[27] 前記通信制御に用いられるスケジューリング方法は、前記閾値を越える時には、優 先度又は無線品質に基づき、各ユーザ間の送信確率が均等になるスケジューリング 方法を使用し、前記閾値を下回る時には高優先度のデータをより高確率で送信でき るスケジューリング方法を使用することを特徴とする請求項 23に記載の制御部。
[28] 前記通信制御に用いられる優先度は、前記閾値を上回る時には、通常の無線リソ ース比率を使用し、前記閾値を下回る時には、高優先度のデータを通常よりも多く送 信できるように重み付けをした無線リソース比率を使用することを特徴とする請求項 2 4に記載の制御部。
[29] 前記通信制御に用いられる送信方法は、前記閾値を上回る時には、通常の送信方 法を使用し、前記閾値を下回る時には、送信電力、拡散率、変調方式、 CQIのうち一 つ、または複数を組み合わせて変更して、再送が発生しないように事前に制御する 送信方法を使用することを特徴とする請求項 25に記載の制御部。
[30] 請求項 22〜25, 27〜29のいずれかに記載の制御部を有することを特徴とする基 地局。
[31] 請求項 21又は 26に記載の制御部を有することを特徴とする基地局制御装置。
[32] 複数種類のトランスポートチャネルにそれぞれ割り当てられた無線リソースの状況に 応じて、トランスポートチャネルの通信制御を行う移動体通信システムの送信側制御 プログラムであって、
基地局力 の送出時刻における前記トランスポートチャネルで使用する無線リソー スに関する情報を、前記送出時刻よりも前に通知する機能をコンピュータに実現させ ることを特徴とする制御プログラム。
[33] 複数種類のトランスポートチャネルにそれぞれ割り当てられた無線リソースの状況に 応じて、トランスポートチャネルの通信制御を行う移動体通信システムの受信側制御 プログラムであって、
前記無線リソースに関する情報を受信する機能と、
前記無線リソースに関する情報と他のトランスポートチャネルが割り当てられた無線 リソースから、当該他のトランスポートチャネルのデータが前記送出時刻に使用できる 無線リソースを演算する機能と、
前記演算結果のリソースに応じてデータの通信制御を行う機能とをコンピュータに 実現させることを特徴とする制御プログラム。
PCT/JP2006/310863 2005-05-31 2006-05-31 移動体通信システム及びその通信制御方法 WO2006129698A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007519027A JP4853732B2 (ja) 2005-05-31 2006-05-31 移動体通信システム及びその通信制御方法
CN2006800194829A CN101189902B (zh) 2005-05-31 2006-05-31 移动通信系统以及通信控制方法
US11/916,080 US8797863B2 (en) 2005-05-31 2006-05-31 Mobile communication system and communication control method
EP06747036.9A EP1887828B1 (en) 2005-05-31 2006-05-31 Mobile communication system and communication control method thereof
US14/134,709 US9282544B2 (en) 2005-05-31 2013-12-19 Mobile communication system and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005159490 2005-05-31
JP2005-159490 2005-05-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/916,080 A-371-Of-International US8797863B2 (en) 2005-05-31 2006-05-31 Mobile communication system and communication control method
US14/134,709 Continuation US9282544B2 (en) 2005-05-31 2013-12-19 Mobile communication system and communication control method

Publications (1)

Publication Number Publication Date
WO2006129698A1 true WO2006129698A1 (ja) 2006-12-07

Family

ID=37481627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310863 WO2006129698A1 (ja) 2005-05-31 2006-05-31 移動体通信システム及びその通信制御方法

Country Status (6)

Country Link
US (2) US8797863B2 (ja)
EP (2) EP1887828B1 (ja)
JP (1) JP4853732B2 (ja)
KR (1) KR100974392B1 (ja)
CN (2) CN102868971B (ja)
WO (1) WO2006129698A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088024A1 (ja) * 2007-01-19 2008-07-24 Nec Corporation マルチメディアブロードキャストマルチキャストサービスにおける選択サービスの通知システムおよび方法
JP2008547264A (ja) * 2005-06-17 2008-12-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信資源管理
WO2009026821A1 (fr) * 2007-08-24 2009-03-05 Huawei Technologies Co, .Ltd. Procédé, dispositif et système de commande d'admission de multidiffusion
WO2010044434A1 (ja) * 2008-10-14 2010-04-22 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム及び上位ノード
WO2010095576A1 (ja) * 2009-02-17 2010-08-26 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線基地局及び無線通信方法
KR101082255B1 (ko) * 2007-02-21 2011-11-09 닛본 덴끼 가부시끼가이샤 데이터 송신 방법 및 그것을 이용한 셀룰러 시스템
JP5472966B2 (ja) * 2007-01-26 2014-04-16 日本電気株式会社 移動通信システム、端末装置、基地局装置、およびデータ通信方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20065858A0 (fi) * 2006-12-27 2006-12-27 Nokia Corp Tiedonsiirtomenetelmä, laite, kommunikaatiosysteemi, tietokoneohjelma, tietokoneohjelmatuote ja moduuli
MY154608A (en) * 2008-02-01 2015-07-15 Optis Wireless Technology Llc Communication terminal
JP5341176B2 (ja) * 2008-04-24 2013-11-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 誤り率管理
CN101742687B (zh) * 2008-11-14 2012-05-09 中兴通讯股份有限公司 一种hsdpa与mbms业务并发时资源分配的方法
KR101269890B1 (ko) * 2009-03-18 2013-05-31 한국전자통신연구원 채널 상태 정보 레퍼런스 신호를 전송하는 시스템
WO2010124415A1 (zh) * 2009-04-28 2010-11-04 上海贝尔股份有限公司 无线网络中的广播和/或组播的通信方法及其装置
JP5319389B2 (ja) * 2009-05-13 2013-10-16 京セラ株式会社 通信制御方法
ES2362524B1 (es) * 2009-08-27 2012-05-18 Vodafone España S.A.U. Procedimiento, sistema y dispositivo para transmitir paquetes de datos de redes multi-rat.
KR101411120B1 (ko) * 2010-06-18 2014-06-25 미쓰비시덴키 가부시키가이샤 데이터 처리 장치 및 데이터 처리 방법 및 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
US9189765B2 (en) * 2011-05-10 2015-11-17 Iii Holdings 1, Llc System and method for managing a resource
US9445425B2 (en) * 2011-10-24 2016-09-13 Nokia Solutions And Networks Oy Method of transmission in a communications network
US10433201B2 (en) 2017-03-17 2019-10-01 Electronics And Telecommunications Research Institute Method for transmitting and receiving packet in transport network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078012A (ja) * 2000-08-30 2002-03-15 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置および無線通信方法
JP2003348642A (ja) * 2002-05-30 2003-12-05 Yuji Oie 無線通信装置および無線通信方法
JP2004112428A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 送信電力制御方法および基地局装置
JP2004135283A (ja) * 2002-07-31 2004-04-30 Samsung Electronics Co Ltd 移動通信システムにおけるマルチメディア放送マルチキャストサービスを提供する装置及び方法
JP2005505954A (ja) * 2001-05-03 2005-02-24 クゥアルコム・インコーポレイテッド 無線通信システムのアップリンク送信を制御するための方法および装置
JP2005064872A (ja) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd 通信端末装置及び送信電力制御方法
WO2005079098A1 (ja) * 2004-02-13 2005-08-25 Matsushita Electric Industrial Co., Ltd. スケジューリング装置およびスケジューリング方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742593A (en) * 1995-08-29 1998-04-21 Hazeltine Corporation On-line distributed TDMA/FDMA/CDMA link assignment in mobile radio networks with flexible directivity
JP3851202B2 (ja) 2002-03-27 2006-11-29 三菱電機株式会社 無線通信装置および無線通信方法
JP4002204B2 (ja) 2002-04-09 2007-10-31 三星電子株式会社 移動通信システムにおけるマルチメディア放送/マルチキャストサービスのための制御情報伝送装置及びその方法
US7177273B2 (en) 2002-04-26 2007-02-13 Lucent Technologies Inc. Communication system with a shared medium
US7177658B2 (en) * 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
DE10247028A1 (de) * 2002-10-09 2004-04-22 Nd Satcom Ag Steuerungsverfahren zur Verwaltung der Übertragungskapazität von zumindest einer Relaisstation eines Übertragungssystems, sowie entsprechende Steuerungseinheit
US7453845B2 (en) 2002-11-08 2008-11-18 Lucent Technologies Inc. Distributed call control
JP2004221760A (ja) 2003-01-10 2004-08-05 Nec Corp 移動通信システム、無線制御装置、無線端末及びそのデータ配信方法並びにそのプログラム
US20050207367A1 (en) * 2004-03-22 2005-09-22 Onggosanusi Eko N Method for channel quality indicator computation and feedback in a multi-carrier communications system
US7813312B2 (en) * 2005-05-06 2010-10-12 Interdigital Technology Corporation Method and system for preventing high speed downlink packet access transmissions loss
WO2008052386A1 (en) * 2006-10-31 2008-05-08 Huawei Technologies Co., Ltd. Method for allocating communication resourse in a terrestrial wireless communication system
US8223688B2 (en) * 2007-03-07 2012-07-17 Wi-Lan, Inc. Channel aggregation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078012A (ja) * 2000-08-30 2002-03-15 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置および無線通信方法
JP2005505954A (ja) * 2001-05-03 2005-02-24 クゥアルコム・インコーポレイテッド 無線通信システムのアップリンク送信を制御するための方法および装置
JP2003348642A (ja) * 2002-05-30 2003-12-05 Yuji Oie 無線通信装置および無線通信方法
JP2004135283A (ja) * 2002-07-31 2004-04-30 Samsung Electronics Co Ltd 移動通信システムにおけるマルチメディア放送マルチキャストサービスを提供する装置及び方法
JP2004112428A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 送信電力制御方法および基地局装置
JP2005064872A (ja) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd 通信端末装置及び送信電力制御方法
WO2005079098A1 (ja) * 2004-02-13 2005-08-25 Matsushita Electric Industrial Co., Ltd. スケジューリング装置およびスケジューリング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887828A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547264A (ja) * 2005-06-17 2008-12-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信資源管理
JP4782829B2 (ja) * 2005-06-17 2011-09-28 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信資源管理
WO2008088024A1 (ja) * 2007-01-19 2008-07-24 Nec Corporation マルチメディアブロードキャストマルチキャストサービスにおける選択サービスの通知システムおよび方法
JP5472966B2 (ja) * 2007-01-26 2014-04-16 日本電気株式会社 移動通信システム、端末装置、基地局装置、およびデータ通信方法
KR101082255B1 (ko) * 2007-02-21 2011-11-09 닛본 덴끼 가부시끼가이샤 데이터 송신 방법 및 그것을 이용한 셀룰러 시스템
WO2009026821A1 (fr) * 2007-08-24 2009-03-05 Huawei Technologies Co, .Ltd. Procédé, dispositif et système de commande d'admission de multidiffusion
CN101374065B (zh) * 2007-08-24 2011-02-16 华为技术有限公司 一种组播接纳控制的方法、装置及系统
WO2010044434A1 (ja) * 2008-10-14 2010-04-22 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム及び上位ノード
JP2010098388A (ja) * 2008-10-14 2010-04-30 Ntt Docomo Inc 無線通信システム及び上位ノード
WO2010095576A1 (ja) * 2009-02-17 2010-08-26 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線基地局及び無線通信方法

Also Published As

Publication number Publication date
CN102868971B (zh) 2016-11-23
EP1887828A1 (en) 2008-02-13
EP2587846A1 (en) 2013-05-01
US8797863B2 (en) 2014-08-05
US20140105161A1 (en) 2014-04-17
JPWO2006129698A1 (ja) 2009-01-08
EP1887828A4 (en) 2012-07-18
CN101189902B (zh) 2013-03-06
JP4853732B2 (ja) 2012-01-11
KR100974392B1 (ko) 2010-08-05
US20100189045A1 (en) 2010-07-29
EP1887828B1 (en) 2016-11-02
KR20080012889A (ko) 2008-02-12
EP2587846B1 (en) 2017-10-04
US9282544B2 (en) 2016-03-08
CN101189902A (zh) 2008-05-28
CN102868971A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4853732B2 (ja) 移動体通信システム及びその通信制御方法
JP4510826B2 (ja) ユーザ装置の上りリンク送信をスケジューリングする方法及び基地局
JP5163745B2 (ja) バッファ状態報告(bsr)情報の送信のトリガー最適化方法
US8929320B2 (en) Apparatus and method for communicating uplink signaling information
CN103746936B (zh) 用于从wtru调度上行链路数据的方法以及wtru
CN102369778B (zh) 移动通信系统中的缓冲状态报告
KR20070087099A (ko) 업링크 송신에 있어서의 보증 비트 레이트 트래픽의 유지
JP2012239176A (ja) 専用制御チャネルを実装し、および/または使用する方法ならびに装置
WO2002078212A1 (en) Method of controlling reverse transmission in a mobile communication system
AU2002241387A1 (en) Method of controlling reverse transmission in a mobile communication system
KR101415201B1 (ko) 통신 시스템에서 고속의 비디오 스트림 서비스를 위한스케줄링 방법 및 장치
US20070258364A1 (en) Resource control for scheduled and non-scheduled traffic
US7394768B2 (en) Fair scheduling with guaranteed minimum parameter
WO2010138293A1 (en) System and method for credit-based channel transmission scheduling (cbcts)
RU2483473C1 (ru) Способ, вм-sc и базовая станция для мультиплексирования услуг mbms в mbsfn
CN101453787B (zh) 无线通信系统、无线通信方法以及基站
EP1473886A2 (en) Fair scheduling with guaranteed minimum parameter
WO2007129186A1 (en) Resource control for scheduled and non-scheduled traffic
KR100606898B1 (ko) 패킷 스케줄링을 위한 자원 활용 방법과, 그를 이용하는시스템
CN101651602A (zh) 一种分配授权的方法、装置和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019482.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519027

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006747036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006747036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077027289

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11916080

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006747036

Country of ref document: EP